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Colour Constancy Beyond the Classical
Receptive Field

Arash Akbarinia, Member, IEEE, and C. Alejandro Parraga, Member, IEEE

Abstract—The problem of removing illuminant variations to preserve the colours of objects (colour constancy ) has already been

solved by the human brain using mechanisms that rely largely on centre-surround computations of global and local contrast. In this

paper we adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic,

functional model (termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron’s receptive field (RF) as well as

the relationship with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the

centre-surround normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two

overlapping asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surrounding pixels, resembling the

change of RF size. We recreated the contrast-dependent surround modulation by weighting the contribution of each Gaussian

according to the centre-surround contrast. In the end, we obtained an estimation of the illuminant from the Minkowski norm of highly

activated RFs’ outputs. Our results on three single-illuminant and one multi-illuminant benchmark datasets show that the ASM is highly

competitive against the state-of-the-art and it even outperforms learning-based algorithms in one of them. Moreover, the robustness of

our model is more tangible if we consider that our results were obtained by mimicking how the human visual system operates, that is,

using the same parameters for all datasets. This might provide an insight on how dynamical adaptation mechanisms contribute to

make colours appear constant to us.

Index Terms—colour constancy, illuminant estimation, classical receptive field, surround modulation, centre-surround contrast.

✦

1 INTRODUCTION

COLOUR is an essential property of our visual world.
Apart from its aesthetic and emotional value, it pro-

vides valuable information about the environment by break-
ing the luminance pattern of cast shadows, facilitating the
segmentation of objects from each other and the back-
ground [1]. To our brain the colour of an object appears
to be largely the same throughout the day, despite dramatic
changes in the spectral composition of the light reflected
from a scene (e.g. the gamut of physical colours at sunset
almost doubles in comparison to the “flat” midday illumi-
nation [2]). This ability (termed colour constancy), is more
impressive if we consider that mathematically, the problem
of separating illumination form reflectance is ill-posed and
therefore has infinite possible solutions.

Although there is no agreement on the precise mecha-
nisms and brain areas responsible for colour constancy, most
researchers group them according to the neural level where
they likely operate [3]:

1) Sensory level: modelled by simple linear transforma-
tions of the photoreceptor responses, e.g. scaling re-
sponses by their mean activities over the image [4],
[5].

2) Perceptual level: modelled considering various per-
ceptual “cues” such as specular highlights [6], mu-
tual reflections [7], achromaticity of edges [8], etc.
segmenting the image into distinct components (re-
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flections, edges and surfaces) to estimate the illumi-
nant.

3) Cognitive level: modelled considering colour mem-
ory and/or the identification of objects to be able
to compensate for the effects introduced by familiar
objects [9].

The relative contributions of each of these processing
levels is still a matter for debate. However, most researchers
acknowledge that cognitive contributions are likely to be
small since the phenomenon can be largely explained by
low level mechanisms present in the retina and areas V1
and V4 of the visual cortex [10]. The significance of colour
constancy to both human vision and computer vision com-
munities is demonstrated by the many studies in object
detection, tracking, feature extraction, etc. [11], [12], [13],
[14] from visual perception [10], [15], [16], [17] and computer
vision [18], [19], [20], [21] perspectives, which have histor-
ically had different objectives. Most visual perception and
neuroscience work aims at understanding the phenomenon
while most computer vision work aims at predicting the
effects of colour constancy. However, one can assume there
might be computational advantages in incorporating the
knowledge acquired by the brain’s neural machinery after
millions of years of evolution. To this end, the finely-tuned
combination of low-level (mostly hard-wired) and high-
level (mostly cognitive) mechanisms that the primate brain
has achieved after millions of years of evolution might be
understood in terms of the bias/variance trade-off common
in machine learning [22]. The choice of the best bias will
depend on the nature of the training data (e.g. how much
is known in advance about the problem) and the system’s
noise. Biological systems face similar choices. A simple
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organism living in a fix environment does not need a strong
bias and all individuals can safely share the same neural
configuration. More complex organisms such as primates
face variable environments and need to dedicate part of
their brains to learning during their lifetime while leaving
large scale neural structures like the sensory cortex geneti-
cally specified. This particular combination of bias/variance
in complex organisms allows them to adapt to different
environments while still keeping crucial survival skills. In
the case of colour constancy, most of the brain computations
are arguably done at the sensory level [10] indicating that
“bias” may perhaps plays a larger role than “variance” (i.e.
more of a normalisation problem than a learning problem).
This is perhaps the reason why current learning-based so-
lutions have trouble to replicate their results in new (non-
learned) datasets [10], [23], using dataset-dependent param-
eters. Additionally, the majority of methods are constrained
to consider only one source of illumination, which in effect
hinders their applicability on real scenes [21].

1.1 Computational Solutions

From a mathematical point of view, retrieving the colour of
a surface illuminated by light of unknown spectral distri-
bution is underdetermined, and to computationally rectify
biased images (in the same way colour constancy does) it is
common to impose several assumptions regarding the scene
illuminant, the statistical distribution of colours or edges,
etc. [21]. In general, these algorithms can be divided into
two categories: (i) learning-based approaches and (ii) low-
level features-driven methods.

Learning-based approaches, e.g. [24], [25], [26], [27], train
machine learning techniques on some relevant image fea-
tures. One group of learning-based algorithms is “gamut
mapping”, which originated from the influential work of
Forsyth [18], and was extended by others [28], [29], [30],
[31], [32], following the assumption that only a finite set of
colours is observable in real world images. Another large
group of algorithms considers reflectance as the random
variable of a normal distribution under a Bayesian frame-
work [33], [34], [35]. Although learning-based approaches
can obtain accurate results, they rely heavily on training
data, which is likely to be cumbersome (i.e. their overall
performance depends on the quality of their training data)
and slow [21].

The majority of low-level features-driven methods can
be summarised by the following Minkowski framework [8],
[36]

Lc(p) =

(
∫

fp
c (x)dx

)
1

p

= kec, (1)

where f(x) is the image value at the spatial coordinate x; c
is one of the three {R,G,B} channels; p is the Minkowski
norm; and k is a multiplicative constant chosen such that
the illuminant colour, e, is a unit vector.

Substituting p = 1 in Eq. 1 reproduces the well known
Grey-World assumption, in which the illuminant is esti-
mated by presuming that all colours in the scene average
to grey [37]. Setting p = ∞ replicates the White-Patch
algorithm, which assumes that the brightest patch in the
image corresponds to a specular reflection containing all

necessary information about the illuminant [15]. In general,
it is challenging to automatically tune p for every image and
at the same time inaccurate p values may corrupt the results
noticeably [21].

Incorporating high-order image statistics into the
Minkowski framework was proposed by van de Weijer et
al. [8], under the assumption that the edges carry important
information about the source of light, thus their algorithm
is called “Grey-Edge”. The Minkowski framework can be
generalised further by replacing the f(x) in Eq. 1 with its
derivative

∣

∣

∣

∣

ϑnfσ(x)

ϑxn

∣

∣

∣

∣

, (2)

where |.| is the Frobenius norm; n is the order of the
derivative; and σ is the scale of the Gaussian derivative
filters convolved with the original image [38].

It has been noted [39], [40], [41], [42] that high-order
derivatives have correspondences with the centre-surround
mechanism as modelled in colour perception research. This
mechanism is activated when localised sensory regions of
the retina are stimulated by light. These sensory regions
(also called “receptive fields”) are characterised in terms
of their contribution to cortical neurons’ stimulation as
“centre” and “surround” [43]. The interplay between centre
and surround in receptive fields (RF) is typically modelled
by a Difference-of-Gaussians (DoG) [44], [45], [46], [47].
Since, the second order image derivative can be approxi-
mated by DoG, they can be a good tool for modelling the
sub-cortical mechanisms involved in colour constancy. This
simple model of the low-level properties of the mammalian
visual system has a long history starting with Enroth-Cugell
and Robson in 1966 [48], continuing with Marr in 1980 [49]
and more recently applied to colour constancy by Gao et
al. [47]. However, the efficiency of DoG in estimating the
illuminant depends on finding an adequate width for the
Gaussian kernel, σ, and the optimal weight of the broader
Gaussian function, which are difficult to tune automatically.
A solution to this problem has already been found by the hu-
man visual system (HVS) in the form of dynamic, contrast-
based, centre-surround cortical interactions [50], [51] (see
below), which are not present in the classical formulations.
Although the ultimate purpose of these non-linear interac-
tions is not known, we speculate here that they might play
a role in colour constancy and accordingly, we propose a
fully automatic, contrast-dependent colour constancy model
that overcomes the need for hand-crafted parameters. In
our model we incorporate three well known properties of
cortical (area V1) neurons:

1) The size of the minimum RF varies according to
the local contrast of the stimuli, i.e. enlarged when
exposed to low-contrast [50];

2) The influence of the surround on the centre varies
depending on the local contrast of both centre and
surround, with greater inhibition for higher contrast
stimuli [51];

3) Cortical RFs increase their diameters systematically
by approximately a factor of three from lower to
higher areas [52], as they pool signals over a large
neighbourhood from the levels below.
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contrast and is similar to incorporating the dual-role region
of Fig. 2. Therefore, prior to convolving an image I with a
Gaussian kernel, we compute local contrast C at every pixel
through the local standard deviation of I as

Cc,d(x, y;σ) =

√

(Ic(x, y)− Ic(x, y) ∗ µd(σ))
2
∗ µd(σ),

(3)
where c indexes each colour channel {R,G,B}; d is the spa-
tial orientation {h, v, i} (horizontal, vertical, and isotropic)
over which contrast is measured; (x, y) are the spatial
coordinates of a pixel; µ is the average kernel with size σ

in the direction d and ∗ is the convolution operator. In the
case of horizontal contrast, µ is a column vector; in the case
of vertical contrast, µ is a row vector; and in the case of
isotropic contrast, µ is a square matrix.

The receptive field’s centre response CR is computed by
convolution of the original image I at every channel c with
the narrower Gaussian as follows:

CRc(x, y) = Ic(x, y) ∗ gc(x, y; sc,h(x, y), sc,v(x, y)). (4)

In Eq. 4, g is the two-dimensional Gaussian kernel defined
as

g(x, y;σh, σv) =
1

2πσhσv

exp

(

−0.5

(

x2

σ2

h

+
y2

σ2
v

))

, (5)

where σd is the size of the Gaussian kernel in the direction d.
The values of sc,h(x, y) and sc,v(x, y) in Eq. 4 represent the
vertical and horizontal dimensions of the Gaussian kernel
respectively. Since in our formulation the size of the RF’s
centre is inversely proportional to its local contrast (see
Fig. 2), we compute it from the values obtained in Eq. 3:

sc,d(x, y) ∝ C−1

c,d (x, y;σ), (6)

inversely linking the size of the RF’s central kernel to its
contrast. In theory, sc,d can be calculated for each individual
pixel, however, in practice convolving an image with a
unique Gaussian kernel at every pixel is extremely expen-
sive from a computational point of view. For this reason,
we approximated sc,d through its uniform quantisation to l

different levels, effectively limiting the number of convolu-
tions to l. We computed this uniform quantisation by finding
the range of local contrasts through the difference between
the two extrema of sc,d and dividing it into an arbitrary
number of contrast levels. For example, let’s assume that
local contrasts are in the range [0, 1] and the arbitrary
number of contrast levels is 4: pixels with local contrast
between [0.00, 0.25] are convolved with a Gaussian of 2σ;
pixels in the range (0.25, 0.50] with a Gaussian of 1.66σ;
pixels in the range (0.50, 0.75] with a Gaussian of 1.33σ;
and pixels in the range (0.75, 1.00] with a Gaussian of σ.

To summarise, we calculated the centre response CR by
convolving low contrast image pixels with large Gaussians
and high contrast image pixels with small Gaussians. It is
worth noting that σh and σv in Eq. 5 are not identical (a
common assumption in computer vision) due to the fact
that the local interactions in V1 are not always organised in
a symmetric fashion [60].

The surround response, SR, was computed by convolu-
tion of the original image in every {R,G,B} channel with
the broader symmetric Gaussian kernel

SRc(x, y) = Ic(x, y) ∗ gc(x, y; 5σ, 5σ), (7)

where kernel size is constant in both directions regardless
of local contrast. The decision of keeping the size of the SR

kernel fixed was made after considering the much smaller
variations that occur in the surround RFs of neurons under
different contrast levels [50].

The final RF response RR, was computed by combining
centre and surround modulations as follows:

RRc(x, y) = λc(x, y)CRc(x, y) + κc(x, y)SRc(x, y), (8)

where λ and κ are the weights of centre and surround in
each spatial location. These parameters model the fact that
the strength of centre response and surround suppression
depend of the contrast and relative orientations of the centre
and surround stimuli (see Fig. 3 and the work of Shushruth
et al. [50]). We modelled λ and κ as inversely proportional
to the oriented contrast of centre and surround respectively,
which was computed as

λc(x, y) ∝ C−1

c,i (x, y;σ);

κc(x, y) ∝ C−1

c,i (x, y; 5σ),
(9)

where i denotes the spatial direction. We modelled the fact
that suppression can turn into facilitation when the centre
is exposed to low contrast or when centre and surround
stimuli are orthogonal from each other [51]. This can be
done by allowing the sign of κ to change from minus
(suppressive surround) to the occasional plus (facilitatory
surround) transforming our model from a DoG to Sum-of-
Gaussians (SoG). Although the model allows the possibility
of a positive κ, we should note that the boundary between
suppression and facilitation is cell specific and there is no
universal contrast level or surround stimulus size that trig-
gers facilitation across the entire cell population [51]. Due
to this, and the fact that numerical surround suppression
figures in macaque V1 neurons were reported to be all
negative [50], the results we present in this paper were all
obtained with a negative κ value.

Up to this point we implemented a model of RR based
on well known properties of V1 neurons. In the next pro-
cessing stage, the visual signal is pooled and sent to higher
cortical areas whose exact location is unknown. Many au-
thors [41], [61] have proposed area V4 as the most likely
candidate for a colour constancy site. We hypothesised the
existence of V4 neurons that perform operations on the
outputs of those in V1. From the physiology, we know that
cortical RFs increase their diameter systematically by ap-
proximately a factor of three from lower to higher areas [52].
This means that V4 RFs are about nine times larger than
those in V1 (which is 0.26◦, see Fig. 2). Thus, the centre
and surround of a typical V4 RF subtend about 2.3◦ and
11.7◦ of visual angle respectively, which are equivalent to
117 and 585 pixels on a standard monitor viewed from a
100cm distance.

The exact pooling mechanism applied to these V1 sig-
nals is unknown, however “winner-takes-all” and “sparse
coding” kurtotical behaviour are common to large groups
of neurons all over the visual cortex [62], [63] and it is not
infeasible to assume that a small group of neurons with
the largest activation dominate most of the process. We
approximated this hypothetical behaviour of V4 neurons
by selecting a small percentage of “winner neurons” whose
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recovery and reproduction angular errors. The later two
measures are considered to be more appropriate to assess
the performance of colour constancy algorithms, because of
their robustness to outliers [68], [69].

We evaluated our method on four benchmark datasets1

without adjusting free parameters since ASM is fully au-
tomatic (i.e. dataset-independent) in contrast to most other
algorithms whose results were acquired after adjusting their
parameters to the optimum value for each dataset. Addi-
tionally, in order to better understand the contribution of
the different components of our model, we conducted three
extra experiments, which are explained later in this section.

3.1 Single-illuminant scenes

We tested our model on three single-illuminant benchmark
datasets, (i) SFU Lab [70], (ii) Colour Checker [71], and (iii)
Grey Ball [72]. Our results for single-illuminant scenes were
obtained under four contrast levels, l = 4, with σ = 1.5. This
σ is equivalent to 13 pixels or 0.26◦ of visual angle when
viewed from 100cm in a standard monitor, which is also the
size of sRFhigh (see Fig. 2). We set the range of surround
suppression to κ = −[0.67, 0.77], considering the surround
suppression index of macaque V1 neurons reported at [50].
The centre weight was retrieved directly from the contrast
of pixels, λc(x, y) = 1 + C−1

c,i (x, y;σ).

3.1.1 SFU Lab

The SFU Lab dataset [70] consists of 321 images of size
637×468 captured in a controlled environment under eleven
different sources of light. The scenes are partitioned into
four categories: (a) minimal specularities, (b) non-negligible
dielectric specularities, (c) metallic specularities, and (d) at
least one fluorescent surface. We report the results of our
method and several others on this dataset in Table 1. Our
model’s results show a clear improvement in the median
and trimean angular errors (both reproduction and recov-
ery) compared to state-of-the-art for the SFU Lab dataset.

3.1.2 Colour Checker

The Colour Checker dataset [35], [71] consists of 568 indoor
and outdoor images of size 2041×1359. Each image contains
a MacBeth colour-checker as a reference to retrieve the
chromaticity of the actual source of light. We followed the
best practices and guidelines of this dataset by masking
out MacBeth colour-checker boards prior to processing an
image with our model. The original images are non-linear
due to gamma and tone curve correction. Shi and Funt [71]
reprocessed the raw data and generated 12-bit images. We
report the results of our method on this dataset along with
several others in Table 2. The results show that our model is
in par with the state-of-the-art for this dataset.

3.1.3 Grey Ball

The Grey Ball dataset [72] consists of 11346 non-linear
images of size 360× 240 extracted from two hours of video
recorded under a large variety of conditions in both indoor
and outdoor environments. In every image there is a grey

1. All source code and experimental materials are available under
this link https://goo.gl/nQUenN.

sphere at the bottom right corner from which the ambient
illuminant can be estimated. We followed the best practices
and guidelines of this dataset by masking our grey spheres
prior to processing an image with our model. We report the
results of our method on this dataset along with several
others in Table 3. These results suggest that our model
is in par with the learning-based state-of-the-art for this
dataset, while it outperforms all other low-level features-
driven methods.

3.2 Testing the role of each model component

We studied contribution of each component of our model
(i.e., adaptive centre, dynamic surround and p estimation)
by conducting three experiments and analysing their results
in terms of median and trimean angular errors, proposed by
Hordley and Finlayson [68] and Gijsenij et. al. [69] as robust
measures to evaluate colour constancy algorithms.

3.2.1 Experiment 1 – constant vs. adaptive centre size

In order to measure contribution of the adaptive size of the
narrower Gaussian, we kept all other parameters fixed (i.e.
the centre-surround influence, λ = 1.00;κ = −0.77) and
the contrast-dependent Minkowski norm, p = ∞. We tested
two scenarios: (a) all pixels were convolved with a constant
Gaussian of width σ (essentially the Double-Opponency
algorithm [47]), whereas, in (b) this width was varied in the
range of [σ, 2σ] and computed for each pixel. These two con-
ditions were called “Constant Gaussian Width” (CGW) and
“Adaptive Gaussian Width” (AGW). Additionally, since the
Grey-Edge hypothesis captures high-order image features
similar to the DoG, we tested whether this centre adaptation
can improve the first and second order Grey-Edge algorithm
with a Minkowski norm p.

The results of experiment 1 (see Fig. 5) show that both
measures of median and trimean errors are always smaller
in the adaptive case (AGW) in comparison to the constant
one (CGW). This is true for both recovery and reproduction
angular errors. The largest and smallest improvements are
achieved in the SFU Lab (about 19% on average) and Grey
Ball (about 6% in average) datasets, respectively.

3.2.2 Experiment 2 – constant vs. adaptive surround

In order to measure contribution of the adaptive sur-
round modulation, we kept all other parameters fixed (i.e.
the centre adaptation, l = 1, and the contrast-dependent
Minkowski norm, p = ∞). We tested three scenarios, the
first and second were computed under a constant sur-
round influence, κ = −0.67 and κ = −0.77, respectively
(both extrema of our adaptive κ), as well as constant cen-
tre weight, λ = 1.00. In the third scenario, the centre-
surround influence was adaptive, λ = 1 + C−1

c,i (x, y;σ) and
κ = −[0.67, 0.77], under four contrast levels l = 4.

Fig. 6 shows the results for Experiment 2, where the
median and trimean errors (both recovery and repro-
duction) obtained with a dynamic surround suppression,
κ = −[0.67, 0.77], are always lower in comparison to the
constant κ. The gain across datasets appear to be similar
(around 3% for both error measures).
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TABLE 1
Angular error of several methods on SFU Lab [70] benchmark dataset. Lower figures indicate better performance.

Recovery Error Reproduction Error
Method Mean Median Trimean Mean Median Trimean
Do Nothing 17.3 15.6 16.9 17.3 15.6 16.9

L
o

w
-l

ev
el

fe
at

u
re

s

Inverse-Intensity Chromaticity Space [73] 15.5 8.2 10.7 15.1 9.3 11.5
Grey-World [37] 9.8 7.0 7.6 10.1 7.5 8.3
White-Patch [15] 9.1 6.5 7.5 9.7 7.4 8.2
Shades of Grey [36] 6.4 3.7 4.6 6.9 3.9 4.8
General Grey-World [36] 5.4 3.3 3.8 6.0 3.9 4.3
First-order Grey-Edge [8] 5.6 3.2 3.7 6.3 3.6 4.2
Second-order Grey-Edge [8] 5.2 2.7 3.3 5.8 3.0 3.8
Local Surface Reflectance Statistics [74] 5.7 2.4 - - - -
Random Sample Consensus [75] - - - - - -
Edge-based Grey Pixel [76] 5.3 2.3 - - - -
Double-Opponency [47] 4.8 2.4 3.5 - - -

L
ea

rn
in

g
-b

as
ed

Pixel-based Gamut Mapping [18] 3.7 2.3 2.5 4.2 2.8 3.0
Edge-based Gamut Mapping [32] 3.9 2.3 2.7 4.5 2.7 3.2
Spectral Statistics [77] 5.6 3.5 4.3 - - -
Weighted Grey-Edge [78] 5.6 2.4 2.9 6.1 3.6 4.3
Regression [25] - 2.2 - - - -
Thin-plate Spline Interpolation [27] - 2.4 - - - -
Bayesian [35] - - - - - -
Natural Image Statistics [21] - - - - - -
Exemplar-based method [73] - - - - - -
CNN Fine Tuned [79] - - - - - -
Deep Learning Colour Constancy [80] - - - - - -
ASM 4.7 1.8 2.3 5.2 2.3 2.7

TABLE 2
Angular error of several methods on Colour Checker [71] benchmark dataset. Lower figures indicate better performance.

Recovery Error Reproduction Error
Method Mean Median Trimean Mean Median Trimean
Do Nothing 13.7 13.6 13.5 13.7 13.6 13.5

L
o

w
-l

ev
el

fe
at

u
re

s

Inverse-Intensity Chromaticity Space [73] 13.6 13.6 13.5 14.3 13.6 13.6
Grey-World [37] 6.4 6.3 6.3 7.0 6.8 6.9
White-Patch [15] 7.5 5.7 6.4 8.1 6.5 7.1
Shades of Grey [36] 4.9 4.0 4.2 5.8 4.4 4.9
General Grey-World [36] 4.7 3.5 3.8 5.3 4.0 4.4
First-order Grey-Edge [8] 5.3 4.5 4.7 6.4 4.9 5.3
Second-order Grey-Edge [8] 5.1 4.4 4.6 6.0 4.8 5.2
Local Surface Reflectance Statistics [74] 3.4 2.6 - - - -
Random Sample Consensus [75] 3.2 2.3 - - - -
Edge-based Grey Pixel [76] 4.6 3.1 - - - -
Double-Opponency [47] 4.0 2.6 - - - -

L
ea

rn
in

g
-b

as
ed

Pixel-based Gamut Mapping [18] 4.2 2.3 2.9 4.8 2.7 3.4
Edge-based Gamut Mapping [32] 6.5 5.0 5.4 8.0 5.9 6.6
Spectral Statistics [77] 3.7 3.0 3.1 - - -
Weighted Grey-Edge [78] - - - - - -
Regression [25] 8.1 6.7 7.2 8.8 7.4 7.9
Thin-plate Spline Interpolation [27] - 2.8 - - - -
Bayesian [35] 4.8 3.5 3.9 5.6 3.9 4.4
Natural Image Statistics [21] 4.2 3.1 3.5 4.8 3.5 3.9
Exemplar-based method [73] 2.9 2.3 2.4 3.4 2.6 2.9
CNN Fine Tuned [79] 2.6 2.0 - - - -
Deep Learning Colour Constancy [80] 3.1 2.3 - - - -
ASM 3.8 2.4 2.7 4.9 3.0 3.4

3.2.3 Experiment 3 – constant vs. adaptive “winners” per-

centage

In order to measure contribution of the adaptive clipping,
we examined five different scenarios. In the first four, his-
tograms (see Eq. 12) were clipped with constant percentages,
p = {5, 1, 0.5, 0.1}%, i.e. a fixed set of V1 cells were pooled
into V4. In the fifth case, value of p was adaptive and
computed as the average contrast of RR (see Eq. 11).

The results of Experiment 3 (see Fig. 7) show that
using a contrast-adaptive pooling mechanism reduces the
recovery/reproduction angular errors in all cases consid-

ered in the SFU Lab dataset (blue bar with p = c̄ is
smaller than all the others). In the Colour Checker and Grey
Ball datasets (red and green bars respectively), estimating
p adaptively yields angular errors very close to the best
constant p values. Among the constant clipping percentages
p = 0.5% performs best: moving towards a Grey-World
pooling deteriorates the results (p = 5% obtain the highest
angular errors) and moving towards a White-Patch solution
also worsens angular errors (p = 0.5% always performs
better than p = 0.1%). This suggests the optimal pooling
mechanism is close to our proposal of pooling a set of highly
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Fig. 8. Colour constancy results of several methods. The recovery angular error is indicated on the right bottom corner. The first row shows results
for a picture from the SFU Lab dataset, the second row from the Grey Ball dataset, the third row from the Colour Checker dataset, and the last row
from the Multi-illuminant dataset.

TABLE 4
Recovery angular error of several methods on Multi-illuminant [81]

benchmark dataset. Lower figures indicate better performance.

Laboratory Real-world
Method Mean Median Mean Median
Do Nothing 10.6 10.5 8.9 8.8
Grey-World [37] 3.2 2.9 5.2 4.2
White-Patch [15] 7.8 7.6 6.8 5.6
First-order Grey-Edge [8] 3.1 2.8 5.3 3.9
Second-order Grey-Edge [8] 3.2 2.9 6.0 4.7
Gijsenij et al. [82] 4.8 4.2 4.2 3.8
Double-Opponency [47] 4.6 4.4 7.8 4.9
STD-based Grey Pixel [76] 2.9 2.2 5.7 3.5
MI Random Field [81] 2.6 2.6 4.1 3.3
ASM 2.7 2.5 5.1 3.5

The quantitative results in Table 1 show that ASM out-
performs all other state-of-the-art algorithms in the SFU Lab
dataset. In the Grey Ball dataset (Table 3), ASM performs the
best amid methods driven by low-level features and obtains
comparable results to the learning-based techniques. In the
Colour Checker and Multi-illuminant datasets (Tables 2
and 4 respectively), our results are highly competitive with
the best learning ones. Considering the fact that, unlike our
competitors, we are using a fix set of parameters for all four
datasets, our results look promising indeed.

A quick comparison among Tables 1-3 and Fig. 5, shows
that the methods driven by the higher-order image statis-
tics (e.g. Grey-Edge and Double-Opponency), are highly
sensitive to their choice of parameters. For example, in the
SFU Lab dataset, the median recovery angular error of the
second order Grey-Edge (GE2) escalates from 2.7◦ (Table 1)
to 7.8◦ (Fig. 5) under the optimum (p = 7, σ = 4) and non-
optimum parameters (p = 1, σ = 1) respectively. This is not
the case for our fully automatic method. The angular error
of ASM across datasets is less variable than that of most of

its competitors. This is a yet another sign of robustness and
implies that ASM adapts based on the contrast of an image
independently of previous history, much in the same way
as the HVS does.

The results of experiment 1 (see Fig. 5) show that the
performance of colour constancy methods driven by the
high-order image statistics (e.g. Grey-Edge and Double-
Opponency) can be improved, as much as 21%, by adapting
their Gaussian width σ based on local contrast at pixel
level. As discussed in the introduction, this does not come
as a surprise, given that the high-order derivatives are
similar to those of the centre-surround mechanism present
in biological visual systems, where the RF size expands in
the presence of low contrast and shrinks in high contrast.
The improvement originated from the AGW appears to be
largest for the Grey-Edge (about 13% on average) than for
the Double-Opponency (about 7% on average). This could
be explained by the fact that the centre-surround contrast
adaptation requires both dynamic centre and dynamic sur-
round. In the Grey-Edge centre-surround is modelled in one
operation, whereas in the Double-Opponency neither the
surround size nor its contribution change according to the
contrast level.

The results of experiment 2 (see Fig. 6) demonstrate that
contrast-dependent surround modulation can improve the
angular errors up to 15%, however the average improve-
ment is a more modest figure of about 3%. This is explained
by the fact that surround modulation depends on number of
other parameters in addition to the local contrast of stimuli,
such as spatial frequency and orientation. In this work, we
limited our studies to the role of contrast on surround mod-
ulation and therefore the range of surround suppression
we could explore was rather limited to κ = −[0.67, 0.77].
However, we believe our results can be improved even
further by taking into account the orientation selectivity of
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on the scientific question regarding the evolutionary role of
these properties of the visual system, something that other
algorithms are unable to do.

As a final note, we would like to express our conviction
that complex multidimensional problems such as colour
constancy cannot be solved by one-fits-all solutions. In other
words, the results of fully automatic solutions should not be
interpreted the same as those of learning-based solutions.
Our view is that these belong to different and sometimes
orthogonal directions and should be considered according
to their own particular merits.
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