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ABSTRACT The deterioration in reproductive performance in association with low fer-
tility leads to significant economic losses on dairy farms. The uterine microbiota has
begun to attract attention as a possible cause of unexplained low fertility. We analyzed
the uterine microbiota associated with fertility by 16S rRNA gene amplicon sequencing
in dairy cows. First, the alpha (Chao1 and Shannon) and beta (unweighted and weighted
UniFrac) diversities of 69 cows at four dairy farms that had passed the voluntary waiting
period before the first artificial insemination (AI) were analyzed with respect to factors
including farm, housing style, feeding management, parity, and AI frequency to concep-
tion. Significant differences were observed in the farm, housing style, and feeding man-
agement, except parity and AI frequency to conception. The other diversity metrics did
not show significant differences in the tested factors. Similar results were obtained for
the predicted functional profile. Next, the microbial diversity analysis of 31 cows at a sin-
gle farm using weighted UniFrac distance matrices revealed a correlation with AI fre-
quency to conception but not with parity. In correlation with AI frequency to concep-
tion, the predicted function profile appeared to be slightly modified and a single
bacterial taxon, Arcobacter, was detected. The bacterial associations related to fertility
were estimated. Considering these, the uterine microbiota in dairy cows can be varied
depending on the farm management practices and may become one of the measures
for low fertility.

IMPORTANCE We examined the uterine microbiota associated with low fertility in
dairy cows derived from four commercial farms via a metataxonomic approach
using endometrial tissues prior to the first artificial insemination. The present study
provided two new insights into the relevance of uterine microbiota with respect to
fertility. First, the uterine microbiota varied depending on housing style and feed-
ing management. Next, a subtle change was observed in functional profile analy-
sis: a formation of uterine microbiota was detected to be different in correlation
with fertility in one farm studied. Considering these insights, an examination sys-
tem on bovine uterine microbiota is hopefully established based on continuous
research on this topic.
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The deterioration in reproductive performance caused by prolonged intervals from
calving to conception in dairy cows is causing significant economic losses to dairy

farms (1–4). The increase in the net cost of 1 day until the time to conceive is estimated to
range from e0.28 to e1.10 per cow per day (1). As much as 25% of dairy cows are culled
because of reproductive problems, which accounts for a higher proportion than other
major factors, such as mastitis and lameness (3, 5). Low fertility is one of the major factors
underlying the deterioration in reproductive performance (3, 4). The causes of low fertility
vary widely, from management factors (e.g., heat detection, nutritional control, and cow-
shed environment) to cow-specific factors (e.g., reproductive tract infections, endocrine dis-
orders, and defective ova) (6, 7). However, some cases remain unexplained by these factors,
resulting in losses to farms without adequate countermeasures (6). Thus, the study of fac-
tors potentially associated with low fertility is important, because it may lead to the devel-
opment of new measures for reproductive management.

The uterine microbiota has recently gained interest in this field of research. Although
the uterus has been thought of as being germfree for decades, the advances in next-gener-
ation sequencing technology have revealed the existence of uterine microbiota; contrarily,
the microbiota that otherwise cannot be isolated using conventional bacterial culture tech-
niques (8, 9). Pioneer studies on the relationship between the uterine microbiota and fertil-
ity have been performed in humans (10). Depending on the type of bacteria present in the
uterine microbiota, positive and negative relationships with reproductive function have
been shown (10). Studies comparing the compositions of the uterine microbiota of preg-
nant and nonpregnant women have revealed that the presence of Lactobacillus-dominated
microbiota is associated with significantly increased pregnancy rates (11–13), whereas
higher proportions of Atopobium spp., Bifidobacterium spp., Gardnerella spp., Klebsiella spp.,
and Streptococcus spp. cause inflammation in the reproductive tract and are considered to
be negatively associated with fertility (14, 15). Thus, the uterine microbiota can be one of
the possible factors related to conception in humans.

The concerns regarding the uterine microbiota throughout the process from postpar-
tum uterine involutions to conception by artificial insemination (AI) are increasing in cows
as well. To facilitate reproductive management, each farm sets a voluntary waiting period
(VWP) between calving and first insemination to ensure sufficient time for uterine involu-
tion to prepare for the next pregnancy. In dairy cows, generally, the VWP is set at 60 days
after parturition (16–18). The uterine microbiota of cows is presently being studied with
respect to the relations to postpartum uterine inflammation (19–21). Increased relative
abundances of Bacteroidetes and Fusobacterium and decreased relative abundances of
Proteobacteria and Tenericutes are reported to be significantly associated with postpartum
uterine inflammation, resulting in delayed uterine involutions (19–21). Conversely, few
studies are available on the uterine microbiota associated with fertility after the VWP, de-
spite its importance in understanding the causes of unexplained low fertility (22, 23). The
relationship between conception rate and uterine microbiota within timed AI sampled by
a uterine lavage approach in beef cows has been recently examined, and a lower microbial
diversity with specific bacterial genera is found in nonpregnant cows compared with that
in pregnant cows (23). To evaluate the relationship between the uterine microbiota and
fertility clinically, cows must be monitored until conception is confirmed (2–4). Because the
AI frequency to conception can be used as a measure of fertility (6), the relationship
between the uterine microbiota and AI frequency to conception is worth investigating.

Endometrial tissue biopsies enable the detection of bacteria not only on the surface
layer of mucus, inside the mucus layer, but also on the endometrium (24–26). In this study,
the uterine microbiota associated with low fertility was investigated via a metataxonomic
approach using endometrial biopsy samples from dairy cows after the VWP, before the
first insemination.

RESULTS
Uterine microbial community analysis. The microbiota data using 16S rRNA ampli-

con sequencing were collected from endometrial tissue biopsy samples. Sixty-nine
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cows bred on four commercial dairy farms were enrolled in this study (see Fig. S1 in
the supplemental material). From the clinical point of view, cows that do not conceive
within the first three inseminations are clinically recognized as having low fertility (6).
The rates of low-fertility cows ($4 AI) ranged from 27 to 39% among the farms. The in-
formation on the dairy farms is provided in Table 1.

We obtained 3,020,657 reads in total (mean 6 standard deviation, 43,778 6 16,666
reads/sample). Read trimming and exclusion of chimeric reads were carried out using
DADA2 software and produced a total of 1,648,384 reads (23,890 6 8,703 reads/sample).
The relative abundance of the bacterial community was calculated using these data
(Fig. 1A). At the phylum level, the majority of bacterial taxa were Firmicutes, Proteobacteria,
Bacteroidota, Actinobacteriota, and Euryarchaeota, with average proportions of 38.9%,
11.6%, 10.0%, 5.0%, and 1.8%, respectively; the abundances of unassigned and other bac-
terial taxa were calculated to be 30.4% and 2.2%, respectively.

Moreover, the taxonomy abundance at the genus level was observed. There were 14, 77,
177, and 584 taxa at$1%, 1 to 0.1%, 0.1 to 0.01%, and,0.01% relative abundances, respec-
tively (Fig. 1B). The taxa at $1% included Pseudomonas (7.8%), Romboutsia (5.2%), UCG-005
(family Oscillospiraceae) (3.9%), unassigned (family Lachnospiraceae) (3.2%), Paeniclostridium
(2.6%), Turicibacter (2.6%), Bacteroides (2.4%), Corynebacterium (2.0%), Clostridium sensu
stricto 1 (1.7%), Methanobrevibacter (1.7%), Rikenellaceae RC9 gut group (1.3%), UCG-010
(family UCG-010) (1.1%), Streptococcus (1.1%), and Lachnospiraceae NK3A20 group (1.1%).

Diversity analysis of uterine microbiota in the cows of four farms.We compared
the microbial diversities related to the farm, housing style, and feeding management and
examined the correlation of microbial diversity with parity and the AI frequency to concep-
tion. First, alpha diversity was analyzed using Shannon and Chao1 indices. No significant
differences were observed regarding the farm, housing style, and feeding management
(Table 2); moreover, the pairwise analysis showed no significant differences between the
groups (Fig. S2). No significant correlation of these alpha diversity indices with parity and
AI frequency to conception was observed (Fig. S3 and Table S1).

Next, beta diversity was examined by principal-coordinate analysis using unweighted
and weighted UniFrac distances. Significant differences were observed using unweighted
UniFrac with respect to farm, housing style, and feeding management (Table 2 and Fig. S4;
P , 0.05); however, no significant correlation was observed with parity and AI frequency
to conception (Table S1; P $ 0.05). The pairwise analysis in unweighted UniFrac showed a
significant difference between groups with respect to housing style and feeding manage-
ment (Table 3 and Fig. S4; q , 0.05). On the farms, the comparative groups F-NG, F-S, and
NG-S exhibited a low q value (i.e., q, 0.1).

In contrast, no significant difference was observed using weighted UniFrac with respect to
farm, housing style, and feeding management; moreover, no correlation between weighted
UniFrac and parity and AI frequency to conception was observed (Table 2 and Table S1;
P$ 0.05). The pairwise analysis in weighted UniFrac revealed an absence of significant differ-
ences with respect to farm, housing style, and feeding management (Fig. S4 and Table S2).

Considering these results, the composition of the uterine microbiota was influenced by
farm, housing style, and feeding management, not by parity or AI frequency to conception.

Functional prediction of uterine microbial data from four farms. We predicted
the functional profile from the microbiota data using PICRUSt2 (27). The ortholog data
in the predicted functional profile were analyzed by principal-coordinate analysis using
the Euclidean distance. First, examining the data with respect to farm, housing style, and

TABLE 1 Information about the four farms

Farm Herd size (head) Housing style Feeding managementa No. of cows studied
F 70 Tie stall barn Separate feeding 13
ND 50 Tie stall barn TMR_B 11
NG 144 Free barn TMR_A 31
S 65 Tie stall barn TMR_B 14
aTMR_A, total mixed ration (TMR) supplied at own farm; TMR_B, TMR purchased from the TMR center, which is a
cooperative organization of farmers who supply TMR feed from harvest; separate feeding, the cows were fed
roughage and concentrate separately.
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feeding management, significant differences were observed in all the variables (Table 4;
P, 0.05). Moreover, examining the correlation of Euclidean distance matrices with respect
to parity and AI frequency to conception, the correlation was not observed on either vari-
able (Table 5; P. 0.05). These results suggested that the function profile varied depending
on the farm, housing style, and feeding management and were almost similar to the micro-
biota diversity results.
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FIG 1 Relative abundance of uterine microbiota. (A) Taxon bar plots at the phylum level. The bacterial taxa are
indicated using distinct colors, as shown on the bottom. The farms are indicated below the bar chart on the
horizontal axis. The combined relative abundances totaled 100% for each cow. (B) Distribution of relative
abundance at the genus level. The dots in the swarm plot represent the bacterial taxa.
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Diversity analysis of the uterine microbiota at the NG farm in association with
parity and AI frequency to conception. Based on the above-described results showing
that the farm, housing style, and feeding management influenced the uterine microbiota,
we considered the possibility of a correlation of the uterine microflora with the AI frequency
to conception on one farm. Because the NG farm had the highest number of study-enrolled
cows among the four farms with twice to a third as many as the other three farms (Table 1),
we analyzed the uterine microbiota of 31 cows kept on the NG farm. The rate of low-fertility
cows on the NG farm was 39%. We reprocessed the data of sequence reads from the 31
cows using the DADA2 software and obtained a total of 678,928 reads (21,901 6 8,334
reads/sample). We examined the correlation of microbial diversity with parity and AI fre-
quency to conception (Table 6). First, parity was not significantly correlated with the alpha
and beta diversity metrics (P $ 0.05). A correlation of weighted UniFrac distance matrices
with respect to AI frequency to conception was detected (P, 0.05). Meanwhile, correlations
of Chao1 and Shannon indices with AI frequency to conception were not observed
(P $ 0.05); those of unweighted UniFrac distance matrices with respect to AI frequency to
conception were not observed (P$ 0.05).

These results suggested that the bacterial taxa at high abundance seemed to be
modified depending on the AI frequency to conception without changes in species
richness at the NG farm.

Differential abundance analysis in association with AI frequency to conception
in the NG farm cows. We searched for the bacterial taxa at the genus level related to
AI frequency to conception, using a differential abundance analysis. As a result, only
the taxon of Arcobacter was detected to be positively associated with AI frequency to

TABLE 2Microbial diversity analysis with respect to farm, feeding management, and
housing style for the cows of all the farms

Parameter

P value

Farm Housing style Feed management
Alpha diversitya

Chao1 0.697 0.469 0.553
Shannon 0.465 0.151 0.284

Beta diversityb

Weighted UniFrac 0.198 0.196 0.09
Unweighted UniFrac 0.033 0.029 0.012

aStatistical analysis according to Kruskal-Wallis test.
bStatistical analysis using a permutational multivariate analysis of variance (PERMANOVA).

TABLE 3 Comparison of the unweighted UniFrac distance matrices between two groups,
with respect to farm, feeding management, and housing style for the cows of all the farms

Comparison
groupa

Sample
size

No. of
permutations Pseudo-F P value q value

Farm
F vs ND 24 999 1.059941 0.287 0.4092
F vs NG 44 999 1.715226 0.020 0.0780
F vs S 27 999 1.650406 0.033 0.0780
ND vs NG 42 999 1.053892 0.341 0.4092
ND vs S 25 999 0.875121 0.637 0.6370
NG vs S 45 999 1.525050 0.039 0.0780

Feeding management
Separate feeding vs TMR_A 38 999 1.563091 0.038 0.0460
Separate feeding vs TMR_B 44 999 1.715226 0.027 0.0460
TMR_A vs TMR_B 56 999 1.558256 0.046 0.0460

Housing style
Free barn vs tie stall barn 69 999 1.666939 0.031 0.0310

aStatistical analysis using a pairwise PERMANOVA between groups was performed.
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conception, while no other bacterial taxa associated with AI frequency to conception
were detected (Table S3; adjusted P , 0.05). Moreover, we further analyzed the trends
of Arcobacter abundance in relation to AI frequency to conception by fitting the regres-
sion curve using a least-squares method (Fig. 2). The examination of the regression
model using an analysis of variance identified significant differences (P = 0.0002);
71.0% (22/31) of the cows were placed within the 99% reliable area of the model.
Considering this result, the Arcobacter genus was considered to be positively associ-
ated with AI frequency to conception.

Functional prediction of uterine microbial data from the NG farm. We analyzed
the functional profile of the uterine microbiota of NG farm predicted by PICRUSt2.
Examining the correlation of Euclidean distance matrices with parity and AI frequency to
conception, correlation with statistical significance was not observed (Table S4; P . 0.05).
Thus, the overall functional profile was not considered to be influenced by parity or AI fre-
quency to conception. Moreover, we then searched for the functional orthologs correlated
with AI frequency to conception. Three functional orthologs included K10873, K00861, and
K01350, which were positively correlated with AI frequency to conception (Table S5;
adjusted P , 0.05). We then examined these functional orthologs against the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database, targeting only the prokaryotes. The
functional orthologs K10873 and K00861 were assigned to DNA repair and recombination
protein RAD52 and riboflavin kinase, respectively, while K01350 was not assigned. Thus,
the function profile in the uterine microbiota appeared to be slightly modified with respect
to AI frequency to conception.

Microbial co-occurrence network patterns of the uterine microbiota associated
with low fertility in the NG farm cows. Understanding the microbial co-occurrence
network analysis can provide insights into the robustness of ecological systems (28).
The microbial co-occurrence network helps decipher complex microbial association
patterns, and differential network analysis deciphers the bacterial associations differen-
tially associated between two groups (28). In this study, the cows that conceived within

TABLE 4 Principal-coordinate analysis of predicted functional profile with respect to farm,
feeding management, and housing style for the cows of all the farms

Comparison
groupa

Sample
size

No. of
permutations Pseudo-F P valueb q value

Farm 0.019
F vs ND 24 999 0.841423 0.432 0.4320
F vs NG 44 999 4.605098 0.004 0.024
F vs S 27 999 1.695891 0.143 0.2145
ND vs NG 42 999 4.626088 0.01 0.03
ND vs S 25 999 1.128699 0.306 0.3672
NG vs S 45 999 2.418319 0.036 0.072

Feeding management 0.008
Separate feeding vs TMR_A 38 999 1.118281 0.323 0.323
Separate feeding vs TMR_B 44 999 4.605098 0.007 0.018
TMR_A vs TMR_B 56 999 3.666663 0.012 0.018
Housing style 0.009
Tie stall barn 69 999 4.192042 0.006 0.006

aStatistical analysis using PERMANOVA was performed.
bP values in bold indicate the result of PERMANOVA in each analysis; other P values indicate the result of pairwise
PERMANOVA between groups.

TABLE 5Mantel test using Spearman’s correlation coefficient of predicted function profile,
with parity and AI frequency to conception, for the cows of all the farms

Parameter
Spearman’s correlation
coefficient P value

Parity 20.074521 0.128
AI frequency to conception 20.050931 0.403
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three AIs were categorized as being normal, whereas the cows that underwent three
or more consecutive AIs without conception were categorized as having low fertility.
Of 31 cows on the NG farm, 19 and 12 were categorized into normal (#3 AIs) and low-
fertility ($4 AIs) groups, respectively. We estimated the bacterial associations with nor-
mal and low fertility by a combination method of co-occurrence network analysis of all
cows at the NG farm with differential network analysis of the two groups (Fig. 3A).

First, the microbial association estimation at the genus level was made by the conditional
dependence method using the microbiota data of NG farm, and the co-occurrence network
was constructed (Fig. 3B and Fig. S5). Next, we estimated the co-occurrence patterns of the
normal and low-fertility groups by the method described above, and the differential net-
work was produced from the comparison of co-occurrence patterns using a nonparametric
method (Fig. S6). Thirty edges with the highest weights were selected from the differential
network (Fig. 3C), including 21 low-fertility-group-preponderance and 9 normal-group-pre-
ponderance associations. Moreover, these 30 highly weighted associations in the differential
network were searched in the co-occurrence network derived from the NG farm cows (Fig.
S5). As a result, the low-fertility-group-preponderance association of Arcobacter-TM7 and the
normal-group-preponderance association of Thauera-Subsaxibacterwere found in the cluster
containing JG30-KF-CM45 as a hub (Fig. 3D); the other associations were not found in the
network. The relative abundances of Arcobacter, TM7, Thauera, and Subsaxibacter on the NG
farm were, on average, 0.031%, 0.036%, 0.048%, and 0.021%, respectively.

DISCUSSION

The present study focused on the uterine microbiota of dairy cows that had passed
the VWP to examine the relevancy to fertility. First, the microbiota of cows housed on
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FIG 2 Relationship of the abundance of the Arcobacter genus with AI frequency to conception. The
least-square curve with a 99% reliable area is indicated by a straight line with the area enclosed with
dash lines. When the vertical and horizontal axes were used as Y and X, respectively, the least-square
curve was calculated as Y = 0.0173118 � X – 0.003614.

TABLE 6Microbial diversity analysis of the uterine microbiota in the NG farm cows

Parameter

Parity AI frequency to conception

Spearman’s rank
correlation
coefficient P value

Spearman’s rank
correlation
coefficient P value

Alpha diversity
Chao1 0.0308 0.869 20.1223 0.512
Shannon 0.0123 0.948 0.0231 0.902

Beta diversitya

Weighted UniFrac 0.010735 0.839 0.190533 0.012
Unweighted UniFrac 20.001651 0.970 0.009424 0.919

aThe data were analyzed by the Mantel test (Spearman’s rank correlation and 999 permutations).
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four farms was described at the phylum and genus levels. The uterine microbiota was
found to vary depending on the farm management practices such as housing style
and feeding management of cows were overall similar to those in the other study at
the phylum level; however, they were not similar at the genus level, and the farm man-
agement practices, such as housing style and feeding management, were found to
influence the uterine microbiota among farms. Next, the study focusing on the NG
farm revealed that the diversity of the uterine microbiota was correlated with the AI
frequency to conception. Furthermore, a study in correlation with AI frequency to con-
ception revealed the partial modification of the predicted function profile and relation
of a single bacterial taxon Arcobacter. The bacterial associations related to fertility were
estimated.

First, the majority of bacterial taxa obtained in the study were, in order of abundance of
the phyla, Firmicutes, Proteobacteria, Bacteroidota, Actinobacteriota, and Euryarchaeota. With
reference to the several studies using a uterine lavage approach at a similar postpartum pe-
riod, these phyla were also found to be predominant, indicating that they are the major bac-
teria present in the uterus of cows, although the order of abundance differs (22, 29). This
suggested that the bacterial taxa obtained from the uterus of cows were overall similar to
the other study at the phylum level. On the contrary, the difference was also observed in
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FIG 3 Assumption of bacterial associations by microbial co-occurrence network analysis in the NG farm. (A) Analysis procedure to assume the bacterial
associations related to fertility. (B) Co-occurrence network of the uterus microbiota of all the cows in the farm. The node size represents the abundance of
bacterial taxa. The numbers adjacent to the edges are the edge weights. Bold points with a name in the network represent the hubs calculated from the
centralities. In the network, based on the network centralities, Eubacterium_coprostanoligene (order Oscillospirales), Methylobacterium-Methylorubrum (family
Beijerinckiaceae), Parvimonas (order Peptostreptococcales-Tissierellales), JG30-KF-CM45 (order Thermomicrobiales), Treponema (family Spirochaetaceae), and
UCG-005 (family Oscillospiraceae) were assumed to be hub bacteria. (C) Normal-group-preponderance and low-fertility-group-preponderance associations
detected in a differential network. Thirty edges with the highest differences were extracted from the differential network analysis. Green and blue lines are
normal-group-associated and low-fertility-group-associated edges, respectively. The edge weights are shown in numbers adjacent to the edges. (D) A
cluster of co-occurrence network of the uterus microbiota, containing JG30-KF-CM45 as a hub. The cluster, which is a part of the co-occurrence network of
the NG farm cows, contained the low-fertility-group-preponderance association of Arcobacter-TM7 and the normal-group-preponderance association of
Thauera-Subsaxibacter, which are enclosed with dashed lines in panels C and D.
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abundance at the genus level (29). The genital microbiota of cows is recognized to vary
depending on the examination method, the condition of cows, and the environment in
which the cows are placed (24, 30, 31). Thus, this difference in uterine microbiota may be
attributed to the sampling method as well as factors such as the breed of cow, farm man-
agement practices, and regional characteristics.

Second, the farm management practices, such as housing style and feeding man-
agement, were found to influence the microbial diversity, suggesting the importance
of confirming the variation in the uterine microbiota among farms. In addition, the
farm management practices appeared to be reflected in the functional profile. The vari-
ety of housing styles on dairy farms (e.g., tie stall barn, free stall barn, free barn, etc.), as
well as the bedding materials (e.g., barley straw, woodchips, sand, etc.), are reported to
contribute to the establishment of unique uterine and fecal microbiotas on individual
farms (31, 32). For feeding management, different food components, such as fiber and
starch, are regarded as forming different gut microbiota (33, 34). The gut microbiota
regulates the estrogen level in the blood mediated by secretion of b-glucuronidase
(35), and changes in estrogen level may influence the uterine microbiota in the cows.
In addition, the gut microbiota may translocate hematogenously from the gut to the
uterus and may also be the cause of a possible change in the uterine microbiota (36).
Thus, the formation of the uterine microbiota is dependent on farm management
practices.

Third, because farm management practices influence the formation of the uterine
microbiota, we believed that the analysis of one farm could elucidate a farm-specific
relationship between the uterine microflora and fertility. Analysis of the uterine micro-
biota of cows housed on the NG farm showed that the diversity of the uterine micro-
biota correlated with AI frequency to conception. Subsequent differential abundance
analysis of the uterine microbiota showed that the Arcobacter genus positively corre-
lated with AI frequency to conception. Arcobacter has been reported to be associated
with ruminant abortions, which suggested the possibility of reducing fertility (37). The
pathogenesis of Arcobacter is referred as the adhesion, invasion, and cytotoxic poten-
tial of this bacterium in in vitro settings (38). However, the relative abundance of
Arcobacter was not high, averaging 0.031% on the NG farm, and Arcobacter was not
considered to be a major bacterial taxon group. In addition, because the detected
pathways were limited within the functional profile analysis, the overall effects on the
uterine environment in relation to fertility were difficult to estimate. The above-
described results suggested that it was unlikely to have an immediately direct impact
on uterine environments in low-fertility cows on the NG farm.

Finally, a co-occurrence network analysis was performed on the cows of NG farm.
The low-fertility-group-preponderance association of Arcobacter-TM7 and the normal-
group-preponderance association of Thauera-Subsaxibacter were detected from the
cluster containing JG30-KF-CM45 as a hub in the co-occurrence network of the NG
farm. These two associations found in this study can be keystones with respect to the
fertility on the NG farm. Arcobacter has been discussed to co-occur with other bacteria,
to affect the maternal maintenance of pregnancy (37), and, as discussed above, to be
one of the possible etiologic infectious abortion agents in ruminants. TM7, which is
symbiotic bacterium recalcitrant to the conventional culture method, has been
reported to be associated with periodontitis (39). On the other hand, although the
function of Subsaxibacter is scant to our knowledge, Thauera is reported to degrade ex-
cessive amounts of testosterone (40), potentially having a positive effect on fertility, as
testosterone present in the endometrium has a detrimental effect on reproductive
function (41). Thus, the uterine microbiota in cows on the NG farm is likely to be bal-
anced in relation to fertility.

Based on this study, two points can be discussed for the future application of the
uterine microbiota in cows: the possible functions in uterus and the biomarker for low
fertility. First, recent studies have speculated that the uterine microbiota contributes to
the regulation of endometrial physiology and reproductive function, thereby affecting
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fertility, although direct evidence is still lacking (42). Because subtle changes in the
uterine microbiota and function profile were observed, we considered that a significant
alternation in endometrial functions is not present on the NG farm. However, more
obvious changes in uterine function could be observed on other farms, as the present
study showed farm-to-farm variation in the formation of the uterine microbiota. Thus,
multiple studies on individual farms examining the uterine microbiota associated with
fertility are required to estimate direct effects on the endometrium. Second, it is of con-
cern whether the Arcobacter abundance can be a biomarker for low fertility in general,
because Arcobacter was detected to be associated with low fertility in both differential
abundance and co-occurrence network analyses on the NG farm. The differential abun-
dance analysis of uterine microbiota on the other three farms did not detect positive
associations of Arcobacter taxon with AI frequency to conception, either by statistical
significance or by low adjusted P values (data not shown). The factors influencing low
fertility and the featured bacteria in the uterine microbiota may be different from farm
to farm. To discover the common microbial biomarker for low fertility, studies with a
large number of cows housed on various farms are required.

In human practice, the uterine microbiota is becoming generally utilized as a bio-
marker for a poor reproductive prognosis. In addition, treatment to normalize the uterine
microbiota mediated by gut immunity, such as oral administration of prebiotics, has been
attempted based on the outcome of uterine microbiota testing (43). The present study
provided new insights into the relationship of the uterine microbiota with fertility in dairy
cows, suggesting that uterine microbiota testing may be applicable in cows. We hope
that uterine microbiota data will be accumulated from a variety of cows, leading to the
establishment of the examination system and its application to solve problems associated
with low fertility.

Conclusion. This metataxonomic analysis using bovine endometrium illustrated
the potential associations of uterus microbiota with AI frequency to conception, which
deciphers the two following points. (i) Because the uterine microbiota varied on a
farm-by-farm basis, the causative factors for low fertility with respect to the uterine
microbiota may differ. (ii) The small change in the uterine microbiota, and the coopera-
tion between bacteria, may be related to unexplained low fertility. It is hoped that the
accumulation of uterine microbiota data will help to develop an examination system
for unexplained low fertility in cows and contribute to improvement in reproductive
management.

MATERIALS ANDMETHODS
Animals. Ninety-eight Holstein-Friesian cows (4.3 6 1.0 years old; 2.8 6 0.9 parity; 3.0 6 0.1 body

condition score; 71.4 6 7.2 days postpartum) were enrolled in the study between October 2018 and
February 2021. The cows were kept on four commercial dairy farms (F, ND, NG, and S) in Hokkaido,
Japan. Cows on these farms were fed under different feeding managements: the F farm fed cows by a
separate feeding, i.e., a method to supply feeds separately, and the ND, NG, and S farms fed cows by a
total mixed ration (TMR), i.e., a method to supply feeds in a mixture. Among the farms that fed TMR, the
NG farm fed TMR prepared by the farm owner (TMR_A) and the ND and S farms fed purchased TMR
(TMR_B). Diets were formulated in each farm using the National Research Council (2001) model or
Cornell-Penn-Miner dairy model (44) to satisfy nutritional requirements of 30 to 40 kg/day of milk pro-
duction (Table S6). The F, ND, and S farms housed cows in a tie stall barn, and the NG farm housed cows
in a free barn.

The inclusion criteria for cows were as follows: a parity of 2 to 5, a body condition score of 2.75 to
3.25, no history of treatment for systemic disease within 30 days, no signs of lameness (45, 46), and a
clinically healthy genital tract. The health status of the genital tract was confirmed by vaginoscopy and
ultrasonography. Vaginoscopy assessed the vaginal discharge score as a diagnostic indicator of clinical
endometritis using a scale of 0 to 5: 0, no discharge, 1, clear mucus, 2, mucus with flecks of pus, 3, muco-
purulent discharge, 4, purulent discharge, and 5, foul-smelling discharge (47). Ultrasonography eval-
uated abnormalities based on the diameter of the images depicted: in the uterus, a uterine luminal fluid
greater than 2 mm (48), and in the ovaries, an ovarian cyst filled with anechoic structures greater than
25 mm (49). Cows with a vaginal discharge score of ,2 and no abnormalities by ultrasonography were
included in the study. During the monitoring period, the cows that exhibited systemic symptomatic dis-
ease, lameness, or genital tract abnormalities were excluded from the study. No evaluation was made in
this study regarding the genetic ability for the reproductive performance of the cows (50, 51).

Experimental design. The biopsy samples were collected between 60 and 85 days postpartum dur-
ing the diestrus phase, which was determined by the size of the corpus luteum (.20 mm in diameter)

Uterine Microbiota Associated with Low Fertility Microbiology Spectrum

Month YYYY Volume XX Issue XX 10.1128/spectrum.04764-22 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

11
 M

ay
 2

02
3 

by
 1

50
.4

6.
20

5.
21

.

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.04764-22


using ultrasonography (49, 52, 53) and the absence of estrus signs based on behavioral observation, vag-
inoscopic examination, and uterine palpation (54). Once the samples were collected, AI was performed
after estrus detection and ovulation was confirmed on the day after AI. To avoid the embryonic lethality
possibly caused by the Holstein-Friesian lethal haplotype, the selection of semen and AI was conducted
after checking for the carriage of the known haplotype in the bulls (55, 56). AIs were repeated until preg-
nancy. Pregnancy was diagnosed ca. 60 days after AI using ultrasonography (Tringa Linear, Esaote Pie
Medical, Genoa, Italy).

Biopsy sampling. Endometrial tissues were collected using a biopsy instrument (Fujihira Kogyo Co.,
Ltd., Japan) under caudal epidural anesthesia with 5 mL of 2% procaine hydrochloride, as described pre-
viously (57). The endometrial tissue at each bifurcation of the right and left uterine horns was collected
by pressing the sample against the hole in the outer cylinder and hollowing it out with the inner cylin-
der. The samples were cut into small pieces immediately at the farm and placed in 2 mL of phosphate
buffer at 4°C. The solution containing the sample was stirred and temporarily stored at 220°C. The bi-
opsy samples were stored at 280°C at the laboratory until use.

Extraction and examination of DNA. Biopsy samples suspended in phosphate-buffered saline (PBS)
were directly subjected to DNA extraction using an ISOSPIN fecal DNA kit (Nippon Gene, Tokyo, Japan)
according to the manufacturer’s instructions. The DNA solutions were examined using a spectrophotom-
eter (NanoDrop 1000; Thermo Scientific, Wilmington, DE, USA) to measure the DNA quality and amount.
To determine the study enrollment, the presence and quality of bacterial DNA were then examined by
PCR targeting the 16S rRNA gene, as described previously (58).

Sequencing. The DNAs were subjected to 16S rRNA gene amplicon sequencing. The V3-V4 region of
the 16S rRNA gene that was amplified by PCR with forward primer 341F (59-CCTACGGGNGGCWGCAG-39)
and reverse primer 785R (59-GACTACHVGGGTATCTAATCC-39) was analyzed using Illumina MiSeq with a
MiSeq reagent kit v3 (600 cycles; Illumina, San Diego, CA, USA), as described previously (59).

Data processing and taxonomy assignment. The sequence data were processed using the Quantitative
Insights into Microbial Ecology 2 (QIIME2) pipeline v. 2021.11.0 (60). The DADA2 software package v2021.8.0
incorporated into QIIME 2 was used to correct the amplicon sequence errors and to construct an amplicon
sequence variant table. The amplicon sequence variant table was rarefied. Microbial taxonomy was assigned
using a pretrained taxonomical classifier available on the QIIME2 webpage (a naive Bayes classifier trained on
the Silva 138 99% operational taxonomic unit [OTU] full-length sequences; https://github.com/qiime2/docs/
blob/master/source/data-resources.rst; accessed 1 April 2022).

Analysis of microbial diversity. Metrics of alpha diversity, including Faith’s phylogenetic diversity
(Faith-PD), the Chao1 index (Chao1), and Shannon’s index (Shannon), and those of beta diversity, includ-
ing unweighted and weighted UniFrac, were calculated using the QIIME2 pipeline (60).

The data were analyzed using statistics implemented in QIIME2. The data were examined with
respect to categorical and numerical variables by the Kruskal-Wallis test and Spearman’s correlation
coefficient, respectively. In the principal-coordinate analysis, the distant metrics were analyzed with cat-
egorical and numeric variables by permutational multivariate analysis of variance (PERMANOVA) and the
Mantel test using Spearman’s correlation coefficient, respectively.

Analysis of predicted functional profile. The microbial profile was predicted using PICRUSt2 plugin
q2-picrust2 2021.11_0, which was installed in QIIME2 v2021.8.0 (27, 60, 61). The Euclidian distance was
obtained from the predicted functional profile data of KEGG orthologs (i.e., KO), using the QIIME2 pipe-
line. In the principal coordinate analysis, the distant metrics were analyzed with categorical and numeric
variables using Spearman’s correlation coefficient by PERMANOVA and the Mantel test, respectively.
Moreover, the KEGG ortholog data were analyzed by differential abundance analysis described below.
The KEGG ortholog data were examined in the KEGG database (https://www.genome.jp/kegg/; accessed
11 January 2023) (62).

Differential abundance analysis. The differential abundance analysis was done using the software
package DAtest v2.8.0 in R statistical software, v. 4.1.3 (63). The statistical models were examined with
the data using the “testDA” function with 1,000 repeats (Tables S7 and S8). The microbiota abundance
data and the predicted function profile data were analyzed using the quasi-Poisson generalized linear
model and Pearson correlation coefficient, respectively, which were implemented in the DAtest package.
The statistical significance was set as an adjusted P value of,0.05.

Microbial co-occurrence network analysis. Microbial associations were estimated from the micro-
biota data at the genus level by the SPRING model using 150 edges with the highest variance (64). The
co-occurrence network was constructed with the default setting with the removal of singletons. The
cluster was inferred using the Louvain method. In the differential network analysis, the associations in
the networks were compared via a permutation test with 1,000 replicates, and the differential associa-
tions with an alpha of 0.05 were selected. All the co-occurrence network analyses and their visualization
were performed using the NetCoMi package v. 1.0.2 in R software v. 4.0.2 (65). Finally, the associations in
the co-occurrence network were compared with the associations with the highest weights in the differ-
ential network, and the associations that were seen in both networks were highlighted as low-fertility-
group-preponderance and normal-group-preponderance associations.

Visualization for figures. The figure visualization was done using JMP Pro 16.2.0 software (SAS
Institute, Cary, NC, USA) or R software v. 4.0.2 (65), unless otherwise stated.

Ethics approval and consent to participate. The farms included in the study expressed willingness
to cooperate and had data available for reproduction and disease management. The care and handling
of the animals were in accordance with Azabu University animal experiment guidelines. All experiments
were reviewed and approved by the Ethics Committee of Azabu University (approval number 210720-5).
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Data availability. Raw sequence data were deposited in the DNA Data Bank of Japan (DDBJ)
sequence read archive (DRA014763) under BioProject no. PRJDB14269.
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SUPPLEMENTAL FILE 1, PDF file, 1.1 MB.
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