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Abstract 

Background:  COVID-19 manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic and 
mild to severe and critical. Severe and critical COVID-19 patients are characterized by marked changes in the myeloid 
compartment, especially monocytes. However, little is known about the epigenetic alterations that occur in these 
cells during hyperinflammatory responses in severe COVID-19 patients.

Methods:  In this study, we obtained the DNA methylome and transcriptome of peripheral blood monocytes from 
severe COVID-19 patients. DNA samples extracted from CD14 + CD15- monocytes of 48 severe COVID-19 patients and 
11 healthy controls were hybridized on MethylationEPIC BeadChip arrays. In parallel, single-cell transcriptomics of 10 
severe COVID-19 patients were generated. CellPhoneDB was used to infer changes in the crosstalk between mono‑
cytes and other immune cell types.

Results:  We observed DNA methylation changes in CpG sites associated with interferon-related genes and genes 
associated with antigen presentation, concordant with gene expression changes. These changes significantly over‑
lapped with those occurring in bacterial sepsis, although specific DNA methylation alterations in genes specific to 
viral infection were also identified. We also found these alterations to comprise some of the DNA methylation changes 
occurring during myeloid differentiation and under the influence of inflammatory cytokines. A progression of DNA 
methylation alterations in relation to the Sequential Organ Failure Assessment (SOFA) score was found to be related 
to interferon-related genes and T-helper 1 cell cytokine production. CellPhoneDB analysis of the single-cell transcrip‑
tomes of other immune cell types suggested the existence of altered crosstalk between monocytes and other cell 
types like NK cells and regulatory T cells.
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) causes the well-known Coronavirus disease 
2019 (COVID-19), which has become a major global 
health burden. SARS-CoV-2 infection occurs through 
the nasopharyngeal mucosa [1]. Subsequent immune 
responses occur at the local mucosa and at a systemic 
level. An effective response to SARS-CoV-2 infection 
requires coordination between the innate and adap-
tive immune systems, including granulocytes, mono-
cytes, macrophages, and T and B cells [2, 3]. The range 
of immune responses to SARS-CoV-2 infection is diverse, 
from asymptomatic or mild upper-respiratory illness to 
severe viral pneumonia, acute respiratory distress syn-
drome, and death [4]. The most severe forms of COVID-
19 are caused by dysregulation of immune homeostasis, 
which leads to hyperinflammation in the lungs [5]. This 
has been shown to be more pronounced in the elderly 
and in individuals with pre-existing comorbidities [6, 7]. 
Nevertheless, despite the numerous studies performed 
in the field, the impact of exacerbated immune responses 
associated with severe COVID-19 at the systemic level 
remains unclear.

Various studies have demonstrated that peripheral 
pathogenic T cells and inflammatory monocytes can 
induce a cytokine storm in severe COVID-19 patients 
[8]. This takes the form of excessive production of inflam-
matory mediators, specifically, interleukin (IL)-6, IL-1β, 
granulocyte–macrophage colony-stimulating factor 
(GM-CSF), tumor necrosis factor-alpha (TNFα), and 
interferon gamma (IFNγ) [8–11]. IFN is essential for 
inducing the innate immune response during viral infec-
tion through different interferon regulatory factors (IRFs) 
[12]. Further, in COVID-19 patients, type I IFN defi-
ciency appears to be a hallmark of severe cases [13–19] in 
association with persistent blood viral load and an exac-
erbated inflammatory response [14].

Single-cell omics studies have identified specific tran-
scriptional features in monocytes, natural killer (NK) 
cells, dendritic cells (DCs), and T cells associated with 
the severity of COVID-19 [13, 20–22]. These studies 
have revealed that severe COVID-19 is marked by a dys-
regulated myeloid cell compartment [13]. It has also been 
shown that monocytes from severe COVID-19 patients 
are characterized by a tolerogenic phenotype with 
reduced expression of class II major histocompatibility 

complex (MHC-II) antigens [23] and increased activation 
of apoptotic pathways [24].

Differentiation and activation of monocytes and other 
myeloid cells are directly associated with epigenetic 
mechanisms [25]. The functional plasticity of these cells 
is also reflected at the epigenetic level, and several stud-
ies have shown that DNA methylation profiles, among 
other epigenetic marks, vary in response to inflamma-
tory cytokines, hormones, and other factors [26, 27], 
depending on their functionality. Cytosine methylation 
(5mC) occurs at CpG dinucleotides and is generally asso-
ciated with transcriptional repression [28], although its 
relationship with transcription depends on the genomic 
location of the affected CpG sites [29]. In some cases, 
DNA methylation changes occur as a result of upstream 
environmental effects that link cell membrane recep-
tors, signaling pathways, and transcription factors (TFs) 
that can either directly recruit DNA methyltransferases 
(DNMT) and ten–eleven translocation (TET) enzymes, 
or indirectly influence their binding to specific genomic 
sites.

The characterization of the epigenetic and transcrip-
tomic reprogramming in monocytes, given their central 
role in inflammatory responses, is essential if we are to 
understand the specific dysregulated pathways involved 
in severe forms of COVID-19. In this study, we obtained 
the DNA methylation profiles of peripheral blood mono-
cytes of severe COVID-19 patients and studied their 
relationship with transcriptomic changes, obtained by 
generating droplet-based single-cell RNA sequencing 
(scRNA-seq) data from peripheral blood.

Methods
Human samples
Our study included a selection of 58 severe COVID-
19 patients from the intensive care unit (ICU) of Vall 
d’Hebron University Hospital (Barcelona) recruited dur-
ing the second wave of infection in Spain (October to 
November 2020). Peripheral blood samples were taken 
at different times following admission of the patient to 
the ICU, as specified in Additional file 1. Table S1 (Days 
in ICU). Ninety-four percent of the patients required 
intubation and all enrolled cases were confirmed to be 
infected with SARS-CoV-2 using real-time RT-PCR 
at the time of collection. For all enrolled patients, the 
date of enrollment, clinical classification, or treatment 

Conclusion:  Our findings show the occurrence of an epigenetic and transcriptional reprogramming of peripheral 
blood monocytes, which could be associated with the release of aberrant immature monocytes, increased systemic 
levels of pro-inflammatory cytokines, and changes in immune cell crosstalk in these patients.
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was obtained from the clinical records. From all these 
patients, 48 of the 58 patients were selected for DNA 
methylation analysis (Additional file  1. Table  S1) and 
peripheral blood mononuclear cells (PBMCs) from 10 of 
the 58 patients were used for droplet-based scRNA-seq 
analysis (Additional file  2. Table  S2). The control popu-
lation for the DNA methylation analysis comprised 11 
healthy donors (HDs) recruited at the Blood Bank of Vall 
d’Hebron University Hospital. Table  1 summarizes the 
characteristics and clinical data from patients included 
in the DNA methylation analysis. We included an addi-
tional group of 14 patients from the same hospital for 
DNA methylation and expression validation, includ-
ing 9 severe COVID-19 patients and 5 mild COVID-19 
patients, together with an additional group of 6 HDs. The 
validation cohort was collected during February 2022, 
applying the same selection criteria as for the discov-
ery cohort. For the validation cohort, we only included 
non-vaccinated patients, to match the vaccination status 
with that of the patients collected in the initial phase of 
the study. Clinical information corresponding to the new 
cohort is also included in Additional file 1. Table S1 (vali-
dation cohort). This study was approved by the Clinical 
Research Ethics Committees of Hospital Universitari 
Germans Trias i Pujol (PI-20–129) and Vall d’Hebron 
University Hospital (PR(AG)282/2020), both of which 
adhered to the principles set out in the WMA Declara-
tion of Helsinki. Informed consent was obtained from all 
patients before their inclusion.

Monocyte purification and DNA isolation
PBMCs were obtained from peripheral blood by Ficoll 
gradient using Lymphocyte Isolation Solution (Rafer, 
Zaragoza, Spain) from 48 of the severe COVID-19 
patients and 11 HDs. Once PBMCs were isolated, all 
samples were stored at − 150  °C in 10% DMSO in fetal 

bovine serum (FBS) until monocyte purification. The 
monocyte population was isolated by flow cytometry 
(FacsAria Fusion, BD, Beckton Dickinson, San Jose, CA, 
USA). PBMCs were stained with CD14-APC-Vio770 
(Miltenyi Biotec) and CD15-FITC (Miltenyi Biotec) in 
staining buffer (MACS) for 20  min. A gating strategy 
was employed to eliminate cell debris, doublets, and 
DAPI + cells. CD14 and CD15 antibodies were used to 
isolate CD14 + CD15 − . Purified cells were pelleted and 
stored at − 80 °C.

After monocyte isolation, DNA was isolated using the 
AllPrep DNA/RNA/miRNA Universal Kit (Qiagen) fol-
lowing the manufacturer’s instructions.

DNA methylation profiling
Bisulfite (BS) conversion was performed using EZ-96 
DNA Methylation™ Kit (Zymo Research, CA, USA) 
according to the manufacturer’s instructions. Five hun-
dred nanograms of BS-converted DNA was hybridized 
on Infinium Methylation EPIC BeadChip arrays (Illu-
mina, Inc., San Diego, CA, USA). These were used to 
analyze DNA methylation. They enable > 850,000 methyl-
ation sites per sample to be assessed at single-nucleotide 
resolution, which corresponds to 99% of the reference 
sequence (RefSeq) genes.

Each methylation data point was obtained from a com-
bination of the Cy3 and Cy5 fluorescent intensities from 
the methylated and unmethylated alleles. Background 
intensity computed from a set of negative controls was 
subtracted from each data point. For representation and 
further analysis, we used beta (b) and M values. Beta is 
the ratio of methylated probe intensity to overall inten-
sity (the sum of the methylated and unmethylated probe 
intensities). M is calculated as the log2 ratio of the inten-
sities of the methylated and unmethylated probes. For 
statistical purposes, the use of M is more appropriate 

Table 1  Summary of patient cohort for DNA methylation analysis

Healthy controls COVID19 severe patients p value

Number 11 48 -

Age (mean ± SD) 50 ± 11.16 60 ± 11.96 0.0042

Sex (% female) 36.4 25 0.710

SOFA 0 5 ± 2.97 2.4e − 07

IL-6 (pg/ml) (mean ± SD) NA 316.94 ± 1238.82 -

Days in ICU (mean ± SD) NA 6 ± 5.93 -

Treated with dexamethasone (%) NA 52.08 -

Obesity (%) NA 27.03 -

Hypertension (%) NA 56.25 -

Death (%) NA 33.33 -

Mechanical ventilation (%) NA 93.75 -
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since b-values are severely heteroscedastic for highly 
methylated and unmethylated CpG sites. Raw DNA 
methylation data are available at GEO, with accession 
number GSE188573 [30].

Quality control, data normalization, and statistical analysis 
of DMPs
Quality control and analysis of EPIC arrays were per-
formed using ShinyÉPICo [31], a graphical pipeline that 
uses minfi (v1.36) [32] for normalization, and limma 
(v3.46) [33] for analyzing differentially methylated posi-
tions. ShinyÉPICo is available as an R package at the 
Bioconductor (http://​bioco​nduct​or.​org/​packa​ges/​shiny​
epico/) and GitHub (https://​github.​com/​omora​nte/​shiny​
epico) sites. We used the BS conversion control probe 
test included in ShinyÉPICo to determine whether the 
conversion rate was above the quality threshold of 2 
established by Illumina. The threshold was calculated 
from the information of the BS conversion control probes 
of the EPIC arrays. When the BS conversion reaction is 
successful, control probes display strong signal in the red 
channel, whereas if the sample has unconverted DNA, 
control probes have a strong signal in the green channel. 
The red/green ratio for each control position was calcu-
lated for each sample.

CpH and SNP loci were removed by the Noob method, 
followed by quantile normalization. Sex chromosomes 
(X and Y) were also excluded from the analysis to avoid 
discordant information among samples. Even when data 
were generated in a single batch and randomized, we 
applied the batch effect correction. Sex and age of the 
donors were included as covariates, to minimize con-
founding effects due to differences between the median 
age of the patient and control cohorts, and the Trend and 
Robust options were implemented in the eBayes moder-
ated t-test analysis. To compare healthy donors with the 
entire severe COVID-19 patient cohort, we identified 
differentially methylated CpG sites by using t-tests and 
a method with defined empirical array weights, included 
in the limma package [33], and selecting CpGs with a 
false discovery rate (FDR) of < 0.05 and a Δβ of > 0.15. To 
test the effects of potential changes in monocyte sub-
set proportions, we also included this information as a 
covariate, and performed the same analysis as above, but 
including only those samples for which such information 
was available.

We used the iEVORA package (v1.9.1) [34] to iden-
tify differentially variable positions (DVPs). This algo-
rithm identifies differences in variance using Bartlett’s 
test (FDR < 0.001), followed by the comparison of means 
using t-test (p < 0.05) to regularize the variability test, 
which is overly sensitive to single outliers. For the anal-
ysis in Fig.  2, we calculated Spearman’s correlation 

coefficient (rho) to measure the association of two varia-
bles and thereby identify CpG sites in which DNA meth-
ylation was correlated with SOFA in patients with severe 
COVID-19. We selected the CpG sites for which Spear-
man’s rho was greater than 0.4 and had an associated 
value of p < 0.01. Principal component analysis (PCA) of 
b-values from ShinyÉPICo was used to determine the 
correlations of PCs with clinical variables such as dexa-
methasone treatment, obesity, and hypertension. Pearson 
correlation coefficients between numerical variables and 
PCs were calculated. Categorical variables were entered 
in a linear model together with the PCs, which were con-
sidered as a function of the variable.

Gene ontology, transcription factor enrichment, 
and chromatin state discovery and characterization
The GREAT (v3.0.0) online tool (http://​great.​stanf​ord.​
edu/​public/​html) was used for gene ontology (GO) anal-
ysis, in which genomic regions were annotated by apply-
ing adapted basal and extension settings (5 kb upstream, 
5 kb downstream, 1000 kb plus distal). GRCh37 (UCSC 
hg19, Feb. 2009) was used as the alignment genome ref-
erence. Annotated CpGs in the EPIC array were used 
as background. GO terms were considered significant 
for a > twofold change and an FDR < 0.05. Enrichment is 
represented as − log2(FDR). GO categories with p < 0.05 
were considered significantly enriched. GO analysis of 
differentially expressed genes (DEGs) was carried out 
using the online Enricher gene ontology analysis tool 
(https://​maaya​nlab.​cloud/​Enric​hr/). GO categories with 
a > twofold change and an FDR < 0.05 were considered 
significantly enriched.

We used the findMotifsGenome.pt tool from the motif 
discovery HOMER software (v4.10.3) to analyze motif 
enrichment [35]. A flanking window of ± 250  bp from 
each CpG was applied, and CpGs annotated in the EPIC 
array were used as background. To determine the loca-
tion relative to a CpG island (CGI), we used “hg19_cpgs” 
annotation in the annotatr (v1.8) R package. The statis-
tical test used for the enrichment in these analyses was 
Fisher’s exact test. Chromatin functional state enrich-
ment of DMPs was measured using public PBMC data 
from the Roadmap Epigenomics Project (http://​www.​
roadm​apepi​genom​ics.​org/) generated with ChromHMM 
(v1.23) [36]. Enrichments were calculated with Fisher’s 
exact test using array annotation as background regions. 
Only significantly enriched states are shown.

Heatmaps and PCA plots
Heatmaps of DMPs were generated with functions avail-
able in the ComplexHeatmap (v2.11.1) and gplots (v3.1.3) 
R packages. We used PCA for the low-dimensional analy-
ses. PCA projection matrices were calculated with R’s 

http://bioconductor.org/packages/shinyepico/
http://bioconductor.org/packages/shinyepico/
https://github.com/omorante/shinyepico
https://github.com/omorante/shinyepico
http://great.stanford.edu/public/html
http://great.stanford.edu/public/html
https://maayanlab.cloud/Enrichr/
http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
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prcomp function, and visual representations of PCs were 
plotted with the ggfortify package (v4.1.4).

Whole‑genome bisulfite sequencing (WGBS) analysis
DNA methylation values of Ensembl Regulatory Build 
regions of progenitor cells such as hematopoietic stem 
cell (HSC), multipotent progenitor (MPP), common 
myeloid progenitor (CMP), granulocyte macrophage pro-
genitor (GMP), and control monocytes were extracted 
from public whole-genome bisulfite sequencing (WGBS) 
(GSE87197) [37]. Using GenomicRanges (v1.42.0) and 
based on genomic location, the overlap of the hyper-
methylated DMPs observed in COVID-19 compared 
with HD was determined with the Ensembl Regulatory 
Regions from the hematopoietic precursors and mono-
cytes. For this analysis, all DNA methylation data were 
annotated with respect to the GRCh38 human genome 
reference.

Single‑cell capture
PBMCs from 10 ICU patients were used to generate sin-
gle-cell gel beads-in-emulsion (GEMs) (Additional file  2. 
Table S2). Cells were then washed three times and counted. 
For samples with low viability (< 90%), we performed 
Ficoll separation in an Eppendorf tube to eliminate dead 
cells and increase cell viability. For samples with greater 
than 90% viability, we filtered using a Flowmi strainer and 
counted the cells before loading into 10X chromium to 
generate single-cell GEMs, following the manufacturer’s 
instructions. We loaded 50,000 cells per pool, including 
a total of 4 patients per pool. Datasets from patients and 
HDs are available as h5ad files (https://​www.​COVID-​19cel​
latlas.​org/​index.​patie​nt.​html (Additional file  2. Table  S2). 
In parallel, genomic DNA was isolated from the same 10 
PBMCs for genotyping and subsequent donor deconvo-
lution (as described in [38]) using a Maxwell® 16 Blood 
DNA Purification Kit from Promega following the manu-
facturer’s instructions.

scRNA‑seq cell type identification and annotation
Single-cell transcriptome data from COVID-19 patients 
were quantified and aligned using Cell Ranger (v3.1) 
with the GRCh38 genome concatenated to SARS-Cov-2 
genome as a reference. Thereafter, cells from pooled sam-
ples were deconvolved and demultiplexed using Soupor-
cell (v3.0) [39], yielding a genotype variant that allows 
donor identity to be matched across different samples. 
This additionally enabled the removal of doublet cells that 
could not be explained by any single genotype. Scrublet 
(v0.2.3) [40] was subsequently employed to further filter 
out other doublets based on computed doublet scores. 
Specifically, Student’s t-test (p < 0.01) after Bonferroni 
correction was used within fine-grained sub-clustering 

of each initial cluster produced by the Leiden algo-
rithm. Data were not denoised because no significant 
contamination or ambient RNA was present. Previously 
described scRNA-seq datasets of HDs [41] were then 
integrated for comparison using single-cell variational 
inference (scVI) [42] with a generative model of 64 latent 
variables and 500 iterations. More specifically, scVI 
employs a negative binomial model using raw counts, 
selecting 5000 highly variable genes to produce the latent 
variables. Defined cell-cycle phase-specific genes in the 
Seurat package (v4.1.0) [43] were excluded from these to 
reduce the dependence of clustering on cell-cycle effects. 
Data were subsequently analyzed using Scanpy (v1.9.1) 
[44] following the recommended standard practices. 
For quality control, genes expressed in fewer than three 
cells, and cells with fewer than 200 genes or more than 
20% mitochondrial gene content, were removed prior 
to downstream analysis. Data were normalized (scanpy.
pp.normalize_per_cell, scaling factor = 10,000) and 
log2-transformed (scanpy.pp.log1p). For gene expression 
visualization (e.g., heat maps), data were further scaled 
(scanpy.pp.scale, maximum value = 10).

Cell type clustering and annotation
The resulting latent representation from the integrated 
datasets was used to compute the neighborhood graph 
(scanpy.pp.neighbors), then the Louvain clustering algo-
rithm (scanpy.tl.louvain, resolution = 3) and Uniform 
Manifold Approximation and Projection (UMAP) visual-
ization (scanpy.tl.umap) were employed. Cell type anno-
tations were manually refined using literature-driven, 
cell-specific marker genes. Identified residual RBCs from 
incomplete PBMC isolation were excluded before further 
analysis, as recommended [45].

Differential gene expression and transcription 
factor‑enrichment analysis
Differential gene expression between COVID-19 patients 
and healthy individuals (FDR < 0.05) was analyzed using 
the limma package [46]. To predict transcription factor 
(TF) involvement in transcriptomic changes, we used 
DoRothEA (Discriminant Regulon Expression Analysis) 
v2 tool [47]. Regulons with a confidence score of A–C 
were analyzed, and cases with p < 0.05 and a normalized 
enrichment score (NES) of ± 2 were considered signifi-
cantly enriched.

Cell–cell communication
Based on the differential expression analysis, Cell-
PhoneDB [48] v3 (www.​CellP​honeDB.​org) was used to 
infer changes in ligand/receptor interactions between the 
identified cell types in COVID-19 versus HD. Specifically, 
instead of random shuffling, as used in the previously 

https://www.COVID-19cellatlas.org/index.patient.html
https://www.COVID-19cellatlas.org/index.patient.html
http://www.CellPhoneDB.org
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described statistical method, differentially expressed 
genes (FDR < 0.05) were used to select interactions that 
were significantly enriched in either severe COVID-19 
patients or healthy individuals relative to the other group. 
An interaction was considered enriched if at least one of 
the two partners (ligand or receptor) was differentially 
expressed, and if both partners were expressed by at least 
10% of the interacting cells.

Bisulfite pyrosequencing
EZ DNA Methylation-Gold kit (Zymo Research) was 
used to BS-converted 500  ng of genomic DNA follow-
ing the manufacturer’s instructions. BS-treated DNA was 
PCR-amplified using IMMOLASE DNA polymerase kit 
(Bioline). Primers used for the PCR were designed with 
PyroMark Assay Design 2.0 software (Qiagen) (Addi-
tional file  3. Table  S3). PCR amplicons were pyrose-
quenced with the PyroMark Q24 system and analyzed 
with PyroMark Q48 Autoprep (Qiagen).

Real‑time quantitative polymerase chain reaction 
(RT‑qPCR)
The Transcriptor First Strand cDNA Synthesis Kit 
(Roche) was used to convert 250  ng of total RNA to 
cDNA following the manufacturer’s instructions. RT-
qPCR primers were designed with Primer3 software [49] 
(Additional file  3. Table  S3). RT-qPCR reactions were 
prepared with LightCycler 480 SYBR Green I Master 
(Roche) according to the manufacturer’s instructions and 
analyzed with a LightCycler 480 instrument (Roche).

Flow cytometry
To study the surface cell markers on monocytes 
(CD14 +), PBMCs from the 10 patients used for single-
cell analysis and 10 HDs were defrosted and washed once 
with PBS. After blocking for non-specific binding with Fc 
block (BD Pharmingen) for 5 min on ice, cells were incu-
bated for 20 min on ice using staining buffer (PBS with 
4% fetal bovine serum and 0.4% EDTA). Antibodies used 
included the following: CD14-FitC (Miltenyi Biotec), 
CD85-PEvio770 (Miltenyi Biotec), CD172a-APC (Milte-
nyi Biotec), CD97-PEvio770 (Miltenyi Biotec), CD31-PE 

(Miltenyi Biotec), CD366-PEvio615 (Miltenyi Biotec), 
CD62L-APC (Miltenyi Biotec), CD58-PE (Miltenyi Bio-
tec), CD191-PEvio770 (Miltenyi Biotec), CD52-PEvio615 
(Miltenyi Biotec), CD48-APC (Miltenyi Biotec). Cells 
were analyzed in a BD FACSCanto-II flow cytometer.

Statistical analysis
All statistical analyses were done with R v4.0.2. Box, bar, 
violin, bubble, and line plots were generated using func-
tions from the ggplot2 (v3.3.6) and ggpubr (v4.0) pack-
ages. Mean normalized DNA methylation values were 
compared using two-tailed test. Multivariate frequency 
distributions were calculated using Fisher’s exact test. 
The levels of significance are indicated as: * p < 0.05, ** 
p < 0.01, *** p < 0.001, and **** p < 0.0001.

Results
DNA methylome remodeling in peripheral blood 
monocytes of severe COVID‑19 patients
To directly inspect epigenetic alterations in periph-
eral blood monocytes in severe COVID-19, we isolated 
CD14 + CD15 − cells from 59 blood samples, com-
prising 48 severe COVID-19 patients and 11 healthy 
donors (HDs), and performed DNA methylation profil-
ing (Fig. 1A, Table 1, and Additional file 1. Table S1). For 
cell sorting, we first separated live cells from debris, then 
extracted singlets and isolated CD14 + CD15 − cells to 
avoid neutrophil contamination (Fig.  1B) [50]. Since we 
selected CD14 + cells, the purification procedure only 
included classical (CM) (CD14 + CD16 −) and interme-
diate monocytes (IM) (CD14 + CD16 +), excluding the 
non-classical monocyte (NCM) (CD14lowCD16 +) sub-
population, which in healthy individuals corresponds 
to around 5% of the total monocyte compartment [51]. 
Negative selection using CD15 was necessary, as there is 
a significant increase in the frequency of neutrophils in 
severe COVID-19 patients, as activated neutrophils are 
not separated in the Ficoll step [52] (Additional file  4. 
Figure S1A-S1C). To confirm the purity of our mono-
cytes, we performed FACS analysis and obtained an 
average purity of 98% (example in Additional file  4 Fig-
ure S1D). Studies in various other inflammatory diseases 

(See figure on next page.)
Fig. 1  Analysis of DNA methylation in blood monocytes of severe COVID-19 patients. A Scheme depicting the cohort and workflow for monocyte 
purification of severe COVID-19 patients and controls and DNA methylation analysis. B Representative flow cytometry profile, indicating sorting 
gates used to purify monocytes from HD and COVID-19 patients’ peripheral blood. C Scaled DNA methylation (z-score) heatmap of differentially 
methylated positions (DMPs) between HDs (blue bar above) and COVID-19 patients (red bar above). Significant DMPs were obtained by applying a 
filter of FDR > 0.05 and a differential of beta value (Δß) > 0.15. A scale is shown on the right, in which blue and red indicate lower and higher levels 
of methylation, respectively. Clinical and treatment data of COVID-19 patients are represented above the heatmap. SOFA, IL-6 level, and days in the 
ICU scales are shown on the right of the panel D Principal component analysis (PCA) of the DMPs. HDs and severe COVID-19 patients are illustrated 
as blue and red dots, respectively. E Gene ontology of hypermethylated and hypomethylated DMPs. Selected significant functional categories 
(FDR < 0.05) are shown. F Bubble plot of TF motifs enriched on hypermethylated and hypomethylated DMPs. Bubbles are colored according 
to their TF family; their size corresponds to the FDR rank. G Box plot of individual DNA methylation values of CpG from hypermethylated and 
hypomethylated clusters (b-values), with the name of the closest gene and the position relative to the transcription start site
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Fig. 1  (See legend on previous page.)
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have shown that the proportions of monocytes can shift 
between the three major subsets, i.e., CM, IM, and NCM. 
For instance, it has been shown that severe COVID-19 
patients feature reduced NCM and IM populations [53]. 
The analysis of monocyte subpopulations in our cohort 
showed a significant increase in the CM population and 
a decrease in the NCM population (Additional file 4. Fig-
ure S1E-S1F). Since we purified CD14 + monocytes, our 
study only included CM and IM.

We performed DNA methylation profiling of isolated 
monocytes and identified 2211 differentially methylated 
positions (DMPs) of CpGs in severe COVID-19 patients 
compared with HDs (FDR < 0.05 and absolute Δß > 0.15). 
Of these, 1773 were hypermethylated (hypermethylated 
cluster) and 438 were hypomethylated (hypomethylated 
cluster) (Fig. 1C and Additional file 5. Table S4). PCA of 
these DMPs showed that the two groups of monocytes 
(COVID-19 and HD) separated along the first principal 
component axis (Fig.  1D). We obtained similar results 
when we included monocyte subpopulation propor-
tions as a covariate in the analysis (overlap, p < 0.0001) 
(Additional file 6. Figure S2A). No significant differences 
(FDR < 0.05) were observed within COVID-19 patients 
separated by their condition (obesity, hypertension, days 
admitted to the ICU, and exitus/death) or treatment with 
dexamethasone (Additional file 1. Table S1). None of the 
abovementioned conditions was significantly correlated 
with the DNA methylation changes (Additional file  6. 
Figure S2B). This was also apparent from the PCA show-
ing the overlap of patients with different clinical param-
eters (Additional file 6. Figure S2C).

The analysis of the genomic functional features of the 
DMPs in the hypermethylated and hypomethylated clus-
ters (Additional file 6. Figure S2D) using public data from 
monocytes [36] revealed an enrichment in promoters 
and enhancers. This is consistent with their proposed 
roles for DNA methylation in regulatory elements [54].

Gene ontology analysis (GO) of the two DMP clusters 
revealed several functional categories associated with 
the immune response to viral infection (Fig.  1E). In the 
hypermethylated cluster, we observed enrichment of cat-
egories such as natural killer-mediated immunity, leuko-
cyte migration, adaptive immune response, and positive 
regulation of interferon gamma production. We also 
observed hypermethylation in the MHC-II protein com-
plex that was related to antigen presentation. In addi-
tion, we found an enrichment of the positive regulation 
of MAP kinase activity category (Fig.  1E, top panel). In 
the hypomethylated cluster, we observed enrichment of 
functional categories relevant to viral infection, including 
defense response to virus and negative regulation of viral 
genome replication. Importantly, the hypomethylated 
cluster also featured enrichment of functional categories 

related to type I interferons (IFN) signaling and MHC 
class II (Fig. 1E, bottom panel).

Transcription factor (TF) binding motif enrichment 
analysis, in 250-bp windows surrounding DMPs, revealed 
overrepresentation of TFs of significance to the immune 
response. The hypermethylated cluster CpGs displayed 
enrichment of binding motifs of IRFs and ETS TF fami-
lies, which are linked to IFN changes (Fig. 1F, left panel). 
Motifs of the bZIP TF family like AP-1, Jun, Fosl2, Fra1, 
and Fra2 were enriched in the hypomethylated cluster. 
DMPs of the hypomethylated cluster were also enriched 
in motifs of the signal transducer factor and activator of 
transcription factor (STAT) members STAT1 and STAT3. 
We also detected enrichment of the glucocorticoid 
response element (GRE) in the hypomethylated cluster 
(Fig.  1F, right panel). Given these results, we hypoth-
esized that pharmacological treatment with glucocorti-
coids (GCs) in severe COVID-19 patients in the intensive 
care unit (ICU) might influence DNA methylation in 
monocytes. To test this possibility, we performed limma 
analysis and subsequent binding motif enrichment after 
separating COVID-19 patients into two groups, with and 
without GC treatment. Both groups of patients exhibited 
significant enrichment of GRE motifs in the hypometh-
ylated cluster (Additional file  6. Figure S2E), suggest-
ing that the endogenous production of GCs in severe 
COVID-19 patients could participate in the hypometh-
ylation through GRE. However, given the size of the 
cohort, we cannot rule out the possibility that pharmaco-
logical treatment could also influence DNA methylation 
changes and therefore remains as a potential confounder 
factor.

Inspection of the individual genes within or in the 
vicinity of the DMPs revealed several genes with func-
tions essential to the viral immune response. The list of 
relevant genes included IRF8, RUNX3, CD226, and CD83 
in the hypermethylated cluster, and STAT1, FOXO3, 
IL1R1, and OAS1 in the hypomethylated cluster (Fig. 1G). 
We validated these results using bisulfite pyrosequenc-
ing in a new cohort of severe COVID-19 patients (Addi-
tional file  6. Figure S2F). Interestingly, these changes 
were also observed in mild COVID-19 patients (Addi-
tional file  6. Figure S2F). IRF8, IL1R1, and CD83 are 
associated with the IFN response. CD226 encodes a gly-
coprotein related to monocyte, NK, and T cell adhesion. 
This glycoprotein has been shown to be involved in the 
cytotoxicity of these cells and is known to be altered in 
COVID-19 patients [13]. STAT1 is associated with the 
cytokine response, which, in turn, is related to IL1R1. The 
latter is the receptor of interleukin 1, which participates 
in the inflammatory response and is strongly expressed 
in severe COVID-19 patients [14]. OAS1 is induced by 
interferons and activates latent RNase, causing viral RNA 
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degradation, which could be related to the identification 
of the category negative regulation of viral genome repli-
cation in the GO analysis.

Monocytes from severe COVID‑19 patients display 
increased DNA methylation variability
Overall, our DNA methylation analysis showed greater 
heterogeneity (different variable positions, DVPs) in 
the profiles from COVID-19 patient monocytes than 
in those from HDs (Additional file  6. Figure S2G). We 
then examined the relationship between the DNA meth-
ylation profiles and the Sequential Organ Failure Assess-
ment (SOFA) score, which is used in ICUs to calculate 
organ damage. The score ranges from 0 to 24, with values 
greater than 6 being associated with a significant increase 
in the risk of mortality [55]. Using Spearman’s correlation 
coefficient to assess specific hypermethylated or hypo-
methylated CpGs with SOFA, we identified 1375 CpG 
sites whose methylation levels positively correlated with 
SOFA (increased methylation) (rho < 0.4 and p < 0.01) 
and 1497 CpG sites with an inverse correlation with 
SOFA (decreased methylation) (rho <  − 0.4 and p < 0.01) 
(Fig. 2A and Additional file 7. Table S5). The mean nor-
malization DNA methylation profiles of increased and 
decreased methylation CpG sites were similar in patients 
with low SOFA (< 6) and in healthy controls in an unsu-
pervised representation but differed between the low 
and high SOFA score groups (Fig. 2B). These results sug-
gest that changes in DNA methylation are concomitantly 
exacerbated for higher SOFA scores, which is associated 
with bad prognosis. Several CpGs correlating with SOFA 
were associated with genes, such as IL17R, SOCS5, and 
PCDHA5, that are involved in T cell-mediated inflam-
matory responses (Fig.  2C). Others, like FOXG1 and 
CDC20B, are associated with DNA damage. GO analy-
sis revealed that changes in DNA methylation that are 
concomitant with SOFA show an overrepresentation of 
terms associated with IFNγ, production of the molecular 
mediator involved in inflammatory response, viral gene 
expression, the B cell proliferation involved in immune 
response, and Th1 cell cytokine production (Fig. 2D).

DNA methylation alterations in monocytes of severe 
COVID‑19 patients significantly associate with those 
derived from patients with bacterial sepsis, myeloid 
differentiation, and the influence of inflammatory 
cytokines
To better characterize the impact of DNA methylation 
changes in COVID-19, we compared the DMPs from 
severe COVID-19 patients with those obtained from 
monocytes derived from patients with bacterial sepsis 
in a previous study by our team [27], given that severe 
COVID-19 can be considered a form of sepsis [56]. To 

this end, we first estimated the DNA methylation values 
of DMPs corresponding to the sepsis relative to the HD 
comparison from our previous sepsis study (accession 
number GSE138074) [27] using the data from the severe 
COVID-19 methylation dataset. Overall, we found sig-
nificant enrichment in the hypermethylation and hypo-
methylation clusters (Fig.  3A). We also calculated the 
odds ratio of the overlap between these two datasets 
and found a strong enrichment of the hyper-DMPs in 
COVID-19 relative to those in sepsis (FDR ≤ 2.22·10−16) 
and in the hypo-DMPs (FDR ≤ 2.22·10−16) (Fig. 3B). We 
also confirmed an enrichment in introns and depletion 
in promoters relative to the background when testing the 
genomic location of the DMPs common to both COVID-
19 and sepsis (Fig. 3C and Figure S3A). DMPs located in 
introns are often localized in enhancer regions involved 
in long-distance regulation [54].

We then determined that the two datasets had 362 
hypermethylated and 92 hypomethylated CpGs in com-
mon (Fig. 3D), corresponding to 51% of the total DMPs 
of the sepsis patients (Additional file 8. Figure S3B). GO 
analysis of the shared DMPs revealed significant enrich-
ment in functional terms related to host response, 
including regulation of NK cells, inflammatory response, 
and leukocyte chemotaxis (Additional file 8. Figure S3C). 
Shared hypermethylated CpGs were enriched in func-
tional categories related to cell signaling, such as the JAK-
STAT and MAPK pathways, that could be involved in the 
reduction of the inflammatory response and the IL15- 
and IL12-mediated signaling pathways, which are related 
to cytokine production and Th1 proliferation (Fig.  3E, 
left panel). Shared hypomethylated CpGs were enriched 
in functional categories responsible for regulating the 
inflammatory response, such as negative regulation of 
IL-1 production and positive regulation of macrophage 
activation. In concordance with the hypermethylated 
cluster, we also observed negative regulation of IFNα 
production (Fig. 3E, right panel). It is of note that severe 
COVID-19-specific DMPs were enriched in functional 
categories related to virus infection, such as the defense 
response to virus, and impairment of the antigen-pre-
senting process, which seems to be specific to COVID-19 
infection [13, 23] (Additional file 8. Figure S3D).

Inspection of TF binding motifs corresponding to the 
DMPs shared between the two groups, separating the 
shared hypermethylated and hypomethylated CpG sets 
revealed IRF family transcription factors like IRF1, IRF2, 
IFR3, and IRF8 in the shared hypermethylated CpG set, 
which are well established regulators of the type I IFN 
system, being common in viral and bacterial infections 
[57]. We also detected enrichment of the ETS transcrip-
tion factors that are regulated by MAPK proteins, which 
were enriched in the GO analysis (Fig. 3F). In the shared 
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hypomethylated set, we noted enrichment of STAT3 and 
TFs from bZIP AP-1, like Jun, and other bZIPs, like CEBP. 
Interestingly, GRE was also present in the shared hypo-
methylated cluster (Fig.  3F). This suggests the influence 
of GC in the acquisition of aberrant methylation profiles 
in COVID-19 and sepsis. Individual genes associated 
with the COVID-19/sepsis shared hypermethylated and 
hypomethylated CpG genes include type I IFN-related 
genes, like IRF2, and others, such as IL1A and CCR2, that 
are involved in inflammatory processes and monocyte 
chemotaxis, respectively (Fig.  3G). We also identified 

several genes among the shared hypomethylated set, like 
CD163, SOCS1, and IL10, that have been associated with 
the acquisition of tolerogenic properties  in monocytes 
[58] (Fig. 3G).

In both infections, systemic inflammation could be 
responsible for part of the DNA methylation changes that 
arise in monocytes. To address this possibility, we exam-
ined the DNA methylation levels of the hypomethylated 
and hypermethylated CpGs of severe COVID-19 and 
sepsis patients in monocytes isolated from healthy donor 
PBMCs that had been treated in vitro with inflammatory 

Fig. 2  DNA methylation changes in COVID-19 monocytes parallel organ damage. A Heatmap of severe COVID-19 patients with DNA methylation 
ordered by SOFA score, including all CpG-containing probes significantly correlated with the SOFA score (Spearman correlation coefficient rho > 0.4, 
p < 0.01). Clinical and treatment data of COVID-19 patients are shown above the heatmap. SOFA, IL-6 level, and days in the ICU scales are shown 
on the right of the panel B. Normalized methylation values from heatmap showing overall group methylation of HD. Patients with SOFA ≤ 6 are 
indicated as SOFA LOW; those with SOFA > 6 are indicated as SOFA HIGH. C DNA methylation levels (b-values) of selected individual CpGs (and 
closest genes) in hypermethylated and hypomethylated sets and their position relative to the transcription start site. D Gene ontology (GO) analysis 
of hypermethylated and hypomethylated DMPs, analyzed with the GREAT online tool, in which CpG annotation in the EPIC array was used as 
background. Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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cytokines like IFNα, IFNγ, and TNFα [26] (accession 
number GSE134425). This analysis revealed several sig-
nificant changes following the trends for both COVID-
19 and sepsis (Additional file  8. Figure S3E), suggesting 
that these inflammatory cytokines, which are elevated 
in these patients, could influence the monocyte DNA 
methylomes.

An alternative explanation for the observed changes in 
severe COVID-19 monocyte methylomes could be that 
DNA methylation changes reflect alterations during mye-
loid/monocyte differentiation or the release of immature 
or aberrant monocytes. This has been described in severe 
COVID-19 cases [13, 59–62]. It is worth noting that 
immature cells are also released from the bone marrow in 
sepsis [63]. To test this hypothesis, we used public whole-
genome bisulfite sequencing (WGBS) data (GSE87197) 
of progenitor cells including HSC, MPP, CMP, and GMP 
cells and monocytes as references. We compared the 
1773 hypermethylated CpGs based on their genomic 
location and obtained 1511 unique Ensembl Regions, 
which grouped in two clusters. Cluster 1 showed low-
level demethylation in monocytes compared with all 
hematopoietic precursor cell types, whereas cluster 2 
showed clear demethylation in monocytes (Fig.  3H). 
These results are compatible with the possibility that a 
proportion of the DMPs in severe COVID-19 result from 
aberrant myeloid differentiation or the release of imma-
ture monocytes, which display higher methylation levels, 
and are not demethylated to the extent they are during 
normal differentiation.

Aberrant DNA methylation is associated with changes 
in gene expression of COVID‑19 patient monocytes
To study the relationship between the DNA methyla-
tion changes and aberrant gene expression of mono-
cytes derived from severe COVID-19 patients, we 
obtained single-cell (sc) RNA-seq data of peripheral 
blood mononuclear cells (PBMCs) from 10 additional 
severe COVID-19 patients from the same hospital 

and compared them with those of 10 HDs from a pub-
lic dataset [41] (Additional file  2. Table  S2 and Addi-
tional file 9. Figure S4A-S4B). This analysis enabled us 
to identify 24 cell populations based on specific mark-
ers (Fig. 4A and Additional file 9. Figure S4C-S4D), and 
thereby not only to determine the alterations in gene 
expression in monocytes, but also to inspect altera-
tions in additional immune cell subsets. Strikingly, 
the monocyte fraction comprised solely CD14 + cells 
(CD14 mono: CD14) (Fig. 4B).

In the CD14 + monocyte cluster, we identified 10,440 
differentially expressed genes (DEGs) between COVID-
19 patients and HDs (Additional file  10. Table  S6). The 
top DEGs (based on the fold change (FC)) included pro-
inflammatory molecules (IL1B, CCL3), surface mark-
ers (CD163, CD63, AREG, CD74, S100A12, S100A12, 
S100A8, S100A9), and transcription factors (JUN, MAFB, 
NF-KB) (Fig.  4C). We observed upregulation of mono-
cyte-derived cell markers like S100A12, S100A8, and 
S100A9. S100A8 is already known to contribute to the 
cytokine storm in severe COVID-19 [41, 64]. Pro-inflam-
matory genes like IL1B of IRF1 were downregulated, as 
well as HLA genes, in agreement with previous stud-
ies, suggesting decreased antigen presentation in severe 
COVID-19 patients. Finally, we observed downregulation 
of the NF-κB inhibitor zeta-encoding gene NFKBIZ, con-
sistent with activation of this pro-inflammatory pathway 
[65]. Since type I IFNs are essential for antiviral immu-
nity, and the DNA methylation analysis had indicated 
the potential occurrence of epigenetic alterations in IFN-
stimulated genes (ISGs), we checked the expression levels 
of genes regulated by type I IFNs and found downregula-
tion of several ISGs, such as STAT1, BST2, PTPN6, and 
IRF1 (Additional file  11. Figure S5A). In addition, given 
that some of the observed DNA methylation changes 
were associated with genes involved in antigen presen-
tation, we inspected HLA genes in our expression data 
and found this gene set to be significantly downregulated, 

(See figure on next page.)
Fig. 3  Comparative analysis of DNA methylation in blood monocytes of severe COVID-19 and bacterial sepsis patients. A Violin plot representing 
the mean methylation state of the DMPs found in the comparison between HDs and sepsis patients with b-values obtained from severe COVID-19 
patients. B Fisher’s exact test showing the odds ratio ± 95% confidence interval of the overlap between DMPs found in monocytes from bacterial 
sepsis patients and DMPs in monocytes from COVID-19 patients. C Proportions of the genomic locations (in relation to genes) of DMPs in COVID-19 
and sepsis; Bg., background, EPIC probes. D Venn diagram of the overlap of COVID-19 DMPs identified by the comparison of HDs and severe 
COVID-19 patients with DMPs identified by the comparison between HDs and sepsis patients, separating hypermethylated and hypomethylated 
DMPs. E Gene ontology analysis of hypermethylated and hypomethylated overlapping DMPs identified in the previous comparison. Selected 
significant categories (p < 0.05) are shown. F TF binding motif analysis of shared hypermethylated and hypomethylated DMPs comparing HDs 
and COVID-19 patients, and by HDs and sepsis patients. The panel shows the fold change (FC), TF family. Boxes with black outlines indicate TF 
binding motifs with FDR < 0.05. G Box-plot showing the DNA methylation values of individual CpGs (together with the name of the closest gene 
and its position relative to the transcription start site) from the hypermethylated and hypomethylated clusters from both COVID-19 and sepsis. 
H Scaled DNA methylation heatmap of regions from the whole-genome bisulfite sequencing (WGBS) data of hematopoietic stem cells (HSCs), 
multipotent progenitors (MPPs), common myeloid progenitors (CMPs), and granulocyte macrophage progenitors (GMPs) that overlap with the 
genomic location of the 1772 hypermethylated DMPs identified in the COVID-19 vs. HDs comparison. Statistical significance: * p < 0.05, ** p < 0.01, 
*** p < 0.001, **** p < 0.0001
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Fig. 3  (See legend on previous page.)
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consistent with dysfunction in antigen processing and 
presentation (Additional file 11. Figure S5B).

GO analysis of both DEG sets revealed enrichment 
in functional terms coincident with those from DNA 
methylation analysis. We observed functional catego-
ries such as cytokine-mediated signaling, IL-12-medi-
ated signaling, negative regulation of T cell activation, 
negative regulation of IFNγ production, and defense 
response to the virus in the upregulated cluster genes 
(Fig. 4D). Conversely, functional categories such as anti-
gen processing and presentation by MHC-I and MHC-
II and IFNγ-mediated signaling were enriched among 
the downregulated gene set (Fig.  4D). We then studied 
TFs potentially involved in the transcriptomic changes 
observed in COVID-19 monocytes, using Discrimi-
nant Regulon Expression Analysis (DoRothEA), and 
found that MAF family members, GATA3, STAT4, and 
IRF4, were associated with upregulated genes in severe 
COVID-19 (Fig.  4E). Conversely, STAT6, STAT2, IRF2, 
IRF3, and LYL1 were associated with downregulated 
genes (Fig. 4E). TF enrichment of upregulated and down-
regulated genes was also consistent with the results from 
DNA methylation analysis, in which binding motifs for 
several of these TFs were overrepresented among the 
regions neighboring the DMPs.

We determined the significance of a negative correla-
tion between DMPs and the expression levels of their 
closest genes (rho =  − 0.31; p = 9.8e − 16) (Fig.  4F). To 
study the relationship between DNA methylation and 
expression changes further, we performed Gene Set 
Enrichment Analysis (GSEA) of the genes associated 
with hypermethylated and hypomethylated CpG clus-
ters. Genes associated with hypermethylated CpGs were 
generally downregulated (NES = 1669; FDR = 0.0005), 
whereas those associated with hypomethylated CpGs 
were upregulated (NES =  − 1187; FDR = 0.0596) in 
COVID-19 patients (Fig.  4G). GO analysis of genes 
with an inverse relationship between methylation and 

expression levels showed enrichment of functional cat-
egories like negative regulation of T cells, IFNα, and anti-
gen presentation (Additional file  11. Figure S5C-S5D). 
This analysis reinforced the relationship between DNA 
methylation changes and expression changes related 
to the acquisition of a more tolerogenic phenotype 
in monocytes in COVID-19 patients. Some examples 
include IL10, a tolerogenic cytokine whose expression 
is increased in COVID-19, and NFKBIz, whose level of 
expression is decreased (Fig.  3H). We validated these 
results using bisulfite pyrosequencing and qRT-PCR with 
a new cohort of severe COVID-19 patients (Additional 
file  11. Figure S5E-F). The analysis also included mild 
COVID-19 that showed partial or total DNA methylation 
changes to the extent seen in severe COVID-19 cases 
(Additional file 11. Figure S5E-F).

Potential relationship between transcriptional 
and epigenetic reprogramming and altered immune cell–
cell communication
Given the overrepresentation of genes associated with 
cytokine activity, MHC class II-mediated antigen pres-
entation among the observed DNA methylation, and 
gene expression alterations in severe COVID-19, we 
explored the potential correlation of these changes in 
monocytes with their pattern of communication with 
other immune cell types. To systematically analyze the 
effect of cell–cell communication on monocytes, we 
used CellPhoneDB (www.​cellp​honedb.​org), a repository 
of ligands, receptors, and their interactions integrated 
within a statistical framework that predicts enriched cel-
lular interactions between two cell types using scRNA-
seq datasets. This allowed us to infer potentially altered 
interactions between monocytes and other immune 
cell subsets in severe COVID-19. In particular, we 
inspected cell–cell communication alterations between 
CD14 + and CD4 + memory, CD4 + naïve, CD8 + mem-
ory, and CD8 + naïve T cells; B cell subsets including 

Fig. 4  Correlation between DNA methylation and gene expression. A UMAP visualization showing the immune cell populations identified from 
Louvain clustering and cell-specific marker gene expression. B Dot plot representing the expression of selected marker genes identified in the 
cell population. The scale represents the mean gene expression level in the cell subset and the circle size represents the percentage of cells in the 
subset of expressing cells. C Heatmap representing differentially expressed genes (DEGs) with a log2(FC) > 0.6, above, and log2(FC) <  − 0.6, below. 
Genes overexpressed and downregulated in COVID-19 patients in relation to HDs are depicted in red and blue, respectively. D Gene ontology (GO) 
overrepresentation of GO Biological Process categories comprising the upregulated and downregulated DEGs. The odds ratios for each group 
and the − log2(FC) are shown. Selected significant categories (FDR < 0.05) are shown. E Discriminant Regulon Expression Analysis (DoRothEA) of 
COVID-19 severe patients compared with HDs. Normalized enrichment score (NES) and log2(FC) of transcription factor expression are depicted. F 
Correlation of average DNA methylation levels of DMPs with average gene expression of DEGs in the HDs vs. COVID-19 severe patients. Log2(FC) 
of expression is plotted on the y-axis, higher numbers representing a higher level of expression in COVID-19 and lower numbers a higher level 
of expression in HDs. DNA methylation is depicted on the x-axis as Δβ, lower numbers representing a lower level of methylation in COVID-19 
monocytes, and higher numbers a lower level of methylation in HDs. Points are colored according to their genomic context. G Gene set enrichment 
analysis (GSEA) of HD vs. COVID-19, using hypomethylated-associated genes and hypermethylated-associated genes as genesets. The running 
enrichment score is represented, and the normalized enrichment score (NES) is shown above (FDR < 0.01). H Representation of individual DNA 
methylation values of DMPs from the hypermethylated and hypomethylated clusters (beta values), the position in respect to the transcription start 
site, and the relative expression of the closely related DEGs. Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.0001, **** p < 0.00001

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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memory, naïve, and plasma B cells; natural killer cells 
(NK CD56dim: NK CD56bright) (Fig.  5A,B). Our analysis 
revealed 4483 ligand/receptor pairs, in which the expres-
sion levels of ligands and receptors of CD14 + and/or 
interacting partners in the aforementioned cell types 
were significantly different between severe COVID-19 
patients and HDs, suggesting changes in the interaction 
of the corresponding immune cells (Additional file  12. 
Table S7). The aberrant levels of the proteins encoded by 
these genes in monocytes were validated by flow cytom-
etry (Figure S5G), supporting a potential impact on cell–
cell communication.

Figure  5A illustrates the significant ligand-receptor 
interactions that may be affected when the expression of 
receptor in monocytes is altered, revealing their poten-
tial impact on other cell types. In general, there was a 
high frequency of interactions involving different types 
of NK cells, consistent with the terms observed in the 
GO analysis performed with DMPs (Fig.  1E). PILRA, 

LILRB1, LILRB2, and PECAM1 (CD31), the products of 
which are involved in the inhibition of immune response, 
were downregulated  in monocytes. Their corresponding 
ligand-encoding genes, CD99, HLA-F, and CD38, were 
expressed in all the analyzed cell types, except for CD38, 
which is only expressed in NK and plasma B cells. Addi-
tionally, the gene encoding for receptor LAIR1, which 
inhibits IL-2 expression, was upregulated in mono-
cytes [66], which might influence the interaction with 
cells expressing its corresponding ligand, i.e., plasma B 
cells and monocytes. Our analysis also revealed changes 
in the expression of TNF receptor genes (TNFRSF14, 
TNFRSF1B, TNFRSF1A) in monocytes, which could 
affect the interaction with T cells through the ligands 
encoded by TNF and LTA. This is compatible with the 
possibility that TNF-associated DNA methylation altera-
tions in monocytes could arise from altered interactions 
with T cells through these ligand-receptor pairs. We also 
noted downregulation of the receptor TNFRSF14, which 

Fig. 5  Cell–cell communication analysis. Dot plot of selected receptor/ligand pair (A) and ligand/receptor (B) interactions between 
CD14 + monocytes and other cell components in the COVID-19 patient group. Gene expression is indicated as log2(FC) for differentially expressed 
genes (FDR < 0.05), which, in both cases (A and B), are the molecules presented on the left. The percentage expression of the differentially 
expressed genes in each cell type is indicated by the circle size. Molecules shown in blue are those expressed in CD14 + monocytes. Molecules 
expressed in the immune cell partner are shown in red
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interacts with CD160 in NK cells. Some studies have 
argued that CD160 is essential for NK-mediated IFNγ 
production [67], a conclusion that is consistent with the 
results obtained in our gene ontology analysis of the 
DNA methylation data. ADGRE5 (CD97) was downregu-
lated in monocytes. This receptor interacts with CD55, 
which is expressed in all the analyzed cell types. This 
interaction is involved in leukocyte migration [68]. The 
potential alteration of this interaction could be linked to 
the observed hypomethylation of CpGs close to genes 
related to leukocyte migration (Fig. 1E, top).

We also examined DEGs corresponding to ligands 
expressed in all immune cell types, whose corresponding 
receptors are expressed in monocytes, to identify poten-
tial cell–cell communication alterations that might affect 
monocytes (Fig.  5B). In general, we detected upregula-
tion of ligands in regulatory T cells (Treg) and down-
regulation of ligands in plasma B cells. We also observed 
increased levels of CCL5 and CCL3, expressed in NK 
cells, that interact with the CD191 receptor (CCR1), and 
whose inhibition potentially suppresses immune hyper-
activation in critical COVID-19 patients [69]. In the con-
text of antigen presentation, there was upregulation of 
HLA-F from Treg and NKT, which interacts with LILRB1 
in monocytes. Recent studies have associated LILRB1 
with the development of tolerance [70]. Our analysis also 
revealed low levels of CD99, expressed in CD4 + mem-
ory and naïve T cells, Treg and memory B cells, and the 
receptor PILRA, which is expressed in monocytes. The 
opposite occurs with CD8 memory and naïve T cells 
and NK CD56(bright), which enhances T cell migration 
[71]. There was a similar trend between CD74 and the 
receptor APP expressed in monocytes, which is involved 
in antigen processing and presentation. This could be 
related to the impaired antigen presentation previously 
highlighted in our data.

In brief, the potential alteration of cell–cell communi-
cation events, through increased or decreased levels of 
ligands and receptors involving inflammatory cytokines, 
antigen presentation-related factors, and cell activation 
regulators, in severe COVID-19 patients could affect 
downstream cell-signaling pathways and TFs and per-
haps influence DNA methylation profiles in monocytes, 
thereby perpetuating aberrant immune responses.

Discussion
Our results reveal that peripheral blood monocytes 
from severe COVID-19 patients display aberrant DNA 
methylomes and transcriptomes associated with func-
tions related to IFN type I signaling and antigen pres-
entation, among others. The changes are significantly 
associated with organ damage and with DNA methyla-
tion changes occurring in bacterial sepsis. Finally, our 

analysis suggests that pro-inflammatory cytokines, the 
release of immature or aberrant monocytes, and spe-
cific dysregulated immune cell–cell communication 
events may be responsible for some epigenetic changes.

To date, there have been very few DNA methylation 
studies addressing the involvement of COVID-19 DNA 
methylation in regulating the angiotensin-converting 
enzyme 2 (ACE2) type I membrane receptor gene [72], 
which is present in arterial, lung type II alveolar cells, 
where it acts as a SARS-CoV-2 receptor. There is a sug-
gestion that the host epigenome may represent a risk 
factor for COVID-19 infection. Very few studies have 
reported alterations in DNA methylation in relation to 
immune responses [73–75]. Our study aimed to explore 
the involvement of DNA methylation in relation to a 
severe COVID-19 outcome in the myeloid compart-
ment, which is directly related to systemic inflamma-
tion. We specifically studied monocytes because it is 
the cell type that undergoes the most dramatic tran-
scriptomic reprogramming during COVID-19 infection 
[13, 21, 23, 76]. In this regard, our study provides the 
first instance of DNA methylome profiling in a specific 
immune cell type in COVID-19 patients.

Our data revealed that most DNA methylation 
changes in monocytes derived from severe COVID-19 
patients occurred in genomic sites enriched in PU.1 
binding motifs, consistent with earlier studies show-
ing its role as a pioneer TF directly recruiting TET2 
and DNMT3b [77]. In our case, most DNA methylation 
changes occurred in genes related to cytokines, MHC 
class II proteins, and IFN signaling. Similar results 
about the defective function of MHC-II molecules and 
activation of apoptosis pathways were obtained in sin-
gle-cell atlas studies of PBMCs from severe COVID-19 
patients [6, 21, 78, 79] and in sepsis [80, 81].

We found that DNA methylation changes in severe 
COVID-19 patients share some features with sepsis, 
especially those associated with the expression of toler-
ogenic cytokines like IL-10 [82]. The acute phase of 
these infections suggests a dysregulated inflammatory 
host response, resulting in an imbalance between pro-
inflammatory and anti-inflammatory mediators [14]. 
Some studies have suggested that viral components 
induce STAT1 dysfunction and compensatory hyper-
activation of STAT3 in SARS-CoV-2-infected cells [83]. 
We noted the involvement of kinases like JNK, and 
earlier studies had shown that COVID-19 infection 
activates the JNK and ERK pathways that end in the 
AP-1-dependent gene expression of pro-inflammatory 
cytokines [84]. One of the most strongly affected TFs 
is STAT2, together with STAT6, which could be linked 
to the aberrant IFN signaling in monocytes in COVID-
19 [83]. The presence of STAT2 downregulation also 
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suggests a deficiency in the ability to cross-present to 
CD8 + T cells [85].

We also identified GRE binding sites in association with 
DNA methylation changes. Generally, the glucocorticoid 
receptor (GR) is activated when patients are treated with 
GC. However, we also noted significant GRE enrich-
ment in patients who were not treated with GC, suggest-
ing that endogenous production of GC in COVID-19 
patients could regulate GR and affect DNA methyla-
tion at its genomic binding sites. GC is also produced 
endogenously in sepsis patients in whom cytokines like 
IL-1β, TNFα, and IL-6 induce its production from the 
adrenal cortex using cholesterol as a substrate to reduce 
inflammatory responses [86, 87]. These cytokines were 
hypomethylated and overexpressed in our dataset, con-
sistent with the results of other studies that have reported 
increased levels in the serum of COVID-19 patients [88, 
89]. GRE binding sites are enriched in the DMPs com-
mon to COVID-19 and sepsis. GR is a nuclear receptor 
expressed in most cell types that can trigger the expres-
sion of anti-inflammatory genes through direct DNA 
binding. Furthermore, GRE represses the action of other 
inflammation-related TFs, including members of the 
NF-KB and AP-1 families [90, 91], which are also known 
to be downregulated in our cohort. Taken together, our 
results suggest the existence of a relationship between 
extracellular factors associated with the cytokine storm 
occurring in severe COVID-19 and DNA methylation 
changes. Several studies have shown an increase in the 
levels of inflammatory cytokines in severe COVID-19, 
which may contribute to the severity of the disease [92].

However, it is also possible that the DNA methyla-
tion changes are partly due to the release of immature 
or altered monocytes from myelopoiesis, as reported 
for severe COVID-19 [13, 20, 93, 94] and sepsis [63]. 
Release of immature myeloid cells from the bone marrow 
in severe COVID-19 is reminiscent of emergency mye-
lopoiesis [95]. This is a well-known phenomenon, char-
acterized by the mobilization of immature myeloid cells 
to restore functional immune cells, and by its contribu-
tion to the dysfunction of innate immunity [96]. In fact, 
a proportion of the hypermethylated CpGs in monocytes 
from severe COVID-10 patients overlap with regions that 
become demethylated during myeloid differentiation. 
This suggests that part of the hypermethylated CpG sites 
in isolated peripheral blood CD14 + might be associated 
with aberrantly differentiated monocytes released into 
the bloodstream in severe COVID-19 patients. However, 
the small numbers of CD34 + cells in the PBMC frac-
tion of COVID-19 patients and the lack of CD14 + cells 
in this subset suggest no interference with our results for 
CD14 + CD15- cells, isolated with our method.

The relationship between DNA methylation and gene 
expression is complex. DNA methylation patterns are 
cell-type-specific and are established during dynamic dif-
ferentiation events by site-specific remodeling at regula-
tory regions [97]. In general, methylation of CpGs located 
in gene promoters, first exons, and introns is negatively 
correlated with gene expression [98]. The analysis of our 
data shows that there is an inverse correlation between 
the CpG methylation changes and the expression lev-
els of the closest genes. The comparison of the inferred 
TFs associated with DNA methylation changes and gene 
expression changes shows common factors like IRF2 and 
IRF3, which regulate downregulated genes and hyper-
methylated CpGs. In this context, it is possible that 
reduced levels of IFN regulatory factor IRF3 or defective 
IRF7 function reduces the level of IFNα/β gene expres-
sion, increasing the sensitivity to viral infection [12, 99].

Finally, analysis of cell–cell communication has 
revealed potential relationships between DNA methyla-
tion changes and altered communication of monocytes 
and other immune cells (e.g., T, plasma B and NK cells). 
Our data suggest the potential reduction of interac-
tions between monocytes and NK cells through CD160, 
which mediates the antibody-dependent cell-mediated 
cytotoxicity that it is essential for IFNγ production [67]. 
The potentially greater interaction between monocytes 
and Treg through multiple ligand and receptor pairs is 
an interesting finding, since Tregs are immunosuppres-
sive cells responsible for maintaining immune homeosta-
sis [100]. In any case, the use of CellPhone DB is useful 
for inferring cell–cell communications events; however, 
additional validation experiments would be necessary to 
validate interactions and activation of downstream sign-
aling pathways.

In our study, we could not determine whether the 
observed DNA methylation alterations in COVID-19 
were the cause or the consequence of the changes in 
gene expression. The analysis of mild COVID-19 cases, 
in which the DNA methylation and expression level of 
a few genes showed differences in their similarities with 
severe COVID-19 cases, suggests that there are cases 
where expression changes might anticipate DNA meth-
ylation changes. In any case, it is reasonable to propose 
that some DNA methylation changes help perpetuate 
dysregulated immune responses.

Some limitations of our study include the size of the 
cohort, and the unequal numbers of individuals admin-
istered particular drugs in the different patient groups, 
which could have affected the COVID-19 data. How-
ever, despite these limitations, we found no significant 
differences among severe COVID-19 patients with 
respect to the time they were admitted to the ICU or 
began to receive treatment. This suggests that DNA 



Page 18 of 22Godoy‑Tena et al. Genome Medicine          (2022) 14:134 

methylation is quite a general occurrence in the con-
text of COVID-19. Another limitation concerns the cell 
population analyzed, since the method for monocyte 
isolation comprises two populations, CM and IM, one 
of which (CM) is expanded in the patient group. How-
ever, the analysis including the monocyte subsets as a 
covariate indicates that there are no major differences. 
Finally, in the comparison with DNA methylation of 
progenitor cells, it is important to note that the DMPs 
were overlapped with genomic regions, and not single-
base data, and further analyses would be required.

Future studies would benefit from having access to a 
wider cohort in which it is possible to identify signifi-
cant links between alterations and drug treatments. 
Incorporating mild and asymptomatic cases would 
improve our ability to dissect drug- and severity-related 
specificity in relation to DNA methylation changes. As 
is the case for other medical conditions, the analysis 1of 
DNA methylation changes would be very likely to help 
predict disease severity, progression, and recovery.

Conclusions
Our study provides unique insights into the epigenetic 
alterations of monocytes in severe COVID-19. We have 
shown that peripheral blood monocytes from severe 
COVID-19 patients undergo changes in their DNA 
methylomes, in parallel with changes in expression, 
and that these significantly overlap with those found in 
patients with sepsis. We have also shown DNA meth-
ylation changes are associated with organ dysfunc-
tion. Finally, our results suggest a relationship between 
DNA methylation changes in COVID-19 patients and 
changes that occur during myeloid differentiation 
and others that can be induced by pro-inflammatory 
cytokines. CellPhoneDB analysis also suggests that 
alterations in immune cell crosstalk can contribute to 
transcriptional reprogramming in monocytes, which 
involves dysregulation of interferon-related genes 
and genes associated with antigen presentation and 
chemotaxis.
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