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Abstract: The radiative corrections to the τ− → (P1P2)−ντ (P1,2 = π,K) decays are
calculated for the first time. The structure-dependent contributions are obtained using
Resonance Chiral Theory. Our results, whose uncertainty is dominated by the model-
independent corrections, enable precise tests of CKM unitarity, lepton flavor universality,
and non-standard interactions.
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1 Introduction

Semileptonic tau decays are well-known to be a clean laboratory for studying QCD hadro-
nisation at energies below ∼ 1.8 GeV [1, 2], where the light-flavoured resonances play a
key role. All non-perturbative information of the one-meson tau decays is encoded in the
corresponding P decay constants, that are best determined in lattice QCD [3]. Two-meson
tau decays are specified in terms of two form factors, whose knowledge has improved over
the years thanks to the use of dispersion relations [4–16], and nourished with high quality
measurements [17–24]. A similar good understanding of hadronization has not yet been
achieved in three-meson tau decays [8, 25–33] or higher-multiplicity modes, preventing for
the moment their use in searches for new physics.

On the contrary, one- and two-meson tau decays have enabled significant and promising
new physics tests in recent years [34–46]. At the precision attained, radiative corrections
for these decay modes become necessary, which motivated their improved evaluation for the
τ− → P−ντ case [43, 44, 47–49]. For the di-pion tau decays, the need for these corrections
first stemmed from their use in the dispersive integral rendering the leading order hadronic
vacuum polarization contribution to the muon g − 2 [50–52], which was again the target
of our recent analysis [53] (see also Refs. [54, 55]). Ref. [11] put forward that, assuming
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lepton universality, semileptonic kaon decay measurements could be used to predict the
corresponding (crossing-symmetric) tau decays yielding a Vus determination closer to uni-
tarity than with the tau decay branching ratios. In that work, the model-independent
radiative corrections were taken into account and the structure-dependent ones were esti-
mated (see also Ref. [56]), resulting in a relative large (conservative) uncertainty. Including
these model-dependent effects is one of our main motivations. Instead of relying on lep-
ton universality and checking CKM unitarity [11], one can in principle test the latter,
comparing the crossed channels, or directly bind new physics non-standard interactions
from τ− → (Kπ)−ντ decays [38]. For completeness, we also include the radiative cor-
rections to the di-kaon tau decays and recall our reference results for the di-pion mode
[53]. As noted in Ref. [46], see Fig. 1 for instance, bounds on non-standard interactions
from hadronic tau decays are competitive and complementary to those coming from LHC
searches and electroweak precision observables. As a relevant example, the precise compar-
ison of τ → π−π0ντ (γ) to e+e− → π+π−(γ) data, which requires the radiative corrections
computed in this work (see also Ref. [53]), are able to reduce the allowed new physics area
(in the relevant Wilson coefficients plane) by a factor ∼ 3 [46]. Real radiation was com-
puted for the τ− → η(′)π−ντ decay channels in Ref. [57], showing that it can compete with
the non-photon decays, as G-parity and electromagnetic suppressions compete. Finally, we
also estimate the corresponding results for the K−η(′) channels.

The structure of the paper is as follows. In section 2, we recall the model-independent
description of the τ− → P−1 P

0
2 ντγ decays and give the leading model-dependent corrections

for the Kπ, KK̄ and ππ cases, where only the latter are known (see e.g. refs. [51, 53]).
Branching ratios and spectra for the radiative decays are analyzed in section 3, and the
corresponding radiative correction factors are computed in section 4. Finally, we conclude
in section 5. Appendices cover K`3 decays (A), virtual corrections to di-meson tau de-
cays (B), the non-radiative decays (C), and the kinematics of these three- and four-body
processes (D).

2 The τ− → P−1 P
0
2 ντγ decays

The most general structure for these decays (τ(P ) → P−1 (p−)P 0
2 (p0)ντ (q)γ(k) is our mo-

menta convention) is given by

M =eGFV
∗
ud√

2
ε∗µ

[
Hν(p−, p0)
k2 − 2k · P ū(q)γν(1− γ5)(mτ + /P − /k)γµu(P )

+(V µν −Aµν)ū(q)γν(1− γ5)u(P )
]
,

(2.1)

where the hadronic matrix element can be written as

Hν(p−, p0) = CV F+(t)Qν + CS
∆−0
t
qνF0(t) , (2.2)

with t = q2, Qν = (p−−p0)ν−∆−0
t qν , qν = (p−+p0)ν , and ∆ij = m2

i−m2
j . One recovers the

usual definition of Hν
Kπ [38] by replacing p− → pK , p0 → pπ and ∆−0 → ∆Kπ for K−π0,
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K̄0

γ

π−

⊗

K−

γ

π0

⊗

Figure 1. Feynman diagrams contributing to the term proportional to the metric tensor gµν in
Eqs. (2.3) and (2.4).

and p− → pπ, p0 → pK , CV,S → −CV,S and ∆−0 → −∆Kπ for K̄0π− (we comment on
the identifications for the P1 = P2 channels below Fig. (1)). In all cases, gauge invariance
implies kµV µν = Hν(p−, p0) and kµAµν = 0.

The structure-independent term is given by

V µν
SI =Hν(pK + k, pπ)(2pK + k)µ

2k · pK + k2 +
{
−CV F+(t′)− ∆Kπ

t′
[
CSF0(t′)− CV F+(t′)

]}
gµν

− CV
F+(t′)− F+(t)
k · (pK + pπ) Qνqµ + ∆Kπ

tt′
{
2
[
CSF0(t′)− CV F+(t′)

]
− CSt

′

k · (pK + pπ)
[
F0(t′)− F0(t)

]}
qµqν ,

(2.3)

where CK−π0
V = CK

−π0
S = 1/

√
2 for τ− → K−π0ντγ, and

V µν
SI =Hν(pK , pπ + k)(2pπ + k)µ

2k · pπ + k2 +
{
CV F+(t′)− ∆Kπ

t′
[
CSF0(t′)− CV F+(t′)

]}
gµν

− CV
F+(t′)− F+(t)
k · (pK + pπ) Qνqµ + ∆Kπ

tt′
{
2
[
CSF0(t′)− CV F+(t′)

]
− CSt

′

k · (pK + pπ)
[
F0(t′)− F0(t)

]}
qµqν ,

(2.4)

with CK̄
0π−

V = CK̄
0π−

S = 1 for τ− → K̄0π−ντγ, and t′ = (P − q)2. The main difference
between these two expressions comes from the sign in the term proportional to gµν , which at
leading order (LO) in Chiral Perturbation Theory (ChPT) is contributed by the diagrams
in Fig. 1.

Conversely, V µν
SI for the other tau decay modes can be obtained from Eq. (2.3) by

substituting pK → p−, pπ → p0 and ∆Kπ → ∆−0. In particular, we are interested in the
τ− → K−K0ντγ decays where CK−K0

V = CK
−K0

S = −1 1.

1We comment briefly on the P = π case at the end of Sec. 2.1, see Ref. [53].
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The structure-dependent part is given by

V µν
SD =v1(k · p−gµν − kνpµ−) + v2(k · p0g

µν − kνpµ0 )

+ v3(k · p0p
µ
− − k · p−p

µ
0 )pν− + v4(k · p0p

µ
− − k · p−p

µ
0 )(p− + p0 + k)ν ,

(2.5)

and

Aµν =ia1εµνρσ (p0 − p−)ρ kσ + ia2 (P − q)ν εµρστk
ρpσ−p

τ
0

+ ia3εµνρσk
ρ(P − q)σ + ia4(p0 + k)νεµλρσkλpρ−pσ0 ,

(2.6)

where p− and p0 refer to the momentum of the charged and neutral meson, respectively.

From the last expressions, it is easy to show that the Low’s theorem [58] is manifestly
satisfied,

V µν =
pµ−
k · p−

Hν(p−, p0) +
{
CV F+(t) + ∆−0

t
[CSF0(t)− CV F+(t)]

}(
pµ−k

ν

k · p−
− gµν

)

− 2∆−0
t2

[CSF0(t)− CV F+(t)]
(
k · p0
k · p−

pµ− − p
µ
0

)
(p− + p0)ν

+ 2
(
k · p0
k · p−

pµ− − p
µ
0

)[
CV

dF+(t)
dt

Qν + CS
∆−0
t
qν
dF0(t)
dt

]
+O(k) ,

(2.7)

and the amplitude reads

M =eGFVuD
√
SEW√

2
ε∗µ(k)Hν(p−, p0)ū(q)γν(1− γ5)u(P )

×
(

pµ−
k · p− + 1

2M
2
γ

− Pµ

k · P − 1
2M

2
γ

)
+O(k0) ,

(2.8)

where SEW encodes the short-distance electroweak corrections [59–66] and VuD (D = d, s)
is the corresponding CKM matrix element.

In this limit, one gets

|M|2 =2e2G2
F |VuD|

2 SEW
{
C2
S |F0(t)|2DP−P 0

0 (t, u) + CSCV Re [F+(t)F ∗0 (t)]DP−P 0
+0 (t, u)

+C2
V |F+(t)|2DP−P 0

+ (t, u)
} ∑
γ pols.

∣∣∣∣ p− · εp− · k
− P · ε
P · k

∣∣∣∣2 +O(k0) ,

(2.9)

where

DP−P 0
+ (t, u) =m2

τ

2 (m2
τ − t) + 2m2

0m
2
− − 2u(m2

τ − t+m2
0 +m2

−) + 2u2

+ ∆−0
t
m2
τ (2u+ t−m2

τ − 2m2
0) +

∆2
−0
t2

m2
τ

2 (m2
τ − t) ,

(2.10)
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DP−P 0
0 (t, u) =

∆2
−0m

4
τ

2t2
(

1− t

m2
τ

)
, (2.11)

DP−P 0
+0 (t, u) = ∆0−m

2
τ

t

[
2u+ t−m2

τ − 2m2
0 + ∆−0

t
(m2

τ − t)
]
, (2.12)

with u = (P − p−)2. In this way, besides the Low theorem, the Burnet-Kroll one [67] is
also explicitly manifest.

Thus, after an integration over neutrino and photon 4-momenta, the differential decay
width in this approximation reads

dΓ(0)

dt du

∣∣∣∣∣
PPγ

=G2
F |VuD|2SEW
128π3m3

τ

{
C2
S |F0(t)|2DP−P 0

0 (t, u) + CV CSRe
[
F ∗+(t)F0(t)

]
DP−P 0

+0 (t, u)

+C2
V |F+(t)|2DP−P 0

+ (t, u)
}
grad(t, u,Mγ) ,

(2.13)

where (see Refs. [50, 51])

grad(t, u,Mγ) = gbrems(t, u,Mγ) + grest(t, u) , (2.14)

with

gbrems(t, u,Mγ) = α

π
(J11(t, u,Mγ) + J20(t, u,Mγ) + J02(t, u,Mγ)) , (2.15a)

grest(t, u) = α

π
(K11(t, u) +K20(t, u) +K02(t, u)) . (2.15b)

The expressions for Jij(t, u,Mγ) and Kij(t, u), which correspond to an integration over
DIII and DIV/III, respectively, can be found in Refs. [11, 51, 53] and in App. D.

Integrating upon the u variable in Eq. (2.13), one gets

dΓ
dt

∣∣∣∣
III

=G2
FSEW|VuD|2m3

τ

384π3t

{
1

2t2
(

1− t

m2
τ

)2
λ1/2(t,m2

−,m
2
0)

×
[
C2
V |F+(t)|2

(
1 + 2t

m2
τ

)
λ(t,m2

−,m
2
0)δ+(t) + 3C2

S∆2
−0 |F0(t)|2 δ0(t)

]

+CSCV
4√
t
δ+0(t)

}
,

(2.16)

with

δ0(t) =
∫ u+(t)
u−(t) D

P−P 0
0 (t, u) gbrems(t, u,Mγ)du∫ u+(t)
u−(t) D

P−P 0
0 (t, u) du

, (2.17)

δ+(t) =
∫ u+(t)
u−(t) D

P−P 0
+ (t, u) gbrems(t, u,Mγ)du∫ u+(t)
u−(t) D

P−P 0
+ (t, u) du

, (2.18)
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P−

P (′)0

γ⊗
V −

γ P−

P (′)0

⊗
V −

⊗

γ P−

P (′)0

V − V −
⊗ γ

P−

P (′)0

V −

⊗

γ

P (′)0

P−

V −

V 0

⊗ γ

P−

P (′)0

V − V 0

P−

P (′)0⊗

γ
V 0 A−

P (′)0

⊗

P−

γ

Figure 2. Vector and axial-vector meson exchange diagrams contributing to the τ− → P−1 P
0
2 ντγ

decays at O
(
p4). V 0 stands for the ρ0, ω and φ resonances, V − = K∗− for the Kπ modes and

V − = ρ− for the K−K0 one, and A− = K−1 in K−K0 and K−π0, and A− = a−1 in π−K̄0.

δ+0(t) = 3t
√
t

4m6
τ

∫ u+(t)

u−(t)
DP−P 0

+0 (t, u) gbrems(t, u,Mγ)Re
[
F ∗+(t)F0(t)

]
du . (2.19)

The remaining contribution, dΓ/dt|IV/III, which corresponds to the integration over
DIV/III with grest(t, u) instead of gbrems(t, u,Mγ), is almost negligible and only becomes
relevant near the threshold. In Ref. [68], the subleading contributions in the Low’s ap-
proximation were studied, showing that they are not negligible and need to be taken into
account to get a reliable estimation.

2.1 Vector contributions

Including those Lagrangian terms that, upon resonance integration, contribute to the ChPT
O(p4) low-energy constants (LECs) 2, we have found the following contributions to the
vector form factors vi in Eq. (2.5), which are depicted in Fig. 2:

v1 = FVGV√
2f2M2

ρ

{(
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)[
1 + 1

2 (t−∆Kπ)D−1
K∗(t)

]

+2M2
ρD
−1
K∗(t

′) +M2
ρ (t−∆Kπ)D−1

K∗(t)D
−1
K∗(t

′)
}

+ F 2
V

2
√

2f2M2
ρ

[
−1

2

(
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)(
1− t′D−1

K∗(t
′)
)
−M2

ρD
−1
K∗(t

′)
]

+ F 2
A√

2f2M2
K1

(
M2
K1 −

1
2ΣKπ + 1

2 t
)
D−1
K1

[(pK + k)2] , (2.20a)

v2 = FVGV√
2f2M2

ρ

(t+ ∆Kπ)
[
−1

2

(
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)
D−1
K∗(t)−M

2
ρD
−1
K∗(t)D

−1
K∗(t

′)
]

2We will simply write O(p4) in the following to express that, although it is clear that for ChPT with
resonances the chiral expansion is not applicable.
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+ F 2
V

2
√

2f2M2
ρ

[
−1

2

(
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)(
1 + t′D−1

K∗(t
′)
)
−M2

ρD
−1
K∗(t

′)
]

+ F 2
A√

2f2M2
K1

(
M2
K1 −m

2
K − k · pK

)
D−1
K1

[(pK + k)2] , (2.20b)

v3 = F 2
A√

2f2M2
K1

D−1
K1

[(pK + k)2] , (2.20c)

v4 =− 2FVGV√
2f2 D−1

K∗(t)D
−1
K∗(t

′) + F 2
V

2
√

2f2M2
ρ

(
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)
D−1
K∗(t

′) , (2.20d)

for K−π0,

v1 =− FVGV
f2M2

ρ

[
2 + 2M2

ρD
−1
K∗(t

′) + 1
2

(
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)
(t+ ∆Kπ)D−1

K∗(t)

+ (t+ ∆Kπ)M2
ρD
−1
K∗(t)D

−1
K∗(t

′)
]

− F 2
V

2f2M2
ρ

[
−M2

ρD
−1
K∗(t

′) + 1
2

(
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)
t′D−1

K∗(t
′) + 1

2

(
−3 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)]

− F 2
A

f2M2
a1

(
M2
a1 −

1
2ΣKπ + 1

2 t
)
D−1
a1 [(pπ + k)2] , (2.21a)

v2 = −FVGV
f2M2

ρ

{
(t−∆Kπ)

[
−M2

ρD
−1
K∗(t)D

−1
K∗(t

′)− 1
2

(
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)
D−1
K∗(t)

]

+1− 1
3
M2
ρ

M2
ω

− 2
3
M2
ρ

M2
φ

}

− F 2
V

2f2M2
ρ

[
−M2

ρD
−1
K∗(t

′)− 1
2

(
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)
t′D−1

K∗(t
′) + 1

2

(
−3 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)]

− F 2
A

f2M2
a1

(
M2
a1 −m

2
πk · pπ

)
D−1
a1 [(pπ + k)2] , (2.21b)

v3 = − F 2
A

f2M2
a1

D−1
a1 [(pπ + k)2] , (2.21c)

v4 = 2FVGV
f2 D−1

K∗(t)D
−1
K∗(t

′)− F 2
V

2f2M2
ρ

(
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

)
D−1
K∗(t

′) , (2.21d)

for K̄0π−, and

v1 =− FVGV
f2M2

ρ

[
1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

+ (t−∆K−K0)D−1
ρ (t) + 2M2

ρD
−1
ρ (t′)

+M2
ρ (t−∆K−K0)D−1

ρ (t)D−1
ρ (t′)

]
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− F 2
V

2f2M2
ρ

[
−1

3
M2
ρ

M2
ω

− 2
3
M2
ρ

M2
φ

+ t′D−1
ρ (t′)−M2

ρD
−1
ρ (t′)

]

− F 2
A

f2M2
K1

(
M2
K1 −

1
2ΣK−K0 + 1

2 t
)
D−1
K1

[(p− + k)2] , (2.22a)

v2 =− FVGV
f2M2

ρ

[
−1 + 1

3
M2
ρ

M2
ω

+ 2
3
M2
ρ

M2
φ

− (t+ ∆K−K0)D−1
ρ (t)−M2

ρ (t+ ∆K−K0)D−1
ρ (t)D−1

ρ (t′)
]

− F 2
V

2f2M2
ρ

[
−1

3
M2
ρ

M2
ω

− 2
3
M2
ρ

M2
φ

− t′D−1
ρ (t′)−M2

ρD
−1
ρ (t′)

]

− F 2
A

f2M2
K1

(
M2
K1 −m

2
K− − k · p−

)
D−1
K1

[(p− + k)2] , (2.22b)

v3 =− F 2
A

f2M2
K1

D−1
K1

[(p− + k)2] , (2.22c)

v4 =2FVGV
f2 D−1

ρ (t)D−1
ρ (t′)− F 2

V

f2M2
ρ

D−1
ρ (t′) , (2.22d)

for K−K0, where Σ−0 = m2
− +m2

0 and D−1
R (x) = M2

R − x− iMΓR(x). Off-shell resonance
widths are given in terms of the leading pseudo-Goldstone boson cuts [26, 27, 69].

It is straightforward to show that, except for a Clebsch-Gordan coefficient (CGC)
factor, one recovers the expressions found in Refs. [51, 53] for the vector form factors of
the τ− → π−π0ντγ decays, in the isospin-symmetry limit.

All the former resonance contributions are given in terms of three couplings: FV ,
responsible for instance of the coupling of the vector resonance to the vector current; FA
for the couplings of the axial resonance; and GV which yields, among others, vertices
between the vector resonance and a couple of pseudo-Goldstone bosons (see e.g. Ref. [70]
for more details).

2.2 Axial contributions

The Feynman diagrams that contribute to these decays are depicted in Figs. 3–5. At O(p4),
the axial form factors ai in Eq. (2.6), which receive contributions from the Wess-Zumino-
Witten functional [71, 72], are given by

a1 = Nc

12
√

2π2f2 , a2 = − Nc

6
√

2π2f2(t′ −m2
K)

, a3 = − Nc

24
√

2π2f2 , (2.23)

for K−π0,
a3 = − Nc

24π2f2 , (2.24)

for K̄0π−, and
a3 = Nc

24π2f2 , (2.25)
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γ

K−

π0

⊗ ⊗ γ

K−

π0

K−

Figure 3. Axial contributions to the τ− → K−π0ντγ decays at O
(
p4).

γ

K̄0

π−

⊗

Figure 4. Axial contributions to the τ− → K̄0π−ντγ decays at O
(
p4).

γ

K0

K−

⊗

Figure 5. Axial contributions to the τ− → K−K0ντγ decays at O
(
p4).

for K−K0, where Nc = 3 is the number of colors and f is the pion decay constant in the
chiral limit, f ∼ 90 MeV.

In Fig. 5, only one diagram contributes to the τ− → K−K0ντγ decays in a similar way
to the τ− → K̄0π−ντγ decays. This is because the K− → K̄0π−γ (or π− → K−K0γ) ver-
tex is absent in the WZW Lagrangian3. We reproduce the known anomalous contributions
[51, 53] for the τ− → π−π0ντγ case. We neglect resonance contributions in the anomalous
sector, which start at O(p6) in the chiral power counting [74].

3 Radiative hadronic tau decays

The differential rate for the τ− → P−1 P
0
2 ντγ decays in the τ rest frame is given by

dΓ = (2π)4

4mτ

∑
spin
|M|2dΦ4 , (3.1)

3This feature was already studied for the K`3 decays in Ref. [73], where the non-local kaon pole term is
only present in A+

µν for K+ → π0`+ν`γ decays.
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where dΦ4 is the corresponding 4-body phase space, given by

dΦ4 = δ(4)(P − p− − p0 − q − k) d3p−
(2π)32E−

d3p0
(2π)32E0

d3q

(2π)32Eν
d3k

(2π)32Eγ
, (3.2)

and |M|2 is the unpolarized spin-averaged squared amplitude. Inasmuch as this amplitude
is not IR finite, we follow the same procedure as in Refs. [51, 53] where a photon energy
cut, Ecut

γ , was introduced to study the dynamics of the τ− → π−π0ντγ decays.
In this analysis, we call “complete bremsstrahlung” or simply “SI” the amplitude with

v1,2,3,4 = a1,2,3,4 = 0. For the O(p4) contributions, as in Ref. [53], we distinguish between
using the set of short-distance constraints FV =

√
2F , GV = F/

√
2 [75] and FA = F ;

or FV =
√

3F , GV = F/
√

3 and FA =
√

2F [74, 76–78]. The former corresponds to the
constraints from 2-point Green functions and the second to the values consistent up to
3-point Green functions which include operators that contribute at O(p6) (that we are not
including in this work). The difference between both sets of constraints has been employed
to estimate roughly the model-dependent error of this approach [43, 44, 49, 53, 79]. In all
our subsequent analyses, the O(p4) results include the SI part and the structure dependent
part (either with the FV =

√
2F or with the FV =

√
3F set of constraints).

Integrating Eq. (3.1) using the dispersive vector and scalar form factors [6, 7, 9, 13,
14, 80–82], we get the P−1 P 0

2 invariant mass distribution, the photon energy distribution
and the branching fraction as a function of Ecut

γ . The outcomes are depicted in Figs. 6, 7,
8 and 9, and summarized in Tables 1, 2 and 3.

The branching fractions of the radiative decays as a function of Ecut
γ are shown in Fig. 6.

In Tables 1 and 2, we can see that for Ecut
γ . 100MeV the main contribution atO(p4) comes

from the complete bremsstrahlung (SI) amplitude in agreement with the results in Refs. [51,
53, 55] for the τ− → π−π0ντγ decays. On the other hand, the Low’s approximation
is not sufficient to describe these decays for energies above 100MeV. Contrary to the
τ− → (Kπ)−ντ transitions, where the K−π0 and π−K̄0 decay modes differ only by a
squared CGC factor, the radiative decays are more subtle. At low energies these two modes
are approximately related by Br(τ → K̄0π−ντγ)/Br(τ− → K−π0ντγ) ≈ 2(mK/mπ) ∼ 7,
which explains their hierarchy (particularly, the relative size of the structure dependent
—which basically scale according to the CGCs of the two decay channels— and the IB
contributions), as seen in the following phenomenological analysis. Conversely, the τ− →
K−K0ντγ decays are more susceptible to SD contributions (see Table 3).

In Fig. 7, the decay spectrum is depicted with vi = ai = 0 for different Ecut
γ values.

For the τ− → (Kπ)−ντγ decays, the first peak is due to bremsstrahlung off the charged
meson i.e. K− or π−, and the second one receives contributions from bremsstrahlung off
the τ lepton and resonance exchange.

In Fig. 8, we compare the distributions for Ecut
γ = 300MeV using the Low’s approx-

imation (red dashed line), the SI amplitude (dotted line), and the O(p4) amplitude with
FV =

√
2F (dashed line) and FV =

√
3F (solid line). The most important contribu-

tion for the (Kπ)− decay channels comes from the K∗(892) resonance exchange around
s ∼ 0.79GeV2. It is worth noting that for the τ− → K̄0π−ντγ decays there is a huge sup-
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Figure 6. Branching ratio for the τ− → K−π0ντγ (top), the τ− → K̄0π−ντγ (center) and
the τ− → K−K0ντγ (bottom) decays as a function of Ecut

γ . The dotted line represents the
bremsstrahlung contribution, the solid line and dashed line represent the O

(
p4) corrections us-

ing FV =
√

3F and FV =
√

2F , respectively. The red one corresponds to the Low approximation.
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Figure 7. The K−π0 (top), K̄0π− (center) and K−K0 (bottom) SI hadronic invariant mass
distributions for several Ecut

γ values.
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Ecut
γ Br(Low) BR(SI) BR(FV =

√
2F )

[
O
(
p4)] BR(FV =

√
3F )

[
O
(
p4)]

100 MeV 3.4× 10−6 3.0× 10−6 3.5× 10−6 3.8× 10−6

300 MeV 6.2× 10−7 3.4× 10−7 6.3× 10−7 9.4× 10−7

500 MeV 7.4× 10−8 3.5× 10−8 1.5× 10−7 3.3× 10−7

Table 1. Branching ratios Br(τ− → K−π0ντγ) for different values of Ecut
γ . The third column

corresponds to the complete bremsstrahlung, and the fourth and fifth to the O
(
p4) contributions.

Ecut
γ Br(Low) BR(SI) BR(FV =

√
2F )

[
O
(
p4)] BR(FV =

√
3F )

[
O
(
p4)]

100 MeV 2.6× 10−5 1.4× 10−5 1.6× 10−5 1.6× 10−5

300 MeV 6.2× 10−6 1.1× 10−6 1.7× 10−6 1.9× 10−6

500 MeV 1.0× 10−6 7.1× 10−8 2.0× 10−7 2.4× 10−7

Table 2. Branching ratios Br(τ− → K̄0π−ντγ) for different values of Ecut
γ . The third column

corresponds to the complete bremsstrahlung, and the fourth and fifth to the O
(
p4) contributions.

Ecut
γ BR(Low) BR(SI) BR(FV =

√
2F )

[
O
(
p4)] BR(FV =

√
3F )

[
O
(
p4)]

100 MeV 5.3× 10−7 3.7× 10−7 6.8× 10−7 9.4× 10−7

300 MeV 4.8× 10−8 1.9× 10−8 1.7× 10−7 3.1× 10−7

500 MeV 3.7× 10−10 3.0× 10−10 1.1× 10−8 2.9× 10−8

Table 3. Branching ratios Br(τ− → K−K0ντγ) for different values of Ecut
γ . The third column

corresponds to the complete bremsstrahlung, and the fourth and fifth to the O
(
p4) contributions.

pression around the K∗(892) peak, when the full distribution is compared to the Low one.
The K−K0 invariant mass distribution is more sensitive to SD contributions, although
the ρ(1450) effect is hidden in the spectrum because of the corresponding kinematical
suppression.

The photon energy distribution is shown in Fig. 9. The SI amplitude in all these
decays governs the distribution for Eγ . 100MeV, in agreement with the outcomes for
the branching ratio. However, the SD contributions become relevant for Eγ & 250MeV.
This feature makes these decays an excellent probe for testing SD effects. The above
phenomenological analysis, for the τ− → π−π0ντγ decays, can be found in Ref. [53], for
instance.

4 Radiative Corrections

The overall differential decay width is given by

dΓ
dt

∣∣∣∣
PP (γ)

= dΓ
dt

∣∣∣∣
PP

+ dΓ
dt

∣∣∣∣
III

+ dΓ
dt

∣∣∣∣
IV/III

+ dΓ
dt

∣∣∣∣
rest

, (4.1)

where the first term is the non-radiative differential width in Eq. (C.5), the second and
third terms correspond to the Low approximation integrated according to the kinematics
in Refs. [51, 53], Eq. (2.16), and the last term includes the remaining contributions.
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Figure 8. The K−π0 (top), K̄0π− (center) and K−K0 (bottom) hadronic invariant mass dis-
tributions for Ecut

γ ≥ 300 MeV. The solid and dashed line represent the O
(
p4) corrections using

FV =
√

3F and FV =
√

2F , respectively. The dotted line represents the bremsstrahlung contribu-
tion (SI). The red one corresponds to the Low approximation.
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Figure 9. Photon energy distribution for the τ− → K−π0ντγ (top), the τ− → K̄0π−ντγ (center)
and the τ− → K−K0ντγ (bottom) decays normalized with the non-radiative decay width. The
dotted line represents the bremsstrahlung contribution. The solid and dashed lines represent the
O
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p4) corrections using FV =
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To evaluate the first term in Eq. (4.1) we use two models for the factorization of the
radiative corrections to the form factors (FFs). In model 1, we factorize the corrections to
the form factor [51] as

F̃+/0(t, u) = F̃+/0(t)
[
1 + δF+/0(t, u)

]
, (4.2)

while in model 2, they are written as [11]

F̃+(t, u) = F̃+(t)
{

1 + α
4π

[
2(m2

− +m2
τ − u)C(u,Mγ) + 2 log

(
m−mτ

M2
γ

)]}
+ δf̄+(u) ,(4.3)

F̃0(t, u) ≡ F̃+(t, u) + t
∆−0

δf̄−(u) , (4.4)

where δf̄+(u) and δf̄−(u) are defined in Appx. B. A similar factorization prescription was
used in Ref. [83] where model 2 was preferred over model 1 for the Kµ3 decays since the
loop contributions to f+/−(u) are different 4. We will see here that model 1 factorization
warrants smoother corrections than model 2 when resonance contributions are included, as
resonance enhancements will cancel in the long-distance radiative correction factor GEM(t)
in Eq. (4.5), as opposed to model 2. This motivates our preference of model 1 over model
2 in our following phenomenological analysis.

The correction factors δ̃A(t) and δA(t), where A = +, 0,+0, are both IR divergent
when Mγ → 0, nevertheless, the overall contribution, δA(t) = δA(t) + δ̃A(t), is finite. In
Fig. 10, we can see the predictions for δA(t) for the K−π0, K̄0π−, and K−K0 decay modes
using the FFs in model 1 and 2. Whilst our results for δ+(t) in model 2 agree with those
in Ref. [11] in Figure 2, the predictions for δ0(t) are slightly different as a consequence of
the parameterization of the scalar form factor 5.

The differential decay width can be written as

dΓ
dt

∣∣∣∣
PP (γ)

=G2
F |VuDF+(0)|2 SEWm

3
τ

768π3t3

(
1− t

m2
τ

)2
λ1/2(t,m2

−,m
2
0)

×
[
C2
V |F̃+(t)|2

(
1 + 2t

m2
τ

)
λ(t,m2

−,m
2
0) + 3C2

S∆2
−0|F̃0(t)|2

]
GEM(t) ,

(4.5)

where GEM(t) encodes the electromagnetic corrections due to real and virtual photons.
For simplicity, we have splitted GEM(t) in two parts: the leading Low approximation plus
non-radiative contributions, G(0)

EM(t), and the remainder, δGEM(t), which includes the SD
contributions to the amplitude. The predictions for both are shown in Fig. 11.

4Both prescriptions were studied for the Ke3 decays in Ref. [68], their outcomes for δK`EM(D3)(%) are
shifted from 0.41 to 0.56 for K0

e3 and from -0.564 to -0.410 for K±e3 modes where the former numbers
correspond to model 2.

5This effect is mainly responsible for the slight difference between our results for model 2 in Table 10
and those in Ref. [11].
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Figure 10. Correction factors δEM
+ (t) (left) and δEM

0 (t) (right) to the differential decay rates of
the K−π0, K̄0π− and K−K0 modes from top to bottom, according to models 1 (solid black) and
2 (dashed red).

Integrating upon t, we get

ΓPP (γ) = G2
FSEWm

5
τ

96π3 |VuDF+(0)|2 IτPP
(
1 + δPPEM

)2
, (4.6)

where

IτPP = 1
8m2

τ

∫ m2
τ

tthr

dt

t3

(
1− t

m2
τ

)2
λ1/2(t,m2

−,m
2
0)

×
[
C2
V |F̃+(t)|2

(
1 + 2t

m2
τ

)
λ(t,m2

−,m
2
0) + 3C2

S∆2
−0|F̃0(t)|2

]
.

(4.7)

The results for δPPEM are shown in Table 4, where the second and third columns cor-
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Figure 11. Correction factors G(0)
EM(t) (left) and δGEM(t) (right) to the differential decay rates of

the K−π0, K̄0π−, K−K0, and π−π0 modes from top to bottom.
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δEM Ref. [11] Model 1 Model 2 DIV/III SI 2F 3F
K−π0 −0.20(20) −0.019 −0.137 +1.3 · 10−4 −0.001 +0.006 +0.010
K̄0π− −0.15(20) −0.086 −0.208 +1.5 · 10−5 −0.098 −0.085 −0.080
K−K0 − −0.046 −0.223 +9.5 · 10−5 −0.012 +0.003 +0.016
π−π0 − −0.196 −0.363 +9.4 · 10−5 −0.010 −0.002 +0.010

Table 4. Electromagnetic corrections to hadronic τ decays in %.

respond to the first and second terms in Eq. (4.1), the fourth column to the third term
and the last three columns to the fourth term in that equation. The value in model 1 for
the K̄0π− channel agrees with the result in Ref. [56], which is related to our definition
by δEM = δm.i.

EM/2 ' −0.063%. Although our outcomes for the (Kπ)− modes agree within
errors with those in Refs. [11, 56], the value in model 2 (and also model 1) for the K−π0

decay channel is larger than the K0π− one, which is at odds with Ref. [11]6.
The complete radiative corrections (that we always quote in %) are obtained adding

to the model 1/2 results, the (negligible) DIV/III part and the 2F/3F contributions (which
include the SI part). We explained before why we preferred the model 1 over the model
2 results. We will take the difference with respect to model 2 as an asymmetric error on
the model 1 results. For the structure-dependent contributions, we consider the 3F results
as our central values and the difference with respect to 2F as a symmetric error for our
model-dependence. To be on the safe side, we will take twice this error as our corresponding
uncertainty. Proceeding this way, our main results are

δK
−π0 = −

(
0.009+0.008

−0.118

)
, δK̄

0π− = −
(
0.166+0.010

−0.122

)
,

δK
−K0 = −

(
0.030+0.026

−0.179

)
, δπ

−π0 = −
(
0.186+0.024

−0.169

)
.

(4.8)

We see that the model-independent contributions are responsible for the relatively
large radiative corrections obtained for the (K̄/π)0π− modes. The dominant (asymmet-
ric) uncertainty comes from the difference between the model 1/2 results, which is much
larger than the deviation between the model-dependent 2F/3F values. Our results for the
δK
−π0/K̄0π− agree with those in Ref. [11], and we reduce the uncertainty band by ∼ 45%.

We note that the estimate of the errors in this reference yields also an uncertainty band
in agreement with ours for δK−K0/π−π0 (our errors are smaller by a factor ∼ 2 again).
Although our δK−π0 and δK̄

0π− seem to differ (the main reason being the scaling of the
inner bremsstrahlung contribution with the inverse of the charged meson mass), the corre-
sponding significance of their non-equality is only ∼ 0.7σ, according to our uncertainties.
We understand that the radiative corrections in Eq. (4.8) constitute the state-of-the-art
results and, as such, should be employed in precision analysis like, e.g. CKM unitarity or
lepton universality tests [84] and searches for non-standard interactions.

For completeness, we have also evaluated these corrections for the K−η(′) modes. In
the G(0)

EM approximation and using the respective dominance of the vector (scalar) form

6Incidentally, our results would agree more closely swapping the numbers for δK
−τ

EM ↔ δK̄
0τ

EM in Ref. [11].
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factor [13], we obtain

δK
−η = −

(
0.026+0.024

−0.162

)
, δK

−η′ = −
(
0.304+0.380

−0.030

)
, (4.9)

where the uncertainty is saturated by the difference between the model 1/2 results. The
K−η′ decay mode is the only one (completely) dominated by the scalar form factor, which
causes the relatively large magnitude of the corresponding radiative correction.

5 Conclusions

Radiative corrections to the one-meson tau decays have been employed in CKM unitarity,
lepton universality and non-standard interactions tests. The corresponding results for the
dipion tau decays allowed tau-based computations of the leading-order piece of the hadronic
vacuum polarization part of the muon g − 2. Even though the model-independent part of
these corrections was available for the Kπ modes, the structure-dependent one remained
to be calculated. We have filled this gap, enabling a computation of the corresponding
radiative correction factors with reduced uncertainties. For completeness, we also quote
these results for the PP (P = π,K) modes and estimate them for the Kη(′) cases.

A K`3 decays

The most general amplitude for the K(pK) → π(pπ)`(P )ν`(q)γ(k) decays that complies
with Lorentz invariance and the discrete symmetries of QCD can be written as

M =eGFV
∗
us√

2
ε∗µ

[
Hν(−pK , pπ)
k2 + 2k · P ū(q)γν(1− γ5)(m` − /P − /k)γµv(P )

+(V µν −Aµν)ū(q)γν(1− γ5)v(P )
]
,

(A.1)

where

Hν(−pK , pπ) ≡ 〈π(pπ) |s̄γνu|K(pK)〉

= −CV F+(t)
[
(pK + pπ)ν − ∆Kπ

t
(pK − pπ)ν

]
− CS

∆Kπ

t
(pK − pπ)νF0(t) ,

(A.2)

with t = (pK − pπ)2.
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The structure-independent term is given by

V µν
SI =Hν(−pK + k, pπ)(k − 2pK)µ

k2 − 2k · pK
+
{
−CV F+(t′)− ∆Kπ

t′
[
CSF0(t′)− CV F+(t′)

]}
gµν

+ CV
F+(t′)− F+(t)
k · (pK − pπ)

[
(pK + pπ)ν − ∆Kπ

t
(pK − pπ)ν

]
(pK − pπ)µ

+ ∆Kπ

tt′

{
2
[
CSF0(t′)− CV F+(t′)

]
+ CSt

′

k · (pK − pπ)
[
F0(t′)− F0(t)

]}
× (pK − pπ)µ(pK − pπ)ν ,

(A.3)

where CK−π0
V = CK

−π0
S = 1/

√
2 for K+ → π0`+ν`γ, and

V µν
SI =Hν(−pK , pπ + k)(k + 2pπ)µ

k2 + 2k · pπ
+
{
CV F+(t′)− ∆Kπ

t′
[
CSF0(t′)− CV F+(t′)

]}
gµν

+ CV
F+(t′)− F+(t)
k · (pK − pπ)

[
(pK + pπ)ν − ∆Kπ

t
(pK − pπ)ν

]
(pK − pπ)µ

+ ∆Kπ

tt′

{
2
[
CSF0(t′)− CV F+(t′)

]
+ CSt

′

k · (pK − pπ)
[
F0(t′)− F0(t)

]}
× (pK − pπ)µ(pK − pπ)ν ,

(A.4)

where CK̄0π−
V = CK̄

0π−
S = 1 for K0 → π−`+ν`γ, both with t′ ≡ (pK − pπ − k)2. We recover

the Eqs. (2.3) and (2.4) by replacing
{
P
pK

}
→

{
−P
−pK

}
and m` → mτ . The structure-

dependent terms are analogous to those in Eqs. (2.5) and (2.6).
At O(p0), we get

V µν
SI = −CK+

pµK
k · pK

(pK + pπ)ν − CK+

(
gµν − pµKk

ν

k · pK

)
, (A.5)

for K+ → π0, and

V µν
SI = −CK0

pµπ
k · pπ

(pK + pπ)ν + CK0

(
gµν − pµπk

ν

k · pπ

)
, (A.6)

for K0 → π−, where CK = CS = CV . Thus, the overall amplitude at O(p0) is given by

Mγ = eGF√
2
V ∗usCK+ ū(q)(1 + γ5)(2/pπ −m`)

(
ε · P
k · P

− ε · pK
k · pK

+
/k/ε

2k · P

)
v(P ) , (A.7)

and

Mγ = eGF√
2
V ∗usCK0 ū(q)(1 + γ5)(2/pK +m`)

(
ε · P
k · P

− ε · pπ
k · pπ

+
/k/ε

2k · P

)
v(P ) . (A.8)
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These two expressions agree with the Eqs. (13) and (14) in Ref. [68]. To this order, V µν
SD

and AµνSD, which are O(p2), can be neglected.

In the Low limit, we obtain

Mγ = eGFV
∗
us√

2
ū(q)γν(1− γ5)v(P )Hν(−pK , pπ)

(
ε · p+
k · p+

− ε · P
k · P

)
, (A.9)

where the subscript + refers to the charged meson. The spin-averaged squared matrix
element is then given by

|Mγ |2 =4C2
Ke

2G2
F |Vus|

2 SKEW

{[
m2
`

2 (t−m2
` ) + 2m2

Km
2
π + 2u(m2

` − t+m2
K +m2

π)− 2u2

−∆Kπ

t
m2
` (2u+ t−m2

` − 2m2
π) + ∆2

Kπ

t2
m2
`

2 (t−m2
` )
]
|F+(t)|2

+∆Kπm
2
`

t

[
2u+ t−m2

` − 2m2
π + ∆Kπ

t
(m2

` − t)
]

Re [F+(t)F ∗0 (t)]

+∆2
Kπm

2
`

2t2
(
t−m2

`

)
|F0(t)|2

} ∑
γ pols.

∣∣∣∣ p− · εp− · k
− P · ε
P · k

∣∣∣∣2 +O(k0) ,

(A.10)

where u = (pK − P )2. The last expression can also be written in terms of f+/−(t),

|Mγ |2 = 2C2
Km

4
Ke

2G2
F |Vus|

2 SKEWρ
(0)(y, z)

∑
γ pols.

∣∣∣∣ p− · εp− · k
− P · ε
P · k

∣∣∣∣2 +O(k0) , (A.11)

where

ρ(0)(y, z) = A
(0)
1 (y, z) |f+(t)|2 +A

(0)
2 (y, z)Re

[
f+(t)f∗−(t)

]
+A

(0)
3 (y, z) |f−(t)|2 , (A.12)

and the kinematical densities are

A
(0)
1 = 4(y + z − 1)(1− y) + r`(4y + 3z − 3)− 4rπ + r`(rπ − r`) , (A.13a)

A
(0)
2 = 2r`(r` − rπ − 2y − z + 3) , (A.13b)

A
(0)
3 = r`(rπ − r` + 1− z) , (A.13c)

with
z = 2pπ · pK

m2
K

= 2Eπ
mk

, y = 2pK · p`
m2
K

= 2E`
mk

, (A.14)

r` = (m`/mK)2, and rπ = (mπ/mK)2. Here, Eπ (E`) is the energy of the pion (charged
lepton) in the kaon rest frame. The expression in Eq. (A.11) can be compared directly
with the results in Refs. [68, 83, 85].
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The K → π`ν` decay width without radiative corrections [11] is given by

Γ(K → π`ν`) = G2
Fm

5
K

192π3 S
K
EW|Vus|2|F+(0)|I`K , (A.15)

where

I`K =
∫ tmax

m2
`

dt
1
m8
K

λ3/2(t,m2
K ,m

2
π)
(

1− m2
`

t

)2(
1 + m2

`

2t

)

×
[
C2
V |F̃+(t)|2 + 3∆2

Kπm
2
`

(2t+m2
` )λ(t,m2

K ,m
2
π)
CS |F̃0(t)|2

]
,

(A.16)

and tmax = (mK −mπ)2.

B Virtual corrections to the hadronic tau decays

The radiative corrections to the τ− → (P1P2)−ντ decays at O(p2) in Chiral Perturbation
Theory [86–88] are depicted in Fig. 12. The overall contribution is given by [50]

δHµ(t, u) = CV δf+(u)(p1 − p0)µ + CV δf−(u)(p1 + p0)µ , (B.1)

where

δf+(u) = α

4π

[
2 + 1

ε
− γE + log 4π − log m

2
τ

µ2 + (u−m2
−)A(u) + (u−m2

− −m2
τ )B(u)

+2(m2
− +m2

τ − u)C(u,Mγ) + 2 log
(
m−mτ

M2
γ

)]
,

(B.2)

δf−(u) = α

4π

[
−5− 3

(1
ε
− γE + log 4π

)
+ log

m2
−
µ2 + 2 log m

2
τ

µ2 + (3u+m2
− − 2m2

τ )A(u)

+(u+m2
− −m2

τ )B(u)
]
,

(B.3)

A(u) = 1
u

(
−1

2 log rτ + 2− y
√
rτ

x

1− x2 log x
)
, (B.4)

B(u) = 1
u

(
1
2 log rτ + 2rτ − y√

rτ

x

1− x2 log x
)
, (B.5)

C(u,Mγ) = 1
mτm−

x

1− x2

[
−1

2 log2 x+ 2 log x log(1− x2)− π2

6 + 1
8 log2 rτ

+Li2(x2) + Li2

(
1− x
√
rτ

)
+ Li2(1− x

√
rτ )− log x log

(
M2
γ

mτm−

)]
,

(B.6)
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τ−

P−

P (′)0

ντ

⊗
τ−

P−

P (′)0

ντ

⊗
τ−

P−

P (′)0

ντ

⊗

Figure 12. Photon loop diagrams that contribute to the τ− → (P1P2)−ντ decays.

and Cππ,KK,K
−π0,K0π−

V =
(√

2,−1, 1√
2 ,−1

)
. Here, A(u), B(u) and C(u,Mγ) are written in

terms of the variables

rτ = m2
τ

m2
−
, y = 1 + rτ −

u

m2
−
, x = 1

2√rτ

(
y −

√
y2 − 4rτ

)
, (B.7)

and the dilogarithm

Li2(x) = −
∫ 1

0

dt

t
log(1− xt) . (B.8)

The radiative corrections to these decays induce a dependence in the u variable. From
a comparison with the results in Ref. [11], we get the following relation

δf̄+(u) = α

4π
1

f+(0)
[
Γ1(u,m2

τ ,m
2
−) + Γ2(u,m2

τ ,m
2
−)
]

+ · · ·

= α

4π
1

f+(0)
[
(u−m2

−)A(u) + (u−m2
− −m2

τ )B(u)
]

+ · · · ,
(B.9)

and

δf̄−(u) = α

4π
1

f+(0)
[
Γ1(u,m2

τ ,m
2
−)− Γ2(u,m2

τ ,m
2
−)
]

+ · · ·

= α

4π
1

f+(0)
[
(3u+m2

− − 2m2
τ )A(u) + (u+m2

− −m2
τ )B(u)

]
+ · · · .

(B.10)

C τ− → (P1P2)−ντ decays

After the inclusion of the virtual-photon radiative corrections to the form factor in Sect. B,
the amplitude for the τ−(P )→ P−1 (p−)P 0

2 (p0)ντ (q) decays is given by

M0 = GFVuD
√
SEW√

2
Hν(p−, p0)ū(q)γν(1− γ5)u(P ) . (C.1)

Thus, the spin-averaged squared amplitude follows

|M0|2 =2G2
F |VuD|

2 SEW
{
C2
S |F0(t, u)|2DP−P 0

0 (t, u)

+CSCV Re [F+(t, u)F ∗0 (t, u)]DP−P 0
+0 (t, u) + C2

V |F+(t, u)|2DP−P 0
+ (t, u)

}
,

(C.2)
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where we have defined F+/0(t, u) = F+/0(t) + δF+/0(t, u), and δF0(t, u) ≡ δF+(u) +
t

∆−0
δF−(u). The expressions for DP−P 0

0 (t, u), DP−P 0
+0 (t, u) and DP−P 0

+ (t, u) are given in
Eqs. (2.10-2.12).

The differential decay width in the tau rest frame is

d2Γ
dtdu

= 1
32(2π)3m3

τ

|M0|2 , (C.3)

where t = (p− + p0)2 is the invariant mass and u = (P − p−)2 = (p0 + q)2. The physical
region is limited by (m− +m0)2 ≤ t ≤ m2

τ and u−(t) ≤ u ≤ u+(t), with

u±(t) = 1
2t

[
2t(m2

τ +m2
0 − t)− (m2

τ − t)(t+m2
− −m2

0)± (m2
τ − t)

√
λ(t,m2

−,m
2
0)
]
,

(C.4)
and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The invariant mass distribution is obtained integrating upon the u variable

dΓ
dt

=G2
FSEW|VuD|2m3

τ

384π3t

{
1

2t2
(

1− t

m2
τ

)2
λ1/2(t,m2

−,m
2
0)

×
[
C2
V |F+(t)|2

(
1 + 2t

m2
τ

)
λ(t,m2

−,m
2
0)
(
1 + δ̃+(t)

)
+ 3C2

S∆2
−0 |F0(t)|2

(
1 + δ̃0(t)

)]

+CSCV
4√
t
δ̃+0(t)

}
,

(C.5)

where

δ̃0(t) =
∫ u+(t)
u−(t) D

P−P 0
0 (t, u)2Re [F0(t)δF ∗0 (t, u)] du∫ u+(t)
u−(t) D

P−P 0
0 (t, u)|F0(t)|2du

, (C.6)

δ̃+(t) =
∫ u+(t)
u−(t) D

P−P 0
+ (t, u)2Re

[
F+(t)δF ∗+(u)

]
du∫ u+(t)

u−(t) D
P−P 0
+ (t, u)|F+(t)|2du

, (C.7)

δ̃+0(t) = 3t
√
t

4m6
τ

∫ u+(t)

u−(t)
DP−P 0

+0 (t, u)
(
Re [F+(t)δF ∗0 (t, u)] + Re

[
F0(t)δF ∗+(u)

])
du . (C.8)

D Kinematics

As in Refs. [11, 51, 53, 89], after an integration over DIV/III and DIII, the functions in
Eqs. (2.15) are given by

J11(t, u) = log
(

2x+(t, u)γ̄
Mγ

)
1
β̄

log
(

1 + β̄

1− β̄

)

+ 1
β̄

[
Li2(1/Y2)− Li2(Y1) + log2(−1/Y2)/4− log2(−1/Y1)/4

]
, (D.1a)
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J20 (t, u) = log
(
Mγ(m2

τ − t)
mτ x+(t, u)

)
, (D.1b)

J02 (t, u) = log
(
Mγ(m2

τ +m2
0 − t− u)

m− x+(t, u)

)
, (D.1c)

K20 (t, u) = K0,2 (t, u) = log
(
x−(t, u)
x+(t, u)

)
, (D.1d)

where

x± (t, u) =
−m4

− + (m2
0 − t)(m2

τ − u) +m2
−(m2

τ +m2
0 + t+ u)

2m2
−

±
λ1/2 (u,m2

τ ,m
2
−
)
λ1/2 (t,m2

−,m
2
0
)

2m2
−

.

(D.2)

These expressions are written in terms of

Y1,2 =
1− 2ᾱ±

√
(1− 2ᾱ)2 − (1− β̄2)

1 + β̄
, (D.3)

with

ᾱ =(m2
τ − t)(m2

τ +m2
0 − t− u)

(m2
− +m2

τ − u)
·
λ(u,m2

−,m
2
τ )

2δ̄
,

β̄ =−

√
λ(u,m2

−,m
2
τ )

m2
− +m2

τ − u
,

γ̄ =

√
λ(u,m2

−,m
2
τ )

2
√
δ̄

,

δ̄ =−m4
0m

2
τ +m2

−(m2
τ − t)(m2

0 − u)− tu(−m2
τ + t+ u)

+m2
0(−m4

τ + tu+m2
τ t+m2

τu) .
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