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Resource Theory of Heat and Work with
Non-commuting Charges

Zahra Baghali Khanian , Manabendra Nath Bera ,
Arnau Riera , Maciej Lewenstein and Andreas Winter

Abstract. We consider a theory of quantum thermodynamics with mul-
tiple conserved quantities (or charges). To this end, we generalize the
seminal results of Sparaciari et al. (Phys. Rev. A 96:052112, 2017) to
the case of multiple, in general non-commuting charges, for which we
formulate a resource theory of thermodynamics of asymptotically many
non-interacting systems. To every state we associate the vector of its ex-
pected charge values and its entropy, forming the phase diagram of the
system. Our fundamental result is the Asymptotic Equivalence Theorem,
which allows us to identify the equivalence classes of states under as-
ymptotic approximately charge-conserving unitaries with the points of
the phase diagram. Using the phase diagram of a system and its bath,
we analyze the first and the second laws of thermodynamics. In particu-
lar, we show that to attain the second law, an asymptotically large bath
is necessary. In the case that the bath is composed of several identical
copies of the same elementary bath, we quantify exactly how large the
bath has to be to permit a specified work transformation of a given sys-
tem, in terms of the number of copies of the “elementary bath” systems
per work system (bath rate). If the bath is relatively small, we show that
the analysis requires an extended phase diagram exhibiting negative en-
tropies. This corresponds to the purely quantum effect that at the end of
the process, system and bath are entangled, thus permitting classically
impossible transformations (unless the bath is enlarged). For a large bath,
or many copies of the same elementary bath, system and bath may be
left uncorrelated and we show that the optimal bath rate, as a function
of how tightly the second law is attained, can be expressed in terms of
the heat capacity of the bath. Our approach solves a problem from ear-
lier investigations about how to store the different charges under optimal
work extraction protocols in physically separate batteries.
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1. Introduction

Thermodynamics is one of the most successful physical theories and a pillar
of modern science and technology. It was initially developed empirically to de-
scribe heat engines, such as the steam engine and internal combustion engines
that powered the industrial revolution of the eighteenth and nineteenth cen-
tury. Later on, it has been founded on statistical mechanics with the assump-
tion that the systems are composed of a large number of classical particles.
The thermal baths, which the system interacts with, are even larger in size so
that the temperature of the bath effectively does not alter after the interaction.
The laws of thermodynamics find their applications in almost all branches of
the exact sciences. The emergence of quantum mechanics in the last century,
and the subsequent achievements in controlling and tuning of an individual
or a finite number of quantum systems, led to the exploration of thermody-
namics in the quantum regime. There, the system is made up of a single or
moderate number of quantum particles interacting with a thermal bath. This
regime is often termed the finite-size regime. The system may possess non-
trivial quantum correlations, such as entanglement among the particles, and
the bath can be finite or comparable in size with the system. In the quantum
domain, another layer of difficulties arises when one considers more than one
conserved quantities (charges) that do not commute with each other, as the
simultaneous conservation of all the charges cannot be guaranteed.

Recent studies of quantum thermodynamics [1,2] focus on systems of
finite size and the cases where measurements are allowed only once. In addition
to thermodynamic averages, there one is interested in values and bounds on
fluctuations of thermodynamic quantities. One way to handle these problems
is by the use of various fluctuations theorems [3–5]. Another way to deal with
these regimes is exactly via the resource theory of thermodynamics that allows
for rigorous treatment of second laws, optimal work extraction problem, etc.
(cf. [6–8], see also [9–12]). The resource theory of quantum thermodynamics
was recently extended to deal with quantum and nanoscale engines made up
of a finite or a small number of quantum particles, and two baths at different
temperatures [13].

Resource theory is a rigorous mathematical framework initially devel-
oped to characterize the role of entanglement in quantum information pro-
cessing tasks. Later the framework was extended to characterize coherence,
non-locality, asymmetry and many more, including quantum Shannon theory
itself, see [14–31]. The resource theory approach applies also to classical theo-
ries. In general, the resource theories have the following common features: (1)
a well-defined set of resource-free states, and any states that do not belong
to this set has a non-vanishing amount of resource; (2) a well-defined set of
resource-free operations (allowed operations), that cannot create or increases
resource in a state. These allow one to quantify the resources present in the
states or operations and characterize their roles in the transformations between
the states or the operations. In particular, it enables the definition and rigorous
calculation or bounding of resource measures; to determine which states can
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be transformed to others using allowed operation; how the resource content of
states may be changed; and how these changes are bounded under the allowed
operations, etc.

In the present paper, we formulate a resource theory of quantum ther-
modynamics with multiple conserved quantities, where the system and bath
a priori are arbitrary in size. We adhere to the asymptotic regime where a
system of many non-interacting particles with multiple conserved quantities
or charges interacts with a bath. It is discussed in [32] that in the resource
theory of thermodynamics with multiple non-commuting conserved quanti-
ties, complete passivity and maximum entropy principle lead to incompatible
sets of resource free states. Here we choose the maximum entropy principle,
that is the resource-free states are the generalized Gibbs states (GGS), and
allowed operations are the (average) entropy and (average) charge preserving
operations. The thermodynamic resource is quantified by the Helmholtz free
entropy. Clearly, the entropy and charge preserving operations cannot create
thermodynamic resource in the resource-free GGSs. For any quantum state,
we associate a vector with entries of the average charge values and entropy of
that state. We call the set of all these vectors the phase diagram of a system.
The concept of phase diagram in the present sense was originally pioneered
in [33] for a system with energy as the only conserved quantity of the system
where it has been shown that the phase diagram is a convex set. This termi-
nology is motivated by traditional thermodynamics, where the phase diagram
is a multi-dimensional map of the equilibrium states of a system according to
the temperature and other relevant intensive or extensive quantities (such as
pressure, volume, particle concentrations, etc.). The difference here is that we
also allow non-equilibrium states, effectively decoupling the entropy from the
dynamical parameters. The seminal results of [33] were generalized to multi-
ple pairwise commuting conserved quantities by the present authors [12], and
the further generalization to the case of multiple, in general non-commuting
charges is the subject of the present paper. For an individual system with
multiple charges the phase diagram is not necessarily convex. Interestingly,
however, for a composition of two or more systems, the phase diagram be-
comes convex. Moreover, for a composition of large enough systems, for any
point in the phase diagram, there is a state with tensor product structure that
realizes it. This implies that from the macroscopic point of view it is enough
to consider states of a composite system with tensor product structure. This
is an important feature when we study a traditional thermodynamics set-up
considering only tensor product states, and it does not affect the generality
of the laws of thermodynamics which only depend on the macroscopic prop-
erties of a state rather than the state itself. We find that given the entropy
and charge preserving operations as the allowed operations, the (generalized)
phase diagram fully characterizes the thermodynamic transformations of the
states and the role of thermodynamic resources in such processes. We further
extend our study to situations where the system and bath become correlated
after initially being independent. In such a case we use the conditional entropy
instead of the entropy, to express the phase diagram and derive the laws of
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quantum thermodynamics when the final state exhibits possible system-bath
correlations.

The rest of the paper is organized as follows. In Sect. 2, we specify our
resource theory, considering a quantum system Q with a finite-dimensional
Hilbert space, together with a Hamiltonian H = A1 and other quantities
(“charges”) A2, . . . , Ac. We introduce here the concept of phase diagram and
prove the fundamental Asymptotic Equivalence Theorem 4 (AET), which shows
that the points in the phase diagram label asymptotic equivalence classes of
sequences of states. This allows us to study asymptotic thermodynamics of sys-
tems with multiple conserved quantities in Sect. 3. We start by describing the
system model, comprising a work system, baths and batteries, which permits
us to formulate and prove the first law in Sect. 3.1; the second law is discussed
in Sect. 3.2; in Sect. 3.3 we characterize precisely which work transformations
are possible on a system with a given bath, in terms of the extended phase dia-
gram, which features negative entropies corresponding to the purely quantum
effect of entanglement between system and bath; in Sect. 3.4 we introduce the
thermal bath rate, and discuss the tradeoff between the bath rate and work
extraction. We conclude in Sect. 4 with a discussion of our theory and an
outlook. The paper also includes three appendices: “Appendix A” introduces
technical notation and some auxiliary results; “Appendix B” gives an explicit
construction of so-called approximate microcanonical subspaces (a.m.c.) for
non-commuting observables [34]; “Appendix C” provides the full proof of the
AET Theorem 4.

2. Resource Theory of Charges and Entropy

A system in our resource theory is a quantum system Q with a finite-dimensional
Hilbert space (denoted Q, too, without danger of confusion), together with a
Hamiltonian H = A1 and other quantities (“charges”) A2, . . . , Ac, all of which
are Hermitian operators that do not necessarily commute with each other. We
consider composition of n non-interacting systems, where the Hilbert space of
the composite system Qn is the tensor product Q⊗n = Q1 ⊗ · · · ⊗ Qn of the
Hilbert spaces of the individual systems, and the j-th charge of the composite
system is the sum of charges of individual systems as follows,

A
(n)
j =

n∑

i=1

1⊗(i−1) ⊗ Aj ⊗ 1⊗(n−i), j = 1, 2, . . . , c. (1)

For ease of notation, we will write throughout A
(Qi)
j = 1⊗(i−1) ⊗Aj ⊗1⊗(n−i).

We note that throughout the paper we label various subsystems or individual
systems with subscripts whereas here subscript j denotes different charges of
each subsystem. To avoid this confusion, note that various charges are always
labeled by j.

We wish to build a resource theory where the objects are states on a quan-
tum system, which are transformed under thermodynamically meaningful op-
erations. To any quantum state ρ is assigned the point (a, s) = (a1, . . . , ac, s) =
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(
Tr ρA1, . . . ,Tr ρAc, S(ρ)

)
∈ R

c+1, which is an element in the phase diagram
that has been originally introduced, for c = 1, as energy-entropy diagram in
[33]; there it is shown, for a system where energy is the only conserved quantity,
that the diagram is a convex set. In the case of commuting multiple conserved
quantities, the charge-entropy diagram has been generalized and further in-
vestigated in [12]. Note that the set of all these vectors, denoted P(1), is not
in general convex (unless the quantities commute pairwise). An example is a
qubit system with charges σx, σy and σz where charge values uniquely deter-
mine the state as a linear function of the Tr ρσi, hence the entropy, while the
von Neumann entropy itself is well-known to be strictly concave.

Moreover, the set of these points for a composite system with charges
A

(n)
1 , . . . , A

(n)
c , which we denote P(n) contains, but is not necessarily equal

to nP(1) (which however is true for commuting charges). Namely, consider
the point g =

(
1
2Tr (ρ1 + ρ2)A1, . . . ,

1
2Tr (ρ1 + ρ2)Ac,

1
2S(ρ1) + 1

2S(ρ2)
)
, which

does not necessarily belong to P(1) but belongs to its convex hull; however,
2g ∈ P(2) due to the state ρ1 ⊗ ρ2. Therefore, we consider the convex hull of
the set P(1) and call it the phase diagram of the system, denoted

P ≡ P(1)
:=

{(
∑

i

piTr ρiA1, . . . ,
∑

i

piTr ρiAc,
∑

i

piS(ρi)

)
:

0 ≤ pi ≤ 1,
∑

i

pi = 1

}
. (2)

The interpretation is that the objects of our resource theory are ensembles of
states {pi, ρi}, rather than single states.

We define the zero-entropy diagram and max-entropy diagram, respec-
tively, as the sets

P(1)

0 = {(a, 0) : Tr ρAj = aj for a state ρ},

P(1)

max =
{(

a, S(τ(a))
)

: Tr ρAj = aj for a state ρ
}

,

where τ(a) is the unique state maximizing the entropy among all states with
charge values Tr ρAj = aj for all j, which is called generalized thermal state,
or generalized Gibbs state, or also generalized grand canonical state [35]. Note
that, as a linear image of the compact convex set of states, the zero-entropy
diagram is compact and convex. We similarly define the set P(n), the phase
diagram P(n)

, zero-entropy diagram P(n)

0 and max-entropy diagram P(n)

max for
the composition of n systems with charges A

(n)
1 , . . . , A

(n)
c . Figure 1 illustrates

these concepts.

Lemma 1. For an individual system Q and composite system Q⊗n with charges
Aj and A

(n)
j , respectively, the following holds:

1. P(n)
, for n ≥ 1, is a compact and convex subset of Rc+1.

2. P(n)
, for n ≥ 1, is the convex hull of the union P(n)

0 ∪ P(n)

max, of the
zero-entropy diagram and the max-entropy diagram.
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Figure 1. Schematic of the phase diagrams P(1), P(2) and P.
As seen, P(1) is not convex, having a hollow on the underside

3. P(n)
= nP(1)

for all n ≥ 1.
4. P(n) is convex for all n ≥ 2, and indeed P(n) = P(n)

= nP(1)
.

5. Every point of P(n) is realized by a suitable tensor product state ρ1⊗· · ·⊗
ρn, for all n ≥ |Q| where |Q| is the dimension of system Q.

6. All points
(
a, S(τ(a))

)
∈ Pmax are extreme points of P.

Proof. 1. The phase diagram is convex by definition. Further, Tr ρA
(n)
j and

S(ρ) are continuous functions defined on the set of quantum states which is a
compact set; hence, the set P(n) is also a compact set. The convex hull of a
finite-dimensional compact set is compact, so the phase diagram is a compact
set.

2. Any point in the phase diagram according to the definition is a convex
combination of the form

(a1, . . . , ac, s) =

(
∑

i

piTr (ρiA1), . . . ,
∑

i

piTr (ρiAc),
∑

i

piS(ρi)

)
.

The point (a1, . . . , ac, 0) belongs to P(1)

0 because the state ρ =
∑

i piρi has
charge values a1, . . . , ac. Moreover, the state with charge values a1, . . . , ac of
maximum entropy is the generalized thermal state τ(a), so we have

S(τ(a)) ≥ S(ρ) ≥
∑

i

piS(ρi),

where the second inequality is due to concavity of the entropy. Therefore, any
point (a, s) can be written as the convex combination of the points (a, 0) and(
a, S(τ(a))

)
.

3. Due to item 2, it is enough to show that P(n)

0 = nP(1)

0 , and P(n)

max =
nP(1)

max. The former follows from the definition. The latter is due to the fact that
the thermal state for a composite system is the tensor power of the thermal
state of the individual system.
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4. Let τ(a) =
∑

i pi|i〉〈i| be the diagonalization of the generalized thermal
state. For n ≥ 2, define |v〉 =

∑
i

√
pi|i〉⊗n. Obviously, the charge values of

the states τ(a)⊗n and |v〉〈v| are the same, since they have the same reduced
states on the individual systems; thus, there is a pure state for any point
in the zero-entropy diagram of the composite system. Now, consider the state
λ|v〉〈v|+(1−λ)τ(a)⊗n, which has the same charge values as τ(a)⊗n and |v〉〈v|.
The entropy S

(
λ|v〉〈v| + (1 − λ)τ(a)⊗n

)
is a continuous function of λ; hence,

for any value s between 0 and S(τ(a)⊗n), there is a state with the given values
and entropy s.

5. For n ≥ |Q|, it is easy to see that any state ρ can be decomposed into
a uniform convex combination of n pure states, i.e. ρ = 1

n

∑n
i=1 |ψi〉〈ψi|. For

instance, consider the diagonalization of ρ =
∑|Q|

t=1 qt|t〉〈t|, and define |ψ�〉 :=∑
t

√
qte

2πit�/n|t〉. Due to the cyclotomic properties of the primitive n-root
of unit, this satisfies the claim. Now observe that the state ψn = |ψ1〉〈ψ1| ⊗
· · · ⊗ |ψn〉〈ψn| has the same charge values as the state ρ⊗n, but as it is pure
it has entropy 0. Further, consider the thermal state τ with the same charge
values as ρ, but the maximum entropy consistent with them. Now let ρi :=
λ|ψi〉〈ψi| + (1 − λ)τ , and observe that ρn

λ = ρ1 ⊗ · · · ρn has the same charge
values as ψn, ρn and τ⊗n. Since the entropy S(ρn

λ) is a continuous function of
λ, thus interpolating smoothly between 0 and nS(τ), there is a tensor product
state with the same given charge values and prescribed entropy s in the said
interval.

6. This follows from the strict concavity of the von Neumann entropy
S(ρ) as a function of the state, which imparts the strict concavity on a �→
S(τ(a)). �

The penultimate point of Lemma 1 motivates us to define a resource the-
ory where the objects are sequences of states on composite systems of n → ∞
parts. Inspired by [33], the allowed operations in this resource theory are those
that respect basic principles of physics, namely entropy and charge conserva-
tion. We point out right here, that “physics” in the present context does not
necessarily refer to the fundamental physical laws of nature, but to any rule
that the system under consideration obeys. It is well-known that quantum op-
erations that preserve entropy for all states are unitaries. The class of unitaries
that conserve charges of a system are precisely those that commute with all
charges of that system. However, it turns out that these constraints are too
strong if imposed literally, when many charges are to be conserved, as it could
easily happen that only trivial unitaries are allowed. Our way out is to consider
the thermodynamic limit and at the same time relax the allowed operations
to approximately entropy and charge conserving ones. As for the former, we
couple the composite system to an ancillary system with corresponding Hilbert
space K of dimension 2o(n), where restricting the dimension of the ancilla en-
sures that the entropy rate per system, that is the entropy of the composite
system divided by n, does not change in the limit of large n. Here and in the
following, we use standard little-oh notation, by which o(n) denotes a function
such that limn→∞

o(n)
n = 0. Moreover, as for charge conservation, we consider
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unitaries that are almost commuting with the total charges of the composite
system and the ancilla. The precise definition is as follows.

Definition 2. A unitary operation U acting on a composite system coupled to
an ancillary system with Hilbert spaces H⊗n and K of dimension 2o(n), re-
spectively, is called an almost-commuting unitary with the total charges of a
composite system and an ancillary system if the operator norm of the normal-
ized commutator for all total charges vanishes asymptotically for large n:

lim
n→∞

1
n

∥∥∥[U,A
(n)
j + A′

j ]
∥∥∥

∞
= lim

n→∞

1
n

∥∥∥U(A(n)
j + A′

j) − (A(n)
j + A′

j)U
∥∥∥

∞
= 0 j = 1, . . . , c.

where A
(n)
j and A′

j are respectively the charges of the composite system and
the ancilla, such that

∥∥A′
j

∥∥
∞ ≤ o(n).

We stress that the definition of almost-commuting unitaries automatically
implies that the ancillary system has a relatively small dimension and charges
with small operator norm compared to a composite system. The first step in
the development of our resource theory is a precise characterization of which
transformations between sequences of product state are possible using almost
commuting unitaries. To do so, we define asymptotically equivalent states as
follows:

Definition 3. Two sequences of product states ρn = ρQn = (ρ1)Q1 ⊗ · · · ⊗
(ρn)Qn

and σn = σQn = (σ1)Q1 ⊗ · · · ⊗ (σn)Qn
of a composite system with

charges A
(n)
j for j = 1, . . . , c, are called asymptotically equivalent if

lim
n→∞

1
n

|S(ρn) − S(σn)| = 0,

lim
n→∞

1
n

∣∣∣Tr ρnA
(n)
j − Tr σnA

(n)
j

∣∣∣ = 0 for all j = 1, . . . , c.

In other words, two sequences of product states are considered equivalent if
their associated points in the normalized phase diagrams 1

nP(n) differ by a
sequence converging to 0.

We note that in the above definition, ρn and σn are tensor products of
possibly different states; a tensor power state is denoted ρ⊗n.

The asymptotic equivalence theorem of [33] characterizes feasible state
transformations via exactly commuting unitaries where energy is the only con-
served quantity of a system, showing that it is precisely given by asymptotic
equivalence. We prove an extension of this theorem for systems with multiple,
possibly non-commuting conserved quantities, by allowing almost-commuting
unitaries.

Theorem 4. (Asymptotic (approximate) Equivalence Theorem—AET). Let
ρn = ρ1 ⊗ · · · ⊗ ρn and σn = σ1 ⊗ · · · ⊗ σn be two sequences of product
states of a composite system with charges A

(n)
j for j = 1, . . . , c. These two

states are asymptotically equivalent if and only if there exist ancillary quantum
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systems with corresponding Hilbert space K of dimension 2o(n) and an almost-
commuting unitary U acting on H⊗n ⊗ K such that

lim
n→∞

∥∥U(ρn ⊗ ω′)U† − σn ⊗ ω
∥∥

1
= 0,

where ω and ω′ are states of the ancillary system, and charges of the ancillary
system are trivial, A′

j = 0.

The proof of this theorem is given in “Appendix C”, as it relies on a
number of technical lemmas, among them the concept of an approximate mi-
crocanonical subspace (a.m.c.) [34], of which we give a novel construction in
“Appendix B”.

3. Asymptotic Thermodynamics of Multiple Conserved
Quantities

As a thermodynamic theory, or even as a resource theory in general, transfor-
mations by almost-commuting unitaries do not appear to be the most fruitful:
they are reversible and induce an equivalence relation among the sequences
of product states. In particular, every point (a, s) of the phase diagram P(1)

defines an equivalence class, namely of all state sequences with charges and
entropy converging to a and s, respectively.

To make the theory more interesting, and more resembling of ordinary
thermodynamics, as expressed in its first and second laws (including irre-
versibility), we now specialize to a setting considered in many previous pa-
pers in the resource theory of thermodynamics, both with single or multiple
conserved quantities. Specifically, we consider an asymptotic analogue of the
setting proposed in [36] concerning the interaction of thermal baths with a
quantum system and batteries, where it was shown that the second law con-
strains the combination of extractable charge quantities. In [36], explicit pro-
tocols for state transformations to saturate the second law are presented, that
store each of several commuting charges in its corresponding explicit battery.
However, for the case of non-commuting charges, one battery, or a so-called ref-
erence frame, stores all different types of charges [34,37]. Only recently it was
shown that reference frames for non-commuting charges can be constructed, at
least under certain conditions, which store the different charge types in phys-
ically separated subsystems [38]. Moreover, the size of the bath required to
perform the transformations is not addressed in these works, as only the limit
of asymptotically large bath was considered. We will address these questions in
a similar setting but in the asymptotic regime, where Theorem 4 provides the
necessary and sufficient condition for physically possible state transformations.
In this new setting, the asymptotic second law constrains the combination of
extractable charges; we provide explicit protocols for realizing transformations
satisfying the second law, where each explicit battery can store its correspond-
ing type of work in the general case of non-commuting charges. Furthermore,
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we determine the minimum number of thermal baths of a given type that is
required to perform a transformation.

3.1. System Model, Batteries and the First Law

We consider a system being in contact with a bath and suitable batteries,
with a total Hilbert space Q = S ⊗ B ⊗ W1 ⊗ · · · ⊗ Wc, consisting of many
non-interacting subsystems; namely, the work system, the thermal bath and c
battery systems with Hilbert spaces S, B and Wj for j = 1, . . . , c, respectively.
We call the j-th battery system the j-type battery as it is designed to absorb
j-type work. The work system and the thermal bath have respectively the
charges ASj

and ABj
for all j, but j-type battery has only one nontrivial

charge AWj
, and all its other charges are zero because it is meant to store only

the j-th charge. We note that S, B and Wjs are different Hilbert spaces, so the
charges of their corresponding systems can be different as well. The total charge
is the sum of the charges of the sub-systems Aj = ASj

+ ABj
+ AWj

for all j.
Furthermore, for a charge A, let Σ(A) = λmax(A)−λmin(A) denote the spectral
diameter, where λmax(A) and λmin(A) are the largest and smallest eigenvalues
of the charge A, respectively. We assume that the total spectral diameter of
the work system and the thermal bath is bounded by the spectral diameter
of the battery, that is Σ(ASj

) + Σ(ABj
) ≤ Σ(AWj

) for all j; this assumption
ensures that the batteries can absorb or release charges for transformations.

As we discussed in the previous section, the generalized thermal state
τ(a) is the state that maximizes the entropy subject to the constraint that the
charges Aj have the values aj . This state is equal to 1

Z e−
∑c

j=1 βjAj for real
numbers βj called inverse temperatures and chemical potentials; each of them
is a smooth function of charge values a1, . . . , ac, and Z = Tr e−

∑c
j=1 βjAj is the

generalized partition function. Therefore, the generalized thermal state can be
equivalently denoted τ(β) as a function of the inverse temperatures, associated
uniquely with the charge values a. We assume that the thermal bath is initially
in a generalized thermal state τb(β), for globally fixed β. This is because in [34]
it was argued that these are precisely the completely passive states, from which
no energy can be extracted into a battery storing energy, while not changing
any of the other conserved quantities, by means of almost-commuting unitaries
and even when unlimited copies of the state are available. We assume that the
work system with state ρs and the thermal bath are initially uncorrelated, and
furthermore that the battery systems can acquire only pure states.

Therefore, the initial state of an individual global system Q is assumed
to be of the following form,

ρSBW1...Wc
= ρS ⊗ τ(β)B ⊗ |w1〉〈w1|W1 ⊗ · · · ⊗ |wc〉〈wc|Wc

, (3)

and the final states we consider are of the form

σSBW1...Wc
= σSB ⊗ |w′

1〉〈w′
1|W1 ⊗ · · · ⊗ |w′

c〉〈w′
c|Wc

, (4)

where ρS and σSB are states of the system and system-plus-bath, respectively,
and wj and w′

j label pure states of the j-type battery before and after the
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transformation. The notation is meant to convey the expectation value of the
j-type work, i.e. w

(′)
j is a real number and Tr |w(′)

j 〉〈w(′)
j |AWj

= w
(′)
j .

The established resource theory of thermodynamics treats the batteries
and the bath as ‘enablers’ of transformations of the system S, and we will
show first and second laws that express the essential constraints that any such
transformation has to obey. We start with the batteries. With the notations
W = W1 . . . Wc, |w〉 = |w1〉 · · · |wc〉, and |w′〉 = |w′

1〉 · · · |w′
c〉, let us look at a

sequence ρn = ρSn = ρS1 ⊗ · · · ⊗ ρSn
of initial system states, and a sequence

|w〉〈w|n = |w1〉〈w1|W 1
⊗· · ·⊗|wn〉〈wn|W n

of initial battery states, recalling that
the baths are initially all in the same thermal state, τBn = τ(β)⊗n; furthermore
a sequence of target states σn = σSnBn = σS1B1 ⊗ · · · ⊗ σSnBn

of the system
and bath, and a sequence |w′〉〈w′|n = |w′

1〉〈w′
1|W 1

⊗ · · · ⊗ |w′
n〉〈w′

n|W n
of target

states of the batteries.

Definition 5. A sequence of states ρn on any system Qn is called regular if its
charge and entropy rates converge, i.e. if

aj = lim
n→∞

1
n

Tr ρnA
(n)
j , j = 1, . . . , c, and

s = lim
n→∞

1
n

S(ρn)

exist. To indicate the dependence on the state sequence, we write aj({ρn})
and s({ρn}).

In the rest of the chapter we will essentially focus on regular sequences,
so that we can simply identify them, up to asymptotic equivalence, with a
point in the phase diagram. However, it should be noted that at the expense
of clumsier expressions, most of our expositions can be extended to arbitrary
sequences of product states or block-product states.

According to the AET and the other results of the previous section, every
point (a, s) in the phase diagram P(1)

labels an equivalence class of regular
sequences of product states under transformations by almost-commuting uni-
taries.

We emphasize that in AET by grouping the Q-systems into blocks of
k, we do not of course change the physics of our system, except that now
in the asymptotic limit we only consider n = kν copies of Q, but the state
ρn is asymptotically equivalent to ρn+O(1) via almost-commuting unitaries
according to Definition 2 and Theorem 4. But now we consider Qk with its
charge observables A

(k)
j as elementary systems, which have many more states

than the k-fold product states we began with. Yet, Lemma 1 shows that the
phase diagram for the k-copy system is simply the rescaled single-copy phase
diagram, P(k)

= kP(1)
, and indeed for k ≥ d, P(k) = kP(1)

. This means that
we can extend the relation of asymptotic equivalence and the concomitant
Asymptotic Equivalence Theorem (AET) 4 to any sequences of states that
factor into product states of blocks Qk, for any integer k, which freedom we
exploit in this thermodynamics setup.
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Now, for regular sequences ρSn of initial states of the system and final
states of the system plus bath, σSnBn , as well as regular sequences of initial and
final battery states, |w〉〈w|n and |w′〉〈w′|n, respectively, define the asymptotic
rate of j-th charge change of the j-type battery as

ΔAWj
:= aj

({
|w′

j〉〈w′
j |n
})

− aj ({|wj〉〈wj |n})

= lim
n→∞

1
n

Tr
(
|w′

j〉〈w′
j |n − |wj〉〈wj |n

)
A

(n)
Wj

. (5)

Where there is no danger of confusion, we denote this number also as Wj , the
j-type work extracted (if Wj < 0, this means that the work −Wj is done on
system S and bath B).

Similarly, we define the asymptotic rate of j-th charge change of the work
system and the bath as

ΔASj
:= aj({σSn}) − aj({ρSn}) = lim

n→∞

1
n

Tr (σSn − ρSn)A(n)
Sj

,

ΔABj
:= aj({σBn}) − aj({τ(β)Bn}) = lim

n→∞

1
n

Tr
(
σBn − τ(β)⊗n

B

)
A

(n)
Bj

,

where we denote σSn = TrBn σSnBn and likewise σBn = TrSn σSnBn .

Theorem 6 (First Law). Under the above notations, if the regular sequences
of the initial state ρSnBnW n = ρSn ⊗ τ(β)⊗n

B ⊗ |w〉〈w|n and the final state
σSnBnW n = σSnBn ⊗ |w′〉〈w′|n are equivalent under almost-commuting uni-
taries, then

s({σSnBn}) = s({ρSn}) + S(τ(β)) and
Wj = −ΔASj

− ΔABj
for all j = 1, . . . , c.

Conversely, given regular sequences ρSn and σSnBn of product states such
that

s({σSnBn}) = s({ρSn}) + S(τ(β)),

and assuming that the spectral radius of the battery observables WAj
is large

enough (see the discussion at the start of this section), then there exist regular
sequences of product states of the j-type battery, |wj〉〈wj |n and |w′

j〉〈w′
j |n, for

all j = 1, . . . , c, such that

ρSnBnW n = ρSn ⊗ τ(β)⊗n
B ⊗ |w〉〈w|n and (6)

σSnBnW n = σSnBn ⊗ |w′〉〈w′|n (7)

can be transformed into each other by almost-commuting unitaries.

Proof. The first part is by definition, since the almost-commuting unitaries
asymptotically preserve the entropy rate and the work rate of all charges.

In the other direction, all we have to do is find states |wj〉〈wj | and |w′
j〉〈w′

j |
of the j-type battery Wj , such that Wj = ΔAWj

= −ΔASj
−ΔABj

, for all j =
1, . . . , c. This is clearly possible if the spectral radius of WAj

is large enough.
With this, the states in Eqs. (6) and (7) have the same asymptotic entropy
and charge rates. Hence, the claim follows from the AET, Theorem 4. �
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Remark 7. The second part of Theorem 6 says that for regular product state
sequences, as long as the initial and final states of the work system and the
thermal bath have asymptotically the same entropy, they can be transformed
one into the another because there are always batteries that can absorb or
release the necessary charge difference. Furthermore, we can even fix the initial
(or final) state of the batteries and design the matching final (initial) battery
state, assuming that the charge expectation value of the initial (final) state is
far enough from the edge of the spectrum of AWj

.

For any such states, we say that there is a work transformation taking one
to the other, denoted ρSn ⊗ τ(β)⊗n

B → σSnBn . This transformation is always
feasible, implicitly assuming the presence of suitable batteries for all j-type
works to balance to books explicitly.

Remark 8. As a consequence of the previous remark, we now change our point
of view of what a transformation is. Of our complicated S-B-W compound,
we only focus on SB and its state, and treat the batteries as implicit. Since we
insist that batteries need to remain in a pure state, which thus factors off and
does not contribute to the entropy, and due to the above first law Theorem
6, we can indeed understand everything that is going on by looking at how
ρSnBn transforms into σSnBn .

Note that in this context, it is in a certain sense enough that the initial
states ρSn form a regular sequence of product states and that the target states
σSnBn form a regular sequence. This is because the first part of the first law,
Theorem 6, only requires regularity, and since the target state defines a unique
point (a′, s′) in the phase diagram, we can find a sequence of product states
σ̃SnBn in its equivalence class, and use the second part of Theorem 6 to realize
the work transformation ρSn ⊗ τ(β)⊗n

B → σ̃SnBn .

3.2. The Second Law

If the first law in our framework arises from focusing on the system-plus-bath
compound SB, while making the batteries implicit, the second law comes
about from trying to understand the action on the work system S alone,
through the concomitant back-action on the bath B. Following [34,36], the sec-
ond law constrains the different combinations of commuting conserved quan-
tities that can be extracted from the work system. We show here that in the
asymptotic regime, the second law similarly bounds the extractable work rate
via the rate of free entropy of the system.

The free entropy for a system with state ρ, charges Aj and inverse tem-
peratures βj is defined in [36] as

F̃ (ρ) =
c∑

j=1

βjTr ρAj − S(ρ). (8)

It is shown in [36] that the generalized thermal state τ(β) is the state that
minimizes the free entropy for fixed βj .



1738 Z. B. Khanian et al. Ann. Henri Poincaré

Figure 2. State change of the bath for a given work trans-
formation under extraction of j-type work Wj , viewed in the
phase diagram of the bath PB . The blue line represents the
tangent hyperplane at the corresponding point of the gener-
alized thermal state τ(β)B , R is the number of copies of the
elementary baths in the proof of Theorem 9, and F is the
point corresponding to the final state of the bath

For any work transformation ρSn ⊗ τ(β)⊗n
B → σSnBn between regular

sequences of states, we define the asymptotic rate of free entropy change for
the work system and the thermal bath respectively as follows:

ΔF̃S := lim
n→∞

1
n

(
F̃ (σSn) − F̃ (ρSn)

)
,

ΔF̃B := lim
n→∞

1
n

(
F̃ (σBn) − nF̃ (τB)

)
,

(9)

where the free entropy is with respect to the charges of the work system and
the thermal bath with fixed inverse temperatures βj .

Theorem 9 (Second Law). For any work transformation ρSn ⊗ τ(β)⊗n
B →

σSnBn between regular sequences of states, the j-type works Wj that are ex-
tracted (and they are necessarily Wj = −ΔASj

− ΔABj
according to the first

law) are constrained by the rate of free entropy change of the system:
c∑

j=1

βjWj ≤ −ΔF̃S .

Conversely, for arbitrary regular sequences of product states, ρSn and
σSn , and any real numbers Wj with

∑c
j=1 βjWj < −ΔF̃S, there exists a bath

system B and a regular sequence of product states σSnBn with Tr BnσSnBn =
σSn , such that there is a work transformation ρSn ⊗ τ(β)⊗n

B → σSnBn with
accompanying extraction of j-type work at rate Wj. This is illustrated in Fig. 2.
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Proof. We start with the first statement of the theorem. Consider the global
system transformation ρSn ⊗τ(β)⊗n

B → σSnBn by almost-commuting unitaries.
We use the definition of work (5) and free entropy (8), as well as the first law,
Theorem 6, to get

∑

j

βjWj = −
∑

j

βj(ΔASj
+ ΔABj

)

= −ΔF̃S − ΔF̃B − ΔsS − ΔsB . (10)

The second line is due to the definition in Eq. (9). Now observe that

ΔsS + ΔsB = lim
n→∞

1
n

(S(σSn) − S(ρSn)) +
1
n

(
S(σBn) − nS(τ(β)B)

)

≥ lim
n→∞

1
n

(
S(σSBn) − S(ρSn) − S

(
τ(β)⊗n

B

))
= 0, (11)

where the inequality is due to sub-additivity of von Neumann entropy, and the
final equality is due to asymptotic entropy conservation. Further, the general-
ized thermal state τ(β)B has the minimum free entropy [36], hence

ΔF̃B ≥ 0. (12)

For the second statement of the theorem, the achievability part of the
second law, we aim to show that there is a work transformation ρSn⊗τ(β)⊗n

B →
σSn ⊗ ξBn , with a suitable regular sequences of product states, and works
W1, . . . , Wc are extracted. This will be guaranteed, by the first law (Theorem
6) and the AET, Theorem 4, if

s({ξBn}) = S(τ(β)B) − ΔsS ,

aj({ξBn}) = Tr τ(β)BABj
− ΔASj

− Wj for all j = 1, . . . , c.
(13)

The left-hand side here defines a point (a, s) in the charges-entropy space of
the bath, and our task is to show that it lies in the phase diagram, for which
purpose we have to define the bath characteristics suitably. On the right-hand
side,

(
Tr τ(β)BAB1 , . . . ,Tr τ(β)BABc

, S(τ(β)B)
)

is the point corresponding to
the initial state of the bath, which due to its thermal nature is situated on the
upper boundary of the region. At that point, the region has a unique tangent
hyperplane, which has the equation

∑
j βjaj − s = F̃ (τ(β)B), and the phase

diagram is contained in the half space
∑

j βjaj −s ≥ F̃ (τ(β)B), corresponding
to the fact that their free entropy is larger than that of the thermal state.
In fact, due to the strict concavity of the entropy, and hence of the upper
boundary of the phase diagram, the phase diagram, with the exception of
the thermal point

(
Tr τ(β)BAB , S(τ(β)B)

)
is contained in the open half space

∑
j βjaj − s > F̃ (τ(β)B).

One of many ways to construct a suitable bath B is as several (R � 1)
non-interacting copies of an “elementary bath” b: B = bR and charges ABj

=
A

(R)
bj

, so that the GGS of B is τ(β)B = τ(β)⊗R
b . We claim that for large enough

R, the left-hand side of Eq. (13) defines a point in the phase diagram of B.
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Indeed, we can express the conditions in terms of b, assuming that we aim for
a regular sequence of product states ξbnR :

s({ξbnR}) = S(τ(β)b) − 1
R

ΔsS ,

aj({ξbnR}) = Tr τ(β)bAbj
− 1

R
(ΔASj

+ Wj) for all j = 1, . . . , c.

(14)

For all sufficiently large R, these points (a, s) are arbitrarily close to where the
bath starts off, at (aβ , sβ) =

(
Tr τ(β)bAb1 , . . . ,Tr τ(β)bAbc

, S(τ(β)b)
)
, while

they always remains in the open half plane
∑

j βjaj − s > F̃ (τ(β)b). Indeed,
they all lie on a straight line pointing from (aβ , sβ) into the interior of that
half plane. Hence, for sufficiently large R, (a, s) ∈ P, the phase diagram of
b, and by point 5 of Lemma 1 there does indeed exist a regular sequence of
product states corresponding to it. �

In the next two subsections we study the achievability of the second law
in a setting where the thermal bath is given. Namely, given a bath system with
fixed charges and the thermal states τ(β)⊗n

B , we aim to understand whether
a specific work transformation is feasible and if so what is the minimum size
of the thermal bath to implement such a work transformation? We rigorously
state these questions as Q1 and Q2 in Sects. 3.3 and 3.4, respectively, and
answer them in their corresponding subsections.

3.3. Finiteness of the Bath: Tighter Constraints and Negative Entropy

In the previous two subsections we have elucidated the traditional statements
of the first and second law of thermodynamics, as emerging in our resource
theory. In particular, the second law is tight, if sufficiently large baths are
allowed to be used.

Here, we specifically look at the second statement (achievability) of the
second law in the presence of an explicitly given, finite bath B. It will turn out
that usually, equality in the second law cannot be attained, only up to a certain
loss due to the finiteness of the bath. We also discover a purely quantum effect
whereby the system and the bath remain entangled after effecting a certain
state transformation, allowing quantum engines to perform tasks impossible
classically (i.e. with separable correlations). The question we want to address
is the following refinement of the one answered in the previous subsection:

Q1: For a given bath B, regular sequences {ρSn} and {σSn} of the
initial and final states of the product form, respectively, as well as
real numbers W1, . . . , Wc satisfying the second law, are there ex-
tensions σSnBn of σSn forming a regular sequence of product states,
such that the work transformation ρSn ⊗τ(β)⊗n

B → σSnBn is feasible
with the extracted works at rates W1, . . . , Wc?
To answer it, we need the following extended phase diagram. For a give

state σS of the system S, and a bath B, it is defined as the following set:
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Figure 3. Schematic of the extended phase diagram P |s0 .
Depending on the value of s0, whether it is smaller or larger
than log |B|, the diagram acquires either the left-hand or the
right-hand one of the above shapes

P(1)
|σS

:=
{(

Tr ξBA
(B)
1 , . . . ,Tr ξBA(B)

c , S(B|S)ξ

)
: ξSB

state with Tr BξSB = σS} . (15)

Furthermore its n-copy version, for a given product state σSn = (σ1)S1 ⊗· · ·⊗
(σn)Sn

,

P(n)
|σSn

:=
{(

Tr ξBnA
(Bn)
1 , . . . ,Tr ξBnA(Bn)

c , S(Bn|Sn)ξ

)
: ξSnBn

state with Tr BnξSnBn = σSn

}
. (16)

These sets capture which combinations of charge value of the bath and condi-
tional von Neumann entropy S(B|S) of the bath conditional on the system are
consistent with quantum mechanics. Note that extended phase diagram con-
tains the previously discussed phase diagram of the bath, since we can choose
ξSB = σS ⊗ξB as a product state, and then S(B|S)ξ = S(ξB), but correlations
between the system and the bath can reduce the conditional entropy below this
quantity, in some cases not only to zero but to negative values. Finally, define
the conditional entropy phase diagram as

P |s0 := P(1)

|s0
:=
{(

a, s
)

: aj = Tr ξBA
(B)
j , −min{s0, S(τ(a))} ≤ s

≤ S(τ(a)) for a state ξB

}
, (17)

and likewise its n-copy version P(n)

|ns0
, for a number s0 (intended to be an

entropy or entropy rate). These concepts are illustrated in Fig. 3. The relation
between the sets, and the name of the latter, are explained in the following
lemma.
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Lemma 10. With the previous notation, we have:

1. For all k, P(k)
|σ

Sk
⊂ P(k)

|S(σ
Sk ), and the latter is a closed convex set.

2. For all k, P(k)

|ks0
= kP(1)

|s0
.

3. For a regular sequence {σSk} of product states with entropy rate s0 =
s({σSk}), every point in P |s is arbitrarily well approximated by points in
1
kP(k)

|σ
Sk

for all sufficiently large k, i.e., P |s0 = limk→∞
1
kP(k)

|S(σ
Sk ).

Proof. 1. We only have to convince ourselves that for a state ξSkBk with
Tr BkξSkBk = σSk ,

−min{S(σSk), kS(τ(a))} ≤ S(Bk|Sk)ξ ≤ kS(τ(a)),

where a = (a1, . . . , ac) with ai = 1
kTr ξBkA

(Bk)
i . The upper bound follows

from subadditivity, since S(Bk|Sk)ξ ≤ S(Bk)ξ ≤ kS(τ(a)). The lower bound
consists of two inequalities: first, by purifying ξ to a state |φ〉 ∈ SkBkR and
strong subadditivity, S(Bk|Sk)ξ ≥ S(Bk|SkR)φ = −S(Bk)ξ ≥ −kS(τ(a)).
Secondly, S(Bk|Sk)ξ ≥ −S(Sk)ξ = −S(σSk).

2. Follows easily from the definition.
3. It is enough to show that the points of the minimum entropy diagram

Pmin |s :=
{(

a,−min{s0, S(τ(a))}
)

: Tr ξBA
(B)
j = aj for a state ξB

}

can be approximated as claimed by an admissible k-copy state ξSkBk . This is
because the maximum entropy diagram P(k)

max is realized by states ϑSkBk :=
σSk ⊗ τ(a)⊗k

B , and by interpolating the states, i.e. λξ +(1−λ)ϑ for 0 ≤ λ ≤ 1,
we can realize the same charge values a with entropies in the whole interval
[S(Bk|Sk)ξ; kS(τ(a))].

The approximation of Pmin |s can be proved invoking results from quan-
tum Shannon theory, specifically quantum state merging, the form of which
that we need here is stated below as Lemma 11. For this, consider a tuple
a ∈ P0 and a purification |Ψ〉 ∈ SkBkRk of the state ϑSkBk = σSk ⊗ τ(a)⊗k

B ,
which can be chosen in such a way as to be a product state itself: |Ψ〉 =
|Ψ1〉S1B1R1

⊗ · · · ⊗ |Ψk〉SkBkRk
. Our strategy is to find ξSkBk as correlated as

possible, in the sense that we would like to minimize its entropy, subject to
the constraint that its marginal on Sk is σSk and that on Bk shares the charge
values with τ(a)⊗k

B . As we do not know an explicit construction that achieves
this, we resort to a random one that succeeds with high probability, which is
what quantum state merging facilitates.

We distinguish two cases, depending on which of the entropies S(σSk)
and kS

(
τ(a)B

)
is the smaller.

(i) S(σSk) ≥ S
(
τ(a)B

)
: We shall construct ξSkBk in such a way that ξSk =

σSk and ξBk ≈ τ
(
a
)⊗k

B
. To this end, choose a pure state φCR′ with en-

tanglement entropy S(φC) = 1
kS(σSk)−S

(
τ(a)B

)
+ 1

2ε, and consider the
state Ψ̃SkBkCkRkR′k

= ΨSkBkRk ⊗ φ⊗k
CR′ . Now we apply state merging
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(Lemma 11) twice to this state (which is a tensor product of k sys-
tems), with a random rank-one projector P on the combined system
RkR′k: first, by splitting the remaining parties Sk : BkCk, and second
by splitting them Bk : SkCk. By construction, in both bipartitions it
is the solitary system (Sk and Bk, resp.) that has the smaller entropy
by at least 1

2εk, showing that the post-measurement state ξ̃(P )SkBkCk

with high probability approximates the marginals of ϑSkBk on Sk and on
Bk simultaneously. Choose a typical subspace projector Π of φ⊗k

C with
log rank Π ≤ S(σSk) − kS

(
τ(a)B

)
+ εk, and let

|ξ(P )〉SkBkCk :=
1
c
(1SkBkΠCk)|ξ̃(P )〉,

with a normalization constant c. Merging and properties of the typical
subspace imply that for sufficiently large k,

1
2

‖ξ(P )Sk − σSk‖1 ≤ ε, (18)

1
2

∥∥ξ(P )Bk − τ(a)⊗k
B

∥∥
1

≤ ε. (19)

Now, we invoke Uhlmann’s theorem applied to purifications of σSk and
of ξ(P )SkBk , together with the well-known relations between fidelity and
trace norm applied to Eq. (18), to obtain a state ξSkBk with ξSk = σSk

and 1
2 ‖ξ(P )SkBk − ξSkBk‖1 ≤

√
ε(2 − ε), thus by Eq. (19)

1
2

∥∥ξBk − τ(a)⊗k
B

∥∥
1

≤ ε +
√

ε(2 − ε).

From the latter bound it follows that∣∣∣∣
1
k

Tr ξBkA
(Bk)
j − aj

∣∣∣∣ ≤ ‖ABj
‖
(
ε +
√

ε(2 − ε)
)

.

It remains to bound the conditional entropy:
1
k

S(Bk|Sk)ξ =
1
k

S
(
ξSkBk

)
− 1

k
S(ξSk)

≤ 1
k

S
(
ξ(P )SkBk

)
− 1

k
S(σSk) +

(
ε +
√

ε(2 − ε)
)

log(|S||B|)

+ h
(
ε +
√

ε(2 − ε)
)

≤ 1
k

log rank Π − 1
k

S(σSk) +
(
ε +
√

ε(2 − ε)
)

log(|S||B|)

+ h
(
ε +
√

ε(2 − ε)
)

≤ 1
k

(
S(σSk) − kS

(
τ(a)
))

− 1
k

S(σSk)

+
(
2ε +

√
ε(2 − ε)

)
log(|S||B|) + h

(
ε +
√

ε(2 − ε)
)

= −S
(
τ(a)
)

+
(
2ε +

√
ε(2 − ε)

)
log(|S||B|)

+ h
(
ε +
√

ε(2 − ε)
)

,
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where in the second line we have used the Fannes inequality on the con-
tinuity of the entropy [39,40], with the binary entropy h(x) = −x log x−
(1−x) log(1−x); in the third line that ξ(P )SkBk has rank at most rank Π;
and in the fourth line the upper bound on the latter rank by construction.

(ii) S(σSk) < S
(
τ(a)B

)
: We shall construct ξSkBk such that ξSk = σSk and

Tr ξBkA
(Bk)
j ≈ Tr τ

(
a
)
B

ABj
for all j = 1, . . . , c. Here, choose a pure state

φCR′ with entanglement entropy S(φC) = ε, and define Ψ̃SkBkCkRkR′k

=
ΨSkBkRk ⊗ φ⊗k

CR′ . Now we apply state merging (Lemma 11) to this state
(which is a tensor product of k systems), with a random rank-one pro-
jector P on the combined system RkR′k, by splitting the remaining par-
ties Sk : BkCk, which ensures that Sk has the smaller entropy by at
least εk, showing that the post-measurement state ξ̃(P )SkBkCk with high
probability approximates the marginal of ϑSkBk on Sk. Proceed as be-
fore with a typical subspace projector Π of φ⊗k

C such that log rank Π ≤
S(σSk) − kS

(
τ(a)B

)
+ εk, and let |ξ(P )〉SkBkCk := 1

c (1SkBkΠCk)|ξ̃(P )〉,
with a normalization constant c. Merging and properties of the typical
subspace thus imply that for sufficiently large k,

1
2

‖ξ(P )Sk − σSk‖1 ≤ ε. (20)

Next we need to look at the charge values of ξ(P )Bk . Note that the
expectation EP ξ(P )Bk is approximately equal to EP ξ̃(P )Bk = τ(a)⊗k

B . It
follows from [41, Lemma III.5], that if k is sufficiently large, then with
high probability
∣∣∣Tr
(
ξ(P )Bk − τ(a)⊗k

B

)
A

(Bk)
j

∣∣∣ ≤ ‖ABj
‖ε for all j = 1, . . . , c. (21)

So we just focus on a good instance of P , where both Eqs. (20) and (21)
hold. Now we proceed as in the first case to find a state ξSkBk with
ξSk = σSk and 1

2 ‖ξ(P )SkBk − ξSkBk‖1 ≤
√

ε(2 − ε), using Uhlmann’s
theorem. Thus, as before we find

∣∣∣∣
1
k

Tr ξBkA
(Bk)
j − aj

∣∣∣∣ ≤ ‖ABj
‖
(
ε +
√

ε(2 − ε)
)

.

Regarding the conditional entropy, we have quite similarly as before,
1
k

S(Bk|Sk)ξ =
1
k

S
(
ξSkBk

)
− 1

k
S(ξSk)

≤ 1
k

S
(
ξ(P )SkBk

)
− 1

k
S(σSk) +

(
ε +
√

ε(2 − ε)
)

log(|S||B|)

+ h
(
ε +
√

ε(2 − ε)
)

≤ 1
k

log 2εk − 1
k

S(σSk) +
(
ε +
√

ε(2 − ε)
)

log(|S||B|)

+ h
(
ε +
√

ε(2 − ε)
)

≤ −1
k

S(σSk) +
(
2ε +

√
ε(2 − ε)

)
log(|S||B|) + h

(
ε +
√

ε(2 − ε)
)

.



Vol. 24 (2023) Resource Theory of Heat and Work 1745

Since in both cases we knew the conditional entropy to be always ≥
− 1

k min
{
S(σSk), kS

(
τ(a)
)}

, this concludes the proof. �

Lemma 11 (Quantum state merging [42,43]). Given a pure product state
ΨAnBnCn = (Ψ1)A1B1C1 ⊗· · ·⊗(Ψn)AnBnCn

, such that S(ΨAn)−S(ΨBn) ≥ εn,
consider a Haar random rank-one projector P on Cn. Then, it holds that the
post-measurement state

ψ(P )AnBn =
1

Tr ΨCnP
TrCn Ψ(1AnBn ⊗ P )

satisfies 1
2‖ψ(P ) − ΨAnBn‖1 ≤ ε, except with arbitrarily small probability for

sufficiently large n. �

Remark 12. While we have seen that the upper boundary of the extended
phase diagram P(k)

|S(σ
Sk ) is exactly realized by points in P(k)

|σ
Sk

, namely those

corresponding to the tensor product states σSk ⊗τ(a)⊗k
B , it seems unlikely that

we can achieve the analogous thing for the lower boundary: this would entail
finding, for every (sufficiently large) k a tensor product state, or a block tensor
product state, ξSkBk with prescribed charge vector a on Bk, and S(Bk|Sk)ξ =
−min{kS

(
τ(a)
)
, S(σSk)}.

Now, for concreteness, consider the case that kS
(
τ(a)
)

≤ S(σSk), so that
the conditional entropy aimed for is S(Bk|Sk)ξ = −kS

(
τ(a)B

)
, which is the

value of a purification of τ(a)⊗k
B . In particular, it would mean that S(ξBk) =

kS
(
τ(a)B

)
, and so—recalling the charge values and the maximum entropy

principle—it would follow that ξBk = τ(a)⊗k
B . However, from the equality

conditions in strong subadditivity [44], this in turn would imply that ξSkBk

is a probabilistic mixture of purifications of τ(a)⊗k
B whose restrictions to Sk

are pairwise orthogonal. This would clearly put constraints on the spectrum
of σSk that are not generally met.

In the other case that kS
(
τ(a)
)

> S(σSk), the conditional entropy should
be S(Bk|Sk)ξ = −S(σSk), and since ξSk = σSk , this would necessitate a pure
state ξSkBk . Looking at the proof of Lemma 10, however, we see that it leaves
quite a bit of maneuvering space, so it may or may not be possible to satisfy
all charge constraints Tr ξBkA

(Bk)
j = aj (j = 1, . . . , c).

Coming back to our question, if a work transformation ρSn ⊗ τ(β)⊗n
B →

σSnBn is feasible for regular sequences on the left-hand side, by the first law
this implies that

s({σSnBn}) = s({ρSn}) + S(τ(β)) and
Wj = −ΔASj

− ΔABj

= aj({ρSn}) − aj({σSn}) + aj({τ(β)Bn}) − aj({σBn}).

When σSn and the Wj are given, this constrains the possible states σSnBn as
follows: for each n,

1
n

S(Bn|Sn)σ ≈ S(τ(β)) − ΔsS ,
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1
n

Tr σBnA
(n)
Bj

≈ Tr τ(β)BABj
− ΔASj

− Wj , for all j = 1, . . . , c.

Since by Lemma 10 the left-hand sides converge to the components of a point
in P |s({σSn}), meaning that a necessary condition for the feasibility of the work
transformation in question is that

(a, t) ∈ P |s({σSn}), with aj := Tr τ(β)BABj
− ΔASj

− Wj ,

t := S(τ(β)) − ΔsS .
(22)

Again by Lemma 10, this is equivalent to all aj to be contained in the set of
joint quantum expectations of the observables ABj

, and

−min
{
s({σSn}), S

(
τ(a)
)}

≤ t ≤ S
(
τ(a)
)
.

The following theorem shows that this is also sufficient, when we allow block-
ings of the asymptotically many systems.

Theorem 13 (Second Law with fixed bath). For arbitrary regular sequences
ρSn and σSn of product states, a given bath B, and any real numbers Wj, if
there exists a regular sequence of block product states σSnBn with Tr BnσSnBn =
σSn , such that there is a work transformation ρSn ⊗ τ(β)⊗n

B → σSnBn with
accompanying extraction of j-type work at rate Wj, then Eq. (22) defines a
point (a, t) ∈ P |s({σSn}).

Conversely, assuming additionally that σSn = σ⊗n
S is an i.i.d. state, if

Eq. (22) defines a point (a, t) ∈ P0

|S(σS) in the interior of the extended phase
diagram, then for every ε > 0 there is a work transformation ρSn ⊗ τ(β)⊗n

B →
σSnBn with block product states σSnBn such that Tr BnσSnBn = σSn , and with
accompanying extraction of j-type work at rate Wj ± ε. This is illustrated in
Fig. 4.

Proof. We have already argued the necessity of the condition. It remains to
show its sufficiency. Using Lemma 10, this is not hard: Namely, by its point 3,
for sufficiently large k, (a, t) ∈ P |s is ε-approximated by 1

kP(k)

|σ⊗k
S

, i.e. there exists

a σSkBk with TrBk σSkBk = σ⊗k
S with 1

kS(Bk|Sk)σ ≤ t−ε and 1
k Tr σBkA

(Bk)
j ≈

aj for all j = 1, . . . , c. By mixing σ with a small fraction of
(
τ(a)B ⊗σS

)⊗k, we

can in fact assume that 1
kS(Bk|Sk)σ = t while preserving 1

k Tr σBkA
(Bk)
j ≈ aj .

Now our target block product states will be σSnBn :=
(
σSkBk

)⊗ n
k for n a

multiple of k. By construction, this sequence has the same entropy rate as the
initial regular sequence of product states ρSn ⊗ τ(β)⊗n

B , so by the first law,
Theorem 6, and the AET, Theorem 4, there is indeed a corresponding work
transformation with j-type work extracted equal to Wj ± ε. �

Remark 14. One might object that tensor power target states are not general
enough in Theorem 13, as we had observed in Sect. 2 that such states do not
generate the full phase diagram P of the system S. However, by considering
blocks of � systems S�, we can apply the theorem to block tensor power target
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Figure 4. State change of the bath for a given work trans-
formation under the extraction of j-type work Wj , viewed in
the extended phase diagram of the bath, which initially is in
the thermal state τ(β)B , the blue line at the corresponding
point in the diagram representing the tangent hyperplane of
the diagram. The final states {σSnBn} give rise to the point
F in the extended diagram, whose charge values are those of
{σBn}, while the entropy is 1

nS(Bn|Sn)σ

states σSn =
(
σ1 ⊗· · ·⊗σ�

)⊗ n
� , and these latter are in fact a rich enough class

to exhaust the entire phase diagram P , when � ≥ dimS (point 5 of Lemma 1).
More generally, we can allow as target uniformly regular sequences of

product states σSn , by which we mean the following strengthening of the con-
dition in Definition 5. Denoting BN+n

N+1 := BN+1 . . . BN+n, we require that for
all ε > 0 and uniformly for all N , it holds that for sufficiently large n,

∣∣∣∣aj − 1
n

Tr σBN+n
N+1

A
(n)
j

∣∣∣∣ ≤ ε for all j = 1, . . . , c,

and
∣∣∣∣s − 1

n
S(σBN+n

N+1
)
∣∣∣∣ ≤ ε.

Remark 15. We conclude this subsection with a reflexion on the peculiar role
of entanglement played in the quantum advantage implied by Theorem 13.
Indeed, whereas in many quantum tasks entanglement is the fuel requisite at
the beginning to perform super-classically, here it is the possibility of leaving
the system and bath in an entangled state which allows to reach points in the
extended phase diagram outside the usual phase diagram, i.e. with negative
conditional entropy S(B|S). Note that no separable state can achieve this, as
by the result of [45,46] then S(B|S) ≥ 0.
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Evidently, demonstrating such an effect would require phenomenal con-
trol of the quantum degrees of freedom of both S and B, so in a macro-
scopic system that would presumably be impossible. But we believe it not
completely beyond the bounds of the recent demonstrations of thermal ma-
chines in mesoscopic and nanoscopic systems. While we cannot indicate any
concrete references, a well-designed experiment would be feasible with any of
the contemporary platform for quantum simulations (QS), such as

• Superconducting qubits, used by Google [47] or D-Wave [48], are often
employed as digital QSs (cf. [49]) and/or in circuit QED systems [50];

• Ultracold atoms, which offer analog quantum simulation, can be realized
in the continuum or in optical lattices [51]. They are very flexible and
they allow to simulate complex Hubbard models, as well as spin systems;

• Trapped ions can also be used as perfect analog or digital QSs [52,53].
They typically simulate spin-1

2 systems, but very recently a qudit quan-
tum computer/simulator was realized with ions [54];

• Rydberg atoms are atoms where the electron has been excited to a high
principal quantum number, and which are trapped in optical tweezers.
They mimic spin systems with long-range interactions [55–57];

• Light and cavity materials: Quantum simulators based on cavity QED
take advantage of the coupling between quantum system and the coherent
light field of the cavity in which such system has been placed. Experiments
are mainly conducted in the scope of Jaynes-Cummings and Dicke models
[58]. Recent studies concern also engineering materials entirely from light
with resulting photon-photon interactions [59–62];

• Twistronics systems: Twistronics deals with twisted bilayer graphene or
other two-dimensional materials [63,64]. For small “magic” angle, such
systems lead to periodic Moiré patterns at a length scale much larger
than the typical scale of condensed matter systems: in this sense, they
can themselves be considered as condensed matter quantum simulators
of condensed matter [65]. Twisted bilayer materials can, however, also be
mimicked by ultracold atoms in a two-dimensional lattice with synthetic
dimensions [66];

• Polaritons are especially useful for non-equilibrium systems and quantum
hydrodynamics simulation, as well as relativistic effects thanks to dual
(half light half particle) nature of the polaritonic quasi-particles [67–69].

3.4. Tradeoff Between Thermal Bath Rate and Work Extraction

Here we consider a different take on the question of the work deficit due to
finiteness of the bath. Namely, we still consider a given fixed finite bath system
B, but now as which state transformations and associated generalized works
are possible when for each copy of the subsystem S, R ≥ 0 copies of B are
present. It is clear what that means when R is an integer, but below we shall
give a meaning to this rate as a real number. We start off with the observation
that “large enough bath” in Theorem 9 can be taken to mean BR, for the
given elementary bath B and sufficiently large integer R.
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Theorem 16. For arbitrary regular sequences of product states, ρSn and σSn ,
and any real numbers Wj with

∑c
j=1 βjWj < −ΔF̃S, there exists an integer

R ≥ 0 and a regular sequence of product states σSnBnR with Tr BnRσSnBnR =
σSn , such that there is a work transformation ρSn ⊗ τ(β)⊗nR

B → σSnBnR with
accompanying extraction of j-type work at rate Wj.

Proof. This was already shown in the achievability part of Theorem 9. �

To give meaning to a rational rate R = �
k , group the systems of Sn, for

n = νk, into blocks of k, which we denote S̃ = Sk, and consider ρSn ≡ ρS̃ν as
a ν-party state, and likewise σSn ≡ σS̃ν . For each S̃ = Sk we assume � copies
of the thermal bath, τ(β)⊗�

B = τ(β)B̃ , with B̃ = B�. If {ρSn} and {σSn} are
regular sequences of product states, then evidently so are {ρS̃ν } and {σS̃ν }.
With this definition of the rate, the question that we address in this subsections
is:

Q2: For a given bath B, regular sequences {ρSn} and {σSn} of the
initial and final states of the product form, respectively, as well as
real numbers W1, . . . , Wc satisfying

∑
j βjWj = −ΔF̃S − δ, δ ≥ 0,

what is the infimum over all rates R = �
k such that there is a work

transformation

ρSn ⊗ τ(β)BnR ≡ ρS̃ν ⊗ τ(β)⊗ν�

B̃
→ σS̃νB̃ν� ≡ σSnBnR ,

with the extracted works at rates W1, . . . , Wc and the final state
satisfying Tr B̃ν�σS̃νB̃ν� = σS̃ν .

We first observe that if S(ρSn) = S(σSn), then
∑

j βjWj = −ΔF̃S can
hold without using any thermal bath, which follows from Eq. (10). That is,
the thermal bath is not necessary for the work transformation and extracting
work if the entropy of the work system does not change. Conversely, the role
of the thermal bath is precisely to facilitate changes of entropy in the work
system.

To answer the above question about the minimum bath rate R∗, we first
show the following lemma.

Lemma 17. Consider regular sequences of product states, ρSn and σSn , and
real numbers Wj, and assume that for large enough rate R there is a work
transformation ρSn ⊗ τ(β)⊗nR

B → σSnBnR , with σSn as the reduced final state
on the work system, and works W1, . . . , Wc are extracted. Then there is another
work transformation ρSn ⊗ τ(β)⊗nR

B → σSn ⊗ ξBnR , in which the final state
of the work system and the thermal bath are uncorrelated, ξBnR is a regular
sequence of product states, and the same works W1, . . . , Wc are extracted.

Proof. Assuming that ρSn ⊗τ(β)⊗nR
B → σSnBnR is a work transformation, the

second law implies that
∑

j βjWj = −ΔF̃s − δ for some δ ≥ 0, and we obtain
the following coordinates for the bath system for 0 ≤ δ′ ≤ δ:

s({σBnR}) = S(τ(β)B) − 1
R

ΔsS +
δ′

R
,
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aj({σBnR}) = Tr τ(β)BABj
− 1

R
(ΔASj

+ Wj) for all j = 1, . . . , c.

(23)

To obtain the first equality, which is the expansion of ΔsS +ΔsB = δ′, we use
the fact that

∑
j βjWj = −ΔF̃S −ΔF̃B − ΔsS − ΔsB︸ ︷︷ ︸

−δ

, i.e. ΔF̃B+ΔsS+ΔsB =

δ which follows from Eq. (10). Due to positivity of the entropy rate change,
i.e. ΔsS + ΔsB ≥ 0 from Eq. (11) and ΔF̃B ≥ 0 from Eq. (12), we infer
that 0 ≤ ΔsS + ΔsB︸ ︷︷ ︸

δ′

≤ δ. The second equality, which is the expansion of

ΔABj
+ ΔASj

= −Wj , follows from the first law, Theorem 6, and the AET,
Theorem 4. If R is large enough, due to the convexity of the phase diagram of
the thermal bath P(1)

B , the following coordinates belong to the phase diagram
as well

s({ξBnR}) = S(τ(β)B) − 1
R

ΔsS ,

aj({ξBnR}) = Tr τ(β)BABj
− 1

R
(ΔASj

+ Wj) for all j = 1, . . . , c.

(24)

We can observe this in Fig. 5; the new coordinates have the same charge values,
but the entropy is δ′

R smaller than the entropy of the coordinates in Eq. (23).
Therefore, as long as S(τ(β)B) − 1

RΔsS ≥ 0, the new coordinates are inside
the phase diagram as well. Hence, due to points 3 and 5 of Lemma 1, there
is a tensor product state ξBnR with coordinate of Eq. (24) on P(1)

B . Hence the
first law, Theorem 6, implies that the desired transformation exists, and works
W1, . . . , Wc are extracted. �

Theorem 18. For regular sequences of product states, ρSn and σSn , and real
numbers Wj satisfying

∑
j βjWj = −ΔF̃s − δ, let R∗ be the infimum of rates

such that there is a work transformation ρSn ⊗ τ(β)⊗nR
B → σSn ⊗ ξBnR un-

der which works W1, . . . , Wc are extracted, and ξBnR is a regular sequence of
product states.

Then, this minimum R∗ is achieved for a state ξBnR on the boundary of
the phase diagram PB of the thermal bath. Indeed, it is the point where the
line given by Eq. (14) intersects the boundary of the phase diagram; see Fig. 5.
Equivalently, it is the smallest R such that the point in Eq. (14) is contained
in PB.

For δ � 1, the minimum rate can be written as

R ≈ − 1
2δ

∑

ij

∂βj

∂ai
(ΔASi

+ Wi)(ΔASj
+ Wj), (25)

where ΔASj
= a({σSn}) − a({ρSn}).

Proof. We notice that the initial and final states of the work system as well
as the initial state of the bath and the extracted work rates are known. Also,



Vol. 24 (2023) Resource Theory of Heat and Work 1751

Figure 5. Graphical illustration of R∗, the minimum bath
rate for a work transformation {ρSn} → {σSn} satisfying
the second law, according to Theorem 18. The initial state
is the generalized thermal state τ(β), its corresponding point
marked on the upper boundary of the phase diagram. The
final bath states correspond to points on the line denoted f ,
and they are feasible if and only they fall into the phase di-
agram. Consequently, F ∗ is the point corresponding to the
minimum rate

the final state of the thermal bath ξBnR is a tensor product state, therefore,
the first law (Theorem 6), and the AET( Theorem 4) imply that the entropy
and the charges rates of the global system are preserved; hence, we obtain the
following entropy and charge rates for the final state of the bath:

s({ξBnR}) = S(τ(β)B) − 1
R

ΔsS ,

aj({ξBnR}) = Tr τ(β)BABj
− 1

R
(ΔASj

+ Wj) for all j = 1, . . . , c,

(26)

where ΔsS = s({σSn}) − s({ρSn}). The above quantities on the left member
are rates of the entropy and charge changes, therefore, they must belong to

the diagram P(nR)
B

nR . Hence, due to point 3 of Lemma 1, the above coordinates

belong to P(1)

B = P(nR)
B

nR . Now, for R = R∗ assume that the above coordinates

belong to the point (a, s) on the boundary of the phase diagram P(1)

B . Then,
for R > R∗ the point of Eq. (26) is a convex combination of the points (a, s)
and the corresponding point of the state τ(β)B , so it belongs to the phase
diagram due to its convexity. Therefore, all points with R > R∗ are inside the
diagram.
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To approximate the minimum R for small δ, define the function S(a) :=
S(τ(a)B) for a = (a1, . . . , ac). Its Taylor expansion around the point corre-
sponding to the initial thermal state τ(β)B ≡ S

(
τ(a0)B

)
of the bath gives the

approximation

S(a) ≈ S(a0) +
∑

j

βj

(
aj − a0

j

)
+

1
2

∑

ij

∂βj

∂ai

(
aj − a0

j

) (
ai − a0

i

)
, (27)

where we have used the well-known relation ∂S
∂ai

= βi. From Eq. (26), we obtain

S(a) − S(a0) = −ΔsS

R
,

aj − a0
j =

1
R

(−ΔASj
− Wj),

and by substituting these values in the Taylor approximation (27), using the
definition of the free entropy and of the deficit δ, we arrive at the claimed
Eq. (25). �

Remark 19. For a single charge, c = 1, which we traditionally interpret as the
internal energy E of a system, Eq. (25) takes on the very simple form

R ≈ − 1
2δ

∂β

∂E
(ΔES + W )2.

Here we can use the usual thermodynamic definitions to rewrite ∂β
∂E = ∂ 1

T

∂E =
− 1

T 2
1
C , with the heat capacity C = ∂E

∂T , all derivatives taken with respect to
corresponding Gibbs equilibrium states. Thus,

R ≈ 1
T 2

1
C

· 1
2δ

(ΔES + W )2, (28)

resulting in a clear operational interpretation of the heat capacity in terms of
the rate of the bath to approach the second law tightly.

For larger numbers of charges, the matrix
[∂βj

∂ai

]
ij

=
[

∂2S
∂ai∂aj

]
ij

is actually
the Hessian of the entropy S

(
τ(a)B

)
with respect to the charges, and the r.h.s.

side of Eq. (25) is 1
2δ times the corresponding quadratic form evaluated on the

vector (ΔAS1 + W1, . . . ,ΔASc
+ Wc). Note that by the strict concavity of the

generalized Gibbs entropy, this is a negative definite symmetric matrix, thus
explaining the minus sign in Eq. (25). In the same vein as the single-parameter
discussion before, the Hessian matrix can be read as being composed of gener-
alized heat capacities, which likewise receive their operational interpretation
in terms of the required rate of the bath.

The heat capacity has made appearances in previous results in the re-
source approach to thermodynamics: Chubb et al. [70] have found it to show
up in the optimal interconversion rate between states in a resource theory of
Gibbs-preserving transformations and with unlimited baths at temperature T .
Their setting is the finite-copy regime, and in contrast to our result of finite
bath where the heat capacity affects the first order term (scaling linear with
n), the heat capacity determines the so-called second order term, scaling with
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√
n. While it is thus amusing to contemplate the separate appearance of the

heat capacity in the two results, the settings seem too different to allow for a
meaningful comparison.

4. Discussion

We have presented a resource theory in which the objects are sequences of
tensor product states, and thermodynamically meaningful allowed transforma-
tions, namely operations which preserve the entropy and charges of a system
asymptotically. The allowed operations classify the objects into equivalence
classes of state sequences that are interconvertible under allowed operations.
The basic result on which our theory is built is that the objects are inter-
convertible via allowed operations if and only if they have the same average
entropy and average charge values in the asymptotic limit.

The existence of the allowed operations between the objects of the same
class is based on two pillars: First, for objects with the same average entropy
there are states with sublinear dimension which can be coupled to the objects
to make their spectrum asymptotically identical. Second, objects with the same
average charge values project onto a common subspace of the charges of the
system which has the property that any unitary acting on this subspace is
an almost-commuting unitary with the corresponding charges. Therefore, the
spectrum of the objects of the same class can be modified using small ancillary
systems and then they are interconvertible via unitaries that asymptotically
preserve the charges of the system. The notion of a common subspace for
different charges, which are Hermitian operators, is introduced in [34] as ap-
proximate microcanonical (a.m.c.) subspace. In this paper, for given charges
and parameters, we construct a permutation-symmetric a.m.c., something not
guaranteed by the construction in [34].

We then applied this resource theory to understand quantum thermo-
dynamics with multiple conserved quantities. We specifically consider an as-
ymptotic generalization of the setting proposed in [36] where there are many
copies of a global system consisting of a main system, called a work system, a
thermal bath with fixed temperatures and various batteries to store the differ-
ent charges of the system. Our approach allows us, in our setting, to resolve
affirmatively a question from [34,36], which asks about the possibility of con-
structing physically separate batteries for all the involved charge numbers, be
they commuting or not (cf. [38]). Therefore, the objects and allowed operations
of the resource theory apply quantum states of a thermodynamics system and
thermodynamical transformations, respectively. It is evident that the allowed
operations can transform a state with a tensor product structure to a state of
a general form; however, we show that restricting the final states to the specific
form of tensor product structure does not reduce the generality and tightness
of the bounds that we obtain, which follows from the fact that for any point of
the phase diagram there is a state with tensor product structure realizing it.

As discussed in [36], for a system with multiple charges, the free entropy
is a conceptually more meaningful quantity than the free energy, which is
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originally defined when energy is the only conserved quantity of the system.
Namely, the free energy bounds the amount of energy that can be extracted
(while conserving the other charges); however, for a system with multiple
charges there are not various quantities that bound the extraction of indi-
vidual charges. Rather, there is only a bound on the trade-off between the
charges that can be extracted which is precisely the free entropy defined with
respect to the temperatures of the thermal bath. We show that indeed this is
the case in our scenario as well and formulate the second law: the amount of
charge combination that is extracted is bounded by the free entropy change
of the work system per number of copies of the work system, i.e. the free en-
tropy rate change. Conversely, we show that all transformations with given
extracted charge values, with a combination strictly bounded by the free en-
tropy rate change of the work system, are feasible. In particular, any amount
of a given charge, or the so-called work type, is extractable providing that
sufficient amounts of other charges are injected to the system.

This raises the following fundamental question: for given extractable
charge values, with a combination saturating the second law up to a deficit δ,
what is the minimum number of the thermal baths per number of the copies of
the work system. We define this ratio as the thermal bath rate. We find that
for large thermal bath rates the optimal value is inversely proportional to the
deficit δ, and there is always a corresponding transformation where the final
state of the work system and the thermal bath are uncorrelated. However, in
general this is not true: the minimum rate might be obtained where the final
state correlates the work system and the thermal bath. This is a purely quan-
tum mechanical effect, making certain work transformations possible with a
smaller size of the thermal bath than would be possible classically; it relies on
work system and bath becoming entangled. In order to describe precisely the
possible work transformations with a fixed bath, we define and analyze the ex-
tended phase diagram of the bath, which depends on a given conditional state
of the work system and records the conditional, rather than plain, entropy.

Our results paint a broad picture of thermodynamics as a resource theory,
which ultimately relies only on conservation laws, namely the conservation of
information (i.e. entropy)—cf. [12]—, and the conservation of extensive phys-
ical quantities. At the microscopic level, the former means that the allowed
transformations are (approximate) unitaries, the latter that they (approxi-
mately) commute with the conserved quantities. Amazingly, after these simple
premises give rise to the phase diagram, the supposed deep distinction between
entropy and the conserved charges disappears: they both are simply extensive
conserved quantities. Following our development of thermodynamics, with its
batteries for the distinct charges, we could augment this with an entropy bat-
tery, which carries no charges and is only there to absorb or release entropy.
This is a very general picture that in some respect includes as a special case
our treatment of the second law: namely, the role of the bath is largely as such
an entropy battery, although the fact that it also carries charges complicates
things compared to this abstract vantage point.
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We leave several open questions to be addressed. Not to dwell on the
overly technical ones, which will be evident to readers of the detailed claims
and proofs, a fundamental problem is whether it is possible to prove the AET
Theorem 4 with unitaries that exactly commute with the conserved quantities,
rather than approximately? This would require the construction of a subexpo-
nential reference frame to take care of the conservation laws; this is known to
be possible for a single conserved quantity (energy) [33], and more generally
for pairwise commuting charges [12]. If it were possible in the non-commuting
setting, it would give our theory a much stronger appeal, since at a funda-
mental level, conservation laws in nature are considered to hold strictly, rather
than only approximately.

There is a whole plethora of open questions concerning practical and ex-
perimental implications of our results (similar experimental settings for ther-
modynamics with non-commuting charges have been characterized recently in
[71,72]). The most straightforward, and perhaps most interesting is this one:
can one design a system and a bath of small to moderate size, such that a con-
crete work transformation will necessarily leave the system and the bath in a
final entangled state? The impossibility of such a transformation in a classical
system could be interpreted as a thermal machine entanglement witness.
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Appendices

Here we collect mathematically involved arguments that would detract from
the exposition of the main article. These are the proof of Theorem 4 (in “Ap-
pendix C”), which requires the construction of approximate microcanonical
(a.m.c.) subspaces [34], for which we give a self-contained proof in “Appen-
dix B”. We start with the collection of miscellaneous definitions and facts in
“Appendix A”.

Appendix A: Miscellaneous Definitions and Facts

Definition 20. Let ρ1, . . . , ρn be quantum states on a d-dimensional Hilbert
space H with diagonalizations ρi =

∑
j pijπij and one-dimensional projectors

πij . For α > 0 and ρn = ρ1⊗· · ·⊗ρn define the set of entropy-typical sequences
as

T n
α,ρn =

{
jn = j1j2 . . . jn :

∣∣∣∣∣

n∑

i=1

− log piji
− S(ρi)

∣∣∣∣∣ ≤ α
√

n

}
.

Define the entropy-typical projector of ρn with constant α as

Πn
α,ρn =

∑

jn∈T n
α,ρn

π1j1 ⊗ · · · ⊗ πnjn
.

Lemma 21 (Cf. [73]). There is a constant 0 < β ≤ max{(log 3)2, (log d)2} such
that the entropy-typical projector has the following properties for any α > 0,
n > 0 and arbitrary state ρn = ρ1 ⊗ · · · ⊗ ρn:

Tr
(
ρnΠn

α,ρn

)
≥ 1 − β

α2
,

2−
∑n

i=1 S(ρi)−α
√

nΠn
α,ρn ≤ Πn

α,ρnρnΠn
α,ρn ≤ 2−

∑n
i=1 S(ρi)+α

√
nΠn

α,ρn , and
(

1 − β

α2

)
2
∑n

i=1 S(ρi)−α
√

n ≤ Tr
(
Πn

α,ρn

)
≤ 2

∑n
i=1 S(ρi)+α

√
n.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Lemma 22 (Gentle operator lemma [74–76]). If a quantum state ρ with di-
agonalization ρ =

∑
j pjπj projects onto a POVM element Λ with probability

1 − ε, i.e. Tr (ρΛ) ≥ 1 − ε for 0 ≤ Λ ≤ 1, then
∑

j

pj

∥∥∥πj −
√

Λπj

√
Λ
∥∥∥

1
≤ 2

√
ε.

Lemma 23 (Cf. Bhatia [77]). For operators A, B and C and for any p ∈ [1,∞],
the following holds

‖ABC‖p ≤ ‖A‖∞ ‖B‖p ‖C‖∞ .

Lemma 24 (Hoeffding’s inequality, cf. [78]). Let X1,X2, . . . , Xn be indepen-
dent random variables with ai ≤ Xi ≤ bi, and define the empirical mean of
these variables as X = X1+···+Xn

n . Then, for any t > 0,

Pr
{
X − E(X) ≥ t

}
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
,

Pr
{
X − E(X) ≤ −t

}
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

Appendix B: Approximate Microcanonical (A.M.C.) Subspace

In this section, we recall the definition of the notion of approximate micro-
canonical (a.m.c.) and give a new proof that it exists for certain explicitly
given parameters.

Definition 25. An approximate microcanonical (a.m.c.) subspace, or more pre-
cisely a (ε, η, η′, δ, δ′)-approximate microcanonical subspace, M of H⊗n, with
projector P , for charges Aj and values vj = 〈Aj〉 is one that consists, in a
certain precise sense, of exactly the states with “very sharp” values of all the
A

(n)
j . Mathematically, the following has to hold:
1. Every state ω with support contained in M satisfies Tr ωΠη

j ≥ 1 − δ for
all j.

2. Conversely, every state ω on H⊗n such that Tr ωΠη′
j ≥ 1 − δ′ for all j,

satisfies Tr ωP ≥ 1 − ε.
Here, Πη

j :=
{
nvj−nηΣ(Aj) ≤ A

(n)
j ≤ nvj+nηΣ(Aj)

}
is the spectral projector

of A
(n)
j of values close to nvj , and Σ(A) = λmax(A) − λmin(A) is the spectral

diameter of the Hermitian A, i.e. the diameter of the smallest disc covering
the spectrum of A.

Remark 26. It is shown in [34, Thm. 3] that for every ε > cδ′ > 0, δ > 0
and η > η′ > 0, and for all sufficiently large n, there exists a nontrivial
(ε, η, η′, δ, δ′)-a.m.c. subspace. However, there are two (related) reasons why
one might be not completely satisfied with the argument in [34]: First, the
proof uses a difficult result of Ogata [79] to reduce the non-commuting case
to the seemingly easier of commuting observables; while this is conceptually
nice, it makes it harder to perceive the nature of the constructed subspace.
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Secondly, despite the fact that the defining properties of an a.m.c. subspace are
manifestly permutation symmetric (w.r.t. permutations of the n subsystems),
the resulting construction does not necessarily have this property.

Here we address both these concerns. Indeed, we shall show by essentially
elementary means how to obtain an a.m.c. subspace that is by its definition
permutation symmetric.

Theorem 27. Under the assumptions of Definition 25, for every ε > 2(n +
1)3d2

δ′ > 0, η > η′ > 0 and δ > 0, for all sufficiently large n there exists
an approximate microcanonical subspace projector. In addition, the subspace
can be chosen to be stable under permutations of the n systems: UπM = M,
or equivalently UπP (Uπ)† = P , for any permutation π ∈ Sn and its unitary
action Uπ.

More precisely, given η > η′ > 0 and ε > 0, there exists a α > 0 such
that there is a non-trivial (ε, η, η′, δ, δ′)-a.m.c. subspace with

δ = (c + 3)(5n)5d2
e−αn and

δ′ =
ε

2(n + 1)3d2 − (c + 3)(5n)2d2
e−αn.

Furthermore, we may choose α = (η−η′)2

8(cd+1)2 .

Proof. For s > 0, partition the state space S(H) on H into

Cs(v) =
{
σ : ∀j |Tr σAj − vj | ≤ sΣ(Aj)

}
, (B1)

Fs(v) =
{
σ : ∃j |Tr σAj − vj | > sΣ(Aj)

}
= S(H)\Cs(v), (B2)

which are the sets of states with Aj-expectation values “close” to and “far”
from v. Note that if ρ ∈ Cs(v) and σ ∈ Ft(v), 0 < s < t, then ‖ρ−σ‖1 ≥ t− s.

Choosing the precise values of s > η′ and t < η later, we pick a universal
distinguisher (P, P⊥) between Cs(v)⊗n and Ft(v)⊗n, according to Lemma 28
below:

∀ρ ∈ Cs(v) Tr ρ⊗nP⊥ ≤ (c + 2)(5n)2d2
e−ζn, (B3)

∀σ ∈ Ft(v) Tr σ⊗nP ≤ (c + 2)(5n)2d2
e−ζn, (B4)

with ζ = (t−s)2

2c2(2d2+1) . Our a.m.c. subspace will be M := suppP ; by Lemma 28,
P and likewise M are permutation symmetric.

It remains to check the properties of the definition. First, let ω be sup-
ported on M. Since we are interested in TrωΠη

j , we may without loss of gen-
erality assume that ω is permutation symmetric. Thus, by the “constrained de
Finetti reduction” (aka “Postselection Lemma”) [80, Lemma 18],

ω ≤ (n + 1)3d2
∫

dσ σ⊗nF (ω, σ⊗n)2, (B5)

with a certain universal probability measure dσ on S(H), and the fidelity
F (ρ, σ) = ‖√ρ

√
σ‖1 between states. We need the monotonicity of the fidelity

under cptp maps, which we apply to the test (P, P⊥):

F (ω, σ⊗n)2 ≤ F
(
(Tr σ⊗nP, 1 − Tr σ⊗nP ), (1, 0)

)2 ≤ Tr σ⊗nP,
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which holds because Tr ωP = 1. Thus,

Tr ω(Πη
j )⊥ ≤ (n + 1)3d2

∫
dσ
(
Tr σ⊗n(Πη

j )⊥)(Tr σ⊗nP ). (B6)

Now we split the integral on the right-hand side of Eq. (B6) into two
parts, σ ∈ Ct(v) and σ �∈ Ft(v): If σ ∈ Ft(v), then by Eq. (B4) we have

Tr σ⊗nP ≤ (c + 2)(5n)2d2
e−ζn.

On the other hand, if σ ∈ Ct(v), then because of t < η we have

Tr σ⊗n(Πη
j )⊥ ≤ 2e−2(η−t)2n,

which follows from Hoeffding’s inequality [78]: Indeed, let Z� be the i.i.d. ran-
dom variables obtained by the measurement of Aj on the state σ. They take
values in the interval [λmin(Aj), λmax(Aj)], their expectation values satisfy
EZj = Tr σAj ∈ [vj ± tΣ(Aj)], while

Tr σ⊗n(Πη
j )⊥ = Pr

{
1
n

∑

�

Z� �∈ [vj ± ηΣ(Aj)

}

≤ Pr

{
1
n

∑

�

Z� �∈ [Tr σAj ± (η − t)Σ(Aj)

}
,

so Hoeffding’s inequality applies. All taken together, we have

Tr ω(Πη
j )⊥ ≤ (n + 1)3d2

(
(c + 2)(5n)2d2

e−ζn + 2e−2(η−t)2n
)

≤ (c + 3)(5n)5d2
e−2(η−t)2n,

because we can choose t such that

η − t =
t − s

2c
√

2d2 + 1
≥ t − s

4cd
. (B7)

Secondly, let ω be such that Tr ωΠη
j ≥ 1 − δ′; as we are interested in

Tr ωP , we may again assume without loss of generality that ω is permutation
symmetric, and invoke the constrained de Finetti reduction [80, Lemma 18],
Eq. (B5). From that we get, much as before,

Tr ωP⊥ ≤ (n + 1)3d2
∫

dσ (Tr σ⊗nP⊥)F (ω, σ⊗n)2,

and we split the integral on the right-hand side into two parts, depending on
σ ∈ Fs(v) or σ ∈ Cs(v): In the latter case, Tr σ⊗nP⊥ ≤ (c + 2)(5n)2d2

e−ζn,
by Eq. (B3). In the former case, there exists a j such that Tr σAj = wj �∈
[vj ± sΣ(Aj)], and so

F (ω, σ⊗n)2 ≤ F
(
(1 − δ′, δ′), (Tr σ⊗nΠη′

j , 1 − Tr σ⊗NΠη′
j )
)

≤
(√

δ′ +
√

Tr σ⊗nΠη′
j

)2

≤ 2δ′ + 2Tr σ⊗nΠη′
j

≤ 2δ′ + 4e−2(s−η′)2n,



1760 Z. B. Khanian et al. Ann. Henri Poincaré

the last line again by Hoeffding’s inequality; indeed, with the previous nota-
tion,

Tr σ⊗nΠη′
j = Pr

{
1
n

∑

�

Z� ∈ [vj ± η′Σ(Aj)

}

≤ Pr

{
1
n

∑

�

Z� �∈ [wj ± (s − η′)Σ(Aj)

}
.

All taken together, we get

Tr ωP⊥ ≤ (n + 1)3d2
(
(c + 2)(5n)2d2

e−ζn + 4e−2(s−η′)2n + 2δ′
)

≤ (n + 1)3d2
(c + 3)(5n)2d2

e−2(s−η′)2n + 2(n + 1)3d2
δ′,

because we can choose s such that

s − η′ =
t − s

2c
√

2d2 + 1
≥ t − s

4cd
. (B8)

From Eqs. (B7) and (B8) we get by summation

η − η′ = t − s +
t − s

c
√

2d2 + 1
≤ (t − s)

(
1 +

1
cd

)
,

from which we obtain

s − η′ = η − t ≥ η − η′

4(cd + 1)
,

concluding the proof. �

Lemma 28. For all 0 < s < t there exists ζ > 0, such that for all n there exists
a permutation symmetric projector P on H⊗n with the properties

∀ρ ∈ Cs(v) Tr ρ⊗nP⊥ ≤ (c + 2)(5n)2d2
e−ζn, (B9)

∀σ ∈ Ft(v) Tr σ⊗nP ≤ (c + 2)(5n)2d2
e−ζn, (B10)

where Cs(v) and Ft(v) are defined in Eqs. (B1) and (B2), respectively. The
constant ζ may be chosen as ζ = (t−s)2

2c2(2d2+1) .

Proof. We start by showing that there is a POVM (M,1 − M) with

∀ρ ∈ Cs(v) Tr ρ⊗n(1 − M) ≤ ce− (t−s)2

2c2
n, (B11)

∀σ ∈ Ft(v) Tr σ⊗nM ≤ e− (t−s)2

2c2
n. (B12)

Namely, for each � = 0, . . . , n choose j� ∈ {1, . . . , c} uniformly at random and
measure Aj�

on the �-th system. Denote the outcome by the random variable
Zj�

� and let Zj
� = 0 for j �= j�. Thus, for all j, the random variables Zj

� are
i.i.d. with mean EZj

� = 1
c Tr ρAj , if the measured state is ρ⊗n.

Outcome M corresponds to the event

∀j
1
n

∑

�

Zj
� ∈ 1

c

[
vj ± s + t

2
Σ(Aj)

]
;
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outcome 1 − M corresponds to the complementary event

∃j
1
n

∑

�

Zj
� �∈ 1

c

[
vj ± s + t

2
Σ(Aj)

]
.

We can use Hoeffding’s inequality to bound the traces in question.
For ρ ∈ Cs(v), we have |EZj

� − vj | ≤ s
cΣ(Aj) for all j, and so:

Tr ρ⊗n(1 − M) = Pr

{
∃j

1
n

∑

�

Zj
� �∈ 1

c

[
vj ± s + t

2
Σ(Aj)

]}

≤
c∑

j=1

Pr

{
1
n

∑

�

Zj
� �∈ 1

c

[
vj ± s + t

2
Σ(Aj)

]}

≤
c∑

j=1

Pr

{
1
n

∑

�

Zj
� �∈ 1

c

[
vj ± s + t

2
Σ(Aj)

]}

≤
c∑

j=1

Pr

{∣∣∣∣∣
1
n

∑

�

Zj
� − EZj

1

∣∣∣∣∣ >
t − s

2c
Σ(Aj)

}

≤ ce− (t−s)2

2c2
n.

For σ ∈ Ft(v), there exists a j such that |EZj
� − vj | > t

cΣ(Aj). Thus,

Tr σ⊗nM ≤ Pr

{
1
n

∑

�

Zj
� ∈ 1

c

[
vj ± s + t

2
Σ(Aj)

]}

≤ Pr

{∣∣∣∣∣
1
n

∑

�

Zj
� − EZj

1

∣∣∣∣∣ >
t − s

2c
Σ(Aj)

}

≤ e− (t−s)2

2c2
n.

This POVM is, by construction, permutation symmetric, but M is not
a projector. To fix this, choose λ-nets N λ

C in Cs(v) and N λ
F in Ft(v), with

λ = e−ζn, with ζ = (t−s)2

2c2(2d2+1) . This means that every state ρ ∈ Cs(v) is no
farther than λ in trace distance from a ρ′ ∈ N λ

C , and likewise for Ft(v). By
[41, Lemma III.6] (or rather, a minor variation of its proof), we can find such

nets with |N λ
C |, |N λ

F | ≤
(

5n
λ

)2d2

elements. Form the two states

Γ :=
1

|N λ
C |
∑

ρ∈N λ
C

ρ⊗n,

Φ :=
1

|N λ
F |
∑

σ∈N λ
F

σ⊗n,

and let

P := {Γ − Φ ≥ 0}
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be the Helstrom projector which optimally distinguishes Γ from Φ. But we
know already a POVM that distinguishes the two states, hence (P, P⊥ = 1−P )
cannot be worse:

Tr ΓP⊥ + Tr ΦP ≤ Tr Γ(1 − M) + Tr ΦM ≤ (c + 1)e− (t−s)2

2c2
n,

thus for all ρ ∈ N λ
C and σ ∈ N λ

F ,

Tr ρ⊗nP⊥, Tr σ⊗nP ≤ (c + 1)
(

5n

λ

)2d2

e− (t−s)2

2c2
n.

So, by the λ-net property, we find for all ρ ∈ Cs(v) and σ ∈ Ft(v),

Tr ρ⊗nP⊥, Tr σ⊗nP ≤ λ + (c + 1)
(

5n

λ

)2d2

e− (t−s)2

2c2
n ≤ (c + 2)(5n)2d2

e−ζn,

by our choice of λ. �

Corollary 29. For charges Aj, values vj = 〈Aj〉 and n > 0, Theorem 27 implies
that there is an a.m.c. subspace M of H⊗n for any η′ > 0, with the following
parameters:

η = 2η′,

δ′ =
c + 3

2
(5n)2d2

e
− nη′2

8c2(d+1)2 ,

δ = (c + 3)(5n)2d2
e

− nη′2
8c2(d+1)2 ,

ε = 2(c + 3)(n + 1)3d2
(5n)2d2

e
− nη′2

8c2(d+1)2 .

Moreover, let ρn = ρ1⊗· · ·⊗ρn be a tensor product state with 1
n

∣∣∣Tr (ρnA
(n)
j ) − vj

∣∣∣
≤ 1

2η′Σ(Aj) for all j. Then, ρn projects onto the a.m.c. subspace with proba-
bility ε: Tr (ρnP ) ≥ 1 − ε.

Proof. For simplicity of notation we drop the subscript j from Aj , vj and Πη′
j ,

so let
∑d

�=1 E�|�〉〈�| be the spectral decomposition of A. Define independent
random variables Xi for i = 1, . . . , n taking values in the set {E1, . . . , Ed}
with probabilities Pr{Xi = E�} = pi(E�) = Tr ρi|�〉〈�|. Furthermore, define the
random variable X = 1

n (X1 + · · · + Xn) which has the expectation value

E(X) =
1
n

Tr ρnA(n).

Therefore, we obtain

1 − Tr ρnΠη′
=

∑

�1,...,�n:

|E�1+···+E�n−nv|≥nη′Σ(A)

〈�1|ρ1|�1〉 · · · 〈�n|ρn|�n〉

= Pr
{∣∣X − v

∣∣ ≥ η′Σ(A)
}

= Pr
{
X − E(X) ≥ η′Σ(A) + v − E(X) or X − E(X) ≤ −η′Σ(A)

+v − E(X)
}



Vol. 24 (2023) Resource Theory of Heat and Work 1763

≤ exp
(

−2n(η′Σ(A) + v − E(X))2

(Σ(A))2

)

+ exp
(

−2n(η′Σ(A) − v + E(X))2

(Σ(A))2

)

≤ 2 exp
(

−nη′2

2

)
≤ δ′,

where the second line follows because random the variables X1, . . . , Xn are in-
dependent, and as a result Pr {Xi = E�i

∀i = 1, . . . , n} = 〈�1|ρ1|�1〉 · · · 〈�n|ρn|�n〉;
the fourth line is due to Hoeffding’s inequality, Lemma 24; the fifth line is due
to assumption

∣∣E(X) − v
∣∣ ≤ 1

2η′Σ(A). Thus, by the definition of the a.m.c.
subspace, Tr ρnP ≥ 1 − ε. �

Appendix C: Proof of the AET Theorem 4

In this section, we first review the notion of the entropy-typical subspace de-
fined in Definition 20, which we refer to it as the typical subspace for sim-
plicity. Lemma 21 summarizes the properties of this subspace which we use in
the proofs of this section. Intuitively, the typical subspace of the support of a
tensor product state ρn = ρ1 ⊗ · · · ⊗ ρn with projector Πn

α,ρn , for a positive
constant α, is a high probability subspace for ρn of dimension approximately
equal to 2S(ρn) = 2

∑n
i=1 S(ρi). Moreover, eigenvalues of ρn inside this subspace

belong to a tight interval around 2−S(ρn) with the radius of 2−α
√

n. We use
these properties to prove Lemma 30 of which we will use points 3 and 4 to
prove the AET. In this lemma, we show that if ρn projects onto a subspace M
with high probability, then we can find a state ρ̃ inside this subspace which is
close to the state ρn (in trace distance) and has useful properties. In particular,
similar to the typicality properties, the eigenvalues of ρ̃ belong to an interval
around 2−S(ρn) with a small radius. We use this to show that the state ρ̃ can
be decomposed as the tensor product of a maximally mixed state of dimension
almost equal to 2−S(ρn) and another state with significantly smaller dimension.

Lemma 30. Let M ⊂ H⊗n with projector P be a high-probability subspace for
the state ρn = ρ1 ⊗ · · · ⊗ ρn, i.e. Tr ρnP ≥ 1 − ε. Then, for α > 0 and all
sufficiently large n, there exist a subspace M̃ ⊆ M with projector P̃ , and a
state ρ̃ with support in M̃, such that the following holds:

1. Tr Πn
α,ρnρnΠn

α,ρn P̃ ≥ 1 − 2
√

ε − O
(

1
α

)
.

2. 2−
∑n

i=1 S(ρi)−2α
√

nP̃ ≤ P̃Πn
α,ρnρnΠn

α,ρn P̃ ≤ 2−
∑n

i=1 S(ρi)+α
√

nP̃ .
3. There is a unitary U such that Uρ̃U† = τ ⊗ ω, where τ is a maximally

mixed state of rank 2
∑n

i=1 S(ρi)−O(α
√

n), and ω is a state of dimension
2O(α

√
n).

4. ‖ρ̃ − ρn‖1 ≤ 2
√

ε + O
(

1
α

)
+ 2
√

2
√

ε + O
(

1
α

)
.
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Proof. In point 1 and 2 of the lemma, we first construct the subspace M̃ with
projector P̃ . To this end, we project the typical subspace of ρn with projec-
tor Πn

α,ρn onto the space M, i.e. PΠn
α,ρnP , and define P̃ as a projector onto

the support of PΠn
α,ρnP with corresponding eigenvalues bigger than 2−α

√
n.

Since ρn project onto M with high probability, therefore the unnormalized
state Πn

α,ρnρnΠn
α,ρn ≈ ρn projects onto M with high probability as well. We

use this to show that they both project onto M̃ with high probability. More-
over, from Lemma 21, we know that the eigenvalues of the unnormalized state
Πn

α,ρnρnΠn
α,ρn are inside a tight interval around 2−

∑n
i=1 S(ρi). We use this to

show that the new unnormalized state P̃Πn
α,ρnρnΠn

α,ρn P̃ has the same prop-
erty.

In point 3 of the lemma, we further trim the unnormalized state
P̃Πn

α,ρnρnΠn
α,ρn P̃ to obtain a new state which has a degeneracy of the order of

multiples of 2−
∑n

i=1 S(ρi)−10α
√

n. By trimming, we mean discarding some parts
of an unnormalized state in such a way that the trace of the new unnormalized
state is almost the same. We use this property to decompose the state into
the tensor product of a maximally mixed state and another state of smaller
dimension. Lastly, in point 4, we show that the new state is close to state ρn.

1. Let E ≥ 0 and F ≥ 0 be two positive operators such that E + F =
PΠn

α,ρnP , where all eigenvalues of F are smaller than 2−α
√

n, and define P̃ to
be the projection onto the support of E. In other words, P̃ is the projection
onto the support of PΠn

α,ρnP with corresponding eigenvalues greater 2−α
√

n.
Also, notice that all eigenvalues of E and F are smaller than 1. Thus, we
obtain

Tr (Πn
α,ρnρnΠn

α,ρn P̃ ) ≥ Tr (Πn
α,ρnρnΠn

α,ρnE)

= Tr (Πn
α,ρnρnΠn

α,ρnPΠn
α,ρnP ) − Tr (Πn

α,ρnρnΠn
α,ρnF )

≥ Tr (Πn
α,ρnρnΠn

α,ρnPΠn
α,ρnP ) − 2−α

√
n

≥ Tr (ρnPΠn
α,ρnP ) −

∥∥Πn
α,ρnρnΠn

α,ρn − ρn
∥∥

1
− 2−α

√
n

≥ Tr (ρnΠn
α,ρn) − ‖PρnP − ρn‖1 −

∥∥Πn
α,ρnρnΠn

α,ρn − ρn
∥∥

1

− 2−α
√

n

≥ 1 − β

α2
− 2

√
ε − 2

√
β

α
− 2−α

√
n,

where the first line follows from the definition of E which implies P̃ ≥ E. The
third line follows from Hölder’s inequality in the following form: Tr (Πn

α,ρnρn

Πn
α,ρnF ) ≤ Tr (Πn

α,ρnρnΠn
α,ρn) · ‖F‖∞ ≤ 2−α

√
n. The fourth and fifth lines

are due to Hölder’s inequality in the following form: for any two states ρ
and σ and any operator 0 ≤ Λ ≤ 1, Tr (ρΛ) ≥ Tr (σΛ) − ‖ρ − σ‖1 holds
which is obtained by rearranging terms in the following Hölder’s inequality
Tr ((ρ − σ)Λ) ≤ ‖ρ − σ‖1 · ‖Λ‖∞ ≤ ‖ρ − σ‖1 . The last line follows from
Lemmas 21 and 22.
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2. By the fact that in the typical subspace the eigenvalues of ρn are
bounded (Lemma 21), we obtain

P̃Πn
α,ρnρnΠn

α,ρn P̃ ≤ 2−
∑n

i=1 S(ρi)+α
√

nP̃Πn
α,ρn P̃

≤ 2−
∑n

i=1 S(ρi)+α
√

nP̃ .

For the lower bound notice that

P̃Πn
α,ρnρnΠn

α,ρn P̃ ≥ 2−
∑n

i=1 S(ρi)−α
√

nP̃Πn
α,ρn P̃

= 2−
∑n

i=1 S(ρi)−α
√

nP̃PΠn
α,ρnPP̃

≥ 2−
∑n

i=1 S(ρi)−2α
√

nP̃ ,

where the equality holds because P̃ ⊆ M, therefore P̃P = P̃ . The last in-
equality follows because P̃ is the projection onto support of PΠn

α,ρnP with
eigenvalues greater 2−α

√
n.

3. In this point, we construct ρ̃. Consider the unnormalized state P̃Πn
α,ρnρn

Πn
α,ρn P̃ with support inside M̃. From point 2, we know that all the eigenvalues

of this state belongs to the interval
[
2−
∑n

i=1 S(ρi)−2α
√

n, 2−
∑n

i=1 S(ρi)+α
√

n
]

:=

[pmin, pmax]. We divide this interval into b = 2�5α
√

n� many intervals (bins) of
equal length Δp = pmax−pmin

b . Now, we trim the eigenvalues of this unnormal-
ized state in three steps as follows.

(a) Each eigenvalue belongs to a bin which is an interval [pk, pk+1) for some
0 ≤ k ≤ b − 1 with pk = pmin + Δp × k. For example, eigenvalue λl is
equal to pk + ql for some k such that 0 ≤ ql < Δp. We throw away the ql

part of each eigenvalue λl. The sum of these parts over all eigenvalues is
very small,

|M̃|∑

l=1

ql ≤ Δp|M̃| ≤ 2−2α
√

n+1,

where the dimension of the subspace M̃ is bounded as
|M̃| ≤ 2

∑n
i=1 S(ρi)+2α

√
n, which follows from point 2 of the lemma.

(b) We throw away the bins which contain less than 2
∑n

i=1 S(ρi)−10α
√

n many
eigenvalues. The sum of all the eigenvalues that are thrown away is
bounded by

2
∑n

i=1 S(ρi)−10α
√

n × 25α
√

n × 2−
∑n

i=1 S(ρi)+α
√

n ≤ 2−4α
√

n,

where the first number in the product is the number of eigenvalues in such
a bin, the second is the number of bins, and the third is the maximum
eigenvalue.

(c) If the k-th bin is not thrown away in the previous step, it contains Mk

many equal eigenvalues, where Mk is bounded as follows:

2
∑n

i=1 S(ρi)−10α
√

n ≤ Mk ≤ 2
∑n

i=1 S(ρi)+2α
√

n. (C1)
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Let

L = 2�
∑n

i=1 S(ρi)−10α
√

n� (C2)

and for the kth bin, let mk be an integer number such that

mkL ≤ Mk ≤ (mk + 1)L. (C3)

Then, mk is bounded as follows

mk ≤ 212α
√

n. (C4)

From the k-th bin, we keep mkL number of eigenvalues and throw away
the rest, where there are Mk − mkL ≤ L many of them; the sum of the
eigenvalues that are thrown away in this step is bounded by

b−1∑

k=0

pk(Mk − mkL) ≤ L

b−1∑

k=0

pk ≤ 2−4α
√

n.

Hence, for sufficiently large n the sum of the eigenvalues thrown away in the
last three steps is bounded by

2−2α
√

n+1 + 2−4α
√

n + 2−4α
√

n ≤ 2−α
√

n (C5)

Therefore, there are only left b different eigenvalues where the k-th eigenvalue
has degeneracy of mkL for k = 0, 1, . . . , b − 1. In other words, the eigenvalues
of all bins that are not thrown away in these three steps, form an L-fold de-
generate unnormalized state of dimension

∑b−1
k=0 mkL because each eigenvalue

has at least degeneracy of the order of L. Thus, up to a unitary U†, it can be
factorized into the tensor product of a maximally mixed state τ and an unnor-
malized state ω′ of dimensions L and

∑b−1
k=0 mk, respectively. From Eq. (C4),

the dimension of ω′ is bounded by
b−1∑

k=0

mk ≤ 212α
√

n × 25α
√

n = 217α
√

n.

Then, let ω = ω′
Tr (ω′) and define

ρ̃ := Uτ ⊗ ωU†.

4. In point 3 of the lemma, we trimmed P̃Πn
α,ρnρnΠn

α,ρn P̃ to obtain the
state ρ̃, i.e. ρ̃ ≈ P̃Πn

α,ρnρnΠn
α,ρn P̃ . Moreover, from point 1 of the lemma we

know that the unnormalized state Πn
α,ρnρnΠn

α,ρn projects onto P̃ with high
probability. Therefore, Lemma 22 and Lemma 21 imply that the new unnor-
malized state P̃Πn

α,ρnρnΠn
α,ρn P̃ ≈ Πn

α,ρnρnΠn
α,ρn ≈ ρn. Hence, we obtain that

ρ̃ ≈ ρn. In the following, we prove this in detail. From points 3 and 1, we
obtain

Tr (ω′) = Tr (τ ⊗ ω′) (C6)

≥ Tr
(
P̃Πn

α,ρnρnΠn
α,ρn P̃

)
− 2−α

√
n (C7)

≥ 1 − 2
√

ε − 2
√

β

α
− β

α2
− 2−α

√
n+1. (C8)
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Thereby, we get the following

‖ρ̃ − ρn‖1 ≤
∥∥ρ̃ − Uτ ⊗ ω′U†∥∥

1
+
∥∥∥Uτ ⊗ ω′U† − P̃Πn

α,ρnρnΠn
α,ρn P̃

∥∥∥
1

+
∥∥∥P̃Πn

α,ρnρnΠn
α,ρn P̃ − ρn

∥∥∥
1

≤ 1 − Tr (ω′) +
∥∥∥Uτ ⊗ ω′U† − P̃Πn

α,ρnρnΠn
α,ρn P̃

∥∥∥
1

+
∥∥∥P̃Πn

α,ρnρnΠn
α,ρn P̃ − ρn

∥∥∥
1

≤ 1 − Tr (ω′) + 2−α
√

n +
∥∥∥P̃Πn

α,ρnρnΠn
α,ρn P̃ − ρn

∥∥∥
1

≤ 1 − Tr (ω′) + 2−α
√

n + 2

√
2
√

ε + 2
√

β

α
+

β

α2
+ 2−α

√
n

= 2
√

ε + 2
√

β

α
+

β

α2
+ 2−α

√
n+1 + 2

√
2
√

ε + 2
√

β

α
+

β

α2
+ 2−α

√
n,

where the first line is due to triangle inequality. The second, third and fourth
lines are due to Eqs. (C6) and (C5), and Lemma 22, respectively. �

Proof of Theorem 4. We first sketch the proof in this paragraph and later pro-
vide rigorous steps of the proof. The approximate microcanonical (a.m.c.) sub-
space for charges Aj and average values vj which is basically a common sub-
space for the spectral projectors of A

(n)
j with corresponding values close to

nvj ; that is, a subspace onto which a state projects with high probability if
and only if it projects onto the spectral projectors of the charges with high
probability. We show in Theorem 27 that for a large enough n such a subspace
exits. An interesting property of an a.m.c. subspace is that any unitary acting
on this subspace is an almost commuting unitary with charges A

(n)
j .

In Corollary 29, we show that assuming 1
n Tr(ρnA

(n)
j ) ≈ 1

n Tr(ρnA
(n)
j ) ≈

vj the states ρn and σn project onto the a.m.c. subspace with high probability.
Hence, in Lemma 30, we show that one can find states ρ̃ and σ̃ with support
inside the a.m.c. subspace which are very close to the original states in trace
norm, that is, ρ̃ ≈ ρn and σ̃ ≈ σn, and there are unitaries V1 and V2 that
factorizes these states to the tensor product of maximally mixed states τ and
τ ′ and some other state of very small dimension:

V1ρ̃V †
1 = τ ⊗ ω and V2σ̃V †

2 = τ ′ ⊗ ω′.

Further, assuming that the states ρn and σn have very close entropy rates, i.e.
1
nS(ρn) ≈ 1

nS(σn), one can find states τ and τ ′ with the same dimension that
is τ = τ ′. Thus, we observe that two states ρ̃ ⊗ ω′ and σ̃ ⊗ ω have exactly
the same spectrum, so there is unitary acting on the a.m.c. subspace and the
ancillary system taking one state to another. Based on the properties of the
a.m.c. subspace, we show that this unitary is an almost commuting unitary
with the charges A

(n)
j .

We first prove the if part. If there is an almost-commuting unitary U and
an ancillary system with the desired properties stated in the theorem, then we
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obtain
1
n

|S(ρn) − S(σn)| =
1
n

|S(ρn ⊗ ω′) − S(σn ⊗ ω) − S(ω′) + S(ω)|

≤ 1
n

|S(ρn ⊗ ω′) − S(σn ⊗ ω)| +
1
n

|S(ω′) − S(ω)|

≤ 1
n

|S(ρn ⊗ ω′) − S(σn ⊗ ω)| +
2
n

log 2o(n)

=
1
n

∣∣S(U(ρn ⊗ ω′)U†) − S(σn ⊗ ω)
∣∣+ o(1)

≤ 1
n

o(1) log(dn × 2o(n)) +
1
n

h (o(1)) + o(1) = o(1),

where the first line follows from the additivity of the von Neumann on tensor
product states and adding and subtracting S(ω) and S(ω′). The second line is
due to the triangle inequality. The third line is due to the fact that von Neu-
mann entropy of a state is upper bounded by the logarithm of the dimension
(assuming that the dimension of the ancillary system is bounded by 2o(n)).
The fourth line follows because unitaries do not change the entropy. The last
line follows because the trace distance between the two states U(ρn ⊗ ω′)U†

and σn ⊗ ω converges to zero, therefore we can apply the continuity of von
Neumann entropy [39,40] where h(x) = −x log x − (1 − x) log(1 − x) is the
binary entropy function. Moreover, we obtain

1
n

∣∣∣Tr
(
ρnA

(n)
j

)
− Tr

(
σnA

(n)
j

)∣∣∣

=
1
n

∣∣∣Tr
(
ρn ⊗ ω′(A(n)

j + A′
j)
)

− Tr
(
σn ⊗ ω(A(n)

j + A′
j)
)∣∣∣

≤ 1
n

∣∣∣Tr
(
ρn ⊗ ω′(A(n)

j + A′
j)
)

− Tr
(
Uρn ⊗ ω′U†(A(n)

j + A′
j)
)∣∣∣

+
1
n

∣∣∣Tr
(
Uρn ⊗ ω′U†(A(n)

j + A′
j)
)

− Tr
(
σn ⊗ ω(A(n)

j + A′
j)
)∣∣∣

=
1
n

∣∣∣Tr
(
ρn ⊗ ω′

(
A

(n)
j + A′

j − U†(A(n)
j + A′

j)U
))∣∣∣ (C9)

+
1
n

∣∣∣Tr
((

Uρn ⊗ ω′U† − σn ⊗ ω
)
(A(n)

j + A′
j)
)∣∣∣

≤ 1
n

Tr (ρn ⊗ ω′)
∥∥∥U(A(n)

j + A′
j)U

† − (A(n)
j + A′

j)
∥∥∥

∞
(C10)

+
1
n

∥∥Uρn ⊗ ω′U† − σn ⊗ ω
∥∥

1

∥∥∥A(n)
j + A′

j

∥∥∥
∞

= o(1), (C11)

the second line follows because A′
j = 0 for all j. The third and fifth lines are

due to triangle inequality and Hölder’s inequality, respectively.
Now we turn to the proof of the only if part. That is, assuming that ρn

and σn are asymptotically equivalent, we construct the ancillary system and
the almost commuting unitaries. We apply Theorem 27 to construct a non-
trivial a.m.c. subspace for ρn. Since σn has average entropy and charges values
very close to those of ρn, both ρn and σn project to this a.m.c. subspace with
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high probability. Then we apply Lemma 30 to find states ρ̃ ≈ ρn and σ̃ ≈ σn

where these states (up to unitaries) are decomposed as the tensor product of
a maximally mixed state τ of very large dimension and another state of very
small dimension, i.e. V1ρ̃V †

1 = τ ⊗ ω and V2σ̃V †
2 = τ ⊗ ω′. Now, we consider

the states τ ⊗ ω︸ ︷︷ ︸
≈ρn

⊗ω′ and τ ⊗ ω′
︸ ︷︷ ︸

≈σn

⊗ω which have exactly the same eigenvalues,

hence the states ρn ⊗ ω′ and σn ⊗ ω have very similar eigenvalues. Therefore,
ρn⊗ω′ and σn⊗ω are approximately equal up to a unitary. In the end, we show
that such a unitary, with support inside a.m.c subspace, almost commutes with
all charges of the total system.

Namely, assume that for the sates ρn and σn the following holds:
1
n

|S(ρn) − S(σn)| ≤ γn

1
n

∣∣∣Tr (A(n)
j ρn) − Tr (A(n)

j σn)
∣∣∣ ≤ γ′

n j = 1, . . . , c,

for vanishing γn and γ′
n as n goes to ∞. According to Theorem 27, for charges

Aj , values vj = 1
nTr (ρnA

(n)
j ), η′ > 0 and any n > 0, there is an a.m.c. subspace

M of H⊗n with projector P and the following parameters:

η = 2η′,

δ′ =
c + 3

2
(5n)2d2

e
− nη′2

8c2(d+1)2 ,

δ = (c + 3)(5n)2d2
e

− nη′2
8c2(d+1)2 ,

ε = 2(c + 3)(n + 1)3d2
(5n)2d2

e
− nη′2

8c2(d+1)2 .

Choose η′ as the following such that δ, δ′ and ε vanish for large n:

η′ =

⎧
⎪⎨

⎪⎩

√
8c(d+1)

n
1
4 Σ(A)min

if γ′
n ≤ 1

n
1
4

√
8c(d+1)γ′

n

Σ(A)min
if γ′

n > 1

n
1
4

where Σ(A)min is the minimum spectral diameter among all spectral diam-
eters of charges Σ(Aj). Since 1

nTr (ρnA
(n)
j ) = vj and

∣∣∣ 1nTr (σnA
(n)
j ) − vj

∣∣∣ ≤
1
2η′Σ(Aj), Corollary 29 implies that states ρn and σn project onto this a.m.c.
subspace with probability ε:

Tr (ρnP ) ≥ 1 − ε,

Tr (σnP ) ≥ 1 − ε.

Moreover, consider the typical projectors Πn
α,ρn and Πn

α,σn of states ρn and σn,
respectively, with α = n

1
3 . Then point 3 and 4 of Lemma 30 implies that there

are states ρ̃ and σ̃ with support inside the a.m.c. subspace M and unitaries
V1 and V2 such that

‖ρ̃ − ρn‖1 ≤ o(1),

‖σ̃ − σn‖1 ≤ o(1),
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V1ρ̃V †
1 = τ ⊗ ω,

V2σ̃V †
2 = τ ′ ⊗ ω′, (C12)

where τ and τ ′ are maximally mixed states; since |S(ρn) − S(σn)| ≤ nγn,
one may choose the dimension of them in Eq. (C2) to be exactly the same
as L = 2�

∑n
i=1 S(ρi)−10z� with z = max{α

√
n, nγn}, hence, we obtain τ = τ ′.

Then, ω and ω′ are states with support inside Hilbert space K of dimension
2o(z) = 2o(n). Then, it is immediate to see that the states ρ̃ ⊗ ω′ and σ̃ ⊗ ω on
Hilbert space Mt = M ⊗ K have exactly the same spectrum; thus, there is a
unitary Ũ on subspace Mt such that

Ũ ρ̃ ⊗ ω′Ũ† = σ̃ ⊗ ω. (C13)

We extend the unitary Ũ to U = Ũ ⊕ 1M⊥
t

acting on H⊗n ⊗ K and obtain
∥∥Uρn ⊗ ω′U† − σn ⊗ ω

∥∥
1

≤
∥∥Uρn ⊗ ω′U† − Uρ̃ ⊗ ω′U†∥∥

1
+ ‖σn ⊗ ω − σ̃ ⊗ ω‖1

+
∥∥Uρ̃ ⊗ ω′U† − σ̃ ⊗ ω

∥∥
1

=
∥∥Uρn ⊗ ω′U† − Uρ̃ ⊗ ω′U†∥∥

1

+ ‖σn ⊗ ω − σ̃ ⊗ ω‖1

≤ o(1),

where the second and last lines are due to Eqs. (C13) and (C12), respectively.
As mentioned before, Mt = M ⊗ K is a subspace of H⊗n ⊗ K with pro-

jector Pt = P ⊗1K where P is the corresponding projector of a.m.c. subspace.
We define total charges At

j = A
(n)
j +A′

j and let A′
j = 0 for all j and show that

every unitary of the form U = UMt
⊕ 1M⊥

t
asymptotically commutes with all

total charges:
∥∥UAt

jU
† − At

j

∥∥
∞ =

∥∥(Pt + P⊥
t )(UAt

jU
† − At

j)(Pt + P⊥
t )
∥∥

∞

≤
∥∥Pt(UAt

jU
† − At

j)Pt

∥∥
∞ +

∥∥P⊥
t (UAt

jU
† − At

j)Pt

∥∥
∞

+
∥∥Pt(UAt

jU
† − At

j)P
⊥
t

∥∥
∞ +

∥∥P⊥
t (UAt

jU
† − At

j)P
⊥
t

∥∥
∞

=
∥∥Pt(UAt

jU
† − At

j)Pt

∥∥
∞ + 2

∥∥P⊥
t (UAt

jU
† − At

j)Pt

∥∥
∞

≤ 3
∥∥(UAt

jU
† − At

j)Pt

∥∥
∞

= 3
∥∥(UAt

jU
† − nvj1 + nvj1 − At

j)Pt

∥∥
∞

≤ 3
∥∥(UAt

jU
† − nvj1)Pt

∥∥
∞ + 3

∥∥(At
j − nvj1)Pt

∥∥
∞

= 6
∥∥(At

j − nvj1)Pt

∥∥
∞

= 6 max
|v〉∈Mt

∥∥(At
j − nvj1)|v〉

∥∥
2

= 6 max
|v〉∈Mt

∥∥(At
j − nvj1)(Πη

j ⊗ 1K + 1 − Πη
j ⊗ 1K)|v〉

∥∥
2

≤ 6 max
|v〉∈Mt

∥∥(At
j − nvj1)Πη

j ⊗ 1|v〉
∥∥

2

+ 6 max
|v〉∈Mt

∥∥(At
j − nvj1)(1 − Πη

j ⊗ 1)|v〉
∥∥

2
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≤ 6nΣ(Aj)η + 6 max
|v〉∈Mt

∥∥(At
j − nvj1)(1 − Πη

j ⊗ 1)|v〉
∥∥

2
,

where the first line is due to the fact that Pt + P⊥
t = 1H⊗n ⊗ 1K. The fourth

line follows because UAt
jU

† −At
j is a Hermitian operator with zero eigenvalues

in the subspace P⊥
t . The fifth line is due to Lemma 23. The twelfth line is due

to the definition of the a.m.c. subspace. Now, bound the second term in the
above:

6 max
|v〉∈Mt

∥∥(At
j − nvj1)(1 − Πη

j ⊗ 1)|v〉
∥∥

2

≤ 6 max
|v〉∈Mt

∥∥At
j − nvj1

∥∥
∞

∥∥(1 − Πη
j ⊗ 1)|v〉

∥∥
2

= 6
∥∥At

j − nvj1
∥∥

∞ max
|v〉∈Mt

√
Tr ((1 − Πη

j ⊗ 1)|v〉〈v|)

= 6n ‖Aj − vj1‖∞ max
v∈M

√
Tr ((1 − Πη

j )v)

≤ 6n ‖Aj − vj1‖∞
√

δ,

where the first line is due to Lemma 23. The last line is by definition of the
a.m.c. subspace. Thus, for vanishing δ and η we obtain

1
n

∥∥UAt
jU

† − At
j

∥∥
∞ ≤ o(1),

concluding the proof. �
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