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The advent of chimeric antigen receptor T-cell therapy (CAR-T) has substantially improved clinical out-
comes for refractory B-cell malignancies.1-4 Real-world evidence has underlined the role of hematological
toxicity, which is common and substantially contributes to infectious complications and non-relapse mor-
tality (NRM) after CD19 CAR-T.5-8 Hematotoxicity can be delayed and prolonged in nature, and neutro-
phil recovery is typically biphasic with intermittent recovery followed by a second dip.9,10 Clinically
challenging cases of profound granulocyte colony-stimulating factor (G-CSF) refractory aplasia have
been reported.8,11,12 While the pathomechanism remains incompletely understood, impaired pre–CAR-T
hematopoietic reserve and inflammation10 and cytokine release syndrome (CRS)-related cytokine pat-
terns13 have been discussed. For refractory cytopenia, stem cell transplantation represents the last
resort, either from an allogeneic donor or an autologous product from previous collection. However, its
role in the context of CAR-T–related hematotoxicity remains ill defined, and experience is limited.11,12 In
this retrospective observational study, we therefore describe clinical characteristics, bone marrow (BM)
findings, engraftment and hematopoietic reconstitution, and survival outcomes in 12 patients receiving
stem cell boost for severe CAR-T–related hematological toxicity.

We surveyed institutional databases across 6 European CAR-T centers (supplemental Figure 1). Exclu-
sion criteria included active infection and poor performance status. Clinical metadata were collected with
institutional review board approval and in accordance with the Declaration of Helsinki. The indication was
severe pancytopenia or long-lasting G-CSF or transfusion dependency (persistent cytopenia group).
Immunotoxicity was graded as previously described (supplemental Methods).7,10,14 Neutrophil engraft-
ment was defined as the first of 3 consecutive days achieving a sustained absolute neutrophil count
(ANC) .500/mL without growth factor support.15,16 Platelet engraftment was defined as a platelet count
.20 G/L and transfusion independence $7 days.17 Cumulative incidence curves were calculated as
the time to engraftment from Kaplan-Meier estimates, censoring the observation time on the date of pro-
gression, or death. Patients already fulfilling the criteria for lineage-specific engraftment on the day of
transplant were excluded from the respective analysis. Efficacy outcomes were assessed according to
Lugano criteria for B-cell Non-Hodgkin Lymphoma (B-NHL) and minimal residual disease (MRD) status
for B-cell precursor acute lymphoblastic leukemia (BCP-ALL).3 NRM was defined as death after CAR-T
without prior relapse or progression. Kaplan-Meier estimates were used to assess progression-free sur-
vival (PFS) and overall survival (OS).

We encountered 13 cases between April 2019 and March 2022. One patient was excluded due to
active infection and poor performance status (supplemental Figure 1). Nine patients received axicabta-
gene ciloleucel, 2 received tisagenlecleucel, and 1 received brexucabtagene autoleucel (Table 1). At
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lymphodepletion, the median Eastern Cooperative Oncology Group
Performance Status was 1 (range, 0-2). Six patients presented with
a prior history of stem cell transplantation, and an additional 6
patients had collected but not received autologous CD341 periph-
eral stem cells due to progressive disease. Baseline laboratory find-
ings were notable for an elevated lactate dehydrogenase (median
332 U/L) and pronounced baseline cytopenia and inflammation
(supplemental Table 1), as evidenced by high CAR-HEMATOTOX
scores (median, 4; range, 2-7).10 Hypocellularity and underlying infil-
tration were frequent in the 8 patients with pre–CAR-T BM studies
(supplemental Table 2). The toxicity profile between CAR-T and
stem cell boost was dominated by hematotoxicity and severe infec-
tions (supplemental Table 3). Median duration of severe neutropenia
and thrombocytopenia was 42 days, respectively (Figure 1A).
Severe infections were noted in 58% of patients, whereas grade
$3 CRS was not observed. One patient died of an invasive fungal
infection on day 58 after CAR T in the setting of burgeoning hema-
topoietic recovery after boost (patient #3; supplemental Figure 2).
Peak inflammatory markers were particularly notable for high serum
ferritin levels (median, 6542; supplemental Table 1). Post–CAR-T
BM studies revealed hypocellular marrow in 9/9 patients and T-cell
lymphocytosis in 3/9 patients (supplemental Table 2). To overcome
neutropenia, all patients received G-CSF, and half received a TPO-
agonist (Figure 1B), initiated after a median of 17 and 42.5 days,
respectively (supplemental Table 4). Anticytokine therapy was infre-
quently applied; however, transfusion dependency was common.

Median day of stem cell boost was 69 days (range, 35-617)
(Table 1). The indication was severe pancytopenia in 6 cases and
persistent neutropenia or thrombocytopenia in 6 cases. Two
patients received .1 stem cell boost. The stem cell source was an
autologous product in most cases (9/12), although 3 patients
received stem cells from a previous allogeneic donor with no subse-
quent evidence of graft-versus-host disease. None of the treated
patients received conditioning chemotherapy. CD341selection was
performed in 5 patients whereas the other patients received an
unmanipulated (whole) product. The median day-of-transplant ANC
was 0.5 (range, 0-7.9), while the median transplant-day platelet
count was 27 (range, 2-133). The median total number of infused
CD341 cells was 3.1 3 106/kg (range, 1.7-7.5). Neutrophil engraft-
ment was eventually noted in all patients, and the 30-day cumulative
engraftment rate was 82% (Figure 1C). Median time to neutrophil
engraftment in evaluable patients was 15 days (range, 6-124).
Platelet engraftment was eventually observed in 7/9 patients, with
1 patient ultimately engrafting after a second autologous stem cell
boost (patient #7). Median time to platelet engraftment in evaluable
patients was 21 days (range, 12-34) with a 30-day engraftment rate
of 60% (Figure 1C). Individual neutrophil and platelet recovery
curves are outlined in Figure 1D. In general, day-of-transplant
platelet counts were inversely correlated with the day-of-platelet

engraftment (r 5 20.57; P 5 .05; supplemental Figure 4). A his-
topathologic example of engraftment is displayed for a patient
with BCP-ALL with underlying BM involvement (patient #12;
supplemental Figure 2A). Of note, the patient with mantle cell
lymphoma developed post-boost leukemic relapse (patient #8), rais-
ing concern for potential contamination. However, flow cytometric
analysis of the apheresis product demonstrated no evidence of lym-
phoma. When studying survival outcomes, we observed 1-year PFS
and OS of 46% and 55%, respectively (Figure 1E), comparable to
other real-world reports.5,6 Median PFS was 6 months and median
OS was 17 months. Best overall and complete response rates
were 92% and 50%, respectively (Figure 1F). One-year NRM was
8% (1 infection; supplemental Figures 2 and 3).

In conclusion, our study indicates that stem cell boost represents a
clinically feasible strategy for persistent cytopenia after CD19 CAR-
T with high engraftment rates, resolution of cytopenia in most cases,
and encouraging survival outcomes. Median engraftment times were
comparable to published reports for stem cell transplantation in gen-
eral, even without conditioning chemotherapy.18-21 Engraftment sup-
ports the notion that prolonged and/or persistent cytopenia after
CD19 CAR-T is primarily driven by dysfunction of the hematopoietic
stem and progenitor cell compartment, as opposed to primarily
immunogenic phenomena driven by CAR or non–CAR-bearing
immune cells. In contrast, autologous grafts are rarely successful
in acquired BM deficiency syndromes caused by persistent
T-cell–mediated BM suppression such as aplastic anemia.22 Nota-
bly, 4 patients displayed underlying BM infiltration prior to CD19
CAR-T, suggesting that changes to the microenvironment may per-
sist even after tumor cell lysis and can be overcome by stem cell
engraftment (supplemental Figure 2). Underlying BM disease may
predispose for local inflammatory processes that propagate the
functional suppression of hematopoietic stem and progenitor cells
via cytokines or chemokines.9 In sepsis, inflammatory signatures can
facilitate hematopoietic stem cell exhaustion23 and induce remodel-
ing of the BM niche.24 In such a setting, stem cell rescue may pro-
vide the necessary reset, enabling the BM niche to recover from the
inflammatory stress inherent to cytokine storm.13,25 This study has
several relevant limitations. It was retrospective, uncontrolled, and
limited to small patient numbers, which restricts drawing firm conclu-
sions. The potential benefit of earlier stem cell rescue remains
unclear, although shortening the phase of critical neutropenia likely
prevents severe infectious events.8 Future prospective studies must
address the question of optimal timing and patient selection in larger
cohorts, including the use of preemptive stem cell apheresis in
select high-risk patients for potential later use.
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