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Abstract
Background  A study was undertaken to evaluate remote monitoring via smartphone sensor-based tests in people with multi-
ple sclerosis (PwMS). This analysis aimed to explore regional neural correlates of digital measures derived from these tests.
Methods  In a 24-week, non-randomized, interventional, feasibility study (NCT02952911), sensor-based tests on the  
Floodlight Proof-of-Concept app were used to assess cognition (smartphone-based electronic Symbol Digit Modalities 
Test), upper extremity function (Draw a Shape Test, Pinching Test), and gait and balance (Static Balance Test, Two-
Minute Walk Test, U-Turn Test). In this post-hoc analysis, digital measures and standard clinical measures (e.g., Nine-
Hole Peg Test [9HPT]) were correlated against regional structural magnetic resonance imaging outcomes. Seventy-six 
PwMS aged 18–55 years with an Expanded Disability Status Scale score of 0.0–5.5 were enrolled from two different sites  
(USA and Spain). Sixty-two PwMS were included in this analysis.
Results  Worse performance on digital and clinical measures was associated with smaller regional brain volumes and larger 
ventricular volumes. Whereas digital and clinical measures had many neural correlates in common (e.g., putamen, globus 
pallidus, caudate nucleus, lateral occipital cortex), some were observed only for digital measures. For example, Draw a Shape 
Test and Pinching Test measures, but not 9HPT score, correlated with volume of the hippocampus (r = 0.37 [drawing accu-
racy over time on the Draw a Shape Test]/ − 0.45 [touching asynchrony on the Pinching Test]), thalamus (r = 0.38/ − 0.41), 
and pons (r = 0.35/ − 0.35).
Conclusions  Multiple neural correlates were identified for the digital measures in a cohort of people with early MS. Digital 
measures showed associations with brain regions that clinical measures were unable to demonstrate, thus providing potential 
novel information on functional ability compared with standard clinical assessments.
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Introduction

Multiple sclerosis (MS) is a chronic disease of the central 
nervous system [1]. A long-held view of MS is of a multi-
focal, immune-mediated, inflammatory-demyelinating, and 
degenerative disorder of the white matter. Recent struc-
tural magnetic resonance imaging (MRI) studies, however, 
have revived the important role of cortical pathology in 
the pathophysiology of MS and in the rate of disability 
progression [2].

MRI-measured atrophy occurs in distinct, non-random 
patterns and involves many different regions, including 
the cerebral cortex, deep gray matter, brainstem, cerebel-
lum, and spinal cord [2–7]. The rate of atrophy differs from 
region to region [6]. However, the progression of regional 
atrophy tends to follow specific sequences depending on 
the MS phenotype. In relapse-onset MS, the first regions 
affected by atrophy include the posterior cingulate cortex 
and precuneus, while the globus pallidus and medial precen-
tral gyrus are among the last regions to become atrophic. In 
primary progressive MS, by comparison, the first regions to 
become atrophic are the thalamus, cuneus, and precuneus, 
and the last regions to show signs of atrophy are the frontal 
operculum and middle temporal gyrus [7].

Although there have been efforts to link clinical dis-
ability to regional atrophy [8–12], the relationship between 
digital measures of functional ability and MRI outcomes 
has not been extensively studied. Previously we showed 
that digital measures obtained with the Floodlight Proof-
of-Concept (PoC) app in people with MS (PwMS) cor-
relate with global MRI outcomes, in particular with total 
brain volume [13]. However, this analysis did not con-
sider the regional specificity of cortical, deep gray matter, 
infratentorial, and spinal cord pathology. Here we extend 
this prior work by assessing the regional neural correlates 
of an expanded set of digital measures.

Methods

Study design and participants

This 24-week, non-randomized, interventional, feasibil-
ity study (clinicaltrials.gov: NCT02952911) aimed to 
assess the feasibility of remotely monitoring PwMS with 
the Floodlight PoC app, through sensor-based assessment 
via a provisioned smartphone device [14]. The study 
design, inclusion, and exclusion criteria have been previ-
ously reported [13, 14]. The study enrolled 76 PwMS and  
25 healthy controls aged 18–55 years, from two separate 
sites in the USA (University of California San Francisco, 

San Francisco, CA) and Spain (Multiple Sclerosis Centre 
of Catalonia, Vall d’Hebron University Hospital, Barce-
lona); MRI data were only collected from PwMS. PwMS 
were diagnosed according to the 2010 revised McDonald 
criteria [15] and had an Expanded Disability Status Scale 
(EDSS) [16] at baseline of 0.0–5.5. A sample size of least 
70 PwMS was considered adequate to detect a linear cor-
relation coefficient of 0.33 with > 80% power.

Floodlight PoC app

At baseline, all participants received a pre-configured smart-
phone (Samsung Galaxy S7) with the Floodlight PoC app 
pre-installed [13, 14]. The app prompted all participants to 
perform daily and weekly sensor-based tests of functional 
ability (referred to as “active tests”) at home without super-
vision by a physician or nurse, in three key domains affected 
by MS. Cognition was assessed by the smartphone-based 
electronic Symbol Digit Modalities Test (e-SDMT), upper 
extremity function by the Draw a Shape Test and Pinching 
Test, and gait and balance by the Static Balance Test (SBT), 
Two-Minute Walk Test (2MWT), and U-Turn Test (UTT) 
(Fig. 1). Performance on each active test was quantified by 
a set of digital measures extracted from the sensor signals 
that are illustrative of the test (Table 1).

Smartphone sensor‑based tests

Key neurologic functions underlying cognitive information 
processing speed were assessed by the e-SDMT. It instructed 
participants to correctly match as many symbols as possible 
to their paired digits within 90 s, according to a symbol–digit 
key also displayed on the smartphone screen.

The Draw a Shape Test assessed fine finger movements, 
or dexterity; participants were prompted to draw six pre-
written shapes of increasing complexity (two diagonal lines, 
a square, a circle, a figure-of-8, and a spiral). By compari-
son, the Pinching Test measured fine pinching or grasp-
ing dexterity. Participants were instructed to successfully 
pinch as many circular tomatoes appearing on the screen 
as possible within 30 s, with new tomatoes appearing at  
random locations.

Finally, gait and balance were assessed by three active 
tests: the SBT, 2MWT, and UTT. The SBT required par-
ticipants to stand as still as possible for 30 s. The 2MWT 
assessed regular, straight walking for 2 min. The UTT, which 
measured both dynamic balance and gait, instructed partici-
pants to perform five consecutive U-turns that were at least 
4 m apart, within a minute. The use of an assistive device 
and/or orthotic was permitted as needed while performing 
the 2MWT and UTT.
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Digital data processing

Since the active tests were unsupervised, quality control 
flags as defined in Montalban et al. [13] were applied to 
identify tests that were not performed in accordance with 
the test’s instructions and to ensure accurate interpretation 
of the collected data. This included flags to identify attempts 
of “play to quit” (i.e., trying to complete an active test as 
quickly as possible without performing the instructed tasks) 
or instances where the smartphone device was kept on a 
table during the gait and balance tests. Any test identified 
by one of these flags was excluded from the analyses. All 
remaining tests were considered as valid tests. Only partici-
pants who contributed on average at least 1.5 valid tests per 
week (corresponding to 21% adherence) were included in 
the analysis.

MRI acquisition and processing

Image acquisition

Brain MRI scans were collected from PwMS at baseline 
and at week 24 with Siemens 3-Tesla scanners (Siemens 
Healthcare GmbH, Erlangen, Germany) following opti-
mized clinical practice protocols in place at the two inves-
tigating centers: (1) Hospital Universitari Vall d'Hebron, 
three-dimensional (3D) T1-weighted (repetition time 
[TR] = 2300 ms; echo time [TE] = 2.98 ms; inversion time 
[TI] = 900 ms; voxel size = 1 × 1 × 1 mm) fluid-attenuated 
inversion recovery (FLAIR; TR = 6000 ms; TE = 394 ms; 
TI = 2100  ms; voxel size = 1 × 1 × 1  mm) sequences 
acquired in a Siemens Trio Tim; (2) University of Cali-
fornia San Francisco, 3D T1-weighted (TR = 2300  ms; 
TE = 2.98  ms; TI = 900  ms; voxel size = 1 × 1 × 1  mm) 

FLAIR (TR = 5000 ms; TE = 389 ms; TI = 1,800 ms; voxel 
size = 1 × 1 × 1 mm) sequences acquired in a Siemens Skyra.

Image processing

MR images were analyzed with icobrain ms v.5.0 (icometrix, 
Leuven, Belgium), a CE- and Food and Drugs Adminis-
tration-certified software as medical device for automatic 
labeling, visualization, and volumetric quantification of 
segmentable brain structures [17–20], which combines two 
sequential pipelines. (1) An automated method for white 
matter lesion segmentation that uses 3D T1-weighted and 
FLAIR MR images in a probabilistic model. The accuracy 
and reproducibility of this software has been shown to be 
comparable to other well-established MS lesion segmenta-
tion algorithms (e.g., Lesion-TOADS, Lesion Segmentation 
Tool [17, 18]); (2) An automated multi-atlas cortical and 
subcortical segmentation method, which showed similar 
accuracy and reproducibility to commonly used automatic 
segmentation tools [21, 22]. Icobrain ms allowed extraction 
of normalized volumes for 34 anatomical regions, includ-
ing cerebral gray matter regions (n = 20), deep gray mat-
ter regions (n = 7), brainstem (n = 3), cerebellum (n = 2), 
lateral ventricles (n = 1), and cerebral white matter (n = 1). 
In addition, icobrain ms allowed calculation of the corpus 
callosum area (n = 1) and upper cervical cord area (n = 1). 
As the cervical spinal cord was within the field of view on 
brain scans, the mean upper cervical cord area along C2–C3 
levels was computed from the brain images [23, 24] using 
the icobrain ms fully automated pipeline [25, 26] based on 
the Spinal Cord Toolbox [27] (see Table 1 for more details). 
After visual inspection of the segmentation output, no par-
ticipants were excluded from the analyses due to low quality 
MRI data or unsuccessful segmentation outputs.

Fig. 1   Screenshots of the smartphone sensor-based tests included in 
the Floodlight PoC app. Screenshots depict the instruction screens for 
the smartphone-based electronic Symbol Digit Modalities Test, Draw 

a Shape Test, Pinching Test, Static Balance Test, Two-Minute Walk 
Test, and U-Turn Test. e-SDMT smartphone-based electronic Symbol 
Digit Modalities Test, PoC Proof-of-Concept
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Table 1   Outcome variables

2MWT Two-Minute Walk Test, e-SDMT smartphone-based electronic Symbol Digit Modalities Test, PoC Proof-of-Concept, SBT Static Balance 
Test, UTT​ U-Turn Test
a Computational definitions are provided in Table SI1
b Volumes were calculated for all regions with the exception of the corpus callosum and the upper cervical cord for which areas measured in mm2 
were calculated
c Upper cervical cord area was determined as mean area along C2–C3 levels

Floodlight PoC app

Functional domain Smartphone 
sensor-based 
active test

Functional subdomain Digital measurea Higher scores 
indicate performance 
that is:

Upper extremity function Draw a Shape Test Accuracy Mean trace accuracy Better
Swiftness of movement Mean trace celerity, 1/s Better
Smoothness of movement CV of linear, angular, and radial  

drawing velocity
Worse

Pinching Test Accuracy Total number of successful pinches, n Better
Responsiveness Gap time between pinch attempts, s Worse
Pinching asynchrony Double touch asynchrony of successful 

pinches, s
Worse

Cognition e-SDMT Information processing speed Number of correct responses, n Better
Maximum gap time between correct 

responses, s
Worse

Cognitive fatigue Speed fatigability index of the last 30 s Better
Gait and balance SBT Postural control Sway path, m/s2 Worse

UTT​ Turning ability (dynamic 
balance and gait)

Turn speed, rad/s Better

2MWT Gait pace Step frequency, Hz Better
Gait variability Step frequency variance, Hz2 Worse
Gait intensity Step power, m2/s3 Better

Normalized volumes derived from brain MRI scans, mLb

Cerebral cortex gray matter Deep gray matter Brainstem and upper cervical cord area Other

1. Middle frontal
2. Superior frontal
3. Lateral and medial orbitofrontal
4. Precentral
5. Postcentral
6. Paracentral
7. Opercularis, triangularis, orbitalis
8. Insula
9. Precuneus
10. Cuneus, pericalcarine, lingual
11. Anterior cingulate
12. Posterior cingulate
13. Isthmus cingulate
14. Parahippocampus, fusiform, entorhinal
15. Superior parietal
16. Supramarginal
17. Inferior parietal
18. Lateral occipital
19. Inferior and middle temporal
20. Superior and transverse temporal

1. Thalamus
2. Hippocampus
3. Putamen
4. Globus pallidus
5. Caudate nucleus
6. Amygdala
7. Accumbens

1. Midbrain
2. Pons
3. Medulla oblongata
4. Upper cervical cord areac

1. Lateral ventricles
2. Cerebral white matter
3. Corpus callosum area
4. Cerebellum—hemispheres
5. Cerebellum—vermis
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Standard clinical measures

During three clinical visits (baseline, week 12, and week 24) 
PwMS underwent clinical evaluation. These included the 
oral Symbol Digital Modalities Test (SDMT), Nine-Hole 
Peg Test (9HPT), Berg Balance Scale, Timed 25-Foot Walk 
(T25FW), and EDSS.

Statistical analysis

Due to the exploratory nature of this analysis, an unbi-
ased approach with no pre-specified hypotheses was 
adopted to investigate associations between the brain/spi-
nal cord regions and the digital measures obtained with the  
Floodlight PoC app (Table 1) and the standard clinical meas-
ures. Two separate cross-sectional analyses were conducted 
on the digital measures and, for comparison, on the stand-
ard clinical measures. First, these measures were correlated 
against regional, structural MRI outcomes using Spearman’s 
rank correlation. Since the digital measures may be con-
founded by age, sex, and body mass index, the correlation 
analysis was adjusted for these confounders with a robust 
linear model via iteratively reweighted least squares [28]. 
Statistical significance was set at q < 0.05 after applying the 
false discovery rate (FDR) correction to correct for multiple 
comparisons for each digital and standard clinical measure 
separately [29].

In the second analysis, the variance in the digital meas-
ures that can be explained by volumetric MRI data was esti-
mated. Here, a Bayesian ridge regression model [30] with 
leave-one-out cross validation was used to estimate the  
R2 score, i.e., a measure related to the proportion of the vari-
ance in the dependent variable (digital measure or standard 
clinical measure) that is predictable from the independent 
variables (structural MRI outcomes). The following two 
models were considered: (1) the univariate Whole Brain 
model, which included the normalized total brain volume 
to estimate the variance in the digital measures and standard 
clinical measures; (2) the multivariate Parcellation model, 
which instead included the normalized volume and cross-
sectional area measurements of 36 MRI regions.

Given the relatively short duration of the study (24 weeks) 
and the stability of the clinical and MRI measures over the 
study period (Fig. SI1), a data aggregation approach was fol-
lowed to reduce variability and to deal more effectively with 
missing data. For both analyses, the data were aggregated 
as follows: for the digital measures, the median across all 
valid active tests was calculated; for the standard clinical 
measures and MRI outcomes, the mean of the three clinical 
visits (baseline, week 12, and week 24) and two MRI scans 
(baseline and week 24), respectively, were calculated.

All statistical analyses were performed in Python 3.7.9 
(www.​python.​org) using statsmodels 0.12.0, an open-source 

module for data analysis and scientific computing (www.​
stats​models.​org).

Results

The study enrolled 76 PwMS between November 28, 2016 
and November 13, 2017 (study completion date was May 
4, 2018), of which 62 (82%) PwMS were included in the 
analyses presented here, comprising of 11 PwMS from 
the University of California San Francisco and 51 PwMS 
from the Hospital Universitari Vall d'Hebron. Of the 14 
excluded PwMS, 12 were excluded for poor adherence to 
the active tests and two for missing MRI scans. Full base-
line demographics and disease characteristics have been 
previously published [14] and those included in the current 
analyses are provided in Table 2. Of those PwMS included,  
68% were female, mean age was 39.7  years (stand-
ard deviation [SD] 7.5), mean EDSS at baseline was 2.5  
(SD 1.4; range 0.0–5.5), and 89% were diagnosed with 
relapsing–remitting MS. In order to exclude any potential 
effect of the MS phenotype on volumetric MRI data, we 
compared all 36 regions of interest between the groups of 
people with relapsing–remitting MS and progressive MS. As 
reported in Fig. SI2, significant differences were observed 
in only one of the 36 regions (combined occipital regions 
of cuneus, lingual gyrus, and pericalcarine cortex). This 
suggests that regional volumes were not dissimilar across 
relapsing and progressive MS phenotypes in this cohort. 
Additionally, no significant changes between the two study 
sites were found for age (p = 0.846), sex (p = 0.145), body 
mass index (p = 0.905), and disease phenotype (p = 0.436) 
(Fig. SI3).

The regional neural correlates of the digital measures and 
the standard clinical measures are summarized in Fig. 2. 
Uncorrected p values and the respective FDR-corrected  
p values (q values) are reported in the supplementary 
appendix (Fig. SI4 and SI5). Brain maps highlighting the 
statistically significant correlations after FDR correction 
are provided in Fig. 3. Higher EDSS scores correlated with 
smaller volumes of the cerebral white matter (r =  − 0.42, 
q < 0.05), lateral occipital lobe (r =  − 0.43, q < 0.05), insula 
(r =  − 0.37, q < 0.05), putamen (r =  − 0.36, q < 0.05), and 
globus pallidus (r =  − 0.38, q < 0.05).

The e-SDMT and oral SDMT showed a similar corre-
lation pattern with regional MRI outcomes (Figs. 2, 3a). 
On both, a lower number of correct responses was signifi-
cantly associated with smaller volumes of the cerebral white 
matter (r = 0.49 for e-SDMT/r = 0.47 for oral SDMT), cor-
pus callosum (r = 0.39/0.40, q < 0.05), postcentral gyrus 
(r = 0.33/0.34, q < 0.05), lateral occipital lobe (r = 0.38/0.30, 
q < 0.05), insula (r = 0.35/0.39, q < 0.05), superior and trans-
verse temporal gyrus (r = 0.37/0.48, q < 0.05), paracentral 

http://www.python.org
http://www.statsmodels.org
http://www.statsmodels.org
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gyrus (r = 0.35/0.36, q < 0.05), and deep gray matter struc-
tures such as the thalamus, putamen, globus pallidus, 
and caudate nucleus (r = 0.37–0.51/0.51–0.60, q < 0.05). 
A lower number of correct responses on either test was 
also associated with a larger volume of the lateral ventri-
cles (r =  − 0.50/ − 0.57, q < 0.05). Two correlations were 
only observed on the e-SDMT, but not on the oral SDMT. 
This included the correlation between the e-SDMT num-
ber of correct responses and the volume of the cuneus, 

pericalcarine cortex, lingual gyrus (r = 0.34, q < 0.05), and 
between the e-SDMT maximum gap duration between cor-
rect responses and the volume of the superior frontal lobe 
(r =  − 0.37, q < 0.05).

Likewise, for each regional MRI outcome that showed 
significant correlation with the 9HPT there was at least one 
Draw a Shape Test measure that was significantly correlated 
with the same MRI outcome (Figs. 2, 3b, SI6a). Worse per-
formance on either test was associated with smaller volumes 
of the cerebral white matter (│r│ = 0.33–0.41, q < 0.05), 
lateral occipital lobe (│r│ = 0.39–0.47, q < 0.05), and 
deep gray matter nuclei such as the putamen, globus pal-
lidus, caudate nucleus, and accumbens (│r│ = 0.31–0.44, 
q < 0.05), as well as a larger volume of the lateral ventricles 
(│r│ = 0.38–0.45, q < 0.05). However, some correlates were 
only observed on the Draw a Shape Test, but not the 9HPT. 
For example, mean trace celerity correlated with volumes 
of the thalamus (r = 0.38, q < 0.05), hippocampus (r = 0.37, 
q < 0.05), and isthmus cingulate (r =  − 0.37, q < 0.05). 
Velocity-based measures of round shapes correlated with 
volumes of the thalamus (│r│ = 0.35–0.43, q < 0.05), hip-
pocampus (│r│ = 0.32–0.40, q < 0.05), and cuneus, perical-
carine cortex, and lingual gyrus (│r│ = 0.38–0.47, q < 0.05). 
A significant association was also observed between vari-
ability of linear drawing velocity on the figure-of-8 and the 
cervical spinal cord area (r =  − 0.44, q < 0.05).

Similarly, for each correlation observed with the 9HPT, 
at least one Pinching Test measure was significantly associ-
ated with the same MRI outcome, except for the cerebral 
white matter (Figs. 2, 3b). Some correlations, however, 
were observed only with the Pinching Test. This includes 
correlations between longer double touch asynchrony and 
smaller volumes of the pons (r =  − 0.35, q < 0.05), thalamus 
(r =  − 0.41, q < 0.05), hippocampus (r =  − 0.45, q < 0.05), 
and interestingly with a larger volume of the anterior cin-
gulate cortex (r = 0.36, q < 0.05). Additionally, longer 
gap duration between pinches was also associated with a 
smaller volume of the thalamus (r =  − 0.36, q < 0.05), insula 
(r =  − 0.32, q < 0.05), and the cuneus, pericalcarine cortex, 
and lingual gyrus (r =  − 0.35, q < 0.05).

On the SBT, larger sway path correlated with a smaller 
volume of the paracentral lobule (r =  − 0.42, q < 0.05; 
Figs. 2, 3c). In contrast, a lower total score on the Berg 
Balance Scale (worse ability to balance) correlated mostly 
with smaller volumes of deep gray matter structures 
(r = 0.39 − 0.44 for correlations with q < 0.05; Figs. 2, 3c).

No correlations with any of the regional MRI outcomes 
were found for any of the gait tests, neither for the digital 
measures derived from the 2MWT/UTT nor for the T25FW 
(Fig. 2; all q ≥ 0.05).

Next, the variance observed in the digital measures that 
can be explained by structural MRI outcomes was estimated 
using a Bayesian ridge regression model. Up to a third of the 

Table 2   Baseline demographics and disease characteristics

9HPT Nine-Hole Peg Test, BMI body mass index, EDSS Expanded 
Disability Status Scale, PPMS primary progressive multiple scle-
rosis, PwMS people with multiple sclerosis, RRMS relapsing–remit-
ting multiple sclerosis, SD standard deviation, SDMT Symbol Digit 
Modalities Test, SPMS secondary progressive multiple sclerosis, 
T25FW Timed 25-Foot Walk

Variable PwMS cohort included 
in the analyses (n = 62)

Site 11 (USA), 51 (Spain)
Female, n/N (%) 42/62 (67.7)
Age, years, mean (SD)
 Mean (SD) 39.7 (7.5)
 Min.–Max. 20–57

BMI, kg/m2

 Mean (SD) 24.4 (4.4)
 Min.–Max. 17.1–37.6

Diagnosis, n (%)
 RRMS 55 (89)
 PPMS 3 (5)
 SPMS 4 (6)

Disease duration at baseline, years
 Mean (SD) 9.5 (6.6)
 Min.–Max. 0.7–24.9

Normalized total brain volume, mL
 Mean (SD) 1471.9 (65.0)
 Min.–Max. 1277.1–1628.1

EDSS
 Mean (SD) 2.5 (1.4)
 Min.–Max. 0.0–5.5

Oral SDMT, number of correct responses
 Mean (SD) 53.4 (11.7)
 Min.–Max. 26–77

9HPT, seconds
 Mean (SD) 22.4 (4.3)
 Min.–Max. 16.4–40.3

T25FW, seconds
 Mean (SD) 6 (2)
 Min.–Max. 3.6–12.5

Berg Balance Scale, total score
 Mean (SD) 52.4 (5.8)
 Min.–Max. 31–56
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Cerebral white matter 0.49 -0.42 0.30 0.38 0.23 -0.41 -0.33 -0.41 -0.30 -0.30 0.32 -0.05 -0.08 -0.09 -0.05 0.18 -0.40 0.47 0.33 -0.24 -0.42

Lateral ventricles -0.50 0.46 -0.43 -0.20 -0.40 0.45 0.40 0.38 0.46 0.46 -0.38 0.03 0.16 0.09 0.04 -0.19 0.39 -0.57 -0.25 0.30 0.29

Cerebellum – hemispheres 0.02 -0.08 0.08 0.04 0.22 -0.20 -0.26 -0.09 -0.19 0.01 0.10 0.14 0.04 -0.07 0.19 0.18 -0.09 0.10 0.20 -0.13 -0.12

Cerebellum – vermis -0.01 -0.08 0.09 0.19 0.20 -0.19 -0.25 -0.25 -0.24 -0.01 0.23 0.06 0.07 -0.09 0.20 0.06 -0.19 0.02 0.19 -0.11 -0.23

Midbrain 0.08 -0.13 0.03 -0.04 0.21 -0.13 -0.09 -0.03 -0.30 -0.14 0.14 0.19 -0.18 -0.19 0.16 -0.09 -0.13 0.10 0.09 0.10 -0.08

Pons 0.12 -0.04 0.06 0.02 0.35 -0.32 -0.31 -0.16 -0.35 -0.06 0.16 0.08 -0.12 -0.14 0.19 0.10 -0.23 0.27 0.12 -0.13 -0.10

Medulla oblongata -0.01 -0.12 -0.03 0.00 0.05 -0.15 -0.08 -0.02 -0.02 0.17 -0.06 0.17 0.08 -0.19 0.08 -0.05 -0.08 -0.13 0.09 -0.00 -0.04

Corpus callosum area 0.39 -0.28 0.22 0.27 0.21 -0.28 -0.21 -0.28 -0.21 -0.20 0.19 -0.16 -0.15 -0.04 -0.10 0.04 -0.24 0.40 0.07 -0.13 -0.24

Upper cervical cord area 0.25 -0.20 0.08 0.25 0.21 -0.44 -0.22 -0.29 -0.14 0.00 0.05 -0.15 0.20 -0.07 -0.15 0.11 -0.31 0.20 0.24 -0.17 -0.32

Opercularis, triangularis, orbitalis 0.05 -0.09 -0.00 -0.11 0.10 0.12 0.02 0.01 -0.16 -0.13 0.05 0.02 -0.04 -0.12 0.07 0.11 -0.04 0.07 0.04 -0.14 0.09

Middle frontal 0.16 -0.26 0.17 0.07 -0.13 -0.11 -0.13 -0.01 -0.06 -0.16 0.18 -0.21 -0.03 -0.13 0.05 -0.05 -0.11 0.15 0.09 -0.10 -0.05

Superior frontal 0.28 -0.37 0.34 0.16 -0.09 -0.14 -0.13 -0.12 -0.11 -0.22 0.25 -0.17 0.04 -0.11 0.06 0.12 -0.18 0.27 0.21 -0.18 -0.13

Precentral 0.13 -0.22 0.20 -0.01 -0.05 -0.01 -0.03 0.02 0.08 -0.07 0.04 -0.16 0.03 0.09 0.22 0.16 0.03 0.22 0.04 -0.10 0.04

Postcentral 0.33 -0.39 0.24 0.05 0.02 -0.21 -0.18 -0.09 -0.16 -0.31 0.18 -0.09 -0.11 -0.05 0.05 0.04 -0.18 0.34 0.16 -0.14 -0.13

Supramarginal 0.15 -0.26 0.20 -0.03 -0.02 -0.03 -0.05 0.08 -0.04 -0.07 0.14 -0.07 -0.05 -0.06 0.02 0.02 0.02 0.23 0.11 -0.07 -0.07

Superior parietal 0.12 -0.22 0.03 0.23 -0.24 -0.05 0.09 -0.04 -0.13 -0.10 0.13 0.15 -0.07 -0.07 0.24 -0.27 -0.11 0.12 -0.08 0.21 -0.07

Inferior parietal 0.12 -0.11 0.07 0.10 -0.07 0.00 0.07 -0.01 -0.03 0.01 0.06 0.05 -0.08 -0.14 0.14 -0.13 -0.02 0.17 -0.01 0.10 -0.08

Lateral occipital 0.38 -0.39 0.26 0.39 -0.00 -0.28 -0.10 -0.45 -0.32 -0.35 0.31 0.02 0.16 0.14 0.22 0.12 -0.47 0.30 0.16 -0.06 -0.43

Insula 0.35 -0.27 0.30 0.00 0.13 -0.21 -0.2 -0.16 -0.15 -0.32 0.19 -0.09 0.05 -0.27 -0.11 0.29 -0.25 0.39 0.37 -0.28 -0.37

Superior and transverse temporal 0.37 -0.33 0.27 -0.03 0.30 -0.24 -0.34 -0.08 -0.21 -0.25 0.31 -0.09 0.04 -0.21 -0.06 0.20 -0.14 0.48 0.21 -0.25 -0.19

Inferior and middle temporal 0.15 -0.18 0.17 -0.05 0.13 -0.03 -0.13 0.03 -0.13 -0.20 0.23 -0.08 0.01 -0.05 0.06 0.14 0.03 0.14 0.00 -0.14 0.12

Lateral and medial orbitofrontal -0.04 -0.04 -0.05 -0.09 -0.14 0.04 0.05 0.08 0.10 -0.07 0.10 -0.08 -0.01 -0.15 -0.12 -0.04 0.08 -0.07 0.04 -0.03 0.04

Anterior cingulate -0.28 0.27 -0.18 -0.22 -0.16 0.25 0.15 0.21 0.36 0.25 -0.24 -0.07 0.20 -0.00 -0.11 0.09 0.25 -0.36 0.07 -0.14 -0.00

Posterior cingulate -0.14 0.04 -0.18 -0.08 -0.18 0.17 0.13 0.15 0.19 0.16 -0.08 0.05 0.10 0.27 0.26 -0.04 0.06 -0.15 -0.04 0.00 0.14

Paracentral 0.35 -0.33 0.23 0.31 0.03 -0.39 -0.29 -0.37 -0.08 -0.29 0.21 -0.42 -0.11 0.13 -0.02 0.17 -0.22 0.36 0.24 -0.28 -0.21

Isthmus cingulate -0.22 0.17 -0.10 -0.04 -0.37 0.11 0.12 0.10 0.21 0.15 -0.33 -0.09 -0.04 0.17 -0.08 0.08 0.22 -0.26 -0.07 0.08 0.13

Precuneus 0.12 -0.11 0.13 0.11 -0.07 -0.29 -0.24 -0.20 -0.01 -0.09 -0.04 -0.24 -0.04 0.09 -0.11 0.13 0.02 0.10 0.23 -0.31 -0.07

Cuneus, pericalcarine, lingual 0.34 -0.28 0.27 0.32 0.15 -0.40 -0.38 -0.47 -0.27 -0.35 0.30 -0.13 0.05 0.13 -0.10 0.33 -0.26 0.27 0.27 -0.29 -0.20

Parahip., fusiform, entorhinal 0.03 -0.04 0.13 -0.14 0.14 -0.00 -0.13 0.12 -0.11 -0.11 0.07 0.00 -0.11 -0.25 -0.06 0.05 0.05 0.08 0.04 -0.07 0.09

Thalamus 0.51 -0.51 0.37 0.28 0.38 -0.43 -0.43 -0.35 -0.41 -0.36 0.32 -0.21 -0.01 0.00 -0.11 0.26 -0.30 0.60 0.42 -0.33 -0.32

Hippocampus 0.18 -0.22 0.06 0.18 0.37 -0.40 -0.40 -0.32 -0.45 -0.17 0.09 0.09 -0.04 -0.06 -0.09 0.13 -0.29 0.24 0.16 -0.17 -0.12

Putamen 0.44 -0.43 0.39 0.24 0.25 -0.43 -0.36 -0.38 -0.42 -0.42 0.30 -0.20 -0.10 -0.03 -0.15 0.18 -0.44 0.51 0.44 -0.30 -0.36

Globus pallidus 0.44 -0.40 0.33 0.30 0.21 -0.42 -0.36 -0.44 -0.44 -0.46 0.35 -0.23 -0.15 -0.11 -0.19 0.17 -0.43 0.52 0.39 -0.25 -0.38

Caudate nucleus 0.37 -0.35 0.28 0.18 0.23 -0.35 -0.32 -0.32 -0.43 -0.41 0.30 -0.08 0.06 -0.04 -0.12 0.15 -0.41 0.53 0.44 -0.32 -0.31

Amygdala 0.19 -0.21 0.30 -0.06 0.18 -0.15 -0.21 0.04 -0.10 -0.10 0.05 -0.21 0.02 -0.07 -0.00 0.17 -0.05 0.28 0.11 -0.23 -0.05

Accumbens 0.29 -0.23 0.22 0.12 0.25 -0.33 -0.31 -0.26 -0.46 -0.44 0.27 -0.02 -0.18 -0.13 -0.05 0.03 -0.39 0.44 0.31 -0.23 -0.22
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Fig. 2   Spearman’s rank correlation analysis of digital measures and 
standard clinical measures with global and regional MRI outcomes. 
Statistically significant (q < 0.05) positive and negative correlations 
are highlighted in red and blue, respectively. FDR correction was 
applied for each digital and standard clinical measure separately to 
correct for multiple comparisons. Higher values equate to better per-
formance on the oral SDMT and Berg Balance Scale, as well as for 
digital measures assessing number of correct responses and SFI 30 on 
the e-SDMT; trace accuracy and trace celerity on the Draw a Shape 
Test; number of pinches on the Pinching Test; mean step power and 
mean step frequency on the 2MWT; and mean turn speed on the 
UTT. In contrast, higher values equate to worse performance on the 

EDSS, 9HPT, and T25FW, as well as for digital measures assessing 
max. gap time between correct responses on the e-SDMT; CV linear, 
angular, and radial velocity on the Draw a Shape Test; double touch 
asynchrony and pinching gap time on the Pinching Test; sway path 
on the SBT; and step frequency variance on the 2MWT. 2MWT Two-
Minute Walk Test, 9HPT Nine-Hole Peg Test, btw between, CR cor-
rect responses, CV coefficient of variation, EDSS Expanded Disabil-
ity Status Scale, e-SDMT smartphone-based electronic Symbol Digit 
Modalities Test, FDR false discovery rate, num. number of, parahip. 
parahippocampus, SBT Static Balance Test, SDMT Symbol Digit 
Modalities Test, SFI speed fatigability index, T25FW Timed 25-Foot 
Walk, UTT​ U-Turn Test, vel. drawing velocity
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variance observed in the digital measures (R2 = 34%) could 
be explained when using either normalized total brain vol-
ume as individual predictor (“Whole Brain” model) or volu-
metric data from the 36 individual MRI regions as multiple 
predictors (“Parcellation” model). In the upper extremity 
function domain, however, comparable or higher R2 values 
were obtained with the Parcellation model compared with the 
Whole Brain model. This suggests that multiple predictors, 
thus multiple brain regions, can explain as much or more of 
the observed variance in the digital measures (Figs. 4, SI6b). 
The increase in R2 was most noticeable for mean trace celer-
ity (R2 = 0.23 vs. 0), spiral coefficient of variation (CV) linear 
drawing velocity (R2 = 0.22 vs. 0.02), figure-of-8 CV linear 
drawing velocity (R2 = 0.19 vs. 0.12), and double-touch asyn-
chrony (R2 = 0.16 vs. 0.06, respectively, for the Parcellation vs. 
Whole Brain model). This was also reflected by a less uniform 
distribution of the individual Bayesian ridge regression coef-
ficients across the 36 MRI regions (Fig. SI7). By compari-
son, the R2 score was more comparable across the two models 
for the standard clinical measure 9HPT (R2 = 0.28 vs. 0.25) 
(Fig. 4).

Discussion

Digital measures captured by the Floodlight PoC app 
demonstrated robust correlations with volumetric meas-
urements of specific brain regions. While many neural 
correlates were shared between clinical and digital meas-
ures, the latter showed associations with brain regions 
that clinical measures were unable to demonstrate. These 
results indicate that remotely administered digital tests 
may yield higher functional specificity and provide poten-
tial novel information on functional ability compared with 
standard clinical measures. Of note, these correlations 
were observed in an early, relapsing cohort of PwMS, 
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Fig. 3   Spearman’s rank correlations adjustment for age, sex, and 
BMI. Statistically significant (q < 0.05) correlations between regional 
brain volume measured by MRI and measures of a the cognitive 
domain, b upper extremity function domain, and c balance domain 
are shown for four planes (from left to right: cortical outer, inner, top, 
and subcortical). FDR correction was applied for each digital and 
standard clinical measure separately to correct for multiple compari-
sons. Higher values equate to better performance for digital measures 
assessing number of correct responses and SFI 30 on the e-SDMT; 
trace accuracy and trace celerity on the Draw a Shape Test; and dou-
ble touch asynchrony on the Pinching Test. In contrast, higher values 
equate to worse performance for digital measures assessing max. gap 
time between correct responses on the e-SDMT; CV linear, angular, 
and radial velocity on the Draw a Shape Test; pinching gap time on 
the Pinching Test; and sway path on the SBT. 9HPT Nine-Hole Peg 
Test, BMI body mass index, btw between, CV coefficient of variation, 
e-SDMT smartphone-based electronic Symbol Digit Modalities Test, 
FDR false discovery rate, SBT Static Balance Test, SDMT Symbol 
Digit Modalities Test, SFI speed fatigability index

◂
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suggesting that digital measures hold potential to capture 
silent pathology [31]. If confirmed in future work, this 
would address a key unmet need in MS disease manage-
ment [32].

As expected, both the e-SDMT and oral SDMT cor-
related with regions implicated in cognitive decline (ven-
tricular expansion and smaller volume of the insula and 
cerebral white matter), information processing speed (deep 
gray matter), and working memory (superior temporal 
gyrus) [33–39]. Correlations were also observed with the 
volume of the primary somatosensory cortex (postcentral 
gyrus) and visual processing areas (lateral occipital lobe) 
[34, 40]. Similarly, the Draw a Shape Test, Pinching Test, 
and 9HPT were associated with areas of visual process-
ing (lateral occipital lobe, deep gray matter) and cogni-
tive decline (ventricular expansion, cerebral white matter) 
[34–36]. For the SBT, postural control (sway path) corre-
lated inversely with the paracentral lobule volume. This is 
consistent with findings from a functional imaging study, 
which suggested a role of the paracentral lobule in pro-
prioceptive processing [41]. In contrast, the Berg Balance 
Scale correlated more strongly with the deep gray matter 
volume. The different tasks involved in the two tests, the 
distinctive sensorimotor aspects they capture, and the scor-
ing—the SBT measures the total sway path (a measure 
of static balance), while the Berg Balance Scale provides 
an overall score describing both static and dynamic bal-
ance—may explain these differences. The mild level of 
MS-related impairment together with the ceiling effect 
observed on the Berg Balance Scale may have contributed 
to the lack of correlations with the cerebellar volume. The 
former may also explain the lack of correlations found 
for the sensor-based walking tests (UTT, 2MWT) or the 
T25FW [42]. With greater levels of impairment, correla-
tions between the T25FW and thalamic volumes or upper 
cervical cord area could be expected [43, 44].

Several correlations were only observed for the digital 
measures, but not for the standard clinical measures. This 
was most evident in the upper extremity function domain. 
Temporal and spatiotemporal measures derived from the 
Draw a Shape Test such as the mean trace celerity and vari-
ability of drawing velocity while drawing round shapes spe-
cifically correlated with thalamic volume, which has been 
previously shown to be involved in information processing 
[45]. These measures also specifically correlated with the 
volume of the pons. Brainstem atrophy is reported in early 
stages of MS and a higher pontine lesion load has been 
associated with upper extremity tremor [7, 46]. In addition, 
the variability of linear drawing velocity on the figure-of-8 
specifically correlated with the upper cervical cord area. 
This region has been previously linked to upper extremity 
dysfunction, particularly in more advanced or progressive 
disease where atrophy is more pronounced [44, 47]. The fact 
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Fig. 4   Bayesian ridge regression model with leave-one-out cross val-
idation for estimating the variance (R2) in the digital measures and 
standard clinical measures that can be explained by volumetric MRI. 
Two models were applied. The first model (“Whole Brain”) included 
normalized brain volume and the three demographic variables: age, 
sex, and body mass index (top row). The second model (“Parcella-
tion”) included all 36 regional MRI regions and the same three demo-
graphic variables (bottom row). Compared with the standard clinical 
measures, the digital measures tend to have a larger R2 score in the 
Parcellation model vs. in the Whole Brain model, which may reflect 
higher functional specificity. This is particularly evident on the Draw 
a Shape Test (mean trace celerity and spiral CV radial velocity) and 
on the Pinching Test (double touch asynchrony). 2MWT Two-Minute 
Walk Test, 9HPT Nine-Hole Peg Test, btw between, CV coefficient 
of variation, EDSS Expanded Disability Status Scale, e-SDMT smart-
phone-based electronic Symbol Digit Modalities Test, SBT Static 
Balance Test, SDMT Symbol Digit Modalities Test, SFI speed fatiga-
bility index, T25FW Timed 25-Foot Walk, UTT​ U-Turn Test
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that we observed this correlation in a mildly impaired cohort 
highlights the potential higher sensitivity of Floodlight PoC 
digital measures. Correlations specific to the digital meas-
ures were also observed with the Pinching Test. Double 
touch asynchrony, that corresponds to an asynchronous con-
tact of the two fingers with the touchscreen while pinching a 
tomato, was associated with the volume of anterior cingulate 
cortex. No association was observed with the 9HPT time. 
This region is known to selectively modulate motor areas 
during visually coordinated tasks [48, 49]. This result is not 
surprising considering that double touch asynchrony was 
specifically developed to assess the ability to perform finger 
coordination tasks.

The notion that digital measures may offer higher func-
tional specificity is also supported by the explained variance 
analysis. A low R2 value in the Whole Brain model but a 
high R2 value in the Parcellation model indicates that certain 
regions contribute more than other regions to the variance 
observed in the digital or standard clinical measures. This 
can be seen in the upper extremity function domain, where 
selected measures derived from the Draw a Shape and Pinch-
ing Tests showed a larger increase in R2 when switching 
from the Whole Brain to the Parcellation model compared 
with the 9HPT. This suggests that these digital measures 
have higher functional specificity than the 9HPT. A high  
R2 value in both models, on the other hand, indicates that 
the different MRI regions contribute equally to the observed 
variance. The cognitive domain with both the e-SDMT and 
oral SDMT is a good example of this, with both showing 
comparable functional specificity.

There are some limitations to this study. First, MRI data 
were only collected for PwMS. Consequently, we were 
unable to disentangle physiologic from pathologic effects. 
Second, the relatively short study duration of 24 weeks did 
not allow us to perform longitudinal analyses or assess the 
relationship between the digital measures and disease pro-
gression. Third, PwMS enrolled in this study mostly had 
mild disease with limited functional impairment, which may 
have weakened the correlations. Structural, or even func-
tional, cortical reorganization, that helps to maintain func-
tional ability in early stages of the disease despite structural 
damage to the brain [50–53], may have further weakened 
the observed correlations. Finally, spurious correlations can-
not be excluded. However, the observed effects remained 
largely statistically significant even when applying a more 
conservative correction for multiple testing (FDR correction 
applied for all the possible combinations of the 36 anatomi-
cal regions and 21 digital/clinical measures [36 × 21 con-
figuration]), suggesting that potential spurious correlations 
are negligible (Fig. SI8).

In the future, using data from larger, ongoing, and forth-
coming studies (CONSONANCE, NCT03523858; Flood-
light™ MS—TONiC, ISRCTN11088592), we will explore 

both cortical and subcortical structural networks [54, 55] 
and assess the relationship between longitudinal changes in 
digital measures and MRI outcomes to better characterize 
the utility of sensor-based tests as prognostic biomarkers. 
Such biomarkers could be used for early identification of 
patients with silent progression at risk of future disability 
accrual, and optimization of individual treatment strategies.

Conclusions

In this exploratory post-hoc analysis, digital measures 
obtained with the Floodlight PoC app correlated with nor-
malized volumes of distinct anatomical regions. While many 
of the correlations were also observed with standard clinical 
measures, some were only observed with the digital meas-
ures. In addition, the explained variance analysis may sug-
gest a higher functional specificity for digital measures, in 
particular in the upper extremity function domain. These 
results indicate that digital measures, by leveraging sensor 
technology, can probe multiple different neurologic domains 
rather than just providing an overall assessment of func-
tional ability. Thus, digital measures have the potential to 
complement standard clinical measures by providing a more 
detailed picture of MS and a more accessible assessment of 
functional ability. Larger, ongoing, and forthcoming studies 
will need to confirm these preliminary findings.
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