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over a field, and a parabolic subgroup P ⊂ G, we consider the generic flag variety E/P

and describe its Chow ring modulo torsion. This description determines the index

of E/P , completing results of [3], where the index has been determined for most P .
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1. Introduction

We consider the split spin group G = Spin2n+1 with arbitrary n ≥ 1
over an arbitrary field. However, the numerous definitions and state-
ments below are valid for an arbitrary semisimple group G∗. We formu-
late them for G∗ but we need them in the case G∗ = G only.

A generic G∗-torsor E can be defined as the generic fiber of the quo-
tient map

GL(N)→ GL(N)/G∗

given by any embedding of G∗ into a general linear group GL(N) with
some N . Of course, different choices of the embedding produce differ-
ent E. However, our object of interest – the Chow ring CH(E/P ) for a
fixed parabolic subgroup P ⊂ G∗ – is canonic ([9, Lemma 2.1]).

Understanding CH(E/P ) allows one, in particular, to compute the
index ind(E/P ) – the greatest common divisor of degrees of closed points
on the variety E/P . In fact, it is enough to know the quotient CH(E/P )
of the ring CH(E/P ) by the ideal of the elements of finite order.

Let us fix an extension field F̄ of the base field F of E trivializ-
ing E (e.g., an algebraic closure). Since the Chow ring of the cellu-
lar variety G∗/P is not affected by base field extensions, the change
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of field homomorphism CH(G∗/P ) → CH(G∗/P )F̄ is an isomorphism.
Choosing a trivialization of the G∗-torsor EF̄ , we identify CH(E/P )F̄
with CH(G∗/P )F̄ . Since G∗ acts trivially on CH(G∗/P ) (see [7, Corol-
lary 4.2]), the identification is canonical, i.e., does not depend on the
choice of trivialization. Summarizing, we get a homomorphism

CH(E/P )→ CH(G∗/P ).

Since its kernel is exactly the ideal of torsion elements, it identifies
CH(E/P ) with a subring in CH(G∗/P ).

For G∗ any split spin group, the indexes ind(E/P ) have been com-
puted in [3] for many P . The starting point there was the upper bound
on CH(E/P ) given by the image of the homomorphism

S(T̂ )W → CH(G/P ),

defined in [3, Remark 2.3] for arbitrary G∗, where T ⊂ P is a split

maximal torus, T̂ is the group of characters of T endowed with the action
of the Weyl group W of P , S(T̂ ) is the symmetric ring, and S(T̂ )W is its
subring of the W -invariant elements.

There is a natural ring homomorphism CH(BP ) → S(T̂ )W and a
natural surjective ring homomorphism CH(BP ) →→ CH(E/P ) (see [3,
Section 2]), both departing from the Chow ring CH(BP ) of the classifying
space BP of P (see [14]). The precise value of CH(E/P ) is given by the
image of the composition

CH(BP )→ S(T̂ )W → CH(G/P )

simply because it coincides with the composition

CH(BP )→→ CH(E/P )→ CH(G/P ).

Unfortunately, in most cases, we do not understand the Chow ring
CH(BP ) well enough. Its description for G∗ a split spin group involves
the ring CH(BSpinl) for certain l, which is mysterious and complicated
if l > 8. (For l < 7, CH(BSpinl) is well understood; descriptions for l = 7
and l = 8 are given in [6] and [13].) For this reason, a precise determi-
nation of CH(E/P ) for general P seemed to be out of reach.

Quite surprisingly, for G∗ = G (our odd split spin group), it turns out
that the above upper bound coincides with CH(E/P )! We will prove it

here by listing certain generators for the ring S(T̂ )W and then showing
that their images are in CH(E/P ) (for a reason unrelated to CH(BP ):
they turn out to be Chern classes of certain elements in the Grothendieck
group of E/P ). This way we get a very handy system of generators for the
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ring CH(E/P ) and remove the hindrance to computation of ind(E/P )
for arbitrary P .

Note that if G∗ is an even spin group Spin2n, the upper bound

on CH(E/P ) given by S(T̂ )W differs from CH(E/P ) for most n and P .
This makes the case of even spin groups more complicated and so far
unsolved.

Our main result here is Theorem 3.6 describing CH(E/P ) in the case
of G∗ = G and maximal P . (The study of CH(E/P ) and determina-
tion of ind(E/P ) for arbitrary P is easily reduced to the case of maxi-
mal P ; see [3].) The description is particularly simple in the situation of
Corollary 3.7, explaining and providing a more conceptual proof for [3,
Theorem 4.2].

Theorem 4.1 is the second main result. It gives a formula and an
algorithm for determination of the indexes: in every concrete case the
concrete value can then be calculated by computer (having enough com-
puter time and power).

As an example of the application of Theorem 4.1, we do the calcula-
tion in some cases. To formulate the answers, let us first recall that the
conjugacy classes of maximal parabolic subgroups in G are indexed by
the n vertices of the Dynkin diagram of G. Given m ∈ {1, . . . , n}, we
write Pm for the mth standard maximal parabolic subgroup in the stan-
dard realization of G = Spin2n+1 as in [3, Section 4] and we write Xm for
the variety E/Pm. The G-torsor E yields a non-degenerate (2n+ 1)-di-
mensional quadratic form q of trivial discriminant and Clifford invari-
ant. The variety Xm is identified with the variety of m-dimensional to-
tally isotropic subspaces of q. In particular, X1 is the projective quadric.

Let us mention that the index of the highest orthogonal Grassman-
nian Xn is computed in [15]. For all m, the indexes ind(Xm) have been
computed so far for n ≤ 7 (i.e., dim q < 17) only (see [8]). In Sections 5
and 7, this boundary is pushed further away. As a byproduct, we also
get some new information on the even spin group Spin18 and Spin20 (see
Sections 6 and 8).

2. Invariants

We continue to consider the odd split spin group G = Spin2n+1 with
some n ≥ 1. We fix some m ∈ {1, . . . , n} and look at the mth standard
maximal parabolic subgroup P = Pm ⊂ G. The standard split maximal
torus T of G is contained in P := Pm. In order to determine S(T̂ )W ,
where W is the Weyl group of P , we need a modification of [3, Propo-
sition 3.3].
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We consider the polynomial ring R = Z[x1, . . . , xm, y1, . . . , yl] over the
integers Z in the variables x1, . . . , xm and y1, . . . , yl, where m + l = n.
Let A := (Z/2Z)×l be the direct product of l copies of the group Z/2Z
acting on R as follows: for any i = 1, . . . , l, the ith copy of Z/2Z acts by
changing the sign of yi, and trivially on the remaining variables.

Instead of A, considered in [3, Proposition 3.3], we are going to
work with larger groups. We start with the Weyl group W ′ of the spin
group Spin2l+1, which is a semidirect product of A and the symmetric
group Sl. The action of W ′ on R we are interested in is the (unique)
extension of the action of A, defined above, and the action of Sl by
permutation of y1, . . . , yl. We will also consider the action of Sm by per-
mutation of x1, . . . , xm and the resulting action of W = Sm ×W ′ on R.
The latter action extends (uniquely) to an action of W on R[z], where
– as in [3, Section 3] – R[z] is an R-algebra with a generator z subject
to the relation

2z = x1 + · · ·+ xm + y1 + · · ·+ yl.

The ring S(T̂ ) is identified with R[z] and the action of the Weyl group W

of P on S(T̂ ) is the action of W on R[z] just defined.
As in [3, Section 3], we define an element z̃ ∈ R[z]A as the product

of all elements in the A-orbit of z. Since the A-orbit of z coincides with
its W -orbit, the element z̃ is actually W -invariant.

We borrow from [3, Section 3] the construction of A-invariant ele-
ments fk ∈ R[z], k ≥ 0. We set

f0 := 2z − y1 − · · · − yl = x1 + · · ·+ xm ∈ RA.

Assume that for some k > 0 the element fk is already constructed and
has the shape

(2.1) fk = 2z · gk + a1 + · · ·+ as,

where gk is a polynomial with integer coefficients in z, y1, . . . , yl and
where a1, . . . , as for some s ≥ 0 are monomials in y1, . . . , yl. Then we
define fk+1 as one half of the difference

(2.2) f2
k − (a2

1 + · · ·+ a2
s) = 2

(
2z(zg2

k + (a1 + · · ·+ as)gk) +
∑
i<j

aiaj

)
.

Note that the new element fk+1 has the shape (2.1), allowing us to
continue the procedure.

Lemma 2.3. For any k ≥ 0, the element fk is W -invariant.
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Proof: By construction, the element fk is in the subring Z[z, y1, . . . , yl] ⊂
R[z]Sm . Therefore, fk is Sm-invariant. Since fk is A-invariant as well, it
remains to check that fk is Sl-invariant.

The element f0 = x1 + · · ·+ xm is Sl-invariant. So, let us assume fk
is Sl-invariant for some k ≥ 0 and let us then check that fk+1 is also
Sl-invariant. To do this, we view Z[z, y1, . . . , yl] as a polynomial ring in z
over Z[y1, . . . , yl]. Note that z is an independent generator and Sl acts
trivially on z. So, a polynomial in Z[z, y1, . . . , yl] = Z[y1, . . . , yl][z] is
Sl-invariant if and only if all its coefficients are. From the formula (2.1)
we see that the sum a1+· · ·+as is the constant term of the polynomial fk.
Therefore this sum is Sl-invariant. Now it follows by formula (2.2) that
fk+1 is also Sl-invariant.

Proposition 2.4. The RW -algebra R[z]W is generated by the elements
f1, . . . , fl−1, z̃.

Proof: As a first step, acting as in the proof of [3, Proposition 6.1], we
prove that the

Z[x1 + · · ·+ xm, y1, . . . , yl]
W ′

-algebra Z[y1, . . . , yl][z]
W ′

is generated by the indicated elements. As a second (and final) step we
apply [11, Lemma 8.1].

3. Images of invariants

We continue using the settings of Section 2. We also let B ⊂ G be the
standard Borel subgroup; we have T ⊂ B ⊂ P .

We are going to prove that the image in CH(G/P ) of S(T̂ )W lies in

CH(Xm) = CH(E/P ) ⊂ CH(G/P ).

We start with the easiest part of S(T̂ )W , whose image is in the sub-
ring C ⊂ CH(E/P ) generated by the Chern classes of the tautological
(rank m) vector bundle T on Xm. Note that one can also view or define
T as the tautological vector bundle on the split orthogonal Grassman-
nian G/P .

Proposition 3.1. The image in CH(G/P ) of RW ⊂ S(T̂ )W lies in C ⊂
CH(E/P ).

Proof: The images of x1, . . . , xm in CH(G/B) are the roots of the vector
bundle T (pulled back to G/B along the projection G/B → G/P ). The
roots of the vector bundle T⊥, given by the orthogonal complement, are
the images of x1, . . . , xm along with the images of ±y1, . . . ,±yl and 0.
Finally, the roots of the trivial vector bundle V given by the vector space
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of definition of q are the images of all ±x1, . . . ,±xm, ±y1, . . . ,±yl, and 0
all together. (Concerning the root 0, see [4, proof of Proposition 86.13].)

The ring RW is easily seen to be generated by the elementary symmet-
ric polynomials in x1, . . . , xm together with the elementary symmetric
polynomials in y2

1 , . . . , y
2
l . The images in CH(G/P ) of the former are the

Chern classes of T. The images of the latter are the Chern classes of
the quotient T⊥/T. The isomorphism V/T⊥ = T∨, where T∨ is the dual
vector bundle, shows that the Chern classes of T⊥ are polynomials in
the Chern classes of T.

Proposition 3.2. For any i ≥ 0, the images in CH(G/P ) of fi ∈ S(T̂ )W

also lie in C ⊂ CH(E/P ).

Proof: The pull-back ring homomorphism CH(G/P ) → CH(G/B) is
injective and the quotient

CH(G/B)/CH(G/P )

is a free abelian group (see [3, proof of Lemma 2.2]).
The variety G/B is the variety of complete flags of totally isotropic

subspaces of q. Let CB ⊂ CH(G/B) be the subring generated by the
Chern classes of all (from rank 1 to rank n) tautological vector bundles
on G/B. Then C is a subring of CB and the quotient CB/C is also a free
abelian group. The claim on the quotient can be shown by identifying
respectively C and CB with the Chow rings of the two varieties: the va-
riety Ym of m-dimensional totally isotropic subspaces and the variety Y
of complete flags of totally isotropic subspaces of a (2n)-dimensional
non-degenerate alternating bilinear form (see [10, Remark 2.6] and Re-
mark 3.3): there is such an identification for which the respective Chern
classes of the respective tautological vector bundles correspond to each
other. The quotient CH(Y )/CH(Ym) is free abelian by the argument of
[3, proof of Lemma 2.2] once again.

It has been shown in [3, Lemma 3.5] that for every i ≥ 0, the image
in CH(G/B) of fi is in CB . Since 2ifi ∈ R, the image of 2ifi is in C. It
follows that the image of fi is in C.

Remark 3.3 (Geometric interpretation of the homomorphism from
CH(Ym) to C; cf. [15, Section 4]). The existence of the isomorphism
CH(Ym) = C, used in the above proof, is justified in [10, Remark 2.6]
by information about relations on the generators. So, its geometric con-
struction, described below, is not actually needed (but still interesting
to look at). Note that both rings are independent of the base field and,
in particular, of its characteristic. In characteristic 2, defining Ym by
the associated (alternating) bilinear form b of q on the vector space V
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modulo the (1-dimensional) radical Rad(b) ⊂ V , we get a morphism
of varieties Xm → Ym, mapping every m-dimensional totally isotropic
subspace of V (viewed as a point of Xm) to its image in the quo-
tient V/Rad(b) (which is an m-dimensional totally isotropic subspace
giving a point of Ym). Since T is the pull-back of the tautological vector
bundle T′ on Ym and since the Chow ring of Ym is generated by the
Chern classes of T′, the pull-back homomorphism CH(Ym) → CH(Xm)
lands in C ⊂ CH(Xm) and is the one we are looking for.

Proposition 3.4. The image in CH(G/P ) of the generator z̃ ∈ S(T̂ )W

lies in CH(E/P ).

Proof: Since the group G is simply connected, the Grothendieck group
K(E/P ) coincides with K(G/P ) ([12]).

The following considerations are valid for a split maximal torus T
contained in a Borel subgroup B of any split semisimple group G∗ in
place of G. We will use them in our case with G∗ = G.

Let us consider the group ring Z[T̂ ]. Since the addition in T̂ be-

comes multiplication in Z[T̂ ], we use the exponential notation χ ∈ T̂ 7→
exp(χ) ∈ Z[T̂ ] for the embedding T̂ ↪→ Z[T̂ ]. Any character χ ∈ T̂ ex-
tends uniquely to B and determines a line bundle on the variety G∗/B;
see [2, Section 1.5]. There is a (surjective) ring homomorphism

Z[T̂ ]→ K(G∗/B),

mapping the exponent exp(χ) ∈ Z[T̂ ] of any character χ ∈ T̂ to the class
of the line bundle on G∗/B given by χ. Restricting to the W -invariants,
where W is the Weyl group of a parabolic subgroup P ⊃ B, we get a
ring homomorphism

Z[T̂ ]W → K(G∗/P ) ⊂ K(G∗/B).

Now we return to G∗ = G. The image in CH(G/P ) of the generator z̃
is the 2lth Chern class of the image in K(E/P ) = K(G/P ) of the element∑

I⊂{1,...,l}

exp

(
z −

∑
i∈I

yi

)
∈ Z[T̂ ]W .

Remark 3.5. Propositions 3.1, 3.2, and 3.4 show that the ring CH(E/P )
is generated by Chern classes (of elements of K(E/P )). Actually, RW

and z̃ are already in the subring of S(T̂ )W generated by Chern classes (of

elements of Z[T̂ ]W ). However, in the process of showing that the images
of f1, . . . , fl−1 are in C, certain relations are used which occur only after

S(T̂ )W is mapped to CH(E/P ).
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The ring C (which depends only on n) is well understood. In partic-
ular, the relations on its generators – the Chern classes (or rather the
Segre classes) of T – are well known (see, e.g., [10]). As we just proved,

Theorem 3.6. The C-algebra CH(E/P ) is generated by the image of z̃

in CH
2l

(E/P ).

The index ind(E/P ) has been computed in [3] in the situation where
2l > dim(E/P ). This situation is simpler for the following reason:

Corollary 3.7. We have CH(E/P ) = C provided that 2l > dim(E/P ).

4. How to compute ind(Xm)

We keep the notation of the previous section and provide an algorithm
computing ind(Xm).

Since the element 22l

z̃ is in R, it yields an element c̃ ∈ C. The additive
group of the ring C is free abelian of finite rank ([10, Theorem 2.1]).
For every integer j ≥ 0, let 2kj be the highest 2-power dividing c̃j in C.
Here we define c̃0 to be 1 and therefore k0 = 0. Let k be the maximum
of j2l − kj over all j ≥ 0 with j2l ≤ dimXm.

Theorem 4.1. ind(Xm) = 2m−k.

Example 4.2. If 2l > dimXm, then k = 0 and we recover [3, Theo-
rem 4.2].

Example 4.3. In the case of m = n, Theorem 4.1 is [15, Lemma 4.1].

Proof of Theorem 4.1: Recall that C is the Chow ring of the cellular
variety Ym defined in the proof of Proposition 3.2. Let j be such that k =
j2l − kj . Then c̃j = 2kjd for some d ∈ C non-divisible by 2. Therefore,
by Poincaré duality (see [15, Section 4] or [11, Remark 5.6]) there exists
d′ ∈ C such that dd′ has an odd degree e on Ym. Since the class of a
rational point in CH(Ym) equals 2m times the class of a rational point
in CH(G/P ) ⊃ CH(Xm), the product dd′ ∈ CH(Xm) has degree 2m ·
e on Xm and is divisible by 2k in CH(Xm). It follows that ind(Xm)
divides 2m−k.

For the opposite, applying Theorem 3.6, write the class in CH(Xm)

of a 0-cycle of degree ind(Xm) on Xm as a polynomial in 2−2l

c̃ over C.

The polynomial contains a monomial M = 2−j2l

cc̃j (with some c ∈ C
and some j) of degree an odd multiple of ind(Xm). Then 2j2l−kjM is

in C and has degree an odd multiple of 2j2l−kj−m+i on Ym, with i
such that 2i = ind(Xm). It follows that j2l − kj − m + i ≥ 0 so that
i ≥ m− (j2l − kj) ≥ m− k.
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5. Spin17

Note that for any n the index ind(Xn) is known (due to [15]) and
coincides with ind(Xn−1) and ind(Xn−2).

All indexes are known for q of dimension lower than 17 (see [8]). For q
of dimension 17 we have n = 8. Let n = 8 and m = 5.

A computation (done in Maple 2021), using the Chow ring package
(Version 4.0) by S. Nikolenko, V. Petrov, N. Semenov, and K. Zain-

oulline, shows that the image c̃3 of (223

z̃)3 ∈ R in C ⊂ CH(X5) is not

divisible by 23·23−1. It follows by Theorem 4.1 that ind(X5) divides 23.
Since ind(X6) = 24, we conclude that ind(X5) = 23 (see Section 1).

If ind(X3) were at most 22, we could find a finite extension field L
of the base field of degree not divisible by 23 such that the anisotropic
part of qL would have dimension at most 11. Then qL would split com-
pletely over a finite field extension of degree dividing 2, a contradiction
to ind(X8) = 24. It follows that ind(X3) = 23, implying ind(Xm) = 2m

for m < 3 as well (the latter also being confirmed by [3, Theorem 4.2]
as well as by [1, Theorem 4.2]).

Summarizing, we get the whole list of indexes of ind(Xm) for Spin17:

ind(Xm) = 2m for m ≤ 3,

ind(Xm) = 23 for m ∈ {4, 5}, and

ind(Xm) = 24 for m ≥ 6,

where the box marks the values which were not known before.
For more credibility, we provide further details on the computation

with the Chow package in Appendix A.

6. Spin18

Let q be a generic quadratic form of dimension 18 of trivial discrimi-
nant and Clifford invariant (given by a generic Spin18-torsor). The result
of the previous section allows one to determine the index of mth orthog-
onal Grassmannian Xm (i.e., the variety of totally isotropic m-planes)
of q for all m.

Let q′ be a 1-codimensional subform of q and let X ′m be the mth
orthogonal Grassmannian of q′. Then we have ind(X ′m) ≥ ind(Xm) for
m = 1, . . . , 8 and ind(X ′m) has the upper bound given by the index of
Section 5. We also have

ind(X9) = ind(X8) = ind(X7) = ind(X6) = 24.

Besides, by the same argument as in the previous section, we have
ind(X3) = 23, implying ind(Xm) = 2m for m ≤ 3.
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Summarizing, we get the whole list of indexes of ind(Xm) for Spin18:

ind(Xm) = 2m for m ≤ 3,

ind(Xm) = 23 for m ∈ {4, 5}, and

ind(Xm) = 24 for m ≥ 6.

7. Spin19

Here we start to work out the case of n = 9. First of all, we have
ind(Xm) = 2m for m = 1, 2, 3 by [3, Theorem 4.2] because the condi-
tion 2n−m > dimXm of [3, Theorem 4.2] is satisfied for m = 3:

2n−m = 26 = 64 > dimXm = m(m− 1)/2 +m(2n− 2m+ 1) = 42.

For m = 4, [3, Theorem 4.2] does not work anymore because

2n−m = 25 = 32 ≤ dimX4 = 50.

A computation with the Chow ring package (see Appendix B) shows

that the image c̃ of 225

z̃ ∈ R in C ⊂ CH(X4) is not divisible by 225

inside of C. (It is divisible by 225−1 though.) It follows by Theorem 4.1

that ind(X4) = 23 .

8. Spin20

We do not expect that knowledge of indexes for Spin2n−1 always al-
lows one to determine the indexes for Spin2n. This happens with the
highest orthogonal Grassmannians for the very special reason that they
are isomorphic to each other. It appears to be a coincidence that in
Section 6 we were able to determine all indexes for Spin18 using the
information on Spin17.

For Spin20 and ind(X4), the information on Spin19 helps again.
First of all, ind(Xm) = 2m for Spin20 and m = 1, 2, 3 by [3, Theo-

rem 7.2] because for m = 3 we have the inequality

2n−m−1 = 210−3−1 = 64 > dimXm = m(m− 1)/2 + 2m(n−m) = 45.

It follows that ind(X4) is 23 or 24, but for precise determination, [3,
Theorem 7.2] does not help anymore since

2n−m−1 = 25 = 32 ≤ dimXm = 54

for m = 4. We are going to use the result of Section 7 instead.
Let q′ be a 1-codimensional subform of q and let X ′4 be the fourth or-

thogonal Grassmannian of q′. Since dim q′ = 19, we know from Section 7

that ind(X ′4)≤23. Since ind(X ′4)≥ ind(X4), we conclude ind(X4) = 23 .
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Appendix A. Programming Spin17

Anyone with access to Maple can download the Chow package from
https://www.mathematik.uni-muenchen.de/∼semenov/software/
chowring5.txt and verify the computation of Section 5. The algorithm
used in the package is described in [5, Section 5].

Open a Maple worksheet and load the package with

read("C:/Packages/chowring5.txt");

indicating your way to the package file. You should receive the message

Chow ring package v. 4.0 loaded

In Maple 2021, there will be a warning about an implicitly local vari-
able t, which can be ignored. To get rid of the warning, it suffices to
add t to the list of local variables in the second line of the definition of
the procedure fundam_invariant in “chowring5.txt”. Thanks to Nikita
Semenov for this information.

Run the following definitions:

x1:=omega[8]; x2:=omega[7]-omega[8];

x3:=omega[6]-omega[7]; x4:=omega[5]-omega[6];

x5:=omega[4]-omega[5]; y1:=omega[3]-omega[4];

y2:=omega[2]-omega[3]; y3:=omega[1]-omega[2];

This defines our elements x1, . . . , x5, y1, y2, y3 in the ring

R = Z[x1, . . . , x5, y1, y2, y3]

of Section 2, which we view as the symmetric ring of the group of charac-
ters of the standard split maximal torus of the symplectic group Sp(16)
(of type C8). The simple roots are numbered backwards in the Chow
package and omega[i] is the notation for the ith fundamental weight,
used in the package.

The next step is the construction of the element 23z̃ ∈ R, denoted a
here:

x:=x1+x2+x3+x4+x5;

a:=(x+y1+y2+y3)*(x-y1+y2+y3)*(x+y1-y2+y3)*(x+y1+y2-y3)*

(x-y1-y2+y3)*(x-y1+y2-y3)*(x+y1-y2-y3)*(x-y1-y2-y3);

(The Maple warning about multi-line expression can be ignored; to avoid
it, put the definition of a in a single line.)

Now we compute the image c̃ of a in CH(Y5). This is done with the
procedure c_func of the Chow package. The element c̃ is denoted just c
for simplicity:

c:=c_func([1,2,3,5,6,7,8],C8,a);

https://www.mathematik.uni-muenchen.de/~semenov/software/chowring5.txt
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The first argument [1, 2, 3, 5, 6, 7, 8] of the procedure c_func indicates
the parabolic subgroup we are interested in. (Recall that the simple
roots are numbered backwards. In the usual numbering, our maximal
parabolic subgroup is obtained by erasing the fifth root, not the fourth.)
The second argument is the Dynkin type and the third argument can be
any W -invariant element of the ring R. We take a for the third argument.
The Maple output, coming almost immediately, is:

c:=128Z[5,4,3,2,1,2,3,4]+128Z[4,3,2,1,2,3,5,4]+

128Z[3,2,1,2,4,3,5,4]+128Z[2,1,2,4,3,6,5,4]+

128Z[2,1,3,2,4,3,5,4]+128Z[1,3,2,4,3,6,5,4]+

128Z[1,2,5,4,3,6,5,4]+128Z[1,2,4,3,7,6,5,4]

where Z[...] stand for certain Schubert classes in CH(Y5) constituting
its Z-basis.

To simplify, we divide by 128

c:=c/128;

and compute the cube in CH(Y5) of the result, using the procedure
chow_expand of the Chow package:

c3:=chow_expand([1,2,3,5,6,7,8],C8,c^3);

Finally, we divide by 2 and reduce modulo 2:

c3/2 mod 2;

The output is

Z[2,1,2,3,2,1,2,4,3,7,6,5,4,8,7,6,5,4,3,2,1,2,3,4]+

Z[1,2,4,3,2,1,2,5,4,3,6,5,4,8,7,6,5,4,3,2,1,2,3,4]+

Z[1,2,3,2,1,2,5,4,3,7,6,5,4,8,7,6,5,4,3,2,1,2,3,4]+

Z[1,3,2,1,4,3,2,5,4,3,6,5,4,8,7,6,5,4,3,2,1,2,3,4]+

Z[1,2,1,4,3,2,5,4,3,7,6,5,4,8,7,6,5,4,3,2,1,2,3,4]+

Z[1,2,1,3,2,6,5,4,3,7,6,5,4,8,7,6,5,4,3,2,1,2,3,4]+

Z[2,1,2,3,4,5,4,3,2,1,2,3,4,8,7,6,5,4,3,2,1,2,3,4]+

Z[1,2,3,4,6,5,4,3,2,1,2,3,4,8,7,6,5,4,3,2,1,2,3,4]+

Z[3,2,1,2,3,4,3,2,1,2,3,5,4,8,7,6,5,4,3,2,1,2,3,4]+

Z[2,1,2,3,4,3,2,1,2,3,6,5,4,8,7,6,5,4,3,2,1,2,3,4]+

Z[1,2,3,5,4,3,2,1,2,3,6,5,4,8,7,6,5,4,3,2,1,2,3,4]

All computations run almost immediately on my small laptop with
an exception of the last one, taking a bit longer.

Appendix B. Programming Spin19

Here is the input used in Section 7. We switch to the notation
xm+1, . . . , xn for y1, . . . , yl so that the polynomial ring R is simply
Z[x1, . . . , xn]. We are computing ind(X4) for Spin19 so that we have
n = 9, m = 4, and l = n−m = 5.
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We are defining x1, . . . , x9 in terms of the fundamental weights, next

defining a = 225

z̃ ∈ R in terms of x1, . . . , x9, and finally computing
c = c̃ ∈ C = CH(Y4):

x[1]:=omega[9];

for i from 2 to 9 do x[i]:=omega[10-i]-omega[11-i] od;

a:=1: for s5 from -1 by 2 to 1 do

for s6 from -1 by 2 to 1 do

for s7 from -1 by 2 to 1 do

for s8 from -1 by 2 to 1 do

for s9 from -1 by 2 to 1 do

a:=a*(x[1]+x[2]+x[3]+x[4]+

s5*x[5]+s6*x[6]+s7*x[7]+s8*x[8]+s9*x[9])

od; od; od; od; od; a;

c:=c_func([1,2,3,4,5,7,8,9],C9,a);

The computation of the last line takes about 30 minutes.
Below is the value of c/2^31 mod 2;

Z[2,1,2,3,5,4,3,2,1,2,3,6,5,4,7,6,5,4,3,2,1,2,3,4,8,7,6,5,9,8,7,6]+

Z[1,2,4,3,5,4,3,2,1,2,3,6,5,4,7,6,5,4,3,2,1,2,3,4,8,7,6,5,9,8,7,6]+

Z[2,1,3,2,4,3,2,1,2,5,4,3,6,5,4,3,2,1,2,3,7,6,5,4,8,7,6,5,9,8,7,6]+

Z[5,4,6,5,7,6,5,4,3,2,1,2,3,4,5,8,7,6,9,8,7,6,5,4,3,2,1,2,3,4,5,6]+

Z[2,1,2,3,4,3,2,1,2,3,5,4,7,6,5,8,7,6,9,8,7,6,5,4,3,2,1,2,3,4,5,6]+

Z[1,2,3,4,3,2,1,2,3,6,5,4,7,6,5,8,7,6,9,8,7,6,5,4,3,2,1,2,3,4,5,6]+

Z[2,3,5,4,3,2,1,2,3,6,5,4,7,6,5,8,7,6,9,8,7,6,5,4,3,2,1,2,3,4,5,6]+

Z[4,3,5,4,3,2,1,2,3,6,5,4,7,6,5,8,7,6,9,8,7,6,5,4,3,2,1,2,3,4,5,6]+

Z[2,1,2,3,2,1,2,4,3,6,5,4,7,6,5,8,7,6,9,8,7,6,5,4,3,2,1,2,3,4,5,6]+

Z[1,2,3,2,1,2,5,4,3,6,5,4,7,6,5,8,7,6,9,8,7,6,5,4,3,2,1,2,3,4,5,6]+

Z[4,3,5,4,6,5,4,3,2,1,2,3,4,7,6,5,8,7,6,5,4,3,2,1,2,3,4,5,9,8,7,6]+

Z[1,2,4,3,2,1,2,5,4,3,6,5,4,7,6,5,8,7,6,5,4,3,2,1,2,3,4,5,9,8,7,6]+

Z[3,2,4,3,2,1,2,5,4,3,6,5,4,7,6,5,8,7,6,5,4,3,2,1,2,3,4,5,9,8,7,6]
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