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Abstract: In the article [25] a general procedure to study solutions of the equa-

tions x4 − dy2 = zp was presented for negative values of d. The purpose of the

present article is to extend our previous results to positive values of d. On doing so,

we give a description of the extension Q(
√
d,
√
ε)/Q(

√
d) (where ε is a fundamental

unit) needed to prove the existence of a Hecke character over Q(
√
d) with prescribed

local conditions. We also extend some “large image” results due to Ellenberg regard-

ing images of Galois representations coming from Q-curves from imaginary to real

quadratic fields.

2020 Mathematics Subject Classification: 11D41, 11F80.

Key words: Q-curves, Diophantine equations.

Introduction

The study of solutions of Diophantine equations has been a very active
research field since Wiles’ proof of Fermat’s Last Theorem. There are still
many open conjectures on solutions of a generalized equation

(1) Axp +Byq = Czr,

for 1
p + 1

q + 1
r < 1. As was already observed in [9], if no condition on

the solutions is imposed, then the equation might have infinitely many
solutions. To overcome this subtlety we restrict to what in the literature
is called primitive solutions. A solution (a, b, c) to (1) is called primitive
if the numbers {aA, bB, cC} are pairwise coprime.

A particularly interesting example of (1) occurs for exponents (p,q,r)=
(4, 2, r) and (A,B,C) = (1, 1, 1), studied by Darmon and Ellenberg inde-
pendently (see [13]). The Frey curve attached to a solution of it happens
to be a Q-curve (i.e. an elliptic curve defined over a number field, which is
isogenous to all its Galois conjugates). Q-curves have the special property
that a twist of their Galois representation extends to a Galois represen-
tation of the whole Galois group Gal(Q/Q) and by [30, Theorem 4.4]
and Serre’s modularity conjecture ([32], [17], and [18]) it equals the Ga-
lois representation of a classical modular form. Then, one can follow the
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modular method to compute (via a lowering-the-level argument) a fixed
space of level N and weight 2 modular forms (with a nebentypus ε) and
try to discard the ones that cannot match a possible solution (due to a
so called “local” obstruction). Using this method, in [25] the equation

(2) x4 − dy2 = zp

was studied for different negative values of d. The novelty was to use
the theory of Hecke characters over imaginary quadratic fields to give a
precise formula for the value of N and the character ε. A natural question
is the following: what happens if we take positive values of d?

To a primitive solution (a,b,c) of (2) (or equivalently a solution (a,b,c)
satisfying that the values {a, b, c} are pairwise coprime), one associates
(as explained in [12]) the elliptic curve

E(a,b,c) : y2 = x3 + 4ax2 + 2(a2 +
√
db)x,

defined over the field K = Q(
√
d). When d is positive (and not a square)

K is a real quadratic field. It is known that all elliptic curves over real
quadratic fields are modular (see [14]) hence one can follow the modular
approach working with Hilbert modular forms. It turns out that such
an approach becomes impractical very soon, due to the huge dimen-
sion of the corresponding spaces (see Table 5.1). However, the Q-curves
approach is still practical in many circumstances, which motivates the
present article. This article should be regarded as a continuation of our
previous work [25], where we settle the following problems:

• Prove the existence of Hecke characters over real quadratic fields
with prescribed local behavior.
• Give a precise recipe for the level N and the nebentypus ε.
• Show how Ellenberg’s “large image” result can be adapted (under

some hypothesis) to real quadratic fields and how it can be used
to discard modular forms with complex multiplication.
• Explain why the case d positive is harder due to potential existence

of non-trivial primitive solutions for all exponents p.

Section 5 contains different examples aiming to explain the difference be-
tween the Hilbert/Q-curves computational effort. We also explain why
in some cases there exist non-trivial solutions of (2) with c = ±1, which
are valid for all exponents p, making the modular approach fail. Finally,
we explain why when there are modular forms with complex multiplica-
tion to be discarded, classical results give a partial result for all primes
satisfying some congruence. We provide an example (d = 3 · 43) where
Ellenberg’s large image result applies, and a non-existence result for all
large enough primes can be obtained.
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The article is organized as follows: Section 1 contains a brief review of
the strategy developed in [25] as well as a review of the modular method.
In Section 2 (Theorem 2.1) we solve the first problem described above,
namely the existence of a Hecke character with the desired properties.
The good definition of the character is related to a very interesting prob-
lem of class field theory: suppose that K = Q(

√
d) is a real quadratic

field, and ε is a totally positive fundamental unit congruent to 1 mod-
ulo 8 (this assumption is for expository purposes only; we consider the
general case in the article). Then the extension K(

√
ε) is a quadratic

unramified extension of K, hence by class field theory it corresponds to
a genus character (see for example Chapter 2 of [6]). Is there a natural
description for such a character? Can the extension K(

√
ε) be described

in terms of d?
We give a positive answer to this problem (Theorem 2.2), which plays

a crucial role in the proof of the good definition of our Hecke character.
The third section (Theorem 3.2) settles the second issue, i.e. it gives a
precise recipe for N and ε. A proof of this statement was given in [25]
when K is imaginary quadratic, since the nebentypus had a unique can-
didate due to the fact that it was odd. For real quadratic fields, the
hard part is to prove the formula for the nebentypus! We do so by com-
puting explicitly an action on 3-torsion points. The proof might be of
independent interest.

The fourth section gives an explicit version of Ellenberg’s large image
result for real quadratic fields where the prime 2 splits. The proof follows
from an “explicit” version of the main result of [20], our little contribu-
tion being making the constants explicit. The last section contains the
examples, where the cases d = 6 and d = 129 are specially considered
along with other values of d between 1 and 20 (see Table 5.1). Here are
two instances of the results proved in the present article:

Theorem 5.1. Let p > 19 be a prime number such that p 6= 97 and
p ≡ 1, 3 (mod 8). Then, (±7,±20, 1) are the only non-trivial primitive
solutions of the equation

x4 − 6y2 = zp.

Theorem 5.5. Let p > 19 be a prime number satisfying that either
p > 900 or p ≡ 1, 3 (mod 8) and p 6= 43. Then there are no non-trivial
primitive solutions of the equation

x4 − 129y2 = zp.

We want to remark that the techniques and methods developed in the
present article can be used to study the equation x2−dy6 = zp for posi-
tive values of d following the results of [25]. The code in PARI/GP ([27])
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and Magma ([2]) used in the examples (and the outputs), as well the one
used to verify Tables 2.3, 2.4, and 2.5, are available on the web page
https://github.com/lucasvillagra/Q-curves2.git.

Acknowledgments. We would like to thank Yingkun Li for sharing
with us a proof of Theorem 2.2 and Harald Helfgott for providing some
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1. Brief review of the modular method

Let us recall briefly how the modular method works. To a putative
primitive solution (a, b, c) of (2), attach the elliptic curve E(a,b,c) given
by the equation

(3) E(a,b,c) : y2 = x3 + 4ax2 + 2(a2 +
√
db)x,

defined over the quadratic field K = Q(
√
d). Let GalK denote an abso-

lute Galois group of K, i.e. GalK := Gal(Q/K), and for p a prime num-
ber, let ρE(a,b,c),p : GalK → GL2(Zp) denote the 2-dimensional p-adic

Galois representation attached to E(a,b,c) (obtained by looking at the ac-
tion of the Galois group on the p-adic Tate module of the curve E(a,b,c)).
The curve E(a,b,c) is what is called a Q-curve, that is, its Galois conju-
gate is isogenous (via the order 2 isogeny whose kernel is the point (0, 0))
to itself (see for example [25, Proposition 2.2]). The problem is that the
isogeny is not defined over K but over K(

√
−2), so the Galois represen-

tation ρE(a,b,c),p does not extend to a 2-dimensional representation of the

whole Galois group GalQ := Gal(Q/Q). However, there exists a charac-
ter χ (that will be constructed in the next section) such that the twisted
representation ρE(a,b,c),p⊗χ does extend to an odd 2-dimensional Galois

representation of the whole Galois group Gal(Q/Q). Let ρ̃p denote such
an extension.

It is well known that modularity of the representation ρ̃p follows from
Serre’s modularity conjecture (see [30, Theorem 4.4]). As a side remark,
Ribet’s proof uses the fact that our representation is related to an abelian
variety of GL2-type. Modularity of odd 2-dimensional abstract represen-
tations (satisfying the usual geometric hypothesis) is also known if p ≥ 5
(see [26, Theorem 1.0.4]). In particular, ρ̃p matches the Galois repre-

sentation of a weight 2, level Ñ , and nebentypus ε newform f(a,b,c) (the
level and nebentypus are described explicitly in Theorem 3.2).

https://github.com/lucasvillagra/Q-curves2.git
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The classical Hellegouarch result implies that our residual represen-
tation ρE(a,b,c),p ⊗ χ is unramified at all primes not dividing 2d, and the

same holds for ρ̃. Suppose that p is a prime number such that the residual
representation of ρ̃p is absolutely irreducible. Then Ribet’s lowering-the-
level result ([29]) implies that we have a congruence modulo p between
our newform f(a,b,c) and a newform g(a,b,c) whose level N is only divis-
ible by primes dividing 2d and with the same nebentypus. We are now
led to “discard” the newforms g ∈ S2(N, ε) that do not come from real
solutions.

The first elimination process consists in applying the so called
“Mazur’s trick”, in other words, checking whether the eigenvalues are
consistent with a “local” solution of the original equation. More con-
cretely, suppose we intend to discard a form g. Let q be a prime number
such that q - 2pd, and let

C(q, g) =
∏

(a,b,c)∈F3
q

B(q, g; a, b, c),

where the product is over non-zero triples (a, b, c) satisfying (2) modulo q,
and where the number B(q, g; a, b, c) is defined by

B(q, g; a, b, c)

=


N(aq(E(a,b,c))χ(q)− aq(g)) if q - c and q splits as q=qq,

N(aq(g)2−aq(E(a,b,c))χ(q)−2qε(q)) if q - c and q is inert in K,

N(ε−1(q)(q + 1)2 − aq(g)2) if q | c.

If (a, b, c) is a solution of (2) and g ∈ S2(N, ε) is congruent modulo p
to f(a,b,c), it must be the case that p | C(q, g) for all prime numbers q
(see [25, Proposition 6.1]). We say that the form g passes the test if
C(q, g) 6= 0 for some small prime q. If all the newforms pass the test, we
can conclude that no such solution exists (which never happens, due to
the existence of a trivial solution).

If (a, b, c) is a solution of equation (2) for all primes p, and g ∈ S2(N, ε)
is the modular form congruent modulo p to f(a,b,c), then C(q, g) = 0
for all primes q, so the above method fails. This occurs precisely when
c = ±1. When d < 0, the only solutions with c = ±1 are the triv-
ial ones, but the Frey curves E(±1,0,1) have complex multiplication. To
discard forms with complex multiplication Ellenberg’s result ([13, The-
orem 3.14]) is needed. Modular forms with complex multiplication have
the property that the image of their Galois representations is not as
large as expected (their image lies in the normalizer of a Cartan group),
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while for Q-curves without complex multiplication Ellenberg’s result im-
plies that their projective residual image contains PSL2(Fp), hence they
cannot be congruent. This is the reason why we were able to prove non-
existence of non-trivial primitive solutions of (2) for different negative
values of d in [25].

There are two unfortunate situations where the previous approach
cannot be applied. One of them is when [13, Theorem 3.14] cannot be
applied. Then we can only hope to prove non-existence of solutions for
primes satisfying certain congruence properties (the ones where the curve
coming from the trivial solution has small image, i.e. its residual image
is contained in the normalizer of a split Cartan subgroup). The second
one (which only occurs when d > 0) is when the curve

(4) x4 − dy2 = ±1

admits non-trivial solutions. For 1 < d < 20, the non-trivial solutions of
such an equation are precisely the following:

(5) (a, b, c, d) ∈ {(±1,±1,−1, 2), (±3,±4, 1, 5), (±7,±20, 1, 6),

(±2,±1, 1, 15), (±2,±1,−1, 17)}.
Equation (4) was studied in several articles (see for example [33]). It

is known that the equation with +1 on the right-hand side has at most
one non-trivial solution (see [21]) except when d = 1785. Furthermore,
in [5] all solutions for 1 ≤ d ≤ 150000 are computed. The equation
with −1 on the right-hand side was studied in [22], where it is also
shown that in all cases there is at most one non-trivial solution, and a
condition for the existence is presented. A priori, the modular method
should not work in cases when there exists a solution of (4) (although
we will soon prove it does work for d = 6).

2. Construction of the Hecke character

Given τ ∈ GalQ and ρ a representation of GalK , by τρ we denote the
representation of GalK whose value at σ ∈ GalK equals

τρ(σ) = ρ(τστ−1).

Fix an element τ ∈ GalQ which is not the identity on K. Then the
curve τ(E(a,b,c)) is isogenous to E(a,b,c)⊗ δ−2 (the quadratic twist of the
curve by −2) as proved in [25, Proposition 2.2]. This implies that

(6) τρE(a,b,c),p ' ρE(a,b,c),p ⊗ δ−2,

where we interpret δ−2 as the quadratic character of GalK corresponding
(via class field theory) to the quadratic extension K(

√
−2)/K. Note that

δ−2 is actually a quadratic character of GalQ restricted to GalK .
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Remark 1. All the previous stated properties hold for any pair of ratio-
nal numbers (a, b) (independently of whether they are part of a solution
of (2) or not). The fact that they are a solution is needed while study-
ing the Kodaira type at bad primes, and also (together with the extra
hypothesis that the solution is primitive) to assure that the residual
representation ρE(a,b,c),p is unramified at all prime ideals not dividing 2.

The main idea of [25] is to construct a finite order Hecke charac-
ter χ satisfying also property (6) (using class field theory, we will de-
note indistinctly Hecke characters and their Galois character counter-

parts). If χ : GalK → Q× is a Hecke character satisfying τχ(σ) :=
χ(τστ−1) = χ(σ)δ−2(σ) for all σ ∈ GalK , then the twisted represen-
tation ρE(a,b,c),p⊗χ is invariant under the action of τ and hence extends
to a 2-dimensional representation of GalQ. How can we construct a Hecke
character χ on the idèle group of K (which we denote by IK) satisfying
that τχ = χ · δ−2?

Let OK denote the ring of integers of K, and given q a prime ideal
of OK , let Oq denote the completion of OK at q. Let Cl(K) denote the
class group of K. From the short exact sequence

0 // K× · (
∏

q O
×
q × (R×)2) //// IK

Id // Cl(K) // 0,

it is enough to define the character χ on
∏

q O
×
q × (R×)2, on K× (where

the character is trivial), and on idèles representing the class group of K
(i.e. elements of IK that are in bijection with representatives for the
class group Cl(K) under the map Id). The intersection of these two sub-
groups

(∏
q O
×
q × (R×)2

)
∩K× = O×K imposes a compatibility condition

on its definition, namely that the product of the local components eval-
uated at a unit equals 1. When d > 0 the ring O×K = 〈−1, ε〉, where ε
denotes a fundamental unit, hence it is enough to check compatibility at
both such elements. The compatibility was proved in [25, Theorem 3.4]
when the fundamental unit has norm −1, so, after replacing ε by −ε if
needed, we assume that ε is totally positive.

Let us briefly recall the construction given in [25] (there is a discrep-
ancy with the definitions used in [25], namely that d needs to be changed
to −d in that article). Split the odd prime divisors of d into four different
sets, namely:

Qi = {p prime : p | d, p ≡ i (mod 8)},

for i = 1, 3, 5, 7. Let δ−1, δ2, δ−2 be the characters of Z corresponding
to the quadratic extensions Q(

√
−1), Q(

√
2), and Q(

√
−2) respectively
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and (abusing notation) let δ−1, δ2, δ−2 also denote their local compo-

nent at the prime 2. Define a character ε : IQ → Q× (which will be the
nebentypus of the extended Galois representation) as follows:

• For primes p - d and also for primes p ∈ Q1 ∪ Q7, the character

εp : Z×p → Q× is trivial.

• For primes p ∈ Q3, the character εp(n) =
(
n
p

)
(quadratic).

• For p ∈ Q5, let εp be a character of order 4 and conductor p.
• The character ε∞ (the archimedean component) is trivial.

• Define ε2 = δ#Q3+#Q5

−1 .

Since Q has class number 1, the rational idèle IQ is isomorphic to Q× ·(∏
p Z×p × R×

)
, hence our local definitions give rise to a unique Hecke

character ε once the compatibility condition is checked. But∏
p

εp(−1)ε∞(−1) =
∏

p∈Q3∪Q5

εp(−1)ε2(−1) = (−1)#Q3+#Q5ε2(−1) = 1.

By class field theory, ε gets identified with a character ε : GalQ → Q×

whose kernel fixes a totally real field L whose degree equals 1 if Q3 =
Q5 = ∅, 2 if Q3 6= Q5 = ∅, and 4 otherwise. Let Nε denote its conductor,
given by Nε = 2e

∏
p∈Q3∪Q5

p, where e = 0 if #Q3 + #Q5 is even and
2 otherwise. If p is an odd prime dividing d, we denote by p the unique
prime in K dividing it.

Theorem 2.1. There exists a Hecke character χ : GalK → Q× such
that:

(1) χ2 = ε as characters of GalK ,
(2) χ is unramified at primes not dividing 2 ·

∏
p∈Q1∪Q5∪Q7

p,

(3) for τ in the above hypothesis, τχ = χ · δ−2 as characters of GalK .

Furthermore, if d denotes the discriminant of K and p2 is a prime of K
dividing 2, then its conductor equals pe2 ·

∏
p∈Q1∪Q5∪Q7

p, where

e =



5 if d/4 ≡ 7 (mod 8),

3 if d ≡ 1 (mod 4),

3 if d/4 ≡ 2, 3 (mod 8),

3 if d/4 ≡ 6 (mod 16),

0 if d/4 ≡ 14 (mod 16).

The theorem was proved in [25, Theorem 3.2] for d < 0 and for d >
0 when the fundamental unit ε has norm −1. The main obstacle in
the remaining case is to have some understanding of the reduction of a
positive fundamental unit modulo ramified primes of K. Let us state the
following related natural problem.
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Problem. Let K/Q be a real quadratic field, and let ε be a totally
positive fundamental unit. What can be said of the extension K(

√
ε)/K?

Suppose that K = Q(
√
d) with d a positive fundamental discriminant

(i.e. equals the discriminant of the extension K/Q). Let p | d be an
odd prime and let p denote the unique prime ideal of K dividing it. The
hypothesis N(ε) = 1 implies that ε ≡ ±1 (mod p). Let

P± = {p | d, p odd : ε ≡ ±1 (mod p)}.
If 2 ramifies in K/Q, let p2 denote the unique prime of K dividing it.

Theorem 2.2. Let ω :=
∏
p∈P−

p. Then:

(1) if 2 is unramified in K/Q, we have K(
√
ε) = K(

√
ω),

(2) if 2 is ramified in K/Q, we have K(
√
ε) = K(

√
2ω) or K(

√
ε) =

K(
√
ω).

Furthermore, when 8 | d, the latter case occurs precisely when ε ≡ −1
(mod p3

2).

Proof: Let us recall some well-known results on the narrow class group
of a real quadratic field. The result is due mostly to Gauss [16] (see
also [3] for a more modern presentation), although Gauss’ approach was
via the study of indefinite binary quadratic forms. Among such forms,
there are some special ones called “ambiguous forms” (see [3, Chapter 1,
p. 7, and Chapter 3, p. 24]), which are precisely the elements of order 2
under Gauss’ composition law. The total number of ambiguous classes
(including the trivial one) equals 2t−1, where t is the number of prime
divisors of d (by [3, Proposition 4.7] and its proof).

Recall that there is a correspondence between strict equivalence classes
of indefinite binary quadratic forms of discriminant d and ideal classes
for the narrow class group of K. Under this correspondence, the ambigu-
ous forms map to ideals of order 2 in the narrow class group. But such
ideals correspond precisely to the ramified prime ideals of K (indexed by
divisors of d), by [3, Corollary 4.9]. In particular, there exists a unique
non-trivial and square-free principal ideal d (generated by a totally posi-
tive element α) dividing the different D of K. Let ω := Nd = N(α) = αα
so that ω | d.

Since all ramified primes are invariant under conjugation, and d is
divisible only by ramified primes, d = d. Then the quotient α

α ∈ OK is a
totally positive unit which cannot be trivial (as otherwise α ∈ Q>0, but
it must divide the different of K and also generate a square-free ideal
of OK , hence equals 1). Substituting α by εkα changes the quotient α

α

by a factor of ε2k, so we can assume that
α

α
= ε.
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Then
√
ε =

√
αα
α and hence K(

√
ε) = K(

√
ω). We are led to determine

the set of primes dividing ω. Let p be a prime ideal dividing D and
assume that p - 2.

• The fact that α + α ∈ d ∩ Z = (ω) (which generates over K the
ideal d2) implies that α + α ∈ d2, hence ε+ 1 = α

α + 1 = α+α
α ∈ d

and then ε ≡ −1 (mod d). In particular, ε ≡ −1 (mod p) for all
odd prime ideals p | d.

• On the other hand, if p | D but p - d (in particular p - α), ε− 1 =
α−α
α ≡ 0 (mod p) hence ε ≡ 1 (mod p).

If 2 - d, then ω =
∏
p∈P−

p and the statement follows. If d is even, the

only ambiguity is whether ω is even or not. Suppose that 8 | d. Let

p2 denote the prime ideal dividing 2 (p2 = 〈2,
√
d/4〉). Clearly vp2

(α) =
vp2

(ᾱ) = v2(ω). An elementary case by case analysis shows that vp2
(α) ∈

{0, 2} if and only if vp2
(ε−1) ≥ 3 and vp2

(ε+1) = 2. Similarly, vp2
(α) ∈

{1, 3} if and only if vp2
(ε+ 1) ≥ 3 and vp2

(ε− 1) = 2 as stated.

Proof of Theorem 2.1: Keeping the previous notation, let d denote the

discriminant of K. Let χp : O×p → Q× be the character given by the
following.

• If p is an odd (i.e. p - 2) unramified prime, χp is the trivial charac-
ter. The same applies to primes in K dividing the primes in Q3.

• If p is an odd prime ramifying in K/Q and p | p, clearly (Op/p)× '
(Z/p)×. If p ∈ Q1 ∪ Q7, let χp correspond to the quadratic char-
acter δp of (Z/p)×.

• If p ∈ Q5, using the previous item isomorphism, let χp = εp · δp.
At the archimedean places {v1, v2}, let χv1 be the trivial character and
χv2 be the sign function (the order of the archimedean places does not
matter; both choices work). At a prime p2 dividing 2, the character χp2

has conductor at most 23. The group structure of (Op2
/2n)× and its

generators when 2 does not split are given in Table 2.1 (see [28]). The
generators are ordered so that the order of the generator i matches the
i-th factor of the group structure, while the element norms are modulo 8.

Condition n Structure Generators Norms

d ≡ 5 (mod 8) 3 Z/3× Z/4× Z/2× Z/2 {ζ3,
√
d, 3 + 2

√
d,−1} {1, 3, 5, 1}

d/4 ≡ 7 (mod 8) 3 Z/4× Z/4× Z/2 {
√
d/4, 1 + 2

√
d/4, 5} {1, 5, 1}

d/4 ≡ 3 (mod 8) 3 Z/4× Z/4× Z/2 {
√
d/4, 1 + 2

√
d/4,−1} {5, 5, 1}

8 | d 2 Z/4× Z/2 {1 +
√
d/4,−1} {3, 1}

Table 2.1.
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The definition of χp2
on this set of generators for (Op2

/23)× is the
following:

• If d ≡ 5 (mod 8), χp2(ζ3) = 1, χp2(
√
d) = i, χp2(3 + 2

√
d) = 1,

χp2(−1) = 1.

• If d/4 ≡ 7 (mod 16), χp2
(
√
d/4) = −1, χp2

(1 + 2
√
d/4) = 1,

χp2
(5) = −1.

• If d/4 ≡ 15 (mod 16), χp2
(
√
d/4) = 1, χp2

(1 + 2
√
d/4) = 1,

χp2(5) = −1.

• If d/4 ≡ 3 (mod 16), χp2(
√
d/4) = −1, χp2(1 + 2

√
d/4) = 1,

χp2
(−1) = −1.

• If d/4 ≡ 11 (mod 16), χp2
(
√
d/4) = 1, χp2

(1 + 2
√
d/4) = 1,

χp2
(−1) = −1.

• If d/4 ≡ 6 (mod 8) and #Q3 + #Q5 is even, χp2(1 +
√
d/4) = 1,

χp2(−1) = 1, χp2(5) = 1.

• If d/4 ≡ 6 (mod 8) and #Q3 + #Q5 is odd, χp2
(1 +

√
d/4) = i,

χp2
(−1) = −1, χp2

(5) = 1.

• If d/4 ≡ 2 (mod 8) and #Q3 + #Q5 is even, χp2
(1 +

√
d/4) = 1,

χp2(−1) = −1, χp(5) = 1.

• If d/4 ≡ 2 (mod 8) and #Q3 + #Q5 is odd, χp2
(1 +

√
d/4) = i,

χp2
(−1) = 1, χp2

(5) = 1.

Lastly,

• If d ≡ 1 (mod 8), the prime 2 splits as (2) = p2p2. Let χp2 := δ−2

and χp2
:= 1 (trivial).

Following the notation of [25], we denote χ2 =
∏

p2|2 χp2 .

There are some constraints on the values of #Q3, #Q5, and #Q7

depending on the congruence of d (or d/4) modulo 8; they are given in
Table 2.2.

Condition #Q3 #Q5 #Q7 Condition #Q3 #Q5 #Q7

d ≡ 1 (mod 8) 0 0 1 d ≡ 5 (mod 8) 0 1 1
1 1 0 1 0 0

d/4 ≡ 3 (mod 8) 0 1 0 d/4 ≡ 7 (mod 8) 0 0 0
1 0 1 1 1 1

d/4 ≡ 2 (mod 8) 0 0 1 d/4 ≡ 6 (mod 8) 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 1 0 1 1 1

Table 2.2.
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Using such relations and the previous definitions, it is not hard to
verify that in all cases

(7) χ2|Z×
2

= δ
v2(d)+1
2 δ#Q5+#Q7+1

−1 .

Extend χ to K× ·
(∏

q O
×
q × (R×)2

)
by making it trivial on K×. With

these definitions, the same proof given in [25, Theorem 3.2, p. 14] proves
that the equality χ2 = ε ◦N holds.

Compatibility. The subgroup of units in K is generated by {−1, ε}
hence it is enough to prove the compatibility at both elements. Replac-
ing d by −d we interchange real quadratic fields with imaginary qua-
dratic ones. The local part of the character χ is invariant under such
transformation for all odd primes, but not at primes dividing 2. For
such places, the restriction of the local character to Z×2 differs by δ−1.
In [25, Theorem 3.2] we proved the compatibility at −1 for imaginary
quadratic fields K; since δ−1(−1) = −1, the compatibility relation for
real quadratic fields at −1 follows from the extra sign coming from the
archimedean contribution.

Proving the compatibility for ε takes more effort. The character χ
satisfies χp(ε) = 1 for all unramified primes and for primes in P−∩(Q1∪
Q3) (recall that the character χp has order 2 at primes in Q1 and is
trivial at primes in Q3). Its value at primes in P−∩ (Q5∪Q7) equals −1.
Since the character δ−2 also satisfies that it takes the value −1 at primes
in Q5 ∪ Q7 and +1 at the other ones, we need to prove the following
identity

(8) χ2(ε) · (−1)#(P−∩(Q5∪Q7)) = χ2(ε)δ−2(ω) = 1,

where ω =
∏
p∈P−

p as before. The proof of Theorem 2.2 implies that

there exists α ∈ OK such that ω = εα2 or 2ω = εα2. In the first case,

χ2(α2) = χ2
2(α) = ε2(N(α)) = ε2(ω).

Since ε2 is at most quadratic, it equals its inverse. Hence χ2(ε) =
χ2(ω)ε2(ω) and then equation (8) is equivalent to the statement

(9) χ2(ω)ε2(ω)δ−2(ω) = 1.

A key fact is that the hypothesis N(α) = ω imposes a constraint on its
possible values. Using equation (7), the proof follows from the following
case by case study:

• If d ≡ 1 (mod 8), then χ2 = δ−2 and ε2 is trivial hence (9) holds.
• If d/4 ≡ 3 (mod 8), the norm condition implies that ω is congruent

to 1 or 5 modulo 8. By definition χ2|Z×
2

= δ−2 and ε2 = δ−1, which

is trivial on both 1 and 5 hence (9) holds.
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• If d ≡ 5 (mod 8), by definition χ2|Z×
2

= δ2 and ε2 = δ−1 hence (9)

holds.
• If d/4 ≡ 7 (mod 8), the norm condition implies that ω is congruent

to 1 or 5 modulo 8. By definition χ2|Z×
2

= δ2 and ε2 = 1. But δ2
and δ−2 take the same values at {1, 5} hence (9) holds.
• If d/4 ≡ 2 (mod 8), the norm condition implies that ω is congruent

to 1 or 7 modulo 8. By definition χ2|Z×
2
· ε2 = δ−1, which coincides

with δ−2 on {1, 7} hence (9) holds.
• If d/4 ≡ 6 (mod 8), the norm condition implies that ω is congruent

to 1 or 3 modulo 8. By definition χ2|Z×
2
· ε2 = 1 but δ−2 is trivial

on {1, 3} hence (9) holds.

If d is odd, the equality ω = εᾱ2 always holds hence the result follows.
Assume then that 2 ramifies in K/Q and that 2ω = εᾱ2. Let p2 denote

the unique prime of K dividing 2. To ease notation, let d̃ = d/4. Recall
that K(

√
ε) is unramified at p2 if and only if ε is a square mod 4 (see for

example [7, Lemma 3.4]). The equality 2ω = εα2 implies that

(10)

(
2

α

)2

ω = 2ε.

Note that 2
α has positive valuation at p2, hence we can reduce equal-

ity (10) modulo 16 to compute for each possible value of ε the corre-
sponding value of ω (up to squares) via a finite computation. Before
presenting the results of the finite computation, note the following: if
d1 ≡ d2 (mod 16), then Z[

√
d1]/24 ' Z[

√
d2]/24 (as rings) via the nat-

ural map sending
√
d1 to

√
d2. Applying it to equality (10) proves that

the value ω attached to a fundamental unit of the form a+ b
√
d1 equals

that attached to a + b
√
d2. In particular, it is enough to perform the

finite computation for d̃ modulo 16.
If d̃ ≡ 3 (mod 4) and t | d, then the extension K(

√
t) is ramified at p2

precisely when t is even (and not divisible by 4). Then, under our hypoth-

esis, the extension K(
√
ε)/K is ramified at p2. Take {

√
d/2, 1 +

√
d,−1}

as generators for the group of invertible elements modulo 16 when d̃ ≡ 3
(mod 8) and {

√
d/2, 1 +

√
d, 5} when d̃ ≡ 7 (mod 8). Consider the dif-

ferent cases, taking into account once again that the condition 2ω being
a norm implies that ω ≡ 3, 7 (mod 8) when d̃ ≡ 3 (mod 8) and ω ≡ 1, 5

(mod 8) when d̃ ≡ 7 (mod 8). Then:

• If d̃ ≡ 3, 7 (mod 16), the possible values for ε (given as genera-
tors’ exponents) and the values of ω are given in Table 2.3. Since
χ2((a, b, c)) = (−1)a+c (again as exponents) the equality χ2(ε) =
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δ−2(ω) follows, recalling that δ−2(1) = δ−2(3) = 1 and δ−2(5) =
δ−2(7) = −1.

d̃ (mod 16) Exp. ω Exp. ω Exp. ω Exp. ω
3 (1, 1, 0) 7 (1, 1, 1) 3 (1, 3, 0) 7 (1, 3, 1) 3
3 (3, 1, 0) 7 (3, 1, 1) 3 (3, 3, 0) 7 (3, 3, 1) 3
7 (1, 0, 0) 5 (1, 0, 1) 1 (1, 2, 0) 5 (1, 2, 1) 1
7 (3, 0, 0) 5 (3, 0, 1) 1 (3, 2, 0) 5 (3, 2, 1) 1

Table 2.3. Relation between ε and ω for d̃ ≡ 3, 7 (mod 16).

• If d̃ ≡ 11, 15 (mod 16), the possible values for ε and the values of ω
are given in Table 2.4. Since χ2((a, b, c)) = (−1)c in this case, the
equality χ2(ε) = δ−2(ω) holds.

d̃ (mod 16) Exp. ω Exp. ω Exp. ω Exp. ω
11 (1, 1, 0) 3 (1, 1, 1) 7 (1, 3, 0) 3 (1, 3, 1) 7
11 (3, 1, 0) 3 (3, 1, 1) 7 (3, 3, 0) 3 (3, 3, 1) 7
15 (1, 0, 0) 1 (1, 0, 1) 5 (1, 2, 0) 1 (1, 2, 1) 5
15 (3, 0, 0) 1 (3, 0, 1) 5 (3, 2, 0) 1 (3, 2, 1) 5

Table 2.4. Relation between ε and ω for d̃ ≡ 11, 15 (mod 16).

When 8 | d, Theorem 2.2 implies that the case 2ω = εᾱ2 occurs
precisely for ε ≡ −1 (mod p3

2). Recall that (Op2
/23)× is generated by

the elements {−1, 5, 1 +
√
d/4} (of order 2, 2, 8). Using the congruence

of ε modulo p3
2, the condition (10) and the fact that 2ω is the norm of

an element, we search for all possible values of ε and ω.

• If d̃ ≡ 2 (mod 16) (respectively d̃ ≡ 10 (mod 16)), then #Q3 +
#Q5 is even (respectively odd). The assumption that 2ω is a norm
implies that ω ≡ 1, 7 (mod 8) (respectively ω ≡ 3, 5 (mod 8)). All
the possible values of ε for each ω are given in Table 2.5, from
which it follows (using the definition of χ2) that (8) holds.

• If d̃ ≡ 6 (mod 16), then #Q3 + #Q5 is odd. The norm condition
implies that ω ≡ 5, 7 (mod 8). The possible values of ε and ω are
given in Table 2.5, from which it follows that (8) holds.

d̃ (mod 16) ε ω ε ω ε ω ε ω

2 −1 7 (1 +
√
d̃)2 1 −(1 +

√
d̃)4 7 (1 +

√
d̃)6 1

10 −1 3 (1 +
√
d̃)2 5 −(1 +

√
d̃)4 3 (1 +

√
d̃)6 5

6 −1 5 5(1 +
√
d̃)2 7 −(1 +

√
d̃)4 5 5(1 +

√
d̃)6 7

Table 2.5. Relation between ε and ω for d̃ ≡ 2, 6, 10 (mod 16).
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• If d̃ ≡ 14 (mod 16), then #Q3 + #Q5 is even, hence χ2 is trivial.
The norm condition implies that ω ≡ 1, 3 (mod 8) so formula (8)
holds.

Once the compatibility is verified, the proof of Theorem 3.2 in [25] works
mutatis mutandis.

3. The conductor and nebentypus of the extended
representation

Let (a, b, c) be a primitive solution of (2) and let E(a,b,c) be the elliptic
curve attached to it, with defining equation (3). The properties imposed
on χ imply that the twisted representation ρE(a,b,c),p ⊗ χ extends to a
2-dimensional representation of GalQ.

Lemma 3.1. Suppose that there exists an odd prime p ramifying in K/Q.
Let σ ∈ GalQ and let δK denote the quadratic character corresponding
to the real quadratic extension K/Q. Then,

χ(σ2) = ε(σ)δK(σ).

Proof: If σ ∈ GalK , then the first property of Theorem 2.1 implies that
χ(σ2) = χ(σ)2 = ε(σ), so the statement is clearly true for all elements
of GalK (since δK(σ) = 1). Since GalK has index 2 in GalQ, it is enough
to prove that the equality holds at one element of GalQ \GalK . Let p
be an odd prime ramifying in the extension K/Q, and let L = Q(ζp)
be the cyclotomic extension. The Galois group Gal(L/Q) is isomorphic
to the cyclic group (Z/p)×. Let g be a generator. By class field theory,
Gal(L/Q) is also isomorphic to the quotient IQ/NL/Q(IL). Let σp be the
element of Gal(L/Q) corresponding to the idèle ιp with local coordinates

(ιp)v =

{
g if v = p,

1 otherwise.

Also denote by σp any extension of it to the whole Galois group GalQ,
which is not the identity on K. As explained before, it is then enough
to prove the equality at the element σp. Clearly σ2

p ∈ GalK , and further-

more, it matches the transfer map from Galab
Q to Galab

K (see for example
[31, Chapter 8] for the definition of the transfer map). On the idèle side,
the transfer map matches the natural map IQ → IK , so the element ιp
corresponds to the idèle ιKp of IK with local components

(ιKp )v =

{
g if v = p,

1 otherwise.
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The value χ(σ2
p) then equals χ(ιKp ) = χp(g), and one of the key properties

imposed on χ and ε in [25] is that at all odd ramified primes χp =
εpδK,p, via the natural identification of (Z/p)× with (OK/p)×. Hence
the statement.

Theorem 3.2. Suppose there exists a prime q > 3 ramifying in K.
Then the twisted representation ρE(a,b,c),p⊗χ descends to a 2-dimensional
representation of GalQ attached to a newform of weight 2, nebentypus ε,
and level N given by

N = 2e ·
∏
q

qvq(N(E(a,b,c))) ·
∏
q∈Q3

q ·
∏

q∈Q1∪Q5∪Q7

q2,

where the first product is over odd primes, and q denotes a prime of K
dividing q. The value of e is one of:

e =



1, 8 if 2 splits,

8 if 2 is inert,

7, 8 if d ≡ 3 (mod 8),

5, 8 if d ≡ 7 (mod 8),

8, 9 if 2 | d.

Proof: The extension result is well known although a proof was recalled
in [25, Theorem 4.2]. To ease notation let ρ′p = ρE(a,b,c),p ⊗ χ and ρ̃p
denote its extension to GalQ. The nebentypus assertion was only proved
under the hypothesis that K/Q is imaginary quadratic. The reason is
the following: we know that ρ′p has determinant the cyclotomic charac-
ter (denoted by χcyc) times ε (by Theorem 2.1), hence the determinant
of ρ̃p equals εχcyc or εδKχcyc (where δK denotes the quadratic charac-
ter corresponding to the extension K/Q). But Ribet’s result (see [30,
Theorem 4.4]) implies that the determinant of ρ̃p is odd hence the state-
ment. When K/Q is real both characters take the same value at complex
conjugation! How can we distinguish which one is the nebentypus of the
representation ρ̃p when our extension is real? The solution is to work
with another element of an inertia subgroup of K/Q.

Fix a basis for the Tate module of the elliptic curve E(a,b,c) (so
we can assume that the image of our representation lies in GL2(Qp)).
Since our field K is real quadratic, we know that the Galois representa-
tion ρE(a,b,c),p is absolutely irreducible. In particular, any matrix com-
muting with its image must be a scalar matrix by Schur’s lemma.

Let S denote the set of primes ramifying in K/Q, and for each odd
prime q ∈ S let q denote the prime of K dividing it. Fix one odd prime
q > 3 in S different from p. Let Iq ⊂ GalQ denote an inertia subgroup
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at q and Iq its index 2 subgroup. By [25, Lemma 2.5] the curve E(a,b,c)

has good reduction at q hence (by the Néron–Ogg–Shafarevich criterion)
ρ′p|Iq is a scalar matrix. Let σq ∈ Iq \ Iq and let σqρ′p(τ) := ρ′p(σqτσ

−1
q ).

The character χ was constructed so that σqρ′p ' ρ′p, hence both represen-
tations are conjugate under a matrix of GL2(Qp). Since ρ̃p extends ρ′p,
ρ̃p(σq) is such a matrix. Consider the following two different cases:

• If σqρ′p = ρ′p, then ρ̃p(σq) is a scalar matrix (by Schur’s lemma),

say
(
λ 0
0 λ

)
. In particular, det(ρ̃p(σq)) = λ2. On the other hand,

ρ̃p(σq)
2 = ρ′p(σ

2
q ) =

(
χ(σ2

q) 0

0 χ(σ2
q)

)
hence in particular λ2 = χ(σ2

q ) =

ε(σq)δK(σq) from Lemma 3.1, so det(ρ̃p) = εδKχcyc.
• If σqρ′p 6= ρ′p, ρ̃p(σq)

2 = ρ′p(σ
2
q ) is a scalar matrix, then we can

choose another basis of the Tate module so that the matrix ρ̃p(σq)
equals the matrix

(
λ 0
0 −λ

)
. Then det(ρ̃p(σq)) = −λ2. Once again,

ρ̃p(σq)
2 = ρ′p(σ

2
q ) =

(
χ(σ2

q) 0

0 χ(σ2
q)

)
hence in particular Lemma 3.1

(and the fact that δK(σq) = −1) implies that det(ρ̃p(σq)) = −λ2 =
−χ(σ2

q ) = −ε(σq)δK(σq) = ε(σq) so det(ρ̃p) = εχcyc.

Then we are left to prove that σqρ′p 6= ρ′p (a result independent of
the prime q ∈ S). Recall that ρ′p = ρE(a,b,c),p ⊗ χ, hence the state-

ment is equivalent to proving that σqρE(a,b,c),p 6= ρE(a,b,c),p · δ−2 (since
σqχ = χδ−2). Consider both actions for τ ∈ GalK on points of E(a,b,c) of

order pn: the left-hand side equals σq · τ · σ−1
q (P ), while the right-hand

side equals δ−2(τ)τ(P ).
Consider the 2-isogeny φ : E(a,b,c) → E(a,b,c) explicitly given by

φ(x, y) = (φ1(x, y), φ2(x, y)) =

(
−y2

2x2
,
y(2a2 + 2

√
db− x2)

2
√
−2x2

)
.

Note in particular that

(11) δ−2(τ) · τ ◦ φ = φ ◦ τ for all τ ∈ GalK ,

where we consider δ−2(τ) as an endomorphism of E(a,b,c). The hypoth-
esis on p being odd implies that for all positive integers n, the map
φ : E(a,b,c)[p

n] → E(a,b,c)[p
n] is bijective. Then if P ∈ E(a,b,c)[p

n], we
have

σq · τ · σ−1
q (P ) = (σq · φ−1)(φτφ−1)(σq · φ−1)−1(P )

= δ−2(τ)(σq · φ−1)τ(σq · φ−1)−1(P ),

where the last equality follows from (11). Take n large enough so that the
representation on pn-torsion points (which we denote by ρn) is absolutely
irreducible. Then, by Schur’s lemma, σqρn = ρn · δ−2 if and only if the
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endomorphism σqφ
−1 acts as a scalar matrix on E(a,b,c)[p

n]. Since the
Galois representation of an elliptic curve is a part of a compatible family
(and the nebentypus does not depend on the choice of the prime p), it
is enough to consider the case p = 3 and prove that σqφ

−1 acting on the
3-torsion points is not equal to multiplication by ±1 (then it cannot act
as multiplication by an integer on points of order 3n).

Note that −1 acts trivially on the x-coordinates of torsion points,
hence it is enough to prove that on the x-coordinate of the 3-torsion
points the elements σq and φ do not coincide. Let M = K(x(E(a,b,c)[3]))
denote the extension of K obtained by adding to K the x-coordinates of
all points in E(a,b,c)[3] (a degree 2 subextension of K(E(a,b,c)[3])). Note
on the one hand that φ maps x-coordinates of 3-torsion points of E(a,b,c)

to x-coordinates of 3-torsion points of E(a,b,c), but also, the map φ1 is
given by a polynomial in x with coordinates in K. More concretely,

(12) φ1(x) = −x
3 + 4ax2 + 2(a2 +

√
db)x

2x2
.

This implies that M is a Galois extension of Q. Clearly, both K and
Q(
√
−3) are subfields of M (since the determinant of our representation

is the cyclotomic character modulo 3). In particular, Q(
√
−3d) is con-

tained in M . Since the ramification degree of q in M/Q is 2 (because
E(a,b,c) has good reduction at the prime dividing q), it must be the case

that Q(
√
−3) ⊂Mσq (since σq fix neither

√
d nor

√
−3d).

For a generic curve y2 = x3 + αx2 + βx, its 3-division polynomial
(whose roots generate the extension M/K) is given by

ψ3(x) = 3x4 + 4αx3 + 6βx2 − β2

(recall that in our case α = 4a while β = 2(a2 +
√
db)). Let θ1, . . . , θ4 be

the roots of ψ3 and let β̄ = α2−4β
4 (in our case β̄ matches the conjugate

of β). Then

(13)
∆(ψ3)

212 · 32 · β4 · β̄2
=

(∏
i<j(θi − θj)

26 · 3 · β2 · β̄

)2

= −3.

In particular, since σq fixes
√
−3, it must fix the quotient

∏
i<j(θi−θj)
26·3·β2·β̄ ,

and since σq is not the identity in K, it must send β to β̄ and vice versa.
In particular,

σp

(∏
i<j

(θi − θj)

)
=
∏
i<j

(σp(θi)− σp(θj)) =
∏
i<j

(θi − θj) ·
β̄

β
.
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On the other hand, for i 6= j, using (12) we get

φ1(θi)−φ1(θj)=−θ
2
i + αθi + β

2θi
+
θ2
j + αθj + β

2θj
=(−1)(θi−θj)

(θiθj − β)

2θiθj
.

It is not hard to verify that if {θ1, . . . , θ4} are roots of a monic polyno-
mial x4 +A1x

3 +A2x
2 +A3x+A4, then∏

i<j

(θiθj−β) = β6−A2β
5 +(A1A3−A4)β4 +(2A4A2−A4A

2
1−A2

3)β3

+ (A4A3A1 −A2
4)β2 −A2

4A2β +A3
4.

Using this formula for ψ3, we obtain∏
i<j

(θiθj − β) =
16β5

27
(α2 − 4β) =

64β5β̄

27
.

Then ∏
i<j

(φ1(θi)− φ1(θj)) = (−1)6
∏
i<j

(θi − θj)
(
−β̄
β

)
.

In particular, the action of φ1 and σq do not match in the roots θi so
the claim follows.

Remark 2. The same result holds for K = Q(
√

3) or Q(
√

6) replacing the
3-torsion points computation with the 5-torsion ones (for the prime q =
3 ∈ S). While working with 5-torsion points, formula (13) becomes

∆(ψ5)

288 · 510 · b44 · (a2 − 4b)22
= 5.

The case K = Q(
√

2) is more subtle as there is no clear choice of an
order 2 element in the Galois group Gal(K(E(a,b,c)[p])/Q). In particular
computed examples the result holds (but we do not have a general proof).

4. Ellenberg’s result

Let K/Q be a quadratic extension, and let E/K be a Q-curve 2-isoge-
nous to its Galois conjugate with a prime ` > 3 of potentially multiplica-
tive reduction. Then, following ideas of Darmon and Merel, Ellenberg
proved (in Propositions 3.2, 3.4, 3.14, and Section 4 of [13]) that the
projective modulo p representation of E is surjective if either:

• there exists f ∈ S2(2p2) such that wpf = f and w2f = −f , or
• there exists f ∈ S2(p2) such that wpf = f ,
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with L(f ⊗ δK , 1) 6= 0. Recall here that if f =
∑
n anq

n is a modular
form and ψ is a Dirichlet character, then f ⊗ ψ denotes the newform
attached to the modular form

∑
n anψ(n)qn.

An important result of Ellenberg (see [13, Proposition 3.9]) proves
that if K is an imaginary quadratic field, then there is always a modular
form satisfying the second hypothesis for p large enough.

Proposition 4.1. If K/Q is a real quadratic field in which p is un-
ramified, then there does not exist a newform satisfying any of the two
previous conditions unless 2 splits in K/Q.

Proof: For a newform f , let ε(f) denote its root number (i.e. the sign of
the functional equation). Recall from [4, §I.5] that if f ∈ S2(N) is a new-
form and ψ is a Dirichlet character whose conductor is prime to N , then
ε(f ⊗ψ) = ε(f)ψ(−N). Suppose that f ∈ S2(p2) satisfies that wpf = f ,
so its root number equals −1 (recall that the root number equals minus
the sign of the canonical involution). Then if p is unramified in K/Q,
the twisted form f ⊗ δK also has root number −1 (since δK(−p2) = 1
for K real quadratic), so L(f ⊗ δK , 1) = 0.

Suppose that f is a newform of level 2p2. The Atkin–Lehner eigen-
values hypotheses imply that ε(f) = 1. Suppose that 2 is unramified
in K/Q, hence ε(f ⊗ δK) = δK(−2p2) = δK(2) = 1 if and only if 2 splits
in K/Q. When 2 ramifies in K/Q, we can write dK = d1 · d2, where
d1 ∈ {−4,±8} and d2 is an odd fundamental discriminant. Suppose
d1 = −4; writing f⊗δK = (f⊗δd1)⊗δd2 , it is enough to understand the
sign change for the first twist (the form f⊗δ−4 being a form of level 16p2).
By a result of Atkin and Lehner (see [1, Theorem 7]) w2(f ⊗ δ−4) = −1
while wp(f ⊗ δ−4) = wp(f), hence ε(f ⊗ δ−4) = ε(f) = 1 and since d2 is
negative (hence δd2(−1) = −1) ε(f ⊗ δK) = −1. A similar computation
(using that w2(f ⊗ δ8) = 1 and w2(f ⊗ δ−8) = −1) proves the remaining
cases.

Suppose then that 2 splits in K/Q. Ellenberg’s proof of the existence
of a newform with prescribed properties consists in bounding an average
of twisted central values in the whole space of level p2 modular forms
(since the forms with the wrong Atkin–Lehner involution sign in this
space have zero central value). While considering the space S2(2p2)new

the computations are harder, as one needs to compute an average not
over the whole space, but over the subspace with a chosen Atkin–Lehner
sign at p (therefore also imposing a condition to the Atkin–Lehner sign
at 2). This computation was carried out in [20] (see the proof of Corol-
lary 4). Unfortunately, explicit constants are not presented in Le Fourn’s
article, hence we need to add some (minor) extra details to its proof (we
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recommend the reader to have a copy of [20] at hand for the rest of this
section as we follow its notations and definitions, specially Section 6 of
said article).

The inequality J1(x) ≤ |x|
2 and |S(1, n; c)| <

√
cτ(c) (used in Ellen-

berg’s article) turns inequality (6.3) of [20] into

|AN,Q,c(x)| ≤ π

3
· xe

−2π/xτ(c)

Qc3/2
,

for x ≥ 71 (using that (1 − e−2π/x)−1 ≤ x
6 when x ≥ 71). The same

bound for J1 gives the explicit inequality for equation (6.4) of [20]:

|AN,Q,c(x)| ≤ 12

π

(log(Dc) + 1)
√
D

cQ
e−2π/x.

To get a bound for AN,Q(x) = 2π
∑
c>0,(N/Q)|c,(c,Q)=1AN,Q,c(x) we split

the sum as in [20]. Suppose that N 6= Q, so in the following sum there
is no term for c = D:

|AN,Q(x)|
2π

≤ 12

π

√
De−2π/x

Q

∑
c<x2

(N/Q)|c

(log(Dc) + 1)

c
+
π

3

∑
c>x2

(N/Q)|c

xe−2π/xτ(c)

Qc3/2
.

For the first inner sum, writing c = (N/Q)b, we get the inequality

∑
c<x2

(N/Q)|c

(log(Dc)+1)

c
=
Q

N

((
1+log

(
DN

Q

)) x2Q
N∑
b=1

1

b
+

x2Q
N∑
b=1

log(b)

b

)

≤ Q

N

((
1+log

(
DN

Q

))(
1+log

(
x2N

Q

))
+

log2
(
x2N
Q

)
2

)
,

where the last inequality comes from the usual comparison between the

series and the integral. To bound the sum
∑
c>X2

τ(c)
c3/2

, recall the follow-
ing inequalities:

• For all real s > 1,
∑
n≥X

1
ns ≤ −

X1−s

1−s + X−s

2 (see for example [34,

Lemma 3.1]).
• For X > 1 a real number,

∑
d≤X

1
d ≤ log(X) + γ + 7

12X , where

γ is the Euler–Mascheroni constant, γ ≤ 0.58 (see equation (3.1)
of [11]).
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Then, if s > 1,

∑
n≥X

τ(n)

ns
=
∑
n≥X

(∑
d|n

1

ns

)
=
∑
d

1

ds

∑
m≥X/d

1

ms

≤ ζ(s)
∑
d>X

1

ds
+
∑
d≤X

1

ds

(
− (X/d)1−s

(1− s)
+

(X/d)−s

2

)

≤ ζ(s)

(
− X1−s

(1− s)
+
X−s

2

)
− X1−s

(1− s)
∑
d≤X

1

d
+
X1−s

2

≤ ζ(s)

(
− X1−s

(1− s)
+
X−s

2

)
− X1−s

(1− s)

(
log(X) + γ +

7

12X

)
+
X1−s

2
.

Substituting at s = 3/2, X by X2 and assuming X ≥ 32, we obtain

∑
n≥X2

τ(n)

n3/2
≤ 6 log(X)

X
.

Using both inequalities, we get (for N 6= Q)

|AN,Q(x)|
2π

≤ 12
√
De−2π/x

Nπ

×

((
log

(
DN

Q

)
+1

)(
1+log

(
x2N

Q

))
+

log2
(
x2N
Q

)
2

)

+
2π

N

√
Q/Nτ(N/Q) log(x)e−2π/x.

(14)

When N = Q, there is an extra term π
3
xe

−2π
x τ(D)

ND3/2 corresponding to the

value c = D. Using the fact that BN,Q(x) = AN,Q(D2N/x), we get the
bound

(15)
|BN,Q(x)|

2π
≤ |AN,Q(D2N/x)|

2π
+ δQ=N

π

3

√
D

x
τ(D)e

−2πx

ND2 .



Diophantine Equations 591

Recall that (a1, Lχ)
+p2 ,new

2p2 = (a1, Lχ)
+p2

2p2 −
1
p−1 (a1, Lχ)

χ(p)p
2p (see [20,

Lemma 4.1]), hence formulas (6.1), (6.2) of [20] give

1

2π
(a1, Lχ)

+p2 ,new

2p2 ≥ (p− 2)

(p− 1)
e−2π/x

−
(
|A2p2,1(x)|+ |A2p2,p2(x)|+ |A2p,1(x)|

p− 1
+
|A2p,p(x)|
p− 1

+ |B2p2,2p2(x)|+ |B2p2,2(x)|+ |B2p,2p(x)|
p− 1

+
|B2p,2(x)|
p− 1

)
.

(16)

Taking x of the same magnitude as p (in our applications we will take
x = p · κ for a numerical computed constant κ), the right-hand side is
an increasing function of p, hence as soon as we find a positive value for
it, we get an explicit bound.

5. Examples

In this section, instead of working with fundamental discriminants, we
take values of d which are square-free. We applied the method to study
solutions of (2) for square-free values 1 ≤ d ≤ 20 and d = 129. The

field Q(
√

6) is the first one where the fundamental unit has norm 1 and
also contains a non-trivial solution for all primes p. The case d = 129 is
the first field where 2 splits (so Ellenberg’s result can be applied) and also
where all the newforms could be discarded using Mazur’s trick. For d ∈
{3, 5, 7, 14} there are modular forms without complex multiplication that
cannot be discarded with the aforementioned strategy (so the modular
method fails). For the other square-free values of d, the modular method
does give a positive answer but only for primes p > M (an explicit
constant) with a prescribed congruence condition. A summary of the
results is presented in Table 5.1. The table also contains the dimension
of the weight 2 newform space (computed to discard possible solutions)
as well as the dimension of the Hilbert parallel weight 2 modular form
space (if one followed the classical modular approach over K). Note
the dimension of the Hilbert space becomes almost infeasible from a
computational point of view very soon.

d Theorem M Condition on p dim(S2(N, ε)) Hilbert space
6 5.1 19 p 6= 97; p ≡ 1, 3 (mod 8) 28, 64 96, 384
10 5.2 19 p 6= 139; p ≡ 1, 3 (mod 8) 140, 288 448, 1792
11 5.3 19 p 6= 73; p ≡ 1, 3 (mod 8) 48, 92 224, 896
19 5.4 19 p 6= 43, 113; p ≡ 1, 3 (mod 8) 80, 156 608, 2432
129 5.5 19 p > 900 or p ≡ 1, 3 (mod 8) and p 6= 43 16, 1400 100, 600, 38400

Table 5.1.
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5.1. The case d = 6. As mentioned before, although the case d = 6
seems to be out of reach of the modular method, it turns out that the
Frey curve attached to the solution (±7,±20, 1) does also have complex
multiplication! (This seems to be a very fortunate coincidence, unlikely
to occur for other values.) Trivial solutions give elliptic curves with j-in-

variant 8000 (with complex multiplication by Z[
√
−2]). Over Q(

√
6)

there are only two extra isomorphism classes of elliptic curves with com-
plex multiplication whose j-invariant is not rational (see [8]), with j-in-

variants 188837384000 ± 77092288000
√

6. The Frey curves E(±7,±20,1)

have precisely such j-invariants!

Theorem 5.1. Let p > 19 be a prime number such that p 6= 97 and
p ≡ 1, 3 (mod 8). Then, (±7,±20, 1) are the only non-trivial primitive
solutions of the equation

x4 − 6y2 = zp.

Proof: Suppose that (a, b, c) is a non-trivial primitive solution. If c = ±1,
then, by (5), (a, b, c) = (±7,±20, 1). Hence, we are led to consider the
case c 6= ±1 (in particular, c is divisible by a prime number greater
than 3). In order to apply Ribet’s lowering-the-level result, we need to
prove that the residual representation of E(a,b,c) modulo p is absolutely

irreducible. For that purpose we apply Theorem 1 of [15]. Let ε = 5+2
√

6
be a fundamental unit. The primes dividing lcm(N(ε12 − 1),N(ε12 − 1))
live in {2, 3, 5, 11, 97}. Next we need to compute the characteristic poly-
nomial at a prime of good reduction. Since E(a,b,c) has good reduction at

primes ramifying in K/Q, q = 3 is a good candidate so let q = 〈3 +
√

6〉.
The curve E(a,b,c) modulo q is one of y2 = x3±x2+2x, hence aq(E) = ±2.

The resultant between x2 ± 2x + 3 and x12 − 1 is only divisible by the
primes {2, 3, 19, 97}, hence the residual image is absolutely irreducible
for all primes except the ones in the set {2, 3, 5, 11, 19, 97}. Using Theo-
rem 3.2 (and Remark 2) and Ribet’s lowering-the-level result, we have to
compute the spaces S2(28 ·3, ε) and S2(29 ·3, ε), where ε is the character

corresponding to the quadratic field Q(
√

3).

• The space S2(28 · 3, ε) has 10 Galois conjugacy classes, 6 of them
having complex multiplication. Running Mazur’s trick (see [25,
Proposition 6.1]) for primes 5 ≤ q ≤ 10 we can discard all the new-
forms except 3 with complex multiplication, if p 6∈ {2, 5, 7}. The
only newforms that cannot be discarded in this space are the 3 new-
forms corresponding to the solutions (±1, 0, 1) and (±7,±20, 1)
with complex multiplication by Z[

√
−2].
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• The space S2(29 · 3, ε) has 13 Galois conjugacy classes, 3 of them
having complex multiplication. Again, running Mazur’s trick for
primes 5 ≤ q ≤ 20 allows us to discard all such newforms if p 6∈
{2, 3, 5, 7, 17}.

Then, assuming p > 19 and p 6= 97, we are able to lower the level and
discard all the possible newforms except 3 with complex multiplication
by Z[

√
−2]. To discard the remaining ones we need to impose a congru-

ence condition on p. If p ≡ 1, 3 (mod 8), then it splits in Q(
√
−2) and

then the residual representations of the newforms with complex multi-
plication modulo p have image lying in the normalizer of a split Cartan
subgroup. This contradicts [13, Proposition 3.4] (as c is divisible by a
prime greater than 3).

Remark 3. While proving large image, [15, Theorem 1] was used with q =
3, since we know that the curve has good reduction for odd primes ram-
ifying in K. Although we do not know a priori other primes of good
reduction, if the obtained bound is large, not everything is lost. Let
q > 5 be a prime inert in K and suppose p > 71. If q divides c, the curve
has multiplicative reduction at q, hence [24, Theorem 1.2] implies that
the residual representation is irreducible. Otherwise, the curve has good
reduction at q hence we can apply the above strategy to the prime q.
This method was used for d ∈ {10, 11, 19}.
5.2. The case d = 10. In this case we have the following result.

Theorem 5.2. Let p > 19 be a prime number such that p 6= 139 and
p ≡ 1, 3 (mod 8). Then, there are no non-trivial primitive solutions of
the equation

x4 − 10y2 = zp.

Proof: Let (a, b, c) be a putative non-trivial primitive solution. In this
case, Theorem 2.1 implies that ε is a character of order 4 and conductor 4·
5, while χ has order 8. As in the previous case, applying [15, Theorem 1]
and Remark 3 for primes q = 5, 7, we get that ρE(a,b,c),p is irreducible if

p does not belong to {2, 3, 5, 7, 13, 31, 37}. Hence, by Theorem 3.2 and
Ribet’s lowering-the-level result, we have that there exists a newform g
in S2(28 ·52, ε) or in S2(29 ·52, ε) whose Galois representation is congruent
modulo p to ρE(a,b,c),p ⊗ χ.

• The space S2(28 ·52, ε) has 55 Galois conjugacy classes, 22 of them
having complex multiplication. Running Mazur’s trick for all the
newforms g and primes 3 ≤ q ≤ 37 such that q 6= 5, 31, we obtain
that all the newforms can be discarded if p 6∈{2, 3, 5, 7, 11, 17, 19, 23}
except for the 2 newforms coming from the trivial solutions, with
complex multiplication by Z[

√
−2].
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• The space S2(29·52, ε) has 40 newforms, 10 of them having complex
multiplication. In this case Mazur’s trick for primes q 6= 5 such
that 3 ≤ q ≤ 20 discards all the newforms in the space if p 6∈
{2, 3, 5, 7, 11, 13, 17, 23}.

Hence, assuming p /∈ {2, 5, 7, 11, 13, 17, 19, 23, 31, 37}, it only remains
to discard the 2 newforms with complex multiplication belonging to the
first space. Since the solution is primitive, c is odd (see [25, Lemma 2.4]).
If c is divisible by 3, then we can use Mazur’s trick with q = 3, get-
ting that p | N(16ε−1(3) − a3(g)2) (see the last line of the definition of
B(g, q; a, b, c)), so p ∈ {2, 5}. Hence c is not divisible by 3 and we are in
the hypothesis of [13, Proposition 3.4]. Then, once again, we can discard
the remaining 2 newforms when p ≡ 1, 3 (mod 8).

5.3. The case d = 11. In this case we have the following result.

Theorem 5.3. Let p > 19 be a prime number such that p 6= 73 and
p ≡ 1, 3 (mod 8). Then, there are no non-trivial primitive solutions of
the equation

x4 − 11y2 = zp.

Proof: Let (a, b, c) be a non-trivial primitive solution. By Theorem 2.1
we have that ε is of order 2 and conductor 4 · 11, and χ is of or-
der 4. Applying [15, Theorem 1] (and using again the strategy of Re-
mark 3) for primes q = 11, 13 we get that if p does not belong to
{2, 3, 5, 7, 11, 17, 19, 73, 397}, then ρE(a,b,c),p is absolutely irreducible and
we can apply Ribet’s lowering-the-level result, so Theorem 3.2 implies
the existence of a newform g in S2(27 ·11, ε) or in S2(28 ·11, ε) congruent
modulo p to ρE(a,b,c),p ⊗ χ.

• The space S2(27 ·11, ε) has 4 Galois conjugacy classes, none of them
with complex multiplication. Running Mazur’s trick for primes 3 ≤
q ≤ 10 we can discard all the newforms if p > 7.

• The space S2(28 · 11, ε) has 15 Galois conjugacy classes, 7 of them
having complex multiplication. 2 of the newforms with complex
multiplication correspond to the trivial solutions (±1, 0, 1). Run-
ning Mazur’s trick for the other 13 newforms, for primes q 6= 11
such that 3 ≤ q ≤ 43, we can discard them if p > 19. To discard
the remaining 2 newforms we need the hypothesis p ≡ 1, 3 (mod 8)
and use [13, Proposition 3.4].
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5.4. The case d = 19. In this case we have the following result.

Theorem 5.4. Let p > 19 be a prime number such that p 6= 43, 113 and
p ≡ 1, 3 (mod 8). Then, there are no non-trivial primitive solutions of
the equation

x4 − 19y2 = zp.

Proof: Let (a, b, c) be a non-trivial primitive solution. To prove that the
residual representation of E(a,b,c) modulo p is absolutely irreducible we
apply [15, Theorem 1] for q = 19 and follow Remark 3 for the prime q =
7, obtaining that ρE(a,b,c),p has absolutely irreducible reduction if p /∈
{2, 3, 5, 11, 13, 17, 19, 31, 43, 113, 115597}, so we are going to assume this
hypothesis from now on.

The character ε has order 2 and conductor 4 ·19, while χ is of order 4.
Then Ribet’s lowering-the-level result together with Theorem 3.2 imply
that we have to search for a newform g in one of the spaces S2(27 · 19, ε)
or S2(28 · 19, ε).

• The space S2(27 ·19, ε) has 4 Galois conjugacy classes, none of them
with complex multiplication. Using Mazur’s trick with primes 3 ≤
q ≤ 17 we are able to discard all the newforms (in fact we just need
p > 2).

• The space S2(28 · 19, ε) has 18 Galois conjugacy classes, 7 of them
having complex multiplication. With the above assumption on p
(and in fact just assuming p > 19), we can use Mazur’s trick with
primes 3 ≤ q ≤ 17 and discard all the newforms but 2 of them,
corresponding to the trivial solutions (and having complex multi-
plication by Z[

√
−2]).

To discard these 2 newforms with complex multiplication, we proceed
as before. Since the solution is primitive, c must be odd. Suppose that
c is divisible by 3. Then, the fact that p | N(16ε(3)−1 − a3(g)2) implies
that p ∈ {2, 3}, which gives a contradiction. Hence c is not divisible
by 3 and then we are in the hypothesis of [13, Proposition 3.4], so we
can discard the newforms attached to the trivial solutions under the
assumption p ≡ 1, 3 (mod 8).

5.5. The case d = 129. The prime 2 splits in Q(
√

129), hence Ellen-
berg’s result (as described in Section 4) can be applied to discard the
trivial solutions as well.

Theorem 5.5. Let p > 19 be a prime number satisfying that either
p > 900 or p ≡ 1, 3 (mod 8) and p 6= 43. Then, there are no non-trivial
primitive solutions of the equation

x4 − 129y2 = zp.
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Proof: As before, let (a, b, c) be a non-trivial primitive solution, and
E(a,b,c) the Frey curve attached to it. [15, Theorem 1] proves that the
residual image is absolutely irreducible for primes not in {2, 3, 5, 7, 11,
13, 17, 43, 53, 251, 313, 661, 2593, 3371, 411577}. As this bound is a little
large, we follow the strategy described in [23, Lemma 3.2]. Suppose that
the residual extended representation ρ̃p at a prime p is reducible; say its
semisimplification is given by θ1 ⊕ θ2. Then the residual representation
of ρE(a,b,c),p is isomorphic to χ−1θ1|GalK ⊕χ−1θ2|GalK . To ease notation,

let ψi = χ−1θi|GalK . Since the curve E(a,b,c) has additive reduction
only at primes dividing 2, both ψ1 and ψ2 are unramified outside primes
dividing 2 and p. Furthermore, by [19, Lemma 1], one of the characters
is unramified outside p (say ψ1).

The prime 2 splits in Q(
√

129)/Q; say (2) = p2p̄2. By [25, Lemma 2.8],
the conductor of E(a,b,c) at (p2, p̄2) equals one of (8, 8), (1, 6), or (4, 6),

hence the character ψ1 has conductor at most 24, p3
2, or 4 · p2 (or their

conjugates). The ray class group for such conductors has exponent 4 in
the first case and 2 in the other two cases (computed using [27]). In
particular, the curve (or a quadratic twist of it) has a rational point over
an extension of degree 2 or 4 over Q, hence p ≤ 17 by [10, Theorem 1.2].

Theorem 3.2, Ribet’s lowering-the-level result, and the proof of [25,
Lemma 2.8] imply that ρE(a,b,c),p⊗χ is congruent modulo p to the Galois

representation of a newform in S2(2·3·43, ε) (when c is even) or in S2(28 ·
3 · 43, ε) (when c is odd), where ε corresponds to Q(

√
129).

• The space S2(2 · 3 · 43, ε) has 4 Galois conjugacy classes, none
of them having complex multiplication. Using Mazur’s trick for
primes 5 ≤ q ≤ 20, all the newforms in the first space can be
discarded assuming p > 5.
• The space S2(28 · 3 · 43, ε) has 36 Galois conjugacy classes, 18

of them having complex multiplication. Using Mazur’s trick for
primes 5 ≤ q ≤ 20, the first 33 newforms (in Magma’s order) can be
discarded assuming p /∈ {2, 5, 7, 11, 13, 17, 23, 43}, but 4 newforms
have complex multiplication by Z[

√
−2]. The last 3 newforms do

not have complex multiplication, but they do have a large coeffi-
cient field and Magma is unable to compute norms over these fields,
so we used Magma to compute the coefficients a5 and a7 of each of
these newforms and apply Mazur’s trick in PARI/GP for q = 5, 7 by
hand (where the norms are computed in a few seconds). It follows
that they can be discarded if p 6∈ {2, 5, 7, 37}.

Since in this case 2 splits over K, then we can use the results of
Section 4 to discard the newforms having complex multiplication. After
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a computer search for the minimum x we obtained that taking x = 49885
in (16) (using the inequalities (14) and (15)) makes the right-hand side
positive for p > 900. This can be checked with the following command
(in PARI/GP):

? read("RemoveCM");

? Bound(129,907,49885)

%2 = 0.039412707010082109791157365950637933812

For small primes, the same argument as in the previous examples works;
note that c is divisible by an odd prime larger than 3 because it cannot
be divisible by 3 (as the solution is primitive) and it is not divisible
by 2 because the modular forms with complex multiplication appear in
the space S2(28 · 3 · 43, ε). Then we are again in the hypothesis of [13,
Proposition 3.4], which discards newforms with complex multiplication
by Z[

√
−2] for primes p ≡ 1, 3 (mod 8).

Remark 4. Ellenberg’s bound obtained in the last example could proba-
bly be slightly improved if better bounds were given in the computations
of Section 4. If the final value is not too large, a newform f ∈ S2(2p2)
with the desired properties could be found in the intermediate range via
a computer search.
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