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Abstract

Deep Learning for Scene Text Detection, Recognition, and

Understanding

by XINYU WANG

Detecting and recognizing texts in images is a long-standing task in com-
puter vision. The goal of this task is to extract textual information from images
and videos, such as recognizing license plates. Despite that the great progresses
have been made in recent years, it still remains challenging due to the wide
range of variations in text appearance. In this thesis, we aim to review the
existing issues that hinder current Optical Character Recognition (OCR) de-
velopment and explore potential solutions. Specifically, we first investigate the
phenomenon of unfair comparisons between different OCR algorithms caused
due to the lack of a consistent evaluation framework. Such an absence of a
unified evaluation protocol leads to inconsistent and unreliable results, making
it difficult to compare and improve upon existing methods. To tackle this issue,
we design a new evaluation framework from the aspect of datasets, metrics,
and models, enabling consistent and fair comparisons between OCR systems.
Another issue existing in the field is the imbalanced distribution of training
samples. In particular, the sample distribution largely depended on where and
how the data was collected, and the resulting data bias may lead to poor per-
formance and low generalizability on under-represented classes. To address this
problem, we took the driving license plate recognition task as an example and
proposed a text-to-image model that is able to synthesize photo-realistic text
samples. By using this model, we synthesized more than one million samples
to augment the training dataset, significantly improving the generalization ca-
pability of OCR models. Additionally, this thesis also explores the application
of text vision question answering, which is a new and emerging research topic
among the OCR community. This task challenges the OCR models to under-
stand the relationships between the text and backgrounds and to answer the
given questions. In this thesis, we propose to investigate evidence-based text
VQA, which involves designing models that can provide reasonable evidence for

their predictions, thus improving the generalization ability.
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Chapter 1

Introduction

Texts are tools used by humans to write and record information, and their ori-
gins can be traced back to as early as the third millennium B.C. Throughout
human history, texts have evolved and played a crucial role in the development
of civilization. From the earliest forms of hieroglyphics in ancient Egypt, to the
creation of the Greek alphabet in the fourth century B.C., and the widespread
use of Latin script during the Middle Ages, texts have provided a means for
humans to communicate, record, and preserve information. Today, texts con-
tinue to be an essential aspect of modern society, used in a variety of contexts,
including education, business, and everyday communication. As a result, the
automation of text detection and recognition in images and videos has been a
topic of significant research interest for scholars within the computer vision com-
munity over the past decades [61, 70, 71, 107, 111, 125, 129, 143, 165, 169, 185|.

1.1 Background and Motivation

Text detection and recognition, also known as Optical Character Recognition
(OCR), is a technology that enables the conversion of images with text into
machine-readable form. This process allows for the automatic processing and
analysis of text contained in images and documents, which has been widely
adopted in many real-world applications (see Figure 1.1), including document
analysis [17, 56], car license recognition [5, 6, 15, 18, 31|, image retrieval [37, 68,
112, 164, handwritten text recognition |33, 120, 128, 132, 190], text generation
and manipulation [59, 78, 122, 176, 199], and scene text spotting [85, 97, 102,
104, 109]. In addition, it is interesting to note that OCR tasks have also been
combined with Natural Language Processing (NLP) techniques in recent years
due to the rich semantic information contained in the text. This convergence
has resulted in a new realm of cross-modal research, which allows for a deeper
understanding of the context and semantics of the text, leading to improved

performance in traditional OCR tasks. Furthermore, such a combination has
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FIiGURE 1.1. Application of OCR technology in various scenar-

ios: (a) document analysis; (b) license plate; (c) handwritten

mathematical expression; (d) text editing; (e) natural scene; (f)
text visual question answering.

sparked the emergence of a series of novel tasks that merge both CV and NLP
techniques, such as text-based visual question answering (VQA) [62, 116, 118,
151, 173] and document understanding |48, 206]. These tasks necessitate the
incorporation of language processing abilities in order to accurately interpret
and respond to queries or understand the content of documents, which has
opened up exciting new opportunities for advancing the capabilities of OCR-
based systems.

OCR is typically divided into two phases: text detection (Figure 1.2(a)) and
text recognition (Figure 1.2(b)). The former involves identifying and locating
written or printed text within an image or video, while the latter entails convert-
ing the identified text into a format that can be interpreted by a machine, such
as ASCII or Unicode. These stages are crucial for the successful completion of
an OCR task as they work in tandem to extract and decipher the text within
the input media. In recent years, end-to-end text spotting (Figure 1.2(c)) mod-
els have become increasingly popular, as they can simultaneously perform both
text detection and recognition. Compared to the traditional approaches which
typically involve separate stages, end-to-end methods are able to make use of
the context and relationship between the detected text and surrounding regions
to improve the accuracy of the recognition process. They also tend to be more
efficient, as they do not require the execution of multiple stages or the use of
complex pipelines, such as cropping detected texts into patches.

The history of OCR can be dated back to the early 1900s when the basic
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FIGURE 1.2. (a) Text Detection: identifying and locating text in

the image. (b) Text Recognition: recognizing the cropped image

patches of detected texts. (c) End-to-end Spotting: simultane-
ously detecting and recognizing texts in images.

concept of modern OCR technology was first proposed by German engineer
Tauschek [159]. Tauschek recognized the potential for automated recognition of
handwritten text in scanned documents, which would greatly improve the effi-
ciency and accuracy of document processing and analysis. His proposal marked
the beginning of the development of OCR technology, which has since under-
gone significant evolution and improvement. After nearly a century of develop-
ment, and especially in recent decades with the advent of deep learning, OCR
technology has become an essential tool in various fields and has enabled the
automation of a wide range of tasks involving text recognition and analysis.
Despite its widespread adoption and success in many commercial and indus-

trial applications, OCR technology still faces many challenges and difficulties.

e One of the main challenges is the variability and complexity of text in real-
world scenarios (see Figure 1.3), which can greatly impact the performance
of OCR systems. For example, text can appear in various fonts, sizes,
colors, and languages, and can be distorted, degraded, or occluded by
various factors, such as noise, blur, and shadows. These variations can
significantly affect the ability of OCR systems to accurately detect and

recognize text and can lead to errors or inconsistencies in the output.

e The second challenge is the limited robustness and generalization capabil-
ities, which can limit the OCR systems’ performance on unseen or novel
data. For example, many OCR models are designed specifically for cer-
tain types of text, such as handwritten text or natural scene text, and
may not be effective for other scenarios. Such a lack of generalizability
can limit the flexibility and adaptability of OCR systems and can hinder

their performance when applied to different data and domains.

e Another challenge is the lack of a standardized evaluation framework.
This can make it difficult to objectively compare the performance of differ-

ent OCR algorithms, as different studies may use different training data,
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FIGURE 1.3. A visual representation of the various scenarios in

the OCR task. The figure shows examples of different types of

OCR scenarios, including natural scene text, document, hand-
written text, etc.

optimization strategies, and testing parameters. This lack of uniformity
can result in inconsistent and inconsistent comparisons between models,
hindering the development and advancement of OCR research. It can be
challenging to assess the strengths and weaknesses of different algorithms
and to identify the most promising directions for future research when the

evaluation criteria are not consistent.

e The last challenge is the lack of tight integration between OCR technology
and downstream tasks, such as text-based visual question answering and
document understanding. In many cases, these tasks simply use off-the-
shelf OCR models to extract text from images. Such disconnection may
lead to sub-optimal performance, as the OCR model may not be tailored
to the specific requirements of the downstream tasks. Thus the two models
may not work in harmony to effectively extract and utilize the relevant

information from the input data.

Overall, the above mentioned difficulties faced by OCR technology highlight
the need for further research and development. In this thesis, we aim to address
some of the above challenges. For example, we design a unified OCR benchmark
framework that can evaluate the performance of OCR models on a variety of text
types and scenarios and provide a fair comparison between different algorithms.
We also propose a text synthesis model for generating photo-realistic samples
that can augment and balance the training dataset for license plate recognition.
Additionally, we explore the integration of OCR, technology with a downstream
task, text visual question answering. By incorporating OCR models into text

VQA, we demonstrate how this integration can enhance the overall reasoning
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abilities of the model and improve its generalization capabilities. Our approach
leverages the strengths of both OCR and text VQA models and combines them
in a way that allows them to work seamlessly and cohesively to extract and

utilize relevant information from the input data.

1.2 Contribution

The main focus of this thesis is to explore the methods of addressing existing
challenges in the field of OCR, as outlined below:

e The absence of a standardized benchmark system within the OCR field
results in inconsistent comparisons between state-of-the-art models, hin-
dering an accurate assessment of their performance. To address this chal-
lenge, we design a new benchmark system that can be employed to objec-
tively evaluate the performance of OCR models. Our designed approach
encompasses three key elements: datasets, models, and metrics. Specifi-
cally, we unified the training and testing dataset, as well as the hyperpa-
rameters and evaluation metrics, to ensure fair and consistent comparisons

across different models.

e Another challenge faced in the OCR task is the issue of imbalanced
data. This refers to the fact that certain classes or categories within
the data may have a disproportionately larger number of examples than
others, leading to a biased model that performs inadequately on under-
represented classes. To tackle this challenge, we propose to design a new
text-to-image synthesis model that generates photo-realistic text samples
specifically tailored to the task of license plate recognition. Such a model
enables the augmentation of high-quality and diverse training samples for
the OCR model, which in turn improves its generalization ability and
robustness to different variations of license plate text. In addition, by
generating a vast number of realistic samples (exceeding one million), we
demonstrate that OCR models trained solely on synthetic data can also

achieve comparable performance to those trained on real data.

e Beyond simply recognizing texts in images, it is also important for mod-
els to comprehend the textual contents. This poses a significant challenge
as it requires a model to have a profound understanding of both visual
and textual information. Specifically, we delve into the task of text visual

question answering, which refers to the ability of a model to understand
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and answer questions based on texts present in an image. Omne of the
long-standing issues in this task is the lack of reasoning ability in cur-
rent models. This means that the VQA models predict answers without
providing any reasoning or explanation, resulting in poor generalizabil-
ity. To address this challenge, we propose to investigate evidence-based
text visual question answering, which involves designing models that can
provide reasoning and evidence for their predictions, thus improving their
generalization ability and robustness to unseen examples. Furthermore,
we introduce a new dataset, as well as a novel metric, to facilitate the

quantitative evaluation of model reasoning capability.

1.3 Thesis Outline

Based on the aforementioned contributions, we organize the thesis structure as
follows:

Chapter 2 reviews the existing literature in the field of OCR, highlighting
the development of state-of-the-art models over the past decades.

Chapter 3 examines the inconsistent comparisons between recently proposed
OCR models and describes the design and implementation of the proposed new
benchmark system for OCR models. It includes the datasets, models, and
metrics used to ensure fair and consistent comparisons across different models.

Chapter 4 presents our work on license plate recognition. Specifically, we
design a text-to-image synthesis model to generate photo-realistic samples, ad-
dressing the issue of imbalanced data. By generating more than one million
synthetic samples, we demonstrate that a lightweight recognizer can achieve
comparable performance by solely using these generated data.

Chapter 5 investigates the reasoning ability of the OCR model in the task
of text visual question answering. We propose to quantitatively evaluate the
reasoning ability of text VQA models by designing an evidence-based VQA
system accompanied by both new datasets and models.

Chapter 6 summarizes the main contributions of this thesis and discusses

future directions.



Chapter 2

Literature Review

The field of Optical Character Recognition (OCR) has undergone significant
advancements in recent years, largely due to the advancements in deep learn-
ing technologies [106]. With the rise of deep neural networks, a wide range
of models, datasets, and techniques have been proposed to improve the accu-
racy and efficiency of text detection and recognition in images. This chapter
aims to provide an overview of the state-of-the-art OCR models and techniques
across four key aspects: text detection, text recognition, text spotting, and
downstream OCR applications. We will delve into the strengths and limita-
tions of various models and techniques proposed in these areas, as well as the
challenges that still exist in the field and the directions to which research is
currently headed. Specifically, we will examine how deep learning techniques
such as convolutional neural networks (CNNs) and recurrent neural networks

(RNNs) have been utilized to improve recognition performance in these tasks.

2.1 Text Detection

# DOLLAR GLEN
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/ DOLLAR GLEN

AND

CASTLE CAMPBELL | CASTLE CAMPBELL |

Input Image Text Detector Output Bounding Boxes

F1GURE 2.1. The text detection task is defined as the process
of localizing the text region in an input image.

In the OCR task (See Figure 2.1), text detection is the first and crucial step
in recognizing text in images. The text detection task is defined as the process
of identifying the regions of an image that contain texts and then extracting
the coordinates of these regions. Since its similarity with the generic object
detection task, early text detection methods |27, 54, 64, 90, 98, 145, 198, 204|
often borrowed ideas heavily from object detectors |36, 52, 95, 141]. Typically,
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they use CNNs to extract deep features and a classifier to classify Regions
of Interest (Rols) generated by a Region Proposal Network (RPN). However,
these methods often took into account the differences between text instances
and general objects, such as aspect ratio and tilted angles, by redesigning the
rules for generating Rols.

For example, the Deep Matching Prior Network (DMPN) proposed by Liu et
al. 98] introduced a novel approach to text detection by utilizing a quadrilateral
sliding window. This approach effectively addresses the challenge of tilted text
instances, which traditional horizontal sliding window methods used in generic
object detectors struggle with. The use of this flexible quadrilateral sliding
window allows DMPN to achieve a higher detection accuracy on multi-oriented
text instances. Similarly, Jiang et al. [64] proposed a rotational region CNN
called R?CNN. As shown in Figure 7?7, R2CNN modified the Fast R-CNN [35]
model to classify text regions, and three different sizes of ROIPoolings, i.e., (7 x
7), (11 x3), and (3 x 11) were employed for maximizing the text characteristics.
Although these models derived from R-CNN series methods achieved promising
performance on horizontal and multi-oriented text, they fail to handle text
instances of arbitrary shapes, particularly curved text.

Therefore, there is a growing interest in developing novel text detection
methods that can effectively handle texts of arbitrary shapes, highlighting the
evolution of text detection datasets and annotation forms (see Figure 2.2).
Initially, text detection datasets were mostly annotated with horizontal rect-
angles [17, 69, 70, 107| just as the form used in generic object detection.
Later, to facilitate the detection of multi-oriented and arbitrarily shaped texts,
text datasets began to include annotations for rotated rectangles [184], and
even more complex shapes such as quadrilaterals [147, 188, 191| and poly-
gons [24, 26, 100]. Such a shift in annotation forms reflects the increasing
demand for text detection methods that can handle texts of arbitrary shapes,
encouraging the emergence of novel text detectors [110, 158, 162, 163, 208] that
can handle such complexities.

For example, Wang et al. [163] introduced TextRay, a novel text detection
method that is capable of detecting texts of arbitrary shapes. TextRay utilizes
top-down contour-based geometric parameters within a single-shot, anchor-free
framework. As shown in Figure 2.3(a), it encodes complex geometric layouts
into unified representations by utilizing a polar system and a bidirectional map-
ping scheme between shape space and parameter space. Zhu et al. [208] pro-
posed a novel method called Fourier Contour Embedding (FCE). FCE models

text instances in the Fourier domain, which enables the representation of text
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FIGURE 2.2. The evolution of annotation forms in text detection
datasets over the years. (a) shows an example of annotation with
horizontal rectangles, which is the most traditional form used
in generic object detection. (b) illustrates the use of rotated
rectangles, which is able to capture the multi-oriented text in
images. (c) and (d) show the annotation forms of quadrilaterals
and polygons, respectively, which can effectively handle texts of
arbitrary shapes.

contours as compact signatures, allowing for the efficient detection of texts with
complex shapes and orientations. In addition, Tang [158] et al. handled curved
and dense texts via a segmentation manner. They introduced a novel network
for detecting dense and irregularly shaped text via Instance-aware Component
Grouping (ICG), a bottom-up approach that offers a high degree of flexibility
(see Figure 2.3(c)).

In summary, text detection methods have undergone significant evolution
over the past decade, while early text detectors often borrowed heavily from
generic object detection but failed to handle texts of arbitrary shapes. With the
increasing demand for detecting multi-oriented and arbitrarily shaped texts, the
annotation forms of text detection datasets have been shifted from horizontal

rectangles to more complex shapes such as rotated rectangles, quadrilaterals,
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FicURE 2.3. Novel representations proposed by recent works
that are designed for arbitrary text detection.

and polygons, which encourages the emergence of novel text detectors. These

methods have shown promising performance on various datasets, highlighting

the potential for further advancements in scene text detection.

2.2 Text Recognition

DOLLAR DOLLAR
Input Image Text Recognizer Prediction

FIGURE 2.4. The text recognition task is defined as the process
of converting the text in images to machine-readable formats.

As shown in Figure 2.4, text recognition is the task of converting cropped
images of detected text (usually containing only a single word or sentence) into

machine-readable formats, such as ASCII and Unicode. Technically, there are
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two mainstream frameworks in this field, i.e., Connectionist Temporal Classifi-
cation (CTC) [44] (see Figure 2.5(a)) and the encoder-decoder structure [157]
(see Figure 2.5(b)). The former is a framework that focuses on mapping input
sequences to output sequences while preserving the temporal structure of the
input. On the other hand, the encoder-decoder structure utilizes a neural net-
work to first encode the input image sequence to deep features, then decode the

features to produce the output sequence.
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F1GURE 2.5. Two mainstream techniques used in text recogni-
tion.

The CTC decoding module was originally developed for speech recognition
and was first adopted for handwritten text recognition by Graves et al. [45].
Different from speech recognition tasks where data is sequential in the time do-
main, the input image in text recognition can be viewed as a sequence of vertical
pixel frames. The network produces a prediction for each frame, indicating the
likelihood of different label types. The CTC rule is then applied to transform
these predictions into a text string. During the training process, the loss is cal-
culated by taking into account all possible per-frame predictions that can gen-

erate the target sequence through the use of CTC rules. This approach allows
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for an end-to-end training process using only word-level annotations, eliminat-
ing the need for character-level annotations, which has now been widely used
in text recognition task [96, 143, 153, 187]. For example, Shi [143| proposed a
fully convolutional text recognizer called CRNN. The CRNN starts with a se-
ries of convolutional layers that extract a feature sequence from cropped image
patches. These features are then passed through a deep bidirectional LSTM,
which makes predictions for each frame of the sequence. Furthermore, the final
step involves using a transcription layer, i.e., the CTC module, to convert the
per-frame predictions from the LSTM into a label sequence.

The other widely used technique, i.e., encoder-decoder framework, was first
proposed by Sutskever et al. [157]| for the purpose of machine translation. In
such a pipeline, the encoder takes in an input sequence and passes on its final
hidden state to the decoder. The decoder then generates output in an auto-
regressive manner. One of the key benefits of this framework is its ability to
produce outputs of varying lengths, making it well-suited for tasks such as text
recognition. Additionally, the encoder-decoder structure is often paired with
the attention mechanism, allowing for the simultaneous alignment of inputs
and outputs [12, 21, 80, 105]. For example, Bai et al. [12] presented a novel
approach known as the edit probability (EP) for recognizing texts. The EP
method endeavors to precisely calculate the chance of creating a string from the
output series of a probability distribution based on the input image, taking into
account the potential presence of omitted or extra characters. The benefit of
this approach is that the training process can concentrate on rectifying omitted,
extra, and unidentifiable characters, thereby reducing or eliminating the impact
of misalignment issues.

However, although both CTC and encoder-decoder structures achieve promis-
ing performance on horizontal text, an inevitable issue arises when it comes to
recognizing irregular text. This is because characters in the oriented and curved
text are distributed over a 2-dimensional space, which makes it difficult to effec-
tively represent them in feature spaces that are compatible with the CTC and
encoder-decoder structures, as they are designed for 1D sequences. Therefore,
directly compressing the features of oriented and curved text into 1D form can
result in the loss of relevant information, leading to a decrease in recognition
accuracy. To tackle this issue, a widely adopted solution is to utilize a recti-
fication module [60, 144, 148, 183, 192| to transform the irregular inputs to a
more canonical one. For example, Shi et al. [148] introduced a recognizer with
flexible rectification called ASTER which consists of two main components: a

rectification network and a recognition network. The rectification network is
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inspired by the Spatial Transformer Network (STN) [60], straightening out the
input text images. Specifically, the rectification is achieved through the use
of a flexible Thin-Plate Spline transformation, which can handle a wide range
of text irregularities and is trained without the need for human annotations.
The recognition network, on the other hand, is an attentional encoder-decoder

model that can predict text sequences directly from the rectified image.

2.3 Text Spotting
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FIGURE 2.6. Text spotting, also known as end-to-end text de-
tection and recognition, aims to simultaneously detect and rec-
ognize texts in images.

Considering the OCR task itself includes both text detection and text recog-
nition as two sub-tasks. Simplifying and improving the system efficiency be-
comes a natural demand. To achieve this, end-to-end text detection and recog-
nition, also known as text spotting (see Figure 2.6), was proposed. This is the
task of simultaneously detecting and recognizing text in images within a single
model, eliminating the separation of detection and recognition progress. Com-
pared to traditional separated models, the text spotting model can improve
system efficiency by reducing the number of computations and the need for
post-processing steps. Additionally, it can also improve the overall accuracy of
the OCR system by allowing the detection and recognition tasks to be trained
together, enabling the model to learn the relationship between the two tasks.
Therefore, it has attracted a lot of attention in recent years and has shown
promising results in various applications [91, 102, 104, 109, 129, 133, 134, 172].
In general, there are two mainstream pipelines that are widely adopted for text
spotting, i.e., segmentation-based methods and regression-based methods.

Segmentation-based text spotters treat text detection and recognition as
a dense pixel prediction task. For example, Mask TextSpotter [109] (see Fig-
ure 2.7(a)) extends the well-known instance segmentation model Mask R-CNN [52]
to a text spotter. Specifically, it generates character-level segmentation maps
for each Rol and then utilizes a post-processing step to order these characters

from left to right to group the final predictions. However, although it achieves



14 Chapter 2. Literature Review

(a) MaskTextSpotterV3 [91] (segmentation-based)
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(b) ABCNet [102] (regression-based)

FiGURE 2.7. Example methods of two mainstream pipelines

of text spotters. (a) is a typical regression-based method ABC-

Net [102]. (b) is a popular segmentation-based framework Mask-
TextSpotter [91].

promising performance, the need for costly character-level annotation and time-
consuming post-process steps makes it not well-suited for real-world applications
where speed and efficiency are crucial. To tackle these issues, Liao et al. pro-
posed an upgraded version of their previous work, called Mask TextSpotter
v3 [91], which adopts a Segmentation Proposal Network (SPN) instead of the
original RPN. Benefiting from the proposed SPN, Mask TextSpotter v3 enjoys
a faster and more accurate performance than its predecessor while eliminating
the requirement of character-level annotations.

Regression-based model is another widely-used approach for text spotting.
It usually concatenates a recognizer to the end of a text detector and shares the
same backbone features to improve efficiency. For example, an early regression-
based text spotter proposed by Li et al. [85] replaced the object classification
module in Faster-RCNN [141] with an encoder-decoder-based text recognition
model. The recognition module can directly use the cropped backbone fea-
tures, so the entire system can be trained in an end-to-end manner. Recently,
Liu et al. [102] further improved the regression-based text spotter by intro-
ducing a more efficient ABCNet (see Figure 2.7(b)). The authors propose to
use the Bezier curve to represent the text instances and design a novel Bezier
Align module to share the backbone features between detection and recogni-

tion heads. Thanks to the concise representations and efficient feature-sharing
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mechanism, ABCNet achieved promising performance with relatively low com-
putational cost.

Although both segmentation-based and regression-based methods can be
trained in an end-to-end manner and can simultaneously detect and recognize
the text in images, they can still be considered two-stage methods. This is
because both methods have a clear separation between the detection and recog-
nition stages, even though they are combined into a single model. Within such a
two-stage design, potential issues may arise, such as the need for a feature align-
ment module and a lack of interaction between the detection and recognition
heads during training. More recently, Peng et al. [129] treated the text spotting
as a sequence prediction task and proposed a novel text spotter called SPTS
(see Figure 2.8). For the first time, SPTS merges the text coordinates with the
text transcriptions together into a series of sequences. Then a transformer is
employed to predict the sequence in an auto-regressive manner. Additionally, it
also proves that the text instances can be represented by a single point rather
than bounding boxes such as polygons, significantly saving the annotation costs.

In conclusion, while traditional two-stage text spotters such as segmentation-
based and regression-based methods have shown good performance in end-to-
end text detection and recognition, they still have limitations in terms of effi-
ciency and interaction between the detection and recognition stages. Recently
proposed ‘real‘ end-to-end methods, such as SPTS, have shown promising re-
sults by eliminating the need for a feature alignment module and simplifying
the representation of text to a single point. These methods with simple yet

effective designs show potential directions for future research.

2.4 Downstream OCR Applications

The fact that OCR techniques can extract textual contents in images enables
a variety of downstream applications, such as document analysis, handwrit-
ten mathematical expression recognition, and text visual question answering.
These applications leverage the ability of OCR to accurately extract text from
images, allowing for further processing and analysis. For example, document

analysis can use OCR to extract structured information such as dates, names,
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and numbers, which can be used for tasks such as automated data entry or
searching through large collections of documents. Handwritten mathematical
expression recognition can use OCR to convert written math equations into
machine-readable formats, such as LaTex sequence, enabling their use in digital
documents. Text visual question answering can use OCR to extract text from
images in order to answer questions about the text, such as “What is the title of

the book in this image" which can be helpful for those visually impaired people.
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3.1 Introduction

Optical Character Recognition (OCR) is a long-standing research topic that
has attracted tremendous interest from academia and industry. The fact that
deep-learning-based methods can recognize text in various scenarios, especially
those captured in challenging environments, has been an incredible develop-
ment. However, an inevitable issue that hinders further improvements in this
field is the lack of a standard evaluation protocol that allows fair comparisons
from model to model.

Comparing the newly proposed methods with the state of the arts has been
a litmus test for model effectiveness. For example, MS-COCO [93] serves as
a touchstone for object detection, while most latest detectors report the cor-
responding performance. Most importantly, the experimental settings, such as
backbone networks, schedules, and pipelines, are controlled to be as similar as
possible to ensure fair comparisons. Such a fair comparison mechanism can be
established not only because MS-COCO itself provides a robust evaluation pro-
tocol but also because of the accessible and reproducible configurations provided
by the open-source community. Specifically, thanks to the standard detection
libraries such as Detectron2 [179] and MMDet [19], it becomes pretty easy for
researchers to develop and compare their models with previous methods by
using consistent experimental settings. Unfortunately, a benchmark that can
offer fair comparisons between OCR models is still inaccessible. Such a situ-
ation burdens researchers to expend extra effort to ensure consistent settings
with others, which further impedes fair comparisons.

Figure 3.1 compares the typical evaluation protocols used by object detection
and OCR tasks.

Diversity: The development of OCR is a bit diverging across various fine-
grained scenarios, (e.g., natural scene text [38, 184], handwritten text [78, 79],
document text [63, 201], and digital picture text [53, 69]), all with their own
datasets, metrics, and methods. Such divergence hinders further generalization
of the OCR methods, i.e., most of the existing models are designed for specific
scenarios and can fail to work when the domain shifts. However, the fact that
human beings do not need to consider writing forms (e.g., printed or hand-
written) and scenarios (e.g., natural or digital) while reading text encourages
the development of more generic OCR models, which the existing benchmarks
cannot fully facilitate.

Volume: Another underlying problem has been that the dataset volume is

much smaller than other vision tasks. Compared to object detection datasets,
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FicURE 3.1. Comparison of typical evaluation protocols be-
tween object detection and OCR. The former usually uses def-
inite experimental settings, including train/test datasets, data
augmentation pipelines, training schedules, etc., to ensure fair
comparisons, while the latter uses many indefinite configurations.

e.g., MS-COCO [93] with 118k/5k/41k images for train/val/test splits, three
typical datasets that are used for scene text detection/recognition only include
hundreds of samples, i.e., MSRA-TD500 [184] with 300/200 for train/test;
Total-Text [24] with 1200/300 for train/test; and SCUT-CTW1500 [100] with
1000/500 for train/test. Such a small volume of training sets enforces the OCR
models to employ external data for training (see Table 3.1), and the use of dif-
ferent training data further leads to unfair comparisons. Besides, the absence
of an official validation split and the insufficient testing images make it easy
to cherry-pick the best-performed models on the testing set, inducing potential
over-fitting. These issues increase the difficulty of a fair comparison; thus, the
reported performance on such datasets may not reflect the actual effectiveness
of the proposed models.

Annotation: Unlike the target in an object detection task that has a clear
description and can be well-annotated by an axis-aligned bounding box or seg-
mentation mask, the definition of instances in current OCR datasets can vary
from case to case. From the perspective of language, most of the OCR datasets
only label Latin characters, and the text presented in other languages is dis-
carded as background or ignored region. From the perspective of labeling gran-
ularity, some datasets use word-level [24, 71| annotations, while others use line-
level |28, 100, 184] or character-level [191] annotations. From the perspective
of annotation form, rectangle (63, 115] and quadrilaterals [124, 197| are the

most commonly used bounding box, while some other datasets utilize polygon
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box [24, 100] to annotate the arbitrarily-shaped text. These labeling inconsis-
tencies can be found among different datasets or inside a single dataset, which
increases the cost and difficulty of cross-dataset training and evaluation.

In this chapter, we try to solve the above issues by integrating existing
datasets and proposing a new evaluation system in order to fairly benchmark
different OCR models. The contributions are three-fold:

o We systematically analyze the issues existing in the current OCR evalua-
tion framework by conducting a series of ablation studies, identifying that
unfair comparisons can significantly impact performance.

e Twenty-five publicly available datasets involving multiple scenarios and
languages are collected to build a testbed, namely UniOCR, for bench-
marking OCR methods. A benchmark suite is developed to provide fair
comparisons between different OCR systems.

e Based on the UniOCR, state-of-the-art OCR algorithms are trained and
tested within identical settings to build baselines. Analysis of experimen-

tal results is provided to explore insights from previous methods.

3.1.1 Related Work

Datasets: ICDAR 2003 [107] (IC03 for short) is one of the first well-organized
OCR datasets, containing around 500 annotated images captured from natural
scenes. Subsequently, a series of datasets that focus on scene text recognition
was developed in the past decades, such as ICDAR 2011 [69], ICDAR 2013 [70],
and ICDAR 2015 [71] (IC11, IC13, and IC15 for short). Later, Nayef et al.
introduce one of the largest multi-lingual scene text datasets MLT-2017 [123],
involving nine different languages; meanwhile, some non-English datasets such
as Chinese [147], Indic [115], and Vietnamese [127], have also been proposed.
Recently, recognizing arbitrarily-shaped scene text has been attracting more
and more research interests; Total-Text [24] and SCUT-CTW1500 [100] are two
popular benchmarks that contain text instances in curved shapes. In addition to
natural scene text, OCR has also been adopted in many other scenarios, includ-
ing documents [63, 201], handwritten text |78, 79|, born-digital contents [53, 69],
historical books [131], etc. For example, SROIE [56] collects one thousand re-
ceipt images to facilitate OCR and information extraction challenges for scanned
receipts; FUNSD [63] introduces a dataset that contains hundreds of scanned
forms; BID [29] proposes a large dataset for recognizing text in identity doc-
uments. Beyond static images, some datasets, e.g., DOST [57] and LectureV-

ideoDB [32], aim to recognize text from video clips, which further challenges
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the OCR models to explore temporal information. Besides, there are also some
datasets that were designed for detection [142, 184] only or recognition [40, 94|
only tasks.

Metrics: There are mainly two steps to evaluate OCR systems; the first
is to measure the localization accuracy, while the other is to assess recog-
nition precision. For detection performance, supposing Bp and Bgr repre-
sents predicted and ground-truth bounding boxes, respectively. 1C13 [70] em-
ployed a rule termed DetEval. Only when Bp and Bgr simultaneously sat-
isfy B’g—fm > 711 and B’};—Cim” > 7o, the prediction would be considered as a
true positive. IC15 [71] follows the same protocol used in the object detection
benchmark Pascal VOC [34], which calculates the intersection-over-union value
between Bp and Bgr. Only if the IoU value % is larger than a designated
threshold 7, the prediction and ground-truth are matched. Furthermore, some
efforts [9, 99, 135, 147] have been made to diagnose and refine the existing met-
rics in the past years. For example, Liu et al. [99] propose TIoU to measure the
tightness between predicted and ground-truth bounding boxes. Baek et al. [11]
examine the inconsistencies of training and evaluation datasets for scene text
recognition tasks. Once the predicted and ground-truth bounding boxes are
matched, the textual content is compared to get recognition accuracy. Usually,
there are two rules to calculate the recognition score. One compares whether
the predicted text is exactly the same as the ground truth; the other uses a
normalized edit distance score.

Methods: Modern OCR methods can be categorized into two groups, i.e.,
end-to-end trainable text spotters [91, 102], and two-stage approaches [103, 146,
204]. The former detects and recognizes text instances in a unified network; the
latter separates the OCR into two sub-tasks, i.e., text detection and text recog-
nition. End-to-end methods usually follow a multi-task joint training fashion.
For example, Mask TextSpotter [91, 109] introduces character-level supervision
to Mask R-CNN [52] which enables it to detect and recognize text and char-
acters simultaneously. ABCNet [102] forms the irregular text instances with
parameterized Bezier curves; the backbone features are shared by detection
and recognition heads through a BezierAlgin module, which significantly im-
proves the network efficiency. For two-stage methods, text detectors [160, 204|
usually adapted generic object detection frameworks to the text scenario, while
text recognizers [146, 154| often stack RNN upon CNN to capture sequential
features and trained with Connectionist Temporal Classification (CTC) loss.
Some recently proposed recognizers [22, 108] employ attention mechanisms to

extract two-dimensional features, which achieved impressive performance with



24 Chapter 3. Benchmarking OCR systems: Datasets, Metrics, Methods

irregular text. Due to space constraints, we refer readers to [20, 106] for a

comprehensive overview.

3.2 Unfair Comparison Between OCR Methods

Using similar training and inference settings is a prerequisite to ensure fair
comparisons between different methods. However, after surveying a number of
OCR algorithms reported on a widely used OCR dataset TotalText [24], we
found that almost all of these models used external data and different training
settings (see Table 3.1). Therefore, we cannot help asking how genuine that level
of performance can the existing evaluation framework reflect. In this section, we
employ the open-sourced OCR model ABCNet' [102] as a baseline to disclose the

impact of unfair comparisons from the aspect of dataset, metric, and method.

3.2.1 Dataset Issues

Training: Due to the limited number of training samples in each single dataset,
pre-training on synthetic samples [49] and external datasets has become indis-
pensable step in training OCR models. Nonetheless, the lack of a unified stan-
dard caused chaos — dozens of combinations of external datasets can be found in
different methods. For example, as shown in Table 3.1, an earlier OCR model
introduced by Qin et al. [135] reported an impressive accuracy of 70.7% on the
TotalText dataset. However, the model was trained on an extra 30k manually
labeled private data as well as 1 million partially annotated images for 8 million
iterations. In contrast, TextPerceptron, proposed by Qiao et al. [133], only uses
synthetic data and 1k real samples for training but achieved a competitive accu-
racy of 69.7%. Comparing two models trained on completely different amounts
of images is unfair and inappropriate; thus, the reported accuracy may not be
convincing enough to reflect the actual performance. To explore the impact of
the volume of training data, we conducted an ablation study. Table 3.2 shows
that after excluding a part of the training samples, the accuracy of the baseline
has declined to vary degrees. Specifically, the model that only used TotalText
training split encountered a considerable performance drop in the End-to-End
text spotting task, from an H-mean score of 67.1% to 51.9%, compared to the
fully trained model.

Inference: The limited number of test samples (e.g. 300 images in Total-

Text [24]) makes the OCR models prone to overfitting, and the performance is,

Thttps://github.com /aim-uofa/AdelaiDet
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Det-only (%)  End-to-End (%)

P R H P R H
SynT, MLT, TT (Official) 91.5 80.0 85.3 69.9 64.5 67.1

Training Set

SynT, TT 86.8 78.0 82.2 63.3 59.8 61.5
MLT, TT 82.7 78.9 80.8 53.2 529 53.1
TT 84.6 76.8 80.5 52.7 51.2 51.9

TABLE 3.2. Performance of ABCNet [102| on Total-Text [24]
using differetn training data. Datasets: SynT [49], MLT [124],
and TT [24].

Det-only (%) End-to-End (%)

P R H P R H
Official 91.5 80.0 85.3 69.9 645 67.1
1 88.5 80.0 84.0 62.6 585 60.5
2 92.1 859 889 731 713 722
3 90.4 80.5 85.1 622 58.6 60.4
4 82.5 795 80.1 556 56.1 55.9

Split

TABLE 3.3. Cross validation of ABCNet [102] on Total-Text [24].

therefore, susceptible to be affected once the test data moves beyond the origi-
nal distribution. To quantitatively reveal the instability of accuracy evaluated
on such datasets, we conducted cross-validation on TotalText [24]. Specifically,
the entire dataset was separated into five splits, then each model was trained
on four of five and tested on the rest split. As shown in Table 3.3, a significant
gap of H-mean scores among different splits can be found, identifying that the
accuracy on small test sets is not stable and thus might be arduous to reflect

the actual performance in more generalized scenes.

3.2.2 Metric Issues

As shown in Table 3.4, most existing OCR datasets adopt the Pascal VOC [34]
metric to match ground-truth and predicted bounding boxes, then using the full-
match rule to calculate recognition score. However, such types of metrics can
overestimate the detection performance while underestimating the recognition
accuracy; hence, a large gap between detection and end-to-end accuracy can
be observed, e.g. ABCNet achieves H-mean scores of 85.3% and 67.1% on
detection and e2e task, respectively (see Table 3.2). We show two examples in
Figure 3.2 and Figure 3.3 to explain this phenomenon. Specifically, the VOC
metric measures the quality of predicted bounding boxes with a single fixed
threshold (usually set to 0.5); therefore, the tightness between bounding boxes is
ignored. For example, as shown in Figure 3.2, albeit the polygon prediction fits
the GT bounding box better, all of the three predictions meet the IoU threshold
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Dataset Det. Metric Rec. Metric

IC13 [70] DetEval  Full-Match (Word-spotting)
IC15 [71] vocC Full-Match (Word-spotting)
MLT [124] VOcC Full-Match (End-to-end)
Total-Text [24] VOC Full-Match (Word-spotting)
SCUT-CTW1500 [100] VOC Full-Match (End-to-end)

TABLE 3.4. Evaluation metrics used in some OCR datasets.

oy

(a) Rectangle (b)

FiGURE 3.2. All of these predictions are treated as the same

true positive under the VOC metric; thus, the detection perfor-

mance is usually overestimated. Green and red bounding boxes
represent GT and prediction, respectively.

GT: CHAOMUNGFESTIVALHAODALATLANU
Predl: A1SVMUNGFESTIVALHAODALATLANU
Pred2: CHAOMUNGFESTIVALHAODALATLANU

Pred3: CHAOMUNGFESTIVALHODALATLANU

FIGURE 3.3. In most OCR benchmarks, the prediction con-

tributes to the accuracy only if it is exactly the same as the

ground truth, which sometimes underestimates the performance
of recognizers.

and thus are considered equivalent in the evaluation process. Consequently,
this metric can only get a relatively rough accuracy, which is unfair to the
OCR algorithms that can obtain better-bounding boxes. When moving to the
recognition side, the criteria become tougher. As shown in Figure 3.3, the
accuracies of three predictions with different degrees of error will all be marked
as zero, though Pred3 only misclassified one character while Predl totally failed
to recognize the text. In this situation, the recognition performance cannot be
differentiated, and the overall precision, especially for the longer instances, will
be underestimated.

It is known that ordinary model settings such as the training schedule, image
size, and batch size can play important roles in both the training and testing

stages. Here, we use two examples, i.e., input size, and recognition resolution,
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Det-only(%) End-to-End(%)

P R H P R H
Official 91.5 80.0 853 69.9 64.5 67.1 13.2
(600, 1200) 92.5 726 81.4 634 535 581 22.1
(800, 1600) 91.5 78.0 84.2 66.6 60.5 63.4 17.0
(1000, 2000) 91.4 80.0 85.3 69.7 64.4 67.0 12.9
(2000, 4000) 88.4 79.8 83.9 675 64.1 657 4.5

Test Size FPS

TABLE 3.5. Performance of ABCNet [102] on Total-Text [24]
using different testing size. Official code uses (1000, 1824).

Rec. Resolution CTW-E2E(%) TT-E2E(%)

P R H P R H
Official 57.4 484 52.6 69.9 645 67.1
(4, 32) 51.5 434 471 626 60.0 61.2
(8, 32) 534 447 4877 - - -
(8, 128) - - - 64.5 60.3 62.3
(16, 32) 49.9 413 452 656 63.7 64.6
(16, 128) 56.3 472 514 633 61.0 62.1

TABLE 3.6. Performance of ABCNet [102] on Total-Text [24]

and SCUT-CTW1500 [100] using different recognition resolution.

Official code uses (8, 128) and (8, 32) for CTW and TT, respec-
tively.

to illustrate that such hyper-parameters can significantly impact the final per-
formance. The commonly used solution to get input size at the inference stage
is resizing the shorter or longer edge to a fixed length while preserving the as-
pect ratio, e.g. (, 1600) represents reshaping the longer side to 1600 pixels.
Some methods may also set a maximum size to prevent inputting images that
are too large; for example, (1000, 1824) denotes resizing the shorter edge to
1000 and keeps the longer side no larger than 1824. As shown in Table 3.1,
the range of test image size can be significantly different from paper to pa-
per, introducing obvious unfair comparisons. For instance, MTSv3 [91] sets a
large maximum input size (1000, 4000), while PGNet [167] reshapes the images
to only (, 640). To understand the possible impact caused by image size, we
show the performance of ABCNet [102]| within different input sizes in Table 3.5.
When inputting smaller images with sizes (600, 1200), the end-to-end perfor-
mance drops from 67.1% to 58.1%, and if a larger size (2000, 4000) is used, the
model runs much slower. Another serious issue is the dataset-specific param-
eters which may be limiting the generalization ability. For example, Table 3.6
shows that the performance of the baseline model is sensitive to the data, as
different hyper-parameters were respectively used to achieve the best perfor-

mance on the two datasets, which, however, might not be the best settings for
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ID  Year Dataset #Im Granu. Form Lang. Scenario
01 2011 IC11 [69] 0.5k \W% Rect. EN Digit
02 2018 MTWI [53] 20k \W% Quad EN, CH Digit
03 2013 IC13[70] 0.5k W Rect. EN Nature
04 2015 IC15 [71] 1.5k W Quad. EN Nature
05 2021 TextOCR [152] 28k w Poly. EN Nature
06 2017 MLT [123] 10k W Quad.  Multi Nature
07 2017 COCO-T [38] 63k A\ Poly. EN Nature
08 2017 R-CTW [147] 12k L Quad. EN, CH Nature
09 2019 ReCTS [197] 25k W.,L Quad. EN, CH Nature
10 2019 ArT [25] 10k W,L Poly. EN, CH Nature
11 2019 LSVT [156] 50k L Poly. EN,CH  Nature
12 2010 KAIST [81] 3k C,W  Rect. EN, KR  Nature
13 2017 ILST [115] 1k W Rect. EN, HI Nature
14 2021 VinText [127] 2k A\ Poly. EN, VI Nature
15 2016 DOST [57] 30k \WY% Quad. EN, JP Nature
16 2019 FUNSD [63] 0.2k W Rect. EN Doc.
17 2019 SROIE [56] 1k w Quad. EN Doc.
18 2019 NAF [2§] 08k L  Quad. EN Doc.
19 2020 BID [29] 28k L Poly. Latin Doc.
20 2020 DDI [201] 100k C,W Quad. Multi Doc.
21 2015 DeText [189] 0.5k W Quad. EN Doc.
22 2021 GNHK [79] 0.7k W Quad. EN Handwrit.
23 2021 IMGUR [78] 8k AW Rect. EN Handwrit.
24 2018 LV [32] 116k W Quad. EN Handwrit.
25 2016 HKWS [131] 5.5k W.,L Rect. Latin Handwrit.

TABLE 3.7. UniOCR covers 25 publicly available OCR datasets.
Granu. represents annotation granularity, including Char (C),
Word (W), and Line (L). Licenses are included in supplementary.

other datasets. In summary, the above experiments demonstrate that hyper-
parameters can heavily impact model performance; thus, it might be unfair to

compare the methods using different settings.

3.3 Unified OCR Benchmark

The lack of a unified benchmark has led to considerable differences in the set-
tings used in OCR methods, making it unclear whether the performance im-
provement is gained by algorithms or engineering tricks. Therefore, in this
section, we will introduce a unified OCR benchmark. To our knowledge, this
is the first trial to build a uniform and fair benchmarking protocol in the OCR

community.

3.3.1 Data Collection

The aforementioned dataset issues have demonstrated that potential unfair com-
parisons can be introduced by training and testing samples. Therefore, the first
step of building a unified OCR benchmarking system is to determine the image
sets used for training, validating, and testing. To this end, twenty-five widely-
used, publicly available, and well-annotated OCR datasets that contain both

detection and recognition labels are collected from the existing literature (see
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Languages
Scenarios s Latin
Natural mmm Chinese
Document mmm Korean
Digital mmm Hindi
Handwritten mmm Bangla
W / mmm Arabic
/ 38% mmm Japanese
B Vietnamese
. Mixed
) Scenario (b) Language
Box Form

mmm Rectangle
B Quadrilateral
== Polygon

58% Granularity
mmm  \Word-level
mmm Line-level
mmm Char-level

W

¢) Granularity (d) Box Form

FI1GURE 3.4. Data distribution of the UniOCR benchmark from
the aspect of (a) Scenario; (b) Language; (c) Annotation Gran-
ularity; and (d) Bounding Box Form. It should be noted that
as one image may contain multiple annotation granularity or
bounding box forms, e.g., Latin instances are labeled in word-
level granularity while Chinese instances followed line-level la-
beling rules, the summations of percent values in (c) and (d) are
larger than 1.

Train Val Test Total

Synthetic 272,972 - - 272,972
Real 136,240 5,000 38,274 179,514
- Nature 92,014 3,531 25,676 121,221
- Digit 6,154 456 3,510 10,120

- Document 27,902 681 5,115 33,698
- Handwritten 10,170 332 3,973 14,475

TABLE 3.8. Data volume of UniOCR.

Table 3.7), we named this collection as UniOCR. To encourage the develop-
ment of more generic OCR systems and evaluate their generalization ability,
UniOCR covers images of four main scenarios, i.e., natural scene, born-digital
images, documents, and handwritten text, within text instances presented in
more than ten languages, including Arabic, Chinese, English, Hindi, Korean,
Russian, etc. Also, for each language, around 30k samples are synthesized us-
ing the SynthText [49] to facilitate possible pre-training of OCR models. It

is noteworthy that some datasets do not release the annotations for test split
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F1GURE 3.5. Detected boxes with different overlaps with GT.

Metric  Total-Text [24]  UniOCR

Box  Det E2E Det E2E
(a) 1.0 0.0 0.1 0.0
(b) 1.0 0.0 0.3 0.1
(c) 1.0 0.0 09 09

TABLE 3.9. Precisions under Total-Text [24] and UniOCR met-
rics.

and/or do not provide an official validation split; in this situation, 20% images
from the training set are separated into the val or test split. In addition, for
some datasets with extraordinarily large sizes, such as LectureVideoDB [32],
which offers more than 100k image frames extracted from video clips, UniOCR
only sampled part of the data to ensure a reasonable data distribution. Finally,
after filtering some invalid images with useless annotations, there are a total of
around 180k images included in the UniOCR, which is split into the Train, Val,
and Test sets (see Table 3.8). Figure 3.4 shows some detailed distribution of
the dataset with respect to Scenario, Language, Annotation Granularity, and
Bounding Box Form.

In order to ensure that identical training images and annotations could be
accessed, unified interfaces and benchmark suites are developed, enabling au-
tomatic downloading, extracting, and processing of the data from the official
project website of each dataset. Also, we will provide a pre-built version of the
UniOCR, scripts used for converting to widely-used annotation formats such as

COCO will also be included for research convenience?.

3.3.2 Evaluation Metric

To alleviate the metric issues mentioned in Sec. 3.2.2, we adopt a combination

of evaluation metrics in the UniOCR benchmark. For detection accuracy, we

2Code and pre-built version of UniOCR will be made public.
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employ the COCO [93] Average Precision (AP) metric. Unlike the VOC metric
used in most existing datasets (e.g., Total-Text [24]) that only estimates the ac-
curacy under a fixed threshold, AP considers the whole precision-recall curves;
thus, the tightness between detection and GT bounding boxes can be measured
to a certain extent. For example, Figure 3.5 shows three predictions with differ-
ent ToU scores; however, they all reached the designated threshold (IoU > 0.5),
and the precisions are thereby all 1.0. Under such metrics, the performance
of detectors might be overrated (see Figure 3.5(a) and 3.5(b)). As shown in
Table 3.9, when using AP metric, three detectors achieved 0.1, 0.3, and 0.9
AP (@0.5:0.95) scores, respectively, which well distinguishes the performance
of different detectors according to the quality of predictions. For recognition
accuracy, we employ an Averaged Normalized Edit Distance (ANED) score to
assess the recognition accuracy for longer text lines. Specifically, the calcula-
tion of ANED is very similar to the detection AP, which replaces the IoU score
with the normalized edit distance, and then precision under 10 thresholds of
.50:.05:.95 are averaged, where the scores less than 0.5 will be directly set to
0. Table 3.9 shows that the recognition performance for longer text instances
can be better evaluated under such metrics. The Harmonic mean (H-mean)
between precision and recall is calculated for the final performance at the eval-

uation stage.

3.3.3 Preliminary Experiments

To understand the difficulty of UniOCR and provide guidance on the training
settings for future methods, preliminary experiments based on ABCNet [102]
are conducted. Models were trained on 4x Nvidia Tesla V100 GPUs with a total

batch size of 8 within identical hyper-parameters as used in the official code.

3.3.3.1 Pre-training Matters

There are typically two ways for model pre-training, i.e., synthetic-only and
mixed training. The former only utilizes synthetically generated samples at the
pre-training stage and then fine-tunes the model on real datasets, which is more
commonly used by models trained with fewer real images (see Table 3.1). For
example, TextPerceptron [133] was pre-trained on 800k synthetic images for
five epochs, then fine-tuned on 1k real samples for the other 80 epochs. In the
case that a larger size of training data is accessible, a mixed training pipeline
becomes preferable [135, 172], e.g., PAN++ [172] jointly trained their models on
a combination of 800k synthetic + 72k real images, for 150k iterations without
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Pre-training
50 25
® Mixed-pretrain
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FIGURE 3.6. Performance of models using different pre-training
strategies. Solid and dashed lines represent end-to-end and
detection-only AP, respectively.

further fine-tuning. In addition, some other methods may use both strategies,
for example, ABCNet [102| firstly pre-trained the models on a mixed dataset
that involves both synthetic and real images for 260k iterations, then fine-tuned
the model on real samples for other 5k iterations. Moreover, a recently proposed
work [10] claims that synthetic samples are not necessary for recognition-only
tasks when training with enough real images.

To explore the differences between the above pre-training strategies, we con-
ducted ablation studies on the proposed UniOCR benchmark. Specifically, the
mixed training model was pre-trained on a combination of synthetic real images
from the UniOCR benchmark (see Table 3.8) for 500k iterations, then fine-tuned
on real images only for other 250k iterations; while the synth-only model only
used synthetic data at pre-training stage; for the real-only model, it was trained
on real images without pre-training. The models were evaluated on the val split
of UniOCR under the metrics introduced in Sec. 3.3.2. As shown in Figure 3.6,
for the detection-only accuracy, three solutions, i.e., mixed, synth-only, and no
pre-train, have achieved quite similar performance, which is 38.0%, 37.7%, and
36.6%, respectively. It is noteworthy that the mixed-trained model has already
achieved 35.5 AP without further fine-tuning, though 2.5% AP improvements
were obtained after fine-tuning. Besides, the real-only model can obtain compet-
itive results with only 50k iterations, suggesting that the text detection models
can converge well on large-scale real datasets without external synthetic sam-
ples. When moving to the end-to-end text spotting task, both models that used
synthetic data still achieved similar performance after fine-tuning (synth-only
AP 10.0% wvs. mixed AP 10.2%), however, outperforming the real-only model
(AP 7.0%). Such results demonstrate that synthetically generated images are



3.3. Unified OCR Benchmark 33

Iterations Document (%) Handwritten (%) Digit (%)
w/o Nat. w/ Nat. w/o Nat. w/ Nat. w/o Nat. w/ Nat.
50k 42.5 30.2 44.0 31.8 41.7 36.1
100k 41.4 35.2 44.6 34.6 41.8 37.4
150k 45.5 37.3 43.9 35.0 40.8 41.4
200k 47.7 42.3 44.4 35.5 39.7 46.1
250k 47.7 42.8 43.8 42.8 39.4 46.6

TABLE 3.10. Detection AP of models trained with or without
natural scene samples on subsets in different scenarios.

Tterations Chinese (%) Korean (%) Vietnamese (%)
w/o EN w/EN w/oEN w/EN w/oEN w/EN

50k 38.0 35.5 32.3 15.1 46.6 38.0
100k 40.3 35.6 32.7 12.9 46.6 36.0
150k 43.0 37.3 33.1 21.8 47.0 38.2
200k 44.5 42.3 31.2 27.3 46.4 46.9
250k 45.0 43.1 30.8 25.7 46.4 47.3

TABLE 3.11. Detection AP of models trained with or without
English text on subsets in different languages.

helpful for training end-to-end text spotters. Interestingly, the mixed-trained
model achieved around 5.0% AP after 500k iterations, which is much worse
than the real-only model that was trained for half iterations, suggesting that

the end-to-end task takes more iterations to converge.

3.3.3.2 Scenario Matters

The fact that most existing OCR algorithms are only evaluated on single-
scenario datasets limits the development of more generic methods. To explore
the performance of current methods on more generic scenarios that contain
text instances presented in different forms, we separately trained and tested the
baseline method on four subsets of UniOCR, i.e., natural scene, digital, hand-
written, and document text. Table 3.10 compares the detection performance
of models trained with or without natural scene text. Although the mixed sce-
nario models use more training samples, they performed even worse, e.g., the
doc-only model achieved an AP of 47.7%, while the doc+nat model achieved
an AP of 42.8%. Moreover, almost all of these single scenario-trained models
obtained a better detection precision than the best model that was trained on
the full dataset (see Figure 3.6). Such experiments suggest that those methods
developed for a single scenario might be prone to learning domain-specific fea-
tures, thus confusing handling data with a large domain gap. An exception is
that the model mixed-trained with natural scene text images achieved better
accuracy on the digital scenario, this may be because most of those digital pic-

tures are obtained by rendering text instances to product and natural images
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artificially; therefore, the mixed-trained model enjoys a performance improve-
ment by involving the natural scene text subset. In summary, UniOCR enlarges
its diversity by combining datasets from different scenarios, which challenges fu-
ture methods to reduce the reliance on domain-specific knowledge and focus on

more generic situations.

3.3.3.3 Language Matters

Similar to scenario matters, language can also be a factor to impact the OCR
model performance. For example, unlike Latin words which are usually seg-
mented by spaces, there is no apparent space between Chinese words. There-
fore, Chinese text instances are often annotated with line granularity, while En-
glish text is with word granularity. Also, Semitic languages such as Arabic are
written from right to left, which challenges the multi-lingual recognition perfor-
mance. To this end, experiments are conducted to explore the language matters
in UniOCR. As shown in Table 3.11, the mono-lingual models achieved slightly
better accuracy on Chinese and Korean subsets while obtaining comparable
precision on the Vietnamese subset. This may be because the Vietnamese text
shares many similar characters to the English alphabet; however, the Chinese
and Korean text is significantly different from Latin letters. Such experiments

repetitively identified the generalization issues in current OCR models.

3.4 Experiments

3.4.1 Comparisons of State-of-the-art Methods

To further understand the difficulty and set a baseline for future methods, we
have trained and tested some open-sourced state-of-the-art OCR, algorithms [91,
92, 102, 146, 172] on the UniOCR. For a fair comparison, all models were trained
with a batch size of 8 using the mixed-pre train strategy, i.e., pre-trained on a
combination of synthetic and real samples for 500k iterations, then fine-tuned
for other 250k iterations on real images. Finally, all input images are resized to
(1000, 1600) for evaluation at the inference stage.

Table 3.12 shows the H-mean score of averaged precision and recall of several
open-sourced OCR methods. Based on the experimental results, some interest-

ing findings can be observed.

e End-to-End methods achieve better E2E scores on English text instances

but cannot outperform two-stage methods on Non-English samples; this
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Method E2E (%)
P R H
CharNet (2019) [180] - - 66.6
PAN-++ (2021) [172] - - 68.6
Text Perceptron (2020) [133] - - 69.7
TDI (2021) [205] N (N
Qin et al. (2019) [135] N (K¢
MaskTextSpotterv3 (2020) [91] - - 712
ABCNet (2020) [102] (official) 69.9 645 67.1
+ UniOCR pretraining 71.5 66.1 68.7

+ Large Input Size (1600, 3000) 72.6 67.0 69.7
+ Large Recog. Resolution (8x48) 70.9 69.3 70.1
+ Longer Schedule (2x) 75.1 69.2 72.0

TABLE 3.13. Performance on TotalText [24] without lexicon.

may be because the end-to-end approaches usually adopt a lighter recog-
nition head that cannot discriminate the extensive dictionary well (there

are around 8,000 unique characters included in the UniOCR).

e All methods achieved acceptable detection results on the Digit subset;
however, failing on the recognition part catastrophically. The possible
reason is that the Digit subset mainly consists of Chinese samples that
are mostly annotated by text lines and have a large dictionary volume,

which challenges the OCR models to generalize.

e Compared to other methods, ABCNet [102] achieves surprisingly high
performance. This may be because the regression-based methods are less
sensitive to the crowd-sourced labels, while the segmentation-based al-
gorithms [91, 172] are easily affected by different annotation granularity.
We show some visualized results in the supplementary material to quali-

tatively analyze such results.

3.4.2 Discussion

Why is UniOCR Necessary? Table 3.13 repetitively emphasizes the neces-
sity of the proposed UniOCR benchmarking suite by showing that the model
performance on the existing dataset can be easily manipulated. By adopting
several training tricks, the ABCNet [102] gains significant improvements, out-
performing other state-of-the-art algorithms. Such unfair tricks can be applied
to any OCR model and therefore have less research value, making the reported
precisions hard to reflect the actual performance. To this end, the proposed

UniOCR excludes all irrelevant components by building a unified benchmarking
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system, enabling fair comparisons between different methods, which genuinely
unveil the effectiveness of candidate OCR models.

Limitation: A limitation that has not yet been solved in this chapter is
the annotation granularity issue. Especially, UniOCR employs the original GT
provided by each dataset to evaluate the model performance; hence, if a model
predicts text lines for a specific image labeled at word level, the performance
might be underestimated. To tackle this problem, new bounding box matching

rules have to be carefully designed; we thereby leave this aspect for future work.

3.5 Conclusion

In this chapter, we have introduced UniOCR, an evaluation suite developed
for benchmarking generic OCR. algorithms. By combining twenty-five publicly
available OCR datasets, UniOCR enjoys significant diversity in both scenar-
ios and languages, thereby alleviating a number of issues existing in current
evaluation protocols that hinder fair comparison between different methods.
Preliminary experiments were conducted to explore insights and set a standard
training schedule for the benchmark. Moreover, state-of-the-art methods in-
volving both end-to-end text spotters and two-stage models were trained and
tested on the UniOCR to set baseline results. To our knowledge, this chapter is
the first attempt to introduce a unified benchmarking toolbox that enables fair
comparisons in the OCR community, which we wish could become a valuable

package for assisting future OCR-related research.
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4.1 Introduction

License plate recognition is an essential task in intelligent transportation sys-
tems, attracting tremendous research interest from academia and industry.
It has been widely used in many real-world applications, especially in traffic
surveillance, self-driving automobiles, etc.

However, a long-standing issue in the license plate (LP) recognition task is
the biases among the data collected from different sources, which induces the
models trained on such datasets to a poor generalization ability. For example,
CCPD [182] is one of the largest public datasets designed for LP recognition
tasks, which contains nearly 300k images collected from 34 provinces in China.
In the main track of the CCPD dataset, which is termed CCPD-2018 (see
Fig. 4.1(a)), each image contains one blue Chinese LP (fuel vehicles), and the
samples are further categorized into several splits, such as base, tilt, weather,
and rotate. The updated version of this dataset, CCPD-Green (see Fig. 4.1(h)),
further introduces a subset that contains around 10k green Chinese LPs (new
energy vehicles). As shown in Fig. 4.1, both blue and green plates consist of
a province code, a city code, and a series of ID numbers. The differences be-
tween these two types of plates are generally twofold: 1) the text colors are
white or black while the background colors are blue or green, respectively; 2)
the length of ID numbers are 5 and 6, respectively. However, such a small
difference introduces a large domain gap between these subsets. In specific, a
model that achieved state-of-the-art performance on a single subset can hardly
be generalized into the other, which can only obtain almost 0 accuracies with-
out fine-tuning (see Sec. 4.4 for detailed discussion). Meanwhile, the license
plate data can also be sensitive to the region where the data is being collected.
Fig. 4.2 shows that there are more than 95,000 photos collected from the same
province, which means the majority of instances have an identical region code
while the rest of the regions may only have 1-10 pieces of samples. Such a
long-tailed distribution limits the generalization ability of the models trained
on this dataset.

To solve the aforementioned issue, a common strategy is to synthesize a
large number of images for pre-training the recognition model. The simplest
and the most widely-used way to generate synthetic LP images is to randomly
render characters and digits on a blank plate template [16]. However, the data
that is generated by such methods remains a significant domain gap from the
real dataset. Hence, the recognition models can only gain limited improvements

from these generated images.
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FiGURE 4.1. Examples of license plates from the CCPD
dataset [182]. (a) CCPD-2018 contains 300k blue license plates,
and each consists of 1 province code, 1 city code, and 5-char ID.
(b) CCPD dataset contains 10k green license plates, and each
consists of 1 province code, 1 city code, and 6-char ID.

Some recent works [14, 196] try to enhance the LP synthesizing procedure.
For example, [196] employs a CycleGAN [207] model to adapt the synthesized
images to a photo-realistic domain. These methods have improved the quality
of synthesized images to a certain extent, but they still cannot generate sam-
ples that can replace real data, since the models trained only using the samples
generated by these methods failed to generalize to the real-world images. There-
fore, we proposed a novel license plate synthesis method termed TLPNet based
on a text-to-image framework. TLPNet can produce high-quality training sam-
ples, enabling the recognizer to achieve competitive performance to the model
trained on real data. Especially for the long-tailed data, a baseline recognizer
can only achieve 51.0% performance on the minority split on CCPD (excluding
all LPs starting with “B%” in test split) when trained on 5k real images anno-
tated by humans. However, the performance significantly raised to 80.2% when
training the same model on 1m synthetic data generated by a TLPNet trained
on a similar volume of real images without further fine-tuning on real images.

The main contributions of this chapter are as follows:

e We proposed a novel Text to License Plate Network (TLPNet) to enable
the generation of high-quality synthetic LP images. The proposed TLP-
Net can generate significantly high-quality images compared to other text

synthesis techniques.

e Based on the proposed TLPNet, we introduce the TLP-Syn dataset, which
comprises 1 million synthetic LP images generated by the proposed TLP-
Net. The TLP-Syn dataset can be used as a supplement dataset for

pre-training.



4.2. Related Work 43

96000)/ & J/

8 1500
£
>
=
o 1000
o
£
@ 500
0 7—‘ N e —
iz s 4 2 = ] &
(a) Sample distribution based on province code.

91500
_E 91000 I
5
3
=
© 1000
Qo
s
» 500 T

F L R W
(b) Sample distribution based on city code.

FIGURE 4.2. Data distribution of the CCPD-2018 [182] training
split shows the majority (790%) of car license plate samples are

collected from a single city, which has identical province and city
code (FEA).

e Comprehensive experiments show that TLPNet significantly outperforms
various existing license plate synthetic methods by a large margin. Specif-
ically, the performance of our method can be near twice that of CycleGAN

using the same amount of synthetic data.

e To evaluate the effectiveness of the proposed modules, we thoroughly
conducted experiments on several widely used benchmarks and achieved

state-of-the-art performance.

4.2 Related Work

4.2.1 License Plate Recognition

License plate recognition can be regarded as a fine-grained version of OCR
tasks with relatively fixed formats. Therefore, most license plate recognizers
follow a similar pipeline to the generic recognition model designed for scene
text recognition. These models can usually be further separated into two cate-
gories, segmentation-based methods [16, 39, 42, 88, 149] and non-segmentation-
based methods [84, 86, 182, 196]. Segmentation-based methods usually pre-

dict character-level masks for the LPs, then feed these individual characters
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FIGURE 4.3. Sturcture of the Text to License Plate Network

(TLPNet). The TLPNet consists of three parts: 1) a dVAE

that compresses images into tokens; 2) an embedding layer that

encodes each input license plate string into textual features; 3)

a transformer that aggressively models the combined image and
text features.

into a generic OCR model to obtain the recognition results. For example, [42]
extracted character-specific extremal regions as character regions, then a hy-
brid discriminative restricted Boltzmann machine is employed for recognizing
the characters. [16] proposed an end-to-end system for segmentation and an
annotation-free license plate recognition system, which combined the segmen-
tation and OCR modules by employing hidden Markov models. Then applying
the Viterbi algorithm selects the most likely character sequence.

It is admitted that although the segmentation-based methods show superior
performance on arbitrarily-shaped scene text, they usually have low inference
speed and are susceptible to noises, including lighting, blurring, etc. However,
as the license plate numbers are often well aligned, such approaches that work
well on arbitrary shapes show fewer advantages for license plate recognition.

Therefore, the majority of recent works are developed based on a segmentation-
free fashion. For example, [84] forms LP recognition as a sequence reading
task, which proposed an LSTM-based sequence labeling network to recognize se-
quential features extracted by CNN. Then, the probability estimation sequence
outputted by the LSTM is decoded by Connectionist Temporal Classification
(CTC). [182] proposes a Roadside Parking net (RPnet) to detect and recognize
LPs jointly. In the recognition part, deep features captured from different levels
of convolutional layers are simply concatenated for training plate number clas-
sifiers. [86] encodes RPN extracted region features by bidirectional RNNs; then
decodes the features into sequence by CTC, which allows a unified detection
and recognition manner. [196] introduces a widely used attention mechanism
into the LP recognition system, enabling the network to estimate the character
location by 2D attention map rather than image appearance, further improving

the robustness to arbitrarily-oriented instances.
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4.2.2 Synthetic Text Generation

The surge of deep learning has significantly advanced scene text recognition
performance in recent years. As collecting and annotating real samples can be
highly expensive and time-consuming, pre-training the models on synthetically
generated data has become a de facto standard pipeline for text recognition.
Benefiting from the synthesis algorithms, it becomes easy for the models to
access massive training data at an acceptable cost. Therefore, designing text
synthesis methods has become an important research topic among the OCR
community |2, 49, 59, 61]. [59] is one of the first extensive synthetic datasets de-
signed for scene text recognition tasks, consisting of more than 9 million images
covering 90k English words. Precisely, a candidate word from the dictionary is
first rendered on a blank canvas within a randomly picked font, then a series of
image processing operations such as prospective distortions, shadow rendering,
coloring, and blurring is applied to improve the data diversity. Contrary to [59|
that directly renders text on blank backgrounds, [49] overlays synthetic text to
natural photos, accounting for the background 3D scene geometry. In specific,
a natural image is first segmented into contiguous regions; local surface normal
is then estimated based on predicted dense pixel-wise depth maps for each con-
tiguous region; finally, a text sample is rendered to the local surface orientation
within random fonts and transformations. This procedure enables the synthetic
engine to produce more realistic scene text with natural backgrounds.
Synthetic data is also widely used in the LP recognition system |14, 16, 196].
The straightforward way is rendering the characters and numbers to a blank
LP template directly [14, 16|, accompanying morphology operations such as
perspective transforming to add noises. The advantage of such types of methods
is that they are free from manually annotated labels. However, it is noteworthy
that there is a large appearance gap between the images synthesized by these
methods and real photos. To alleviate this issue, a possible way is to use the
existing labeled images to aid the generation of more realistic synthetic samples.
For example, [196] proposes an AsymCycleGAN to adapt the generated LPs
to a photo-realistic domain, improving synthetically generated images’ quality.
Our work also falls into this category. Nevertheless, we significantly improved
the quality of the synthesized images by examining the rich features among
the existing datasets using a transformer-based text-to-image framework, which

enables a zero-shot text-to-image generation of more realistic LPs.
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4.2.3 Text-to-image Generation

Translating descriptions formed in natural language directly into image pixels
is a challenging task that lies at the intersection of computer vision and natural
language processing, which has been attracting great interest from researchers
in recent years [83, 114, 126, 137, 140, 181, 193, 194]. In general, the main-
stream approaches of text-to-image generation can be found as two splits, i.e.,
GAN-based [83, 140, 181, 193, 194] and Non-GAN-based [114, 126, 137] models.
Specifically, [140] is a pioneering work that applied GAN [41] to generate plau-
sible images from detailed text descriptions. Text embeddings are encoded by
a hybrid character-level RNN, and then both the generator and discriminator
networks perform feed-forward inference conditioned on the text features. [193|
and [194] decompose the text-to-image generation into two sub-tasks follow-
ing a coarse to fine fashion. A two-stage StackGAN is proposed to iteratively
generate photo-realistic images, where the Stage-I network roughly generates
low-resolution outlines; then, the Stage-II network learns to capture the details
that are omitted by the former progress and draw high-resolution pictures. [114]
is one of the first Non-GAN-based methods, which illustrated that the Deep Re-
current Attention Writer (DRAW) [47] can generate novel visual scenes when
extended to the condition on image captions. [126] introduces an additional
prior on the latent code, which significantly improves both the image quality
and diversity of the synthesized samples. [137] developed a two-stage Vector
Quantized-Variational Auto-encoder (VQ-VAE). In the first stage, a discrete
variational auto-encoder (dVAE) is trained to learn the visual codebook, which
compresses each RGB photo into a small image token. In the second stage,
an autoregressive transformer is trained to learn the joint distribution of BPE-
encoded text tokens and image tokens that were obtained from the first stage.
Different from previous methods, which mainly pay attention to the natural

scenes, our work is the first one that focuses on scene text-related generation.

4.3 Methods

4.3.1 Text to License Plate Network

Inspired by the recent success of text-to-image generation [137, 138] achieved by
dVAE and transformer, we propose a Text to License Plate Network (TLPNet)
to synthesize car license plates. As shown in Fig. 4.3, the TLPNet is com-

posed of three parts: 1) a dVAE that compresses input images into tokens; 2)
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an embedding layer that encodes LP strings into textual features; 3) a trans-
former that autoregressively models the joint distribution between image and
text features.

The overall procedure can be considered as maximizing the variational lower
bound [74]. Assuming that dataset X consists of observations while Z are un-
observed hidden variables. Based on the Bayes’ Theorem, the posterior dis-
tribution of Z can be obtained by p(Z | X) = X2 _ pXIZplZ) =y

p(X) fzp(sz)
the marginal probability of X can be written as log p(X) = log [, p(X, Z). As

the true posterior density p(Z | X) is intractable, it has to be approximated
by a learnable distribution ¢(Z). It is noted that the equation logp(X) =
log [, p(X,Z )% still holds when adding ¢(Z), and thus it can be regarded as
an arbitrary distribution:

log p(X) = log (Eq [p(X’ Z)D . (4.1)

Applying the Jensen’s inequality f(E[X]) < E[f(X)] on concave function log(-),

we can get:

logp(X) > E, [log pfé)z)}

=E,[—logq(Z) + logp(X, Z)],

(4.2)

which is termed the variational lower bound. Let us denote £ = E,[—log ¢(Z)+
log p(X, Z)], it is obvious that L is a lower bound of the marginal probability of
X. Therefore, instead of maximizing the marginal probability, it is convenient
to maximize its variational lower bound L.

Since the core idea of variational inference is to find the approximation
distributions ¢(Z) that are as close as possible to the true posterior likelihood
p(Z | X), it becomes necessary to measure the relative entropy between ¢(Z2)
and p(Z | X). To measure the differences between two probability distributions,
the Kullback-Leibler (KL) divergence is one of the widely-used metrics. For
distributions ¢(Z) and p(Z | X), the KL divergence is defined as:

B q(2)

KL((2).0(2 ] X)) = [ al2)1os 205 43)
XD |
= /Z(](Z)l g q(Z) +1 gp(X)/Zq(Z)'

Combining Eq. 4.2 and Eq. 4.3, the variational lower bound can be finally

rewritten as follows:

L =logp(X) = KL(¢(2),p(Z | X)). (4.4)
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TABLE 4.1. Network structure of the discrete variational auto-
encoder.

Encoder Decoder

Conv (4 x 4, 256) Conv(1 x 1, 256)
Conv (4 x 4, 256) Conv (3 x 3, 256)
Conv (3 x 3, 256) Conv (3 x 3, 256)
Conv (3 x 3, 256) Conv (1 x 1, 256)
Conv (1 x 1, 256) Conv (3 x 3, 256)
Conv (3 x 3, 256) Conv (3 x 3, 256)

( ) )
)

ResBlocHResBlockl

Conv (3 x 3, 256 Conv (1 x 1, 256
~ Conv(4 x 4, 256)
Conv(4 x 4, 256)
Conv(1l x 1, 3)

ResBloclResBlock

Conv (1 x 1, 256
Conv (1 x 1, 8192)

Furthermore, in our case, we maximize the variational lower bound on a joint
likelihood of the model distribution over images x, LP strings ¢, and the image
tokens z encoded by the dVAE. Specifically, the distribution is modeled by the

factorization:

peﬂb(xvyvz) :pg(l’ | y,z)pw(y,z), (45)

where py refers to the decoder in the dVAE, since it reconstructs a distribution
over the possible corresponding values of RGB image x based on the encoded
image tokens z. p, denotes the joint distribution between the image and text

features modeled by the transformer. Eq. 4.5 yields the variational lower bound:

logpgy(z,y) Z=E (logpe(x |y, 2)—
2y (2]7) (4.6)

KL (p'lﬁ(yv Z)7 q¢<y7 z | .T))) )

where gy is the encoder in the dVAE. Given an RGB image z, g, generates a

distribution over the possible values of the latent representation z.

4.3.1.1 Variational Auto-encoder

Directly using image pixels as inputs for training the text-to-image genera-
tor would require an outrageous amount of memory. Thus, it is necessary to
compress the raw images x into smaller tokens z. To this end, we train a dis-
crete variational auto-encoder (AdVAE) to transfer each input RGB image from
128 x 128 x 3 into a 32 x 32 grid of tokens, which significantly reduces the size

of features without noticeable degradation of image quality.
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The dVAE consists of an encoder network z = ¢(x) and a decoder network
T = 0(z). For each raw image x, ¢(-) encodes it into a latent representation
vector z, while 6(-) is responsible for reconstructing the encoded token z from
latent space to the original space,  is the reconstructed image. Combining these
two parts together, the entire model of dVAE can be described as & = 6(¢(z)).
Specifically, both ¢(-) and 6(-) are convolutional neural networks. As shown in
Table 4.1, both are composed of a series of convolutional layers and residual
blocks [51]. Primarily, the encoders and decoders use the convolutions with
kernel size 3 and skip connections with kernel size 1, while others use 4 x 4
convolutions. The last layer of the encoder produces 32 x 32 x 8192 output as
the logits to represent the categorical distributions of the image tokens.

Given a raw image x, our goal is to obtain the latent code z. Supposing the
posterior for the latent space is p(z|x), the goal can then be expressed using the
Bayes’ Theorem p(z|z) = p2p(z)  Baged on Eq. 4.2, Eq. 4.3, and Eq. 4.4, the

p(z)
objective of the auto-encoder can be computed by minimizing the loss function:

L= ~Eevyiaoy (08 p(x | 2)+ KL (p(), a( | 2))). (47)

where the ¢(z|x) and p(z|z) are approximated by the encoder and decoder,
respectively. The first term is the reconstruction loss, and the second can be
viewed as a regularization term of the posterior.

Besides, as the transformer for generating images works on discrete data,
it is necessary to convert the continuous latent representation learned by the
standard VAEs to a discrete one. A common way to solve this issue is by adding
a discrete codebook to the network. The codebook can be regarded as a lookup
table that stores a list of vectors. Each output of the encoder ¢(x) is compared
to all the vectors in the codebook, then the codebook vector closest to the ¢(z)
in the euclidean distance is further passed to the decoder. The quantized vector

can be calculated as follows:

d(x) = argmin, [|¢(z) — ¢, (4.8)

where ¢; is the i vector in the codebook. Practically, we use an embedding
layer to maintain a codebook of size 512, and each element ¢; in the codebook

232X32 different results, allowing the

is a 32 x 32 vector. Thus, it can produce 51
dVAE to learn a discrete space representing the raw image x well.

In practice, as the images of LPs are relatively simple, we directly use Mean
Squared Error (MSE) as the objective function to optimize the dVAE recon-

struction loss instead of combining a logit-Laplace distribution along with the
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FIGURE 4.4. License plate number embedding.

KL divergence. As shown in Fig. 4.3, given an input image z;, the dVAE en-
coder first extracts the convolutional features, then the logits are encoded into
the latent code by the learned codebook. Finally, the decoder decodes the latent
code into the reconstructed image #;. The final loss for training the dVAE can

be relaxed to:

(= % Z (2 — 2)°. (4.9)

The model is optimized by an Adam solver |73] with an initial learning rate of
0.001 for 20 epochs.

4.3.1.2 Transformer

After the training of dVAE, we can learn a new prior p(z) that can accurately
describe the distribution of latent space, thus, when we sample data from p(z)
and feed them to the decoder 6(-), a new image can be generated & = 6(p(z)).
In this stage, we employ a sparse transformer [23] to learn the prior py(y, 2)
distribution over the license plate text y and the image tokens z obtained by
the dVAE. Since we have already obtained the encoder ps and decoder py in the
trained dVAE, based on Eq. 4.5 and Eq. 4.6, we only need to learn the prior by
maximizing the variational lower bound with respect to ¢ while fixing ¢ and 6.

Unlike other text-to-image generation tasks, the format of LPs is relatively
simple, and does not carry rich language semantics; thus, it is not necessary
to employ complicated language models to obtain the word embedding for the
text descriptions. Alternatively, we use a simple yet effective way to convert

each LP number to text embedding (see Fig. 4.4). Specifically, the LP number
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bidirectional LSTM.

in the CCPD dataset is composed of three parts, i.e., province code, city code,
and ID. The province codes are of 34 Chinese characters, while city codes and
ids are of English characters and digits. Each character is indexed with a
unique integer in a dictionary, based on this, the LP number is transferred
into a 7-bit digit vector. Furthermore, it is easy to maintain a simple lookup
table that stores embeddings of a fixed dictionary and size. Therefore, given
a list of indices, the lookup table can retrieve and output the corresponding
word embeddings via indices. It is noted that the lookup table can be easily
implemented with a linear layer and optimized as part of the training task. So
far, given a pair of images and LP numbers, the image tokens can be easily
sampled from the aforementioned dVAE encoder logits, and the plate number
is converted into text embedding via the lookup table. Finally, these features
of the two modalities are concatenated together as a single stream of feature
tensors.

The combined feature tensors are fed into a decoder-only transformer to
model the joint distribution between text content and image tokens. The trans-
former is composed of 32 self-attention layers, each of which uses 16 attention
heads. The model uses a mixture of sparse attention masks, similar to [23, 137].
Specifically, the image receives three types of sparse attention, i.e., axial at-
tention along the rows and columns, respectively, as well as convolution-like
attention. At the same time, the text embeddings are always obtained full at-
tention. We refer interested readers to [137] for more details. During training,
we use a reversible residual layer [75] instead of a regular one to scale the trans-
former depth, which significantly saves the memory cost, thus enabling a larger
batch size of 24 images on a single V100 GPU. Specifically, the transformer was

optimized using Adam with the cross-entropy loss for 75 epochs.
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4.3.2 A Simple Yet Strong Recognizer

To alleviate the possible impact introduced by complicated recognizer while
exploring the effectiveness of the proposed synthesizing methods, a simple and
clean framework is developed as our baseline recognizer, which still achieves
state-of-the-art performance on all 4 benchmarks without bells and whistles.

As shown in Fig. 4.5, there are mainly three modules in the baseline rec-
ognizer, i.e., spatial attention mechanism, backbone network, and bidirectional
LSTM (biLSTM). The spatial attention mechanism rectifies the loosely bounded
LP region into a tightened one. The backbone network extracts deep convolu-
tional features, which are then encoded into sequences. Finally, the sequential
representation extracted by the biLSTM is decoded by Connectionist Temporal
Classification (CTC) [44].

More specifically, the spatial transformer takes a grey image I € RWV*# ag

input, then predicts an affine transformation matrix:

Q21 Ag22 (23

o(1) = [““ 2 ‘“3]. (4.10)

The matrix predictor can be simply implemented by several convolution layers
and a regression layer. Similar to Spatial Transformation Networks (STN) [60],
the regressor does not get direct supervision towards the parameters of affine
transformation but will be trained according to the recognition loss. After
obtaining the transformation matrix, each pixel (x},%!) in the original image is

sampled to the rectified space (see Eq. 4.11).

HRSE
Yi

After that, four pixels in the original image nearest to the sampled point (x;, ;)

SN

~

(4.11)

S

are used to generate the intensity values for the output image by bilinear in-
terpolation. Furthermore, the rectified images are fed into a ResNet-34 [51]
backbone network for extracting deep features.

As the text is inherently a sequence of characters, it is common to regard text
recognition as a sequence reading task in the OCR community [96, 144]. There-
fore, to explore the long-range dependencies among the sequences, we employ
bidirectional LSTM (biLSTM) [46] to extract sequential features. Specifically,
the convolution feature extracted by the backbone network is first mapped from

the three-dimension spatial domain C' x H x W into a sequence of W vectors,
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each having C' x H dimensions. Then, the biLSTM is employed to explore
the sequence’s dependencies in two directions, which outputs another sequence
with the same length as the input. Finally, the widely-used CTC is employed

to decode the sequential feature s; into label sequence.

4.4 Experiments

4.4.1 Datasets

To evaluate the effectiveness of the proposed methods, we conducted thorough
experiments on three widely used license plate recognition datasets, i.e., CCPD-
2018 [182], CCPD-Green [182], and CLPD [196].

CCPD-2018 [182] is one of the largest public license plate datasets, which
provides almost 300k images that were taken in China. Each image contains a
unique LP with detailed annotations, including bounding box coordination, ID,
blurring level, etc. The entire dataset has been separated into 7 subsets based
on different environmental conditions and degrees of tilt. Each split contains
10720k images except the base split which has approximately 200k samples.
Following [182], 100k images in the base set are used for training while the
other half, as well as the rest splits' (DB, FN, Rotate, Weather, and Challenge)
are used for testing.

CCPD-Green [182] is an extended subset of CCPD-2018, which contains

a total of 11,776 images, including 5,769 for training, 1,001 for validation, and
5006 for testing. Unlike CCPD-2018, this subset only contains green LPs for
new energy vehicles.
AOQOLP [55] offers 2049 license plate photos that were taken in Taiwan. The
images are split into 3 subsets: Access Control (AC) with 680 images, Traffic
Law Enforcement (LE) with 757 images, and Road Patrol (RP) with 611 images.
We follow the same training settings as presented in previous works [86, 175,
196], in which samples from different sub-datasets are used for training and
testing, respectively. Besides, we also generate 10k synthetic samples for each
fold by the proposed TLPNet.

CLPD [196] contains 1200 real images, which cover various photographing
conditions with different types of LPs (blue, green, yellow, etc.). Different
from the CCPD dataset, CLPD is a more balanced benchmark in terms of the

distribution of region code, as the pictures were collected from all provinces in

!The CCPD splits were updated after publication, to conduct a fair comparison with
existing approaches, we adopt the original splits.
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Syn [207]

FIGURE 4.6. Comparison of real images and synthetic data gen-
erated by different algorithms.

mainland China. Due to the small volume, we only use the CLPD dataset as a

test bed to evaluate the generalization ability of recognition models.

4.4.2 Implementation Details

As this chapter focuses on the recognition of license plates, we trained an off-
the-shelf YOLO [3] detector on the training split of each dataset to obtain the
bounding boxes of LPs. The detector achieves AP@0.5 = 99.88 on the CCPD
validation set. We follow the identical evaluation protocols as used in [182], i.e.,
the prediction result is correct only if the IoU between predicted and ground-
truth bounding-boxes is greater than 0.6 and all characters of the LP ID are
correctly recognized. Each experiment was conducted on a single NVIDIA Tesla
V100-SXM2-32GB GPU.

To train the proposed Text to License Plate Network (TLPNet), 6,000 im-
ages, including 3,000 starts with “B%" and the other half plates are of other
provinces, from the CCPD-2018 [182] training split are randomly sampled, on
which the TLPNet is trained for 70 epochs. Online data augmentation strate-
gies, including random cropping, rotation, and blurring, are adopted for enlarg-
ing the training samples. Instead of using complex methods such as CLIP [136]
to filter low-quality images, we directly set a threshold based on the file size to

select qualified images.
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4.4.3 Comparison with real data

Experiments on different numbers of real photos and images synthesized by
the proposed methods are conducted to assess the quality of generated data.
Specifically, the generator was trained within 6k real images. Meanwhile, the
recognizers are trained using identical hyper-parameters for 100 epochs with a
batch size of 256 and evaluated on the full CCPD2018 testing split. Table 4.2
shows that the model trained on the real samples still achieved better results
using the same number of training images. However, the model trained with
synthetic data can also obtain comparable performance when the training data
is increased. For example, the model trained with 30k synthetic images achieved
94.2 and 88.5 on Base and Weather, respectively, while the 5k real-image-trained
model obtained 95.3 and 90.5. Nonetheless, considering the difficulty of data
acquisition between real images and synthetically generated data, it is much
easier and cheaper to access a massive amount of synthetic data. Therefore, we
synthesized a large scale of images (71 million) and tested the recognizers that
were trained with a different number of synthetic samples. Table 4.2 shows
that a model trained with synthetic data which 10x number of real images
can achieve comparable performance. For example, the model trained with 50k
synthetic images achieved an 87.5 overall score, while its counterpart, the model
trained with bk real data, obtained 88.2 overall precision. Similarly, the models
trained on 50k real images and 500k synthesized LPs achieved 96.8 and 96.4,
respectively. Furthermore, the recognizer trained on 1 million synthetic data
obtained competitive results to the model trained on the 100k training data of
the CCPD dataset (97.4 vs. 97.7), while the model trained on a combination
of 100k TLPNet generated samples and 20k OpenCV generated samples, the
performance even outperform the models trained on real data.

In addition, as discussed in Sec. 4.1, the majority of samples in the CCPD
dataset share the same province code “H5%", which also induces the lack of train-
ing samples for the proposed TLPNet. To further evaluate the quality of the
synthesized images with fewer training samples, we built a split that excludes
all of the samples that contain “f%E" in the standard test splits (7467 out of
180k), termed minor. Compared to other splits, both models trained on real
data and synthesized images perform worse on minor due to the lack of train-
ing samples. Nevertheless, as shown in Table 4.2, the baseline recognizer still
gains significant improvements on the minor split while adding more synthetic
images. Especially, the model trained on 500k TLPNet generated images even
beat the model trained on 50k real data on this split (79.2 vs. 72.5). However,
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TABLE 4.2. Performance comparison between models that are
trained on real images and synthetic data on CCPD2018 test set.
Minor* is a subset that excludes samples started with .

#Im [ All [ Base DB FN Rot. Tilt Weat. Chall. [ Minor*
Real data
5k 8821 953 91.9 903 40.8 733 905  66.1 51.0
10k | 91.7 | 970 931 930 622 821 932 710 59.7
30k | 944 | 982 961 956 749 876 948 772 72.5
50k | 96.8 | 98.9 969 97.6 90.1 940 969  83.0 76.9
100k | 97.7 | 99.5 98.6 98.7 905 951 97.8 858 78.8
TLPNet synthesized data
5k 314 ] 403 203 283 47 174 354 72 10.1
10k | 787 | 8.0 66.6 804 530 720 79.0 379 21.9
30k | 88.3 | 942 814 898 756 847 885 553 42.5
50k | 90.3 | 954 849 91.5 833 875 893  58.2 53.2
100k | 92.7 | 97.0 88.8 944 845 897 922 656 67.9
200k | 94.9 | 98.1 921 963 89.6 93.0 940 734 68.5
300k | 95.6 | 98.5 934 96.8 91.3 944 947 751 73.6
500k | 96.4 | 98.8 954 972 92.0 948 954  80.0 79.2
Im | 974 | 993 965 980 931 957 965 823 80.2
TLPNet (1m) + OpenCV (200k)
12m [ 97.8 ] 995 975 98.6 947 957 976  86.7 | 823

TABLE 4.3. Comparison of recognition performance using
ground-truth and detection bounding box.

Type Overall Base DB FN Rot. Tilt Weat. Chall
GT-box 97.9 99.6 986 988 91.5 955 97.9 86.0
Detection 97.7 99.5 98.6 98.7 90.5 95.1 97.8 85.8

the TLPNet was trained only on 6k real images with annotations. In contrast,
the recognizer trained on 5k real images can only achieve 51.0 on minority
split, while the TLPNet significantly lifts the performance up to 80.2. This
suggests that although the training data is insufficient, TLPNet still generates
high-quality images that can provide effective supervision signals.

Besides, to eliminate the possible impact introduced by detection results,
Table 4.3 compares the performance of the baseline recognizer based on ground
truth, and YOLO predicted bounding box. As shown in the table, the ground-
truth bounding box only improves 0.2 overall performance compared to the

detected box, which suggests that the impact of detectors is limited.

4.4.4 Comparison with other text synthesis approaches

To compare the quality of TLPNet synthesized images with other methods (see
Fig. 4.6), we pre-trained the baseline recognizer on the data generated by several
other widely used synthesis techniques designed for both generic text and LP
recognition. Then we evaluate these models on CCPD-2018 and CCPD-Green,
respectively, to show their effectiveness. For a fair comparison, all models are

trained within identical settings unless otherwise specified.
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MjSynth: The NeurIPS2014 [59], a.k.a. MjSynth, is a widely used pre-
training dataset for text recognition, which has 9 million synthetic images cov-
ering 90k English words. As this dataset contains too many samples, we only
pre-trained our baseline on the training split (77 million images) for 5 epochs
to save time, which still costs more than 50 training hours on a single Nvidia
Tesla V100 card.

SynthText: Similar to [59], the CVPR2016 [49], a.k.a. SynthText, is an-
other large synthetic dataset designed for text recognition. The difference be-
tween MjSynth [59] and SynthText [49] is that each sample in the MjSynth
is only a patch containing one single English word with synthetic background,
while SynthText placed multiple word instances into a natural photo based on
the background layout. Thus, SynthText provides both bounding boxes and text
annotations. As this chapter only focuses on the recognition part, we cropped
~4 million patches from the original synthetic scene images in SynthText, and
each image patch contains an English word with a natural background. We also
pre-trained the baseline for 5 epochs on this dataset.

Plain-Syn: Both [59] and [49] are designed for generic text recognition,
which only covers English words and numbers. To investigate the influence of
the vocabulary, a widely-used Text Recognition Data Generator (TRDG) [2] is
employed to generate LP text rather than dictionary words. Specifically, 200k
image patches are generated. Each patch contains only one valid LP number
with an empty background. Random blurring and skewing are adopted to make
the data more diverse. The baseline method was trained on a total of 200k
Plain-Syn datasets for 50 epochs.

OpenCV-Syn: As the format of car LP is relatively fixed, a popular syn-
thesis method is to directly render random numbers onto blank LP images, then
employ image processing techniques to add noise, distortion, deformation, etc.
An off-the-shelf toolkit [1| developed upon OpenCV was employed to generate
200k LPs. The baseline recognizer was then trained on the combination of 200k
synthetic LP images for 50 epochs.

CycleGAN-Syn: Some previous works [168, 196] have proved that Cycle-
GAN [207] can be used to transfer the synthetically generated data into photo-
realistic images, which reduces the domain gap between real and synthetic data.
In specific, a CycleGAN model was trained to transfer the 200k images in the
OpenCV-syn into the photo-realistic domain. The baseline recognizer was then
trained on the new images for 50 epochs.

TLP-Syn (ours): Similarly, we trained a TLPNet model on 6k real images

based on the implementation details presented in Sec. 4.4.2. Based on this
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model, 200k LP images are synthesized. The baseline recognizers were trained
within the identical hyper-parameters used in other baselines for 50 epochs.
Examples of TLP-Syn can be found in Fig. 4.8.

As shown in Table 4.4, the baseline recognizer achieves an overall perfor-
mance of 97.7 on the CCPD-2018 test split without external training data.
While adding the real CCPD-Green data for pre-training, the performance
slightly improved to 97.8. To assess the quality of samples that were synthe-
sized by different approaches, we compare the proposed TLPNet with five other
synthesis methods, MJSynth [59], SynthText [49], Plain [2], OpenCV [1], and
CycleGAN [207]. We evaluate these methods from two aspects, i.e., synthetic
data only training and synthetic data pre-training with real data fine-tuning. It
should be noted that the MJSynth and SynthText do not cover any LP samples;
thus, they are not applicable for synthetic-data-only training evaluation.

Synth-Only: Table 4.4 shows that the baseline trained on Plain-Syn failed
to distinguish authentic images, which suggests that the background, font, and
style are essential for training the LP recognizers. The OpenCV and CycleGAN
model achieved 59.5 and 47.0 overall accuracies on the CCPD-2018 test split,
respectively. Surprisingly, the images adapted from synthesized images to the
photo-realistic domain by the CycleGAN did not help improve the model per-
formance but even induced a significant precision drop. With identical training
settings, the baseline recognizer trained on the images generated by the pro-
posed TLPNet achieved a 94.9 overall score on the CCPD-2018, which shows
comparable performance to the models trained on real images. Moreover, to
further explore the capability of synthesized images, a combination of samples
generated by two different approaches is built, which includes 1 million images
from TLP-Syn and 200k images from OpenCV-Syn. This setting further boosts
the baseline recognizer to 97.8, which has already beaten the real data-only
trained model Real-C18 (97.8 vs. 97.7), demonstrating that training on a com-
bination of synthetically generated data can obtain competitive results to the
real images.

Synth+Real: We also conduct experiments to evaluate the fine-tuned mod-
els. Formally, each model pre-trained on the synthetic data is further fine-tuned
on the CCPD-2018 training set for 50 epochs. As shown in Table 4.4, both mod-
els were pre-trained on the generic OCR synthetic data MjSynth and SynthText,
which obtained similar accuracy of 97.8 and 97.6, respectively. Although the
recognizer was pre-trained on millions of images, it does not gain improvements
compared to the real-data-only trained models. A possible reason is that both

the image and the dictionary of these two synthetic datasets are quite different
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TABLE 4.6. Impact of the number of labeled data while training
the generator.

VAE Stage Transformer Stage
#Unlabeled Acc. NED || #Labeled Acc. NED
10,000 81.9 95.8 | 1,000 82.5  95.6
30,000 84.1 96.5 | 3,000 83.9 96.2
50,000 84.1 96.5 || 5,000 84.0 96.2
100,000 84.2 96.5 || 10,000 84.3 96.3

TABLE 4.7. Performance of the proposed methods on the CCPD
dataset.

Model Pre-train Fine-tune Accuracy
Real None CCPD-Green 82.5
Real4+-Real | CCPD-2018 CCPD-Green 90.5
Synth+Real | TLP-Syn = CCPD-Green 91.0

from the LP recognition task, where a large domain gap exists and prevents the
improvements. Plain can be regarded as a particular case of MjSynth, which
replaces the preset English dictionary with LP text. However, the combination
of real data and Plain synthesis encounters a significant accuracy drop, even
worse than the train-from-scratch model (96.5 vs. 97.7). This suggests that
pre-training the recognizer on a small data set with a large domain gap can
bring a bad parameter initialization to the network, harming the final perfor-
mance. Although OpenCV-Syn performs better than CycleGAN-Syn on the
synthetic-data-only training phase, the recognizers fine-tuned upon these pre-
trained models obtain a similar overall performance of 98.1 on the CCPD-2018.
When it fine-tunes the proposed TLP-Syn, the recognizer further obtains 0.4 im-
provements in the overall score. The combination setting that involves 1 million
TLP-Syn, and 200k OpenCV-Syn images significantly improved the recognition
performance compared to the real-data-only models, which suggests that the
massive synthetic data helps the model learn discriminative features. Benefit-
ing from the varieties of external synthesized images, the model has achieved
better performance on challenging samples such as rotated and tilted LPs with-

out introducing complex mechanisms like 2D attention.
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TABLE 4.8. Comparison of performance between ours and the
state-of-the-art methods on the CLPD [196] dataset.
Model Acc | Acc w/oRC
Masood et al. (2017) [200] - 85.2
Xu et al. (2018) [182] 66.5 78.9
Zhang et al. (CCPD2018 Only) (2020) [196] 70.8 86.1
Zhang et al. (CycleGAN+CCPD2018) (2020) [196] | 76.8 87.6
Wang et al. [174] 89.8 95.3
Ours (TLP-Synthetic Only) 85.3 91.0
Ours (CCPD Only) 78.0 90.7
Ours (TLP-Synthetic+CCPD) 91.2 95.6
TABLE 4.9. Comparison of performance between ours and the
state-of-the-art methods on the AOLP [196] dataset.
Model Overall AC LE RP
#Images (2049) (681) (757) (611)
Li et al. [86] 94.5 95.3 96.6  83.7
Zhang et al. [196] 96.1 97.3 983 919
Zou et al. [196] 97.8 99.3  98.7 951
Wang et al. [174] 99.7 99.4 999 99.7
Zou et al. [209] 96.5 96.3 979 949
Ours (TLP-Synthetic+AOLP) | 99.6  99.5 99.6 99.7
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FIGURE 4.7. Synthetic LPs that are generated by our methods.
Compared to the existing methods that directly render digits
and characters on a blank template, the proposed methods learn
from existing data to generate more realistic photos. First row:
generated LP with less tilt and rotation. Second row: generated

LP with large tilt.
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FIGURE 4.8. Failure cases of generated LPs. As the available
training data of these provinces is very limited (e.g. J& (7); &
(8); = (10); H (10)), the proposed method failed to generate

high resolution province code.
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F1GURE 4.9. Examples of the incorrect recognition results. The
samples from the three rows are from CCPD-2018, CCPD-Green,
and CLPD, respectively.

4.4.5 Ablation Study

As introduced previously, unlabeled images are used at the VAE training stage,
while labeled instances are used at the transformer training stage. Ablation
studies are conducted to reveal the impact of the number of labeled and un-
labeled samples on training the LP generator. Each variant is employed to
generate 10k LPs to evaluate the image generation quality. Then, the gener-
ated samples are further augmented to 50k images for training the OCR models.
Finally, the OCR models that were trained on synthetic data only are evaluated
on the CCPD-2018 under both accuracy and Normalized Edit Distance (NED).

Unlabeled Data: Unlabeled data can be easily accessed, which makes
training the models on massive unlabeled data possible. Ablations under 4
different settings are conducted to assess if the unlabeled data can improve the
quality of generated images. Specifically, the VAEs have trained with 10k, 30k,
50k, and 100k unlabeled images. Then, each VAE is further used to train the LP
generator based on identical 10k labeled data. As shown in the left of Table 4.6,
increasing the number of training samples can not bring further performance

improvements. This suggests that the VAE part can easily get to convergence
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within limited data.

Labeled Data: It is well-studied that increasing the number of training
samples can effectively improve the model performance. However, it is more
expensive to acquire labeled images compared to unlabeled data. Therefore,
ablation studies are conducted to explore enhancing the generation quality with
less labeled data to balance the trade-off between cost and precision. In specific,
each variant transformer was trained on an identical VAE with 1k, 3k, 5k, and
10k labeled images. As shown in the right of Table 4.6, the quality of generated
images is not very sensitive to the number of training samples. Even training

on only 1k images can enable the transformer to generate high-quality samples.

4.4.6 Results on CCPD-2018

To evaluate the effectiveness of the proposed pipelines, we compared the per-
formance with other state-of-the-art methods [86, 95, 108, 139, 141, 170, 182,
195, 196, 202] on CCPD-2018 benchmark.

As shown in Table 4.5, our baseline recognizer has already surpassed most
existing methods when only training on the synthetic data generated by the
TLPNet. Meanwhile, our model achieved the highest performance on FN,
and the second-highest performance on Weather, Rotate, and Base splits, only
slightly worse than [174] which employed a much more sophisticated network.
Even for the Challenge split that contains the most complex cases, our base-
line model still obtains 86.7, outperforming all state-of-the-art approaches ex-
cept [174, 196].

Like all other methods used real or a combination of real and synthesized
images for training, we also fine-tuned the Real+Combination model on the
CCPD training split for 50 epochs. As shown in Table 4.5, our algorithm
outperforms all other methods in terms of the overall score and most subsets.
The only exception is that both [196] and [108] perform slightly better than
us on Rotate and Tilt. The reason might be that both methods [108, 196]
employed stronger image rectification techniques, such as 2D attention and
rectified attention network, which enables them to obtain better performance on
rotated images. However, our algorithm can also benefit from such modules, and
the precision is expected to be further boosted on these two subsets. Besides, the
increment on Challenge split is even obvious; our method achieved an accuracy
of 93.3. This is because the TLPNet synthesized many very challenging samples,
enabling the baseline recognizer to learn discriminative features. We show some

incorrect recognition results in Fig. 4.9.
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4.4.7 Results on Extensive Benchmarks

To evaluate the generalization ability of the proposed methods. We further
conduct experiments on CCPD-Green [182], CLPD, and AOLP [196].

4.4.7.1 CCPD-Green

For CCPD-Green, we compare our models trained under three different set-
tings: 1) Real model trained on the CCPD-Green training split from scratch;
2) Real+Real model fine-tuned from CCPD-2018 pre-trained model, and 3)
Synth+Real model fine-tuned from 1.2m TLPNet synthesized images. As shown
in Table 4.7, pre-training the model on CCPD-2018 significantly improved the
accuracy from 82.5 to 90.5. Furthermore, the Synth+Real model pre-trained
on TLP-Syn even outperforms the Real+Real model, achieving 91.0 accuracy,
which suggests that the TLPNet synthesized images can replace the real images

for pre-training the recognizers.

4.4.7.2 CLPD

Following [196], we only use CLPD as the test dataset. The models trained
for CCPD are directly evaluated as the baseline recognizers on CLPD without
further fine-tuning. The TLP-Synthetic only model was trained on the combi-
nation of 1.2 million synthetic data; the CCPD2018-only model was trained on
the training split of CCPD2018; the last one was pre-trained on TLP-Synthetic
data and then fine-tuned on the CCPD2018 training set. The performance was
calculated from two aspects, with and without region code (Chinese charac-
ter) considered. As shown in Table 4.8, our model has already outperformed
the real-data trained model of [196] when only trained on the images synthe-
sized by the proposed TLPNet, which shows the generalization ability of the
proposed methods. Furthermore, the full model achieves an accuracy of 95.6

without region code, outperforming other state-of-the-art models.

4.4.7.3 AOLP

To further explore the generalization ability of the proposed methods. Table 4.9
compares the proposed methods with the state-of-the-art methods on the AOLP

dataset, where we achieve a competitive performance of 99.6 overall accuracies.
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4.5 Conclusion

This chapter presents a Text to License Plate Network (TLPNet), which con-
verts text strings to high-quality license plate training samples. TLPNet is
built upon a text-to-image framework, which is composed of three modules,
i.e., the discrete variational auto-encoder that compresses photos into image
tokens; the embedding layer that converts LP numbers into text tokens; and
the decoder that can autoregressively model the joint feature of both image
and text tokens. Compared to real images, it is much easier and cheaper to
access massive synthetic samples using our approach. Therefore, to verify the
effectiveness of the proposed TLPNet, we introduce SynthLLP, which is a syn-
thetic LP dataset containing 1 million samples synthesized by the TLPNet.
Different from previous synthesis methods, which generate low-quality images
that can only be used for pre-training the recognizers, the model trained on the
SynthLP achieved competitive performance to its counterpart trained on real
images from the CCPD-2018 training split. Extensive experiment results show
that the TLPNet can generate high-quality LP images that can partially replace
real training samples. State-of-the-art performance and exhausted comparisons

with previous methods demonstrate the great potential values of our method.
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5.1 Introduction

The fact that Visual Questions Answering [8] methods are able to answer natu-
ral language questions that relate to a wide variety of image contents has been
an incredible development. The limitations of existing methods, and particu-
larly their tendency to focus on spurious correlations in the data, have been
repeatedly identified (see [4, 43, 65|, for example). This is visible in the ten-
dency of methods to answer questions on the basis of text alone. The answer
to ‘How many’ questions, for instance, is predominantly ‘Two’.

Focusing on coincidental correlations in the data represents a failure to gen-
eralization. These correlations are not stable across datasets, meaning that once
the test data moves beyond the distribution of the training set, the correlations
fail to hold, and methods that exploit them fail to work. The underlying reason-
ing, in contrast, is stable across datasets. Encouraging VQA methods to reason
about the image content is thus critical to achieving methods that generalize.

One of the underlying problems with encouraging VQA methods to general-
ize has been that it is impossible to tell whether a method arrived at the right
answer for the right reasons. An answer is equally correct whether it results
from analysis of the underlying reasoning or through exploiting a coincidental
correlation in the data. A series of works have developed more sophisticated
measures of performance for vision and language problems |7, 43, 186], and this
work falls in this category. What distinguishes this approach is that it uses
image-based grounding to encourage generalization, despite the fact that it is
not actually required to achieve the desired task.

We propose here an approach to measure VQA performance that encour-
ages generalization by demanding that the algorithm justifies its reasoning (see
Figure 5.1). Previous methods have applied the same rationale but suffered be-
cause the form in which the reason must be provided is constrictive [166, 177].
We show here that it is possible instead to evaluate reasoning by only requiring
a method to provide a relatively simple indication of which area of the image
it has based its answer on. If the method provides the correct answer and the
correct image region, then it is likely that it has employed the right reasoning.
Using image regions, or more accurately bounding boxes, as an evaluation met-
ric also has the advantage that Intersection-over-Union (IoU) measures are well
understood in the field.

The version of the VQA problem that we apply this approach to is Scene Text
VQA. Several recent works [13, 151| have revealed that current VQA models

perform poorly on text VQA datasets, so it represents a compelling challenge
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i Conventional VQA |
; ' GRAPES !

FIGURE 5.1. Requiring that vision-and-language methods pro-

vide evidence for their decisions encourages the development of

approaches that depend on reasoning and thus that are better

able to generalize to new situations. It also helps to build up
confidence in the provided answer.

falling within the existing framework. The various forms of text VQA problem
are also of great practical importance, because text represents a critical cue to
understand the content of an image. More than this, text VQA problems are
typically less susceptible to solve through exploiting coincidental correlations in
the data.

A variety of text-based VQA datasets [13, 72, 119, 151] have been proposed.
However, there is still a significant gap between current algorithm performance
and that required to support practical applications [13, 119, 151]. Another
motivating factor in selecting text-based VQA rather than the generic version
of the problem is that the text-based version of the problem is less susceptible
to n-way classification over a fixed vocabulary. This is due to the fact that
the range of text appearing in images is quite broad. The classification-based
approach has repeatedly been shown to be susceptible to overfitting [4, 43].
Text-based VQA requires the development of alternative approaches, some of
which will hopefully generalize.

Figure 5.2 depicts some of the challenges with existing scene-text based VQA
system. For example, Figure 5.2(a) is a sample question that can be answered
without reference to any textual content; while the question in Figure 5.2(b)
could have more than one correct answer; the question in Figure 5.2(c) requires

prior knowledge to answer; and finally in Figure 5.2(d), the answer can not be
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) 2
Q: Does this look like a face to Q: What is one of the keys on the
you? keyboard?
A:yes A: backspace
(a)

Q: What language is this? Q: What time is on the watch?

A: Hebrew A: 1:35

() (d)

FIGURE 5.2. Some example images and QA pairs from the Text-

VQA proposed in [151]. Four different types of issues are shown.

(a) questions that can be answered without reading image text;

(b) questions that have more than one correct answer; (c) ques-

tions that require a large amount of external knowledge to an-

swer; (d) questions that require skills that cannot be learned
from the training data alone.

Q: What state does this team play for?

(a) Original Image (b) Cropped Image (c) Cropped Image (d) Occluded Im-

w/ text w/o text age
Conventional: Texas Virginia Texas Texas
Evidence-Based:  Texas Texas NO TEXT DETECTED NO TEXT DETECTED

FIGURE 5.3. A comparison of conventional (LoRRA [151]), and
evidence-based VQA methods.

obtained directly from the text in the image, but require other skills.
Empirical results presented in Figure 5.3 demonstrate that current VQA
approaches rely heavily on a pre-defined answer space constructed by analysis

of the answers in the training set, and thus limiting generalization. As shown
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in Figure 5.3(b), their dependence on superficial image features can render con-
ventional VQA methods sensitive to image modifications that do not change the
semantics. Figure 5.3(¢) and 5.3(d) demonstrate their propensity to generate
an answer even when the required information is not present.

Text-VQA [151] employed the generic VQA accuracy as the performance
metric, while ST-VQA [13] used a soft score metric inspired by the optical
character recognition community. Both of these metrics are results-oriented,
which means that a prediction is deemed correct if it is identical to the ground-
truth. They do not assess the reasoning process. Such classification-based VQA
models are able to achieve impressive performance but they are prone to overfit
a fixed answer space and generalize poorly to other datasets.

To address these issues, we propose a new scene-text based VQA dataset
called ‘Evidence-based Scene Text Visual Question Answering’ (EST-VQA).
Based on this, three tasks namely cross language challenge, localization chal-
lenge and traditional challenge are introduced to motivate the creation of so-
lutions with practical value from various aspects. Also, a series of baseline ex-
periments were conducted to establish a lower bound for these three challenges.

The main contributions of this paper are outlined as follows:

e Dataset: The EST-VQA dataset provides questions, images and answers,
but also a bounding box for each question that indicates the area of the
image that informs the answer. We refer to such bounding boxes as ev-
idence. The dataset is intended to enable the development of text VQA
methods that are closer to the levels of performance required by practi-
cal applications, but also to encourage the development of general VQA

methods that generalize.

e Evaluation Metric: We introduce an Evidence-based Evaluation (EvE)
metric, which will require a VQA model to provide evidence to support the
predicted answer. For this purpose, a new VQA model is also proposed.
Under this new metric, it is anticipated that it will be much more difficult

for naive classification models to achieve inflated performance.

e Bilingual: To the best of our knowledge, the proposed EST-VQA is the
first bilingual scene text VQA (ST-VQA) dataset that includes both En-
glish and Chinese question and answer pairs. The fact that the proposed
dataset embodies questions in two languages further rewards methods
that generalize well. It is more difficult for a method to exploit superficial
correlations in questions expressed in multiple languages. The languages

chosen are also particularly grammatically distinct, and reflect culturally
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Question > | Question Encoder

Image —» [ Image Encoder

Deep Neural Network @ Non-linear Layer @ Linear Layer @ Feature Fusion @ Sum @ Classifier

FIGURE 5.4. Illustration of the mainstream VQA models. D,

D;, D, and Dy, are the dimensions of the word embedding, image

feature, OCR token embedding and hidden vector representa-

tions respectively. N, N' and P indicate question length, num-

ber of OCR tokens and answer space. Blocks with dashed lines
are optional modules used for text-based VQA.

distinct populations, which leads to different question statistics, and fur-

ther encourages generalization.

5.1.1 Related Work

Visual Question Answering has gained significant attention recently, partly be-
cause it seems so unlikely that a method might be capable of answering all
possible questions about all possible images [8, 113]. Readers are encouraged to
refer to [67, 178| for a complete overview. Due to space constraint, this section

only reviews the most relevant works to this paper, i.e., text-based VQA.

5.1.2 Text-based VQA

In contrast to generic VQA datasets |67, 178], text-based VQA datasets pay
more attention to text-related questions where a VQA model is required to read
and understand textual content in an image. In [151], the authors proposed a
dataset and baseline model, called Text-VQA and LoRRA respectively. LoORRA
follows the structure of mainstream VQA models (see Figure 5.4) where image
features and word embedding are fused to train a classifier. Later, two other
similar datasets were introduced, i.e., ST-VQA [13] and OCR-VQA [119]. All
these three datasets provide images with text-related question-and-answer pairs.
However, there are several important differences between them, as well as our
proposed dataset:

Diversity: Table 5.1 shows the size and image sources of existing datasets
and our dataset. Both of the Text-VQA [151] and OCR-VQA [119] images
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(a) English Question (b) Chinese Question

FI1GURE 5.5. Distribution of first four words in question sets of
EST-VQA.

Train + Val Test
#L 1 #Q | #1 | #Q
[[3] | 19k | 26k | 3k | 4k | [30, 50, 70, 71, 77, 117, 161]
[119] | 180k | 900k | 20k | 100k | [58]

[151] | 25k | 39k |3k |5k | [76]

ours | 21k | 23k | 4k | 5k 26, 70, 71, 100, 124, 156, 161]

Dataset Image Source

TABLE 5.1. A comparison of the amount and source of images
between different text-based VQA datasets. #I and #Q indicate
the number of images and questions respectively.

came from a single image database which is Open Images v3 dataset [76] and
Book Cover Dataset [58| respectively. While ST-VQA [13] was built upon a
combination of public image datasets that include multiple tasks, e.g., text de-
tection |71, 161], image classification [30], generic visual question answering [50],
etc. It is noteworthy that although [119] has the highest amount of images and
QA pairs, the images are all book covers, thus the diversity of images and ques-
tions is very limited. EST-VQA dataset stands out among other text VQA
datasets with the consideration that existing datasets pay more attention to
the question-answering part, and the OCR part is almost ignored in both the
training and evaluation of the model.

Evaluation Metric: [151] employs a widely used VQA accuracy which was
first proposed in [43]. Under this metric, each question has 10 answers that are

labeled by different human annotators. Supposed that the prediction of a VQA
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model is ans, then the score for a single sample is calculated as:

su(ans) = min{ #humans tgat said ans’ 1} (5.1)

where # indicates the number of human-annotated labels that are identical
to the predicted answer. This metric is robust against the incorrect answers

given by some annotators. However, it is clear that only 4 discrete scores would

12
)39 3
penalize a mistake. Given the predicted answer ans and ground-truth label gt,

appear, i.e., {0 1}. In [13], Levenshtein distance [82] was proposed to softly

then the normalized Levenshtein similarity score s; is given as:

1 — NL(ans,gt), NL(ans,gt) <t
si(ans, gt) = s;(ans, gt) = (5.2)
0, NL(ans,gt) > T

where 7 is a penalty threshold, and NL is the normalized Levenshtein distance

between ground-truth and prediction.

5.2 Proposed Dataset: EST-VQA

A fundamental hypothesis in EST-VQA dataset is that a VQA model should
answer a question correctly based on the textual content in an image. Therefore,
we separate our scene text VQA tasks into two parts, i.e., 1) text spotting and
2) question answering. In this section, we describe the process of building the
EST-VQA dataset. Also, we will detail the evidence-based evaluation metric
and the new tasks for EST-VQA dataset.

5.2.1 Data Collection

Images: As the EST-VQA dataset is designed for scene text VQA tasks, we
collected a total of 20,757 images from publicly available scene text detection
and recognition datasets. Specifically, images annotated with English ques-
tions and answers are obtained from Total-Text [26], ICDAR 2013 [70], ICDAR
2015 [71], CTW1500 [100], MLT [124], and COCO Text [161]. Whereas, images
with Chinese questions and answers are collected from LSVT [156]. All the
images originated from these scene text datasets are comprised of daily scenes
that include both indoor and outdoor settings.

Questions and Answers: The proposed EST-VQA dataset consists of 15,056
English questions and 13,006 Chinese questions. The question and answer pairs

could be formed in cross-language e.g., an English question queries the name
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FIGURE 5.6. Percentage of question and answer length in EST-
VQA dataset. Questions are tokenized by words. En and Ch
stand for English and Chinese respectively.

English Chinese All
#1 | #Q #1 [ #Q #1 [ #Q
Train | 11,383 12,638 | 9,374 10,506 | 20,757 23,144
Test 2,267 2,514 | 2,215 2,500 | 4,482 5,014
Total | 13,650 15,152 | 11,589 13,006 | 25,239 28,158

Set

TABLE 5.2. Volume of the EST-VQA dataset.

of a Chinese restaurant so that the answer could be a Chinese text and vice
versa for Chinese question. For the collection of question-and-answer pairs,
annotators were requested to come up with questions that can be answered
only by reading texts in the images. In order to avoid the question that does
not require reading any text in the image, annotators are enforced to label a
corresponding quadrilateral bounding box of the textual answer. The annotated
bounding box will then serve as an evidence to support the answer. Moreover,
yes/no questions and ambiguous questions that could have multiple correct
answers are prohibited. Figure 5.5 shows the common types of questions, it is
clear that most of the English questions start with “what", and follow by ‘is’
and ‘the’. However, the composition of Chinese questions is far more complex
than the English questions due to differences in grammar, vocabulary and other
characteristics of the Chinese language. Figure 5.6 shows the distribution of
the length of questions and answers. Different from English words which can be
segmented by space directly, Chinese words are composed of multiple Chinese
characters in a continuous sentence. Therefore, we use [155] to tokenize Chinese
questions for counting the percentage of question length. From Figure 5.6, it
is clear that most of the English and Chinese questions have between 6 to 8
words, and the majority of their answers are of a single word.

In summary, as shown in Table 5.2, 25,239 images and 28,158 QA pairs
are separated into 20,757 images with 23,144 questions for the training set and

4,482 images with 5,014 questions for the testing set.
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5.2.2 Evidence-based Evaluation (EvE) Metric

We observed an intriguing trend among the classification based approaches for
scene text VQA task. That is to say, if the ground-truth answer was included in
the pre-generated answer dictionary, a generic VQA model may predict a correct
answer without reading the textual content. However, such methods rely heavily
on the pre-defined answer pool and so, they are unable to handle questions with
out-of-vocabulary answers. Therefore, it is unclear whether such models truly
have the capability to understand and reason about the questions or they are
merely over-fitting to the fixed answer space. Inspired by this observation, we
introduce a new evaluation protocol, named Evidence-based Evaluation (EvE)
metric, which will require a VQA model to provide evidence to support the
predicted answers. Under this metric, it will be much more difficult for naive
classification models to achieve inflated performance.

Generally, EVE metric consists of two steps: a) check the answer; b) check
the evidence. In the former, we use the normalized Levenshtein similarity score
(see Eq. (5.2)). In the latter, we adopt the widely used IoU metric to determine
whether the evidence is sufficient or insufficient. Suppose By and By are
the ground-truth and predicted bounding box respectively, then the evidence

sufficiency score, F is defined as:

Incorrect, E=0
) =« Insufficient, 0 < E <86 (5.3)
Sufficient, E>0

Bgt N Bdet

El =
" f(Bgt ) Bdet

where 0 = 0.5 is a predefined threshold. Under the EvE metric, only correct
answers with sufficient evidence contribute to the final performance s. (see

Figure 5.7) where it is given by:

sy, if B sufficient
se(ans, gt, E) = (5.4)

0, else

where s; is the normalized Levenshtein similarity score as defined in Eq. (5.2).

5.2.3 Tasks

Both Text-VQA [151] and OCR-VQA [119] follow the same rules as presented in
generic question answering task. Although ST-VQA [13] proposed three tasks,

the only difference between each of the tasks is the size of external information
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Question: How many milligrams are the Valium 2?

Y . 1Y
A: 2 A: [[xl,y1'x2:3’z,x3,y3.x4,y4], 2]

(b) Incorrect Evidence

A 1, v xh, v, x5, v, x4, 41, 2]
(c) Insufficient Evidence (d) Sufficient Evidence

FIGURE 5.7. In EvE metric, evidence in the form of bounding
box should be provided as well as the predicted answer. Green
and red bounding boxes are ground-truth and predicted evidence
respectively. Incorrect: (a) answer without evidence; (b) an-
swer with inappropriate evidence; (c) answer with insufficient
evidence. Correct: (d) answer with appropriate evidence. It is
worth mentioning that all of the above answers would be marked
as correct in the conventional VQA evaluation metric because all
of them give the right answer ‘2.

Focusing Module Reasoning Module
e e

-
-
R
-

FPN/RPN

Image

Backbone Network

Question Que. Encoder |—>| Que. Embedding I

FIGURE 5.8. Overview of the QA R-CNN architecture.
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(vocabulary), which is insignificant and unreasonable to properly evaluate the
models’ full capability. For instance, in the strongly contextualized task, all
ground-truth answers are provided in a dictionary for every image with a set of
distractors, which makes the VQA model prone to overfit the provided vocab-
ulary. Besides, it becomes more difficult for these models that are trained on a
fixed dictionary to generalize to other datasets.

As a result of this, we propose three related tasks namely as Cross Language
Challenge, Localization Challenge, and Traditional Challenge that will be de-
tailed next to improve the task diversity. An online evaluation server will be

set up for results submission.

e Cross Language Challenge (CLC): As the proposed EST-VQA dataset
is a bilingual VQA dataset that contains both English and Chinese QA
pairs. This challenge aims to explore a model’s ability in extracting com-
mon knowledge between different languages. Under this challenge, the
candidates are requested to submit results predicted by both the monolin-
gual (English-only, Chinese-only) and bilingual models with an identical
framework (e.g. network structure) for evaluations. The proposed EvE

metric is used to evaluate the model’s performance in this challenge.

e Localization Challenge (LC): To gain insights into a VQA model, we
encourage candidates to train an evidence based VQA model to simultane-
ously predict the answer and its corresponding bounding box as evidence,
instead of simply employing an off-the-shelf OCR system to obtain the
OCR tokens. Hence, the main objective of this challenge is to explore
the VQA model’s ability in understanding the question and locating the
correct image space that contains the answers. That is to say, this chal-
lenge requires the VQA model to provide the spatial location where an
answer will be most likely to appear in an image based on a question.
Compared to the full challenge, L.C ignores the text recognition error and
the difficulties of combining multiple OCR tokens for long answers. IoU
between the predicted and ground-truth bounding box is employed as the

performance metric for this challenge.

e Traditional Challenge (TC): We maintain the traditional VQA chal-
lenge that is consistent with the existing VQA datasets in which this chal-
lenge does not consider the evidence for the predicted answers. The nor-
malized Levenshtein similarity score between the prediction and ground-

truth is employed as the metric for this challenge.
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5.3 Baselines and Results

5.3.1 Baseline Methods

This section presents the naive baseline models and two state-of-the-art VQA
methods [150, 151] that were employed in the experiments. This helps to show
the difficulty of the proposed EST-VQA dataset and the new tasks. The entire
EST-VQA dataset is separated into training and testing sets (see Table 5.2),
and 10% data from the training set is used for validation.

Vocabulary Upper Bound: As both [150] and [151] are classification based,
two dictionaries are built under the widely used rules. Specifically, a small vo-
cabulary (SV) is built with 927 English and 365 Chinese answers that appeared
more than once in the training set and a Larger Vocabulary (LV) is built with
8,102 English and 8,212 Chinese unique answers. We explore the upper bound
accuracy of the pre-generated SV and LV. We assume that answers included
in the dictionaries can always be predicted correctly with perfect evidence to
calculate the upper bound accuracy.

OCR Upper Bound: Since the traditional VQA models cannot obtain OCR
tokens and info directly, we employ the state-of-the-art pre-trained text detec-
tion and recognition models [101, 143] to extract OCR bounding boxes and
characters. To evaluate the effectiveness of the OCR system, we calculate the
OCR upper bound accuracy on the test set. All of the answers and evidence
are directly obtained from the OCR results (and suppose the correct one can
always be selected), it also considers combinations of up to 4 OCR tokens for
multi-word answers.

Random OCR Tokens: To assess arbitrary chance, this baseline returns
a random OCR token and its bounding box from the OCR results for each
question to obtain random accuracy.

State-of-the-art Approaches: Both state-of-the-art generic [150] and scene
text [151] VQA models are employed as baselines to verify the difficulties of
the EST-VQA dataset. It is important to note that these methods cannot
provide evidence to support their predicted answers. Therefore, we queried the
predicted answers from OCR results, i.e., if there are any identical OCR tokens
to the predicted answer, then one of the predicted bounding boxes would be
randomly selected as evidence, otherwise bounding box of the token which has
the smallest normalized Levenshtein distance is selected.

QA R-CNN: It is noteworthy that all of the aforementioned baseline methods

cannot simultaneously output the answer and its corresponding bounding box as



5.3. Baselines and Results 83

L+S

~

(e}

CLC Score (%)
L 6]

w

1 1 1 1 L * |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Penalty Threshold

N

o

FIGURE 5.9. CLC score under different 7

evidence. Therefore, we propose QA R-CNN. Generally, QA R-CNN consists of
two parts: Focusing Module (FM) and Reasoning Module (RM) (see Figure 5.8).
The core component in FM is a customized Faster R-CNN network trained for
text detection task. Compared to the regular Faster R-CNN which only predicts
the bounding box and object category, QA R-CNN also outputs a focusing score
for each of the bounding boxes. Technically, word embedding of question is first
extracted by GloVe [130] for English questions and Word2Vec [89] for Chinese
questions. Then, the embedding is fed into LSTM layers to obtain question
features. Following this, both question and image features are concatenated to
classify the bounding box into answer area and non-answer area. This enables
the QA R-CNN to gain the ability to draw its attention to the area that the
answer may appear in the image. As such, a straightforward idea is that the
model can directly use the underlying text of the bounding box with the highest
focusing score as the question’s answer. However, the rich semantics of the
textual content will not be considered. Therefore, RM is introduced to further
improve the pipeline. In RM, we follow the similar architecture in LoRRA
where the semantics of detected text are further explored. Specifically, word
embedding of the OCR tokens is extracted by FastText [66] models that are pre-
trained on English/Chinese Wikipedia, and then the OCR embedding is fused
with both image features and question embedding for further classification.
Different from other classification-based approaches, we do not use a pre-defined
fixed dictionary as the answer space but only use the detected OCR tokens, i.e.,
only the detected text can be used as the answer. In the end, the weighted score

of FM and RM are summed up for the final prediction.
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Q: What is the room number? Q: When was this photo uploaded? — Q: {5\ /KE R B R A Zif? QXERTMPELES? Q: What's the text on the bottom?
A: 708 A:2012 A3 A: 20 A: snowbird

P+SV: 2006 P+SV: snowbird P+SV: 5B 4 P+SV: wells fargo

P+LV: caffe P+LV: 108 P+LV: iff P+LV: 7 57

L+SV: 18 L+SV: 2012 LeSV: #4055 L#SV: 20

L+LV: 18 L+LV: 29/08/2012 LHlV: R L+LV: <

QAR-CNN: 8 QA R-CNN: 2012 QA R-CNN: 53 7] QA R-CNN: =

QA R-CNN w/t: 8 QA R-CNN w/t: 2012 QA R-CNN w/t: 5 7] QA R-CNN w/t: 20

FiGure 5.10. Visualization of the output answers on the
EST-VQA dataset from different models (first four images).
Green and Red bounding boxes are ground-truth and predicted
evidence by QA R-CNN. (More examples can be found at
https://arxiv.org/abs/2002.10215)

5.3.2 Results

Quantitative Results: Table 5.3 summarizes the results of the baselines and
our method on the EST-VQA dataset. The penalty threshold 7 is practically
set to 0.75 during the evaluation to ensure the answer quality. Figure 5.9 shows
the CLC score under different 7 for bilingual models.

We first measure the upper bound performance of the two pre-defined dic-
tionaries SV and LV. Similar to other scene text VQA datasets, SV and LV
can achieve high accuracy on English questions, z.e., 31.1 and 48.0 respectively.
However, they failed catastrophically on the Chinese questions due to the lan-
guage features and lower overlapping of answers between the training and testing
splits. Hence, it is more difficult for the classification based method to obtain
a promising performance on the Chinese split in the EST-VQA dataset. We
also provide the upper bound accuracy of the OCR results that are generated
by [101, 143|, and it achieves better accuracy on Chinese questions compared
to the fixed vocabularies. Then a baseline using random OCR token is set as a
comparison with other approaches, and this heuristic method only achieves 3.0
and 3.7 overall score for the CLC and TC tasks respectively.

To further justify the need for EST-VQA, we trained two state-of-the-art
approaches, i.e., Pythia (P) [150] and LoRRA (L) [151]. As shown in Table 5.3,
both methods perform poorly on Chinese questions due to a large amount of out-
of-vocabulary answers in the test set. Also, as the CLC task requires a model
to provide evidence as well as the answer, the accuracy of all of the studied
methods dropped significantly when compared to the TC score. This is because
the models infer the answers without actually reading the textual content in
the images (see Figure 5.3(c¢) and 5.3(d)), thus they can not provide reasonable
evidence to support the answer. In contrast, the proposed QA R-CNN shows

more robust results on the three tasks (see Table 5.3).


https://arxiv.org/abs/2002.10215
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To further explore the proposed CLC task, we also trained a QA R-CNN
with bells and whistles, many heuristic manual rules are adopted to lift the
performance. Under this model, it outputs answers predominantly from the
vocabulary for a certain type of questions. And if the model failed to detect the
corresponding text, question related text would be picked up from the dictionary
(e.g. digits for “what number”) as the answer. Although this heavy model
achieves top performance on the TC task, its CLC score is even lower than
the baseline QA R-CNN. Such a scenario suggests that the evaluation protocol
used in the current conventional VQA task is not reasonable to some extent,
because the VQA models can easily overfit to the answer space by using tricks.
Therefore, we introduce a reasonable score A, to measure the percentage of
answers with sufficient evidence, and it is denoted as A, = CLCa T ower A,

TCan
means that the model has outputted many unreasonable but correct answers,

which suggests that it might either overfit to the answer pool or use too many
manual rules to achieve a higher score under conventional evaluation protocol.
As shown in Table 5.3, the QA R-CNN w/ tricks obtained the lowest reasonable
score although it outperforms all other models under the traditional evaluation
protocol. Another interesting observation is that all methods achieve extremely
low accuracy on the questions that have a longer answer. We believe this
is because current models cannot combine multiple texts to generate a long
answer. However, how to solve this issue is out of the scope of this paper, and
thus we leave it for future work.

Qualitative Results: Figure 5.10 illustrates some selected visualization results
of the baseline methods. Surprisingly, we found that some models do not learn
the concept of question type at all. For example, the ‘P+LV’ model outputs
a word ‘caffe’ for the question ‘What is the room number?’ that asks for a
number, and ‘L+LV’ predicts a character ‘£’ (long) for the question “iX H &
TE % Z /DI THES (What is the house number of this shop here in Henan
Middle Road?) that is also asking a number. Furthermore, incorrect recognition
results will cause the models to output incorrect answers. Based on the first
sample of Figure 5.10, although the bounding box of the answer ‘708" was
predicted correctly, it was however recognized as ‘8’ and was further outputted
as the answer. An interesting case is the ‘L+LV’ model answers the question
‘When was this photo uploaded?’ with ‘29/08/2012" when only ‘2012’ appeared
in the original image. Such a phenomenon tells us that similar answers in the
vocabulary could interfere with the decision of classifier. Another noteworthy
example is that ‘P4+SV’ model predicts ‘snowbird’ for the question ‘When was

this photo uploaded’. We queried another image with the answer ‘snowbird’
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in the training set (see the last image in Figure 5.10) and it shows that the
‘P4+-SV’ model outputs the same answer when the image contains similar visual
features. Therefore, we believe that this VQA model might rely too heavily on
the image feature and learned to map the image feature with the answer space
but it does not truly understand the question. Additionally, for the question
that requires stronger reasoning ability and image with many texts, such as the
third sample in Figure 5.10, ‘7K Z2EATEE R AZUE? (Who is the contact
person for Weiye Hydropower Installation?)’; none of the models are able to

predict the answer correctly.

5.4 Conclusion

We have introduced a new bilingual scene text+evidence VQA dataset named
EST-VQA that is annotated with both English and Chinese QA pairs. Three
related challenges are proposed, namely Cross Language, Localization and Tra-
ditional that are designed to evaluate the generalization of VQA models. An
evidence-based measure of an algorithm’s capacity to reason is also proposed
that requires the VQA model to provide a bounding box for the predicted
answer. This metric aims to uncover whether the VQA model learns deeper
relationships between text and image content, rather than overfitting to a pre-
defined dictionary. Future work includes extending the proposed EvE metric
to existing VQA datasets in the hope that it might improve generalization and

thus the practicality of VQA technologies.

5.5 Supplementary

5.5.1 Annotation Guidelines

Questions: Firstly, questions in STE-VQA were annotated according to the

rules below:

1. All questions must be able to answer only by reading the textual contents
in the images, for instance asking the license number of a specific car.
Questions that violate this rule are prohibited (e.g. asking the colour of
the vehicle).

2. Object in the question must be specified clearly so that it has an unam-
biguous answer. For example, generic questions such as what is the license

number are not allowed as all vehicles have a license number. Instead, the
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targeted vehicle should be pointed out through its colour or location and

use the specific feature in question formulation.

3. The answer to the question must be able to retrieve from the image in
textual format. It can be the texts on objects or even watermark on the

image as long as the answer matches the textual content in the image.

4. Images with texts in multiple languages are allowed as long as the ques-

tions and answers can be annotated in English or Chinese language.

5. If any of the above question rules are not fulfilled, the image is discarded.
Do note that, the preferred number of questions per image is 1 to 3, with

a maximum of 5 questions.

Answers: Secondly, answers in STE-VQA are annotated adhere to the follow-

ing rules:

1. The answers can be in the form of Latin characters, words, Arabic nu-
merals, or any combination of them. Also, they are restricted to English

or Chinese language only. Below is the list of acceptable answers:

e Latin characters: a, b, A, z, P
e English words: Phillips, Nike, Adidas, blackberry, Huawei

e English phrases: the universal alamanac, near the town centre car

parks
e Arabic numerals: 44, 2019, 18, 16, 0

e Combination: 13/1/2012, 00-b2w, o’neill, weston rd, bacanalnica.com,

conan o’brien

2. Annotators are required to draw a rectangle or quadrilateral bounding
box on the textual area of the image in which the bounding box must

surround the texts tightly.

5.5.2 Annotation Pipeline

We show the annotation manual in Section 5.5.1, and two main stages of the
data labelling progress in Figure 5.11 and Figure 5.13. Figure 5.11 shows the
first stage of the pipeline which annotators are requested to label the bounding
box for a potential question answer. Two modes of bounding-box are provided
for labelling, i.e., Rectangle and Quadrilateral. Annotators are asked to use
the mode that can best fit the texts with the least blank space (see Figure 5.12
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for example). Then in the second stage, for each image, the annotators are
asked to come up with one to three questions that are related to the annotated
text. Next, annotators are required to click on the bounding box listed on
the right side of an image, and follow the format of ‘Q7”A’ to input the ques-
tion and answer pair. As illustrated in Figure 5.13, “What animal has been
mentioned?Elephant”.

After filtering those images without text or appropriate question, Table 5.4
shows the final distribution of the number of questions in the STE-VQA dataset,
which demonstrates that most images are annotated with a single question, this
ensures the diversity of the proposed STE-VQA dataset.

English

1 2 3 4 5

#Q oam 1o 88 [ 4 1
Chinese

1 2 3 4 |5

7 Q 10,335 | 1,105 | 135 [ 14 | O

TABLE 5.4. Distribution of question number per image.

Figure 5.14 shows the word cloud of the majority answers in the STE-VQA
dataset. We found that the answers which appear in the dataset most frequently
are road signs, brands, places, numbers and etc., while most Chinese answers
are locations, signboard names, numbers and etc. It is noteworthy that numbers
and signboard names are of high variability, and can hardly be covered by the
fixed vocabulary that is built from training set. Therefore, it would be extremely
difficult for the traditional classification-based method to generalize to the test
set. Besides, we show a more detailed composition of the answers in Table 5.5.
It demonstrates that around 13% to 14% answers are pure numbers in English
and Chinese questions, and 34% of English answers are comprised of more than
two words while about 40% Chinese answers are of long phrases. A notable
fact is shorter numbers such as ‘1’, ‘2’ ‘4’ repeat more frequently, thus they
can be covered easily in the pre-generated dictionary. However, longer numbers
such as mobile phone numbers and series numbers are less likely to occur in
training and testing set at the same time. Specifically, 2617 out of 3895 pure-
digit answers have more than 3 numbers in the whole STE-VQA dataset, which
are extremely challenging for both the OCR and QA parts of text-based VQA

models.
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English
4A String | Num | Short | Long
12,840 | 2,216 | 9,899 | 5,157
Chinese
LA String | Num | Short | Long
11,327 | 1,679 | 8,896 | 6,160

TABLE 5.5. Distribution of answer type in the STE-VQA
dataset.

FIGURE 5.11. Labelling Tool. At the first stage, annotators are
asked to label a rectangle or quadrilateral bounding-box for a
potential answer.

MOTOR OIL

¢

QuALiTy
Eco

(a) Rectangle Boxes (b) Quadrilateral Boxes

FI1GURE 5.12. Two bounding-box labelling modes are available

in the annotation tool. Annotators are asked to select the most

appropriate one by considering the tightness between the text
and bounding box.

5.6 More Annotation Examples

Figure 5.15 and Figure 5.16 show more examples of English questions and

Chinese questions, respectively. Scenes with English or Chinese texts share
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FIGURE 5.13. Labelling Tool. In the second stage, annotators
are asked to come up with a question based on the corresponding
text covered by the bounding box.
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FIGURE 5.14. Word cloud of majority answers in STE-VQA
dataset.

similar question types, such as the location (see Figure 5.15(a), ?? and Fig-
ure 5.16(a), 5.16(f)), mobile phone number (see Figure 5.15(d) and Figure 5.16(d))
and etc.

A unique characteristic of Chinese scenes that is different from English scenes
is the text order. As shown in Figure 5.15, almost all of the English texts follow
a horizontal left-to-right order in the daily scenes. However, words that are writ-
ten in horizontal top-to-bottom order (see Figure 5.16(a) and Figure 5.16(b))
appear frequently in Chinese scenes. Moreover, another interesting example is
shown in Figure 5.16(h). Different from the modern Chinese language, which
follows the standard left-to-right order, the ancient (traditional) Chinese lan-
guage obeys a right-to-left order. Therefore, in Figure 5.16(h), the answer for
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Q: Where is here? Q: Where are vehical not allowed to enter?

A: Summer Place A: Campus

Q: What is the name of this project? Q: What'’s the phone number of this store?

A: GREAT WALL PLAN A: 626-8727

(c) (d)

FiGurE 5.15. Examples of English questions.

SFS RS |

Q XERFAHS? Q: REDHIREHTA? Q ERENEFRIA? Q: DEAENBIESBRMA?

A: fiE—1 A ERHRALT RO A: BRSNS A: 17682439669

Q: BMNROEFRIA? Q: EFBERAEEERADGMAEDE ? Q: XERPFFENHEL ? Q: XERROBFRIA?

A: BB A: EEBERRATHF 28 5 A: BRIBRSHARE A: FRULAARE

(e) (f) (e) (h)

FIGURE 5.16. Examples of Chinese questions.
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OCR Res:
~,

/. PLURIBUS,

‘P, 'SIH,
‘UNUM', 2005,
*0', UNTFEE,
‘STATBS', 'PE’,
‘GENT', 005/,

OCR Res:
‘BSTN'

OCR Res:
NONE

FIGURE 5.17. Unreasonable Output Part A

the question “iX PRI % F 5& 4 (What is the name of this building?)’
is ‘BFILUFEEE’ but not ‘BEFHLLFE . This example reflects the grammatical and
cultural distinctions between English and Chinese languages, which further en-
courages the generalization ability of the VQA models. Based on this, a new
research question is raised with the introduction of STE-VQA, i.e., how to de-
sign a content-aware OCR system that can decide the textual order for the

contents written in traditional style.

5.7 More Examples of Unreasonable Output in

Conventional Text-VQA dataset

In Figure 3 of the original paper, we show some examples of unreasonable
predictions outputted by the traditional none-evidence-based methods LoRRA
[151]. It was trained on the Text-VQA dataset [151], which suggests that the
conventional VQA approaches are prone to learn coincidental correlations in
the data. Here we show more examples in Figure 5.17 and Figure 5.18. Fig-
ure 5.17(b), 5.17(c),and 5.17(d) show a similar situation, the questions are all
about the ‘year’ when was the coin made, and the OCR system failed to rec-
ognize the correct answer in these three images. Although LoRRA failed to
answer these questions correctly, we could find that the predicted answers still
have a strong relation to the question, i.e., all of the predictions are actually
‘year’. A similar scenario happened in Figure 5.17(a), the question asks for a

keyboard button and the model predicted a keyboard button ‘backspace’ that
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OCR Res:
‘FOR’, 'FOR,
‘LIMITED',
FORY

OCR Res:
NONE

ese coins? A: Elizabeth

LoRRA Prediction: Elizabeth

OCR Res:
o

is the button near the top left? A: 1

(e)

FIGURE 5.18. Unreasonable Output Part B

does not appear in the image, though the correct answer ‘{’ was detected by
the OCR system. In Figure 5.17(e), the question asks for a brand of a computer
monitor and the model outputs a brand ‘samsung’ that does not appear in the
image; and in Figure 5.17(f), the question asks for a state and the model out-
puts a state ‘Florida’ that does not appear in the image. Also, in Figure 5.18 we
show that the model could answer the question correctly without correct OCR
results. All of the samples in Figure 5.18 are answered correctly without correct
OCR input. Specifically, in Figure 5.18(a), it can be noticed that the brand of
the soda is occluded, but the LoRRA model is still able to predict a correct an-
swer. Two similar questions are shared by the samples shown in Figure 5.18(d)
and 5.18(e), which ask for the number located at the top left corner. The model
outputs the correct answer ‘1’ for both images even though the OCR system
failed to detect this number. Based on these observations, it suggests that tra-
ditional approaches focus on the coincidental correlations between features and
answers but not truly learn to reason. For example, the model might learn the
visual feature of the can in Figure 5.18(a) to answer the question, but it does
not read the brand; while the model might learn the possible relation between
the word ‘queen’ in the question shown in Figure 5.18(c) and choose ‘Elizabeth’
to answer the question. Therefore, it is necessary to use the EvE evaluation
protocol that is proposed in STE-VQA, because result-oriented methods might
not be able to measure the actual VQA models’ capability to understand and
reason about questions.

Finally, we summarize and highlight the differences in several aspects of the

aforementioned datasets in Table 5.6.
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Visual Question Answering

Aspect

TextVQA [151]

ST-VQA [13]

STE-VQA (ours)

Image source(s)

Images are collected
from Open Images V3
[76] dataset only which
the text instances have
limited orientations as
the primary focus of
images is not on scene
text.

Images are from a
combination of image
datasets with multiple
objectives such as
image classification,
VQA, scene text, etc.
Text orientations avail-
able in this dataset
might be better than
TextVQA.

Images are all from
public scene text
datasets that contain
a variety of text ori-
entations. This poses
a harder challenge for
the models as they
are required to deal
with scene text images
that can be commonly
found in real life.

Question and answer pairs

Open-ended questions
are asked in this
dataset that accepts
inferred or paraphrased
answers based on tex-
tual contents in the
images. Binary answer
(e.g. yes/no) is ac-
ceptable and takes up
of 5.55% of the entire
dataset.

Annotators are encour-
aged to ask close-ended
questions where their
answers must be found
as texts in the im-
ages, yes/no questions
are prohibited.

Close-ended questions
are asked only in which
the answers must be
able to read from the
images. Evidence or
bounding box of the
text instances are pro-
vided as well apart
from the usual question
and answer pairs.

Language(s)

English

only.

English and Chinese.
Introduces the text
reading sequence
problem of scene text
detection and recog-
nition to VQA (e.g.
left to right or right
to left) which requires
the VQA model to un-
derstand the semantic
context of the answers
based on  different
languages.

Tasks

Does not introduce any
new tasks.

Introduces three tasks
with varying vocabu-
lary sizes.

Three tasks are intro-
duced that aim to eval-
uate different aspects
of the model, such
as the capability to
deal with multiple lan-
guages and the ability
to provide supporting
evidence.

Evaluation metric

Employs the commonly
used VQA accuracy
as introduced in [43].
It does not take in
the recognition perfor-
mance of the OCR
module.

Proposed Average Nor-
malized Levenshtein
Similarity (ANLS) as
the evaluation metric
used for all 3 tasks. It
is commonly used in
scene text recognition
that  penalizes the
output based on the
normalized edit dis-
tance from the ground
truth. However, it does
not consider how the
model reason about
the output through
additional measures.

Evidence-based Evalu-
ation (EvE) metric is
proposed in which the
model will be evalu-
ated first based on the
outputted answer (us-
ing ANLS) and then
the bounding box used
to support its answer
(using Intersection over
Union). The final score
will only consider out-
putted answer with suf-
ficient bounding box as
evidence only. This
increases the difficulty
of STE-VQA as mod-
els are required to be
able to provide bound-
ing box along with an-
swer simultaneously.

TABLE 5.6. A summary and comparison of different aspects
between Text-VQA, ST-VQA and the proposed STE-VQA.
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Chapter 6

Conclusions

Benefiting from the rapid development of deep learning techniques, OCR tech-
nologies have witnessed significant advancements in recent years. However,
although promising performance can be achieved in a variety of datasets, OCR
systems still face challenges when dealing with complex and diverse text im-
ages, such as low-quality images, handwriting, or non-Latin scripts. In this
thesis, we reviewed several existing issues in the OCR field and explored poten-
tial solutions through three aspects, i.e., 1) designing a unified benchmarking
framework to enable fair comparisons between different OCR approaches; 2) de-
veloping a novel text synthesis method to mitigate the issue of imbalanced data;
3) proposing an evidence-based framework for text visual question answering
model, boosting the model’s reasoning capability.

First, we reviewed a number of recently proposed OCR papers and found
that unfair comparisons were often made between different models. For exam-
ple, some papers would use a specific dataset or set of parameters that favored
their own model, while others would use a different set of training and test-
ing parameters. This made it difficult to accurately compare the performance
of different OCR models. To address this issue, we proposed a standardized
evaluation framework called the UniOCR benchmark. This framework was de-
signed from three aspects, i.e., datasets, metrics, and models, to ensure the
fairness and consistency of OCR model comparisons. Specifically, the UniOCR
benchmark includes a diverse set of datasets covering different languages and
annotation forms. This allows for a comprehensive evaluation of OCR models
across a range of different scenarios. Additionally, the benchmark includes a set
of standardized metrics, enabling more accurate measurement of texts with dif-
ferent lengths. Furthermore, a standard pipeline for training and testing stages
was established, ensuring that all models are evaluated under the same con-
ditions and with the same parameters. By providing standardized evaluation
suites, the UniOCR benchmark aims to promote fair and consistent compar-

isons between OCR models and to facilitate the development and improvement
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of future OCR-related research.

Moreover, we propose a text-to-image synthesis framework called TLPNet to
address the unbalanced data issue in the driving license plate recognition task.
A non-negligible issue that exists in this task is that the distribution of data
samples is highly correlated with the location where the images were collected.
For example, if the majority of the images were collected in a specific city or re-
gion, the license plate data would be heavily skewed toward that area’s license
plate styles, characters, and region codes. This can lead to poor recognition
performance for license plates from other areas. To tackle this problem, TLP-
Net develops a text-to-image network to synthesize photo-realistic license plate
samples, enabling a more balanced and diverse training dataset. This allows
the model to better handle a wide range of license plate styles and characters,
improving overall recognition performance.

Finally, in addition to identifying texts within images, it is crucial for models
to comprehend the meaning behind the text. This poses a significant obstacle
as it necessitates a model to possess a deep understanding of both visual and
textual information. A persistent problem in this text-based visual question
answering is the lack of reasoning ability in current models. This means that
VQA models simply predict answers without offering any reasoning or justifica-
tion, leading to poor generalizability. To overcome this challenge, we propose to
explore evidence-based text visual question answering, which entails designing
models that can provide reasoning and evidence for their predictions, thereby
enhancing their generalization ability and robustness to unseen examples. Ad-
ditionally, we introduce a new dataset and a novel metric to quantitatively
evaluate a model’s reasoning capability.

We are of the opinion that the techniques outlined in this thesis have the
potential to alter the current state of optical character recognition. And it is
our hope that our proposed datasets, methods, and benchmarks can serve as a
sturdy foundation for various endeavors and uses that necessitate text detection

and recognition and provide a fresh perspective for the community.

6.1 Future Work

In light of the aforementioned findings and contributions, the next step for fu-
ture research work would be to explore the potential synergies between OCR
models and language models. Considering the current landscape of OCR re-
search, it is worth noting that most existing methods primarily rely on visual

information for text recognition. However, text, in its very essence, contains rich
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semantic information, and human reading behavior naturally involves leverag-
ing semantic context to aid in the recognition or completion of the ambiguous
or damaged text. This leads us to contemplate the potential benefits of in-
corporating large-scale pre-trained language models, which inherently possess
powerful semantic understanding into the OCR domain. Therefore, a promis-
ing research direction lies in the integration of visual information into large
pre-trained language models to assist in training OCR models. This approach
could not only enhance the recognition capabilities of OCR systems by tapping
into the rich semantic information present in language models but also enable
few-shot learning techniques to adapt multi-modal pre-trained models for OCR
tasks. In doing so, we would harness the inherent strengths of language models
to create more robust and adaptable OCR systems that can effectively handle
diverse and complex text images. Thus, by incorporating the knowledge of large
language models and leveraging few-shot learning for multi-modal model adap-
tation, we hope to break new ground in OCR research, ultimately leading to
more accurate and versatile systems capable of understanding and interpreting

text across a wide range of scenarios.
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