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ABSTRACT The dual-channel assumption of the cognitive theory of multimedia learning suggests that
importing a large amount of information through a single (visual or audio) channel overloads that channel,
causing partial loss of information, while importing it simultaneously through multiple channels relieves the
burden on them and leads to the registration of a larger amount of information. In light of such knowledge,
this study investigates the possibility of reinforcing visual stimuli with audio for supporting e-learners in
memorization tasks. Specifically, we consider three kinds of learning material and two kinds of audio
stimuli and partially reinforce each kind of material with each kind of stimuli in an arbitrary way. In a
series of experiments, we determine the particular type of audio, which offers the highest improvement for
each kind of material. Our work stands out as being the first study investigating the differences in memory
performance in relation to different combinations of learning content and stimulus. Our key findings from
the experiments are: (i) E-learning is more effective in refreshing memory rather than studying from scratch,
(ii) Non-informative audio is more suited to verbal content, whereas informative audio is better for numerical
content, (iii) Constant audio triggering degrades learning performance and thus audio triggering should be
handled with care. Based on these findings, we develop an ANN-based estimator to determine the proper
moment for triggering audio (i.e. when memory performance is estimated to be declining) and carry out
follow-up experiments for testing the integrated framework. Our contributions involve (i) determination
of the most effective audio for each content type, (ii) estimation of memory deterioration based on
learners’ interaction logs, and (iii) the proposal of improvement of memory registration through auditory
reinforcement. We believe that such findings constitute encouraging evidence the memory registration of
e-learners can be enhanced with content-aware audio incorporation.

INDEX TERMS E-learning, neural networks, artificial intelligence, cognitive theory of multimedia learning,
cognitive load, distinctiveness account, perceptual decoupling, adaptability, educational data mining.

I. INTRODUCTION AND MOTIVATION
Humans’ information registration framework has a three-
store structure composed of sensory memory, working mem-
ory, and long-term memory [1]. Sensory memory reacts to

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

perception through the five senses, which are sight, hearing,
taste, smell and touch. Subsequently, the information received
by sensory memory is stored for some time, before being
transmitted to short-term and/or working memory and being
registered in long-term memory (or discarded) [2], [3].

In educational psychology, the theory, which explains the
roles of these processes in learning, is called ‘‘Cognitive
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theory of multimedia learning’’ (CTML) [4]. This theory
has three basic elements, namely dual-channel assumption,
limited-capacity assumption, and active-processing assump-
tion [4]. In this study, we consider in particular the roles of
the dual-channel and limited-capacity phenomena in learning
and investigate how such principles of educational psychol-
ogy (developed principally for conventional settings like a
classroom) can be deployed for improving memory registra-
tion in technology-based learning.

To that end, we focus on a particular kind of learning
system, namely, virtual flashcard software, which is used
for rote learning, i.e. a memorization technique based on
repetition. Due to its simplicity, rote learning constitutes an
important element in learning foreign language vocabulary,
mathematical formulas, and chemical facts and the like [5],
[6], and [7]. However, rote learning also bears several chal-
lenges, such as being monotonous, which makes it difficult
to sustain focus and motivation.

In that respect, the objective of this study is to build a
mechanism for supporting learners carrying out computer-
assisted rote learning, such that their memory registration
improves.

Specifically, we first point out the distinctions in memory
registration, which arise due to variations in the type of
learning content and the type of stimulus that delivers it.
Based on empirical evidence, we identify the type of audio
stimulus, which leads to the largest improvement in memory
registration concerning each content type under investigation.

We then exploit such findings together with the
dual-channel phenomenon and distinctiveness account.
In particular, we propose reinforcing visual stimuli with audio
incorporation, particularly for those pieces of content, that the
learner is likely to forget. To estimate the instants (i.e. partic-
ular piece of the content) at which the learner needs such kind
of reinforcement, we train an artificial neural network (ANN)
with the data on learners’ interaction (i.e. activity log) with
the e-learning system. We incorporate this with memory test
results and determine the proper piece of learning material
to trigger the most appropriate kind of audio reinforcement.
The estimator is embedded into the e-learning system so as
to make real-time estimations and support the information
delivered by visual material.

By presenting several rote learning tasks varying in content
(i.e. verbal or numerical) and difficulty (i.e. easy or hard),
we carried out a comprehensive assessment. The proposed
ANN-based audio reinforcement scheme is shown to offer
(on average) an improvement over the baseline (i.e. visual-
only case) as well as extreme (i.e. constant triggering) cases
concerning all three kinds of learning content. In addition,
constant triggering is seen to lead to a decrease in perfor-
mance, which suggests that the triggering should be handled
with care.

Our work stands out as the first study addressing the
distinctions in memory registration for different combina-
tions of learning content and stimulus. Our contributions
involve the determination of the most effective audio for each

content type, the estimation of memory deterioration based
on learners’ interaction logs, and the proposal for improve-
ment of memory registration through ANN-based auditory
reinforcement.

II. RELATED WORK
E-learning has numerous advantages such as being econom-
ical, customizable, etc. However, it also has several chal-
lenges [8], mainly due to a lack of social interaction with the
instructor or other learners. Namely, the learners, who study
alone in their own schedule and room, often find it difficult
to establish self-discipline and lose motivation easily [9].

To tackle such disadvantages, it is necessary first to under-
stand the basics of human cognition and memory concern-
ing learning and then to investigate what kind of remedies
can be offered by deploying the embedded capabilities of
the digital host platform (e.g. recognition of disengagement,
failure, dropout or invoking reengaging/reinforcing stimuli,
etc.). Thus, in what follows we first explain relevant con-
cepts in human perception, the way information is registered,
retained/discarded, and the effect of concurrent stimuli and
then explain about existing works on supporting e-learners
with artificial intelligence (AI) based adjustments and
interferences.

Although humans perceive information through the five
senses, visual and auditory channels are considered to be the
main channels for receiving information. According to [10],
visual and auditory modalities are processed in separate
streams with different properties and limited capacity. Thus,
importing a large amount of information through a single
channel may overload that channel and some part of the
information may get lost. On the contrary, if the information
is imported bymultiple channels simultaneously, it is possible
to avoid causing a burden on any channel and, thus, a larger
amount of information can be processed [11].

There are numerous studies in literature examining the
relationship between visual and audio stimuli and learning.
For instance, Thompson and Paivio examine the indepen-
dence of auditory and visual nonverbal stimuli (pictures,
corresponding environmental sounds, or picture-sound pairs)
in free recall and report the best recall rate for the picture-
sound pairs [12]. They repeat a similar procedure by intro-
ducing a distracter task, which confirms the efficacy of using
two modalities at once as compared to single modalities
separately. Moreover, Tindall-Ford et al. investigate further
the effect of modality by comparing the learning materials
between various dual-mode presentations (e.g. auditory text
and visual diagrams) and single-modality formats (e.g. visual
text and visual diagrams) [13]. They show that dual-mode
presentation (audio and visual) has a higher performance than
single-modality formats (visual) and explain this observation
as an expansion of working memory due to the perception
of information through multiple channels. Also, Heikkilä
et al. show that memory efficiency is better when the content
(e.g. pictures, words, sounds) is accompanied by semanti-
cally congruent sound [14]. Although these studies provide
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valuable information about humans’ perception and process-
ing of information, they target recollection (i.e. remembering
of a past event or experience) rather than learning (i.e. acquir-
ing of a new piece of information), which limits a generaliza-
tion to real-life learner activity.

Nevertheless, there are also works on dual-modality pre-
sentation specifically in learning settings. For instance,
Moreno and Mayer study the redundancy in multimedia
learning and examine the difference between using the audi-
tory alone and auditory+visual modalities [15]. They con-
clude that redundant stimuli help the students to comprehend
the learning material better and that using dual modality is
more effective than using a single modality. In addition, Kim
and Godfroid focus specifically on second language learning
and show that learners gain information from all modali-
ties [16]. They report an interesting observation that implicit
knowledge is developed with better efficiency when the con-
tent is presented visually and claim visual input to be bene-
ficial especially for beginners. In addition, Kaplan-Rakowski
and Loranc-Paszylk focus on the effect of auditory stimuli on
learning foreign vocabulary presented together with (i) sound
effects, (ii) pronunciation, (iii) sound effects+pronunciation,
(iv) no audio [17]. The results indicate that vocabulary
presented with sound effects achieves significantly higher
scores. In light of these studies, proper integration of audio
stimuli into e-learning systems is suggested to boast a big
potential of improving learning efficiency.

Interpersonal variations pose a big challenge in the proper
integration of multi-channel stimuli into e-learning systems.
Therefore, the utilization of artificially intelligent tools,
which can adapt to the behavioral patterns of different learn-
ers, is considered to be very beneficial [18]. Nevertheless,
personalization is highlymulti-dimensional and it is quite dif-
ficult to find the right balance between the numerous factors
for every single individual.

In that respect, the seminal works of Gardner,
Kolb et al. and Felder & Silverman on learning style models
(LSM) emerge as structured bases, on which personalization
of learning can be contrived [19], [20], [21]. There is an
abundant number of works targeting the identification of
LSMs [22], [23], mostly adopting the approach of Felder &
Silverman. In addition, a substantial part of those deploy
machine learning methods [24] and in this section, we will
summarize several such studies, which are relevant for us,
particularly from the point of view of estimation approach
(i.e. ANN-based).

Gambo and Shakir [25] generate a data set by simulating
students’ learning behavior and then developing an ANN to
map the meta-cognitive skills to LSMs. Their main limitation
is the deployment of simulated data instead of data collected
from human participants. In addition, Zhang et al. [26] pre-
dict students’ learning preferences along the four dimensions
of Felder & Silverman LSM using deep belief networks
(DBN) on online learning session data. They show that the
proposed DBN provides more accurate estimates than several

other alternative architectures, but the advantage of such
estimates in improving learning efficacy is not demonstrated
experimentally. On the other hand, Zhang et al. [27] use a
real-world data set to predict students’ course grades through
a multi-source sparse attention convolutional ANN archi-
tecture, which also provides an explanation/interpretation of
failures. The advantages of their method lie principally in
enabling personalized course recommendation and associa-
tion mapping between courses. The main limitation is that
it is defined at coarse-level (e.g. at semester or exam level)
and generalization to finer levels (i.e. individual assignments
or questions) is not trivial. Many other studies estimating
student performance (e.g. withdrawal, pass/fail, drop-out)
in a coarse-grained fashion with such tools as ANN, sup-
port vector machines, logistic regression share this disad-
vantage [28], [29], [30], [31], [32]. In that respect, this study
aims to obtain similar predictions, but at a much finer scale
(within seconds or minutes). Moreover, it also deploys those
predictions in taking actions for supporting learners in a
timely fashion.

III. OVERVIEW
Our methodology can be broken into three main stages as
shown in Figure 1.

• Exploration stage: We consider three types of rote
learning tasks (with different contents) and three kinds
of stimuli to deliver those tasks. We deliver each type of
content with each kind of stimulus (see also Figure 2-(a))
to a group of 9 participants (3 females and 6 males
with an average age of 22.5 ± 2.3).1 In this first set
of experiments, we collect learners’ activity logs and
performance in memory tests. In the subsequent data
analysis stage, we determine the stimulus type, which
leads to the highest learning rate concerning each con-
tent type, by evaluating learning rates.

• Design stage: To estimate learners’ improvement/
deterioration of memory performance concerning each
piece of information (i.e. each item to be memorized),
we develop an ANN. Specifically, we deploy the activity
log files collected in the exploration stage, which are
used to derive the features to track learners’ interaction
with the e-learning software as well as the evolution of
their perception of difficulty concerning each piece of
task. Based on such information, we train our ANN and
construct our estimationmodel. Finally, we integrate the
estimation model into the e-learning system, such that
it provides appropriate audio reinforcement for various
content types, while also adapting to individual learners
on-the-fly.

1In particular, our participants are undergraduate or graduate university
students or workers, who are not involved with this area of research, are
all mother tongue Japanese speakers and reported no serious health issues
related to their visual or auditory senses. In addition, based on a dummy
session carried out before (actual) data collection, it is confirmed that they
can read the text on the screen and hear the audio without problems (see
also Appendix D).
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FIGURE 1. Overview and components of each stage of our study.

• Verification stage: We integrate the ANN into our
e-learning platform and test it on 11 participants
(1 female and 10 males with an average age of
23.2 ± 1.8). In particular, when memory performance
is estimated to be deteriorating concerning a certain
piece of information, the reinforced e-learning system
triggers the appropriate kind of audio stimulus at the next
viewing of that item. In this second set of experiments,
we collect additional activity logs and memory tests,
which are used in the statistical analysis to prove the
efficacy of the proposed approach.

IV. EXPERIMENTATION
In experiments, participants carried out rote learning tasks on
Anki, a free and open-source virtual flashcard program [33].
Analogous to physical flashcards, each virtual flashcard has
a ‘‘front’’ and a ‘‘back’’ face (referred also as Q-face and
A-face, see also Appendix A). When the learner is exposed
to the front face of a card, he/she takes some time to recall
the information on the A-face. Then, he/she ‘‘flips’’ the card
to disclose the A-face and register (i.e. memorize) it. Once
ready, he/she proceeds by evaluating the difficulty of the
card choosing ‘‘Again’’, ‘‘Good’’ or ‘‘Easy’’. We term watch-
ing the front and then back face as a viewing of that card.
Concerning each task, let the participants study a group of
12 cards, called a deck for 4 minutes. Anki registers learners’
activity logs in terms of UNIX time of button clicks, card and
deck IDs, and their subjective evaluations of difficulty (see
Appendix A for details).

To discover the effect of audio incorporation on memory
retention of different learning materials, we consider various
couplings of content type and stimulus type. The content
types are common for exploration and verification stages
and are denoted with CE ,CH ,CN . Here, CE stands for easy
verbal, CH is hard verbal and CN is numerical content (see
Appendix B). The stimulus types differ between the explo-
ration and verification stages. At the exploration stage, we use
SV , SA, SB, where SV is visual (baseline), SA is a combi-
nation of visual and informative audio, which refers to the

human-readout of the visual information, and SB is a com-
bination of visual and non-informative audio, which is a
bell sound (see Appendix C). At the verification stage,
we deploy SE and SF , where SE is the proposed estimation-
based scheme and SF is full audio reinforcement (triggering
audio stimuli for each item to be memorized).

V. EXPLORATION STAGE
At the exploration stage, each participant performed nine
sessions corresponding to the nine couplings of CE ,CH ,CN
and SV , SA, SB (see Figure 2-(a)).

(i) Three sessions are implemented with three kinds of
content displayed only visually (i.e. SV ).

(ii) Three sessions are implemented with three kinds of
content such that half of each task is delivered with only
visual information, whereas the other half is delivered
with a combination of visual and informative audio
(i.e. SA).

(iii) Three other sessions are implemented three kinds of
contents such that half of each task is delivered visually,
whereas the other half is delivered with a combination
of visual and non-informative audio (i.e. SB).

This configuration allows us to identify the difference in
recollection performance due to content type as well as to
decide which kind of audio reinforcement is best for each
content type (See Appendix E).

Note also that the partial couplings in (ii) and (iii) are
inspired by the distinctiveness account [34], [35]. Specifi-
cally, delivering part of the learning session with only visual
stimuli and the other part with visual and audio is expected
to highlight the supplementary stimuli, which will in turn
enhance the subsequent memorability of the related pieces of
information.2

2If the supplemental stimuli are attached to all pieces of information, there
is the danger that distinctiveness is undermined and the reinforcement effect
vanishes [35]. Such a configuration is implemented and tested in Section VII,
whose results confirm that full triggering has lower performance than a
mixed configuration.
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FIGURE 2. Each participant performed a total of (a) nine learning sessions in the exploration stage and (b) six learning sessions in the
verification stage.

TABLE 1. (a) Statistics and (b) ANOVA and effect size concerning
information gained IG for varying content types at exploration stage.

To evaluate performance, we study the amount of informa-
tion gained IG, which we define as the change in learner’s
knowledge succeeding the learning session as compared to
his/her preceding state (see Appendix E for details). In the
following tables, the number of data points is denoted by
#, and mean and standard error are denoted by µ and ϵ,
respectively, whereas p-value and effect size are represented
with p and d .

First, we pay regard to variation in content types (omitting
variations in stimulus type) and compute the statistics con-
cerning IG as presented in Table 1-(a). We see that CE attains
a much higher IG on average (i.e. 0.91) than CH and CN . This
indicates that the e-learning platform is useful for studying
easy content; namely, refreshing a material, which is possi-
bly already known (studied) in the past but then forgotten.
Moreover, IG is considerably higher for CN than for CH , even
though the two can be equally unfamiliar to the learner as
explained in Appendix B. In that respect, it is possibly more
beneficial to use traditional techniques (e.g. pen and paper)
in studying CH .
From Table 1-(b), we can see that the three content types

present a significantly different relation concerning IG. It is
interesting that although we do not pay any regard to the
type of stimulus delivering the content, the significance of the
difference is still obvious. This indicates the substantiveness
of content type as compared to the stimuli that deliver it.

TABLE 2. (a) Statistics and (b) ANOVA and effect size concerning
information gained IG for varying stimulus types at exploration stage.

Moreover, the related values of effect size d can be regarded
as medium to large.

Next, we examine the relationship between stimulus type
and IG paying regard to variations in stimulus type (and
omitting variations in content type, see Table 2-(a)). We can
see that on average IG is lower for contents presented with
visual-only stimuli SV (i.e. 0.66) than informative audio
SA and non-informative audio SB. In other words, having
an extra stimulus, irrespective of being informative or non-
informative, is beneficial over having only a visual stimulus.
Note also that all cases in Table 2-(a) attain a quite low
standard error, which indicates that the mean of the given
sample is considerably accurate.

In Table 2-(b), it is seen that SV is different from audio
incorporated cases SA and SB in a statistically significant way
(p = 0.04 and p = 0.02). Although the difference between SA
and SB is not found to be significant (p = 0.68), this may be
due to the fact that we disregard content types in Table 2-(b).
In addition, the related values of effect size d are quite small.
Subsequently, we present information gained IG for each

pair of content type and stimulus type in Table 3. Concerning
CE , we observe that the biggest improvement over SV is
provided by the incorporation of SA (i.e. 0.84 → 0.96).
Also, the ANOVA presented in Table 3-(b) proves that the
improvement provided by SA over SV is statistically signifi-
cant (p = 0.01) with small to medium effect size. However,
learning rates concerning CE are already quite high with SV ,
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TABLE 3. (a) Statistics and (b) ANOVA concerning information gained IG for each pair of content type and stimulus type at exploration stage.

TABLE 4. ANOVA and effect size concerning information gained IG for each pair of content type and stimulus type at exploration stage.

as compared to those of CH and CN . In that respect, it may
also be considered that it is not possible to expect a significant
improvement in CE through audio reinforcement. In other
words, there is a more imminent need for improvement con-
cerning the other content types CH and CN .
Concerning CH , SA is observed to yield virtually the same

IG as visual-only stimuli SV (i.e. 0.47 → 0.50), despite
what the dual-coding theory suggests [36] (see Table 3-(a)).
However, very interestingly, non-informative audio SB is
observed to provide a bigger improvement (i.e. 0.47 → 0.64).
To unveil the reasons for such unexpected observations,
we examined the interaction of the learners with the
e-learning platform and noticed that the rate of card views is
higher for SB than SV and SA, which may be explained by the
fact that the non-informative audio sets a certain faster pace in
viewing. This increased rate of viewing may help in recalling
the information even more than the human-readout. Note also
that the improvement provided by SB over SV and SA is statis-
tically significant (p = 0.02 and p = 0.05, see Table 3-(b)).
In that respect, we propose using non-informative audio SB
to support the learners studying hard verbal contents CH ,
i.e. CH + SB.

On the other hand, CN is observed to benefit from infor-
mative audio SA and non-informative audio SB in a similar
way (i.e. 0.71 → 0.76, 0.78, see Table 3-(a)). Also, the
improvement due to SA over SV and SB is not statistically
significant (p = 0.22 and p = 0.67, see Table 3-(b)).
However, since SA is found to be slightly better than SV and
SB, as seen in Table 3, we decided to take a chance and support
the learners studying numerical contentsCN with informative
audio SA, i.e. CN + SA.

Note that even though all cases in Table 3 attain a quite
low standard error indicating an accurate representation of
the true mean, the effect sizes given in Tables 1∼3 are small

to medium. Moreover, to understand in general how persis-
tent the new knowledge is, concerning each case presented
in Table 3, we also checked Information retained IR, which
we define as the increase in learner’s knowledge from the
beginning of the learning session to 5 minutes after the finish
of the learning session (see Appendix E for details). The
tendencies between information gained IG and information
retained IR are found to be quite parallel between different
couplings of content type and stimulus type (see Appendix F
for details).

VI. DESIGN STAGE
The data collected in the exploration stage is deployed in
designing an estimator. Specifically, we aim at estimating
learners’ memory performance concerning each item to be
memorized,3 as either improving or deteriorating. As an esti-
mator, we prefer an ANN due to its ability to capture complex
characteristics of data.

A. INPUT AND OUTPUT VARIABLES
Certain variables, which potentially contain characterizing
information about learners’ behavior or state, are determined
to be the inputs of our estimator model. Table 5 provides a
list of the variables that we choose to deploy as inputs of the
ANN.

Content type and stimulus type are considered to be part
of the inputs, as the learners may present a different reaction
to each pair (rows 1,2 of Table 5). Moreover, since audio
triggering is carried out for half of the flashcards in any deck

3Note that in Section V the purpose was to determine the on averagemost
efficient coupling of content type and stimulus type. In that respect, the items
to be reinforced with audio are chosen arbitrarily. On the other hand, in the
design stage the purpose is to trigger the reinforcement at the proper moment
and for the proper piece of information.
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TABLE 5. Inputs of the ANN estimator.

at the exploration step, the absence/presence of audio clips
are also fed as inputs (row 3 of Table 5).

The ‘‘number of current viewing’’ at a given time is defined
as the number of times that the learner watched a flashcard
from the beginning of the learning session until that moment
(row 4 of Table 5). Since learners’ memory performance is
expected to improve gradually (i.e. with the growing number
of viewings), it is considered to be a valid indicator.

The time spent on Q-face (tq) and time spent on A-face (ta)
of a flashcard may present a nontrivial relation with memory
performance (row 5 of Table 5). A very short tq can be either
due to the confidence of the learner in his/her recollection
or due to a complete lack of recall, whereas intermediate
values may indicate an effort to remember. A very short ta
may indicate confidence in evaluation, whereas a long ta may
suggest either an effort to register the answer or a hesitation
between two evaluation choices (e.g. Good or Easy). Thus,
although tq and ta cannot directly be associated with a certain
state, they can provide valuable information once they are
considered together with the other inputs.

Subjective evaluation may perhaps be considered to be an
indicator good enough on its own (i.e. without incorporat-
ing with the above-mentioned inputs). But we observed the
learners to be quite conservative and pessimistic with their
evaluations and to opt for the lower score, should they hesitate
between two choices. In that respect, we prefer to make
estimations based on not only their subjective evaluations
(row 6 of Table 5), but also by taking into account additional
indicators.

Since we represent content type and stimulus type with
one-hot-encoding [37], a total of 11 variables are used as
inputs of the ANN (see Table 5). All variables are integers,
where the number of current viewing is dimensionless, and tq
and ta are in millisecond resolution. Note also that although
certain variables are registered as integers into the log file,
they are fed as real numbers into the ANN, after being
preprocessed.

The output layer is composed of a single neuron, which
can take a binary value (0/1) and indicates whether the audio
reinforcement needs to be triggered (as a 1) or not (as a 0).
In the training stage of the ANN, the ground truth for out-
put is judged based on the improvement or deterioration of
the learner in terms of his/her subjective evaluations in two
consecutive interactions with a certain flashcard. Specifically,
if the learner evaluates a flashcard with increasing confidence

(e.g. first ‘‘Again’’ and then ‘‘Good’’), we assume that his/her
memory performance has increased and no audio reinforce-
ment is necessary and the ground truth is set to 0. On the other
hand, if he/she gives a lower rating following a higher rating,
memory performance is assumed to deteriorate and ground
truth is set to 1.

Obviously, the learner may also repeat his/her evaluations,
for which we adopt the following strategy. Namely, if the
evaluations are low (i.e. two consecutive ‘‘Again’’s), then the
ground truth is set to 1. In this case, although there is no
improvement or deterioration, the evaluation of the learner
is the lowest possible, and thus, audio reinforcement is con-
sidered to be beneficial.

If the evaluations are medium (i.e. two consecutive
‘‘Good’’s), there is again no change in state, but after several
steps there is a possibility of improvement or deterioration.
Thus, we adopt a Markovian approach based on transition
probabilities, which are estimated empirically. For instance,
based on the data collected in the exploration stage, we com-
pute the probability of evaluating a certain card as ‘‘Good’’
and then as ‘‘Again’’ in two consecutive interactions as

PGA =
#(ei = G ∧ ei+1 = A)∑

X∈{A,G,E}

#(ei = G ∧ ei+1 = X )
(1)

where #() denotes the number of instances satisfying a condi-
tion, ei is the evaluation of a card at ith interaction with it, X is
an evaluation label, which can be ‘‘Again’’ (A), ‘‘Good’’ (G)
or ‘‘Easy’’ (E). Based on such probabilities, we estimate the
following subjective evaluations until one that is different
than ‘‘Good’’ is achieved. To that end, we draw a random
number y from the standard Normal distribution y ∼ N (0, 1)
and compare it with the empirical probabilities.

e′i+1 =


A 0 ≤ y ≤ PGA
G PGA < y ≤ PGA + PGG
E PGA + PGG < y ≤ 1

(2)

If the estimated subsequent evaluation e′i+1 is once again
‘‘Good’’, we continue drawing random numbers until an e′i+1
which is different than ‘‘Good’’ is achieved. Based on that
evaluation, we trigger or not the audio.

Note that if the learner evaluates a flashcard as ‘‘Easy’’,
then that flashcard is removed from the queue and there will
be no subsequent interaction with it, which makes estimation
unnecessary.
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FIGURE 3. Assessment of improvement and deterioration of memory
registration. The transitions depicted in green (dotted lines) and red
(dashed lines) are considered to correspond to improvement and
deterioration, respectively. For evaluating the transitions depicted in blue
(solid line), we estimate future evaluations (states) based on empirical
probabilities of the corresponding Markov model.

B. PREPROCESSING OF INPUT VARIABLES
For building an efficient estimator, data preprocessing is an
essential step. Similar to most other estimation/recognition
problems, two main issues with our data set arise as (i) out-
liers and (ii) significantly different ranges of inputs. In that
respect, before building the estimation model, the variables
are preprocessed so as to remove the outliers, separate class
distributions, and mitigate class imbalance [38].

Especially, the temporal variables are likely to have a
problem with outliers. For each temporal variable, we retain
the data points, which belong to the interval µ ± 2σ of the
relating distribution and discard all other data points. This
empirical approach, which is also known as the 68-95-99.7
rule of thumb, is expected to retain roughly 95% of the
data and discard the other 5%, which is considered to be
reasonable [39].

As explained in Section VI, most inputs are binary (or one-
hot encoded), but there are also certain inputs, which can
take values from a large range in R (see Table 5). Such a
difference in scale is likely to cause problems in the training
stage. To solve this issue, non-binary input variables are
standardized using the StandardScaler tool provided by
the sklearn machine learning library for the Python pro-
gramming language. Namely, each data point x is represented
with its standard score z as

z =
(x − µ)

σ
, (3)

where µ and σ are the mean and standard deviations of all
observations {x} of that variable. Also in the verification
stage, the data collected in real-time pass through the same
preprocessing operations before being fed into the estima-
tor (i) to judge the necessity of audio reinforcement and
(ii) to update the model for achieving an incremental learning
process.

C. BASIS ESTIMATOR AND ADAPTIVE UPDATES
Initially, a basis estimator is built in an offline manner using
the data collected in the exploration stage. This pre-developed
model is integrated with the e-learning system and is invoked
at the verification stage experiments. To suit the system to
every learner in an on-the-fly manner, the basis estimator is
updated and adapted automatically to his/her behavior, which
is known as incremental learning in machine learning.

FIGURE 4. The architecture of the ANN. The number of hidden layers (ℓ) is
2 and the number of neurons in the first and second layers (η1, η2) are
16 and 8, respectively. The activation function in the hidden layers (φ) and
at the output layer (σ ) are sigmoid and softmax, respectively.

Therefore, in the verification stage the estimator continu-
ously adapts itself to the individual, who uses the e-learning
system. Although such a dynamic scheme enables exploiting
the potential of all available data (i.e. including those col-
lected within milliseconds), it also requires the model to be
as simple and easily trained as possible for enabling on-the-
fly adaptation. Taking this into consideration, we decided to
use MLP, which is one of the most common neural network
architectures and is known to be lightweight and fast.4

The tuning of hyper-parameters of MLP involves adjust-
ment of the number of layers, hidden nodes in each layer, acti-
vation functions, optimizers, number of training epochs (early
stopping), and dropout rate (see Figure 4). To achieve the
optimal configuration, we adopted an exhaustive grid-search
strategy, experimented with varying combinations of hyper-
parameters, and determined the configuration exceeding the
edge of accuracy.

It is common to use fully-connected networks (i.e. dense
layers) in MLP such that every node in a layer is connected
to all nodes in the previous and next layers (see Figure 4).
Then, the output of a neuron at, for instance, the first hidden
layer will be

y1,j = φ1,j

( ∑
i∈[1,n]

w1,i · xi

)
(4)

where φ1,j is the activation function of the jth neuron at the
first layer, w1,i are the weights associated with the inputs of
that neuron, and 1 ≤ j ≤ η1.
As for the activation function, we decided to use sigmoid

function φ at the hidden layers and softmax function σ at the
output layer (see Equation 5), since they help in reducing the
effect of small changes on the outputs, enable normalization

4We also considered using feedback connections (Long short-term mem-
ory), but decided to stick to feed-forward structure due to its computational
efficiency and the simplicity of our time series data.
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of the output and probabilistic estimations.5

φ(x) =
1

1 + exp (−x)
,

σ (xi) =
exp (−xi)∑

j=1,2
exp (−xj)

. (5)

As an optimizer, we considered three popular alternatives
as Adam, Stochastic gradient descent (SGD), and Root Mean
Square Propagation (RMFprop) and chose to use Adam, since
we saw that it provides satisfactory results with a reasonable
computational load.

There is no standard rule in machine learning for choosing
the optimal number of hidden layers/nodes of a neural net-
work. The number of nodes has to be large enough so that
the model has sufficient degrees of freedom to learn, but a
model too big is likely to over-fit the training data set and
not generalize on new unseen data. The size of the training
data should be used as an indicator of the size of the model.
Considering the amount of training data, we consider the
number of hidden layers ℓ ∈ {1, 2, 3} and the number of
hidden nodes η ∈ {4, 8, 16, 32, 64, 128} (between 20 and
500 parameters). For all possible combinations of ℓ and η,
we examined model accuracy and found out that ℓ = 2 with
η1 = 16 and η2 = 8 (i.e. the number of hidden nodes in
layers 1 and 2) is the best combination for accurate and stable
results. As for the output layer, we use two neurons, since we
have two possibilities of memory performance as improving
and deteriorating.

Using dense layers may pose a danger of over-fitting,
unless the training set has sufficient samples. Otherwise, the
neural network learns the details as well as the noise on
the training data. The dropout technique is used to prevent
such over-fitting problems and refers to the omission of some
arbitrary nodes during training. The portion of hidden nodes
ignored at each epoch is called the dropout rate, which we
represent with α. It is necessary to carefully adjust α, since
high dropout rates may cause instability in accuracy and loss
values. In this study, we considered α ∈ {0.1, 0.2, 0.3} and
examined the learning curve of accuracy and loss concerning
training and test sets (see Figure 5). For the dropout rate
of α = 0.1, when train and validation loss decrease and
stabilize, accuracy is observed to be around 70%, which is
considered to be a good fit nature, whereas dropout rates of
α = 0.2 and α = 0.3 depict volatile characteristics.

Another method used to prevent over-fitting is the early
stopping of training. Namely, excessive learning makes the
model more complicated and causes over-fitting. To avoid
that, it is suggested to abort training when validation error
reaches a minimum. Specifically, the performance of the
model on the validation set is monitored at every epoch,
and training is automatically terminated as soon as the loss
reaches its lowest point. We have empirically observed that
early stopping kicks in around the update cycle of 35.

5Specifically, φ1,j = φ2,k = φ, where 1 ≤ j ≤ η1, 1 ≤ k ≤ η2 and
σ1 = σ2 = σ .

VII. VERIFICATION STAGE AND RESULTS
We integrated the trained model with the e-learning platform
and performed follow-up experiments for verifying the effi-
cacy of the design. The main difference between exploration
stage and verification stage experiments is the integration
of ANN-based audio reinforcement (in addition to a fresh
set of decks). In the verification stage, the learners are sup-
portedwith non-informative audio in verbal contents andwith
informative audio in numerical content. Since such audio is
triggered based on the ANN estimator, this configuration is
called estimation based scheme SE (see also Figure 2-(b)).

In addition, we consider an alternative audio configuration,
namely full support SF . Note that this refers to the extreme
triggering, where the learner receives audio reinforcement
every time he/she interacts with a card. The reason for con-
sidering SF is for removing any doubt about the scarcity of
audio reinforcement. Namely, since audio reinforcement has
a positive effect on learning rate, onemay think that triggering
audio at all interactions (i.e. for each card, irrespective of
the anticipation of memory improvement/deterioration) is a
safe choice and guarantees that no failures are omitted. The
inefficiency of such extreme triggering is proven through
empirical evidence.

Since SV is the standard configuration of the e-learning
system, it can be considered as a baseline and, thus, results
concerning SV are also presented.

A. EASY VERBAL CONTENTS
In Table 6-(a), the automatic estimation scheme SE is seen
to stand out as the best, followed by visual-only scheme
SV and full support SF . Namely, with ANN-based audio
reinforcement, the learners gain the most (i.e. IG is largest
for SE ).6 One can also see that the learners forget the least
in the case of SE , since the decrease from IG to IR is smaller
for SE than for SV and SF . Also, the full-support scheme SF is
seen to lead to the lowest performance among the three cases.
In addition, the number of data points is found to be sufficient
to identify reliably the position of the means (ϵ ≪ µ).

Table 6-(b) presents the relating ANOVA. Examining the
values relating SE−SF pair, we see that IG achieves p =

0.01 and IR achieves p < 10−2, meaning that SE is sig-
nificantly better than SF . Watching SE − SV pair, we see
that the improvement of SE over SV is not significant for IG
(p = 0.59) and IR (p = 0.16). Moreover, the effect size is
found to be small to medium.

B. HARD VERBAL CONTENTS
From Table 7-(a), SE is seen to achieve the best results
both in information gained IG and information retained IR
forCH . However, the ANOVA scores presented in Table 7-(b)
indicate that the difference is not significant (p = 0.10 and
p = 0.17), and yet not very far from the universally accepted

6Since IR is the largest for SE , the learner is seen also to retain the largest
amount of information with SE . See Appendix F for the statistics on retained
knowledge IR.
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FIGURE 5. Accuracy and loss against epoch for dropout rates of (a) α = 0.1, (b) α = 0.2, and (c) α = 0.3. Train and test loss are illustrated in blue lines
with pluses and orange lines with circles, respectively. Train and test accuracy are illustrated in green lines with crosses and red lines with squares,
respectively.

TABLE 6. (a) Statistics and (b) ANOVA and effect size concerning
information gained IG and information retained IR relating to easy verbal
contents CE at verification stage.

threshold of 0.5. Similar to values concerning CE presented
in Table 6, the standard error values concerning CH are
quite low (see Table 7-(a)) and the effect size is small (see
Table 7-(b)). These results are possible to explain with the
perceptual decoupling phenomenon and the distinctiveness
account [40].

According to the perceptual decoupling phenomenon, one
may opt for turning off certain senses to be able to focus
fully on the others, which may happen more often for diffi-
cult learning materials [41], [42]. In particular, beginners are
known to benefit more from visual input (written materials)
than other modes [16], which explains why SE or SF did not
lead to any improvement over SV .
In addition, when humans are exposed to generated stimuli

(e.g. audio attached) and not-generated stimuli (e.g. silent)
in the same session, the subsequent memorability of the
generated stimuli is shown to improve [34], since distinct
stimuli are better encoded in memory. When distinctiveness
is undermined (e.g. by constant audio attachment), this effect
vanishes [34], which explains why SF results in very similar
scores to SV .

C. NUMERICAL CONTENTS
Memory performance relating to CN is presented in Table 8.
According to the statistics of IG, average scores for SE are

TABLE 7. (a) Statistics (b) ANOVA and effect size concerning information
gained IG and information retained IR relating to hard verbal contents CH
at the verification stage.

found to be slightly better than those for SF and SV . Note that
this effect diminishes as time lapses and the values of IR get
closer in all three schemes. In addition, there is no significant
difference in any of the cases as shown in Table 8-(b). Note
that as we mentioned in Section V incorporation of audio
was already not expected to contribute to the registration of
CN in a considerable way based on the observations at the
exploration stage and this expectancy is confirmed at the
verification stage. Note also that level significance decreases
with time similar to Section VII-B. In addition, the standard
error values of CN are quite lower than the concerning mean
and similar to those of CE and CH (see Table 8-(a)), whereas
effect size is again small (see Table 8-(b)).

VIII. LIMITATIONS
Although the number of participants is not very low (20 in
total) and the number of data points is at the level of hundreds,
it is better to use a larger set for a more accurate modeling and
evaluation.7

In addition, the input of the estimator is the activity logs
of the learners, which limits the number of variables that

7The experiments are carried out around the end of 2020 and the beginning
of 2021. In that period, our institute had a strict policy for the prevention
of Covid19 pandemic, and classes and research guidance were held online.
Thus, we had difficulty in recruiting participants.
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TABLE 8. Statistics concerning (a) information gained IG and
(b) information retained IR relating to the numerical contents CN at
verification stage.

can be derived (i.e. from button clicks) [43]. If the sys-
tem is incorporated with other kinds of sensory information
(e.g. gaze tracker, galvanic skin response), learners’ state can
be observed better.

Another limitation relates to the inherent characteristic of
the e-learning system to serve useful in reviewing previously
learned content but to be inefficient in learning from scratch.
Namely, some of the participants commented that they do
not feel comfortable with studying unfamiliar content for the
first time on a computer. They expressed their preference for
studying such material initially in a more conventional way
(reading a textbook, taking notes etc.), which deploys the
visual channel rather than the auditory one. We consider such
reports to be in agreement with the findings of [16], which
emphasize the permanence of visual channel in developing
implicit knowledge. Nevertheless, we consider this to be
a general drawback of technology-based learning systems
rather than a shortcoming specific to the proposed system.
Based on such observation, in addition to memory test scores,
it may be beneficial to account for learners’ evaluation of
experience and satisfaction in assessing the overall effective-
ness of the e-learning platform [44] through surveys, which
are not collected in the reported experiments.

IX. CONCLUSION AND FUTURE WORK
This study investigates the possibility of increasing e-learning
efficiency by integrating an automatic audio reinforcement
mechanism, which estimates the improvement or deteriora-
tion of learners’ memory performance. The estimator relies
on an ANN and is trained with data collected in a series of
experiments, where three types of content are coupled with
three kinds of audio stimulus in a pre-determined arbitrary
way. By this means, the most efficient content-stimulus pairs
are determined. Our results indicate that there is no single
best audio for reinforcing all contents. Namely, informative
audio is found to be better to reinforce numerical content,
whereas non-informative audio is superior for reinforcing
verbal contents.

We train a basis estimator with ANN architecture for
estimating the particular piece of content, which needs to

be reinforced. The ANN is also designed in such a way
that it adapts itself on-the-fly to each different learner using
the real-time data from him/her. Our results from follow-up
experiments with a reinforced e-learning system show that
ANN-based audio interference is beneficial in the short term
(i.e. subsequent to the learning session) for all three types of
contents. In addition, triggering audio constantly (i.e. at all
cards) is found to cause a decrease in performance, rather than
an increase, which indicates audio reinforcement should be
handled with care.

As future work, we would like to increase the data in
amount, variation and modality. In addition, we plan to carry
out user surveys with open-ended questions and ratings after
the experiments. Moreover, there is also a significant poten-
tial for improvement in facial video images [45] and biolog-
ical data (e.g. electrodermal activity). A more fundamental
future work relates to the strategy of how the estimation result
is blended into the e-learning system. Namely, the current
method is based on passive audio, which can be replaced with
other sorts of instructions or interventions. As for the former,
it would be interesting to modify the e-learning system to
incorporate active audio (i.e. the learner produces the written
text) [34]. Regarding the former, various alternatives includ-
ing avatars, prizes, levels etc. can be considered.

APPENDIX A
E-LEARNING SOFTWARE
In experiments, we used the free and open-source software
‘‘Anki’’ [33], which is a spaced-repetition virtual flashcard
program. Anki has a large user community, which maintains
a variety of shared decks aimed at rote learning of numerous
areas/subjects such as foreign language vocabulary, humani-
ties (e.g. historical dates, geographical facts, law) and science
(e.g. anatomical facts, formulas, equations) [46].

Analogous to physical flashcards, each virtual flashcard
has a ‘‘front’’ face and a ‘‘back’’ face. The front face con-
tains a query and the back face contains its correspondence.
Figure 6 gives a sample sequence of snapshots from Anki,
where the task is to memorize country-capital associations.
In this example, the query is a country (see Figure 6-(a))
and its correspondence is the capital of this country (see
Figure 6-(b)). The query on the front can be considered as
a ‘‘question’’ and its correspondence on the back can be
considered as the ‘‘answer’’. Thus, we call the front as Q-face
and the back as A-face.

Note that, one can present flashcards in different languages
and also customize the language of the graphical user inter-
face (GUI, e.g. menu, buttons etc.). In our experiments,
in order to make the learning environment easy to use for
our participants, the flashcards and the GUI were presented
in their mother tongue (i.e. Japanese). However, in Figure 6,
in order to increase accessibility, we translate the interface
and the learning material (i.e. Q- and A-faces) into English.

The learner interacts with the e-learning software using the
buttons appearing at the bottom of the screen (see Figure 6)
and the time course of this interaction is as follows. First, the
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FIGURE 6. A sample sequence of snapshots from the e-learning software. (a) Front and (b) back faces of a sample
flashcard. (c) Front face of the next flashcard.

learner is exposed to the Q-face of a flashcard and takes
some time to recall the information on the A-face. When
he/she feels ready, he/she can ‘‘flip’’ the flashcard by pressing
the ‘‘Show Answer’’ button. After disclosing the A-face,
the learner can confirm whether he/she recalled correctly or
not. If he/she failed to recall the answer correctly or did
not recall it at all, he/she can take some time to watch the
A-face for registering (i.e. memorizing) this information.
When the learner feels ready, he/she can proceed to the next
flashcard by evaluating the difficulty of the current flashcard
by pressing one of three buttons of ‘‘Again’’, ‘‘Good’’ or
‘‘Easy’’. Note that we did not specify any criteria or rules
to the participants regarding which button to choose and let
them use their own judgment.

We term watching the Q-face and then the A-face of a
flashcard as a viewing of that flashcard (e.g. Figures 6-(a)
and (b)). In the experiments, we did not set a time limit
for a single viewing or watching Q- or A-faces per se.
However, we decided to let the participants study a group of
12 flashcards, called a deck, for a (predetermined) duration of
4 minutes.

The duration for studying such a deck and the number
of flashcards in it are decided in the light of several rele-
vant works in the literature on memory span and capacity.
According to [47] and [48], humans have a limited capacity
to memorize, which is only about 7 ± 2 items at once. Since
this study targets at improving the learning rate, we opt for
a reasonably challenging task, which would result neither
in perfect success nor in total frustration. In other words,
we chose the number of flashcards in a deck in such a way
that there would be a fair amount of recollection but also room
for improvement. In that respect, 12 flashcards in 4 minutes
is considered to be adequate.

As activity log, the e-learning software registers the inter-
action of the learner with the GUI in terms of temporal,
identifier and evaluation information. Temporal information
is registered in UNIX time at millisecond resolution and
includes the time of prompt (i.e. the instant when the Q-face
of a flashcard appears), time of flip (i.e. the instant when
the learner presses the ‘‘Show Answer’’ button and discloses
the A-face), and time of evaluation (i.e. the instant when the
learner assesses his/her opinion on difficulty of a flashcard).

On the other hand, identifier information refers to the 13-digit
integer codes that designate the particular deck or flashcard
that is being studied (i.e. displayed) at a given time instant.
Finally, the evaluation information is again an integer code
(1 ∼ 3) of the chosen button among ‘‘Again’’, ‘‘Good’’ or
‘‘Easy’’.

Note that each ‘‘deck’’ is associated with a single ‘‘con-
tent’’ type. In other words, we do not mix different kinds of
learning material in the same deck. Moreover, an assignment
given to the participant at once is termed as ‘‘task’’. In that
respect, the three terms of ‘‘deck’’, ‘‘content’’ and ‘‘task’’ are
sometimes used interchangeably, if one or the other fits better
to the context.

APPENDIX B
CONTENT TYPES
For investigating the effect of audio reinforcement relating
to a variety of learning materials, we consider three kinds
of contents, which contain different types of information as
verbal and numerical. Note that the information on Q-faces
of the flashcards relating to all 3 contents (tasks) are verbal,
but the information on A-faces are different, i.e. either verbal
or numerical. Moreover, the verbal ones have two levels of
difficulty (i.e. easy and hard). As mentioned in Section IV,
we denote the content with easy verbal answers with CE , the
content with hard verbal answers with CH and the content
with numerical answers with CN .

The two verbal contents CE and CH contain country-
capital associations (the country appears on the Q-face and
its capital appears on the A-face, see Figure 6). In particular,
we consider difficulty to be based on de facto properties
admissible to generic e-learning system users. In that respect,
we judge the difficulty of a flashcard based on the level of
‘‘expected familiarity’’ of a common learner with the infor-
mation on its A-face (see [49], [50] for details.)

The numerical content CN involves chemical element-
atomic number association, where the chemical element
appears on the Q-face and its atomic number appears on
the A-face. Since the content belongs to a specific field,
in which none of the participants reported any dedicated
skill, education or experience, we assume the learners to be
unfamiliar with CN . In addition, we assume that all chemical
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element-atomic number associations have the same difficulty
level (i.e. there are no easier or harder pairs) and that they are
all as unfamiliar to the participants as any item in CH (i.e. the
information is equally fresh/unaccustomed).

However, in CN they need to recall a number, whereas
in CH they need to recall a word. Although the partici-
pants have no prior information or familiarity with any of
the items in those, numbers are expected to be easier to
register than words, since they have a more rigid structure
(i.e. in our case, at most 3 digits), whereas the words are
quite different in the number of characters or pronunciation
difficulty. Thus, CH is considered to have a higher degree of
freedom than CN . Thus, we recognize that familiarity is not
the only element determining difficulty etc. It is also worth
mentioning that numerical information is suggested to be
governed by particular schemes in the cognitive registration
process as pointed out by [51] and [52]. In that respect,
we examine participants’ performance concerning various
combinations of content types and stimuli. In the next section,
we elaborate on the different sorts of stimuli deployed in the
experiments.

APPENDIX C
STIMULUS TYPES
‘‘Stimulus’’ refers to the modality of the signal, which is
used to deliver the learning task, and is known to make
a distinguishing effect on the registration rate [53]. In our
experiments, we used two basic kinds, which are visual and
auditory. In particular, we delivered Q-faces solely using
visual information for all contents and all e-learning sys-
tem configurations (baseline and reinforced). However, after
flipping the flashcard, depending on system configuration,
the participants received the information on A-face either
only visually or audio-visually. Note that after flipping the
flashcard, the entire information of the A-face are delivered
to the participant, which embraces also the information on the
Q-face (see Figure 6-(b)).

At exploration stage, when there is no audio incorpora-
tion, the e-learning system delivers solely visual stimuli.
This baseline configuration is denoted with SV . As audio
stimuli, we considered two kinds as informative or non-
informative. In particular, informative audio refers to the
human readout of the information, which is already displayed
visually. The configuration involving informative audio is
denoted with SA. On the other hand, non-informative audio
is simply a bell sound. The configuration involving non-
informative audio is denoted with SB. Informative audio is
inherently congruouswith the visually displayed information,
whereas non-informative is neutral (i.e. neither congruous nor
incongruous).

The reason for using informative audio is the promising
evidence reported by [13], [15], and [16] in improving mem-
ory registration (see also Section II). On the other hand,
the reason for opting for human audio rather than generated
speech is the voice principle [4], which suggests that the
information provided through recording of human voice is

recalled with a higher rate as compared to the information
provided through synthesized speech (e.g. audio generated by
a text-to-speech system). In that respect, we compiled a set of
audio stimuli such that it contains actual human speech (see
Appendix G for the details).
The reason for using non-informative audio is to enable the

measurement of learners’ reaction to the absence/presence
of audio rather than registering the enclosed information.
Namely, in case the learner recovers a possible disengage-
ment due to breaking of the silence without actually regis-
tering any information through the audio channel, this can
be detected by comparing learning rates corresponding to SV
and SB. Note also the non-informative audio is played after
a certain brief period upon disclosing the A-face, which may
help the learner to be aware of his/her time use.

Note that in exploration stage, when a deck is delivered
through stimulus types SA and SB, half of the flashcards
in that deck are delivered visually, whereas the other half
are presented audio-visually. The flashcards to be delivered
visually or audio-visually are determined before the session
in a completely arbitrary way and all participants are given
the same composition.

The reason for half-and-half mixing of visual-only and
audio reinforced presentation (as opposed to total audio-
reinforcement) is an inspiration from the distinctiveness
account relating to the production phenomenon [34], [54].
In the context of memory registration, production refers to
repeating of the perceived information through various ways,
such as uttering, mouthing, whispering, spelling, hearing,
writing, typing, or even singing. One of the first studies on
the relation between recollection of material that is simply
visually presented as compared to material produced, was
carried out by [54]. They observed that the material produced
is better recalled than thematerial merely viewed. They called
this phenomenon the ‘‘generation effect’’, which led to a vast
amount of studies on priming strategies or manipulations of
subjects’ behavior or stimuli in relation to memory retention.

On the other hand, a specific case of the generation effect is
the vocal production effect (i.e. due to uttering). Here, produc-
tion refers to uttering a word aloud during study (rather than
to simply reading it silently) and is known to improve explicit
memory [35]. In addition, common vocal production is shown
to be superior against all of the above-mentioned different
ways of production [55], [56], although also some alternatives
such as mouthing and whispering are found to have a positive
effect, though not as strong [57]. The advantage of vocal
production over those other means is considered to be due to
the presence of both articulation and audition components in
speech, whereas audition is absent inmouthing and extremely
limited in whispering. In addition to the context-free studies
exploring the basics of the production effect, there were also
studies specifically situtated in education and learning [58],
which showed that production is a viable encoding strategy
for educational material, due to a lasting effect and extension
beyond isolated words (i.e. it applies also to word pairs and
sentences) [59].
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The mechanisms, that are hypothesized to be underlying
the vocal production effect are termed in the literature as
accounts. Several popular accounts include decision-based
account, memory-based account [60], strength account [61],
distinctiveness account [34] and attributional account [62].
In this study, we focus on the distinctiveness aspect. Accord-
ing to [35], when subjects are exposed to both generated stim-
uli (e.g. audio attached) and not-generated stimuli (e.g. silent)
in the same session, the subsequent memorability of the
generated stimuli is seen to improve, since distinct stimuli
are likely to be better encoded in memory. However, when
distinctiveness is undermined (e.g. by constant audio attach-
ment), this effect vanishes.

Our study does not involve the active involvement of the
participant, i.e. uttering of the visually displayed information
by himself/herself. Instead we address a passive involvement,
i.e. simply being exposed to a readout of the visually dis-
played information (by another person). Nevertheless, we still
believe that distinctiveness may help in improving recollec-
tion. In other words, we consider routine (constant) triggering
of audio may cause the participants to neglect the additional
stimulus. Therefore, instead of attaching audio to all flash-
cards in a deck, we arbitrarily choose half of the flashcards in
that deck and attach them audio clips (audio-visual), whereas
the other half is delivered in a visual-only manner. Note that
the validity of this contemplation is eventually confirmed in
Section VII.

APPENDIX D
COUPLING OF CONTENT TYPES AND STIMULUS TYPES
At both exploration stage and verification stage, the par-
ticipants were first given a dummy session such that they
familiarize themselves with the e-learning software and ask
questions, if they have any. The data collected during this first
session is not subject to any analysis.

As mentioned in Appendix B, the three content types of
easy verbalCE , hard verbalCH , and numericalCN are used in
the experiments. Moreover, these content types are common
at exploration and verification stages. However, the stimu-
lus types and their triggering schemes are different between
exploration and verification stages.

Namely, at exploration stage three stimulus types are inves-
tigated as (i) visual only SV , (ii) a combination of visual
and informative audio SA, and (iii) a combination of visual
and non-informative audio SB, whereas at the verification
stage two stimulus types are studied as automatic estimation
scheme SE and full support SF .
Moreover, as mentioned in Appendix C, at exploration

stage, when a deck is delivered through stimulus types SA
and SB, half of the flashcards in that deck are delivered
visually, whereas the other half are presented audio-visually.
In addition, at verification stage, the cards to be delivered
audio-visually (i.e. with audio reinforcement, denoted with
SE ) are determined based on the estimations of the ANN,
whereas full support SF triggers audio reinforcement every
time an A-face is disclosed.

In experiments, each participant carried out one session for
each coupling of content type and stimulus type investigated
at that stage (e.g. CH + SV at exploration stage or CE + SF
at verification stage). At the exploration stage, all possible
couplings amount to nine learning sessions (see Figure 2-(a)),
whereas at the verification stage they amount to six learning
sessions (see Figure 2-(b)).

The order, in which the participants are exposed to those
couplings, is adjusted carefully. Namely, if the exact same
order were used for each participant, there could have been
a correlation between memory performance and that order
(e.g. suffering from fatigue at couplings which are presented
later than others). For removing any doubt of such bias,
we randomized the order of couplings of content type and
stimulus type. Namely, we presented the couplings in an such
order that there will be no bias in memory performance due
to fatigue.

As mentioned in Appendix A, we did not have a time limit
for viewing a single flashcard or maximum number of views
per flashcard. But we set a time limit of 4minutes for studying
a single deck. In addition, the participants were allowed to
abort in advance (i.e. earlier than 4 minutes), should they
think that they are ready to take a memory test. Moreover,
in answering memory tests, we did not set any time limit but
it mostly took 1 or 2 minutes for the participants to finish
these tests.

APPENDIX E
MEMORY TESTS AND ASSESSMENT OF
LEARNING PERFORMANCE
In literature, the assessment of memory retention is mostly
based on free recall, explicit recognition test, source identifi-
cation or speeded reading test. Free recall refers to the sub-
ject’s listing of the items in the presented task. Explicit recog-
nition refers to recognition of the items among a set involving
also distracters. Source identification refers to attributing the
items to one of the several (usually two) sets of items (tasks).
Speeded reading is the subjects’ reading into a microphone
a mixed list of items, which is then analyzed to detect the
changes in his/her reading pattern.

For our experiment scenario, we consider a similar strategy
to paired associate recall to be the most adequate. Specifi-
cally, we present the information on the Q-face and require
the participant to write down the corresponding information
on the A-face. In evaluating the memory tests, we register
the performance relating to a certain flashcard as a 1, if the
participant recalls the information on its A-face successfully,
and otherwise as a 0.

Concerning a certain learning session, we made three tests,
namely once before and two times after the session. We call
these memory tests prior test, short-term test and mid-term
test, respectively. Note that in all three tests concerning a
deck, the Q-faces of the flashcards in that deck are provided
but their sequence (order) is altered to avoid any bias due to
visual memory (i.e. remembering locations of words).
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The purpose of prior test is to determine the pieces of
the learning material, the learners readily possess, so as to
omit the interactions with those flashcards. Namely, if a
learner correctly answers a question in the test performed
before the e-learning session started, no gained/retained
or lost knowledge (i.e. no learning and no forgetting) is
expected relating to that flashcard. Therefore, in reporting
the results on memory performance as well as designing
the estimator model, we ignored the interactions with such
flashcards.

The short-term test is given immediately after the learning
session and its purpose is to assess the amount of gained
information during that session. With the memory test scores
concerning the prior test and short-term test, the amount of
information gained IG in a given session can be computed as
the average of the difference between these two. Let d ′ be the
set of all flashcards f from deck d , which are found to be not
readily known in the prior test,

d ′
=

{
f , tp(f ) = 0

}
, (6)

where tp(f ) is the score of flashcard f in the prior test. Then,
the average amount of gained information concerning deck
d , IG(d) can be computed as

IG(d) =

∑
∀f ∈d ′

ts(f )

#(d ′)
, (7)

where ts(f ) is the score of flashcard f in the short-term
test.

Mid-term test is given approximately 5 minutes after the
learning session and its purpose is to measure the amount
of retained information IR. The time lag between the short-
term and mid-term tests is determined based on the studies
on the Ebbinghaus Forgetting Curve. In particular, Murre and
Dros confirm that people start forgetting what they learned
immediately after the lesson [63]. In addition, the ability to
recall is empirically shown to decrease rapidly from the end
of the lesson until some point within a day, and the rate of
forgetting downscales with time. In that respect, the short
timewindow following the lesson is considered to be themost
essential period in understanding the humanmemory process.
Clearly, there is a complex interplay between the duration of
the learning session, the amount of learning material and the
rate of forgetting. Taking these into consideration, we con-
templated that 5 minutes is a fair duration for observing a
change in memory retention.

Specifically, the average amount of retained information
IR is computed as

IR(d) =

∑
∀f ∈d ′

tm(f )

#(d ′)
, (8)

where tm(f ) is the score of flashcard f in the mid-term test.
Note that IG and IR are expected to be non-negative, since

participants’ knowledge is expected to increase or remain

TABLE 9. (a) Statistics and (b) ANOVA and effect size concerning
information retained IR for varying content types at the exploration step.

TABLE 10. (a) Statistics and (b) ANOVA and effect size concerning
information retained IR for varying stimulus types at the exploration step.

the same in relation to their knowledge before the learning
session. Also, IG is expected to be larger than or equal to IR.
Note also that in presenting the memory performance results
in Sections V and VII, we consider IG, and IR as computed
over all participants.

In addition to descriptive statistics, we present also the
standard error ϵ and effect size d for giving an insight into
the variation between different users. The standard error ϵ

helps us to understand whether the number of data points
is sufficient to identify in a reliable way the position of the
mean µ. Specifically, provided that ϵ ≪ µ, the dispersion
of sample means around the population mean is rather small,
and thus the number of data points can be considered to be
sufficient for identifying it. On the other hand, the effect
size d compares the difference between the mean values µ1,2
and variances σ 2

1,2 of two distributions. Cohen defines effect
size d as

d =
µ1 − µ2

s
, (9)

where the term in the denominator is

s =

√
(n1 − 1)σ 2

1 + (n2 − 1)σ 2
2

n1 + n2 − 2
. (10)

Here, n1,2 are the sizes of the two populations. In that sense,
d points out to how different the mean values are regardless
of the amount of data.
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TABLE 11. (a) Statistics and (b) ANOVA and effect size concerning information retained IR for each pair of task type and stimulus type at the exploration
step.

APPENDIX F
RESULTS RELATING TO INFORMATION RETAINED
IR AT THE EXPLORATION STEP
As mentioned in Section V, the tendencies in information
gained IG and information retained IR are quite parallel.
Comparing Table 1-(a) and Table 9-(a) below, one may

see that the visual-only SV case is surpassed by informative
audio SA and non-informative audio SB for CE . Moreover,
comparing Table 1-(b) and Table 9-(b), it is understood that
the significance relation observed in the short-term test is
valid in the midterm-test with similar effect sizes.

Comparing Table 2-(a) and Table 10-(a) below, it is seen
that the higher memory retention rates of SA and SB than SV
persist in the mid-term test. Regarding significance, SA − SB
pair is found not to be significantly different, whereas SA−SV
has again a statistically significant difference. On the other
hand, SB − SV pair is no more significant in the mid-term
test, although the relating p value is quite close the generally
accepted limit (p = 0.7 > 0.5).
Comparing Table 4-(a) and Table 11-(a) below, it is

seen that the memory retention rates concerning all pairs
decrease slightly from the short-term test to the midterm-
test. Nevertheless, the rates of decrease are quite similar, thus
the pairwise relations are almost always sustained. Regarding
the significance of the differences, SA−SB pair concerning
CE is still associated with significantly different memory
scores. Also, for the SB−SV pair concerning CH we achieve
significance, meaning that non-informative audio SB is more
beneficial in enhancing IR in addition to IG. However, SA−SB
pair concerning CH , which was borderline significant at
short-term test (p = 0.5), is no more significantly different at
mid-term test (p = 0.19). ForCN , although informative audio
SA leads to the highest performance in IR, the difference is not
statistically significant (p = 0.32).

APPENDIX G
COMPILING OF INFORMATIVE AUDIO
According to the voice principle [4], human audio
(i.e. recording of human voice) is more effective in recalling
information than synthesized speech (e.g. audio generated by

a text-to-speech system). In that respect, for the informative
audio stimuli used in our experiments, we asked a Japanese
mother-tongue speaker (henceforth simply referred to as
the speaker) to utter 504 words and 118 numbers (relating
countries, capitals, chemical elements and atomic numbers).

To avoid inducing fatigue in the speaker, we divided
the recording process into several sessions. Specifically,
we implemented 6 sessions of 15 minutes such that the
speaker does not suffer from considerable fatigue. In addition,
we designed a framework, which takes charge of display-
ing images (of text) and recording their utterances. Namely,
we displayed to the speaker a sequence of images on the
screen of a notebook PC [64]. Each image contained a text,
which can be either a word or a number, and a single sequence
contained no more than 100 images. The number of images
is adjusted depending on the number of words/numbers to be
uttered/recorded and varied between 59 and 100. The speaker
did not need to press a button or a key to proceed. In other
words, the images (i.e. words or numbers) advanced auto-
matically. In addition, the text was displayed on the screen
for a sufficient amount of time (i.e. 4 seconds) such that the
speaker could read it aloud without hurry and he could also
rest briefly between successive images.

Since we wanted to assure that utterances of the num-
bers are ‘‘flat’’, they are not displayed in any specific order
(i.e. incrementing or decrementing), but rather in a random
manner, Namely, if the speaker expects the next text to utter
to be the next number (i.e. integer), he could have displayed
a recurrent voice pattern formed by a series of regular rises
and falls in intensity. Although such a sequence would not
sound unnatural in context, once the recordings of each num-
ber are extracted, one might perceive that it is not a stand-
alone recording, but it rather belongs to a longer (counting)
sequence. Since we wanted to avoid this effect, we displayed
the numbers in random order.

Together with the sequence of images, an audio recording
was initiated. A single audio clip is recorded for each image
(i.e. text). Note that both the sequence of images and the
audio recording are executed through programs implemented
in Python. In that respect, we could precisely register the time
correspondence between the display period of an image and
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the utterance of the corresponding word, which facilitates a
temporally accurate post-processing of the audio.

Note that the afore-mentioned display duration of
4 seconds is abundant to read the text aloud, and thus, there
are silent periods preceding and succeeding the utterances.
In that respect, we post-processed the recorded audio clips
by splitting them into individual utterances and removing the
silent segments. To that end, we defined a minimum length
for silent segments (in milliseconds) and an upper bound
for how quiet is silent (in decibels relative to full scale) and
any section of the audio, which satisfies these two criteria,
is considered to be a silent period and discarded. After the
audio clips were segmented and post-processed, the speaker
listened and confirmed most of them. However, he deter-
mined several utterances (i.e. pronunciations) as unnatural or
problematic, and thus, we held an extra recording session to
re-record those utterances.

As mentioned in Appendix A, the audio clips are attached
to A-faces and the settings of the e-learning software are
adjusted such that once the audio stimuli are triggered, each
audio clip is played twice. For instance, if the learner is
studying of country-capital associations, once audio stimuli
is triggered, he/she hears the country name, capital name,
country name, capital name.
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