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FOLIATIONS II: UNIVERSAL DEFORMATIONS

DAVID MARIN, JEAN-FRANCOIS MATTEI AND ELIANE SALEM

ABsTRACT. This work deals with the topological classification of singular foliation germs
on (C?,0). Working in a suitable class of foliations we fix the topological invariants given
by the separatrix set, the Camacho-Sad indices and the projective holonomy representa-
tions and we prove the existence of a topological universal deformation through which
every equisingular deformation uniquely factorizes up to topological conjugacy. This is
done by representing the functor of topological classes of equisingular deformations of a
fixed foliation. We also describe the functorial dependence of this representation with

respect to the foliation.
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1. INTRODUCTION

This work inserts in a series of three papers whose goal is to obtain a topological clas-
sification of singular foliation germs on (C2,0) through the construction of a topological
moduli space, the description of its algebraic and topological properties and the construc-
tion of a family containing all topological types with minimal redundancy.

In the article [7], completed by [14] and [8, Appendix|, the authors give for a generic
germ of foliation F on (C2,0) a list of topological invariants:

a) the combinatorial reduction of singularities of F,

b) the Camacho-Sad indices of the singularities of the reduced foliation F*,

¢) the holonomies of F* along the invariant components of the exceptional divisor £ of
the reduction.

We call this collection the semi-local invariants of F. In the present paper we are only
interested in germs at F of families of foliations with same semi-local invariants as F, that
we call equisingular deformations of F. These notions will be specified later. For any
generic foliation we prove the existence of a “topological universal deformation” through
which any equisingular deformation of F uniquely factorizes up to topological conjugacy.
We also provide an infinitesimal criterion of universality. In [8] we have constructed a
global family containing all topological types with same semi-local invariants as F. The
results that we obtain in this paper will allow us to study in a forecoming paper 9] prop-
erties of factorization of this global family.

Classically a deformation of a foliation F over a germ of manifold P = (P, tg) is
a germ of foliation Fp- on (C% x P, (0,tg)) defined by a germ of holomorphic vector field
X (x,y,t) that coincides on C2 x {to} with a vector field defining F and moreover is tangent
to the fibers of the canonical projection prp : C2x P — P. If X\ : (Q,up) — P’ is a germ of
holomorphic map, the pull-back of Fp- by A is the deformation \*Fp- of F over (Q,uy)
defined by the vector field X (z,y, A(t)). Two deformations Fp- and Fp. are topologically
conjugated if there exists a C’-automorphism @ of (C? x P, (0,t9)) that sends the leaves
of Fp- on that of F},., and satisfies

prPO(I) =Pprp, (I)(%y»to) - (.Z',y,t[)).

As in [8] we say that the deformation Fp- is equisingular if the foliations given by the
vector fields X¢(z,y) := X(x,y,t) on the fibers C* x {t} can be “simultaneous reduced”
and moreover each of them share the same semi-local invariants as F, see Definition 3.6.
We will prove:



TOPOLOGICAL UNIVERSAL FAMILIES OF HOLOMORPHIC FOLIATIONS 3

Main Theorem. Every finite type generalized curve' foliation possesses a topological uni-
versal deformation.

Topological universality of a deformation Fg- of 7 means that for any germ of manifold
P and any equisingular deformation Fp- of F over P, there exists a unique holomorphic
map germ A\ : P* — @ such that Fp. is topologically conjugated to A\*Fg-. In fact we will
prove the stronger result that the topological conjugacy between Fp- and A* Fq- is realized
by an excellent (or C**) homeomorphism, i.e. it lifts through the equireduction maps of
Fp- and X\*Fg- and its lifting fulfills a regularity property, see Definition 3.3.

We obtain a universal deformation of F by representing the functor Def r that associates
to any germ of regular manifold P, the set Defl]'i-' of C®*-conjugacy classes of deformations
of F over P'. To describe the dependence of this representation with respect to F we
define, up to excellent conjugacy, the pull-back of an equisingular deformation of F by a
C*™-conjugacy ¢ : G — F. We thus get a contravariant deformation functor

Def : Man' x Fol — Set', (P, F)+~ DefZ |

which associates to a foliation F and a germ of manifold P, the set DefZ . Here Man’
is the category of germs of complex manifolds, the morphism sets O(P", Q") consisting
of holomorphic map germs compatible with the pointing, and Fol is the category whose
objects are the germs of foliations which are generalized curves of finite type, the morphisms
being C**-conjugacies. In fact, we will construct a suitable (pointed by 0) cohomogical C-
vector space H'(A, TF) associated to F and an isomorphism of functors

Def—=((P',F) — O(P',H' (A, Tx)) . (1)

The paper is organized in the following way:

- In Chapter 2 we further develop the key notion of group-graph already introduced
in [8]. This notion is well adapted to our problem and it may also be useful in other sit-
uations, which simultaneously deal with local and semi-local objects. In absence of nodal
singularities and dicritical components the group-graphs considered in the sequel are asso-
ciated to sheaves but otherwise we need to consider general group-graphs as we did in [§].
We also define the notion of regular group-graph and we describe its cohomology (see
Theorem 2.15).

- The notion of equisingular deformation is introduced in Chapter 3. Its characteristic
property, stated in Theorem 3.8, is the triviality along each irreducible component of the
exceptional divisor of the equireduction. This allows (Theorem 3.11) to define for a C**-
conjugacy ¢ : G — F, the pull-back map ¢* : Def; — Defl" | and the functor Def.

- In Chapter 4 we consider the group-graph Aut?, over the dual graph Ar of £x, of
excellent automorphisms of the constant deformation of F over P'. For an equisingular
deformation, the trivializing maps given by Theorem 3.8 provide a cocycle with values in
this group-graph. In this way we obtain a natural transformation from the functor Def

lie a germ of foliation F such that the foliation F* obtained after reduction is without saddle-node (i.e.
singularity given by a vector field germ whose linear part has exactly one non-zero eigenvalue); however
F* may have nodal singularities (i.e. defined by a vector field germ such that the ratio of the eigenvalues
of its linear part is strictly positive) and the exceptional divisor of the reduction may have irreducible
components non invariant by F*. For more details we refer to [2].
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to the functor that associates to F and P the cohomology space H' (A;,Aut;). This
transformation is an isomorphism of functors (Theorem 4.4)

Def 5 ((P',}“) - Hl(A;,Autji‘)) . 2)

By taking the quotient of Aut? by the normal subgroup-graph of automorphisms fixing
each leaf, we obtain a simpler group-graph Sym? with same cohomology as Autl]'i—' (Propo-
sition 4.11).

- The notion of finite type foliation is defined and cohomologically characterized (The-
orem 5.15) in Chapter 5. For such a foliation the cohomology of the group-graph Sym?
over Ar is completely given by restricting it to an appropriate subgraph Rr C Ar (The-
orem 5.3). The advantage of this restriction is that over Rz the group-graph Symj'; is
isomorphic (via the “exponential morphism”) to the abelian group-graph ’T]f ~ of C-vector
spaces of infinitesimal transverse symmetries of the constant deformation, see Defi-
nition 5.8. This study gives the natural isomorphisms

HY Az, Aut?) = HY(AF, SymE ) =5 HY(Rz, SymZ )= HY Rz, TE) . (3)

The structure of T]{-D ~over Rx is the tensor product Tr ®@c Mp- of the group-graph of
infinitesimal symetries of F with the maximal ideal of Op- (Lemma 5.11). Finally, using
the results of Section 2.7 we get:

H'(Rz, T )H'(RF, Tr @c Mp ) —=H'(RF, Tr) @c Mp- —O(P', H'(Rx, Tr) ),

that achieves, using (2) and (3), the construction of the natural isomorphism (1). Finally in
Section 5.6 we discuss some examples of foliation germs whose separatrix set is the double
cusp (y? + 2%)(y® + 2%) = 0, to illustrate the notions of equireducibility, equisingularity,
finite type with explicit group-graph cohomology computations, Kodaira-Spencer map and
C*®-universal deformation.

- In Chapter 6, using that the restriction of the group-graph 7r to Rx is regular (Propo-
sition 5.12) and Theorem 2.15, we specify in Theorem 6.4 the structure of the finite di-
mensional universal parameter space H!(Rz, 7). We also construct a Kodaira-Spencer
map

OlFp ]

5 : TP — H'(R7, Tr)

t=to

associated to an equisingular deformation Fp-, that will provide in Theorem 6.7 an infini-
tesimal criterion of universality.

2. GROUP-GRAPHS

We recall that a graph is the data of a pair A = (Vea, Eda) where Vea is a set and
Eda € P(Vea) is a collection of subsets of two distinct elements v, v’ of Vea, denoted by

(v,v"). The elements of Vea are called vertices of A and those of Eda are called edges of
A. We denote by

Ip :={(v,e) € Vep x Eda | v € €}

the set of oriented edges of A. A morphism of graphs ¢ : A" — A is amap ¢ : Vear —
Vea such that if e = (v,v’) € Edas either p(v) # ¢(v') and ¢(e) := (p(v), p(v')) € Eda, or
p(v) = p(v') and p(e) i= p(v) € Ve,
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2.1. Notion of group-graph.

Definition 2.1. Let C be a category. A C-graph over A is a collection G of objects of
C, denoted® by G, and G, for each vertex v € Vep and each edge e € Eda, and of C-
morphisms pS : G, — Ge for each (v,e) € In, which are called restriction morphisms.
When C is the category Gr of groups we say that G is a group-graph; if all groups Gy,
* € VepaUEda, are abelian, we say that G is abelian and when all groups G, x € Vea UEda
are trivial we say that G is the trivial group-graph and we denote it by 0 or 1.

The category of C-graphs over A is the category denoted by CA, whose objects
are the C-graphs over A and whose morphisms « : F' — G are the data of C-morphisms
ay: Fy = Gy and e @ Fe — Ge, v € Vep, e € Edpa, such that the following diagram

F, 25 G,
&4 105

F. 25 G,

commutes for each (v,e) € Ia, & and p§ being the restriction maps of F' and G.
In all the sequel we suppose that C is a subcategory of the category of groups.

A C-graph H is a sub-C-graph of a C-graph G if H, is a subgroup of G, for any
* € Vep UEda, the inclusion map H, < G, being C-morphisms, and the restriction maps
H, — H, being given by the restriction map pS of G, a fortiori p¢(H,) C H.. When each
group H, is a normal subgroup of G, we say that H is a normal sub-C-graph of G; then
the map pS factorizes as a map oS : G,/H, — G./H., defining the quotient C-graph
G/H, with (G/H), = G«/H,, the maps p{ being the restriction maps.

If G (resp. G’) is a C-graph over a graph A (resp. A’), a morphism of C-graphs
¢ : G — G’ over a morphism of graphs ¢ : A’ — A is a collection of C-morphisms
Ok : Gw(*) — G;, * € Vear U Edar

such that, if e = (v,v) then the following diagram commutes

bv
Gow) —= G,

w(e) re
Pwml l/’ v
Qe

Goe) — Gt

If p(e) = ¢(v) then pigf})) is the identity. A consequence of the commutativity of this

diagram is that p¢ sends the kernel of ¢, into the kernel of ¢, and p’; sends the image
of ¢, into the image of ¢.. This allows to define the C-graph kernel ker ¢ over A by
(ker @), = ker(¢y), which is a sub-C-graph of G and the C-graph image ¢(G) over A’ by
d(G)y = ¢*<G<p(*))7 which is a sub-C-graph of G’. We can thus consider exact sequences
of C-graphs over a common graph.

If ¢ : A” — A’ is another graph morphism and ¢’ : G’ — G” is a C-graph morphism
over ¢, then the composition defined by

¢ o :={¢ o chp’(*) : GSD(SO/(*)) — G’ | x € Vear UEdpn}

is a C-graph morphism G — G” over ¢ o /. Hence the collection of all the pairs (A, G)
where A is a graph and G is a C-graph over A together with the C-graphs morphisms
consisting of the pairs (¢, ¢) : (A,G) — (A',G") with ¢ : A - A and ¢ : G — G’ over
¢, forms a category that we will denote by CG. A C-graph morphism (ida, ¢) over the

2The notation G(v) and G(e) is also used in the text.
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identity of A is just a morphism of group-graphs over A as defined previously. Thus, CA
is a subcategory of CG.

Definition 2.2. The pull-back by a graph morphism o : A’ — A of a C-graph G over
A is the C-graph over A’ defined by

(QO*G)* = G@(*), * € Vear U Edpy,

the restriction morphism (¢*GQ)y, — (p*G)e for e = (v,v") € Edas being the restriction
morphism G,y — Gyue) when p(e) € Eda, and the identity map of G, otherwise. We
call canonical morphism the C-graph morphism 1, : G — ©*G over ¢ defined by the
identity maps

Lox 1= idg GSD(*) — (QO*G)*, * € Vepr U Edar .

o(x)

In this way, the data of a morphism of C-graphs ¢ : G — G’ over a morphism of graphs
¢ : A’ — A is just the data of a morphism of C-graphs ¢ : ¢*G — G’ over A’.

Remark 2.3. Let F': G — G’ be a morphism of C-graphs over f: R — A. Let r : R — A
be a morphism of graphs. If f factorizes as f = r o f for some morphism of graphs
f : R = R then F factorizes as F = F o1, where F : r*G — G’ is a morphism of C-
graphs over f. Indeed, if we define F := F, : (@) fx) = Gr(fx)) = Gr(x) = G for each
* € Ver U Edgs then F = F oz,. ]
Remark 2.4. If j = 1,2, let G be a group-graph over A; and K; a normal sub-group-graph

of G, then any group-graph morphism g : G1 — G2 over a graph-morphism ¢ : Ay — Ay
sending K7 to Ko factorizes as a morphism g between the quotient group-graphs:

1 K, G1 G1/K, > 1
|
l gi 3|
\

1 Ky Go GQ/KQH'].

We easily check this property when A; = Ay and ¢ = id. Since, by definition p*(G1/K7) =
©*G1/¢* K1, the general case follows taking the pull-back by ¢ in the first row. (|

Remark 2.5. Every graph A can be seen as a category whose objects are the vertices and
the edges of A, and whose morphisms (other than the identities) are the inclusion maps
i : {a} < b of a vertex in an edge.

e
ab< ._)b_<
pN

A C-graph over A is just a covariant® functor G : A — C and morphisms of C-graphs
are just morphisms (i.e. natural transformations) of functors. This explains the adopted
notation CA = {F : A — C covariant functor}. Under this identification, a morphism of
graphs ¢ : A’ — A is a covariant functor between the corresponding categories. If G € CA
then the pull-back ¢*G € C* is the composition of functors G o  and

o CA S CN, G "G =Goyp

3The contravariant version leads to the dual notion of graph of C, for instance graph of groups in
the sense of Serre [13].
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becomes a contravariant functor defining the pull-back by ¢ of a morphism of C-graphs
a : G — Gy over A as the morphism p*« : *G1 — ©*G4y of C-graphs over A’ given by
(go*oz)* = Qly(x) for x € Vepr U Edp. ]

In fact, the natural context to consider these notions is that of abstract simplicial com-
plexes:

Remark 2.6. Recall that an abstract simplicial complex A is a nonempty subset of P(.5)
whose elements are called faces, such that for each F € A, 0 < |F| < oo and if ) # F' C F
then F/ € A. The dimension of F € A is dimF = |F| — 1, the dimension of A is
dimA = sup{dim F' : F € A}. A simplicial complex of dimension < 1 is just a graph.
The k-skeleton Ap of a simplicial complex A is the subcomplex of A consisting of all

faces of dimension at most k. We will identify Ay with the set of vertices |J F C S
FeA
of A. Each simplicial complex A can be thought of as a small category whose objects

are the elements of A and whose morphisms are the inclusions, i.e. if F € F/ € A then
HOHIA(F, F/) = {ZFF’ P F/}

A simplicial map between (abstract) simplicial complexes f : A — I' is defined by a map
fo: Ag — Tg such that f(F) := fo(F) € T for all F € A. Any simplicial map f: A - T
can be thought of as a functor.

The category SC of simplicial complexes and simplicial maps contains the full subcate-
gory SCy, of simplicial complexes of dimension < k. In particular G := SC; is the category
of graphs. If A is a graph then A = Ay and A \ Ay is the set of edges. Passing to the
k-skeleton defines a functor SC — SCyg. For every category C we consider the collection
CSC of C-simplicial complexes which are pairs (A, G) with A a simplicial complex and
G € C? := {A — C covariant functor}, i.e. G is an assignment A > F + G(F) jointly
with a C-morphism p% ., : G(F) — G(F"), that we call restriction, if F' C F' € A. We will
say that G is a C-simplicial complex over A. There is a natural definition of morphism
of C-simplicial complexes over a map of simplicial complexes completely analogous to the
one considered for C-graphs which makes CSC a category. g

2.2. Group-graph associated to a sheaf. Let S be a C-sheaf on a topological space D
and C a collection of sets of D. Consider the following graph A (not necessarily finite): its
vertices are the elements of C and its edges are all the sets (D, D) formed by two distinct
elements of C, such that D N D" # (). For any W C D (not necessarily open) we recall
that the group of continuous sections of S over W is S(W) := lim S(U), where %y is
Uew
the set of open neighborhoods of W. In the case that W = {p}, S({p}) is just the stalk
S(p) of Sat pe D. f W C W then %y C %y and the inductive limit of the restriction
morphisms of S define a restriction morphism S(W) — S(W’).
We define the C-graph S over A associated to S in the following way:
e Sp :=8(D) for D € Ve,
. S(D,D’) = Q(DOD/) for <D,D,> € Eda,

e the restriction maps pgD’D/> are the restriction morphisms considered before.

Any morphism of C-sheaves over D induces a morphism of C-graphs over A, defining a
covariant functor:
CShp — C*, S+ S,

from the category of C-sheaves over D to the category of C-graphs over A. We highlight
that this functor is not exact in general. For instance, assume that 0 =S8’ - S -+ S8” — 0
is an exact sequence of sheaves of abelian groups on a topological space D and that there
is an open set Dy € C such that H'(Dy,S'|p,) # 0 and H(Dy, S|p,) = 0. Then the long
exact sequence in sheaf cohomology gives

S(Dg) — S"(Do) — H' (Do, S| p,) — 0 = H* (Do, S|p,)-
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Since the sequence of abelian groups Sp, — Sgo — 0 is not exact, the sequence of group-
graphs 0 - 8" — 8§ — 8" — 0 can not be exact.

Let D’ be another topological space with a collection C’ of subsets of D" and let S’ be a
C-sheaf over D’. Let ¢ : D' — D be a homeomorphism such that ¢(C) = C’. If D € Veas
and (D, D’) € Edas then ¢(D) € Vea, ¢(DND') = ¢(D) N p(D’) and ¢ induces a graph
morphism

Ay : A= A, x—=p(x); *€ Vea UEdp .
Given a morphism of C-sheaves S — S’ over ¢ : D — D', i.e. a morphism
g:¢7'8—=8
of C-sheaves over D/, we have C-morphisms

g, (6718)(D) = S(6(D)) - S'(D),

Gyt (378D D) = S(G(D N DY) = S(G(D) N (D)) + S (DN D),

for D € Vear and (D, D') € Edas. Since
(AGS)((D, D)) = S((¢(D), (D)) = S(¢(D) N ¢(D"))
we obtain a C-graph morphism associated to the sheaf morphism g
g:ALS — S
Notice that A(*;S coincides with the C-graph associated to the sheaf ¢~1S over D’, and g can

be seen as the C-graph morphism associated to the morphism of sheaves g : ¢~'S — S'.
The situation we will deal with in the sequel is the following: D is an analytic set (and
more specifically a hypersurface in a complex manifold), C is the collection of irreducible
components of D. The graph A is called the dual graph of D. In this way we have a
functor
CSh,, - CG, S§+— S,

where CSh,, is the subcategory of the category of C-sheaves over analytic sets whose
morphisms are over homeomorphisms.

2.3. Cohomology of a group-graph. This notion was introduced in [8]. For group-
graphs associated to sheaves considered in subsection 2.2, with C a locally finite open
covering U of D and S abelian, this notion will coincide with the Cech cohomology groups

H(U,S),i=0,1.

Let G be a group-graph over a graph A. The 0-cohomology set is the subgroup H°(A, Q)
of C°(A,G) = [l eve, Gv Whose elements are the families (g,) satisfying the relations

05(90) = pS(gor) whenever e = (v,0').

In order to define the 1-cohomology set H!(A, G) of a group-graph (G, (05) (ev)er,) We
first define the set of cocycles Z1(A, G) as the set of families

(goe) € J[ Gue. with Gye:=Ge,
(v,e)€lp
such that g, gy . = 1 whenever e = (v,v'). Then H'(A, G) is the quotient set of Z!(A, G)
by the following action of C°(A, G):
(90) %@ (9u.e) = (5(90) " Gue L (901)) -

The set H!(A, G) contains the privileged element 1 defined by g, = 1. In this way, from
now on H'(A, G) will be consider as a pointed set.
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Remark 2.7. When G is an abelian group-graph, then H'(A,G) is an abelian group.
Specifically, we have in this case an exact sequence of groups (with additive notations)

oA, G) L ZY A G) = HY(A,G) =0,

ao((gv)) = (gv,e) y Gue =G —Gv, €= <U7 vl> .
More formally, H*(A,G) is the i-th cohomology group of the cochain complex of abelian
groups
Cc*(AG): C'Ae) LA LA = ] G..
ecEda
with: ' ((gu.e)) = (Gue + gur ), if € = (v,0'). O
Every morphism ¢ : G — G’ of C-graphs over a graph morphism ¢ : A — A induces
maps
¢0 : CO(A7 G) — CO(Ala G,)a ¢0((gv)v) = ((b'u/ (gtp(vl)))vl7
¢1: CH(A,G) = CHA,G"),  ¢1((9ve)) = (9r.e0)s
where

1 G (Gpnpe)) if p(€’) is an edge of A,
e 1 otherwise.

The image of the restriction H%(¢) of the group morphism ¢q to the subgroup H°(A, G)
is contained in HY(A’,G’). Moreover, ¢ sends Z'(A,G) into Z'(A',G’), the following
diagram is commutative

COA,G) x ZV(A,G) —%= Z(A,G)

o

COA,G") x ZV (A, G') —<'~ ZL (N, )

inducing a map
HY(¢): H'(A,G) — H' (N, G"). (4)
In this way one can check that the correspondences (A, G) — H'(A,G) and (¢, ) — H'(¢)
define covariant functors A
H:CG —Set', i=0,1, (5)
from the category of C-graphs to the category of pointed sets. Moreover when C is one of
the following sub-categories of Gr:

e the category Ab of abelian groups,
e the category Vec of C-vector spaces, and linear maps,

we obtain covariant functors with values in the same category pointed by 0:
H :CG—-C, i=0,1.

In particular, H*(¢), i = 0,1, are C-morphisms.
Remark 2.8. The canonical morphism 2, : G — ¢*G induces maps H'(1,) : H'(A,G) —
H{ (A, p*G) and we have

H'(¢) = H'(§) o H'(1p), i=0,1,
where gz; : ¢*G — G’ is the C-graph morphism over A" associated to ¢ and 1, : G — ¢*G
is the canonical morphism. [l

Proposition 2.9. Let 1 = G/ <5 G 5 G — 1 be a short ezact sequence of group-graphs

over a tree A and suppose that all restriction maps p'S : G, — G\, are surjective. Then the
induced morphism H'(p) : HY(A,G) — HY(A,G") is an isomorphism.
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Proof. First we define an orientation < of each edge of A in the following way: we choose
a vertex vg € Vep; as A is a tree, for each vertex v € Vea there is a unique geodesic in
Vep joining v to vg, i.e. a unique minimal sequence of vertices vy, ..., vy, such that vy = v
and (v;_1,v;), 7 =1,...¢, are edges of A; then we set v;_; < v;. Notice that for any vertex
v # vg there is only one edge (v/,v) such that v/ < v.

The surjectivity of p. := H'(p) follows from that of p. Indeed for any (h, ) € Z}(A, G")
and each edge e = (v/,v") with v" < v”, we can choose an element g, . € Gy = Ge
such that pe(gye) = hye. Setting gy . := g;}e we obtain an element (gy.) of Z'(A,G)
satistying p.([(gv.e)]) = [(hv,e)])-

To prove the injectivity of p, let us consider two cohomological classes [(gy.)] and

[(hve)] € HYA,G) such that p.([(gue)]) = p«([(hue)]). The cocycles (pe(gue)) and
(pe(hu.e)) being cohomologous, there exists (gl/) € C°(A,G") = [Loeve, G satisfying the
following equalities in G7, for any e = (v, w) € Eda, v < w:

/le

P () Pelguie) P (glh) = Pe(hue) -

1 Z

By surjectivity of p, : G, — G, v € Vep, there are g, € G, such that ¢] = p,(g,) and,
thanks to the commutative diagrams

G, e (6)
p’fi pil lp’u’e
le Pe

G.—— G — G

for any e = (v, w), we obtain the equalities in G,
Pe (P5(90) " v (9w)) = Pe(hve)
Therefore there exists g, € G such that
(*e) pf}(gv)ilgv,epfu (gw)iE(gé) = hye.

We will construct a cocycle (ky) € [[,cve, Gv that satisfies the equality

(ke pg(kv)_lgv,epfi}(k’w) = hye-
for each edge e = (v,w), v < w, of A, using an induction process indexed by the lengths
£ of the geodesics vy, ...,vy, = v joining in A any vertex v € Vea to the previously chosen

vertex vg. One call ¢ the distance of v to vy and we denote ¢ = da(v,vg). Consider the
following assertion:
(Hpn) there exists (kv) € [Tyeve, dp(v,00)<n Gv Such that:
(cun) the relations (k) are fulfilled for every edge e = (v, w), v < w, with da(v, vo)
and da(w,vg) < n,
(Bn) for every v € Vea, 1 < da(v,v9) < n, there exists f] € G, such that k, =
Goiv(f 1/))
We will prove in a) that assertion Hj is true, and in b) that assertion H,1; is true as soon
as assertion H,, is satisfied.
- a) Let us consider the relation () for each edge e = (v, w), with v = vg. The restriction
maps p'5, : Giy — G, being surjective, we choose ¢, € G, such that g, = p'¢ (g.,). Using
again the commutativity of all diagrams (6) we deduce the equality

05 (Gu0) ™ GuoePy (Guwin(9l)) = ug,e -

Setting kv, = Gugy kw = guwiw(g,,) and f), = g.,, we obtain the assertion Hj.
- b) Now let us suppose H,, satisfied, we will prove H,, ;1. Let us fix families

(gv) € H Gy and (gé) € H G,e

vEVep ecEda
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fulfilling the relation (%) for every e € Eda. Let us fix also a collection

(f)) € 1T G,

vEVen, da (v,’UO)S’n
such that the elements
k’l) = g’UZU(fqu) E G’U? v e VeA7 dA('U,'UO) S n7 (7)

satisfy the relation (xx.) for every edge e of A whose vertices are at distances to vy at most
n. Let w be a vertex of A such that da(w,vg) =n+ 1. As noticed above, there is a unique
edge ey = (vy,w) of A with v,, < w. Therefore v, is the unique vertex of A such that
da(vy, w) = n and (v, w) is an edge of A. The relations (%, ) and (7) give the equality:

p’te)z (ZUw (fl,)w)) p’il:, (kvw)il g’Uumew pi)w (gw) Z-ew (géw) = hUwaew .
As in step a), let g, € G, such that p'S»(g,,) = g¢,,. We have:

lew

i, (9e,) = te, (05 (90)) = P (1w(9)) »
thus
pf}ﬁ (ivw (f’L/)w)) p'lc;z (kvw)il g'Uwyew pfvw (ngw(g’:ﬂ)) = hvwaew .

On the other hand the element p$® (iy,, (f;,)) = de, (0'5% (f1,,)) € Ge,, belongs to the normal
subgroup of Ge,,

ker(pe,,) = de, (Ge,,) = ie, (05 (Giy)) = P (1w (GY)) -

The following element of G, :

Gew =97 P (v, (£0,)) 9 9= P52 (ko)™ Guwsew P (Gl (90,))
is also an element of ker(p.,, ). There exists g, € G}, such that
Jew = P’ (1w (F)) -
We finally obtain:

Ew

05 (ko) ™! Gowsew P (Guin(9)) P (1 (i) = ey v -

and
p’le):j; (kvw)_l ngvew pZ}w (gwiw (g;) g’:ﬂ)) = hewﬂ}w N
We set

! ! =~

ky = gwiw(g:u giu) € Gw s fw = Gw Guw
and we repeat this construction for each vertex whose distance to vy is n + 1. The family
(ky), v € Vep, da(v,v0) < n+ 1, that we obtain satisfies assertion Hj, ;1. O

2.4. Pruning. A path in a tree A with origin ¢y and extremity ¢, is a sequence
L = (co,...,c), ¢j € Vea U Edp such that:

o if ¢;, j </, is a vertex, then c¢j;1 is an edge and ¢; € ¢j41,

e if ¢;, j </, is an edge, then cj;q is a vertex and ¢; 3 ¢j41.
If R is a sub-tree of a A we can define for any vertex v of A\ R the notion of geodesic
in A from v to R, as the unique minimal path L, = (co,...,¢c¢) in Vea U Eda such that
co =0, ¢g € Ver and ¢y_1,...,co ¢ Ver UEdg. When v is a vertex of R, the geodesic L, is
reduced to the single element v. We define a partial order relation on Vep by setting
v <R w if and only if the geodesic L, is contained in the geodesic L,,. We will say that R is
repulsive for a group-graph G over A, if for every edge e = (v,v’) € Eda with v <g v/,
the restriction map p¢, : G, — G is surjective. From [8, Theorem 3.11 and Remark 3.12]
we have:
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Theorem 2.10. Let R be a subtree of a tree A that is repulsive for a C-graph G over A.
Then the map

Hl(zr) : Hl (A, G) — HI(R’ T*G) s (gue)vGeGEdA — (gv,e)UEeEEdR
induced by the canonical C-graph morphism 1, : G — r*G over the inclusion graph mor-
phism r : R < A, is a bijection of pointed sets. Moreover, if C = Ab or C = Vec then
H' (1) is a C-isomorphism.
2.5. Direct image of a C-graph. Let ¢ : A — A’ be a morphism of graphs and let G

be a C-graph over A. We define the direct image of G by ¢ as the C-graph ¢,G over A’
given for v/ € Vear and €’ € Edar by

(G = H(p7 (), G) C [ Gv (4G H Ge
p(v)=0'

and (9«p)% ((go)v) = (05(gv))e, where v € Vea and e € Eda. Tt is 1mphc1tely understood
that the product over the empty set is the trivial group.

There is a canonical morphism j, : ¢.G — G of C-graphs over ¢ defined by the natural
projections (jo)x : (p«G)yo) € I Ge — Gy for every x € Vepa UEda. It can be

e(o)=p(x)

checked that if G’ is a C-graph over A’ then the maps

Homa (G, p.G’) — Hom, (G, G’) L Homa/ (¢*G, G")
given by a(¢) = j, o ¢ and b(giu)) =do L, are bijective.

The preimage ¢~ !(v') of a vertex v' € Vea by a graph morphism ¢ : A — A’ is always

a subgraph of A. If G is a group-graph over A we will denote by H!(p~'(¢v'),G) the

1-cohomology set of the pull-back of G' by the inclusion map ¢~ (v') < A.

Lemma 2.11. Let ¢ : A — A’ be a morphism of graphs, let G be a group-graph over A

and consider the map H'(j,) : H'(A', 0.G) — HY(A,G) defined in (4).

(a) The image of H'(j,) is the set of cohomology classes of 1-cocycles (he)e € Z1(A,G)
with he =1 if p(e) € Vear.

(b) H'(j,) : HY (A, 0.G) — H'(A,G) is always injective.

(c) If H' (71 (v'),G) = 1 for all v' € Ve, then H'(j,) : HY(A',p.G) — H'(A,G) is
surjective.

Proof. By fixing an orientation for each edge of A and A’ we have bijections
ZY N, 0.G) = ] (0G)e and Z'A,G) =~ [] G
e’€Edyy, e€Edp
Under these identifications the map H'(j,) is induced by
;ZZI(A/,(,O*G)E H (pxG)er = H H Ge — H Ge.~ZYA,G)
e’cEdy/ e'cEdys p(e)=e’ ecEda

which puts 1 in the factor G, when ¢(e) ¢ Eda/, this proves assertion (a). To prove assertion
(b) let us fix (g )er, (het)er € ZH A, 0.G) and (k,), € C°(A, G) safisfying (k,) *xg ji,(ge/) =
j;(he/) in Z1(A,G). For any v’ € Vear we check that

Ky = (kv)vep—l(v/)ﬁVeA € HO(QO_I(U/)’G)'
Then ky € (pG)y and (ky ) € CO(A, 0, G) satisfies (ky )xp,c(ger) = (her) in ZHA', 0. Q).
To prove assertion (c), let us fix a 1-cocycle (ge)e € Z1(A,G). Since H(p=1(v'),G) = 1
for each v € Vear there is (kv)yep—1(v)ve, € COle 1 (v)), G) such that (ky) * (ge) =
in ZY(p~1(v'),G). Then (ky)veve, € CO(A, G) satisfies (ky) * (ge) = (he) with he = 1 if
¢(e) € Vear. We conclude using assertion (a).

—_

O
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2.6. Regular group-graph. The support of a group-graph G over a graph A is the set
of vertices and edges where the corresponding group is non-trivial:

supp(G) = {x € Vea UEdp | G« # {1}}, (8)
with 1 denoting the identity element.

Remark 2.12. Let G be a group-graph over A and let A’ be a subgraph of A obtained
by removing some edges of A which are not in the support of G. Then the morphism
H'(1;) : HY(A,G)—H (A, 7*@) induced by the canonical morphism ¢; : G — j*G over
the inclusion j : A’ < A is an isomorphism. U

Definition 2.13. We will say that a group-graph G over A is regular if the restriction
morphisms pS : Gy — G are isomorphisms as soon as v,e € supp(G).

Let A’ be a subtree of a tree A. An edge e = (v,v') € Eda is adjacent to A’ if
v € Vea \ Vear and v' € Vepr. We define the contraction A/A’ as the tree whose vertices
are

VeA/A/ = (VeA \ VeA/) L {UA/}

and whose edges are the edges of A which do not belong to A’ and are not adjacent to A’,
jointly with an additional edge ¢ = (v, va/) for each adjacent edge e = (v,v') to A’ with
v ¢ VeA/,

Eda \ Eda— Eda/ar, e e oré. 9)
There is a natural surjective graph morphism cas : A — A/A’ given by car(v) = var if
v € Vear and car(v) = v otherwise.

If A” ¢ A’ C A are subtrees of a tree A then we have a natural isomorphism

g AJA—=(A/A")/(A'/A") such that carjar 0 can = jocar. (10)

If G is a C-graph over A the direct image G := (ca/)«G over A/A’ satisfies GUA, =
HOA',G), Gz = G, if e € Edp is adjacent to A’ and G, = G, otherwise.

Lemma 2.14. Let G be a regular C-graph over a tree A and let A’ be a subtree of A such
that all its edges are contained in the support of G. Then (car)«G is a regular C-graph over
A/A.

Proof. It is easy to check when A’ has only one edge. In the general case, we proceed by
induction on the number of edges of A’ using isomorphisms (10). U

We call active edge of a regular C-graph G over a tree A any edge a = (v,Vv') € Eda
such that G, # {0} and G = {0}. If G, # 0, the vertex v will be called active vertex
associated to a and denoted by v,. If G, = G = {0} and G, # {0}, we select one
of the two vertices v or v/ as active vertex associated to a. Let (S, )aer be the collection
of path connected components of supp(G), i.e. the maximal subsets of supp(G) such
that any two elements can be joined by a path in supp(G). We say that S, is an active
component if it contains an active edge, or equivalently an active vertex. We denote by
I’ the set of indices o € I such that S, is active and not reduced to a single edge.

Let 7 be the collection of all active edges. Now, let us choose one edge a,, in each active
component S,, o € I, and let us write

= \{an; a€l}.

Theorem 2.15. Let G be a regular C-graph over a tree A. If A" = then H'(A,G) =1,
otherwise we consider the map

b6:): [] Ga— H'(A,G)

acy’
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induced by 6, : [] Ga — ZY(A,G) defined by 5.((ga)a) = (gue) with gye =1 if e ¢ o'
acy/’!
and

Ova,a = g;1 y  9vi,a = Ja
for a = (vy,V') € &'. Then [§,] is bijective and if C = Ab or C = Vec then [0.] is a
C-isomorphism. Moreover, if C = Vec and all the vector spaces Gy, x € supp(G), have
the same dimension d then
dim HY(A,G) = (a—p) -d
where a is the number of active edges, p is the number of active connected components of
supp(G) not reduced to a single edge.

Proof. We reason by induction on the number n(A, G) of path connected components of
supp(G) not reduced to a single vertex or a single edge. If n(A,G) = 0 the statement is
clear. If n(A,G) > 0 we consider a path connected component S, of supp(G) not reduced
to a single edge nor a single vertex. It contains a nonempty maximal subgraph C,. If S,
is an active component we consider the graph C, given by Edc, = Edcr U{an} C supp(G)
and Vec, = Vecr U {va,,V'} where a, = (va,,V') is the active edge previously chosen to
define &', If S, is not an active component then we set Cy, := C”,. Let ¢ : A — A= A/C’
be the contraction of the subtree C,y C A. By Lemma 2.14 the C-graph G = ¢, G over A is
regular and @7’ ~ ¢/’ under the bijection (9). Moreover we have the following commutative
diagram
[0]

T

0
[1 Ga—SZY(A,G) —= HY(A,G

L

1 Gs—=Z'(A,G)— H'(A,G

sed [5,.]
G

where the left vertical arrow, induced by the bijection (9) using that Gs = G,, is the
identity. It is clear that every vertex of C, N supp(G) is repulsive for the restriction of
G to C,. By applying Theorem 2.10 we deduce that H'(C,, G) = 1 so that hypothesis
(c) in Lemma 2.11 is fulfilled for the contraction map ¢ : A — A. Consequently H'(j.)
is bijective (or a C-isomorphism when C = Ab or C = Vec). It is easy to see that if
Sq is an active component then ¢ := ¢(Cy) € Vez does not belong to the support of G,
ie. Gy = HY(C,,G) = 1. If S, is not active then {0} is a path connected component of
supp(G). In both cases n(A, G) = n(A, G) — 1. By the inductive hypothesis [6.] is bijective
(or a C-isomorphism). Therefore [,,] is bijective (or a C-isomorphism). The last assertion
is trivial. 0

2.7. Tensor product. If T is a Vec-graph over a graph A and W is a C-vector space we
can define the Vec-graph T'®c W in an obvious way and we obtain a functor

®c : VecG x Vec — VecG,

VecG being the category of C-vector space-graphs. The commutative property between
tensor product and direct sum gives an isomorphism between the functors

(T, W) = C* (AT @cW) and (T,W)— C*(A,T)®c W,
from VecG x Vec to the category of vector space complexes. It induces an isomorphism
(T, W) — H' (A, T @cW)) = (T,W) = H' (A, T) ®c W) (11)

between functors from the category VecG x Vec to Vec.
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3. EQUISINGULAR DEFORMATIONS OF FOLIATIONS

3.1. Deformations of foliations. Consider a germ F of singular foliation at the origin of
C2?, given by a germ Z = a(z,y)0; + b(x,y)d, of holomorphic vector field with {a(z,y) =
b(xz,y) = 0} = {0}. Let Q@ = (Q,up) be a germ of manifold. A deformation of F
over () is a germ of foliation F¢- on (C? x @, (0,up)) defined by a germ of vertical
(tangent to the fibers of the canonical projection prg : C? x Q — C?) vector field X =
A(x,y,u)0; + B(x,y,u)d,, whose restriction to C x {ug} is equal to F,

Dprg- X =0, VFg =F, 1:C?=C*xQ, uz,y):=(2,y,u0).

The germ @ is called parameter space of Fg-. If A is a germ of holomorphic map from
a germ of manifold P* = (P, tg) to @ satisfying A(tg) = g, the pull-back of F¢g by A is
the deformation A*Fg- of F over P, defined by the vector field \*X = A(x,y, A\(t))0, +
B(z,y,A(t))0y. When Q = {up}, X is the constant map and A\*Fg- is called constant
deformation over P and is denoted by Fg'.

Two deformations Fg- and ]:é) of F with same parameter space )" are topologically

conjugated, or C’-conjugated, if there is a germ of homeomorphism ® that is a defor-
mation of id¢2, that sends the leaves of F- on that of ]-"é}

D (C?xQ,(0,u0))——=(C* x Q,(0,up)), prgo®=prg, Por=1, (Fo)=TF4;

we will say that ® is a conjugacy of deformation from Fg- to .7-"6’24 and we will denote
o Fo — ]:é}. We will say that a deformation is trivial if it is conjugated to the constant
deformation.

Remark 3.1. (a) If ® : Fo- — F{,., the pull-back \*® of ® by a map germ A : P" — @,
defined by

NP (C?x P,(0,t9))—=(C? x P,(0,t0)), N®(z,y,t) = d(z,y,\t)),

is a conjugacy from the deformation \*Fg- to A*Fp,.. (b) If p: N — P is a germ of
holomorphic map, we have the relation (Ao p)*Fg = p*A\*Fg-. O

Let us recall that a deformation Fq- is called equireducible if there exists a map germ
called equireduction map

Ery : (Mr,., ) = (C* x Q,(0,up)) (12)

obtained by composition of proper holomorphic map germs

E]-‘Q_ =Fio--- OEk, Ej : (Mj,Kj) — (Mj—].ij—l)7

(M[), KO) = (CQ X Q’ (Oa UO)) ) (Mk’ Kk) = (M]:Q ’ guo)a
fulfilling the following properties (i)-(iii) below: for 1 < j < k let us write
El:=FEj0---0E;: (Mj,K;) = (C* x Q,(0,up)), m;:= pr oE: M — Q,
and let us denote by J—"gg. the foliation (E7)~1(Fg-) on Mj, then for j = 1,...,k, we must

have:

(i) on an open neighborhood of K; in M; the singular locus of ]:é is regular and the
restriction of 7; to it is a covering map over an open neighborhood of ug in @;
(i) Ej is a blow-up map germ with center a union C; of components of the singular locus

of ]_-g?_—l and K; = Ej_l(Kj_l); moreover C is the singular locus Sing(Fg-) of Fg;
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(iii) there is an open neighborhood U C @ of ug such that for any u € U the restriction
of ]:5. to lel(u) is a reduced foliation at each of its singular points; moreover the

restriction of E* to 7 '(u) is the minimal reduction map of the germ at pré1 (u) N
Sing(Fg-) of the restriction of Fg to prél(u).

We will write:

Ery =Bz (C), = (Mry Euy) = Q. Fy = Fb s (13)
By induction on j = 1,...,k, we check that 7! is a submersion. The exceptional di-

visor Er, Is an hypersurface with normal crossing and the restriction of 7 to each of

its irreducible components is a holomorphically trivial fibration with fiber P!. Its special
fiber

—1 -1
SUO = E]_—Q‘ (0, UO) = g]:Q, Nt (UO) . (14)
is a curve with normal crossings and irreducible components biholomorphic to P'; the

restriction of Er, to the special fiber M,, := 7t~ (ug) of MF,,. is identified to the
reduction map Er : (Mr,EF) — C? of F,

Er = Er,m,, + (Mug, Euy) — C? x {ug} ~C?, (My,,Eu) =~ (MF,EF), (15)

and the special fiber of 7 ,

— 7
Fio=F

Q| My, (16)

is identified to the reduced foliation F* := EZ!(F) on Mz. Notice that any constant
deformation .7-"8 is equireducible and its reduction map is the product map of the reduction
map of F with the identity map of Q:

Erg = Er xidq : (MF x Q& x {uo}) = (C* x Q,(0,u0)),  (m,u) = (Ex(m),u);

Using the fact that pull-back process induces biholomorphisms at the fibers level one checks
the following property:

Proposition 3.2. The pull-back p*Fg- of an equireducible deformation Fg- over Q" of a
foliation F by a holomorphic map germ p : P° — Q°, is an equireducible deformation of
F over P and its equireduction map is the pull-back ,u*EfQ. of the equireduction map of
Fo- -

For equireducible deformations we may consider a special class of C'-conjugacies:

Definition 3.3. Let Fg- and fé)‘ be two deformations over @ = (Q,ug) of a foliation F

and let F: (C% x @, (0,u))—(C2 x Q, (0, up)), prg o ' = prg, be a homeomorphism that
sends the leaves of Fg- to the leaves of .7-"6’9.. We will say that F is excellent or of class
cex, if

(1) F lifts through the reduction maps of these foliations
Er, : (Mz,,E4) = C*x Q, Ez o (Mgz €)= C? x Q,

) Cug

i.e. there is a (unique) germ of homeomorphism F* : (Mrg,., Euy) — (be,,S{LO)
satisfying Efég' oFt=Fo Er,.,
(2) F* is holomorphic in a neighborhood of each point of Sing(E,,) U Sing(F%,) C Eugs

except perhaps at the singular points of £, that are nodal singularities of the special

ﬁber}"go of Fr., cf (16).
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Remark 3.4. According to Camacho-Sad index Theorem, there is a non-nodal singular
point of ]:22, in each invariant component of the special fiber &,, of the exceptional divisor
of the reduction of Fg-; consequently the holomorphy property (2) in Definition 3.3 induces
the transversal holomorphy of F* at any regular point of the foliation ]-'é,. U
Remark 3.5. If y : PP — @ is a holomorphic map germ and F' is a C*™*-conjugacy

between two equireducible deformations Fg- and Gg- of the same foliation F, then p*F' is
a C™-conjugacy between the deformations u*Fg- and p*Gg-. O

3.2. Equisingular deformations. Let us consider an equireducible foliation Fg-, over a
germ of manifold Q = (Q,ug), of a foliation F on (C2,0). We keep all previous nota-
tions (13)-(16). We will denote by Diff (C x @, (0,ug)) the group of germs of holomorphic
automorphisms of (C x @, (0, up)) fixing the point (0, up) and by

Diffo(C x @, (0,up)) := {h € Diff(C x @, (0,u0)) | prg o h = pry}, (17)
the subgroup of automorphisms over Q).

Now let us fix a point op in each F,,-invariant component D of &,, that is a non-
singular point of this foliation and let us choose a germ of holomorphic submersion

gp : (M]:QA,OD) — ((C X Q, (O,UQ)), gD(OD) = (O,UO),

that is a map over Q' i.e. pryogp = 7, constant on the leaves of .7-"22.. We will say
that gp is a transversal factor to .7-"22. at the point op. Classically the holonomy of
}—2) along D realized on gp is the group representation of the fundamental group of the

punctured component D* := D\ Sing(}"é)

:
’H;Q : (D%, 0p) — Diffo(C x @, (0, up)) (18)

that associates to the class of a loop v in D*, v(0) = op, the automorphism h. over @
such that gp o b7 'is the analytic extension (equivalently the extension as first integral of

.7-"22) of gp along 7. Up to composition by inner automorphisms of Diff(C x @, (0,uo)),
this representation does not depend on the choice of the point op in D* or that of the
transversal factor gp.

For a germ of holomorphic map u : P — @ we will identify to Mz the special fibers of
the reductions of F¢g- and of p*Fg-, see (15). The pull-back by p of a submersion over @,

resp. a first integral over @)° of ]—"22., being a submersion over P, resp. a first integral over
P of u*}"ﬁ ., we have:
e the pull-back p*gp of a transversal factor gp to fg., considered as a map over @',
is a transversal factor to u*]-"g at the same point of the same invariant component
D of £x, and the holonomy of u*]—"é. represented on it is

urF '

Hy @ =p* OH;Q , (19)
where
1" : Diff g(C x @, (0,up)) — Diff p(C x P, (0,20)), h+ (u*h: (2,t) = h(z, u(t));
e if Hp denotes the holonomy group of ]-'g along D, i.e. the image of the morphism

FL.
Hp?, then p*(Hp) is the holonomy group of ,u*]-"g along D.

Let us denote by Diff(C,0) x {idg} C Diffo(C x @, (0,up)) the subgroup of automor-
phisms that do not depend on u € Q.
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Definition 3.6. We say that a deformation Fg of F over Q) is equisingular, if it
s equireducible and the holonomy representation of the reduced foliation .7-"5 along any
invariant component D of the special fiber £y, of the exceptional divisor Ef,,. is conjugated
to a morphism with values in Diff(C,0) x {idg}: there exists p € Diffo(C x @, (0, uo))
such that

FL.
Typ © Hp? + m(D*, 0p) = Diff(C,0) x {idg} C Diffo(C x Q, (0, ug))
where Ty, is the inner automorphism ¢ — p o ¢ o 1/;151 of Diffg(C x @, (0, up)).

In other words, an equireducible foliation Fg- is equisingular if and only if for any invariant
;

Fe.
component D of &,,, the holonomy representation H DQ is conjugated to the holonomy
representation along D of the constant foliation ]-"g;.ﬁ, ie.

FE,. Foor
Typ 0 Hp® =Hp® . (20)

for an appropriate ¢¥p € Diffo(C x @, (0, up)).

Proposition 3.7. The pull-back by a holomorphic map germ p : P° — Q" of an equisingular
deformation Fq- over Q) is an equisingular deformation over P.

Proof. Let us suppose equality (20) satisfied, and let us denote by kp. : P — P’ the
constant map ¢ — to. Since kp.u*Fq- is the constant deformation of F over P, it suffices
to prove the equality

,LL*]'—u. H*A,LL*]:u.

Tugp OHp & =Hy 9, (21)
kp- : P — P being the constant map ¢ — to. Trivially we have: 7y, o u* = pu* o7y,.
Hence, it follows from (19) and (20):

“FL. FL FL o L. ) Fhy.

Turip @ Hp & = Tuepp o p 0 Hp? = oy, 0 HpY = o T =9,
the last equality follows from the fact that the constant deformation ’{22“7:@' is equisingular
and thus fulfills the corresponding relation (19). Equality (21) results from the trivial
relation kg o p = p o kp- that gives u* k). Fo = kp.p*Fg-. O

3.3. Good trivializing system. In all the sequel we will make the hypothesis that the
considered foliations F are generalized curves, i.e. the reduced foliations F* have no
saddle-node singularities. Consequently at each singular point s of F* in an invariant
component D of Er, the holonomy around s and the Camacho-Sad index CS(F ¢ D, s)
determine the analytical type of the germ of F# at s. We will see that this property will
imply the “C®™-rigidity” of F* along each component D of £, in the meaning that the
germ along D of the reduced foliation associated to any equisingular deformation of F, is
C®*-conjugated to that of the constant deformation.

Let us consider an equisingular deformation Fq- of F. Let us keep the previous notations
(13)-(16) and let us denote by
LI:i : (M}‘,g]:)%(M}‘Q,guo), E]:Q OLﬁ:LOE].‘, (22)
the lifting throught the reduction and equireduction maps of the canonical immersion
11 (C%0) = (C? x Q,(0,u0)),  (2,y) = (z,y,u0). (23)

We will also denote by j# : Mz < Mz x Q the canonical immersion m (m,ugp), by
prg : C?>x Q — Q and prﬁQ : Mr x Q — @ the canonical projections, and we again write
mh = prg o Er, o (MF, , Euy) = Q.
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Theorem 3.8. If F is a generalized curve, then we can associate to each irreducible com-
ponent D of Ex, a homeomorphism germ

Up : (Mg, ,15(D)">(Mr x Q,D x {ug}),
so that:
(i) ¥p is a map over @, i.e. prﬁQ oUp =7, and corresponds to the identity map over
ug, t.e. ¥po oA :jﬁ;
(ii) Up is holomorphic at each point of Sing(&y,) U Sing(FEO) except perhaps at the sin-
gular points of £, that are nodal singularities of .7-"50 ;
(i1i) ¥p conjugates the foliation ]—"22. to the foliation fgﬁ obtained after equireduction of
the constant deformation FE! ;
(iv) the germ of Wp o Wy at the intersection point {spp} = (D N D) x {ug} of two
irreducible components D and D', is the identity when either spps is a nodal singular
point of ]:50 or Spp’ 1s a reqular point of ]:50,

The collection (Vp)p of these homeomorphisms indexed by the components of Ex is called
good trivializing system for Fg- .

Proof. We will proceed in five steps.

-Step 1: construction of Wp on a neighborhood Q of *(D \ Sing(F*)) with D invariant.
Let us fix a point op € D \ Sing(F*) and a transversal factor to .7-"22.

9: (Mr,.,*(0p)) = (C x Q,(0,up)) .
Let us also fix a C*° submersion
p: W — (D)

defined on a neighborhood W of /*(D) in M Fq» such that:

(i) the restriction of p to ¢#(D) is the identity map,

(ii) the restriction pg of p to the special fiber M,, := 7! ~!(ug) is a submersion,
(iii) p is holomorphic at ¢*(op) and also at each point s € Sing(&,,) U Sing(]—"ﬁo),

(iv) the fibers p~1(s), s € Sing(&,,) U Sing(}"ﬁo), are invariant by }'224.
There is a unique section o : (Cx @, (0,u0)) = (Mg, #(op)) of g, whose image coincides

with the fiber p~'(:*(0p)). We do a similar construction for the constant deformation.
First, at the point 6p := j%(op) we have the following transversal factor

§=goxidg : (Mr x Q, (6p,up)) = (C x Q,(0,u)), Jo:=prcogot,

with prg : C x Q — C the first projection. Next, we define the following submersion p
onto D x {up}

Y (W) x Q — D x {ugy, (m,u)— (F Lo pgoif(m),ug).

Finally we consider the section & of § whose image coincides with p~1(6p).

Now let us fix an element ¢p € Diffo(C x @, (0,up)) that conjugates the holonomy
representation along *(D) of .7-"}32. realized on g, to that of fg.ﬁ realized on §:

FL. Fo _
Typp © HDQ = /HDQ ) T¢D(¢) :=1Ypogo @Z}DIa

as in Definition 3.6 and equation (20). By classical theory of path lifting in leaves of
regular 1-dimensional foliations, there is a homeomorphism ¥ : Q —  where ) is an
open neighborhood of /#(D \ Sing(F*)) in W C Mp, and €2 is an open neighborhood of
(D \ Sing(F*)) x {uo} in MF x Q, satisfying the following properties:
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e when restricted to :*(D \ Sing(F*)), ¥ coincides with the map
W (D) D x {ug}, p > (), wo)
e U sends the fiber p~!(:(0p)) to the fiber 5~ (6p) and its restriction to p~1(¢#(op))
is equal to G op o g,
e U conjugates the restriction of fé‘ to © to that of fgﬁ to €,
o U is a lift of U°, that is po ¥ = ¥’ o p.
By construction, ¥ is a map over @', i.e. prﬂQo\If = 7* and its germ along .#(D\ Sing(F*))

is unique. Moreover, p being holomorphic at the singular points, ¥ is also holomorphic on
the intersection of €2 with neigborhoods of these points.

-Step 2: extension at a non-nodal singular point. The proof of Mattei-Moussu’s theo-
rem [11] given in [6, Theorem 5.2.1] shows that the closures of Q and €2 at the non-nodal
singular points of ]-'50 are neighborhoods of these points; in fact, the estimates made in [6]
are uniform in the parameters, see also [3|. Since ¥ constructed in Step 1 is holomorphic
near these singularities we conclude that ¥ extends holomorphically at these points by
classical Riemann’s theorem.

-Step 8: construction of Wp when D is dicritical. Classically, the holomorphic type
of ]—"g. along a dicritical divisor «*(D) only depends on the self-intersection number of
#(D) in the special fiber 7 ~(ug). Thus there exists a germ of biholomorphism ¥ :
(M7, H(D))=(Mr x Q,D x {ug}) over Q that conjugates .7-"%. to fg.ﬁ. Up to conju-
gating by a biholomorphism of (Mr x @, D x {up}) leaving ]_-gﬁ invariant we may also
suppose that W o # = jf It remains to modify ¥ at each point where *(D) meets an-

other component (f(D’) so that at this point the germ of ¥ coincides with that of the
homeomorphism constructed in Step 1 for D’. This follows from the following lemma.

Lemma 3.9. Let us consider two germs of biholomorphisms over C?
¢ (C*xC% Dy x {0}) = (C? x CY, ¢/(D; x {0})) ,
7 =1,2, of the following form:
¢ (2,9,u) = (6] (2, u), (w9, ) ), w = (ur, o ug),
with g{ : (Cx C%, Dy x {0}) — C, satisfying
g1(0,u) = gh(x,0,u) =0, gl(x,0) =2, gj(z,y,0)=y. (24)

Here Dy denotes the closed unit disk on C. Then for suitable real numbers 0 < r; < Ry < 1,
there exists a homeomorphism germ

g:(C?xC? Dy x {0})==(C% x C?, g(D; x {0})),
9(x,y,u) = (g1 (2, u), g2(, y, u),u)
of the same form, satisfying also Properties (24), such that
g(z,y,u) = g'(z,y,u) if |r] <ri, gla,y,u) = g (@,y,u) if R < |z < 1.
Proof of Lemma 3.9. Left to the reader. O

-Step 4: Extension at a nodal singular point s ¢ Sing(&,,). The extension of ¥ will be
done “by linearity” as follows. Let ¢ = (¢1,--+,(y) : (Q,u0) — (C9,0) be a chart on Q.

Since the holonomy around s is a trivial family, Camacho-Sad index of .7-"22. restricted to
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the fibers of 7* is constant along the singular locus. By linearization (with parameters)
there is a local chart

X = (wlanazla"'vzq) : (MzQ‘,S) — ((C2 X(Cq70)7 ZJ :Cjoﬂ-ﬁ’

such that .7-"2) = x }(£), where L is the one dimensional foliation on (Cgf?uhwuq, with
singular set {(0,0)} x C4, given by the linear differential equations system

zdy —oyder =du; =---=dug =0, acRyp. (25)

We may suppose that the z-axis corresponds to :*(D) and that p corresponds to the linear
projection on the first coordinate w; in C2. At the point 5 := (/! ~1(s),up) € Mr x Q,
with the local chart

v

X = (wl oLﬁan OLﬂvCl:"qu) : (M]: X Qaé) — (C2 X (Cq70)7
the component D x {ug} corresponds again to the z-axis, p is the linear projection and
we have: ]_-311 = x(£). Notice that ¥ o ¥ o x~! is a holomorphic automorphism leaving

invariant the foliation £, defined on a neigbourhood in C4+2 of a punctured disk D* =
{0 < |z| < e,y =0,u = 0}. It has the following expression:

)ZO\II ox_l(x,y,u) = (.ZE,{IVJ(LL‘,y,U),U) ) u = (ula" . 7“(1)7

¥(z,0,u) =0, ¥(z,y,0) = (z,y,0).
On {z} x CI*!, z € D*, the holonomy of £ along the loop v.(t) = (e*™x,0,...,0),
t € [0,1], is the linear automorphism h(z,y,u) = (z,e?™*y,u). The commutativity of
X o ¥ o x~! with these holonomy maps,

U (z, ¥y, u) = 20 (z, y,u)

gives

ffl(%%“) = A(l‘, u)y’ A(x7u) #0,
where A is a holomorphic map defined on an open set of C%ﬁ;}l,,_,,uq that contains the
compact set defined by €/2 < |z| < ¢, |u;| < nfor j =1,...,q. By the invariance of L
under ¥ o U o ™!, we have the equality:
de  dU de d
(—a—x—FT)/\(—a—x—{——y)/\dul/\---/\duq =0.
T N} T y

Hence: A J J
Z/\(—a—x—é—gy)/\dul/w-./\duqzo.

Since the differential form —a %

<+ % in C? posseses only constant holomorphic first in-
tegrals, A does not depend on the variable x. It extends trivially to a holomorphic map
defined on {|z| < &,|u;j] < 71,5 =1,...,q}. Thus the automorphism Y o ¥ o y~! extends
to a neighborhood of the origin in C%*2, as a holomorphic automorphism ¥ leaving £
invariant. We conclude that the desired extension of W is given by x ' o Wo y.

-Step 5: Extension at a nodal singular point s € Sing(&,,). If by Step 3 we extend at a such
a point s the homeomorphisms along the components D and D’ meeting at s constructed
in Step 1, we obtain two germs at s of biholomorphisms ¥ and ¥’ that do not fulfill the
requested property (iv). Thanks to the following lemma, whose proof is left to the reader,
we modify them so that they coincide as germs at s.

Lemma 3.10. Let ¢’ : ﬁ? X D%%Wj, 7 =1,2, be two biholomorphisms leaving invariant
the linear foliation L defined by (25), such that

(1) ¢ (x,y,0) = (z,y,0),
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(2) 9! (@,y,u) = (z, 93(x,y,u), w), with g3(z,0,u) =0,

(3) *(z,y,u) = (43 (2, y, ), y, u) with g}(0,y,u) =0,
where Dy, = {|z| <n} C C. Then for n > 0 small enough, there are suitable real numbers
0<C <0y <1<Cy<C such that there exists a homeomorphism germ

=2 ~ =2
g: Dl X D%—>Dl X D% ) ($7 Y, u) = (gl(xa Y, U), 92(x7 Y, U), u)
satisfying also Properties (1)-(3) above, that is equal to g1 when |y| < Cy |z|%, to ga when
ly| > C1|z|* and to the identity map when Ch|z|* < |y| < Oy |z|®.
This achieves the proof of Theorem 3.8. O

3.4. Deformation functor. Let us consider the pointed set
Def?_-' = {[Fo] : Fg equisingular deformation of F}/ ~¢cex

of all C**-conjugacy classes [Fq-] of germs of equisingular deformations Fg- over Q" of a
fixed foliation F. This set is pointed by the class of the constant deformation.

The assignment Q" — Defg is a contravariant functor, because according to Remark 3.1,
to a germ u: P — @ corresponds the well defined pull-back map

Theorem 3.11. Let ¢ : (C2,0)—+(C?,0) be a homeomorphism germ that is a C**-conjugacy
between two germs of foliations G and F = ¢(G) which are generalized curves. Let
Q = (Q,up) be a germ of manifold. Then there exists a bijective map

¢* : Def$ % Def§
defined by the following property:
* 1) = -| if and only if there exists a germ of homeomorphism over
o*([Fo Gq-| if and only if th f h h Q

P (CQ X Q7 (Oau()));)(CQ X Q:(()?u()))a prQoq):prQa
that sends the leaves of Gg- on that of Fq-, is excellent, and satisfies

(I)(xa Y, uO) = (¢($, y)7 UO) :
Moreover, ifv : (C2,0)—=(C2,0), ¥(K) = G, is a C**-conjugacy between a germ of foliation
K and G, then
(o) = * 0 ¢* : Def% —5Def . (26)

Proof. Under the hypothesis of the theorem, let us consider a class ¢ € Defg and an
equisingular deformation Fg- of F in ¢. In a first step we will construct an equisingular
deformation Gg- of G and a C**-homeomorphism @ satisfying ®(Gg-) = Fg-, such that
Por=10¢, with 1 : C?> — C? x Q, t(z,y) := (2,9y,up). Then in a second step we
will verify that the class [Gg] € Defg does not depend on the choice of the deformation
Fo in ¢. Finally in a third step we check that the map ¢* that associate to each class
¢ = [Fol € Defg the class of the deformation Gg- defined in the first step, fulfills the
property (x) and the functorial relation.

-Step 1. We again denote by ¢ the lifting (22) of + through the reduction and equireduction
maps Er and Er, ., by g% My < M7z x Q the lifting of ¢ through through E7 and E]_-g_,
that is j#(m) := (m,ug), and finally by

¢ : (Mg, &) — (Mr.E7), Ero¢f=¢o kg,
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the lifting of ¢ through Ex and the reduction map Eg : (Mg,&g) — (C2,0) of G. The
following homeomorphism

o)+ (Mg x Q&g x {uo}) — (Mr x Q,Ex x {uo}), (m,u) — (¢(m), u),

is excellent and sends the reduced constant foliation gg;.ﬁ over Q° with special fiber G¥, to

the constant foliation ]—"g.ﬁ. According to Theorem 3.8, let us fix a good trivializing system
for Fo-

Up : (M, H(D)5(Mr x Q. D x {ug}), Up(Fh)=Fob, Upoit=j,

indexed by the irreducible components D of £r. At the intersection points {spp/} :=
(DND")x{up}, DN D" # 0, the cocycles

Oppr = (gf)) Lo UpoUpl o, : (Mg x Q,spp)——+(Mg x Q,spp) (27)
are germs of biholomorphisms over ) fulfilling the properties
‘IJDD'(QS»ﬁ) = gg-ﬁ , ®ppojt=jt.
Indeed according to (ii) and (iv) in Theorem 3.8, if the intersection point D N D’ is not a

nodal singular point of F¥, the germs of qﬁﬂQ at the point spps and of ¥pr at \I’Bl(SDD/)

are holomorphic; otherwise, at \Iff)l(s ppr) the germs Up and Wy coincide and ®ppy is
the identity map.
Let us consider the manifold germ

(N, &) == Up(Mg x Q,D x {ug})/ (®pp), 0:(N,&)—Q",

obtained by gluing neighborhoods in Mg x @ of the irreducible components j#(D) using
these cocycles, and endowed with the germ of submersion 6 obtained by gluing the germs
of the canonical projection prg, : (Mg x Q,D x {ug}) — Q. Since ®ppr are the identity
on the special fiber Mg x {ug}, 7% induces an embedding

A (Mg, Eg) = (N, &)
that is a biholomorphism germ onto (07*(uo),&5). The gluing maps leaving invariant
the constant foliation Qg.ﬁ, they define in the ambient space (NN, 8(’;) a foliation germ gg;,.
tangent to the fibers of 6, that coincides with A(G*) on §~'(ug). Thanks to the relations
\IIB} o qSﬁQ. o @BE, = \Ilf)l o qﬁﬂQ. given by (27), the collection of homeomorphisms

Op =Wyl ok : (Mg x Q5% (D)) = (Mr, ,£(D)), ®p(G5*) = Fp.,
glue as a homeomorphism over
o (N, EG)—=(Mx,., "(EF)), prood® =0,

that send the leaves of Qb to that of ]-'é,. As the maps ¢! and ¥p, this map is excellent
in the meaning that it is also holomorphic at the non-nodal points of the corresponding
foliation. It satisfies:

oA =ifogf (28)
On the other hand, the preimage by ® of the exceptional divisor £ Fo 1= E}é ({0} x Q) is
an hypersurface £g which is also exceptional in IV (see [10, p. 306]): there is a holomorphic
map germ

C:(N,&;) = (C* x Q,(0,up)) such that prgoC =0, C(&)={0}xQ,

that is a biholomorphism from complementary of £g to the complementary of {0} x Q.
This last property allows to define a germ of holomorphic foliation G- on (C? x Q, (0, ug)),
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that is the direct image of gé?. by C. Up to perform an additional biholomorphism we also
require that A contracts to the embedding ¢, i.e. C o A =10 Eg, so that

Gac2x (0} = C(Gl g1 (uy)) = CLALGY) = (Eg(G)) = 1(9).

In other words, G¢- is a deformation of G. By construction this deformation is equisingular
and more precisely there is a biholomorphism germ

F:(N,&)— (MgQ ,5/ ),

such that

k¥ being the lifting of ¢ through the reduction map Eg and the equireduction map Eg,,. :
(Mg, , &) — — (C% x @, (0,up)) of the deformation G-,

(N, &)
A C
(Mgagg)/1 F \(C;X Q. (0,u)) -
(Mg, , &)

Now let us notice that since C'(£g) = {0} x @, the homeomorphism germ &’ contracts
through C and E;Q,to a germ of map

O (C?xQ,(0,up) = (C*xQ,(0,u0)), Ep, o® =00C,

that by construction is a germ of homeomorphism satisfying:
prgo®=prgy, ®(Gg)=7Fqg, Por=109.
To achieve Step 1, it remains to check that ® is excellent. Indeed, ® o F~! is a lifting of @,
o F': (Mg, €)= (Mr, Eu), Ery o(@oF ) =0oCoF '=do0kFg, .

Since @’ is excellent we deduce that ® is also excellent.

-Step 2. Notice first that up to C®-conjugacy the deformation Gg- obtained by this
construction does not depend on the choice of the good trivializing system (Up)p. If
(N, éu'é) QQ and Gg- are similarly obtalned from another good trivializing system (¥p)p
then the homeomorphisms ¥p o \Il :(Mr xQ,D x {up}) - (Mr x Q,D x {up}) glue
to an excellent homeomorphism that conjugates (jb and Qb. and contracts to an excellent
conjugacy between the deformations QQ- and Gg- of G.

Now let us show that [Go-] does not depend on the choice of the representative Fg-
of ¢ € DefQ' Let .7:"Q be another representative of c, GQ. a deformation of G and

: (C? x Q (0,u9)) — (C? x Q, (0, uo)) a germ of excellent homeomorphism such that

(QQ) ]:Q prg o d = prg and doiL=1r0¢. Then QQ is C*-conjugated to Gq-.
Indeed, if £ is an C®*-homeomorphism such that &£ (.FQ ) = Fo and £ o = ¢, then the
C®™-homeomorphism Y := ® 1 0 ¢ o ® trivially satisfies T(QQ») =G and YT o =¢. This
implies that the map ¢* is well-defined.

-Step 3. The direct implication of (x) is clear. To see the converse, we apply the previous
argument to the case Fo- = Fg-. The functorial relation follows directly from (%) and
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if ¢ = idg2 then ¢* is the identity map on Defg. This implies that ¢* is bijective and
(671 = (o) a
We check that for any holomorphic map germ p : P° — @ and any deformation Gg- €
¢*([Fg']) we have:
" (" Fol) = WG],

i.e. the following diagram is commutative:

Def¢ —» Def? (30)

-, b

*

DefZ S Deflgj‘ .

Lemma 3.12. Under the assumptions of Theorem 3.11, if u: P — @Q and A\ : R — P
are holomorphic maps between germs of manifolds, ¢ : G — F and ¥ : K — G are C™-
conjugacies and if we write

(1, ) =" o™ : Defg — Defg' ,
then we have (X, 1)* o (p, @)* = (o X\, ¢ o h)*.

Proof. 1t suffices to check that the following diagram is commutative using (26), dia-
gram (30) and Remark 3.5,

Defg (31)
I i
(won [ Def? — Deff
S
A* A*
Def% <, Defg ¥, Deff
(¢op)*
O

Let us denote now by

e Fol the category whose objects are the germs of foliations on (C?,0) which are
generalized curves and whose morphisms ¢ : G — F are the germs of C™-
conjugacies, ¢(G) = F;

e Set the category of pointed sets whose objects are the pairs (A, a) formed by a
set and a point of this set, the morphisms F': (A,a) — (B,b) being maps from A
to B such that F'(a) = b;

e Man' the subcategory of Set’, consisting of pairs (A, a) with A endowed with a
complex manifold structure, the morphisms being holomorphic pointed sets mor-
phisms p: P — Q.

Definition 3.13. The deformation functor is the contravariant functor
Def : Man' x Fol — Set, (Q',F) — Def%

defined by associating to any morphism (u, @) : (P',G) — (Q, F), the pull-back map

(1,0)" : Def? = Def,  [Fom 6" (1 ([Fo ) = 6" (" Fo )
The fact that Def is a functor follows from Lemma 3.12.
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As a direct consequence of Theorem 3.11, if [Gp| = (u, )" ([Fo]) with p : P =
(P,to) — @, then for t € P sufficiently close to to the foliations Gp- |2 1y and Fq-[c2 x {u())
are C**-conjugated.

4. GROUP-GRAPHS OF AUTOMORPHISMS AND TRANSVERSAL SYMMETRIES

4.1. Group-graph of C**-automorphisms. Given a foliation F and a germ of manifold
Q" = (Q,up), let us consider the following sheaf Aut?_- over the exceptional divisor £ of

the reduction of F: if U is an open subset of £, then Autg(U ) is the group of germs
along U x {ug} of C**-homeomorphisms over @

O (MrxQ,U x {up}) — (Mr x Q,U x {up})

leaving invariant the constant family fé‘?t with fiber the reduced foliation F* and moreover
being the identity map on the special fiber Mr x {up}. The same definition works when
U is not open in £ and in that case M@(U ) coincides with the inductive limit of
@?_- (V') for V open subset of £ containing U, cf. Section 2.2. The property “excellent”
means here that at each point m in an invariant component of £ the germ ®,,, of ® is a
holomorphic germ if m € Sing(Ex) U Sing(F*), except perhaps if m is a nodal singularity
of F* belonging to Sing(£r), and that ®,, is transversely holomorphic if m is a regular
point of F*. According to [1] if D is an invariant component of £ and if one saturates by
F* a neighborhood of Sing(F*) N D, one obtains a set that contains all the regular points
of F¥ in D. Therefore when U contains D, the above transversal holomorphy property is
automatically induced by the holomorphy at the singular points; for this reason we did not
need to require it in Definition 3.3 of C**-conjugacy.

Definition 4.1. We call group-graph of automorphisms over ()" of F and we denote
by Aut?E the following group-graph over the dual graph Ar of Ex:

(i) Aut?_-‘ (D) = M?_-'(D), if D € Vea, is invariant;
(i7) Aut]Q:‘ (D) ={Ip}, if D € Ve, is dicritical ;

(117) Autg (e) is the stalk M?_- (s) of the sheaf@fg at the point s defined by e = (D, D"},
DN D' ={s}, if s is neither a regular point nor a nodal singular point of F*;

(iv) Autg (e) = {le}, ife=(D,D"), DN D" = {s} and s is either a regular point or a
nodal singular point of F*;

(v) the restriction map p%, : Autg (D) — Autg (e) is the restriction map of the sheaf
AutJQT‘ when D is invariant and e fulfills condition (iii); p%, : Autg(D) — {I} is the
trivial map otherwise;

where Ip, resp. I, denotes the germ along D x {ug}, resp. at the point (s,ug), of the
identity map idpr-xq-

Remark 4.2. Notice that restricted to its support, see (8), Autg coincides with the group-
graph associated to the sheaf @g defined in Section 2.2. The elements of Vea . U Eda -
not belonging to this support are exactly the elements given by (ii) and (iv): the vertices
that are dicritical components of Er, the edges (D, D) with D or D’ dicritical and the
edges (D, D') for witch F* has a nodal singularity at the point DND’. Clearly supp(Autg)
is a sub-graph of £r called cut-graph of 7. We denote by supp(Autg) = pea A% its
decomposition into connected components which we call cut-components of Ar. We
have:

H'(AF,Aut?) = [ H' (A%, Aut%). (32)

acA
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This decomposition, produced by the points (ii) and (iv) and Remark 2.12 in the above
definition, may seem artificial. However the cocycles (¥ o \I’B,l) that we will consider are
constructed using good trivializing systems (¥ p)p provided by Theorem 3.8. Consequently
the property (iv) of that theorem guarantees that ¥p o \11]5,1 is trivial when D or D’ is
dicritical or when F* has a nodal singularity at D N D’. ([l

Now let us consider a germ of C®*-homeomorphism ¢ : (C?,0)—=(C?,0) which conju-
gates two foliations G and F, ¢(G) = F, and the corresponding C**-conjugacy

) 1 (Mg x Q,E x {uo})—=(Mr x Q,&r x {uo}),  (p,u) = (¢*(p),u),
between the contant families gg.ﬂ and Fgﬁ. Let us denote by ¢, : &g — Ex the restriction
of ¢! to the exceptional divisors. If U C &g is an open set and ® belongs to gb;l @]Q_. (U) =
M?_— (¢.(U)), then gbgfl odo gbﬁQ belongs to MQQ(U) As described in Section 2.2, the
homeomorphism ¢, induces an isomorphism between the dual graphs of & and £x

Ay:Ag —Ar, Dw ¢ (D), (D,D')w (¢.(D),¢p.(D")). (33)
We thus obtain the following isomorphism of group-graphs over Ag:
o : Autg — Autg ,

Aut (Ap(x) 2@ = bl odogh € Autd (x), * € Ven, U Eda, .
On the other hand let p : P~ — @ be a holomorphic map between germs of manifolds.

The pull-back being a functor and, by definition, fgﬁ being the pull-back by a constant
map, it follows:

w* E;ﬁ:fgﬁ and ,u*¢ﬁQ. :¢§3..

Thus we have the equality ,u*(qbqul odo qSuQ) = gbgfl ou*dPo qbgg We finally obtain the
following commutative diagram of group-graph morphisms

Autg . Autg (34)

1k

Aut? —— Aut} .

Using the relations ¢* o * = (1 0 ¢)* and (uo A\)* = A\* o u* we deduce as in (31) that
the following assignments
(Q.F) = (Ar, Autf),

(11, 8) : (P,G) = (Q,F)) = ((,0)" = p* 0 9" : At — Autf) (35)
define a contravariant functor with values in the category GrG of group-graphs. When
restricted to generalized curves this functor is denoted by

Aut : Man' x Fol — GrG. (36)
From now on F will be a GENERALIZED CURVE.

For any deformation F¢- of F over @), let us choose a good trivializing system (¥ p) peve Ar

meaning that the properties (i)-(iv) of Theorem 3.8 are satisfied. The family (®pc)pee,
defined by

Ppe=Vpo¥y,, e=(D,D), (37)

is an element of Z!(Ax, Autf,?{).
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Lemma 4.3. The cohomology class C(Fg-) € H' (Ar, Autg) of the above cocycle (Pp.e) Dee
does not depend on the choice of a good trivializing system; moreover it only depends on
the C**-class [Fg| € Def?_- .

Proof. We check that if (\I’D)DEVeAf and (‘I],D)DeveA}— are two good trivializing systems

for Fg-, then the homeomorphisms ¥p o U ! belong to Autf,?;(D) and define a 0-cocycle
whose action on the cocycle (¥p o W) gives the cocycle (¥, o '), Hence C(Fg) is
well defined. On the other hand if ® is an C*-conjugacy between another deformation
G- of F over Q" and Fo-, ®(Gg ) = Fq-, we easily verify that (Vp o ‘w)DeVeAf is a good
trivializing system for Gg- with the same associated cocycle. 0

Theorem 4.4. For any germ of manifold @ and any foliation F which is a generalized
curve, the map

C% :Def¥ — HY(Ar,Aut}),  [Folw C(Fg),
1s bijective. Moreover the collection of the maps Cg define a natural isomorphism
C : Def=5H' o Aut,

between the contravariant functor Def : Man' x Fol — Set™ introduced in Definition 3.13
and the contravariant functor (Q°,F) Hl(A]:,Autf‘z—_) obtained by composing the con-

travariant functor Aut : Man' x Fol — GrG with the covariant cohomological functor
H': GrG — Set’ defined in (5) (pointed by the class of the identity).

Proof. The maps C’jc_z' are well defined thanks to Lemma 4.3. We proceed in three steps:

-Step 1: functoriality of C.  We must prove that, given a germ of holomorphic map
@ P — @ and an C®-conjugacy ¢ : G — F between generalized curves, the following
diagram is commutative:

Def?_-‘ ¢ A Defg
c¥ cg
H*
. Hl(o* .
H'(Ar, Aut$) (@) H'(Ag, Aut$) "
L H' ()
H(p*) Def? ¢ Defg
cr &
H'(¢*)

H! (Ar, Aut]Pi—‘)

H! (Ag, Autgl)

Let us check first the commutativity of the lateral faces: If (¥p) D€Ven is a good triv-
ializing system for Fg- then (M*‘I’D)DeVeAF is also a good trivializing system for p*Fgq-.
Consequently we have:

CF (W Fo)) = (W ¥p o V)] = H' (1) ([Wp o Wpp']) = H' (") 0 CF ([Fq])-
To check the commutativity of the top face, we notice that by definition ¢ := H!(¢*) o
Cg ([Fo-]) is the cohomology class in H'(Ag, Autg ) of the cocycle (qﬁg_l o¥poWy; o¢ﬁQ_ ).
It coincides with the cocycle (27) used in the proof of Theorem 3.11 to construct the de-

formation Go- € ¢*([Fgo]). Therefore ¢ = Cg([QQ]) The same arguments give the
commutativity of the lower face. That of the back and front faces of the cube results from



TOPOLOGICAL UNIVERSAL FAMILIES OF HOLOMORPHIC FOLIATIONS 29

the relations (30) and (34) respectively.

-Step 2: injectivity of Cjc_g‘. Let (\IJD)DGVQAF resp. (\I"D)DGVQAF be good trivializing
systems for two equisingular deformations Fg-, resp. F,., inducing the same cohomology

class in H 1(A;,Aut?_-'). There exist ®p € Aut]QE‘ (D), D € Vea,, such that the following
relation:

dpoWUpo \IJB,I 0o®d l=T'po \IJ'B}
is satisfied for any pair (D, D') of irreducible components of £ such that {spp'} = DND’
is neither a nodal singularity or a regular point of F#. This relation also means that the
homeomorphisms Kp := ¥’ Bl o ®p o ¥p defined on neighborhoods of D x {ug} coincide
on neighborhoods of (sppr,up) and induce a C*™*-conjugacy between Fg- and ]:(’Q..

-Step 3: surjectivity of ng‘. Given a cocycle (®p.) € Z1 (A]:,Autf,?{), the construction of
an equisingular deformation Fg- equipped with a good trivializing system satisfying (37),
may be done by a gluing process as in the proof of Theorem 3.11. O

4.2. Sheaf of transversal symmetries. Let us fix again a foliation F and a germ of
manifold @ = (Q,up). For an open set U C Er we will say that an automorphism
NS @g (U) fixes the leaves, if it leaves invariant the codimension one foliation F* x
Q. We denote by &g C Mfg, the subsheaf of normal subgroups consisting of these
automorphisms. We will describe in an explicit way the quotient sheaf
Sym%? = Aut$ /Fix? .
To do that let us consider the normal subgroup
DIEOQ(C X Q, (O,UO)) = {d) € DIEQ(C X Q, (O,Uo)) | ¢(Zau0) = (Z,UO)},
of the group Diffo(C x @, (0,up)) defined in (17), and for any subgroup
G C Difo((C X Q, (O,’U,()))
let us adopt the following notations:
e Cp (G) is the centralizer of G, i.e. the subgroup of Diffo(C x @, (0,u0)) whose
elements commute with any element of G;
o C3.(G) = Co (@) NDIffRH(C x Q, (0,up));
e in the monogenous case G = (h), we write Cg-(h) and Cg) (h) instead of Cg-((h))
and C’%.((h>).
Now let us fix an invariant component D of Er. For m € D\ Sing(F*), let us choose a
germ of holomorphic submersion

g: (Mzr,m)— (C,0)

constant on the leaves of F¥. Any ¢ € @g (m) factorizes through g x idg, defining an
element g.(¢) € Diﬁ%(@ X @, (0,ug)) such that

g+(9) o (g x idg) = (g x idg) 0 ¢.
The holomorphy of g.(¢) results from the fact that ¢ is transversely holomorphic by defi-
nition. Clearly

g+ Aut? (m) — Diff) (C x Q, (0,uo)) (38)
is a surjective group morphism.
Lemma 4.5. The following sequence
1 — Fix% (m) — Aut% (m) % Diffd(C x Q, (0,u0)) — 1 (39)

1S exact.
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Proof. For the exactness at the central term, let us first notice that the germ at (m,ug)
of an element ¢ € Aut?_- (m) preserves the codimension one foliation F# x @ if and only if
there is a factorization g, (¢)’:

(Mr x Q, (m,up)) 2 (C x Q, (0, up)) 2> (C,0)

¢i lg*(qﬁ) g+(8)
gxidg pre \
(MJ: X Q, (mv uO)) - ((C X Q7 (0, uO)) - ((C70)

where pre(z,u) = z. Since g.(¢)(p, u) = (d(p, u), u), gu(¢) exists if and only if ¢(p, u) does
not depend on u. But ¢(z,ug) = z, therefore g,(¢)" exists if and only if g, (¢) = idexg. O

Lemma 4.6. I[fU C D is open* and connected and p € U, then we have the exact sequence:
1 — Fix$ (U) — Aut? (U) — Sym% (p). (40)

Proof. The statement is trivial if U = W N D and W C Mx is an open subset trivializing
the foliation F*. If U N Sing(F¥) = () we cover U by open subsets in Mz trivializing F*
and we conclude by connectedness of U. For the last case p € Sing(F*) we take a point
q € U\ Sing(F*) close to p and we note that if the germ of an element ¢ € @g (U) at p
is in hg (p) then the germ of ¢ at ¢ also belongs to @g (¢). By applying the exactness
of sequence (40) substituting U and p by U \ Sing(F*) and ¢ respectively, we deduce that
¢ € &g (U \ Sing(F*)). It remains to see that the germ of ¢ at p’ € U N Sing(F*) belongs
to @]Q_- (p"). For this we use the holomorphy of ¢ at p’ and the following characterization:
¢ € &]Qr (p') & (¢*w) Aw = 0, where w is the germ at p’ of a holomorphic 1-differential
form defining the codimension one foliation F* x Q. O

Let us fix an invariant component D of £r and let us denote by ip : D — Er the
inclusion map. Let us also fix a transverse fibration p : (Mr x @, D) — D satisfying
properties (i)-(iv) described in the step 1 of the proof of Theorem 3.8 and let us consider
the subsheaf over D

AutF , C ip'Autd

of automorphisms preserving the fibration p.

Lemma 4.7. If F is a generalized curve, for any connected open set U of D and any point
m € U \ Sing(F*), the following assertions hold:
(i) The sheaf Mg;p is locally constant over D\ Sing(F*) and the morphism g, defined
in (38) induces an isomorphism
Aut? (m) ~ Diff§y(C x Q, (0, uo));

(ii) The restriction map M?-_p(U) — Mgp(U \ Sing(F#)) is an isomorphism and g,

induces an isomorphism Aut?_-p(U) ~ C’%.(HU), where Hyy is the holonomy group

Hy = H%CQW (m1(U \ Sing(F*),m)) C Diff%((C x @, (0,up));

(i1i) For any p € U, the natural map AutJQT;p(U) — Aut%p(p) is injective.

Proof. Assertion (i) follows from the fact that the restriction of g x idg to each fiber of p
is a local diffeomorphism onto (C x @, (0,ug)). Assertion (ii) is a consequence of Mattei-
Moussu’s Theorem as in step 2 of the proof of Theorem 3.8. To prove assertion (iii), let

us assume that the germ of ¢ € @%p(U) at p is the identity. If p ¢ Sing(F¥) then

U may not be open in Ex.
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din\sing(F#) = id by assertion (i) and ¢ = id using also assertion (ii). If p € Sing(F*) then
there is ¢ ¢ Sing(F*) close to p such that the germ of ¢ at ¢ is the identity; we apply the
previous case and we conclude by the holomorphy of the germ of ¢ at p. O

Proposition 4.8. If F is a generalized curve, then the composition of the group sheaves
morphisms
Aut? < ip'Autd — ip'Sym% (41)

18 an isomorphism.

Proof. We have to see that Mg p(p) — Symg (p) is an isomorphism for each p € D. The
case p € D \ Sing(F*) follows from assertion (i) in Lemma 4.7 and the exact sequence
(39) in Lemma 4.5. Next, we fix p € Sing(F*) and we take [¢)] € Sym?_.' (p). There is a

neighborhood U of p in D and ¢y € @g (U) such that [¢y] — [¢p]. In the commutative
diagram below

&p € Aut? (p) Sym% (p) > [¢,]

Autg )
Fix? (U)

e

ou € Autg (U) > [pu]

b c

Aut? (U \ Sing(F*)) —5 Sym@ (U \ Sing(F¥))

the arrow a is an isomorphism by the regular case already considered and the arrow b is
also an isomorphism by assertion (ii) of Lemma 4.7. Hence there is ¢y € Aut?_— ,(U) such
that [¢y] and [¢y] are sent to the same element in Sym?__' (U \ Sing(F*)). Using the exact

sequence (40) we deduce that the arrow c is injective and consequently by is sent to (D]
By the commutativity of the top square the germ ggp of qEU at p projects onto [¢p]. This
shows that the composition (41) is surjective at p. The injectivity of the composition (41)
at p follows, as in the proof of assertion (iii) in Lemma 4.7, using the holomorphy of du
and the injectivity at the regular points, which has already been shown. ([l

Corollary 4.9. If F is a generalized curve, for any connected open set U of D, the following
assertions hold:

(i) The sheaf Symg is locally constant on D\ Sing(F*);

(i) The morphism g. induces an isomorphism Sym?__'(U) ~ C’%.(HU);
(i1i) We have the exact sequence:

1= Fix? (U) — At (U) = Sym§ (U) — 1.

Proof. Assertions (i) and (ii) are obvious from the isomorphism Aut?_-' ) Symg and
assertions (i) and (ii) in Lemma 4.7. To check the exactness of the sequence in assertion
(iii) it only remains to show the surjectivity of Autg (U) — Symg (U). This is so because
the composition

Aut? (U) = Aut? (U) — Sym% (U)

is an isomorphism thanks to Proposition 4.8. ]
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4.3. Group-graph of transversal symmetries. Let us again fix a foliation F that is a
generalized curve. We consider the normal subgroup-graph Fix?_- C Aut?_- defined by

Fix? (%) = Aut? (+) NFix? (x), * € Vea, UEda, ,
where Fix% (e) denotes Fix% (DN D') if e = (D, D') € Eda,..
Definition 4.10. The group-graph of transversal symmetries is the quotient group-
o
f

graph Symx defined by the group-graph exact sequence

. .79 : . .
1— Fix?_- — Aut?_- SEN Sym?_- = Aut?_- /Fixg — 1. (42)

For each invariant component D € Vea ., using the exact sequence (iii) in Corollary 4.9
with U = D, we have a natural® isomorphism:

Sym (D) = Aut} (D)/Fix¥ (D)Sym% (D), (43)

when F is a generalized curve.

We check that if (i, ) : (P,G) — (Q,F) is a morphism in the category Man' x Fol,
then the morphism (u,¢)* defined in (35) sends the group-graph Fixg into Fix} and
it factorizes (see Remark 2.4) as a morphism of group-graphs over the graph morphism
As : Ag — Ar defined in (33), that we also denote by

(1, 0)" : Sym% — Symf .
This allows to define a contravariant functor from Man™ x Fol to GrG
Sym: (Q,F) = (Ar,Sym% ), (1,0) = (1,9)"
The collection {Wg} of quotient maps (42) defines a natural transformation
Aut — Sym.
By applying the functor H' : GrG — Set’ to the morphisms 7'('2—. we obtain maps
HY Az, Aut?) — H'(Az,Sym% ) (44)

defining a natural transformation H' o Aut — H' o Sym. It follows immediately from
Lemma 4.12 below and Proposition 2.9 applied to the exact sequence (42) that:

Proposition 4.11. For any germ of manifold Q° and any generalized curve F, the map
(44) is bijective and consequently the natural transformation

H'oAut — H' o Sym
s an isomorphism of contravariant functors from Man™ x Fol to Set’.
Lemma 4.12. Assume that F is a generalized curve. For any edge e = (D,D’) of Ar

with D invariant, the restriction map Fix?_-A(D) — Fixg (e) is surjective.

A Aisa morphism of sheaves of groups over X sending a normal subgroup F into F’ then for
any open subset U C X the following diagram is commutative:

A(U)/F(U) — (A/F)(U)

| l

AY(U)/F(U) — (A'/F")(U)
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Proof. At the point {s} = DN D’ we take local coordinates (z,y) : (Mr,s) — (C2,0) such
that the foliation F# is defined by a vector field z0, + yB(z,y)d, with B(0,0) # 0. Let us
consider ® € Fixg (e) = @g— (s).

Let w = (u1,...,uq) be a centered coordinate system on @'. In the chart x = (z,y,u)
the foliation Fgﬁ is given by the vector field Z = 20, +yB(x, y)d, and the foliation F* x Q

is defined by yB(x,y)dx —xdy = 0. Let us denote by ¢ = yo®ox ™! the expression of ® in
this chart. Since ¢(z,y,0) = (z,y,0) and the points (z,y,u) and ¢(z,y,u) belong to the

. Ut Yt
same leaf Ly, ,, of F* x Q the function 7(z,y,t) = f(ﬁ(jf) ) dr ’Lz = f(ﬁ(zg ) yB‘éyE’y) ’Lz .

is well defined and holomorphic in an open neighborhood €2 of C' = {(z,y,u) : € < |z| <
2e, |yl < e, |u] <d} for 0 < § < & small enough, moreover 7(x,y,0) = 0. By definition,
the flow ®7 of Z satisfies @f(p) (p) = ¢(p) for p € C. Let o : C — R be a C* function
with compact support on z(2), that is equal to 1 in a neighborhood of {¢ < |z| < 2¢}.
The map p — &(p) = @g(w(p))T(p) (p) is a C* diffeomorphism, because its restriction to
u = 0 is the identity and moreover it is a local diffeomorphism as it can be easily checked
by computing its Jacobian matrix. Clearly the map ¢ = ¢! o ¢ coincides with ¢ on a
neighborhood of s, it preserves the codimension 1 foliation F* x P and ¢(z,y, u) = (z,y, u)
for e < |z| < 2e. Thus, ® extends to a neighborhood of D as the identity and defines an

element of Fix_c}?_-' (D). O

Now we will give an explicit expression of the group-graph Sym?_-‘ which will depend on

the choice of the following additional data:

Definition 4.13. A geometric system for an invariant component D of Ex consists in:

e a point op € D\ (Sing(Ex) U Sing(F*)) and a germ of holomorphic submersion
g: (Mz,op) — (C,0) which is constant along the leaves of F*;
e a collection {Up}pesing(Ftynp Of connected and simply connected open subsets of D

such that U, N Sing(F*) = {p} and op € Mpesing(F4)nD Up-
For e = (D, D") with DN D" = {p} we denote by

hD,e € Hp C DiHQ(C X Q, (O,UO>) (45)

the holonomy of ]-"g.u along of a path in U, \ {p} of index 1 with respect to p, which belongs

ct

F&
to the holonomy group Hp image of the morphism HDQ in (18).

Proposition 4.14. Assume that F is a generalized curve. If D € Vea, ande = (D,D’) €
Eda,, after choosing a geometric system for D, the morphism (38) with m = op induces
isomorphisms

Gpe:Sym% (€)-5CY (hpe) and Gp:Sym% (D)-"5C (Hp).

Under these isomorphisms the restriction map Sym% (D) — Symfg (e) is just the inclusion
082 (HD) — ng (hD,e)'

Proof. We have: Symg(e) = Symg(e) o~ Symg(Up), thanks to assertion (i) of Corol-
lary 4.9, where {p} = DN D'. By assertion (ii) in Corollary 4.9 with U = U, g, induces an
isomorphism Sym% (U,,) =~ C’% (hp,e). The second isomorphism follows immediately from

f
(43) and assertion (ii) of Corollary 4.9 with U = D. O
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5. FINITE TYPE FOLIATIONS AND INFINITESIMAL TRANSVERSAL SYMMETRIES

5.1. Finite type foliations. Given a foliation F which is a generalized curve, we will say
that a vertex D, resp. an edge (D, D’), belonging to a cut-component A%, o € A, of Ar
(see Remark 4.2) is red for F if, using the notations in (45) with @ = {uo}, the holonomy
group Hp of F* is not finite, resp. the holonomy diffeomorphism hpe (or equivalently
hpre) is not periodic. Classically a vertex D, resp. an edge (D, D’), is red if every holo-
morphic first integral of F# defined in a neighborhood of D, resp. D N D', is constant.

Notice that the red part R% of A% is a sub-graph. When it is connected and non-
empty, we consider the partial order relation ~<Rg oOn VeA% defined in Subsection 2.4.
When R% = ) we will consider the partial order relation <(,; on Veaq defined by the
subgraph {v} reduced to some single vertex v.

Definition 5.1. We say that F is of finite type if for each o« € A one of the following
conditions holds:
(i) R% # 0 is connected and for any edge e = (D, D') € (Edag \ Edre.) with D’ <ge. D,
the holonomy group Hp is generated by the holonomy map hpe ;
(ii)) RE = 0 and A% contains a vertex v such that we have: Hp = (hpe) for any edge
e=(D,D") e EdA?__ with D' <{v} D.
We will denote by Folg C Fol the full subcategory of finite type foliations.

When F is of finite type, for every germ of manifold @° the subgraph R% is Symg—
repulsive in A% in the meaning of Section 2.4. Indeed for D € Veaq and e = (D,D') €

EdAaF, thanks to Proposition 4.14, we have isomorphisms Sme(D) ~ C’%(HD) and

Symg (e) ~ C’%.(hp,e). As we will see later the cohomology of Symg is given by its

restriction to the subgraph

Definition 5.2. We call rgstm’cted group-graph of transversal symmetries the group-
graph RSym?_- = T}Symg)_- over Rx defined as the pull-back by the inclusionrr : Rp — Ar:
RSym% (x) = Sym% (%), % € Ver, UEdg,,

Notice that for any morphism ¢ : G — F in the category Fol, the graph isomorphism
Ay 1 Ag — Ar restricts to a graph isomorphism Ry : Rg—Rz.

If w: P — @ is a morphism in Man’', we consider the left diagram of group-graphs
morphisms over the right diagram of graph morphisms:

Q' (Had’)*

Sym@ 2 SymE Ap <t A,
erl \ J,ng over r;JA X J’rg
. i i R
RSym% - £ >~ RSymj Ry< " Rg

where ¢, and ¢, denote the canonical morphisms, see Definition 2.2. Since Ag(Rg) C R,
the morphism F' = 1., o (i1,¢)* over f = Ay o rg factorizes through 4., according to
Remark 2.3, and defines a morphism of group-graphs F : RSym]Q_-A — RSymg over Ry. By

abuse of notation we will denote F as (i, ¢)*. This allows to consider the contravariant
functor

RSym : Man' x Fol — GrG, (Q,F)— (R;,RSym]QE'), (i, @) — (1, )" .
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The collection of canonical morphisms 2, : Symg — RSymg of group-graphs over the
graph morphisms 7r : Rr < Ar defines a natural transformation

R : Sym — RSym

between contravariant functors from Man' x Fol to GrG. It induces a natural transfor-
mation

R := H'(R): H' o Sym — H' o RSym (46)

between contravariant functors from Man' x Fol to Set’. By applying (32) and Theo-
rem 2.10 to each subtree R& C A%, a € A, we directly obtain:

Theorem 5.3. For any germ of manifold Q" and any finite type foliation which is a
generalized curve, the map

R?_- - HY(Ar, Symg)'L)Hl(Rf, RSymg)'

is bijective and the natural transformation R considered in (46) is an isomorphism of
contravariant functors when restricted to the subcategory Man' x Folg.

We will see in the next section that the group-graph RSymg is abelian, so that the two
functors in (46) restricted to Man' x Folg are isomorphic and take values in the category
Ab of abelian groups, which can be seen as a subcategory of Set” by pointing by zero, see
Section 2.3.

5.2. Sheaf of infinitesimal transversal symmetries. Given a foliation F let us con-
sider now the following sheaves X C Br over £ of tangent and basic holomorphic
vector fields of F*: the stalk Bx(m) of B at m € Er is the C-vector space of germs at m
of holomorphic vector fields in M leaving invariant the foliation F* and the divisor £r;
X z(m) is the subspace of Bx(m) consisting of vector fields tangent to F*. The quotient
sheaf T r := Bx/X f is called sheaf of infinitesimal transversal symmetries of F*.

Similarly, given Q@ = (Q,up) a germ of manifold, we define E?_-‘ the sheaf over £r
of 0@ y,-modules whose stalks are the spaces ﬁg (m) of germs at (m,ug) of holomorphic
vector fields in Mx x ) leaving invariant the constant foliation .7-"3ti and the divisor £x x Q,
that are vertical (i.e. tangent to the fibers of the projection Mr x @@ — @) and zero on
the special fiber Mz x {up}; X fi C Eg is the subsheaf consisting of vector fields which
are tangent to ]_—gﬁ and the quotient sheaf

T¢ =B% /X%

is called the sheaf of infinitesimal transversal symmetries of fg.ﬁ. Notice that, if as
usual we denote by Mg ., the maximal ideal of Og 4, we have:

B ®0q.,, (0gue/Mqg) = {0} # By

We will give local expressions for the stalks 7 (m) and I?: (m) at a point m in an
invariant component D of £r. Let us fix in Mr a local chart z = (21, 22) : Q—=D?
satisfying

r>1, z(m)=(0,0), D={z2=0}, Er={zi22=0}, e€{0,1}.
We suppose that Q N Sing(F*) is either empty or reduced to {m}. We also fix a chart
w: Q5D n >0, on Q with u(uo‘) =0.
Let us denote by V,,,, resp. by Vyg , the space of germs of vector fields Z in the submani-

fold {z1 = 1} of 2, resp. of Q2 x ', at the point of coordinates (1,0), resp. (1,0,...,0), that
satisfy: (a) Z = 0 when 2o = 0, and (b) hy,«(Z) = Z where hy, is the classical holonomy
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map of F*, resp. of fg.ﬁ, along the loop z(t) = (e2™ 0), resp. z(t) = (™%, 0), u(t) = 0,
t € [0,1], realized on the transverse manifold {z; = 1}.

If Y is a vector field on an open set U C Mr we will consider the constant vertical
extension Yg on U x @, i.e. the unique vertical vector field on U x @ related to Y by
the projection U x @ — U.

Lemma 5.4. Assume that F is a generalized curve. With the previous notations we have:

(1) if F* at m is singular and it is either (a) non-resonant, non-linearizable but formally
linearizable or (b) resonant non-formally linearizable nor normalizable, then:

Tr(m)={0}, T%(m)={0}, Vi={0}, V& ={0};

(2) if F* at m is not as in case (1) and any germ of holomorphic first integral of F*
at m s constant, then we may choose the coordinates z1, zo so that

Tr(m)=C[2], T (m)=Mou [28]

Vm=C- Z|{z1:1} ’ Vyg = th,uo : Z(fgt |{21:1} )

where Zg. |{z1=1} denotes the restriction of Zg% to {z1 =1} and Z is the following
vector field on §:
(a) Z = zgg—@ when F* is linearizable at m,
a bk
(b) Z = %22%@ when F* is singular resonant normalizable at m, and
21, 23 is chosen so that F* is given by w = 0 where
w = bz (1 + C(2828)F)dzy + aza(1 + (¢ — 1)(2§25)%)dz1,

with a,b,k € N*, (a,b) =1, ¢ € C;
(3) if F* at m has a non-constant first integral F, then by choosing F minimal and
21, 29 such that F(z1,22) = 2825, a,b €N, b # 0, (a,b) = 1, we have:

T(m) = C{F} [sag | o T2 (m) =M ClFa) [ |

0 : 0
and: Vi, = C{z8} - 228722 , VY =M, C{25,ul - 228722

(=1}

Proof. Classically T r(m) and V;,, are zero except when F' % is either regular, or linearizable
or resonant normalizable. In these last cases 7 (m) is a free module of rank one over the
ring Oz, C Oy, of germs of holomorphic first integrals (perhaps constant) of F . We
deduce the expression of 7 z(m) after checking that the vector fields Z in (2) and 22272 in
(3) are basic and Ox: ,,, = C, resp. Oz, = C{F}, in case (2), resp. (3), cf. [12, §5.1.2].
The expressions of I?_- (m) are versions with parameters of these results.

In the cases (2a) and (3) the holonomy map Ay, is linear and V;,, and Vi is obtained
by a direct computation. In order to obtain V9 in case (2b) one first notices that the flow
Dy (29, u) = (p(22,t),u) of Zg? |{z=1} satisfies ¢(22,t) € C[t]{22}; therefore any biholomor-
phism germ that commutes with a single element of this flow also commutes with all the

other elements. Since hpi = ®o;rg, the flow of any element X € Vﬁ " commutes with that
of ZS ‘{z1=1}' It follows that X € 9)?@7qu8. ‘{z1=1}' OJ

In order to describe I?_-(U ) for any open set U C D, we fix a geometric system as in
Definition 4.13.

For any X € Br(op) there is a holomorphic vector field g.(X) on (C,0) such that
X(0) =0 and g«(X)og = Dg(X). Moreover, X > ¢,(X) is C-linear. Let us adopt the
following notations:
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e V(H) is the vector space of holomorphic germs of vector fields on (C,0) vanishing
at 0 and invariant under the action of the subgroup H C Diff(C, 0);

. V%. is the vector space of holomorphic germs of vector fields on (C x @, (0, ug))
which are vertical with respect to Cx @ — C and vanish along ({0} xQ)U(Cx{ug});

o If G C Diffo(C x @, (0,up)) is a subgroup, then V%.(G) denotes the subspace of

V%. consisting of vector fields invariant by G.

Similarly if X € ﬁg(oD) there is a (unique) germ of vector field, again denoted by
9+(X), such that g.(X) o (g x idg-) = D(g x idg-)(X). According to the model (3) with
a=0and b= 1 in Lemma 5.4 we have the following exact sequence:

0— X% (op) = BY (0p) B VY — 0. (47)
This proves that the sheaf 7 7 is locally constant on D\ Sing(F*).
Remark 5.5. Let X be a section of 7  over a connected open subset V' of £x. If the
germ of X at some point p of V is zero, then X = 0. Indeed if p is a regular point, by
local triviality, the section is zero along the whole regular part of D. The vanishing at
the remaining singularities follows by analytic continuation. If p is a singular point, then
the germ of X at a regular point close to p is zero and we conclude as before. The same
property holds for 7']9 . O

Remark 5.6. The monodromy of I?-_ restricted to D \ Sing(F*) corresponds to the ho-
lonomy of the foliation ];8_11 in the following sense: if Z’ is the extension of Z € I(]?_- (op)
(as germ of a locally constant sheaf) along a loop 7 in D* with origin op, then g.(Z') =

]_—ctﬁ
he«(9+(Z)), where hy = H % (5), see (18). Indeed we have: ¢’ = goh ' and on the other
hand, since the expression g.(Z) remains constant when we perform along « the analytic
extension of g and the extension of Z as section of a locally constant sheaf, we also have
9.(Z") = g«(Z), where ¢’ is the analytic extension of g along 7. O

Proposition 5.7. Assume that op € U C D. The following sequence is exact:
0— X9 (U) - B (U) ™% V) (Hy) — 0, (48)

where gy is the composition of the morphism g. in (47) with the natural map ﬁg(U) —

ct

. F.
BY (op) and Hy == H 2 (w1 (U \ Sing(F?),0p)).

Ife=(D,D') and {p} = DN D', by applying this proposition to U = U,, and to U = D
we obtain isomorphisms

Ghe: T2 (€-5V) (hpe) and GJ: TE (D)-5VY (Hp). (49)
Under these isomorphisms the restriction map T}Q(D) — 7}9 (&) corresponds to the in-
clusion V%. (Hp) — V%. (hpe).
Proof. The fact that gy takes values in V%A (Hy) results from Remark 5.6 which also gives

the exactness of the sequence when U does not meet Sing(F*). It remains to see that the
restriction map

I]QE'(U) — I?E'(U \ Sing(F%)), Z— Z|t\Sing(Ft)

is an isomorphism. We may suppose that U is a disk such that U NSing(F*) = {m}. Thus,
the map gy, in (48) induces an isomorphism

T (U \ Sing(F$)->VY. (Hyr) .
We may also suppose that U is the domain Q of a chart (z1,22) as in Lemma 5.4. The
restriction of g x idg- to {z1 = 1} C Mz x Q" induces a linear isomorphism from Vn? to
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Vg (Hy ). We conclude by noting that, according to Lemma 5.4, any element of VmQ extends
to a vector field in QJQ_-A (U). O

In the same way we prove the exactness of the following sequence:
0= Xr(U) = Bx(U) ™ V(Hy) - 0. (50)

5.3. Group-graph of infinitesimal transversal symmetries. A C-conjugacy does
not induce a map between the sheaves of basic holomorphic vector fields, but it will do for
the sheaves of transverse infinitesimal symmetries. For this reason we do not consider the
quotient of the group-graphs associated to ﬁg and X 6}2- but a group-graph 7}9 associated
to the sheaf I?_- As in the case of the group-graph of automorphisms (see Definition 4.1)
we set:

Definition 5.8. The vector space-graph over Ay of infinitesimal transversal sym-

metries of F, resp. of FS., denoted by Tr, resp. 7}9 , is defined, for x € Vea, UEda,,

by:

(1) Tr(x) = {0} and 7}9(*) = {0} iof ¥ € Vea, is a dicritical component of Ex or
*x = (D, D') € Eda, and the foliation F* has a nodal singularity at the point D N D';

(2) Tr(D) =T (D) and 7}9(D) = I_g(D) if D € Vep, is invariant;

(3) Tr((D, D)) = Te(DN D) and T (D, D)) = T¢ (DN D) if (D,D') € Eda, and
DN D' is not a nodal singularitiy of F*;

(4) the restriction map T}Q(D) — 7}9(6) is the trivial map TJQ(D) — {0} in case (1)

and it is the restriction map of sheaves in cases (2) and (3).

The support of T]_Q is contained in the cut-graph of F which is the support of Ath', see
Remark 4.2.

The pull-back by a holomorphic map germ p : P — @ of a vertical vector field X is
also a vertical vector field and its flow is the pull-back of the flow of X. Thus, the pull-back
operation defines sheaf morphisms from the sheaves ﬁg, X J:‘E and I?_- respectively to the
sheaves QI}D-A, X ? and I;i—‘, inducing a morphism of vector space-graphs

TR 7}9 — T .
On the other hand, let ¢ be an C*-conjugacy between G and a foliation F, ¢(G) = F.
Since the germs of homeomorphisms ¢* : (Mg, Eg)—(Mz, EF) and
) = ¢ x idq : (Mg x Q, &g x {uo})—>(Mr, E x {uo})

are holomorphic at the singular points and transversely holomorphic elsewhere, we can
define the inverse image morphisms of sheaves over &g

6" 0 Tr = Tg and ¢,:6;'TF T3 .

where ¢, : &g — Er is the restriction of #* to the exceptional divisors, as in Section 4.1.
Indeed, let us fix m € & and [Z] € T (¢, (m)), which is the class of Z € Bx(¢,(m)). If
m € Sing(G¥) U Sing(&g) then ¢* is holomorphic at m and we define ¢*([Z]) as the class
of the usual inverse image (¢*)*(Z) € Bg(m). Otherwise, there is a homeomorphism germ
¢ at ¢*(m) fixing the leaves of F* such that £ o ¢* is holomorphic and we define ¢*([Z])

as the class of (& o ¢*)*(Z), which does not depend on the choice of £&. We can similarly
define the sheaf morphism Qg

We will denote in the same way by

" Tr—Tg and ¢*: T]?%TQQ (51)
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the vector space-graph morphisms over Ay : Ag — Ar defined in (33), which are associated
to the sheaf morphisms ¢* and ?*Q’ see Section 2.2.

We can check that the second morphism ¢* satisfies the relations u* o ¢* = ¢* o u*,
allowing us to define the following contravariant functors (denoted by the same letter)

T : Fol — VecG, F=Tr, O PF,
T : Man' x Fol — VecG, (Q,F) r—)TJQ, (1, @) = ()" := @" o ™,

where VecG denotes the category of of C-vector space-graphs and linear maps.

As we did for the group-graph of transversal symmetries we consider the restriction of
infinitesimal transversal symmetries vector space-graphs to the red subgraph Rr C Ax:

Definition 5.9. We call restricted group-graph of infinitesimal transversal sym-
metries of F, resp. .7-"8?, the group-graph RT 7 = r=TF, resp. RT@ = T}TJQ , over Rr
defined as the pull-back by the inclusion rr : Rr — Ax:

RT 7(x) = Tx(x), resp. RT% (%) = 7']9 (%), * € Ver, UEdR; .

We denote by RT : Fol — VQCG, resp. RT : Man x Fol — VecG, the functors
F— RTx, resp. (Q,F) — RTC}-2 )

Remark 5.10. As for transversal symmetries, the collections of canonical morphisms
1y Tr = RTF and 1, : 7}9 — RT;L2 of vector space-graphs over the graph morphisms
rr : R — Ax define natural transformations, again denoted by

R:T —-RT, andalso R:=HYR):H'oT — H' oRT.

If F is of finite type, thanks to the exact sequence (50), in each cut-component A% of Ar
the red part R% is repulsive for the group-graph 7r restricted to A%, see Section 2.4. By
applying again (32) and Theorem 2.10 we directly obtain that the natural maps

Rr: H' (Ar, Tr) —H' (R, RTF) . (52)

are bijective, thus R is an isomorphism of contravariant functors. In the same way, using
the exact sequence (48) we obtain a natural isomorphism

RY . H' (A7, TE)S5H'(RA,RTE ).
0

Lemma 5.11. Assume that F is a generalized curve. Let us again denote by Zg. the
constant vertical extension of a vector field Z on an open set of Mx, defined just before
Lemma 5.4. The extension of scalars sheaf morphism®

Ext? : Tr@cMg - TE, [Zl@ar [aZg],
define an isomorphism of vector space-graphs
Ext?_; : RTr @c Mo ;RTJQ

which induces a natural isomorphism Ext between the contravariant functors (Q,F) —
RTr @c Mg and (Q', F) — RT;;2 , from Man X Fol to VecG.

In this way we obtain a natural isomorphism
H'(Ext™") : H'(Rz,RTS ) "5 H' (Rr, RTF ©c Mg ) (53)

between functors from Man' x Fol to Vec, as subcategory of pointed sets.

6we highlight that Extg is not an isomorphism of sheaves.
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Proof. Consider an invariant component D of £x, an edge e = (D, D’) and the point
{p} := DND’. Assume that D and e are red for 7. We can then use the isomorphisms (49),
the exact sequence (50) with U = U, as in Definition 4.13, and cases (1) and (2) in Lemma
5.4. With the notations used in this lemma and these sequences, we have the following
commutative diagrams whose vertical arrows are isomorphisms:

Ext$ (D) : Ext? (p) :
l gD*®CidDﬂQYuO Gglz 2lgu*®ciquu0

GE,elz
Ext(D) Ext(e)
Vgg (HD) V(hD,e) Ac E)ﬁQ,uo - Vgg (hD,e)

V(HD) Qc mQ,uo

where Ext(D) and Ext(e) are the maps Z ®c a ~— aZg.. To prove that the top horizontal
arrows are isomorphisms it suffices to prove this property for the bottom arrows. Since the
holonomy of the constant deformation “does not depend on the parameter” this fact directly
results from the definitions of V3. (Hp) and Vg, (hp.e) and dime V(hp ), dime V(Hp) < 1.

Finally, this collection of isomorphisms induces the isomorphism of functors Ext since
p*¢*([aZg]) = (1 a)(¢*([Z§:])) for any morphism (i, @) in the category Man' x Fol. [J

Proposition 5.12. Assume that F is a generalized curve. The vector space-graphs RTr
and RT;2 over Rr are regular (see Definition 2.13). Moreover, in each red subgraph
R% C A% the complementary of its support is a subgraph.

Proof. By Lemma 5.4 for each x € Ver, UEdR ., either both R7x(x) and RT}Q (%) are zero,

or R7z(x) is isomorphic to C and RT]_Q (%) is isomorphic to the maximal ideal IMQ,uo of
OQ,uo- Assume that D € Ver, is invariant and e = (D, D’) € Edgr, does not correspond
to a nodal singular point at DN D’. By Remark 5.5 either the restriction map R7x(D) —
R7x(e) is an isomorphism or R7x(D) = 0 and R7x(e) ~ C, the situation R7x(D) # 0
and R7x(e) = 0 being impossible. According to Lemma 5.11, we deduce that RTJQ ~
RTr ®@c M@, is also regular. O

5.4. Exponential group-graph morphism. The flows of basic vector fields of fgﬁ
leave invariant the foliation fgﬁ. As in [8, Lemma 9.1| we see that the exponential maps
ﬁf,?—_' (m) — Aut?_-' (m), Z — exp(Z)[1], m € Er, send i?_ﬁ (m) in @f,?—_ (m) and factorize

into maps exp,,, : I?_- (m) — Sym?__' (m), thus defining a morphism of sheaves of sets
Exp?__ :I?_- — Sym?__ .
Using the isomorphism (43) it induces maps
Expg (%) : 7}9 (*¥) — Symg (%) ~ Symg (x), ~€Vea, UEda,.

In general these maps are not group morphisms but this will be the case when the Og -
module T}Q(*) is free of rank one or null, cf. [8, §9]. Therefore to define an exponential
group-graph morphism we must restrict the group-graph of infinitesimal symmetries of F
or fgﬁ to the group-graph RT]? over the sub-graph Rr of Ar.

Using the definitions of the isomorphisms G7 in (49) and the definitions of the isomor-
phisms G, in Proposition 4.14 with the same geometric system, cf. Definition 4.13, we
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have the following commutative diagrams

. Gl . 0 . GT, 0
T2 (e) —=> VY (hp.e) T (D) —= VY, (Hp) (54)
lExpg (e) leXP lExpg (D) leXP
. Gp,e . G
Sym% (e) —= CY, (hp.e) Sym% (D) —2 C9 (Hp)

where e = (D, D’) and hp . is the holonomy map defined in (45). Indeed, when the direct
image ¢.(Z) of a basic vector field Z is defined, its flow is also the direct image of the flow
of Z by g.

Theorem 5.13. Given a foliation which is a generalized curve and a germ of manifold Q-
the morphisms Exp?_- (%) induce a group-graph isomorphism over Rr

Exp? : RTZ “5RSym% .
The collection {Expg} defines an isomorphism of contravariant functors
Exp : RT—RSym,

from Man' x Fol to the category of abelian group-graphs, the functor RT taking values in
the subcategory of C-vector space group-graphs.

In order to prove this theorem we will need an auxiliary result.

Lemma 5.14. If h € Diff (C,0) is non-periodic then the exponential map induces a group
isomorphism

exp : V%.(h) = C%A(h).

Proof. If h is formally linearizable then there is a formal coordinate w such that woh = Aw
with A € C*. If ¢ € C’g?.(h) then wo ¢ = v(t)w with v € OF, , and v(0) = 1. Indeed,
P(w,t) = wo ¢y = 35, Gi(t)w' belongs to C{w,t} and p(Aw,t) = A (w,t) implies that
¢i(t) = 0 for i > 1 and v(t) = ¢1(t) # 0 is holomorphic. There is & € Mg 4, such that
v(t) = exp(&(t)). If w is convergent then ¢ = exp(&(t)wdy). If w(z) is divergent then
|A] = 1 and C%.(h) is the set of ¢(z,t) = (¢¢(2),t) such that ¢(z) = w™t o v(t)w(z) is
convergent. If w is divergent then Vg (h) = 0 and v(t) takes values in a discrete subset of
the unit circle S' ¢ C. We conclude that v = 1 by holomorphy.

If h is+ 1resonamt there is a formal coordinate w such that wo h = £" o expsX with

wP

X = {45,700 for some integer p > 1. If ¢ € C%(h) then w o ¢y = £ o exp 7(t) X with

ri € Z. Since d(w,t) = wody = 3o, Gi(t)w' € Clw,t} and exp X (w) = w+TwPt 4 -
- 2imr

we conclude that the holomorphic function ¢;(t) = e v is identically equal to 1 and
the function ¢t — 7(t) is holomorphic and vanishes at ¢ = 0. If w is convergent then
¢r = exp(7(t)X) with 7 € Mg 4,. If w is divergent then V%A(h) = 0 and C%.(h) is the
set of ¢(z,t) = (¢¢(2),t) such that w=! o exp(7(t)X) o w is convergent. This implies that
7(t) € Q by the Ecalle-Liverpool’s Theorem [5] and consequently 7 = 0. O

Proof of Theorem 5.13. It suffices to see that for D € Veg, and e € Edr, the right vertical
arrows in the diagrams (54) are isomorphisms. For the diagram in the left this follows from
Lemma 5.14 by taking h = hpe.

It only remains to examine the diagram in the right of (54) with D red. Since Hp is infi-
nite there is a non-periodic element hg € Hp. Indeed, when Hp is non-abelian it contains
a non-trivial commutator, which is tangent to the identity, hence non-periodic. When Hp
is abelian, if all its elements were periodic then Hp would be finite. We must prove that
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the exponential map exp : V%(HD) — C%(HD) is an isomorphism. By Lemma 5.14 the
bottom horizontal map in the following diagram is an isomorphism:

V) (Hp) — CY.(Hp)

N

VO, (ho) — €D, (ho).

This shows that the top horizontal map is injective. To prove the surjectivity we distinguish

two cases:

(a) 7}( ) = 0. In this case V3. (Hp) = 0. By contradiction, we must sce that if

( p) # {idcxg} then Vg(HD) #{0}. If (f(z,u),u) € C%.(HD) \ {idcxq} there
is a holomorphic germ A : (C,0) — (Q,up) and n € N* such that z # g(z,t) :=
f(z,A\#) = z + t"a(z) mod t"*! with a(z) # 0. For every h € Hp we have:
g(h(2),t) = h(g(z,t)). Working modulo "*! we deduce that h(z)+t"a(h(z)) = h(z)+
B (z)t"a(z), i.e. a(h(z)) = h'(z)a(z). This means that 0 # a(2)0, € Npen,V(h) =
V(Hp) # 0 and consequently Vg (Hp) ~V(Hp) @c Mg, # 0.

(b) Tr(D) # 0. In this case, 0 # Tr(D) ~ V(Hp) C V(hy) and since hg is non-periodic
classically, we have: dimc V(hg) < 1. Consequently V(Hp) = V(ho) has dimension 1
and Vg(HD) = V(HD) Kc mQ,uo = V(ho) Kc Z)JTQ,UO = ng(ho) Using Lemma 5.14

we have:
CO. (ho) = exp(V (ho)) = exp(V (Hp)) © CY.(Hp) € C.(ho)
Hence exp(V%. (Hp)) = C% (Hp).

We let the reader check that if (u, ) : (P,G) — (Q',F) is a morphism in the category
Man' x Fol, then the following diagram of group—graph morphisms is commutative:

RTY ———=RTJ

Exp?__‘ l Exp 5 ’

RSymF M>RS mg .

0

5.5. Characterization of finite type foliations. In this section we prove that, under
a technical hypothesis, a foliation F is of finite type if and only if the cohomology vector
space H(Az,TF) is of finite dimension, which justifies the name that we have adopted.

Theorem 5.15. Let F be a foliation which is a generalized curve. If there is no cut-
component A of Ar entirely green, then F is of finite type if and only if dimc HY Az, TF) <
00.

Before proving the theorem we need to state some auxiliary results.

Remark 5.16. If K, K’ are subgraphs of Az, then we have:
dimcHY(K', T#) < dimcH' (K, TF) as soon as K' C K.
O
Lemma 5.17. If an edge e € Eda, is green and D € e then the following properties are

equivalent:

(1) the holonomy group Hp is generated by hp e;
(2) the restriction morphism p%, : Tr(D) — Tx(e) is surjective;
(3) the image of p5, has finite codimension in Tr(e);
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where hp e are defined using a given geometric system, cf. Definition 4.13.
An immediate consequence of this lemma is the following:

Corollary 5.18. If there is no cut-component of Ar entirely green, then F is of finite type
if and only if in each cut-component A% of Ar, a € A, the red part R% is connected and
repulsive for the group-graph Tr.

To lighten the text, in this proof we will denote by T the vector space-graph T and by
T, the vector space Tr(*).
Proof of Lemma 5.17. If D is not green then dimc 7p € {0,1}, dimcTe = o0, hpe is
periodic and Hp is infinite. Thus, none of the three assertions hold. If D is green then
there is a transverse factor z : (Mr,op) — (C,0) at a regular point op € D such that
Hp = (z = e2™/"p2) and hpe(z) = e2™/"Pey where np,npe € Z. The proof of [8,
Proposition 6.4] shows that 7e/p%(Tp) ~ C{z"P<}/C{2"P} is either zero (when np =
np.e) or it has infinite codimension (when np # npe). O

Let us highlight that by Remark 5.5 the restriction maps p% : Tp — 7Te, with e =
(D,D’) € Eda,, of the group graph Tr are always injective. We now provide "orientations"
to the edges e of Ar in the following way:

(i) ©
(if)

D’ e
(ili) o <> o means that both p}, and p$, are bijective,

D’ . e e .
o < 0 means that P is not bijective and p$, is bijective,
D D’ e . . e .
6 & o means that pp bijective and p%), is not bijective,

)

)

. D’ ce .
(iv) o <+ o means that both p%, and p%, are not bijective.

Lemma 5.19. In a cut-component A% of Ar, let K be a geodesic of one of following types:

€ D el €n—1 D D+
(1) A v — X &N withn > 1

(2) &
(3) &

€
(4) o= o, the edge ey being green;

Dy
LN * the edge eg being necessarily green;

€0 Dl el €n—1 D €n Dpt1 .
e * o , withn >1;

D e D
where the green vertices are denoted by %, the red vertices by @ and o — o denotes any

"orientation” (i)-(iv). Then the dimension of H'(K,T) is infinite.

Proof. First consider case (1). Thanks to Remark 5.16, even if we restrict to a smaller
geodesic, we can suppose that all arrows eg,...,e,_ 1 are either simple arrows directed to
Dy, ie. *p;_, i *p; Or double arrows *Dj_y PEAY *D; ; therefore all the restriction
maps p%ﬂfl :Tp; = Te;y, 3 = 0,...,n, are isomorphisms. Every map ij being injective
we can identify all the spaces Te,, j =0,...n, and Tp,, j =0,...,n + 1 with subspaces of
Te,,- With these identifications we have:

TDO g 7;0 = TDl g o g TDn = 7;71 2 TDn+1 : (55)
Since Dp41 € e, are green, from Lemma 5.17 it follows that

With the identifications (55) the coboundary morphism for the subgraph K can be written
as

n+1 n
o :C'KT) =[] T0, — 2" K. T)=]] 7,
j=0 j=0

OR((X;)j=0,..mnt1) = (Xj = Xj—1)j=1,..m+1 -
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The surjective linear map
n
BT = Tons (X)j=0mn = > X;
j=0
induces the following diagram whose rows and columns are all exact:

80
n+1 K n
=0 TDj > Hj:O 72;‘

HY(K,T) 0
L
TDO X TDn+1 z 7;71 En/(TDO + TDn+1) - 0
0 0 0

with a((X;)=o0,...n+1) = (Xo, Xy41) and (X0, Xy 41) := X1 — Xo. Since the dimension
of Tp, is finite and the codimension of 7p,,,, in 7e, is infinite according to (56), we deduce
that the dimension of Te,, /(Tp,+7p,,) is infinite and consequently dim¢ H' (K, T) = +o0.
Case (2) can be treated as case (1). In case (3), if K does not contain a subgraph of

type (1) nor (2), even by renumbering, then the configuration must be

Do e D1 e en—1 Dn e, Dn+1

@ — k - Kk °
and we can make again the identifications (55). The spaces Tp, and 7Tp,_ ., having both
finite dimension, we obtain the conclusion. Case (4) is trivial because Tp, and Tp, have
finite dimension and dimc¢ 7¢, = oc. ]

Proof of Theorem 5.15. We will use the characterization of finite type foliations given in
Corollary 5.18. Notice that the red part R% of a cut-component A% is not repulsive with
respect to 7 if and only if it contains a geodesic of type (1) or (2) because the configuration
e <— x cannot occur. On the other hand, R% is not connected if and only if it contains a
geodesic of type (3) or (4). It follows from Lemma 5.19 that if F is not of finite type then
a cut-component A% contains a geodesic K with dim H YK, T7) = oo and consequently
dimc H'(Ax, TF) > dime HY(A%, Tr) = oo, cf. Remark 5.16.

Conversely, if F has finite type, from Remark 5.10, Proposition 5.12 and Theorem 2.15
we deduce that H'(Ar, Tx) has finite dimension. O

5.6. Some examples. Consider the logarithmic foliation £, defined by the multivalued
first integral (y2 + 2%)®(y® + 22), o € C. The dual graph associated to the exceptional
divisor of the desingularization 7 of the separatrices (y? + 2)(y® + 2%) = 0 is given by

M_ @ p_ b— p, b+ p_oa+r pp
e — & — e — o [

(57)

Let s+ be the intersection points of the strict transforms of S_ = {y3 + 22 = 0} and
S, = {y?> + 2% = 0} with D_ and D, respectively. We can compute the Camacho-Sad
indices

N 1 N _ 1 N _ 1+
CS(m*La,D_,a_) = 5 CS(m* Lo, D_,s5_) = 6140’ CS(m* Lo, D_,b_) = 5120
and

* _ 1 * - * * __atl
CS(ﬂ' EQ,D+,CL+) = 9’ CS(ﬂ' ﬁa,D+,$+) = 604—}—47 CS(TF Ea,DJr,bJr) = 3a+2

If ag € R™ one of the Camacho-Sad indices is a real positive number and in any neigh-
borhood of ag there is a positive rational number a; and a positive irrational number as
such that 7*L,, is not reduced but 7*L,,, is reduced. Consequently the local deformation
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(['O‘)CYG(C,QO) is not equireducible.

If ap € C\ R™ then the local deformation (La)ae(c,a0) 18 equireducible with equire-
duction map 7 but not equisingular (and a fortiori not an unfolding) because there are
singular points in the exceptional divisor of m with Camacho-Sad index varying with «.

Let us illustrate now the computation of the cohomology group H'(Az,7r) in the
case of a foliation germ JF such that 7*F is reduced. In the diagram below the arrows
correspond to restriction maps in the group-graph 7Tz, the first line corresponds to the
groups associated to the vertices and the second line corresponds to the groups associated
to the edges of the graph (57):

Tr(M-)  Tr(D-) Tr(Do) Tr(Dy)  Tr(My)
~ O ~ N S
Trla-)  Tr(b-) TF(bs) Tr(a+)

Using the surjectivity at the extremities of the group-graph 7r we can apply pruning
Theorem 2.10 to obtain a new group-graph with the same cohomology:

D_) Tr(Do) T#(
Tr(b-) Tr(b+)

By applying Remark 2.7 we obtain the exact sequence:

T(D_) @ Tr(Do) ® Tr(D1) 5 Tr(b_) ® Tr(by) — H' (Ar, Tr) >0 (58)
where
AX_, X0, Xy) = (Xo—X_,X0— X3). (59)

We consider four cases and for each of them we use the local models given in Lemma 5.4.
The first three cases are examples of finite type foliations.

(1) If F = L, with @ € C\ R then (58) becomes

CeCaCiCoC— HY Az, Tz,) =0.

(2) If « € (—3/2,—1) \ Q then b_ is the only nodal singularity of 7*L,. In this case
Tr. does not coincide with the group-graph associated to the sheaf 7, of germs
of infinitesimal transversal symmetries of 7*L,, see Definition 5.8, because

Tea(b-) =0#C=Tg,(b-).
The exact sequence (58) is
CoCaC0aC— H' (AL, Tz.) —

and we also obtain that H'(A;,,Tz,) = 0. If a € (—=1,-2/3) \ Q then by is the
only nodal singularity of 7*£, and the same conclusion holds.

(3) Let F be a perturbation of £L,, o € C\R, with same Camacho-Sad indices such that
the holonomy groups of D1 are non-abelian. Such a foliation can be constructed
using Lins-Neto’s theorem [4]. In that case Tr(D4) = 0, (58) becomes

0aCa0dCcacC - H'(A-TF) =0
and the expression (59) gives H!(Ax,Tr) = C
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(4) Let F be a perturbation of £,, a € QF, with same Camacho-Sad indices such
that the holonomy groups of D+ are non-abelian and the holonomy group of Dy is
finite. In that case Tr(D+) =0, Tr(Dyp) ~ C{z}, (58) becomes

00C{z} @0 — C{z} o C{z} —» H' (A#,Tx) = 0

and we deduce that dim H'(Ax,7r) = oo. Hence F is not of finite type. This
example, whose dual graph Ar contains a geodesic with colored vertices red-green-
red, also illustrates Corollary 5.18.

In cases (1) and (2) we obtain that H'(Ax, Tr) = 0. We will see in next chapter that if
F is a finite type foliation then dim H'(Az, TF) is the dimension of the universal parameter
space of equisingular deformations and when it is zero every equisingular deformation is
topologically trivial.

We conclude this section with an example of equisingular deformation which is not an
unfolding (for the precise definition of this notion see [10]). Let F be a perturbation of
Ly, o € C\ R, with same Camacho-Sad indices such that the holonomy groups of Dy
are non-abelian as in case (2) above. There is a local non-zero transverse symmetry X
of 7 at by. We consider two open subsets U and U_ whose union is a neighborhood
of the exceptional divisor of m and whose intersection is a small neighborhood of by. We
glue U4 and U_ by the time ¢ flow of X obtaining a complex surface U; with a foliation
Fy. This gluing does not change the self-intersections of the irreducible components of the
exceptional divisor and consequently we can contract it to obtain a foliation germ JF; in
(C2,0). The results in next chapter allow to prove that the Kodaira-Spencer map (68) of
the deformation (F)ie(c o)

0| F]
ot |1

:ToC=C — H' Az, Tr) ~ T#(by) =C - [X], ¢~ [cX],

is an isomorphism. Hence (Ft);e(c o) is @ C*™-universal deformation, consequently not
topologically trivial and a fortiori not an unfolding.

6. C**-UNIVERSAL DEFORMATIONS

6.1. C*-universality. We will show the existence of a C**-universal deformation for finite
type foliations through the representability of the corresponding deformation functor.

Definition 6.1. Let Fg be an equisingular deformation over a germ of manifold @ :=
(Q,wp), of a foliation F. We say that Fg- is a C*-universal deformation of F if for
any germ of manifold P° = (P,tg) and any equisingular deformation Gp- of F over P-,
there exists a unique germ of holomorphic map A : P° — Q" such that the deformations Gp-
and N*Fg- of F are C**-conjugated.

Remark 6.2. Notice that if 4 : Q" — Q' is a germ of biholomorphism, the C**-universality
of Fo- and of u* Fg- are clearly equivalent. On the other hand, it directly results from the

definition that the C**-universality of Fg only depends on its class fg = [Fg ] € Defg.
We will then say that g is C**-universal. O

Let us consider the maps
AfL i O(P,Q) = Def . A= N Fo,

where O(P", Q") always denotes the set of holomorphic map germs P — @ sending to to
ug. By definition we have:

fo- is C**-universal <= for any P’ the map A{; _ is bijective.
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One easily checks that (Ag )p- defines a natural transformation
Aj, 1 Fq - Def 7
where Fg, Def  : Man" — Set’ are the following contravariant functors:
Fo (P):=0(P,Q), Fo(\)=-0X, Defr(P):=Deff, Defr()):=\*,

where the first set is pointed by the constant map ,, : P — @ and the second one is
pointed by the class of the constant deformation .7:59, see Section 3.4. Thus fg- is C™-
universal if and only if AfQ_ is an isomorphism of functors. Classically ()" being fixed, any
isomorphism of functors

A :Fo —5Defr, A= (A" :O(P,Q)=Deff)p
is of this type:
A= AfQ. with  fg- = A9 (idg-) -
It is Yoneda’s Lemma which may be summarized in the diagrams below whose commuta-
tivity results from the functoriality of A:

0(Q,Q) - Def£(Q) idg o
.o)\l . l/\* I I
O(P", Q") — Defr(F) A——= AT ()) = Mo

Finally, to find a germ of manifold @ and a C**-universal deformation Fg is equivalent
to represent the functor Def r, i.e. to find a germ of manifold ) and an isomorphism
of functors Def;;)FQ- :

(fQ' € Def9 is Cex—universal) — (3 €9 : Defr—SFg , €9 (jo) = idQ) . (60)
As we will also need later the naturality of €9 relative to the foliation F € Fol, we will
prove a slightly stronger result.
If : G — F is a C**-conjugacy between two foliations G and F, we will denote by
[6"] == H'(¢") : H (A7, Tr)—H'(Ag, Tg), (61)

the morphism induced by the vector space-graph isomorphism ¢* : Tr—7¢ defined in (51).
We define the contravariant factorizing functor Fac : Mlan x Fol — Set’ as

Fac(Q', F) := O(Q, H (Ax, Tr)),

this set being pointed by the zero map, and if (i, ¢) : (P,G) — (Q", F), then Fac(u, ¢) :=
Facg is the following linear map:

FacgZO(Q',Hl(A]:,T]:).)—>O(P',H1(Ag,7-g)'), A [¢*]o)‘olua (62)
where H'(Ax, Tr) is the vector space H'(Ax, TF) pointed by the origin.

Theorem 6.3. For any finite type foliation F which is a generalized curve and for any
germ of manifold Q° there is a bijection

¢F :Def$ 0(Q H (A, TF))
such that the collection {fg}(Q-J) defines an isomorphism of contravariant functors
¢ : Def—Fac, (63)

when both functors are restricted to the subcategory Man' x Folg of the category Man’ X
Fol, see Definition 5.1.
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Proof. We successively apply Theorem 4.4, Proposition 4.11, Theorem 5.3, Theorem 5.13,
Lemma 5.11, natural isomorphisms (53), (11) and (52). We obtain for any (Q,F) €
Man" x Folg, the following isomorphisms:

) Th.4.4 ] Prop.4.11 ) Th.5.3 )
Def¥ 5 HY(Ar, Aut?) = HYAzSym%) — H'(Rz,RSym%)
Th.5.13 - (33) (11)
= H' Rz, RTF ) 5 HY(RF,RTF ©c Mg ) > HY(RF,RTF) ©c Mg
(52)
SHHY AR, TF) @c Mo ——0(Q, H (Ax, TF) ), (64)

the last natural isomorphism being as usual (¢ ® a) — (¢ — a(t)c). Each of them defines
in fact a natural transformation between contravariant functors from Man x Folg to
Set’. The functor isomorphism £ is defined as the composition of all the isomorphisms
in (64). O

Theorem 6.4. For any foliation of finite type (which is a generalized curve) there exists
a C™-universal deformation Fg-, with base

Q =H'(Ar, TF),

such that for any equisingular deformation Fp- of F, we have that X == ¢£ ([Fp-]) satisfies
[N Fo] = [Fp]. Moreover, H'(Ax,Tx) is a C-vector space of dimension the rank of
Hi(R7/(RF \ supp(RTF))).

Here Rr/(Rx \ supp(R7r)) denotes the graph obtained by contracting to a single ver-
tex the complementary of the support of R7x, which is a subgraph of R according to
Proposition 5.12.

Proof. By (60) with @ = H'(Ax, Tr)" we can choose for - any element in (§g')*1(idQ).
To obtain the description of H!(Ax, Tr) we use the isomorphism H!(Az, 7r) ~ H'(Rz, RTF)
given by (52) and Proposition 5.12. We then apply Theorem 2.15 to each connected com-
ponent of Rz, taking d = 1 and noting that a — p = rk H;(Rz/(Rx \ supp(R7x))). O

6.2. Kodaira-Spencer map. This map assigns to each equisingular deformation its as-
sociated “infinitesimal deformation”. We will define for any germ of manifold @ = (Q, uo)
and any foliation F € Fol, a group-graph morphism

@g—' : Aut?_-‘ — Tr @c (M u, /fm%ﬂm)
so that this collection is a natural transformation © between the functor Aut considered
in (36) and the functor (Q,F) = Tr ®c (M@u/M%,,). The definition of OF, for
e := (D, D’) € Eda, is based on the following fact: let (ui,. .., uq) be a centered coordinate

system on ()" and let us denote by pr,, the canonical projection Mz x Q) — Mr; if a germ

of biholomorphism ® at the point (s,ug) € Mz x Q, with {s} := D N D', leaves invariant
Opry,.o®
IPIMEO D k=1,...,q, are germs of vector fields

} its class in Tx(e)

the constant deformation fg.ﬁ, then —;- ! o
K u=ug

O pr od
in M7 at s, basic for the foliation Ff. We denote by [%

Ouy }u:uo

and, when s is not a nodal singularity of F*, we set:

0% . : Aut¥ (e) = Tr(e) @c (MQuo/MH uo) -

® . (65)

The definition of @g p for D € Eda . invariant is less direct because the homeomorphisms

o c Autg (D) are not holomorphic a priori. We will fix the germ of a submersion g :
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(Mz,0p) — (C,0) at a regular point op € D constant along the leaves of F* and we will
use the composition of group morphisms
Awt® (D) = Sym% (D) %8 €Y. (Hp), @ 9.9,
cf. Proposition 4.14, and the isomorphism
gp« : Tr(D)——V(Hp)

given by the exact sequence (50) with U = D. One easily checks that if h(z) is a germ of
biholomorphism of (C,0) and (¢(z,u),u) is a germ of biholomorphism of (C x @, (0,ug))
over Q satisfying ¢(z,ug) = z and ¢(h(z),u) = h($(z,u)), then 22 k=1,...,q, are

Oug, lu=ugp’

vector field germs on (C,0) invariant by h. We set:
0% 1+ Aut? (D) = Tr(D) ®c (MQ.uo/M uy)

q
: ._1 [ Oprc o g«® .
@% p(®) = Z gDi (C ) ® Uk, (66)
k=1 u=ug

ouy,
where pre again denotes the canonical projection C x Q — C. One can check that defini-
tions (65) and (66) do not depend on the choice of the germ of first integral submersion g at
some regular point op € D nor on that of the coordinate system on Q. To see that these
group morphisms define a group-graph morphism we need to show that for ® € Autf,?T (D),

the germ at {s} = DND’ of g, (M ‘u:u() is equal to the class in 7 £(s) of the germ

Ouy,

opry.o® . . .

at s of #‘ _ ,k=1,...,q. Thanks to Remark 5.5 it suffices to check this equality
ko lu=ug

at a regular point s’ € D close to s. We may suppose that op = s’. Using the map g, in

the exact sequence (47), the commutativity of the operations of partial derivatives at s’

and direct image by the first integral g:

BprMFOq) Oprc o g« P
9| — 4 = — X
u=ug

9

8uk 8uk u=ug

gives the required equality.

It is easy to check that the collection {@g} defines a natural transformation of functors
O : Aut — T ®c M/M?. Now we apply the cohomological functor to © and we use the
natural identification between MM .,/ 9712@7”0 and the cotangent vector space T;; @ of Q at
ug. We obtain natural maps

~

fQ ~ 1 A A Q" H1(®) 1 A 2
Deff —H (Ar,Auty ) — H (Ar,Tr @c (MQ.uo/MGuy))—
HY(Ax, Tr) ®c (MQue/M uy) —H (Ar, Tr) @c Ti,Q = L(Tu,Q, H (Ax, TF)) , (67)

where L(FE, E") denotes the space of C-linear maps from the C-vector space E to the C-
vector space E'. We call Kodaira-Spencer map for (@', F) the composition (67) of
these maps:

KSY : Def¥ — L(T,Q, H'(Ar,T5)) -

We will also write

Fq]
o |y
Consider now the contravariant functor DFac : Man' x Fol — Set™ defined by
DFac(Q', F) := L(T,,Q, H'(Ax,T7)), DFac(u,®) := DFacl; ,
with DFacg : L(Ty,Q, HY (A7, TF)) — L(Ty P, H'(Ag, Tg)) defined by
DFacg(E) :=[¢*] o lo Dy,

KS% ([Fo]) = (68)
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if (u,¢): (P,G) — (Q,F) is a morphism in the category Man' x Fol.
Since Dy, ([¢*] 0 Ao ) = [¢*] 0 DyyA © Dy, g the derivation maps
DY :O(Q,H (Ar,T)) = L(Tue@, H'(Ar,T7)), X Dy
constitute a natural transformation
D : Fac — DFac (69)
according to (62). One can check the following:

Proposition 6.5. For any morphism (u,¢) : (P,G) — (Q',F) in Man' x Fol and any
deformation [Fq-| € Def(jgE , we have the following commutative diagram:

29" 17g D)
ot t=tq
T, P H'(Ag, Tg)
DtO“l 217D TW
ou u=ugq

Ty, @ HY(Ar, Tr)

in other words, the collection {KS?_-‘}(Q-,}-) defines a natural transformation
KS : Def — DFac
between contravariant functors from Man' x Fol to Set’.

6.3. Criteria for universality. Let us suppose now that the foliation F has finite type.
Using the representation of the deformation functor, the Kodaira-Spencer transformation
becomes the usual derivation:

Proposition 6.6. Restricted to the subcategory Man' x Folg the natural transformation
KS is equal to the composition of the natural transformation derivative (69) with the natural
isomorphism & : Def—+Fac defined in (63)

KS=Do¢

Proof. Let us fix (Q',F) € Man' x Folg. Since F is assumed to be of finite type, £ is an
isomorphism of functors and it suffices to see that, after the identifications

O(Q, H' (Ar, Tr)) ~ H' (Ar, Tr) ©c MQ.uo
and
L(TuQ, H'(Ap, TF)) ~ H'(AF, Tr) ®c MQ.uo/MP 4
the following map

KS?—V o (fg)fl c HY (Ar, Tr) ®@c MQuy — H! (Ar, Tr) ®c mQ,uo/gﬁé,uo

coincides with the tensor product of the identity map of H'(Az, 7) and the quotient map
MG uo = MG uo/ E)ﬁauo, a — a. By following the functor morphisms in (64) and (67) and
formula (66) we obtain that

(KSE o (¢2) ™) ([Xpel @ a(w) =" a(zk
— |

[0
2| ur

k

Z -aa(uo)XD,e] @ U

ou
— LOuk

0 . :
= Xpe] @} 5 - (wo)in = [Xpe @ .
k

exp(a(u)XD,e)[l]] ® Uy,

u=ug

exp(XDye)[a(u)]] ® Uy,

u=ug
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This interpretation of KS provides an infinitesimal criterium of universality.

Theorem 6.7. Let F be a finite type foliation which is a generalized curve. For any
equisingular deformation Fp- of F over a germ of manifold P, the following properties are
equivalent:

(1) Fp- is C**-universal,

(2) there is a biholomorphism germ p : R P such that p*Fp- is C**-universal,

(3) for any biholomorphism germ p: R —=P" the deformation p* Fp- is C*™-universal,

(4) the map 2 ([Fp]): P — HY(Ax, TF) is a biholomorphism germ,

o[Fp-]

(5) the Kodaira-Spencer map T’ 18 an isomorphism.
t=to

Proof. The equivalence of the first three assertions follows directly from the definition of
C®™-universality.

The proof of (1) = (4) is classical”: after setting Q := H'(Ax,TF) one considers
the class fg- € Defg such that {g (fo') = idg-, which is C**-universal, according to (60).
Therefore, the map A := &2/ ([Fp]) : P' — Q satisfies fp- := [Fp-] = A*fg-. On the other
hand, since fp- is assumed to be C*®*-universal, there is p : Q" — P such that fg- = p*fp-.
The uniqueness of factorizations and the relations p*\*fo- = fo-, A*u*fp- = fp-, give
Aop=idg and po X =idp- .

The implication (4) = (1) is a consequence of Theorem 6.4 and Remark 6.2.

According to Proposition 6.6, 8[?)‘5-} is the derivative of the map ¢£ ([Fp-]), thus the

equivalence (4) <= (5) is trivial. O

Corollary 6.8. Let ¢ be an C-conjugacy between two foliations F,G € Fol of finite type,
#(G) = F. Then fg € Def% is C™-universal if and only if 9o = ¢*(fo) € Defé2 18
universal.

Proof. Let us suppose fo- C**-universal. According to Theorem 6.7, gg- is C**-universal
as soon as A*gg = ¢*(A*fg ) is C**-universal for some biholomorphism germ A : P* — Q.

Therefore we may suppose that Q = H*(Arz, Tr) and fo- = (§gA)_1(idQ4). Then we set:
P :=H'(Ag,T5), A:=[¢"]1:P —=Q.

Since ¢ is a natural transformation we have the following commutative diagram:

. 33 o

Def ——0@Q. Q)

l(x,¢)* Fac})

: &

Def§ O(P, P)
We check that Fac}(idg ) = idp-, hence & (\*gq) = & (A, ¢)*(fq)) = idp-. Thanks to
criterion (4) in Theorem 6.7, A*gg- is C**-universal. O
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