Luminal Administration of Biliverdin Ameliorates Ischemia/Reperfusion Injury Following Intestinal Transplant in Rats

Tsuyoshi Nojima MD¹, Takafumi Obara MD¹, Hirotsugu Yamamoto MD¹, Tetsuya Yumoto MD, PhD¹, Takuro Igawa MD, PhD², Toshiyuki Aokage MD¹, Mizuki Seya MS¹, Atsunori Nakao MD, PhD¹, Hiromichi Naito MD, PhD¹

Institution

- 1) Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences

Correspondence information

Hiromichi Naito, MD, PhD Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan. Email: naito-hiromichi@s.okayama-u.ac.jp Telephone number: +81-86-235-7427, FAX number: +81-86-235-7427

Meeting Information

Oral presentation at the 17th Annual Academic Surgical Congress. Orlando, FL. February 02, 2022

ABSTRACT

Background: Intestinal grafts are susceptible to ischemia/reperfusion (IR) injury, resulting in the loss of mucosal barrier function and graft failure. Biliverdin (BV) is known to exert a variety of cytoprotective functions against oxidative tissue injury. Because the mucosal layer is the primary site of IR injury, mucosa-targeting strategies by luminal delivery of reagents might be beneficial. We tested whether intraluminal administration of BV as an adjuvant to standard preservation solutions protected against IR injury.

Methods: Orthotopic syngeneic intestinal transplants were performed on Lewis rats after 6 hours of cold preservation. Saline containing BV (10 μ M) or without BV was introduced into the lumen of the intestinal grafts immediately prior to cold preservation. **Results**: Damage to the intestinal mucosa caused by IR injury resulted in severe morphological changes including blunting of the villi and erosion and led to significant loss of gut barrier function 3 hours after reperfusion. These changes to the mucosa were notably ameliorated by intraluminal administration of BV. BV also effectively inhibited upregulation of mRNAs for interleukin-6, inducible nitric oxide synthase, and C-C motif chemokine 2. Additionally, BV treatment prevented the loss of expression of claudin-1, a transmembrane, tight-junction barrier protein. The 14-day survival of recipients of BV-treated grafts was significantly improved as compared with the recipients of saline-treated control grafts (83.3% vs. 38.9%, p=0.03).

Conclusion: This study demonstrated that luminally delivered BV provides beneficial effects during the transplant of rat small intestinal grafts and could be an attractive therapeutic option in organ transplantation.

 $\mathbf{2}$