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Abstract

Zinc is an essential metal for cells, but excess amounts are toxic. Other than by regulating

the intracellular zinc concentration by zinc uptake or efflux, the mechanisms underlying bac-

terial resistance to excess zinc are unknown. In the present study, we searched for zinc-

resistant mutant strains from the Keio collection, a gene knockout library of Escherichia coli,

a model gram-negative bacteria. We found that knockout mutant of RpmJ (L36), a 50S ribo-

somal protein, exhibited zinc resistance. The rpmJ mutant was sensitive to protein synthesis

inhibitors and had altered translation fidelity, indicating ribosomal dysfunction. In the rpmJ

mutant, the intracellular zinc concentration was decreased under excess zinc conditions.

Knockout of ZntA, a zinc efflux pump, abolished the zinc-resistant phenotype of the rpmJ

mutant. RNA sequence analysis revealed that the rpmJ mutant exhibited altered gene

expression of diverse functional categories, including translation, energy metabolism, and

stress response. These findings suggest that knocking out RpmJ alters gene expression

patterns and causes zinc resistance by lowering the intracellular zinc concentration. Knock-

outs of other ribosomal proteins, including RplA, RpmE, RpmI, and RpsT, also led to a zinc-

resistant phenotype, suggesting that deletion of ribosomal proteins is closely related to zinc

resistance.

Introduction

Zinc is an essential metal for organisms. Approximately 5% to 6% of total proteins in bacteria

are zinc-binding proteins [1]. Zinc acts as a cofactor for enzyme activity and protein structure

folding. On the other hand, excess zinc is toxic to cells by destroying [4Fe-4S] clusters of dehy-

dratases and releasing free irons [2]. Iron, a metal with high redox potential, produces reactive

oxygen species by the Fenton-reaction and impairs cell growth [2–4].

Bacteria must maintain a strict intracellular zinc concentration to reserve a necessary

amount of zinc while avoiding toxicity from excess zinc. Four main zinc transporters have

been identified in Escherichia coli. ZnuABC [5], a high-affinity ABC transporter, and ZupT

[6], a ZIP family transporter, are responsible for zinc uptake. Under zinc-deficient conditions,

the expression of ZnuABC is upregulated by relieving the transcriptional repressor Zur, a

homolog of Fur [5]. ZntA, a P-type ATPase transporter [7, 8], and ZitB, a cation diffusion facil-

itator family transporter, mediate zinc efflux [9]. Under excess zinc conditions, the
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transcription factor ZntR upregulates the expression of ZntA [10, 11]. Other than the zinc

efflux and uptake systems, little is currently known about the factors involved in zinc resis-

tance. In the present study, we aimed to identify the genetic factors responsible for zinc resis-

tance utilizing a gene knockout mutant E. coli library. We found that knockout of the 50S

ribosomal protein RpmJ (L36) conferred zinc resistance. The E. coli ribosome contains 54 pro-

teins, of which RpmJ is 1 of 8 nonessential ribosomal proteins. RpmJ is the smallest 50S ribo-

somal protein with only 38 amino acids [12], and is involved in 23S rRNA folding [13]. We

investigated the mechanism of zinc resistance in the rpmJ knockout mutant by analyzing gene

expression and intracellular zinc concentration.

Results

Knockout of rpmJ causes zinc resistance

In this study, we searched a gene knockout mutant library for gene knockout mutants that

grew on Luria broth (LB) agar plates containing 1.4 mM zinc to identify genes whose deletions

confer zinc resistance to E. coli. Four zinc-resistant mutant strains were identified (Table 1)

with the rpmJ mutant exhibiting the strongest zinc-resistant phenotype (Fig 1A). The MIC of

wild-type against zinc was 1.4 mM and that of the rpmJ mutant was 2.0 mM. The other 3

mutant strains were pitA, rimP, and tufA mutants. PitA functions as a zinc uptake system [14],

RimP is required for 30S ribosome maturation [15], and Elongation factor Tu1 (tufA) is

required for ribosomal peptide elongation [16].

We performed a complementation test to confirm that zinc resistance is caused by a lack of

rpmJ. The results demonstrated that introducing the rpmJ gene into the rpmJ mutant reduced

the zinc resistance (Fig 1B). In contrast, zinc resistance was not reduced by introducing

mutated rpmJ genes in which C27 or H33, important amino acids for the zinc-finger structure

of RpmJ [13, 17], were replaced with serine (Fig 1B). These results indicate that the loss of

RpmJ function by destroying the zinc-finger structure leads to zinc resistance in E. coli.

Knockout of rpmJ alters ribosomal function

Given that RpmJ is a ribosomal protein, its knockout could alter the ribosomal structure. We

examined the sensitivity of the rpmJ mutant to protein synthesis inhibitors that target ribo-

somes. Compared with the wild-type strain, the growth of the rpmJ mutant was decreased by

all 4 tested inhibitors, chloramphenicol, erythromycin, clarithromycin, and tetracycline (Fig

2). This finding implies that the rpmJ mutant has altered translation activity. Then, we focused

on the translational function of the ribosome, and measured the translation fidelity using a

dual luciferase assay in which stop codon readthroughs or frameshift readthroughs were

detected (Fig 3A) [18]. In the assay, stop codons or frameshift mutations are inserted between

Rluc and Fluc genes, and a low Fluc/Rluc (F/R) value indicates that the translation is accurate

[18]. In the UGA stop codon readthrough, the F/R values were higher in the rpmJ mutant than

in the wild-type strain in both the no-zinc and 0.8-mM zinc conditions (Fig 3B). In the UAG

stop codon readthrough, difference of the F/R values was not detected between the wild-type

Table 1. E. coli gene knockout mutans resistant to zinc.

ID Gene Product

JW3261-KC rpmJ 50S ribosomal subunit protein L36

JW3460-KC pitA phosphate transporter, low-affinity

JW5533-KC rimP ribosome maturation factor for 30S subunits

JW3301-KC Tufa protein chain elongation factor EF-Tu

https://doi.org/10.1371/journal.pone.0277162.t001
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Fig 1. The rpmJ mutant exhibits zinc resistance. A. Overnight cultures of the wild-type strain and knockout mutants (ΔrpmJ,ΔrimP,ΔpitA,

andΔtufA) were serially diluted 10-fold, spotted onto LB agar plates with or without 1.4 mM Zn(II), and incubated overnight at 37˚C. B.

Overnight cultures of the wild-type strain transformed with an empty vector (WT/pMW118), the rpmJ mutants transformed with an empty

vector (ΔrpmJ/pMW118), a plasmid carrying intact rpmJ gene (ΔrpmJ/pMW118-rpmJ), and plasmids carrying mutated rpmJ genes (ΔrpmJ/
pMW118-rpmJ_C27S, ΔrpmJ/pMW118-rpmJ_H33S) were serially diluted 10-fold, spotted onto LB agar plates with or without 1.4 mM Zn

(II), added 1 mM IPTG, and incubated overnight at 37˚C.

https://doi.org/10.1371/journal.pone.0277162.g001

Fig 2. The rpmJ mutant is sensitive to protein synthesis inhibitors. Overnight cultures of the wild-type strain (WT)

and the rpmJ mutant (ΔrpmJ) were serially diluted 10-fold, spotted onto LB agar plates with or without chloramphenicol

(1.9 μg/ml), erythromycin (75 μg/ml), tetracycline (0.94 μg/ml), or clarithromycin (50 μg/ml), and incubated overnight

at 37˚C.

https://doi.org/10.1371/journal.pone.0277162.g002
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strain and the rpmJ mutant in the no-zinc and 0.8-mM zinc conditions (Fig 3B). In the +1

frameshift readthrough, the F/R value was higher in the rpmJ mutant than in the wild-type

strain in the no-zinc condition, but no difference was observed in the 0.8-mM zinc condition

(Fig 3B). In the -1 frameshift readthrough, difference of the F/R value was not detected

between the wild-type strain and the rpmJ mutant in the no-zinc condition, but the F/R value

was lower in the rpmJ mutant than in the wild-type strain in the 0.8-mM zinc condition (Fig

3B). These results suggest that the ribosomal function required to maintain translation fidelity

was altered in the rpmJ mutant.

The rpmJ mutant has a low intracellular zinc concentration under excess

zinc conditions

The ability of the rpmJ mutant to grow in an excess zinc condition could be due to a low intra-

cellular zinc concentration. We measured the intracellular zinc concentration by inductively

coupled plasma-mass spectrometry (ICP-MS) [19]. In a no-zinc and a 0.6-mM zinc condi-

tions, the intracellular zinc concentrations did not differ between the wild-type strain and

rpmJ mutant (Fig 4). In a 1.2-mM excess zinc condition, the intracellular zinc concentration

was lower in the rpmJ mutant than in the wild-type strain, but there was no significant differ-

ence between the wild-type strain and the rpmJ mutant transformed with the intact rpmJ gene

Fig 3. The rpmJ mutant had altered translational fidelity. (A) The structure of the luciferase genes used for the dual-luciferase assay is shown. Stop

codons or frameshift mutations are located between the Fluc and Rluc genes. Rluc-Fluc fusion protein is expressed when reading through stop codons

or when misreading frameshift mutations occur. (B) The wild-type strain (WT) and the rpmJ mutant (ΔrpmJ) were cultured in the presence or

absence of 0.8 mM Zn(II) and luciferase activity was measured. The F/R values normalized by that of the wild-type are indicated on the vertical axis.

Data shown are means ± standard deviation from 3 independent experiments. The asterisk represents a p value<0.05.

https://doi.org/10.1371/journal.pone.0277162.g003
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(Fig 4). These results suggest that the rpmJ mutant maintained a low intracellular zinc concen-

tration under an excess zinc condition, which could confer zinc resistance to the rpmJ mutant.

Knockout of rpmJ alters global gene expression patterns

To understand the molecular mechanisms underlying the zinc resistance of the rpmJ mutant,

we performed RNA sequence analysis to identify differentially expressed genes in the rpmJ
mutant. In the rpmJ mutant, 195 genes were upregulated and 275 genes were downregulated

compared with the wild-type strain (S1 Table). Contrary to our expectation, the expression of

zinc uptake or zinc efflux genes was not altered in the rpmJ mutant. In contrast, expression of

6 genes encoding synthases for iron-sulfur clusters was decreased in the rpmJ mutant (S1

Table). Because iron-sulfur clusters are toxic targets of zinc, decreased amounts of iron-sulfur

clusters could contribute to the zinc resistance of the rpmJ mutant. To elucidate characteristic

features of the differentially expressed genes in the rpmJ mutant, we performed a gene ontol-

ogy (GO) enrichment analysis. The upregulated genes included those categorized as related to

translation or ribosomal subunits (Fig 5A), suggesting that ribosomal function is damaged in

the rpmJ knockout and some compensatory regulatory mechanisms were triggered to increase

translation function. The genes related to aerobic ATP synthesis were found in upregulated

genes (Fig 5A). The downregulated genes included those categorized as related to anaerobic

respiration, stress response, amino acid metabolism, glycogen metabolism (Fig 5B).

The zntA gene is required for the zinc resistance caused by the rpmJ
knockout

Although the RNA sequence analysis suggest that the expression of zinc uptake or zinc efflux

genes was not altered in the rpmJ mutant at the transcript level in the absence of zinc, there

Fig 4. The intracellular zinc(II) concentration in the rpmJ mutant is low under excess zinc conditions. Wild-type

E. coli strain transformed with an empty vector (WT/pMW118), the rpmJ mutant transformed with an empty vector

(ΔrpmJ/pMW118), the rpmJ mutant transformed with a plasmid carrying an intact rpmJ gene (ΔrpmJ/pMW118-rpmJ)

were cultured under conditions of 0 mM Zn(II), 0.6 mM Zn(II), and 1.2 mM Zn(II), added 1 mM IPTG. The zinc

concentration was measured by ICP-MS. Data shown are means ± standard deviation from 4 independent

experiments. ��p<0.01.

https://doi.org/10.1371/journal.pone.0277162.g004
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are still possibilities that the rpmJ knockout alters the expression of zinc uptake or zinc efflux

genes in the presence of zinc, and decrease the zinc concentration. We examined whether

the zntA and zitB genes that encode zinc efflux pumps are involved in the zinc resistance of

the rpmJ mutant by analyzing zinc resistance phenotype of gene knockout mutants. The

zntA knockout mutant was sensitive to zinc compared with the wild-type strain (Fig 6A).

The double knockout mutant of rpmJ and zntA was sensitive to zinc, whose growth was

comparable with that of the zntA knockout mutant (Fig 6A). In contrast, in the absence of

zinc, the zntA mutant and rpmJ/zntA double knockout mutant showed indistinguishable

growth from the wild-type strain (Fig 6A). The growth of the zitB knockout mutant was

indistinguishable from that of the wild-type strain in the presence of zinc (Fig 6B). The

doble knockout mutant of rpmJ and zitB exhibited indistinguishable growth with the rpmJ
mutant in the presence of zinc (Fig 6B). Thus, the zntA knockout lost the zinc resistance

caused by the rpmJ knockout, whereas the zitB knockout did not affect the zinc resistance.

These results suggest that the zntA gene is required for the zinc resistance caused by the

rpmJ knockout.

Fig 5. GO enrichment analysis of differentially expressed genes in the rpmJ mutant. GO enrichment analysis was

performed using differentially expressed genes in the rpmJ mutant (195 upregulated genes, 275 downregulated genes)

(S1 Table). Categories with a p value<0.001 are shown. GO-enriched categories of genes with increased expression are

shown in panel A and categories of genes with decreased expression are shown in panel B.

https://doi.org/10.1371/journal.pone.0277162.g005
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Knockout of several ribosomal proteins leads to a zinc resistance

phenotype

E. coli has 7 nonessential ribosomal proteins other than RpmJ. We examined whether knock-

out of these nonessential ribosomal proteins leads to zinc resistance as in the case of the rpmJ
knockout. Knockout of rplA, rpmE, rpmI, and rpsT also caused zinc resistance (Fig 7). The

results suggest the existence of some conserved zinc resistance mechanisms among the gene

knockout mutants of ribosomal proteins.

Discussion

The present findings revealed that knocking out ribosomal protein RpmJ confers zinc resis-

tance to E. coli. The rpmJ mutant had a low concentration of intracellular zinc, which is proba-

bly caused by zinc efflux through zntA. RNA sequence analysis revealed that the rpmJ mutant

decreased expression of iron-sulfur cluster synthesis genes. Furthermore, knocking out other

ribosomal proteins, including RplA, RpmE, RpmI, and RpsT, led to zinc resistance in E. coli.
This study is the first to reveal that ribosomal protein deficiency causes E. coli resistance to

zinc.

By constructing gene knockout mutants of zinc efflux pumps, we revealed that the zntA
gene is required for the zinc resistance caused by the rpmJ knockout. However, RNA sequence

analysis did not reveal differential expression of zntA in the rpmJ mutant. Because the RNA

sequence analysis used RNA samples prepared under a no-zinc condition, it is possible that

zntA was differentially expressed in the rpmJ mutant under excess zinc conditions. Another

possibility is that ZntA protein expression or the activity is changed in the rpmJ mutant. Thus,

we assume that the rpmJ knockout leads to zinc resistance by upregulating a zntA-dependent

efflux of zinc in some unidentified mechanism. In addition, RNA sequence analysis identified

Fig 6. Knockout of zntA abolishes the zinc resistance caused by the rpmJ knockout. A. Overnight cultures of the wild-type strain (WT), the rpmJ
mutant (ΔrpmJ), the zntA mutant (ΔzntA), and the rpmJ and zntA double knockout mutant (ΔrpmJ / ΔzntA) were serially diluted 10-fold, spotted onto

LB agar plates without zinc or with 0.4 mM Zn(II) or 0.8 mM Zn(II) and incubated overnight at 37˚C. B. Overnight cultures of the wild-type strain

(WT), the rpmJ mutant (ΔrpmJ), the zitB mutant (ΔzitB), and the rpmJ and zitB double knockout mutant (ΔrpmJ / ΔzitB) were serially diluted 10-fold,

spotted onto LB agar plates without or with 1.4 mM Zn(II), and incubated overnight at 37˚C. These assays utilized the rpmJ knockout strains whose

kanamycin resistant marker was deleted.

https://doi.org/10.1371/journal.pone.0277162.g006
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that the rpmJ mutant had decreased expression of genes involved in the synthesis of iron-sulfur

clusters. The downregulated expression of iron-sulfur cluster synthesis genes might be

involved in the zinc resistance of the rpmJ mutant.

The rpmJ mutant was sensitive to protein synthesis inhibitors, and exhibited altered transla-

tion fidelity and increased expression of ribosomal subunit genes. RNA sequence analysis also

revealed altered expression of many genes other than ribosome-related genes in the rpmJ
mutant, including respiratory genes, metabolic genes for amino acids and DNA, and stress

response genes. These findings suggest that structural abnormalities or functional alterations

of ribosomes in the rpmJ mutant are sensed by some transcriptional regulators, leading to dif-

ferential transcription of various genes. Ribosomal proteins are able to repress their own gene

translation [20], but the effects on other genes are not known. The stringent response is a well-

known phenomenon that regulates the transcription of many genes when amino acids are lim-

ited and translation is inhibited [21]. In the stringent response, tRNA without an amino acid

enters into the ribosome A-site and activates RelA protein, a synthase of ppGpp. ppGpp pro-

duced by RelA activates the transcription of various genes [22, 23]. The altered structure or

dysfunction of ribosomes in the rpmJ mutant may result in activation of RelA to induce the

expression of various genes. The molecular trigger that induces gene expression changes and

interrelationships between the altered gene expressions should be investigated in future

studies.

Previous studies demonstrated that 8 ribosomal proteins interact with zinc [24, 25]. Among

the 5 ribosomal proteins whose knockout leads to zinc resistance, RpmJ and RpmE interact

with zinc [26]. Under zinc-limited conditions, RpmJ and RpmE are released from ribosomes

and supply zinc by self-degradation, and subsequently YkgO and YkgM, non-zinc binding

paralogs of RpmJ and RpmE, form complex with ribosome [27–31]. In contrast, RplA, RpmI,

and RpsT, whose knockout leads to zinc resistance, do not interact with zinc and do not func-

tion in zinc homeostasis. Thus, the capacity of the ribosomal protein to interact with zinc is

not related to the zinc resistance conferred by the knockout of the ribosomal protein. We spec-

ulate that some abnormalities of the ribosomal structure and function are conserved among

Fig 7. Knockout mutants of nonessential ribosomal proteins exhibit zinc resistance. Overnight cultures of the wild-

type strain and knockout mutants of ribosomal proteins (RpmJ, RplA, RplI, RpmE, RpmF, RpmI, RpsF, and RpsT)

were serially diluted 10-fold, spotted onto LB agar plates with or without 1.3 mM Zn(II), and incubated overnight at

37˚C.

https://doi.org/10.1371/journal.pone.0277162.g007
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the ribosomal protein mutants that showed zinc resistance. The present study also demon-

strated that knockout of rimP, involved in 30S ribosome maturation [15], and tufA, involved

in ribosomal peptide elongation [16], leads to zinc resistance in E. coli. The rimP- and tufA-
knockout mutants could have ribosomal abnormalities and may have the same zinc-resistant

mechanisms as the ribosomal protein mutants. Further studies are needed to clarify the molec-

ular mechanisms underlying zinc resistance by investigating ribosomal structure and function

in the zinc-resistant mutants identified in this study.

Materials and methods

Bacterial strains and culture conditions

E. coli BW25113 and the gene knockout strains were cultured on LB agar medium, and the col-

onies were aerobically cultured in LB liquid medium at 37˚C. E. coli harboring pMW118 was

cultured on LB agar plates containing 100 μg/ml ampicillin. The bacterial strains and plasmids

used in this study are listed in Table 2.

Table 2. List of bacterial strains and plasmids used.

Strain or plasmid Genotypes or characteristics Source or reference

Strains

BW25113 rrnB, ΔlacZ4787, HsdR514, Δ(araBAD)567, Δ(rhaBAD)568, rph-1 NBRP

JW3261-KC BW25113 ΔrpmJ::kan Kanr NBRP

JW3947-KC BW25113 ΔrplA::kan Kanr NBRP

JW4161-KC BW25113 ΔrplI::kan Kanr NBRP

JW3907-KC BW25113 ΔrpmE::kan Kanr NBRP

JW1075-KC BW25113 ΔrpmF::kan Kanr NBRP

JW1707-KC BW25113 ΔrpmI::kan Kanr NBRP

JW4158-KC BW25113 ΔrpsF::kan Kanr NBRP

JW0022-KC BW25113 ΔrpsT::kan Kanr NBRP

JW3460-KC BW25113 ΔpitA::kan Kanr NBRP

JW5533-KC BW25113 ΔrimP::kan Kanr NBRP

JW3301-KC BW25113 ΔtufA::kan Kanr NBRP

JW-3434KC BW25113 ΔzntA::kan Kanr NBRP

JW-0735KC BW25113 ΔzitB::kan Kanr NBRP

RS0001 BW25113 ΔrpmJ::markerless This study

RS0002 BW25113 ΔzntA::kan Kanr, ΔrpmJ::markerless This study

RS0003 BW25113 ΔzitB::kan Kanr, ΔrpmJ::markerless This study

JM109 Host strain for cloning Takara Bio

Plasmids

pMW118 Low-copy-number plasmid; Ampr Nippon Gene

pMW118-rpmJ pMW118 with rpmJ; Ampr This study

pMW118-rpmJ_C27S pMW118 with C27S rpmJ; Ampr This study

pMW118-rpmJ_H33S pMW118 with H33S rpmJ; Ampr This study

pQE-Luc(UGA) pQE60 with UGA window between Fluc and Rluc; Ampr [18]

pQE-Luc(UAG) pQE60 with UAG window between Fluc and Rluc; Ampr [18]

pQE-Luc(+1) pQE60 with +1 window between Fluc and Rluc; Ampr [18]

pQE-Luc(-1) pQE60 with -1 window between Fluc and Rluc; Ampr [18]

Kan: kanamycin, Amp: ampicillin.

https://doi.org/10.1371/journal.pone.0277162.t002
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Evaluation of bacterial resistance to antimicrobial substances

To measure bacterial resistance to zinc and antibiotics, autoclaved LB agar medium was mixed

with ZnSO4�7H2O (Nacalai Tesque, Kyoto, Japan) or antibiotics and poured into square plastic

dishes (Eiken Chemical, Tokyo, Japan). E. coli overnight cultures were serially diluted 10-fold

in 96-well microplates, and 5 μl of the diluted bacterial solution was spotted onto the LB agar

plates supplemented with drugs. The plates were incubated at 37˚C for 1 day and colonies

were photographed using a digital camera. The MIC values for zinc were determined by spot-

ting bacterial cell suspension (105 CFU) onto LB plates supplemented with zinc and incubating

the plates overnight at 37˚C.

Genetic manipulation

Gene knockout mutants were constructed by phage transduction using phage P1 vir from the

gene knockout mutants in the Keio collection as donor strains to the BW25113 strain as the

recipient strain (Table 2). Double knockout mutants were also constructed by phage transduc-

tion using phage P1 vir from the gene knockout mutants in the Keio collection as donor strains

to the rpmJ mutant, whose Kanr marker was deleted, as the recipient strain. To construct a

plasmid carrying the rpmJ gene, a DNA fragment encoding the rpmJ gene was amplified by

polymerase chain reaction (PCR) using primer pairs (rpmJ_F_XbaI_2nd and rpmJ_R_Hin-

dIII_2nd; Table 3) from genomic DNA of the BW25113 strain as a template. The amplified

DNA fragment was cloned into XbaI and HindIII sites of pMW118, resulting in

pMW118-rpmJ. Amino acid substitution mutations were introduced into pMW118-rpmJ by

PCR using primer pairs (rpmj_C27S_F and rpmj_C27S_R or rpmj_H33S_F and

rpmj_H33S_R; Table 3) and pMW118-rpmJ as a template. Mutations were confirmed by

DNA sequencing.

Dual-luciferase assay

The wild-type E. coli strain and rpmJ knockout mutant were transformed with plasmids

[pQE-Luc(UGA), pQE-Luc(UAG), pQE-Luc(+1), pQE-Luc(-1)] [18] (Table 2). Each transfor-

mant was aerobically cultured in LB liquid medium containing 100 μg/ml ampicillin at 37˚C

overnight. The overnight culture was inoculated into a 100-fold amount of fresh LB medium.

For cells in the no-zinc condition, cells were cultured until OD600 = 0.5 and then collected. For

cells in the zinc condition, cells were cultured until OD600 = 0.25–0.35 in the no-zinc condi-

tion, supplemented with 0.8 mM Zn(II), and then further cultured for 1 h before collecting.

The cell pellets were suspended in 200 μl buffer (50 mM HEPES-KOH [pH7.6], 100 mM KCl,

10 mM MgCl2, 7 mM β-mercaptoethanol, 400 μg/ml lysozyme). The cell sample was then sub-

jected to freezing and thawing using liquid nitrogen and centrifuged at 15,000 rpm for 15 min

at 4˚C. The centrifuge supernatant was mixed with an equal volume of Firefly luciferase

Table 3. Primers used in this study.

Primers to construct pMW118-rpmJ

rpmJ_F_XbaI_2nd TCTTCTAGATACTTCGGTGGGACCTCACT

rpmJ_R_HindIII_2nd AAGAAGCTTCTCAAATGGAAACGCACAGA

Primers to introduce amino acid substitution

rpmj_C27S_F ATGGTGTCATCCGTGTGATTAGCAGTGCCGAGCCGAAGCATAA

rpmj_C27S_R TTATGCTTCGGCTCGGCACTGCTAATCACACGGATGACACCAT

rpmj_H33S_F TTTGCAGTGCCGAGCCGAAGAGCAAACAGCGCCAAGGCTGATT

rpmj_H33S_R AATCAGCCTTGGCGCTGTTTGCTCTTCGGCTCGGCACTGCAAA

https://doi.org/10.1371/journal.pone.0277162.t003
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substrate (Promega) or Renilla luciferase substrate (Pierce), and the luminescence intensity

was measured with a luminometer (Promega).

Measurement of intracellular zinc concentration

Zinc concentrations were measured according to a previously reported method [19]. Briefly,

100 μl of E. coli overnight cultures were spread on agar plates supplemented with no zinc, 0.6

mM Zn(II), or 1.2 mM Zn(II), and cultured overnight at 37˚C. The cells were suspended in

phosphate buffered saline and the OD600 value was adjusted to 0.5. The sample was centri-

fuged, the bacterial pellet was washed 5 times with cold phosphate buffered saline, and 100 μl

of 50% HNO3 was added. The sample was heated at 65˚C overnight. The HNO3 concentration

was adjusted to 5% and the zinc concentration was determined by ICP-MS (Agilent7500cx,

Agilent Technologies). The concentrations of other metal elements were measured as well

(S1 Fig).

RNA-sequence analysis

Total RNA of E. coli was extracted according to a previously described method [32] with

minor modifications. E. coli overnight culture (50 μl) was inoculated into 5 ml LB medium

and aerobically cultured at 37˚C. When the OD600 of the culture reached 0.7, 1.8 ml of culture

was vortex-mixed with 200 μl of 5% phenol in ethanol, chilled in ice water for 5 min, and cen-

trifuged at 21,500×g for 2 min. The bacterial precipitate was frozen in liquid nitrogen and

stored at −80˚C for 2 h. The precipitate was dissolved in 200 μl lysis buffer (TE buffer, 1% lyso-

zyme, 1% sodium dodecyl sulfate) and incubated at 65˚C for 2 min. The sample was subjected

to RNA extraction using an RNeasy minikit (Qiagen) according to the manufacturer’s proto-

col. rRNA was removed from the total RNA using a NEBNext rRNA depletion kit (NEB), and

RNA was converted to a DNA library using a TruSeq stranded total RNA kit (Illumina). RNA

sequencing was performed using a NovaSeq 6000 system (Illumina), and at least 4 billion base

sequences of 100-base paired-end reads were generated per sample. The data were analyzed

using CLC Genomics Workbench software (version 11.0). The reads were mapped to a refer-

ence genome of the E. coli W3110 strain (NCBI reference sequence NC_007779.1), and the

reads per kilobase of transcript per million mapped reads (RPKM) were compared between

the wild-type strain and the rpmJ mutant. The experiment was independently performed twice

to identify the genes for which the mean values differed by >2-fold between BW25113 and

ΔrpmJ and the false discovery rate p value was <0.001. GO analysis was performed using soft-

ware developed by the European Molecular Biology Laboratory (https://www.ebi.ac.uk/

QuickGO).

Statistical analysis

Differences in dual luciferase assay were evaluated by Student’s t test in Excel. Differences in

the intracellular zinc concentration by ICP-MS were evaluated by Dunnett’s test in GraphPad

PRISM software.

Supporting information

S1 Table. Differentially expressed genes in the rpmJ knockout mutant. Yellow background

indicates iron-sulfur cluster synthesis genes.

(XLSX)

S1 Fig. The intracellular metal concentration in the rpmJ mutant under excess zinc condi-

tions. Wild-type E. coli strain transformed with an empty vector (WT/pMW118), the rpmJ
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mutant transformed with an empty vector (ΔrpmJ/pMW118), the rpmJ mutant transformed

with a plasmid carrying an intact rpmJ gene (ΔrpmJ/pMW118-rpmJ) were cultured under con-

ditions of 0 mM Zn(II), 0.6 mM Zn(II), or 1.2 mM Zn(II), in the presence of 1mM IPTG. The

metal concentrations were measured by ICP-MS. Data shown are means ± standard deviation

from 4 independent experiments (�, p value<0.05, ��, p value <0.01, ���, p value<0.001).

(TIF)
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