
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

ul
y 

20
23

 

royalsocietypublishing.org/journal/rspb
Evidence

synthesis
Cite this article: Lee DS, Batyra E, Castro A,
Wilde J. 2023 Human fertility after a disaster: a

systematic literature review. Proc. R. Soc. B

290: 20230211.
https://doi.org/10.1098/rspb.2023.0211
Received: 26 January 2023

Accepted: 6 April 2023
Subject Category:
Behaviour

Subject Areas:
environmental science, biological applications,

behaviour

Keywords:
fertility, disaster, humans, systematic literature

review, birth counts
Author for correspondence:
D. Susie Lee

e-mail: lee@demogr.mpg.de
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6607452.
Human fertility after a disaster: a
systematic literature review

D. Susie Lee1, Ewa Batyra1,2, Andres Castro1,2 and Joshua Wilde1,3

1Fertility and Well-being, Max-Planck-Institute for Demographic Research, 18057 Rostock, Mecklenburg-
Vorpommern, Germany
2Centre for Demographic Studies (CED), Barcelona, 08193, Spain
3Institute of Labor Economics (IZA), 53113 Bonn, Germany

DSL, 0000-0002-0761-0069; EB, 0000-0002-2967-1508; AC, 0000-0003-1032-3869

Fertility is a key demographic parameter influenced by disaster. With the
growing risk of disasters, interest in the fertility response to a disaster is
increasing among the public, policy makers and researchers alike. As yet,
a synthesis of the current evidence on how fertility changes after disaster
does not exist. We reviewed 50 studies retrieved from a systematic search
based on a pre-registered protocol. We found an overall negative impact
of disasters on fertility. If any, increases in fertility were mostly linked
with weather-related physical disasters. We also identified 13 distinct mech-
anisms which researchers have considered as underlying the fertility effects
of disaster. By contrast to the common belief that disasters are more likely to
increase fertility in contexts with already high fertility, we found little evi-
dence to suggest that the total fertility rate of the studied populations was
an important predictor of the direction, timing or size of fertility impacts.
While this may be because no relationship exists, it may also be due to
biases we observed in the literature towards studying high-income countries
or high-cost disasters. We summarize the methodological limitations ident-
ified from the reviewed studies into six practical recommendations for future
research. Our findings inform both the theories behind the fertility effects of
disasters and the methods for studying them.
1. Introduction
Disasters can significantly affect the lives of those who experience them. Beyond
the proximate perils of displacement, death, disease and injury, disasters are
often accompanied by broader challenges such as economic crisis, reduced
access to health facilities and other services, and food insecurity. Since child-
bearing is one of the most consequential choices people make, it is not
surprising that disasters affect whether and when people have children, and
how many. With the growing frequency and severity of disasters [1,2] especially
due to the global climate crisis [3], how disasters affect fertility has become a
topic of interest increasingly shared among the public, policy makers and
researchers alike [4,5].

Yet in spite of the importance of and broad interest in the topic, a synthesis
of the current evidence on how disasters affect fertility (the number and timing
of births) does not yet exist. Doing so is a complex task, for multiple reasons.
First, ‘disaster’ is a blanket term for many types of catastrophic events, each
of which may vary from one another in their impact on fertility. Second,
even within disaster type, the direction and magnitude of the effects thereof
differ depending on population characteristics [6]. For example, it was pre-
dicted that the COVID-19 pandemic would lead to a reduction in births in
high-income, low-fertility contexts, but to an increase in low-income, high-
fertility contexts [7]. Third, disasters can have different effects in the short,
medium and long runs. Indeed, the very first scientific observation on
the topic, made in 1892 [8], noted that fertility dropped around 9–10 months
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(i.e. the average human gestation length) after the spike of
mortality during the 1889–1890 influenza pandemic, and
then increased above and eventually converged to the
expected average. Although this sequence of initial trough,
rebound and stabilization mirrors the temporal dynamics of
mortality crises [9], we do not yet know the degree of support
for similar fertility dynamics within the existing evidence
base. Fourth, the mechanisms underlying fertility change
are numerous and complex, making it difficult to differentiate
specific pathways by which disasters affect fertility [10].
Lastly, methodological differences hinder the comparison of
fertility effects across studies. This is particularly important
since methodological quality determines the degree to
which an association between disaster and fertility affords
causal interpretation, given that experimental study on this
topic is nearly impossible.

We conducted a systematic review [11] of studies that
quantified the change in live birth counts after disasters, to
provide a comprehensive view of the state-of-the-art evidence
in this field. Building on existing reviews or continent-level
analysis on other catastrophic events such as wars and con-
flicts, humanitarian crises and economic recession [12–16],
we reviewed fertility change after natural or technological
disasters. They included disease outbreaks, physical disasters
(e.g. earthquake, weather-related events) and technological
disasters (e.g. radiation events, poisoning, explosion). We
use the term ‘disease outbreak’ to refer to community-level
disease occurrence including epidemics and pandemics, simi-
lar to the approach taken by the Center for Disease Control
(https://www.cdc.gov/outbreaks/index.html). We focused
on studies that operationalized disasters as relatively concen-
trated and unanticipated exposure [17] experienced at the
community-level, and thus excluded those that measured
exposure at individual-level or with a continuous scale (see
Methods for our eligibility criteria).

Based on the literature identified through a predefined
protocol, we analysed (1) how disaster–fertility relationships
have been studied in terms of spatio-temporal coverage and
methodology, and (2) the direction, magnitude and mechan-
isms by which disaster affects fertility. Given the diversity of
methodological approaches and measures employed by the
reviewed studies, we deemed the synthesis of effect sizes
via meta-analysis infeasible. We instead opted to present a
narrative synthesis accompanied by statistical analysis as
needed, and offer methodological recommendations for
future research.
2. Methods
The protocol for this review was pre-registered at PROSPERO
(ID: CRD42022320294) before data extraction and analysis.
Details on the database search procedure and results, and the
data extraction template and data extracted can be found on
the project website (https://osf.io/dpgqf/).

(a) Scope and eligibility criteria
The scope of our review was determined by our two core con-
cepts—disaster [exposure] and fertility [outcome]. Disaster is a
difficult concept to define [18] and ranges from everyday emer-
gencies, economic shocks, conflicts and wars, to various types
of catastrophic events which may entail distinct patterns of
disruptions [19,20]. The present review focused on natural and
technological disasters, for which—to the best of our
knowledge—no systematic reviews are available. The primary
outcome of interest was live birth counts, a measure with a
direct impact on population structure and size. We excluded
other reproductive health measures beyond live birth counts,
given already existing reviews on the sexual and reproduc-
tive health consequences of disasters [21] or adverse birth
outcomes [22–27].

We selected studies that were: (a) either published or in press
in peer-reviewed journals as of early February 2022, (b) on
human populations regardless of publication year and
languages, as long as (c) information on the direction or magni-
tude (or both) of the relationship between disaster and fertility
was reported. We restricted studies to those on (d) the relatively
acute impact of a disaster, not extending to studies that had
assessed exposure to post-disaster environments created by a dis-
aster itself, such as displacement camps or food insecurity, or the
intergenerational impact of disaster on fertility. We focused on
studies which examined (e) one of the disaster types—both natu-
ral and technological—listed in the International Disasters
Database [28] and (f) fertility in terms of live birth counts,
excluding studies that used a combined measure of stillbirth
and live birth [29]. Lastly, we reviewed (g) studies that
operationalized disaster as a relatively concentrated and/or
unanticipated exposure, as explained below.

(b) Operationalizing exposure to disaster
Different identifications of exposure yield different findings and
interpretations of the impact of an exposure [17]. In the present
study, we focused on studies that operationalized disaster as a
‘concentrated’—meaning having a major impact on many
communities—and/or ‘unanticipated’—meaning seemingly
random, non-cyclic and extreme—exposure to entire commu-
nities. Doing so would allow interpreting the impact of a
disaster as a population-level fertility response to significantly and
unexpectedly abrupt disruptions to routine. This operationalization
of disaster had three implications for the scope of this review.
First, exposure to disaster is not reduced to individual-level
exposure. For example, we omitted studies that compared ferti-
lity between infected and uninfected individuals, as the
literature on the fertility effect of HIV commonly does [30,31].
The current review thus approached fertility from a demographic
perspective, where fertility is a process by which populations
replace themselves, as opposed to a strictly clinical perspective.
Second, exposure to disaster should not be intermittent (e.g. sea-
sonal heat waves) or persistent (e.g. endemic diseases). In this
regard, identifying a specific disaster onset should be reasonably
possible. Third, exposure to disaster is measured entirely at the
population-level. We also excluded studies that measured
exposure on a continuous scale, such as degree of rainfall [32],
seismic intensity scale [33], or the prevalence of a disease [34],
which would not allow interpreting the impact of a disaster
event as a whole.

(c) Literature search and study selection
In February 2022, we searched databases and conducted an
additional search in non-English databases for which we had
language expertise and access. We used Boolean operators,
whenever they were supported by databases, to combine
search terms for each disaster and fertility (e.g. ‘hurricane AND
fertility’). We searched for the presence of any combinations
either in the title or abstract. A total of 12 661 studies were
found, of which 4190 deduplicated unique studies were screened
(figure 1). We used Covidence, an online record management
system for systematic review [35], to conduct screening and
data extraction. First, the title and abstract of each article
were read by two researchers, who independently rated
whether or not a study met the eligibility criteria (yes, no or

https://www.cdc.gov/outbreaks/index.html
https://osf.io/dpgqf/


Records identified from*:
Scopus (n = 3316)
Pubmed (n = 2054)
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screening:

Duplicate records removed
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Records screened for abstract
(n = 4190)

3851 records not meeting
eligibility criteria were excluded.

Reports sought for retrieval
(n = 339)

Access to full-text was not
available for 4 records.2
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1The following non-English databases were
searched: Russian Science Citation Index,
SCIELO, Korean Citation Index.
2Pérez (2021) ‘The Spanish flu in Bilbao.
Demographic analysis of the pandemic and
its consequences from different information
sources’, Oberson (2010) ‘Environmental
pollutions and effects on reproduction: A
glance at the past’, Scragg (1977) ‘Pollution
and sex ratio of births’, Lyster (1981)
‘Pollution and sex ratio of births’
3We identified 44 new articles cited in the 48
articles initially selected, and found 2 of the
44 to meet the eligibility criteria, hence the total 
number of finally selected articles was 50.

Figure 1. Flow chart of studies selection process.
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maybe). Only the studies unanimously voted either ‘yes’ or
‘maybe’ entered the full-text screening. Second, the full
text of each article was read by two researchers and rated in
reference to the eligibility criteria. In both screening procedures,
any discrepancies in assessments were discussed and resolved
by the whole team. Third, based on the 48 articles chosen for
review, we extracted information on study characteristics,
methods and findings. Data were extracted twice each by
two researchers, and any discrepancies were resolved in
discussion among them. Lastly, during the data extraction,
we identified 44 potentially relevant additional articles
through backward citation search. Two of these studies met the
eligibility criteria and were included for review. We did not per-
form a forward citation search, since studies on the COVID-19
pandemic are rapidly increasing. We identified 50 studies
(figure 1, table 1) which quantified how live birth counts
change after disasters.
(d) Data and analyses
The unit of analysis was either studies (figure 2), countries
matched with disasters (figure 3), effect sizes (figures 4–6), or
mechanisms suggested by studies (figure 7). While there were
50 studies reviewed, not all studies covered just one country or
reported only one effect size or mechanism, leading to different
samples depending on the unit of analysis.
(e) Fertility effect of disaster
In this review, a fertility effect refers to ‘changes in live birth
counts after a disaster’. If an effect is reported as a numeric
value, then it conveys both information about the direction and
the magnitude of effect (i.e. effect size). The direction of an
effect can be smaller [negative] or larger [positive] than 0, or
not different from the control group [null]. Where possible, we
extracted standardized effect sizes (e.g. percentage difference or
change). If there were multiple effect sizes, we identified a sum-
mary effect, which is either the effect size reported from an
author’s preferred analysis or the effect size mentioned as the
main finding of a study.

From the 50 studies, we extracted 108 data points on fertility
effects, of which 82 were summary effects. Out of the 108 effects,
only 76 had further information about magnitude because some
studies did not report fertility effects in numeric forms for mul-
tiple reasons. For example, a multi-country study reported
effect values from the study’s preferred analysis for only select
countries with large and statistically significant effect [51], or,
in some studies, fertility of case versus control groups was
reported side by side across multiple time points without a
single summary effect [40,52–54]. For these studies, we could
still extract information on effect direction based on the authors’
conclusion and/or visualization of effects. We could not extract
any information on effects from one study [55] that only com-
pared post-disaster fertility of the affected population with the
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line) or disaster occurrence (dashed line), and starts from 1880 because
the earliest disaster covered by the reviewed studies was the 1882 measles
outbreak in Iceland. The year range of disasters covered by the 50 studies is
wider than the year range of publications, reflecting the recent increase in the
body of works that quantified fertility changes after disaster. More than 75%
of studies were published post 2000.
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unaffected population, making it impossible to separate the
impact of disaster from any pre-existing difference between the
compared populations.

It was not feasible to summarize effect sizes via meta-analy-
sis, due to differences in research designs, effect size types,
duration of effect measurement, as well as the unavailability of
information necessary for meta-analysis. Instead, we conducted
various alternative analyses. First, we used a vote-counting
method [56], which compares the numbers of studies with posi-
tive versus negative effects using a binomial/sign test. The null
hypothesis states the equal chance of positive versus negative
effects based on binomial distribution. All available information
on the direction of point estimates regardless of statistical signifi-
cance entered vote-counting, because vote-counting can be
misleading if a subjective decision (e.g. an arbitrary alpha level
for statistical significance) is used to determine a vote. Second,
we used Chi-square tests and log-linear models to examine
differences in the counts of positive versus negative effects by
disaster types and countries’ total fertility rate (TFR) at the year
of disaster. Third, we analysed effect direction by time lag
from disaster to the beginning of outcome measurement, first
by pooling all effect directions reported in the studies and then
by confining to 13 studies that examined fertility effect across
multiple post-disaster time points. We calculated the time lag
in months. Lastly, we examined patterns in effect sizes among
those reported in comparable metrics, specifically % change in
fertility adjusted for seasonality and time trends in fertility.
There were 18 such effect sizes.

( f ) Mechanisms
Out of the 50 studies, 36 postulated at least one mechanism
underlying the fertility effects of disaster.

We classified mechanisms into 13 groups, which were also
categorized as either behavioural or physiological mechanisms
(electronic supplementary material, tables S1 and S2). Of the
13, the behavioural mechanisms were: child/community replace-
ment effect (no. 1), economic conditions/uncertainty (no. 2),
migration (no. 3), psychological (no. 4), partnership dynamics
(no. 5) and postponement/reduction of family size (no. 8). The
physiological mechanisms were: disruption of reproductive ser-
vices (no. 9), preterm births (no. 12), and mortality of men or
women of reproductive age (no. 13). There were two additional
mechanisms that could be behavioural or physiological depend-
ing on contexts: conception given intercourse would be affected
behaviourally via (no. 6) contraceptive use but also physiologi-
cally via (no. 10) infertility, and successful delivery given
conception would be affected behaviourally via (no. 7) abortion
but also physiologically via (no. 11) miscarriage.

Although it is challenging to integrate the 13 mechanisms
into one framework, we follow the approach taken by a previous
review on fertility after wars, humanitarian crises and displace-
ment [13]. Here, different pathways by which fertility changes
were seen as a combination of indirect (distal) and direct (prox-
imate) determinants of fertility, following the frameworks
proposed by Davis & Blake [57] and later by Bongaarts [58].
Among the 13 mechanisms we identified, the proximate mechan-
isms which can affect fertility directly are (i) intercourse that is
driven by partnership dynamics (no. 5), (ii) conception given
intercourse (no. 6,10) and (iii) successful delivery given con-
ception (no. 7,11). Partnership dynamics can influence fertility
either through marital or coital rate; conception given intercourse
can be affected by contraceptive use or women’s ability to con-
ceive (i.e. fecundity). Mechanisms affecting fertility through
successful delivery given conception encompass different types
of pregnancy termination (both related to the decision to termi-
nate - through abortion- and involuntary termination, for
example miscarriage). The remaining mechanisms are either
indirect ones (no. 1–4, 9) or ones that cannot be easily classified
as direct or indirect (no. 8, 12–13). For example, economic con-
ditions are a clear example of an indirect mechanism through
which disasters can affect the proximate determinants mentioned
above. Conversely, a broad group of mechanisms frequently
mentioned in the studies, which we call ‘postponement/family
size reduction’, is not easily classifiable, as it could be an out-
come of an interplay of both indirect determinants (e.g.
economic conditions) and proximate determinants (e.g. partner-
ship dynamics) included in mechanisms groups no. 2–7.
Similarly, preterm births and reproductive age mortality (i.e.
either women or men of reproductive age) cannot be easily
classified according to the proximate determinants framework.
3. Results
(a) What has been studied, and how?
(i) Temporal and geographical scope of reviewed studies
The 50 studies were published between 1975 and 2022 and
covered 24 different disasters, which occurred between 1882
(the measles outbreak in Iceland) and 2020 (the COVID-19
pandemic) across 52 countries. Our study sample is biased
toward studies that examined certain disaster types and
regions. Twenty-two out of the 50 studies (44%) were on
either the Zika epidemic, the 1918 influenza pandemic, or
the COVID-19 pandemic, and the majority of these studies
were based on samples from Brazil, Italy, Japan and the US.
In this regard, 44% of the research on the disaster–fertility
nexus has thus far focused on disease outbreaks from
middle- and high-income countries. Indeed, 10 out of the
50 studies covered the US, and more than half (52%) covered
either Brazil, Italy, Japan or the US.

The literature is relatively young, as most works were
published over the last two decades (solid line, figure 2).
More recent disasters were more likely to be studied, with
more than half of the studies covering post-2000 disasters
(dashed line, figure 2). This trend resulted in shorter
time lags between disaster and publication for more recent
disasters, such as the COVID-19 pandemic and the Zika
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epidemic. Such a trend may reflect an increase in both the
interest in the topic and data availability, in particular for
individual-level and panel data [89].

However, the recent expansion of the literature does not
correspond to the actual distribution of recent disasters and
disaster risks. For example, our search did not identify
studies on several natural disasters that occurred during
2000–2019 with more than 100 000 casualties [2], notably
the 2008 Cyclone Nargis in Myanmar, the 2005 Pakistan
earthquake and the heatwaves in Europe (2003) and Russia
(2010). The deadliest natural disaster of the last two decades,
the 2004 Indian Ocean Tsunami, affected 12 countries in Asia
and Africa. Still, only two studies in the reviewed literature
examined the fertility consequences of this disaster, and
only in Indonesia [84,85].

To further understand the demographic context of the lit-
erature, we examined the distribution of countries studied
according to country-level total fertility rate (TFR) and year
of disaster occurrence. Figure 3 displays which countries
were covered by the 50 studies, according to the disaster
year and the country-level total fertility rate (TFR) at the
time of disaster. The lines trace the time series of a country’s
TFR 5 years before and after the disaster. Figure 3 shows that
our study sample covers a wide range of TFR levels (from 0.8
to 7.0) and temporal trends. Fertility exhibits substantial
declines before and after the disasters—particularly for
those before 2010—making it important to consider time
trends of fertility within study designs. This is also important
for disasters occurring in low fertility contexts, where fertility
continues to fluctuate yearly.

Figure 3 speaks again to the strong concentration of
studies in recent years (also figure 2), and additionally
shows that the concentration is among low and relatively
stable fertility contexts represented by countries in the
Global North (figure 3, right panel). Most of these countries
are included in multi-country studies. One multi-country
study that contributed significantly to this pattern [51] exem-
plifies a trend that favours multi-country comparative
analyses—especially in high-income countries—based on
the availability of harmonized and comparable data such as
the Human Fertility Database (https://www.humanferti-
lity.org) and the Short-Term Fertility Fluctuations Data
Series (www.humanfertility.org/Data/STFF). Studies on
more recent disasters (especially post-2010) also concern rela-
tively low fertility contexts with TFR below two (figure 3,
right panel), driven by research on the COVID-19 pandemic
in high-income economies and the Zika epidemic in Brazil
and Colombia. Among the whole 50 studies, there are very
few studies conducted in settings with TFRs above four
(figure 3, left panel); among them, most studies were on
physical or technological disasters that occurred in the
Global South.
(ii) Methods for measuring fertility effect of disaster
In nearly two-thirds of the studies, one population serves as
its own comparison group (within-population comparison;
table 1). Fertility was compared (i) between before (control)
and after (case) the disaster or (ii) between what is expected
under the assumption of no disaster (control) and actually
observed (case). In the rest of the studies, at least two popu-
lations, one not affected (control) and the other affected (case)
by the disaster were compared before and after the disaster
(between-population comparison). In most of these studies,

https://www.humanfertility.org
https://www.humanfertility.org
http://www.humanfertility.org/Data/STFF
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the subnational area(s) hit hard by a disaster served as the
‘affected’ group, then compared with other subnational
areas or the national-level average.

Studies employed three types of effect sizes to quantify
the difference in fertility between case and control. Counts
or rates were the most common type. The fertility measure
of choice was calculated for each of the case and control
groups over a certain period of time, and then compared
either in terms of raw differences or ratios. Only some of
these studies reported information on size of the population
from which the births were counted (i.e. person-years of
exposure) for both case and control—the information
required for meta-analysis of effect sizes on counts or rates
data. Other less common ways to calculate effect sizes
included correlating mortality at its peak with fertility 9–10
months after [38,39,61] or calculating differences between
average births of case versus control groups [51,59,78,82],
either in the aggregate or in rates.

The majority of the reviewed studies (84%) presented
information on the onset of a disaster at least in monthly
units, a prerequisite for defining the post-disaster period.
The onset of a disaster was defined in two ways. First,
researchers defined the onset of disaster prior to observing
data, by referring to the time point when a disaster is
known to have created an acute and major shock. Infor-
mation on the timing was available a priori, if (i) a disaster
is unanimously said to have occurred on a specific day or
across a few days (e.g. earthquake) or (ii) the researcher
makes an explicit assumption about when the disaster
likely had the most impact on fertility. The latter was a fre-
quent choice if there was a lag between the emergence of
hazards and their development into a disaster, as in the
case of the COVID-19 pandemic where the lockdowns are
often regarded as its onset of impact in respective countries.
Second, some studies analysed monthly data on proxies of
exposure to disaster (e.g. disease incidence rate, Internet
search for the disaster), to inductively identify the month
at which the exposure (or the perceived exposure) peaked
[36,41,42,61].

(b) How does fertility change after disaster?
(i) Fertility effects
The effect of disasters on fertility was generally negative,
even when controlling for secular time trends. Out of the
108 effect sizes for which information on direction was avail-
able, 77 were negative and 26 were positive. According to the
binomial test of the assumption that the counts of negative
and positive effects are even, the proportion of negative
effects was 0.66 (95% confidence interval [CI] = 0.57 to 0.79,
p = 0.006). Similarly, among the subset of 81 summary effect
sizes (effect sizes upon which each study based its main con-
clusion), the proportion of negative effects was 0.71 (95%
CI = 0.59 to 0.82, p < 0.001). The tendency for negative effects
became weaker when we further restricted to 46 effect sizes
that adjusted for time trends, but the majority of effect sizes
(59%) were still negative (95% CI = 0.43 to 0.73, p = 0.302).

Effect directions by disaster type and fertility context. Figure 4
displays the distribution of fertility effects for all disaster
types (pooled) and for each disaster type separately. To
assess the potential relationship between the effects’ direction
and the fertility context, bars are divided according to the
country-level TFR at the time of disaster. Negative effect
sizes dominated the studies on disease outbreaks and techno-
logical disasters, but not the studies on physical disasters.
Negative and positive effects were reported across all TFR
levels at similar proportions (figure 4a), and the same was
true within disease outbreaks (figure 4b) and physical disas-
ters (figure 4c). This comparison was not possible within
technological disasters, for which no positive effects were
reported (figure 4d ). We further examined the counts of
effects by direction (positive versus negative), TFR and



one effect size reporting null effect 24 months after a disaster onset

nine effect sizes reporting positive effect 9 months after a disaster onset

negative
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Figure 5. Directions of fertility effects reported at different time lags from disaster onset. Each grey circle represents an effect size available with information on the
effect’s direction, regardless of the effect’s magnitude and statistical significance. Effect sizes are classified into either positive [fertility increase], negative [fertility
decline], or no change (y-axis), and aligned by time lag of post-disaster fertility follow-up (x-axis). Assuming that follow-up began randomly, we can expect that the
temporal distribution of positive, negative, or zero effects will give ideas about the temporal dynamics of disaster impact. One model of such dynamics often invoked
is ‘initial fertility decline followed by fertility rebound’. We used all 105 effect sizes for which information on time at effect measurement was either reported or
could be estimated at monthly intervals.
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disaster type using log-linear models. Among the models
with different combinations of variables, the model with
the interaction between TFR and disaster type yielded the
highest goodness of fit as suggested by lowest model accu-
racy metrics (electronic supplementary material, table S3).
This finding is likely driven by the effect sizes from physical
disasters, because the majority (78%) of positive effects
reported from physical disasters pertained to contexts with
the TFR above 2.0 (figure 4c). These results again suggest
that the direction of effects may not differ by the TFR of the
studied populations.

Effect directions by time points. Figure 5 shows the direction
of the fertility effects (positive, null and negative) by time
since the disaster. Follow-ups began on average 9 months
from the disaster onset (interquartile range = 6–10 months).
Negative effects were most commonly reported between 0
and 12 months after the disaster, especially at 0 (i.e. at the
onset) and 9 months after the disaster. There were less posi-
tive or null effects reported. Nonetheless, both negative and
positive effects were most commonly reported at 9–10
months from the disaster onset.

Among the 13 studies that reported effect sizes across
multiple time points since the onset of a disaster (figure 6),
only one study on the 1918 influenza in India reported a pat-
tern of fertility decline, rebound above baseline, and
stabilization [43]. In five studies births declined then
rebounded; however, exact time points at which negative
and positive effects were reported varied across the studies
[36,38,40,43,44].

Magnitude of fertility effects. There were 18 effect sizes that
reported effects as percentage changes and adjusted for
seasonality and time trends in fertility (electronic supplemen-
tary material, table S4). Most of them were negative, ranging
from −1.7 to −43%. Only one effect was positive, showing a
9.5% increase. From these studies, two interesting patterns
emerge. First, for studies that examine precisely the same con-
text and disaster, effect sizes and directions agree very closely.
One example is the 2011 Japanese earthquake, where two
studies found a 9–10% reduction in fertility. Second, for
studies that analyse the same disaster and country context
but different sub-national regions, effect sizes for smaller
areas tend to be larger in absolute terms. For example, four
studies examine the effect of Zika in Brazil: a study on the
Northeast region alone found a 25% decline in births, whereas
a broader analysis of the 36 largest cities found only a 7.7%
decline, and two yet broader analysis (one of all municipalities
with at least one case, and another at the national level) found
a very similar 1.7% and 1.9% decline. This is possibly due to
publication bias towards studies which find large effects—
regional analyses with null effects are less likely to be pub-
lished, leaving only those with large effects. Similar patterns
are found among the studies on the 1918 influenza pandemic
in the US and COVID-19 in Italy.
(c) Mechanisms
Among the 50 reviewed studies, 36 (72%) referred to at least
one possible mechanism to explain the observed effects of dis-
asters on fertility. Figure 7 shows how frequently studies
invoked (if theydid any) behavioural or physiologicalmechan-
isms to explain findings. For example, for disease outbreaks,
studies considered behavioural andphysiologicalmechanisms
at a similar frequency, whereas physiological mechanisms
were considered more often for technological disasters. It
should be noted that, although studies on the two disaster
types are shown to concern with mechanisms underlying
negative effects, this does not mean that these studies did not
consider any mechanisms regarding positive effects if they
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over the seven months observation period

1918 Influenza (Bloom-Feshbach 2011)

1918 Influenza (Chandra 2015)

1918 Influenza (Chandra 2018)

1918 Influenza (Mills 1986)

1918 Influenza (Wilson 2019)

Icelandic measles outbreak (Gunnarsdottir 2014)

Zika (Gamboa 2019)

Zika (Triaca 2021)

Chernobyl accident (Bertollini 1990)

Guatemalan earthquake (Houdaille 1982)

Japanese earthquake (Hamamatsu 2014)

Japanese earthquake (Körblein 2021)

Japanese earthquake (Kurita 2019)

0 3 6 9 12 15 18 24

months since disaster

st
ud

ie
s 

re
po

rt
in

g 
m

ul
tip

le
 e

ff
ec

t s
iz

es

Figure 6. Studies reporting effect sizes across multiple time points since the onset of a disaster. For each unique study (y-axis), effect directions (decrease [↓], no
change [−], increase [↑]) are aligned by time lag of post-disaster fertility follow-up (x-axis). The grey horizontal bars represent the time window of the observation
period, which starts from the first post-disaster month at which an effect direction is reported and ends at the last post-disaster month at which an effect direction is
reported. We used 41 effect sizes extracted from 13 studies that reported fertility effects across multiple post-disaster time points.
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Figure 7. Mechanisms driving the impact of disaster on fertility based on 36 studies that mentioned at least one possible mechanism underlying the disaster–
fertility relationship. A total of 123 mechanisms mentioned by the 36 studies were classified by disaster types, effects direction, and whether a mechanism can be
considered as behavioural or physiological. Mechanisms most frequently mentioned are shown on the top of each group, and mechanisms mentioned only once are
not shown. For a full list of mechanisms by disaster types and fertility effect directions, see electronic supplementary material, tables S1 and S2.
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mentioned any. Rather, this means that the studies concluded
an overall negative effect based on their analyses.

Among the 20 studies on disease outbreaks thatmentioned
at least one mechanism and reported a negative impact on
fertility, over half considered behavioural mechanisms. These
included contraceptive use, postponement of childbearing,
reductions in completed family size, or abortion, as well
as psychological factors (e.g. fear of health risks). Some of
the studies also considered physiological mechanisms, such
as those preventing successful delivery (e.g. miscarriage),
reproductive age mortality and preterm births. Most of these
20 studies on disease outbreaks were on the Zika epidemic
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and the 1918 influenza pandemic, but notably, the former was
mostly concerned with behavioural mechanisms (87% of the
time) and the latter with physiological mechanisms (80% of
the time). This diverging pattern reflects how different charac-
teristics of risks associated with each disaster can result in the
consideration of different mechanisms by researchers.

This pattern also manifests itself in technological and
physical disasters. For these disaster types, the mechanisms
considered in each study were dominated by either behav-
ioural or physiological mechanisms, but not both (figure 7).
Researchers interpreted fertility change from technological
disasters mainly through the lens of physiological mechan-
isms relating to conception and successful delivery, perhaps
because all the disasters studied involved the spread of
hazardous chemical substances. By contrast, physical disas-
ters were postulated to drive fertility change mainly
through behavioural mechanisms. Here, mechanisms invol-
ving positive fertility effects have been most explicitly
considered, including psychological factors (e.g. attachment),
child/community replacement effects, and partnership
dynamics (see electronic supplementary material, table S1
for specific mechanism(s) each study mentioned).
1

4. Discussion
This systematic literature review demonstrates that disasters
reduce fertility, albeit heterogeneously by disaster type.
Specifically, while physical disasters resulted in either posi-
tive or negative fertility responses, for disease outbreaks
and technological disasters the summary effects were uni-
formly negative. When positive effects were found for
physical disasters, they were more likely to occur in higher
fertility contexts (TFR > 2.0). However, we find this tendency
was not strong enough to support the oft-postulated notion
that positive fertility effects are in general more likely in
higher TFR countries [6,7]. In addition, we found little
evidence that the direction of fertility effects differs by time
since disaster: negative effects were reported anywhere
from the onset to five years after the disaster, suggesting
that positive effects are likely to be short-term, if any, even
for physical disasters [32].

The concentration of positive effects from physical disas-
ters may reflect differences in how risks develop and are
perceived during these events. Physical disasters are charac-
terized by a relatively acute, recognizable shock. As such,
one can postulate that the waning of risks would also be per-
ceived relatively easily, leading to a higher probability of
fertility increase during the recovery period. By contrast,
disease outbreaks and technological disasters bring risks
that are often unclear, prolonged or difficult to track (e.g.
the spread of viruses, toxic materials such as radiation,
etc.). Such uncertainty, together with the direct and often
long-term physiological effects of virus infection or toxic
materials on fecundity and health in general, may underlie
the predominant pathways by which disease outbreaks and
technological disasters are thought to reduce fertility.

Our findings are corroborated by studies that were not
included in the present review because they did not meet our
eligibility criteria [32–34]. A recent study [90] published six
months after our literature search also concluded fertility
reduction during 5 years after various disasters in African
countries. In this study, the evidence for fertility decline was
clearest for disasters with prolonged periods of uncertainty, a
finding that is in line with our above interpretation. Fertility
declined more in areas already vulnerable to the risk of
droughts, suggesting that continuing uncertainty from disas-
ters could be a contributing factor to the observed fertility
decline in response to disasters. On the other hand, the average
change in fertility was either unclear or non-substantial after
short-duration disasters, such as floods, earthquakes, tropical
cyclones, other storms and epidemics. Of note, the definition
of epidemics in that study only included rapid outbreaks, and
excluded endemic diseases such as HIV/AIDS. In other
words, the study operationalized epidemics conceptually
similar to physical disasters in terms of the time scale of risk
development. It can thus be summarized that disasters invol-
ving higher uncertainty about risks may contribute to fertility
reduction, whereas the evidence of fertility decline is weaker
for relatively short-duration disasters. As such, the study
suggests that the general findings from our review may hold
even in relatively high fertility contexts such as in Africa.

While we find clear uniformity in the direction of summary
effects for some disaster types, overall the results were hetero-
geneous. Among physical disasters, the direction of effects was
variable, but also even within the same disaster, and even
within the same population groups. As an example of
between-population heterogeneity, one study on the 2004
Indonesian tsunami conducted in the most severely affected
regions found a strong negative effect [84], while another
cross-regional study found a fertility increase [85]. Some
studies also examine within-population heterogeneities in the
fertility effects of disasters, as summarized in table 1. This het-
erogeneity urges more future research to consider contextual
factors driving the divergence of fertility effects, especially
given that disaster vulnerability is highly unequal both
across and within countries and socioeconomic groups [91].

We also note that the current literature is biased toward
research on certain contexts and disasters, in spite of a sub-
stantial expansion of research on the disaster–fertility nexus
during this period. Particularly noticeable were gaps for
low-income countries, and for certain high-casualty disasters
which occurred during the last two decades. This is consist-
ent with a preoccupation with disasters causing high
economic losses rather than high casualties [92]. Similarly,
our analysis of the magnitude of fertility effects suggests a
potential publication bias for studies finding large impacts,
since sub-national effects were on average larger than
national ones. We could not formally test publication bias
due to the heterogeneity in disaster types, timeframes,
methods, and types of effects reported. However, it is unli-
kely that negative effects were published at a higher rate
than positive effects, since both positive and negative effects
were hypothesized a priori.

In the remainder of this paper, we identify common limit-
ations from the reviewed literature and summarize them into
six practical recommendations for future research. While not
prescriptive, these recommendations can help researchers
produce and evaluate evidence on causal effects—essential
for a field involving humans where experimental evidence
is problematic. Whenever possible, we highlight examples
of methods from reviewed studies that can be usefully
applied for future research.

First, data infrastructures for collecting data in low-
resource settings should be supported, particularly during
disasters (Recommendation 1). Conducting regular yet well-
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spaced population censuses is essential for monitoring the
effect of disaster on fertility and mortality; however, doing
so remains difficult for many low-income countries [93].
Researchers can take an active role in improving data collec-
tion by openly appraising the quality of data and data
infrastructure used in their research. Doing so would also
help assess the risk of bias in their findings. For example,
errors surrounding the under-counting of births due to
delayed reporting, house births in case of historical data,
and outmigration due to disaster were frequently reported
in the reviewed studies. Another common source of bias
was the omission of pre-disaster fertility data from women
who died from the disaster, particularly in cases where pre-
disaster fertility was determined by retrospective self-reports
from survivors [84]. This case underscores a need for contin-
ued and regular monitoring of demographic data. Other
possible efforts to overcome the bias present in the current lit-
erature include mapping data availability (e.g. demographic
and health surveys, and multiple-indicator surveys) and dis-
aster occurrence jointly. This initial mapping would identify
existing gaps that can be addressed readily by future studies.

Improved data availability, in turn, will lay the ground-
work for more evidence building on how disaster affects
fertility in a global perspective. Findings that do not meet
the conventional threshold of ‘statistical significance’ should
be published (Recommendation 2), as long as the data, ana-
lytic approach, and estimated effects are clear (accompanied
by the necessary information for meta-analysis and standard-
ization, e.g. person-year exposure for birth counts [65]).
Doing so will not only facilitate open science practices in gen-
eral, but also give a much-needed opportunity to compare
the fertility effects of disasters across different contexts.

Future research should present more detailed information
on the population characteristics of comparison groups,
or at least indicate if such information is not available
(Recommendation 3), and wherever possible, analytically
adjust for differences between compared groups that may
confound the disaster–fertility relationship (Recommendation
4). Researchers, either implicitly or explicitly, assume that
groups that are being compared are generally similar aside
from the exposure to disaster, otherwise known as the
‘homogeneity assumption’. Satisfying this assumption helps
rule out alternative explanations that attribute observed
fertility changes to factors unrelated to disaster. When
comparing fertility within populations before and after a
disaster, researchers should recognize that pre-disaster ferti-
lity differences across subpopulations may contribute to
post-disaster gaps. Likewise, researchers should acknowledge
that the effects of disasters on fertility may be direct and
indirect. The frequency of sexual intercourse in a population
may be lowered in the aftermath of a disaster due to physical
damages or poor health (direct effect). At the same time, birth
rates may decline due to changes in population structure
(indirect effect), for example, if individuals of reproductive
age were more likely to die due to the disaster than the over-
all population. Less than 10 out of the 50 studies tested
specific threats to population homogeneity before and after
the disaster, or even presented background characteristics
of each compared group. These threats included both
spatial (spillover of fertility effect to control cohorts [45])
and temporal (conflation with concomitant events such as
economic crises, which was indirectly tested in one study
by examining socioeconomic gradients in fertility effect
[65]). A few studies used synthetic control methods to
create a comparable control [46,76,94].

Disasters do not happen in a vacuum, and fertility within
countries is rarely stable. For example, fertility can rapidly fall
in countries undergoing the demographic transition, and
oscillate in countries that have already achieved low fertility.
Many of the studies reviewed here did consider and account
for these context-specific fertility trends, and such efforts
would continue to benefit the literature in future (Recommen-
dation 5). One common technique is to analytically adjust for
seasonal fertility patterns and long-term fertility time trends.
In our reviewed studies, the majority (80%) addressed sea-
sonality, mostly by comparing fertility at least one year
apart matched in months or by including month dummies
in regression analyses. However, only half (52%) reported
effect sizes that took time trends into account. This is proble-
matic, given that a still large portion of the studied disasters
occurred in contexts of declining fertility.

Lastly, one of the most basic requirements for causal infer-
ence in this area is to establish that the disaster actually
preceded the observed fertility change [95]. However, defin-
ing the onset of a disaster can be difficult. For example, for
disease outbreaks, the timing of the first case may be very
different to the timing of the maximum effect on the popu-
lation. In eight out of the 50 reviewed studies, there was no
clear indication of the timing of disaster onset, the timing at
which fertility measurement began, or both. As an alterna-
tive, some studies identified the disaster onset post hoc, by
subtracting 9–10 months from the period associated with
the largest or statistically significant fertility effect. This
approach might be useful as an exploratory technique, but
is subjective and vulnerable to questionable research practices
such as post hoc hypothesizing.

Instead, some authors made explicit their beliefs about
the timing and magnitude of fertility impacts, a practice
that could aid in evaluating the evidence at hand and build-
ing theory (Recommendation 6). Some studies stated how
large an effect is expected to be, in the form of either qualitat-
ive statements (‘little to no effect’ [65]) or even setting a
threshold of what the researchers considered to be a large
enough effect size given the fertility trends of the study popu-
lation [71]. Regarding timing, one study on the 2011 Japanese
earthquake [47] defined a ‘disaster impact period’ based on
authors’ reasoning about when the disaster’s impact is
likely to manifest, and another study on the 1997 Red River
flood [80] specified ‘pre-disaster’ and ‘post-disaster’ periods
for precise months and years based on known information
about the progression of the disaster. In doing so researchers
clarify not only the expected timing of shock, but also after
how long the impact of a disaster is expected to last. The
latter is particularly important since different mechanisms
will be operative across different timeframes. For example, if
a specific disaster would significantly increase the mortality
of pregnant women, one might hypothesize an immediate
reduction in births. Very long lags between exposure and fer-
tility impacts could indicate a longer-run change in fertility
intentions via postponement effects. Unfortunately, very long
time lags also increase the likelihood that other post-disaster
events will confound the estimation, making it difficult to attri-
bute observed fertility differences to the disaster of interest. In
nearly half of the reviewed studies, outcome measurement
began after a lag longer than 9–10 months, the average
length of gestation. However, among such studies, only one
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provided a rationale for why a longer lag was chosen [85],
demonstrating the need for more explicit hypotheses
surrounding the timing of fertility outcome measurement.
 lsocietypublishing.org/journal/rspb

Proc.R.Soc.B
290:20230211
5. Conclusion
Across the 50 studies examining the changes in live birth
counts after disasters, we found that disasters generally
have a negative fertility impact, depending on disaster type.
If any, studies showing an increase in fertility were more
likely to come from studies on physical disasters, which
included avalanche, drought, earthquake and tsunami,
flood, hurricane and typhoon in the reviewed studies. We
also identified 13 distinct mechanism groups which research-
ers have considered as underlying the fertility effects of
disaster. By contrast to the common belief that disasters are
more likely to increase fertility in contexts with already
high fertility, we found little evidence to suggest that the
underlying fertility level was an important predictor of the
direction, timing or size of fertility impacts. While this may
be because no relationship exists, it may also be due to
biases in the literature towards studying high-income
countries or high-cost disasters. This bias may also arise
from a lack of standardization by methods and timeframes
in this literature, leading to a small number of studies
across which to compare. We thus need more studies from
high fertility contexts, and also more efforts to measure ferti-
lity effects comparably and across multiple time points.
Doing so will also help disentangle key mechanisms of ferti-
lity effects which are numerous and complex. To encourage
moves toward a more robust literature on this critical topic,
and eventually toward evidence-informed theory and
policy, we offer six recommendations for future research: (1)
increase efforts to build and maintain data infrastructure for
the collection of quality data in resource-limited settings; (2)
nurture a publication culture that incentivizes reporting of
results (including null results) to be compared across con-
texts; (3) collect and report characteristics of compared
groups; (4) analytically address threats to the homogeneity
assumption; (5) adjust for seasonality and time trends in fer-
tility; (6) be explicit about when and how the expected
fertility effects of disasters are likely to occur. Given the pre-
dicted increase in disasters—particularly in the context of
global climate change—even subtle changes in fertility in
response to disasters may have far-reaching consequences
in population structure. Thus, the importance of studying
how disasters affect fertility is higher than ever, and should
remain a major priority in the research community across dis-
ciplines, from demography to population studies, economics,
anthropology, sociology, public health and epidemiology.
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