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Abstract: We provide a detailed analytical calculation of the Brillouin light scattering (BLS) intensity
of a layer on a substrate, taking into account both photoelastic and moving boundary (ripple effect)
mechanisms, and give a comparison between BLS intensity and density of states (DOS) to determine the
dispersion curves of longitudinal guided modes in the supported layer. In particular, in the case where
the mismatch between the elastic parameters of the substrate and the adsorbed layer is high, such as in
a PMMA layer on a Si substrate, we derive closed-form expressions of BLS and DOS and demonstrate
a simple relationship between these two quantities. A very good agreement between experimental and
theoretical BLS spectra was found and compared to theoretical DOS spectra. In particular, we show
that while the peaks in the DOS present a uniform behavior, the BLS spectra follows a sine cardinal
(sinc) function shape around a given frequency fixed by the chosen laser wavelength. The theoretical
calculation is performed within the framework of the Green’s function approach.

Keywords: Brillouin light scattering; density of states; supported layer; Green’s function

1. Introduction

Physical properties of thin supported layers are of specific interest, as they are of-
ten different from those of bulk materials, mainly the transport properties [1]. These
properties are of fundamental importance for the development of high-performance de-
vices. The propagation of surface acoustic waves in supported layers has been extensively
studied [1-13]. On the other hand, the so-called longitudinal guided modes have also at-
tracted significant attention [14-19]. Experimental evidence of the existence of these modes
has been obtained for one supported layer deposited on a substrate such as Mo/Si [6],
Si (amorphous)/Si(crystalline) [7], SiO,/GaAs [8], ZnSe/GaAs [14], WC/Si [10] and re-
cently in heterostructure semiconductor/topological insulator Si/Bi,;Tes [13]. Generation
of modes in more complicated structures such as interconnected Al stripes and pillars
deposited on a Si substrate has been reported [20].

In this regard, polymer layers are attractive model systems to investigate phonon
confinement due to their elasticity, transparency and inexpensive fabrication in contrast to
rigid layers. The acoustic properties of supported polymer layers are of key importance in
advancing Nanoimprint Lithography and other polymer-coating-based technologies [21].
As well as being a convenient system for the study of phonon confinement, the acoustic
properties of nanoscale layers of polymers are important for the fabrication of nanostruc-
tures, for a range of applications including micro/nano-electronics, nanophotonics and
nanofluidics. An example of a study on the acoustic properties of polymer layers, ranging
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in thickness from 40 nm to 3 um, was performed by Gomopoulos et al. [22,23]. By employ-
ing BLS, they measured the longitudinal modulus in supported thin polymer films in the
direction normal to the film surface.

Furthermore, the manipulation of elastic wave propagation given by combining
materials of significantly different acoustic impedance in a periodic structure has been
investigated both experimentally and theoretically [24-30]. Potential applications of these
periodic structures include the enhancement of interaction between acoustic and visible
light waves, which can enable coherent phonon generation [31-34], concurrent modulation
of light and sound [35-37], acoustic diodes [38] and sensors [39,40]. Recently, the study of
hybrid superlattices consisting of alternating silica and poly(methylmethacrylate) (SiO;-
PMMA) studied by non-destructive BLS has advanced our knowledge of phononic wave
propagation [41—43]. The large mismatch between the physical properties of polymer
layers is the key parameter in determining the phononic properties of these periodic
nanocomposites, as the width of the phonon band gaps depends on the difference between
the acoustic impedances of the constituents. More recently, the direction-dependent elastic
and electromagnetic wave propagation has been studied by some of us experimentally and
theoretically in supported films of PMMA-TiO, [44] and PMMA-BaTiOj3 [45] multilayers
with a periodicity of about 100-140 nm. In these studies, full theoretical description of the
phononic density of states (DOS) recorded by BLS was derived.

Another method that enables revealing the surface acoustic waves’ existence in
multilayers is the so-called picosecond ultrasonics based on the ultrafast pump—probe
technique [46]. Recently, this method has been used to generate and detect surface acoustic
waves on a structure consisting of nanoscale Al lines on a SiO; layer deposited on Si
substrate [47] and to probe the mechanical properties of single vegetal cells [48].

Among different mathematical approaches, the Green’s function formalism [1,28] is
particularly convenient for studying the spectral properties of these types of excitations; in
particular, it enables the calculation of the total or local DOS in which the resonant (leaky)
modes appear as well-defined peaks. Let us recall that the vibrational DOS is often used for
the integrated function over the phonon wavevector q in condensed matter physics such as
the heat capacity and thermal conductivity [49]. Several works have reported the extraction
of the DOS from measurable quantities such as: the nuclear resonant scattering to derive
the phonon DOS [50], the differential conductance in scanning tunneling spectroscopy to
obtain electron charge density [51] and the conductivity correction in semiconductors to
deduce the Fermi energy [52]. Additionally, several works have used the DOS spectra to
analyze the different modes obtained from the experimental BLS measurements in layered
media [10,14,43,53-55]. In the case of oblique incidence (in-plane propagation) and for an
opaque layer, the scattering occurs at the free surface of the layer and it was shown that
the BLS spectra is proportional to the local DOS evaluated at the surface [10,28]. For a
normal incidence (out-of-plane propagation), it was shown that the experimental BLS spectra
follows a sine cardinal (sinc) function [14,22,23,55,56]. However, to our knowledge, there is
no analytical comparison between the total DOS and the BLS spectra in the latter case.

In this work we give an analytical and experimental demonstration of the comparison
between BLS and DOS to determine the dispersion curves of pure longitudinal acoustic
modes propagating perpendicular to a thin layer deposited on the substrate. In the case
where the mismatch between the elastic parameters of the substrate and the adsorbed layer
is high such as PMMA layer on Si substrate, we obtain closed-form expressions of BLS and
DOS and demonstrate a simple relationship between these two quantities. A very good
agreement between experimental and theoretical BLS spectra is found and compared to
theoretical DOS spectra. In particular, we show that while the peaks in the DOS present a
uniform behavior, the BLS spectra follow a sinc function shape around a given frequency
fixed by the chosen laser wavelength. Another result of the paper is an exact relationship
between DOS and the delay time of the reflection coefficient which can be measured in an
acoustic experiment.
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This paper is organized as follows: in Section 2 we present the analytical calculations
of the BLS intensity and DOS. These calculations are obtained using the Green’s function
method [28]. Section 3 presents the experimental and numerical results concerning the
BLS and DOS spectra of PMMA layer deposited on Si substrate. Section 4 summarizes the
principal results of this work.

2. Analytical Results
2.1. Scattering Intensity in a Supported Layer

We consider (Figure 1) a structure formed out of one adsorbed layer (labeled i = 1)
of thickness d deposited on a homogeneous substrate (labeled i = 2) along the x3 axis.
All the interfaces are taken to be parallel to the x; — x plane. At normal incidence and
for isotropic media, there is a decoupling between longitudinal and transverse waves in
the media and the former can be treated separately. Each medium within the stack is
defined by its mass density p;, its optical index n;, longitudinal sound velocity v;, and
photoelastic constant p;. The corresponding elastic constants and acoustic impedances
are given by Ci; = p;v? and Z; = p;v; respectively (i = 1, 2). The dielectric constants of
the vacuum, supported layer and substrate are ¢y, €1 and &5, respectively. Since we are
interested in longitudinal phonons propagating along the normal to the interfaces x3, the
BLS is envisaged in a backscattering geometry with both incident (k;) and scattered (ks)
wavevectors forming an angle o with the x3 axis. Additionally, we consider the so-called
PP configuration with both, the incident electric field E; and the scattered electric field E;,
polarized along the x; direction (transverse electric polarization). Let us also notice that the
magnitudes of the scattered and incident wavevectors are very close to each other k; ~ k.
Indeed, the phonon frequency is much lower than that of the light, so the incident w/ and
scattered w{ photon frequencies are almost identical w/ ~ wy.

X3
1 Vacuum
d I
|
)
|
[}
[}
0
}
| X3
0 (1) Layer (PMMA) Y1
r
(2) Substrate (Si)

Figure 1. Schematic representation of one layer (labeled i = 1) of width d deposited on a substrate
(labeled i = 2). The x3 axis is normal to the surface. k; and ks are the incident and scattered
wavevectors in vacuum. The electromagnetic fields are polarized along the x; axis. « and 8 are the
incident and refracted angles respectively.
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There are two different mechanisms contributing to the scattered light intensity, namely
the photoelastic and interface motion effects. The former mechanism can be described as
an acoustic modulation of the dielectric constant in the bulk of each medium by means of

9u;(x3)

the photoelastic constant p; of this medium: de; = s% Pi—aes (p; stands for the photoelastic

constant pj, in layer i (i = 1, 2)). Then, in the presence of an incident electric field E;(x3),
the strain due to displacement field u;(x3) induces a polarization given by [57]

ou;(x
P(x3) = de; Ei(x3) = €} p; al( ) E(xs) @
X3
The contribution of the scattered electric field Es(lay ) of the layer at any point x} is
obtained by the following equation [57]
[ o (x2)
! up(x
B () = [ 248 () (o, o @
0

where ¢'(x3, x5, w') is the electromagnetic Green’s function between the point x3 where
the polarization is located and any point x4 where the scattered field is observed (here the

vacuum medium, Figure 1), and «’ is the electromagnetic angular frequency.

Similarly, we can calculate the contribution of the scattered field E§S”b) coming from

the substrate as follows [57]

0
ES) (2, ') = p2 / auazix3) Ex(x3)8' (x3, %5, ') dxs 3)
—L 3

where L is the depth over which light is supposed to interact with phonons in the substrate.

The second mechanism, called “moving interface” or “ripple” effect, results from
the difference between the dielectric constants of two adjacent media 7 and j, since the
displacement at their interface changes the dielectric constants of a thin layer of material
from ¢; to ¢; and vice versa. Consequently, it is proportional to the interface displacement
in contrast to the photoelastic effect, which depends on the strain. It can be written as [57]:

Es(rippl"’) (x5, ") = (0 — €1)u1(d)E1(d)g' (d, x5, ") + (€1 — €2)u1 (0)E1(0) ' (0, x3, ") (4)

The scattered intensity of the structure is then given as the square of the sum of all
A (layer) o (sub) (ripple)
scattered electric fields Eg , Eg and Eg ,namely

« 2
I = Es(layer) +Es(sub) +Es(rzpple) )

To calculate the above scattered fields (Equations (2)-(4)), we need the spatial distribu-
tion of the displacement field and the incident electric field, as well as the electromagnetic
Green function g’(x3, x4, w’) of the multilayer structure. The details of these calculations
are given in the Supplementary Materials. Let us notice that the expressions of the displace-
ment field and the incident electric field are very easy to calculate and the utilization of
the Green function approach in this work is mainly motivated by the knowledge that the
function g’(x3, x5, w') will later allow us to calculate the vibrational density of states.

For instance, the displacement field distribution can be obtained by launching an
incident wave from the substrate (see also Supplementary Materials) and calculating its
reflection at the boundaries x3 = 0 and x3 = d. In this way, we obtain the implicit
expressions of the displacement fields in the layer (0 < x3 < d) and substrate (x3 < 0),
respectively, as follows

ui(x3) = C[A(w)e‘jkl(%_x3) + B(w)efkl(%"%)} (6)

and ' '
ua(xs) = Cle 2% 4 retihom) )
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where k; = w/v; is the wavevector in medium i, v; is the longitudinal velocity of phonons
in medium i (i = 1, 2) and w is their elastic angular frequency. C is the constant of
integration of the displacement field and A(w) and B(w) are the amplitudes of the incident
and reflected elastic waves in layer 1 containing all the information on the mechanical
properties of the system. Their explicit expressions are given in Supplementary Materials.
The parameter r corresponds to the acoustic reflected wave in the substrate; its expression
(see Supplementary Materials) is given by

Z1 sin(‘;’—ld) —jZs cos(‘?j—f)
71 sin(‘;’—f) +jZy cos(‘;’—f)
It is worth noticing that the displacement field throughout the structure must be normal-

ized. Indeed, the constant C in Equations (6) and (7) is obtained by the normalization condition
of the displacement field throughout the system (see Supplementary Materials), namely

r =

®)

0 d

1
/w2p2|u2(x3)]2dx3+/w2p1|u1(x3)|2dx3 = (n(w) + 2>hw )
“r 0

where n(w) is the Bose-Einstein population factor and 7 is the reduced Planck constant
(h/2m). It should be noted that for high temperature (n(w) + %) hiw ~ kT, where kp is
the Boltzmann constant.

Similarly, the implicit expressions of the electric fields in the layer (0 < x3 < d) and
substrate (x3 < 0) can be written, respectively, (see Supplementary Materials) as

Ei(x3) = A’ (w’)e*]'kll(%*xs) +B (w’)eﬂkﬁ(%*xa) (10)
Ex(x3) = e Tkaxs (11)

where k} = w'n;j/c = 2mn;/A is the wavevector of the electric field in each medium
(i =1, 2). Ais the wavelength of the incident light in vacuum. The amplitudes A’ (w)
and B'(w) of the incident and reflected electromagnetic waves in layer 1 contain all the
information on the optical properties of the system. Their explicit expressions are given in
Supplementary Materials.

The Green’s function between any source point in the layer (0 < x3 < d) and the
observation point in vacuum (x4 > d) is given by (see Supplementary Materials)

¢ (x3, %%, ') = o5 =d) {A' (w’)e‘jk’l(%_’%) + B (w’)e*jk/l(%_’%)} (12)

where k) = w'/c = 271/ A is the wavevector of the electric field in vacuum.

In the same way, the Green’s function between any source point in the substrate
(x3 < 0) and the observation point in vacuum (x§ > d) is given by (see Supplementary
Materials)

el
g/ (X3, .x/3, (4]/) = iejké)(xéid)efjklzx?y (13)
2k,
By replacing Equations (6), (10) and (12) in Equation (2), we obtain

(layer) o1y _ 2 kb (x5 —d) kiky 1, N2
B (3) = pud M08 IE A ) (@)

+B(w)B’(w’)2]sinC(W>
(14)
—2[A(w)A'(w)B' (') + B(w)B’(w’)A’(w’)}sinC(%)

+ {A(W)B’(w/)z + B(w)A’(w’)z} Sinc<(k122k’1)d) }
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Due to the shape of the sinc function, the three terms in the RHS of Equation (14) take
significant values only around k; = % = —2k} = —4mny /A (anti-Stokes contribution),
ki = &= = 0 (elastic scattering) and ky = % = 2k}, = 4mny /A (Stokes contribution). We can
notice that the Stokes term in Equation (14) gives a peak around the Brillouin frequency of
the layer f; = 2n1v1/A.

Similarly, by replacing Equations (7), (11) and (13) in Equation (3), we can calculate

the contribution of the scattered field coming from the substrate as follows

1 412 / — 2k’
Es(sub) (Xé) _ S%pzejk{)(xéfd)L kzkzt {sinc <(k2+2k2)L) + 7 sinc ((kZZkZ)L) } (15)

2 2

sin(k,L) sin (k’zL)2
where ky = w/vy, ki, = w'ny/c = 2mny/A and ki = w'/c = 2m/A. We can notice
that the Stokes term in Equation (15) gives a peak around the Brillouin frequency of the
substrate f, = 2102/ A.
Finally, From Equations (6), (10) and (12), one can derive the moving interface (ripple)
contribution (Equation (4)) as

(g0 — €1) [A(w)efkl% + B(w)e*fklg} [A’(a)’)efkl% + B/ (w')e 12

ELPPI) (x) = Celko(x5—d) (16)

' 2
—2176(81 — &)1+t

2.2. Density of States and Reflection Delay Time

The density of states (DOS) of the whole system is an interesting quantity as it enables
us to deduce the distribution and the weight of the different modes. In the case of the
supported layer, we can calculate the variation of DOS (An(w)) between the supported
layer and the two constituting materials (layer and substrate) taken separately. This quantity
is given by [1]

Mnw) = L[ Arg((0,0))] 7)

where ¢(0,0) is the acoustic Green’s function at the interface x3 = 0 (see Supplementary
Materials). From the expression of g(0,0), one can easily derive

An(w) = & 2122

" (zsn(8)) + (zaeos(s))

This variation of DOS can be related to the acoustic reflection delay time defined by

(18)

() = L arg(r)] 19)

dw
From the expression of r (Equations (8) and (18)), one can further conveniently derive
an expression for the acoustic reflection delay time as

T(w) = 22122 (20)

(z1sin(s8))"+ (acos(s4) )

Equations (18) and (20) provide the relationship between the variation of DOS and the
reflection delay time T as:

T(w) = 2nAn(w) (21)

2.3. Particular Case of a Soft Layer on a Hard Substrate

In order to explain the behavior of the experimental BLS spectra, we have simplified
the theoretical expression of the light scattered intensity of the system (layer/substrate)
which is defined as the sum of both layer and substrate contributions. In order to examine
each contribution, it is convenient to evaluate their amplitudes separately. However, several
assumptions can be made for a soft layer on a hard substrate, i.e., (i) the main intensity



Crystals 2022, 12,1212

7 of 15

contribution comes from the surface layer as phonons are confined essentially in the top
layer. (ii) The light wave in the substrate is attenuated due to imaginary parts of the
complex refractive index of the substrate (see Section 3.2). (iii) The substrate contribution
in the scattering intensity falls at a higher frequency far from those of the layer modes
(see Section 3.2). (iv) The photoelastic constant of the substrate (here silicon) is very small
in comparison with the one of the surface layer (PMMA) (see Table 1). With the above

assumptions, the main contributions to the BLS intensity (Equation (5)) come from the

er)

photoelastic contribution of the layer (E§’“y , Equation (2) or Equation (14)) and the moving

interface contribution (Eg”'” ple), Equation (4) or Equation (16)). We shall see below that the
latter contribution only contributes non-negligibly if the layer is very thin, namely below
300 nm. Otherwise, the only remaining contribution comes from Es(l), whose Stokes term
can be written from Equation (14) as:

Es(l) (x3) [A(w)B’(w/)Z + B(w)A’(w’)z} Sinc<(k1_22k/1)d> e ko(¥5—d) 22)

Table 1. Physical quantities of the PMMA layer and Si substrate used in the theoretical calculations.
Mass density (p), sound velocity (v), photoelastic constant ( p1 ) and refractive index (1).

Material p (Kg/m3) v (m/s) P12 n
PMMA 1150 2778 0.3 1.4932
Si 2335 8431 0.01 3.5 — 0.261

From the expressions of A(w), B(w), A'(w') and B'(w") (Equations (S10), (S11), (523)
and (524)), one can get the following simple expression

Es(l) (x}) o< | (n2 4 n3) sin<(k1+22k,1)d>

) ky—2k! )d (23)
. (k +2k,)d smc<( : 2 1) > w,
—j2nyny Cos( ! — ) - —kp(x3—d)

Zy COS(%)*]’Zl sin(‘z‘}’—ld) ¢

where the main modes of the surface layer are observed around k; = 2k}. We can see that
the optical modulation of the refractive index in the system will affect only the amplitude
in Equation (23) through the term between brackets, which means that the main behavior
of the scattering amplitude follows a sinc function. Indeed, around k; = Zk’l, the intensity

can be Written Very simply as
inc2 (((w
smne ((Ul q)d/z) (24)

(72cos(s4))"+ (msin(41))

where g = 2k} = 47tn1/ A is the analog of scattering wavevector in layer 1.
From Equations (17) and (24), one can see that the scattered intensity can be con-
sidered as a density of states modulated by the square modulus of the sinc function

sincz((z‘;’—1 - q)d/Z), namely
[« An(w) sinc2(<z) - q)d/Z) (25)
1

I

3. Numerical and Experimental Results
3.1. Experimental Setup

The polymer chosen for the investigation was PMMA 75K300 from MicroChem Corp.
Layers with thickness ranging from 250 nm to 10 pm were fabricated by spin-coating
for 30 s with angular velocities ranging from 500 to 3000 revolutions per minute on top
of a Si substrate. The spectra were taken with a multipass (3+3) Tandem Fabry—Perot
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Interferometer from JRS Scientific Instruments. The A = 514.5 nm line of an Ar gas-ion laser
was used for the incident radiation, at a mirror spacing of 6 mm and scanning amplitude
of 490 nm, resulting in a free spectral range (FSR) of & 23.8 GHz. The backscattering
angle was set to 8 degrees [58]. The finite angle prevented reflected light from entering
the collection objective, and subsequently the spectrometer. This angle causes an increase
in the effective cavity length of d/cos6. However, due to Snell’s law, the angle inside the
polymer is reduced to 5.3 degrees, which causes an overestimation of the thickness of the
polymer layer of less than half a percent. As the polymer is assumed to be isotropic, the
change in angle does not affect the acoustic velocity. The laser power was kept as small as
possible to avoid any heating effect, the glass transition temperature of PMMA was taken
around 110 °C, the polarization of incident and reflected beam was PP with respect to the
sample plane, the crystallographic orientation of the Si substrate was (100), the resistivity
or carrier concentration of the Si substrate was 11.5 ohm-cm, p doped boron and the FPI
finesse for FSR = 23.8 GHz was set to 100.

3.2. Results and Discussion

The Brillouin spectra for the PMMA layers of different thicknesses are shown in
Figure 2a by full curves. When the thickness of the film was reduced to below one microme-
ter, a triplet structure was observed around q = 0.036 nm~! (i.e., f; = qv; /27 = 15.9 GHz).
Indeed, multiple reflections of an acoustic excitation from the film surface and interface
with the substrate give rise to the equally spaced modes yielding to standing waves. Fur-
thermore, a sufficiently large elastic impedance Z = pv mismatch (involving two physical
quantities, density ¢ and longitudinal sound velocity v) is required for these standing
waves observations and results in the quantification of their frequencies.

At normal incidence, the eigenmodes (standing modes) of the soft layer in contact
with a hard substrate are given by cos (‘;’—f) =0,1ie., fu = (2m + 1)v1/4d (m is an integer).
One can notice that for films with further increasing thicknesses, the spacing between the
equidistant longitudinal acoustic modes Af;, = v1/2d decreases, giving rise to a single
mode (for thick layer d = 10 um) falling at the frequency of the longitudinal bulk-like
acoustic mode in the polymer, namely f; = v19/27 ~ 16 GHz. Indeed, for a thick layer, the
frequencies of the modes become very close to each other and the sinc function becomes a
delta function, with the result that only the phonon wavevector respecting the conservation
of the momentum q = k; — ks is observed, as illustrated in Figure 2a for d = 10 um. The
intensity of the peak coming from the longitudinal bulk-like acoustic mode in the substrate
falls at a high Brillouin frequency f, = 2nyv5/A =~ 114 GHz, and therefore does not
interfere with the spectra coming from the layer observed around 16 GHz.

We have reproduced the theoretical results corresponding to the experimental spectra
in Figure 2a represented by open circles using Equations (6), (11), (14) and (15). The elastic,
optic and photoelastic parameters of both PMMA and Si materials used in the theoretical
calculations are listed in Table 1 [41,59,60]. Good agreement between the theoretical curves
and the experimental data was found. The theoretical spectra had to be convoluted with the
instrumental broadening function (Gaussian with I &~ 0.53 GHz) to match the experimental
spectra in Figure 2a. It is worth noticing that the contribution coming from the motion of
the interfaces (Equation (14)) is negligible, especially for thick layers as it is explained in
Figure A1l in the Appendix A.

Figure 2b shows the displacement field versus the space position for the mode at
f =16 GHz and d = 490 nm. One can see that the elastic field is well confined to the layer
and almost vanishes in the substrate. Figure 2c shows the behavior of the transmission of
the optical wave as a function of the wavelength. The transmission amplitude (evaluated
at the top of the substrate x3 = 0) shows Fabry—Perot oscillations with an amplitude of
around 0.75 at A = 514.5 nm. The variation of the electric field in the x3 direction is
plotted in Figure 2d for A = 514.5 nm and d = 490 nm. One can notice a sharp decrease of
the amplitude of the field as a function of the penetration depth which results from the
absorption coefficient in Si (see Table 1). These results demonstrate the weak contribution
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Intensity (a.u.)

of the substrate to the scattered field and justify the assumptions made in deducing the
simple analytical expression (Equation (25)). The length L of the substrate for which light
interacts with phonons is less than 1 pm (Figure 2d).

Figure 3 shows the theoretical BLS spectra obtained from the approximate expression
(Equation (22)). One can see a quite good agreement between the approximate results and
the experimental data for each value of the layer thickness, which confirms the validity
of the simple approximate expression given in Equation (23). The discrepancy between
the observed and calculated BLS in Figure 3 is due to the simple analytical expression

(Equation (23)) used where the contribution of the substrate in the BLS as well as the ripple
mechanism are neglected.

'
(a) 1.0
08 - (c)
d =10,000 nm 4 5
R " —
L d= 1000 nm 7 é 05 |
| d=490nm iy 2 04
\- d:340nm 3 - = 0.2 -
"i; 250 nm 7 g 1 0.0 — : :
o 5 10 15 20 25 400 500 600 700 800
(b) Displacementfield (d) Electric field
Layer Substrate : Layer I Air
I . | .*‘ﬂ'\l .fn'v‘
| W\ \ ﬂ\ I'|I ll'l
Substrate [ Lo R
|‘I / | -. ‘ |I|| f \ I
M J J I
nol | I 1}
f " II| | \H | “1 ‘I‘. |’J
| VYA '}IU \ ‘u VARV
-400 200 0 200 400 -400 -200 0 200 400 600 800 1000
x, (nm) X, (nm)

Figure 2. (a) Theoretical (open circles) and experimental (continuous curves) Brillouin light scat-
tering for a series of supported PMMA films with different thicknesses deposited on a Si substrate.
The main spectra appear at the frequency position of the longitudinal acoustic phonon around

= 4"% =0.036 nm~! ie., f; = qu; /27 = 159 GHz. (b) Square modulus of the displacement
field versus the space position for the mode at f = 16 GHz and d = 490 nm. (c) Optical transmission
through the layer versus the wavelength. The circle on the abscissa axis corresponds to 514.5 nm
wavelength used in the experiment. (d) Square modulus of the electric field versus the space position.
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Figure 3. Theoretical spectra (open circles) evaluated using the approximate expression (Equation (25))
for the same thicknesses of PMMA film on Si substrate. Solid curves correspond to experiments.

The variation of the density of states (DOS) is calculated using Equation (17) for different
layer thicknesses as shown in Figure 4a. As predicted from Equation (17), for cos (‘;’—f) =0

(ie., fm = (2m+ 1)vy/4d), An(w) reaches a maximum value of %% ~ 2 and for sin (‘;’—f) =0

(ie., fu = mvy/2d), An(w) reaches a minimum value of %% ~ 0.05. Figure 4b provides the
frequencies of the layer modes (full curves) as a function of the thickness d. These modes are
obtained from the maxima of the DOS displayed in Figure 4a and they coincide reasonably
well with the modes obtained from the quantified expression f,;, = (2m + 1)v1/4d. One can
notice a decrease of their frequencies as far as d increases. As a matter of comparison, we also
reported the modes obtained from the maxima of the BLS experimental spectra around 16
GHz by red circles. We can see that the separation between the modes decreases as far as d
increases. As demonstrated in Equation (21), the DOS can be extracted also from the reflection
delay time, which is a measurable quantity [61]. This property has been used recently to
extract the DOS from the delay time measurement in photonic coaxial cables [62].

@ 1000 nm - (b) \
UL, NN
.
490 n — t
S = M, \
8 340 nm gj—“‘
- JM : T
~
nm c | [,
(. D —
5I 1IU 1I5 2IO 25 ’ 0 200 400 600 800 1000
Frequency (GHz) d (nm)

Figure 4. (a) Variation of density of states (in arbitrary units) of layer modes for the different layer
thicknesses. (b) Quantified frequencies of layer modes as a function of layer thickness. Peak positions
of experimental spectra are given as red circles around the frequency 16 GHz.
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In order to give a comparison between BLS and DOS spectra, we have plotted in
Figure 5 the DOS (blue curves) and the theoretical BLS spectra without convolution (red
curves) for d = 490 nm. One can see clearly that among all the peaks in the DOS, only
those falling around 16 GHz are observed in the scattering spectrum as the latter decreases
around the main peak as a sinc function. This result confirms our theoretical findings
demonstrated in Equation (25).

DOS
BLS

AeYeNeozeniio)

o

RN00000

Frequency (GHz)

Figure 5. Variation of the DOS (blue curves) and BLS intensity (red curves) as a function of the
frequency for the PMMA layer of thickness d = 490 nm.

As a matter of completeness, we have also numerically checked the effect of the
impedance of the substrate on the shape of the DOS and the theoretical BLS spectra for
the same film of thickness d = 490 nm. We have found that when the impedance of the
substrate Z; is lower than that of the PMMA layer Z; (Z, < Zj,i.e., Z; = 0.1Z;), then the
modes of the surface layer become very close to the stationary modes of a layer with free
surfaces on both sides (called an unsupported layer or membrane [17,63]). These modes
are given by sin(“*,’—ld) = 0 (i.e., fm = mvy/2d) as it is shown in the DOS of Figure 6a
displayed by a blue curve. The behavior of the BLS (red curve) shows again a sinc function
around the main peak at 17 GHz, similar to the case of the PMMA layer with a free surface
from one side and a blocked surface from the other side (Figure 5). In the case where the
impedance of the substrate and the surface layer are such that 0.5Z; < Z; < 1.5Z;, then
oscillations in the DOS become less deep, especially for Z, ~ Z;, and the behavior of
the BLS spectra does not follow the shape of a sinc function as it is shown in Figure 6b,c.
The reason for this discrepancy is due to the fact that the modes are not well confined in
the layer and the displacement field is expanded over the substrate. Therefore, the thin
layer behaves as a large layer where only the main mode around 15.5 GHz is observed
as it is shown in Figure 6¢c. Additionally, the frequencies of the resonant modes in the
DOS for 0 < Zy < 0.5Z; are close to those of the PMMA layer with free surfaces, whereas
the frequencies of the resonant modes in the DOS for 1.5Z; < Z, are close to those of the
PMMA layer with blocked surface from the bottom side (Figure 4a).
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Figure 6. Same as in Figure 5 but for a hypothetical substrate with impedance Z, = 0.1 Z; (a),
Zy =052 (b)and Zp = 1.5 Z; (c).

4. Conclusions

The results presented in this paper are based on an analytical calculation of the
Brillouin light scattering and the density of states for a layer deposited on a substrate.
We have presented first a detailed analytical calculation of the BLS intensity taking into
account the modulation of elastic, optic and photoelastic constants in the different media
constituting the system. Then, in order to explain the behavior of the experimental light
scattering intensity, we have simplified the theoretical expression of the intensity of the
system (layer/substrate) in the case of a soft layer on a hard substrate, which enables
us to give an analytical comparison between BLS and DOS intensities. Theoretical and
experimental results are given in the case of PMMA layer on Si substrate.

A very good agreement has been obtained between theoretical and experimental BLS
spectra. In particular, we have shown that while the peaks in the DOS present a uniform
behavior, the BLS spectra follow a sinc function shape around a given frequency fixed by
the chosen laser wavelength. These results also remain valid when the impedance of the
substrate is lower than that of the surface layer; however, a difference appears between
DOS and BLS spectra when the impedances of the substrate and surface layer are close to
each other. The results presented in this paper can be generalized to multilayered structures.
This work is in progress.
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Appendix A. Effect of the Moving Interface Mechanism on BLS Spectra

In Figure A1, we give a comparison of the BLS spectra with (continuous curves) and
without (dashed curves) taking into account the term associated to the moving interface or
ripple effect (Equation (14)). We can see that both curves are almost similar especially for
thick layers.
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Figure A1. Theoretical Brillouin light scattering spectra displayed at q = 0.036 nm~! for a series
of supported PMMA films with different thicknesses deposited on Si substrate, with (continuous
curves) and without (dashed curves) taking into account the deformation of the interfaces.
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