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Abstract

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a so far poorly understood underlying
pathogenesis, and few effective therapies for core symptoms. Accumulating evidence supports an association between ASD
and immune/inflammatory processes, arising as a possible pathway for new drug intervention. However, current literature
on the efficacy of immunoregulatory/anti-inflammatory interventions on ASD symptoms is still limited. The aim of this
narrative review was to summarize and discuss the latest evidence on the use of immunoregulatory and/or anti-inflammatory
agents for the management of this condition. During the last 10 years, several randomized, placebo-controlled trials on the
effectiveness of (add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, N-acetylcysteine (NAC), sul-
foraphane (SFN), and/or omega-3 fatty acids have been performed. Overall, a beneficial effect of prednisolone, pregnenolone,
celecoxib, and/or omega-3 fatty acids on several core symptoms, such as stereotyped behavior, was found. (Add-on) treatment
with prednisolone, pregnenolone, celecoxib, minocycline, NAC, SFN, and/or omega-3 fatty acids was also associated with a
significantly higher improvement in other symptoms, such as irritability, hyperactivity, and/or lethargy when compared with
placebo. The mechanisms by which these agents exert their action and improve symptoms of ASD are not fully understood.
Interestingly, studies have suggested that all these agents may suppress microglial/monocyte proinflammatory activation
and also restore several immune cell imbalances (e.g., T regulatory/T helper-17 cell imbalances), decreasing the levels of
proinflammatory cytokines, such as interleukin (IL)-6 and/or IL-17A, both in the blood and in the brain of individuals with
ASD. Although encouraging, the performance of larger randomized placebo-controlled trials, including more homogeneous
populations, dosages, and longer periods of follow-up, are urgently needed in order to confirm the findings and to provide
stronger evidence.

1 Introduction
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condition characterized by early-appearing (and persistent)
deficits in social interaction and communication, sensory-
motor problems, and by repetitive and/or stereotyped behav-
iors [1]. With a current global prevalence of about 1%, ASD
is associated with a high community, and individual burden
[2, 3]. However, and despite many efforts and significant
advances in our understanding of the neurobiology of this
condition, its exact etiology remains elusive [4]. As a con-
sequence, pharmacological options for the management of
ASD are still limited, and almost exclusively aimed at target-
ing associated (e.g., irritability, hyperactivity), but not core
symptoms [5, 6].
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Individuals with autism spectrum disorder (ASD)
show immune and inflammatory abnormali-

ties, including increased blood levels of (activated)
monocytes,and abnormal blood levels of lymphocyte
subpopulations,across the lifespan.

Individuals with ASD are also characterized by a proin-
flammatory activation of microglia in the brain, across
the lifespan.

Immune system abnormalities found in individuals with
ASD are a possible pathway for new drug intervention.

(Add-on) treatment with immunoregulatory/anti-inflam-
matory agents, such as prednisolone, pregnenolone,
celecoxib, minocycline, N-acetylcysteine, sulforaphane,
and/or omega-3 fatty acids may be beneficial for the
management of core (e.g., stereotyped behavior) and
associated (e.g., irritability, hyperactivity, lethargy)
symptoms in individuals with ASD.

During the last decades, an increasing body of evidence
has suggested the involvement of the immune system in
the pathophysiology of this condition. Genome-wide asso-
ciation studies have demonstrated that variations in several
genes that encode proteins involved in the inflammatory
response (e.g., human leukocyte antigen [HLA] genes), may
increase the risk of developing ASD [7]. In addition, mater-
nal immune activation, and/or suffering from an infection
during pregnancy also increase the risk of developing ASD
in the offspring [8, 9]. Individuals with ASD often display
abnormal immune responses [10, 11], and are also character-
ized by a higher incidence of comorbid immune-mediated
conditions, such as diabetes mellitus [12], psoriasis [13],
autoimmune thyroiditis [14], and/or allergy [15]. However,
no consistent and/or specific immunological mechanism has
emerged, so far.

Contrary to previous beliefs, the central nervous system
(CNS) is not immune-privileged, and immune mediators,
such as microglial cells, and/or T lymphocytes are normally
present in the brain [16]. These cells are crucial for a proper
brain development and function. For example, microglial
cells participate in programmed neuronal death and pro-
motion of synaptogenesis, and are able to strip excess syn-
apses from developing neurons, allowing the integration of
functional neuronal circuits [17-19] (Fig. 1). In addition,
and while T-helper regulatory cells (Tregs) promote myeli-
nation [20], T-helper 17 cells (Th17) promote demyelination
[21]. It has been therefore hypothesized that abnormal levels,
or an abnormal function of microglia and of several immune
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cells may lead to an abnormal development of the brain, and
thus, predispose to neurodevelopmental conditions, such as
ASD (Fig. 1). In support of this idea, microglial dysfunction
has been related to core ASD symptoms, such as stereotyped
behaviors, in a mouse model of obsessive-compulsive disor-
der [22]. Other reports have demonstrated the existence of a
positive association between the severity of ASD symptoms
and the levels of Th17 cells (and/or related cytokines, such
as interleukin [IL]-17A) [23, 24].

Interestingly, an increasing body of evidence has sug-
gested the existence of a systemically and chronically activa-
tion of microglia and of the monocyte system in individuals
with ASD, across the lifespan [25]. Supporting this idea, a
significantly higher microglial cell density, and/or a signifi-
cantly higher expression of microglial cell activation mark-
ers, such as CD45, have been repeatedly found in the brain
of individuals with ASD [26-28]. Moreover, elevated blood
levels of monocytes [29-35], and an increased expression
of different monocyte activation markers (e.g., CD96, HLA-
DR) have been also demonstrated [36, 37]. Abnormal lev-
els of several lymphocyte subpopulations, including natural
killer (NK), B, CD8* T cytotoxic (Tc), and CD4* T helper
(Th) cells have been demonstrated, both in the brain and in
the blood of individuals with ASD [25, 29, 38-41]. Among
the different Th cell subpopulations, an increase in Th17 cell
levels, and a decrease in Treg levels, have been suggested
[42, 43]. These findings are consistent with the cytokine pro-
file that has been described in individuals with ASD, with
subjects with ASD showing increased levels of proinflamma-
tory cytokines and/or chemokines (e.g., interferon [IFN]-vy,
IL-1, IL-6, IL-12p40, IL-17A, IL-31, tumor necrosis fac-
tor [TNF]-a, chemokine C-C-motif ligand [CCL]-2), and
decreased levels of anti-inflammatory cytokines (e.g., IL-10)
in their blood, and/or cerebrospinal fluid [44—48].

Current evidence on the role of the immune system in the
pathophysiology of ASD has therefore increased the interest on
the potential use of immunoregulatory and/or anti-inflamma-
tory agents for improving core and associated symptoms in, at
least, a subgroup of individuals with ASD. The aim of this
narrative review was to investigate the existing evidence on
the effectiveness of these agents for the management of ASD .

2 Literature Search
2.1 Search Strategy

The PubMed, SCOPUS, and World of Knowledge electronic
databases were independently screened by two authors
(GAH, LG) for relevant articles published between 1 Janu-
ary 1994, and 5 April 2022. The following search syntax
was used for the PubMed database search, and adapted
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Fig. 1 Immune system abnor-
malities in ASD
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according to the different database index terms: (autism OR
autistic OR autism spectrum disorder OR ASD OR perva-
sive OR pervasive developmental disorder OR pervasive
developmental disorders OR Asperger OR Asperger’s) AND
(celecoxib OR aspirin OR minocycline OR anti-inflamma-
tory OR NAC OR N-acetylcysteine OR NSAID OR ACTH
OR prednisone OR prednisolone OR corticosteroids OR
hydrocortisone OR methylprednisolone OR dexamethasone
OR cortisone OR sulforaphane OR omega-3 OR fatty acids
OR immunomodulatory).

2.2 Eligibility Criteria

Inclusion and exclusion criteria were discussed and
approved by all authors; inclusion criteria for human studies
were established in the Population, Intervention, Compara-
tor, Outcomes, and Study (PICOS) format, according to the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines [49]: (1) participants: chil-
dren/adolescents/adults with a confirmed diagnosis of ASD
as assessed by Diagnostic and Statistical Manual, Fourth
Edition (DSM-IV), DSM-IV Text Revision (DSM-IV-TR),
DSM, Fifth Edition (DSM-5) or International Classification
of Diseases, Tenth Revision (ICD-10) criteria; (2) inter-
vention: at least one of the following immunoregulatory/
anti-inflammatory agents as single or add-on therapy: cor-
ticosteroids, neurosteroids, non-steroidal anti-inflammatory
drugs (NSAID), minocycline, N-acetylcysteine (NAC),
sulforaphane (SFN), omega-3 fatty acids; (3) comparator:
placebo, or treatment as usual (TAU) plus placebo, corre-
sponding to the intervention set-up; (4) outcome: validated
rating scale; and (5) study design: randomized, placebo-con-
trolled trials. Only studies in the English, German, Spanish,
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or French languages were included. Exclusion criteria were
(1) individuals with otherwise diagnosed ASD; (2) other
immunoregulatory/anti-inflammatory agents; (3) agents
requiring invasive techniques for their administration; (4)
in vivo agents, such as probiotics; and (5) observational or
quasi-experimental (non-randomized) studies.

2.3 Quality Assessment

The Jadad scale (also known as the Oxford quality scor-
ing system) is considered as the standard method for evalu-
ating randomized clinical trials [50] and consists of three
items: (1) randomization; (2) blinding; and (3) description
of patient’s withdrawals/dropouts. Scores range from 0 to 5
points; a Jadad score of 0-2 indicates that the randomized
clinical trial is of low quality, whereas a score of 3—5 indi-
cates a high quality [50]. Two points relate to randomization
and both are awarded if the answers to the following ques-
tions are ‘yes’: ‘Was the study described as randomized?’;
and ‘Was the method of randomization appropriate?’. Two
points relate to blinding and both are awarded if, again,
the answers to the following questions are ‘yes’: ‘Was the
study described as double-blinded?’; and ‘Was the blind-
ing method appropriate?’. One point relates to a patient’s
withdrawals/dropouts.

3 Summary of Findings
In total, 18 studies were included in our review. The char-
acteristics of the included studies are displayed in Table 1,

and the total scores and quality ratings of the single studies
are presented in Table 2.
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3.1 Pharmacological Interventions
3.1.1 Corticosteroids (Prednisolone)

Corticosteroids such as prednisolone are a class of steroid
hormones secreted from the adrenal gland in response to
stress. Since their discovery in the 1940s, corticosteroids
have been used for the treatment of several immune and/or
inflammatory diseases based on their immunosuppressive
and/or anti-inflammatory effects [51]. To date, two rand-
omized, placebo-controlled clinical trials have investigated
the effectiveness of (add-on) prednisolone on improving core
and associated symptoms in individuals with ASD [52, 53].
Overall, studies suggested a beneficial effect of prednisolone
over placebo on irritability, lethargy, stereotyped behav-
ior, and/or hyperactivity (as assessed by the change, from
baseline to week 12 in the Aberrant Behavior Checklist-
Community Edition [ABC-C] respective subscale scores)
in at least, a subgroup of children with a regressive form of
ASD (Table 1). In addition, a trend of prednisolone-specific
improvement in the Language Development Assessment
Tool (ADL) total score and in the Child Language Test in
Phonology, Vocabulary, Fluency, and Pragmatics (ABFW)
total of communicative acts subscale score was also found
in, in particular, children with autistic disorder and a history
of developmental regression (Table 1). Adverse effects were
mild to moderate and included hypertension, hyperglyce-
mia, and/or changes in appetite. Significant differences in
relation to the frequency, type, or severity of adverse events
were not found between individuals under (add-on) treat-
ment with placebo and individuals under (add-on) treatment
with prednisolone. The mechanism by which prednisolone
exerts its anti-inflammatory and/or immunoregulatory action
is not fully understood. Increasing evidence from animal and
human studies has suggested that corticosteroids may modu-
late microglial activation, and also restore Treg/Th17 cell
imbalances [54-56]. Corticosteroids are also capable of
increasing the number of mature NK cells [57], and of reduc-
ing blood levels of pro-inflammatory cytokines, such as IL-6
and/or IFNy, within their first weeks of administration.

3.1.2 Neurosteroids (Pregnenolone)

Pregnenolone is a steroid hormone precursor that is syn-
thesized in different steroidogenic tissues, the brain, and in
lymphocytes. It is known to act as an anti-inflammatory and/
or immunoregulatory agent in several (neuro)inflammatory
diseases [58]. To date, only one randomized, placebo-con-
trolled study has investigated the effectiveness of pregne-
nolone for the management of core and related symptoms
in subjects with ASD [59]. In this study, a total of 59 med-
ication-naive children and adolescents with ASD and mod-
erate-to-high levels of irritability were randomly allocated
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to either risperidone + placebo (n = 29), or to risperidone
+ pregnenolone (n = 30), and followed up over a 10-week
period (Table 1). The primary outcome measure included
the change, from baseline to week 10, in the ABC irritability
subscale score; secondary outcome measures included the
change in other ABC subscale scores (i.e., hyperactivity,
lethargy, stereotypy, inappropriate speech). After 10 weeks
of continuous treatment, individuals allocated to risperidone
+ pregnenolone showed a statistically significantly higher
improvement in irritability, stereotyped behavior, and
hyperactivity compared to those allocated to risperidone +
placebo. A placebo- or pregnenolone-specific effect on leth-
argy and/or inappropriate speech was however, not found
(Table 1). Pregnenolone had a good safety profile and was
well tolerated; adverse events were mild to moderate, and
included changes in appetite, dizziness, rash, diarrhea, head-
ache, or abdominal pain. Again, both study groups did not
statistically differ in relation to the frequency, severity, or
type of adverse effects. The mechanism by which pregne-
nolone exerts its anti-inflammatory and/or immunoregu-
latory action is again, not fully understood. Interestingly,
several reports have suggested that neurosteroids, such as
pregnenolone, are also able to suppress microglial and Th17
cells proinflammatory activation in humans, and in murine
models of autoimmune conditions [60].

3.1.3 Non-steroidal Anti-inflammatory Drugs [Celecoxib]

Celecoxib acts as a NSAID that selectively inhibits the
cyclooxygenase (COX)-2 enzyme. This agent is better tol-
erated than steroidal anti-inflammatory drugs, and is associ-
ated with a lower risk of gastrointestinal bleeding [61]. To
date, only one randomized, double-blind, placebo-controlled
trial has investigated the effectiveness of celecoxib on ASD
symptomatology [62]. In this study, a total of 40 medication-
naive children with autistic disorder and moderate-to-high
levels of irritability were randomly allocated to either risp-
eridone + placebo (n = 20), or to risperidone + celecoxib
(n = 20), and followed up over a 10-week period (Table 1).
The primary outcome measure was the change, from base-
line to week 10, in the ABC irritability subscale score, while
secondary outcome measures included the change in other
ABC subscale scores (i.e., lethargy/social withdrawal, stere-
otypic behavior, hyperactivity, inappropriate speech). After
10 weeks of continuous treatment, individuals allocated to
risperidone + celecoxib showed a statistically significantly
higher improvement in irritability, lethargy/social with-
drawal, and stereotyped behavior compared to individuals
allocated to risperidone + placebo. However, a celecoxib-
specific improvement in other symptoms, such as hyperac-
tivity and/or inappropriate speech was not found (Table 1).
Celecoxib was well tolerated and both study groups did not
statistically differ in relation to the frequency, severity, or
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Table 2 Quality assessment of included studies

Study agent Quality score Interpretation
Malek et al. (2020) [52] Prednisolone ok High quality
Rocha-Brito et al. (2021) [53] ook High quality
Ayatollahi et al. (2020) [59] Pregnenolone koK High quality
Asadabadi et al. (2013) [62] Celecoxib ook High quality
Ghaleiha et al. (2016) [67] Minocycline Hokkkok High quality
Hardan et al. (2012) [75] N-Acetylcysteine ook High quality
Ghanizadeh and Moghimi-Sarani (2013) [76] Hokkok High quality
Nikoo et al. (2015) [77] ook High quality
Wink et al. (2016) [78] Hokkk High quality
Dean et al. (2017) [79] ke k High quality
Singh et al. (2014) [84] Sulforaphane HokkE High quality
Momtazmanesh et al., (2020) [85] ok High quality
Zimmerman et al. (2021) [86] sk High quality
Bent et al. (2011) [92] Omega-3 ok k High quality
Bent et al. (2014) [93] ok ck High quality
Mankad et al. (2015) [94] otk High quality
Mazahery et al. (2019) [95] ke dkck High quality
Doaei et al. (2021) [96] kR High quality

type of adverse effects, which included changes in appetite,
abdominal pain, dizziness, insomnia, nausea, and/or seda-
tion. A possible mechanism, by which celecoxib improves
these symptoms in individuals with autistic disorder is,
again, the inhibition of microglial/monocyte [63] and/or
Th17 cells activation [64]. Interestingly, several reports have
suggested that different proinflammatory cytokines, such as
IL-1p, IL-6, and/or IL-17A, could serve as indicators for
predicting clinical response to celecoxib in individuals with
immune-mediated conditions, such as ankylosing spondylitis
[65].

3.1.4 Minocycline

Minocycline is a second-generation tetracycline antibiotic
with well-known antioxidant, immunoregulatory, and/or
anti-inflammatory properties [66]. To date, only one rand-
omized, double-blind, placebo-controlled trial has assessed
the effectiveness of minocycline on improving core and
associated symptoms in individuals with ASD [67]. In this
study, a total of 46 medication-naive children diagnosed with
autistic disorder and with moderate-to-high levels of irrita-
bility were randomly allocated to either risperidone + pla-
cebo (n = 23), or to risperidone + minocycline (n = 23), and
followed up over a 10-week period (Table 1). The primary
outcome measure was the change, from baseline to week
10, in the ABC irritability subscale score, while second-
ary outcome measures included the change in other ABC
subscale scores (i.e., lethargy/social withdrawal, stereotypic
behavior, hyperactivity, inappropriate speech). At the end

of the intervention phase at week 10, a significantly higher
improvement in irritability and hyperactivity was found in
the subgroup of patients allocated to (add-on) minocycline
when compared to those allocated to (add-on) placebo. An
intervention-specific effect on the other symptoms assessed
was however, not found (Table 1). Minocycline had a good
safety profile and was well tolerated, adverse events were
mild to moderate and included diarrhea, headache, increase
in appetite, dizziness, insomnia, nausea, and/or sedation.
Both study groups did not statistically differ in relation to
the frequency, severity, or type of adverse effects. Again,
studies have found that minocycline is able to inhibit micro-
glial/monocyte proinflammatory activation [68—70] and to
regulate the Th17/Treg cells axis, decreasing the levels of
several proinflammatory cytokines such as IL-1f, IL-6,
TNFa, IFNy, and/or IL-17A, both in the brain and in the
periphery [71].

3.1.5 N-Acetylcysteine

NAC is a synthetic N-acetyl derivative of the endogenous
amino acid L-cysteine [72], which acts as a precursor of
the antioxidant enzyme glutathione (i.e., the most abundant
antioxidant in the brain) [73]. An increasing body of evi-
dence suggests that NAC may also act as an immunoregula-
tory and/or anti-inflammatory agent [74]. Therefore, several
randomized, placebo-controlled clinical trials have inves-
tigated the effectiveness of (add-on) treatment with NAC
on improving core and associated symptoms in individuals
with ASD (Table 1). In general, studies suggest that (add-on)
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treatment with NAC may be beneficial for the management
of irritability [75-77] in,at least, a subgroup of children
and adolescents with autistic disorder (Table 1). In all these
studies, children and adolescents were medication-naive,
and the diagnosis of autistic disorder was previously con-
firmed by a (semi)-structured interview (i.e., the Autism
Diagnostic Interview-Revised [ADI-R], and/or the Autism
Diagnostic Observation Schedule [ADOS]). The improve-
ment in irritability was assessed by the change, from base-
line until week 8 [76], 10 [77], or 12 [75] in the respective
ABC subscale score. NAC was administered at a dose range
of 600-2700 mg/day (Table 1). In only one of four stud-
ies assessing irritability as an outcome measure, (add-on)
treatment with NAC was not associated with a significantly
higher improvement in this symptom, compared with pla-
cebo (Table 1) [78]. In this study, children were not med-
ication-naive, and were diagnosed with ASD (i.e., autistic
disorder, Asperger’s disorder, and/or pervasive developmen-
tal disorder not otherwise specified [PDD-NOS]) (Table 1),
something which could have influenced the findings. Mixed
findings were found for other symptoms assessed, such as
hyperactivity (i.e., ABC subscale score), stereotyped/repeti-
tive behavior (i.e., ABC and/or Repetitive Behavior Scale
[RBS] subscale scores), mannerisms (i.e., Social Respon-
siveness Scale [SRS] subscale score), and/or social cogni-
tion (SRS subscale score) (Table 1) [75-79]. Differences in
the duration of the treatment period, in the questionnaires/
scales used for assessing symptoms, and/or in the dosage
of the study agent could have also influenced results. In all
studies, NAC had a good safety profile and was well toler-
ated; significant differences in relation to the frequency and/
or severity of adverse effects were not found between indi-
viduals treated with (add-on) placebo, and those treated with
(add-on) NAC. Adverse effects were mild to moderate and
included gastrointestinal symptoms (e.g., abdominal pain,
diarrhea and/or constipation, changes in appetite, nausea),
headache, rash, insomnia, and/or fatigue. The mechanism
of action by which NAC improves irritability in individu-
als with autistic disorder is not fully understood. NAC can
reverse microglial proinflammatory activation [80], and
several studies have suggested that NAC could also regu-
late the Treg/Th17 axis in individuals with inflammatory
conditions, such as chronic obstructive pulmonary disease
(COPD) [81]. In addition, animal models of experimental
autoimmune encephalomyelitis have also demonstrated a
suppressive action of NAC on Th17 cells [82].

3.2 Dietary Interventions
3.2.1 Sulforaphane

SFN is an isothiocyanate derived from Brassica veg-
etables (in particular, from broccoli) with antioxidant,
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immunoregulatory, and/or anti-inflammatory properties
[83]. To date, three randomized, placebo-controlled trials
have assessed the effectiveness of this agent on improv-
ing core and/or related symptoms in individuals with ASD
(Table 1). Overall, studies suggest that (add-on) treatment
with SEN may improve hyperactivity in children, adoles-
cents, and adults with autistic disorder and/or ASD [84,
85]. In all these studies, the improvement in hyperactivity
was assessed by the change from baseline until week 10
[84], 1586, or 18 [85] in the respective ABC subscale score
(Table 1). The dose of SEN ranged between 50 and 150 pM/
day; one studyused glucoraphanin-rich broccoli seed extract
tablets containing myrosinase, instead of SFN [86] (Table 1).
Mixed findings were found for other symptoms assessed,
such as irritability, lethargy, stereotyped/repetitive behavior
(i.e., ABC subscale scores), mannerisms, awareness, motiva-
tion, social communication (i.e., SRS subscale scores), and
social interaction, aberrant/abnormal behavior, and/or verbal
communication (CGI-I subscale scores) (Table 1). Differ-
ences in the duration of the treatment period, in the question-
naires/scales used for assessing symptoms, and in the dosage
and/or composition of the study agent could have influenced
the findings. SFN had a good safety profile, and was well
tolerated; adverse effects included abdominal pain, increased
flatulence, constipation, diarrhea, vomiting, increased appe-
tite, weight gain, headache, irritability, increased aggres-
sion, dizziness, sedation, insomnia, rashes, exacerbation of
seasonal allergies, and/or fever. Significant differences in
relation to the frequency and/or severity of adverse effects
were not found between individuals allocated to (add-on)
placebo, and those allocated to (add-on) SFN. The mecha-
nism of action by which SFN improves these symptoms in
individuals with ASD is not known at all. SFN may exert
an anti-inflammatory effect on microglia [87]. Interestingly,
in a study performed on Black and Tan Brachyury (BTBR)
T+ Itpr3tf/J mice (i.e., a strain of mouse model that is most
noted for its phenotypic similarities to humans on the ASD
scale), SFN was able to ameliorate autism-like behaviors
(i.e., reduced self-grooming/marble burying behavior,
increased social interaction) through suppression of Th17-
related signaling both in the periphery, and in the brain (i.e.,
SFN-treated BTBR mice were characterized by a reduced
expression of STAT3, RORC, IL-17A, and/or IL-23R in
CD4" Th cells) [88]. In another study performed on children
with ASD, SFN was associated with nuclear factor erythroid
2-related factor 2 (Nrf2) stimulation, resulting in an inhibi-
tory effect on nitrative stress markers and pro-inflammatory
cytokines [89].

3.2.2 Omega-3 Fatty Acids

Omega-3 polyunsaturated fatty acids (PUFAs) include
a-linolenic acid (ALA), stearidonic acid (SDA),
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eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA),
and docosahexaenoic acid (DHA). Due to their well-known
anti-inflammatory actions [90, 91], most trials assessing
dietary interventions in ASD have used omega-3 PUFAs as
the study agent, but with mixed findings (Table 1). (Add-
on) treatment with omega-3 fatty acids resulted beneficial
for the management of lethargy in two of three studies that
used the change in the ABC respective subscale score as the
outcome measure [93, 95]. In both studies, study participants
were children (age range 2.5-8 years) diagnosed with an
ASD, and omega-3 supplements consisted of DHA (with or
without EPA). The daily dose of DHA was = 460-722 mg/
day, and the daily dose of EPA was = 700 mg/day (Table 1).
In the remaining study [92], study participants were chil-
dren and adolescents diagnosed with a moderate-to-severe
ASD, and the sample size was lower, something which could
have influenced the findings (Table 1). (Add-on) treatment
with omega-3 was also beneficial for the management of
stereotyped behaviors in two of four studies assessing this
symptom (by the change in the ABC and/or in the GARS-2
respective subscale scores) (Table 1) [93, 96]. Study partici-
pants were children and adolescents (age range 515 years)
diagnosed with ASD or with autistic disorder. In both stud-
ies, the intervention product was composed of DHA (dose
range 360-460 mg/day) + EPA (dose range 540-700 mg/
day) (Table 1). Mixed findings were found for other symp-
toms assessed, such as irritability (i.e., ABC subscale score),
and/or social communication (i.e., GARS-2 subscale score)
(Table 1). Differences in the duration of the treatment
period, in the scales used for assessing symptoms, and/or
in the dosage or composition of the study agent could have
influenced results. Interestingly, in a study performed on
children with ASD [94], (add-on) treatment with 750 mg
EPA + 1500 mg DHA/day was associated with a worsen-
ing in externalizing behaviors (BASC-2) at week 24, when
compared with placebo. In this study, all participants were
younger than 5 years of age, and omega-3 was adminis-
tered at higher doses in comparison with the other studies,
makingpossible that omega-3 fatty acidsworsens external-
izing behaviors in this age group, when given at high doses.
Moreover, the majority of study participants were minimally
verbal and therefore, potential gastrointestinal distress may
have been captured as reports of externalizing behaviors.
Omega-3 fatty acids had a good safety profile and were well
tolerated, no serious adverse events were reported during the
study. Most adverse events reported were mild to moderate
and included neuropsychiatric symptoms (e.g., decreased
energy, headache), sleep disturbances (e.g., insomnia, early
awakening), nutritional or gastrointestinal symptoms (e.g.,
changes in appetite, abdominal pain), dermatological, or
others, such as eye swelling. No statistically significant dif-
ferences in relation to the frequency and characteristics of
adverse events were found between patients allocated to

(add-on) placebo, and those allocated to (add-on) omega-3
fatty acids. The mechanism of action by which omega-3 fatty
acids exert their action is not fully understood. Again, evi-
dence suggests that omega-3 fatty acids exert their action
by (at least in part) increasing the expression of FoxP3 and
the differentiation of Tregs, while inhibiting Th17 promo-
tion, and reducing IL-17A production [97]. In addition, these
compounds have also been found to reverse microglial pro-
inflammatory activation [98].

4 Discussion

Overall, our findings suggest a beneficial effect of (add-on)
treatment with prednisolone, pregnenolone, celecoxib, mino-
cycline, and/or NAC on irritability; a beneficial effect of
(add-on) treatment with prednisolone, pregnenolone, mino-
cycline, and/or SFN on hyperactivity; a beneficial effect
of (add-on) treatment with prednisolone, celecoxib, and/
or omega-3 fatty acids on lethargy, and a beneficial effect
of (add-on) treatment with prednisolone, pregnenolone,
celecoxib, and/or omega-3 fatty acids on stereotyped behav-
ior, over placebo. All agents had a good safety profile and
were well tolerated; significant differences in relation to the
frequency and/or severity of adverse effects were not found
between individuals treated with placebo and those treated
with the different above-mentioned compounds. The mech-
anism, by which all these agents exert their action is not
fully understood. Interestingly, all agents are able to inhibit
microglial proinflammatory activation, and to restore Treg/
Th17 imbalances in at least,a subgroup of individuals with
ASD, decreasing the levels of proinflammatory cytokines
such as IL-6 and/or IL-17A in both the brain, and the periph-
ery. Although encouraging, findings should be considered in
light of several limitations. The majority of studies included
children and adolescents as participants and therefore, find-
ings may not be applicable to adults with ASD. Moreo-
ver, the sample size was low in the majority of studies, and
most studies excluded non-verbal participants with severe
intellectual disabilities, and included study participants
with different diagnoses (i.e., ASD vs. autistic disorder vs.
PDD-NOS vs. Asperger’s syndrome). Therefore, findings
may only be applicable to a small subgroup of individu-
als living with this condition. The severity of baseline ASD
symptoms was inconsistent among trials, and the use of
concomitant psychiatric medications and/or of behavioral
treatments was allowed in several studies, something which
could have influenced the findings. Differences in the active
treatment composition and/or in the dosage used, as well as
in the duration of the treatment period, could also have influ-
enced the results. Unfortunately, baseline levels of biologi-
cal (immune/inflammatory) markers were not assessed in
the majority of studies. This would have been interesting in
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order to identify (immune/inflammatory) predictors of treat-
ment response and thus, to also identify those individuals
who would benefit from a particular treatment regimen, at
baseline (personalized medicine).

5 Conclusions and Future Perspectives

The evidence that immune dysfunction may play a role in
the pathophysiology of at least a subgroup of individuals
with ASD is now considerable. An increasing body of evi-
dence has supported the existence of a chronic activation of
not only microglia, but also of the monocyte/macrophage
system in individuals with ASD, across the lifespan. In addi-
tion, abnormal levels of several lymphocyte subpopulations
(e.g., Tregs, Th17 cells) have been repeatedly demonstrated.
Therefore, immunoregulatory and/or anti-inflammatory
agents may represent a possibility for more personalized
treatment regimens among individuals diagnosed with this
condition. Several randomized, placebo-controlled trials on
the effectiveness of (add-on) treatment with prednisolone,
pregnenolone, celecoxib, minocycline, NAC, SFN, and/or
omega-3 fatty acids on core and related symptoms of ASD
have been performed, with promising findings. However,
larger randomized, placebo-controlled trials including, for
example, more homogeneous study populations, and longer
periods of follow-up are urgently needed to confirm the
findings.
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