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Multi-omic features of oesophageal
adenocarcinoma in patients treated
with preoperative neoadjuvant therapy

MarjanM. Naeini 1, Felicity Newell 1, Lauren G. Aoude2, Vanessa F. Bonazzi 2,
Kalpana Patel2, Guy Lampe3, Lambros T. Koufariotis1, Vanessa Lakis1,
Venkateswar Addala 1, Olga Kondrashova 1, Rebecca L. Johnston 1,
Sowmya Sharma1,4,5, Sandra Brosda 2, Oliver Holmes1, Conrad Leonard 1,
Scott Wood 1, Qinying Xu1, Janine Thomas3,6, Euan Walpole3, G. Tao Mai3,
Stephen P. Ackland7, Jarad Martin8, Matthew Burge9, Robert Finch9,
Christos S. Karapetis10, Jenny Shannon11, Louise Nott 12, Robert Bohmer13,
Kate Wilson14, Elizabeth Barnes14, John R. Zalcberg15, B. Mark Smithers 3,4,
John Simes14, Timothy Price16, Val Gebski 14, Katia Nones 1,
David I. Watson 17, John V. Pearson1, Andrew P. Barbour 2,3,18 &
Nicola Waddell 1,18

Oesophageal adenocarcinoma is a poor prognosis cancer and the molecular
features underpinning response to treatment remain unclear. We investigate
whole genome, transcriptomic and methylation data from 115 oesophageal
adenocarcinoma patients mostly from the DOCTOR phase II clinical trial
(Australian New Zealand Clinical Trials Registry-ACTRN12609000665235),
with exploratory analysis pre-specified in the study protocol of the trial. We
report genomic features associated with poorer overall survival, such as the
APOBECmutational and RS3-like rearrangement signatures.We also show that
positron emission tomography non-responders have more sub-clonal geno-
mic copy number alterations. Transcriptomic analysis categorises patients
into four immune clusters correlated with survival. The immune suppressed
cluster is associated with worse survival, enriched with myeloid-derived cells,
and an epithelial-mesenchymal transition signature. The immune hot cluster is
associated with better survival, enriched with lymphocytes, myeloid-derived
cells, and an immune signature including CCL5, CD8A, and NKG7. The immune
clusters highlight patients whomay respond to immunotherapy and thus may
guide future clinical trials.

The incidence of oesophageal adenocarcinoma (OAC) is rising in
Western countries, and OAC has one of the poorest long-term out-
comes of all solid tumours1. Curative treatment based on oesopha-
gectomy is only suitable for ~50%ofpatients due to aggressiveness and
late-stage diagnosis. The addition of pre-operative chemotherapy or

chemoradiotherapy has improved survival in OAC patients2,3, and
immune checkpoint blockade (ICB) therapy is showing some
promise4,5, however, it has yet to revolutionize treatment for OAC as
in cancers such as melanoma and lung cancer6,7. Therefore, it is
important to understand the molecular basis of treatment response
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and risk-stratify patients to tailor therapy if there is to be an advance in
treatment options.

Whole genome and exome sequencing studies have shown that
OAC is a cancer with a high mutation burden and widespread chro-
mosomal instability8–11. DNA methylation is a key component of epi-
geneticmechanisms formaintaining genome instability and regulating
gene expression12 and distinct methylation subgroups with prognostic
implications have been described in OAC13. The genome instability in
OAC includes frequent genomic catastrophes such as complex rear-
rangements, chromothripsis, breakage-fusion-bridge (BFB), and loca-
lized hypermutation termed kataegis9,11. Mutational signature analysis
implicates multiple DNA repair processes involved in OAC
tumorigenesis11. Signature 17 is a dominant signature inOAC11, it can be
an early event aswas detected in Barrett’s oesophagus14,15, and can also
occur later as has been associated with 5-fluorouracil (5-FU)
treatment16. Other DNA repair mutation signatures reported in OAC
include signatures associated with the AID/APOBEC, mismatch repair
(MMR) deficiencies and homologous recombination repair deficiency
(HRD) linked to BRCA1 and/or BRCA2 mutations. The studies to date
help in explaining the tumourigenesis of OAC; however, an under-
standing of these complex genomic events in the context of treatment
and patient outcome is still lacking.

In this work we study genomic, transcriptomic and methylation
data from 115 OAC pre-treatment tumours, most of the patients were
enrolled in the DOCTOR trial17, from the Australasian Gastro-Intestinal
Trials Group (AGITG). The DOCTOR trial was a randomized and non-
comparative phase II clinical trial of docetaxel, cisplatin, and 5-FU
(DCF)withorwithout radiotherapy (RT)basedonpoor earlymetabolic
responses,which found the additionof docetaxel andRT improved the

histological response rate, progression-free survival (PFS) and reduced
recurrence in PET (positron emission tomography) non-responders. In
this study, we analyse genomic, transcriptomic and methylation data
with high-quality clinical information from the DOCTOR trial to iden-
tify prognostic biomarkers of treatment and stratify patients with
potential therapeutic relevance. Furthermore, we identify OAC
immune subtypes that correlate with patient outcomes and may be
relevant for precision immunotherapy in the future.

Results
We performed whole-genome sequencing (WGS), RNA sequencing
(RNA-seq) and methylation profiling in the OAC tumour biopsies of
115 patients (Supplementary Data 1 and 2). WGS was performed on 89
patients, RNA-seq for 79 patients and methylation profiling for 72
patients. All patients received platinum-based chemotherapy aspart of
their treatment, with 92 patients enrolled in the DOCTOR clinical trial
(Fig. 1a). Tumour biopsies were collected prior to treatment and sur-
gery (Fig. 1b). The mean overall survival was 34.2 months (range
2–68 months) (Fig. 1b), and stage was significantly associated with
overall survival (OS) (Fig. 1c). Clinical features of the cohort are
described in Supplementary Data 1.

Mutational landscape of oesophageal adenocarcinoma
The mean tumour single-nucleotide variant (SNV) and small insertion
and deletion (indel) mutation burden for the samples was 8.35 muta-
tions/Mb (range 1.03–41.34 mutations/Mb) (Fig. 2a), similar to pre-
vious reports in oesophageal cancer. Consistent with previous
reports18, we found a significant correlation between the number of
somatic SNVs and the predicted number of neoantigens (Pearson

Fig. 1 | Clinical overview of OAC cohort. a OAC cohort treatment options. b Plot
summarizing features of 115 patients including overall survival (months), patient
status, DOCTOR trial details, day of surgery, day of recurrence, overall stage,
allocated treatment, available data of WGS, RNA sequencing and methylation
profiling with distinct colour codes shown in the key. Patients are ordered by

overall survival (months). c Kaplan–Meier plot for overall survival (log-rank test)
comparing patients with different clinical stage (Stage I n = 12, Stage II n = 62, Stage
III n = 35 and Stage IV n = 6). PET, positron emission tomography; CF, Cisplatin and
5-Fluorouracil; DCF, CF and docetaxel; RT, radiotherapy; WGS, whole genome
sequencing. Source data are provided as a Source data file.
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correlation r = 0.73,p = 2.84e−16) (Supplementary Fig. 1a). Significantly
mutated gene (SMG) analysis identified TP53, CDKN2A and ARID1A,
which are known driver genes in oesophageal cancer9,19, and other
previously reported8–11 driver genes (Supplementary Fig. 1b). Taken
together, these data support that our cohort is representative of
oesophageal adenocarcinoma.

The presence of SMGs was not associated with histopathological
response or overall survival. Furthermore, we did not validate a pre-
vious report20, of histopathology response being associated with
somatic copy number changes inCSMD1, ETV4, SMURF1 andmutations
in SMARC4 and amplification ofKRAS andGATA4 being associatedwith
overall survival.

Mutational signatures in oesophageal adenocarcinoma
SNVmutational signature analysis identified six signatures all previously
described in OAC11, signature 17 was the prominent signature in 48 out
of 89 samples (Fig. 2a) and was associated with a higher SNV mutation
burden (Fig. 2b). Signature 17 has been previously associated with 5-FU

treatment in a varietyof cancer types, however, the samples hereinwere
obtained before treatment. One sample (OESO_0118), was dominated
by signature 20 (associated with mismatch repair deficiency), and har-
boured a pathogenic somatic mutation in MSH2 (NM_000251.2:c.970
C>T; p.Gln324*). This sample contained the highest number of somatic
mutations (n =94,195) and neoantigen load, which suggest potential
indications for immunotherapy. Signature 18, which is associated with
MUTYH germline variants21, was the dominant signature in a sample
(OESO_0119) with a pathogenic somatic variant and loss of hetero-
zygosity in MUTYH (NM_001128425.2:c.1213 C>T; p.Pro405Leu).

The mean number of somatic structural variants (SVs) was 231
(range 35–781) (Fig. 2a), consistent with previous reports9. SV signature
analysis identified nine potential signatures at varying amounts within
each sample (Supplementary Fig. 2a, b). Using cosine similarity, six of
the signatures were most similar to RS1, RS2, RS3, RS4, RS5 and RS6
previously described22 (Fig. 2a and Supplementary Fig. 2c). The sig-
natures RS3 and RS5 have been associated with homologous recombi-
nation deficiency (HRD)23,24. We termed the two signatures RS3-like and
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Fig. 2 | The genomic landscape and mutational signatures in OAC. a Bar plots
displaying the genomic features of OAC samples within the cohort, with samples
sorted by overall survival. The colour bar above the figure represents from top to
bottom: stage, allocated treatment, PET response and tumour cellularity. The his-
tograms from top to bottom are: overall patient survival with white bars are
patients who are alive and black who are dead, the mutations per megabase, the
number of neoantigens, the proportion of mutational signatures from SNV, the
number and type of SVs, and the proportion of structural variant signatures.
Clinical features per sample are annotated above the bar plots. b Pearson corre-
lation (two-sided) of percent of mutational signature 17 burden (y-axis) with the
total number of SNVs (x-axis) in each tumour (n = 89 biologically independent

samples). Shading indicates 95% confidence intervals. c–e Kaplan–Meier plots of
overall patient survival (log-rank test) with the number of patients (biologically
independent samples) in each group shown in the table below each plot. Samples
are stratifiedby the prevalenceof c theAPOBECmutational signature (present ≥15%
in a samplen = 8 and absent <15%n = 81),dRS3-like structural variant signaturewith
samples stratified into low (lower tertile, n = 30) and high (upper tertile, n = 29)
groups and e RS5-like structural variant signature with samples stratified into low
(lower tertile,n = 30) andhigh (upper tertile,n = 29) groups. PET, positron emission
tomography; CF, Cisplatin and 5-Fluorouracil; DCF, CF and docetaxel; RT, 45Gy
radiotherapy. Source data are provided as a Source data file.

Article https://doi.org/10.1038/s41467-023-38891-x

Nature Communications |         (2023) 14:3155 3



RS5-like as cosine similarities (0.65 and 0.79) suggested they are not
classic signatures identified previously in breast cancer. Using
HRDetect23 and HRD scores24 we identified nine samples that were
predicted HRD by both approaches (Supplementary Fig. 2d). Interest-
ingly, the HRD samples did not harbour germline variants classified as
likely-pathogenic or pathogenic (in ClinVar) in HR-related genes25. One
of theHRDsamples (OESO_0047)did contain a somaticBRCA1missense
change, however, an HR-proficient tumour (OESO_0118) also contained
a frameshift BRCA1 mutation (predicted pathogenic) and 3 other HR-
proficient samples contained somatic BRAC1 or BRCA2 missense chan-
ges (see Supplementary Data 3 for all somatic coding mutations in the
cohort). To further investigate potential perturbation of HRD genes, we
also investigated BRCA1 methylation levels in the cohort and did not
identify any tumour with hyper-methylation of the promoter region of
the BRCA1 gene. We also compared BRCA1 methylation levels in eight
HRD and 61 non-HRD samples with available methylation profiles and
did not identify any association between HRD andmethylation changes
in the BRCA1 gene region. Taken together, these findings suggest the
high TMB and large number of SVs may be linked to perturbed DNA
repair that is not classical BRCA-driven HRD.

Mutational signatures are associated with patient survival
We identified three mutational signatures associated with OS. Patients
with an absent APOBEC signature (<15% of the signature load in a
tumour) had better OS than the patients with an APOBEC signature
present (log-rank, p =0.003; adjusted for six mutational signatures

q =0.018) (Fig. 2c). The APOBEC signature was significantly higher in
stage III patients compared to stage I (Supplementary Fig. 3a), how-
ever, the association with OS remained significant after adjusting for
stage (Cox regression, p =0.008) (Supplementary Fig. 3b). The APO-
BEC signature was also present in TCGA samples (Supplementary
Fig. 4a). The pattern of OS in TCGA was similar to our cohort, with
absent APOBEC signature tended to have better OS, although this was
not significant (Supplementary Fig. 4b). The differences between our
cohort and TCGA may be due to the differences in OS between the
WGS and TCGA cohorts (Supplementary Fig. 4c).

The rearrangement signatures RS3-like and RS5-like were also
associated with OS, where a high RS3-like signature was associated
with worse OS (log-rank, p = 0.023) (Fig. 2d), and a high RS5-like sig-
nature was associated with better OS (log-rank, p =0.03) (Fig. 2e). The
presence of RS3-like and RS5-like signatures was not associated with
tumour stage (Supplementary Fig. 3a). These results may suggest that
the patients with a high RS5-like signature benefited from their treat-
ment. However, adjusting the log-rank p-values for seven SV signatures
suggested the possibility of false positives or heterogeneity for the
association of RS3-like (log-rank, q = 0.13) and RS5-like (log-rank,
q =0.15) signatures with OS and the need for further analyses.

Copy number aberrations and complex genomic events in
oesophageal adenocarcinoma
Oesophageal cancers are driven by large-scale copy number aberra-
tions (CNA) and complex genomic rearrangements. We identified
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Fig. 4 | Complex genomic events in OAC. a Genomic location of non-APOBEC
(pink) and APOBEC-mediated kataegic (olive green) loci per patient (n = 89 biolo-
gically independent samples) with chromosomes sorted by the number of kataegic
loci. Samples are grouped into whether they did (black, n = 54) or did not contain
complex genome events (white, n = 35), and sorted by overall survival in des-
cending order. b Box plot of number of APOBECmediated kataegic loci in tumours
with (n = 54) and without (n = 35) complex events. c Box plot of number of non-
APOBEC mediated kataegic loci in tumours with (n = 54) and without (n = 35)
complex events. Box plots in b and c show themedian values with the interquartile
range (lower and upper hinge) and ±1.5-fold the interquartile range from the first
and third quartile (lower and upper whiskers), p-values from Wilcoxon rank-sum
two-sided test. d–g Genome-wide data for patients with APOBEC-mediated katae-
gic loci (n = 77 biologically independent samples) showing d density plot of
kataegic loci, e density plot of rearrangement breakpoints with values below the
plot indicating the percent of 1 Mbp genome bins overlapping kataegis and SV

breakpoints. Chromosomes highlighted grey harbour the most significant recur-
rent regions with co-localised kataegic loci and rearrangement breakpoints.
f Circos plot of tumour OESO_001 highlighting rearrangement breakpoints and
kataegic loci on chromosome 18 (arrow). Outer to inner panels: Chromosome
banding, copy number alterations (green (below the line) represents loss and red
(above the line) represents gain), BAF and somatic structural variants. g Recurrent
focal amplifications (red) and deletions (blue) identified using GISTIC. OAC driver
genes within focal events are shown (q <0.05). Amplified or deleted regions with a
G-score >0.12 from GISTIC are plotted. h Data shown for chromosomes 7, 8 and 18
in n = 77 biologically independent samples with APOBEC-mediated kataegic loci,
from top to bottom: Density plot of kataegic loci, density plot of rearrangement
breakpoints, recurrent focal amplification (red) and deletion (blue) events, rainfall
plots of median methylation beta values (for n = 69 samples with methylation).
Source data are provided as a Source data file.
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tumours with complex events including chromothripsis, BFB or other
clustered events, and found that 54 of 89 tumours contained at least
one complex structural event (Fig. 3a and Supplementary Data 2). The
mean ploidy within our samples was 3.01 (range 1.59−5.26), with most
samples harbouring a high percentage of copy number gain within
their genomes (Fig. 3a). The copy number events resulted in the
deletion and amplification of known oesophageal cancer driver genes
(Supplementary Fig. 5). In tumours that did not harbour complex
events, high ploidy was associated with worse OS (log-rank, p =0.015,
q =0.03) (Fig. 3b, c) and late tumour stage (Pearson r =0.41, p =0.014)
(Supplementary Fig. 6a, b). Across all samples, intra-tumour hetero-
geneity was observed with an average of 24.5% sub-clonal CNAs
(Fig. 3a), and no significant difference between tumours with or with-
out complex events. The sub-clonal events were distributed across the
genome (Supplementary Fig. 7a). Patients with a lower sub-clonal CNA
percentage tended to have a better PET response (Wilcoxon rank-sum,
p =0.032) (Supplementary Fig. 7b).

Tumours harbouring complex events (Supplementary Fig. 8a)
compared to tumours without complex events (Supplementary
Fig. 8b) contained significantlymore kataegic loci (Wilcoxon rank-sum,
p = 1.4e−04) (Supplementary Fig. 8c). The number of kataegic loci
within tumours was not associated with the overall tumour stage
(Supplementary Fig. 8d) or OS between samples with or without
complex events (Supplementary Fig. 8e–h). Further characterization
revealed that the number of APOBEC-mediated kataegic loci was sig-
nificantly higher in tumours with complex events (Wilcoxon rank-sum,
p = 4.4e−05, q = 8.8e−05) (Fig. 4a, b), while no significant differences
were found for non-APOBEC-mediated kataegic loci (Wilcoxon rank-
sum, p = 0.77, q =0.77 Fig. 4c). An average of 4.60 kataegic loci per
sample (range 0–20) was identified, with over 20% of samples har-
bouring kataegic loci on chromosome 8, 2 and/or 7 (Fig. 4d). The
kataegic loci are sometimes co-localised with SV breakpoints (Fig. 4e).
To identify genomic regions with co-localised events in a non-random
fashion, we estimated the frequency of genomic bins containing
APOBEC-mediated kataegic loci and SV breakpoints more than the
mean of normal distribution for both events. Here we considered a
chromosome enriched with co-localised events if co-localised fre-
quency was higher than the mean frequency of 13%. This identified
chromosomes 7, 8, 18 and 19 with the highest enrichment of co-
localized events (Fig. 4d, e), with specific tumours harbouring one or
more of these events (Fig. 4f and Supplementary Fig. 9).

We further identified themost recurrent regions with co-localised
events by estimating the combined percent inferred from kataegic loci
frequency (Fig. 4d) and co-localised frequency (Fig. 4e) identified in
our cohort. The combined percent suggested that chromosomes 7, 8
and 18 contained the most significant recurrent regions harbouring
complex events and APOBEC-mediated kataegic loci (Supplementary
Data 4). These regions harbour driver genes including EGFR, GATA4,
GATA6, MTMR9 and SMAD4 that were significantly affected by copy
number changes with GISTIC analysis (Fig. 4g). The methylation data
was used to determine if aberrant methylation was associated with the
recurrent regions containing complex events, kataegis and amplifica-
tions (Fig. 4h). We did not find differences between the methylation
levels in those chromosomes or in the promoter regions and gene-
body of the genes mapped to the recurrent regions when comparing
tumours with and without complex events (Supplementary
Figs. 10–14).

Immune clusters in oesophageal adenocarcinoma are linked to
survival
We investigated the proportions of immune cells in the tumour
microenvironment (TME) of OAC samples (n = 68, n = 45 with match-
ing WGS data) with RNA-seq data using two approaches,
CIBERSORTx26 and ConsensusTME (Supplementary Data 5). Unsu-
pervised clustering using GSVA scores from ConsensusTME

transcriptomic deconvolution of 18 immune cell types revealed four
clusters of samples (Fig. 5a and Supplementary Fig. 15a–d). Cluster 1
was enriched with immune cell infiltrate suggesting an immune hot
TME. Cluster 2 was enriched with macrophages and myeloid-derived
cells but depleted of lymphocytes, suggesting an immune-suppressed
TME. Cluster 3 was enriched with moderate levels of lymphocytes and
depletedof other immune cell infiltrates.Cluster 4was immune coldas
it lacked all immune cells including lymphocytes and myeloid-derived
cells. The four RNA-seq clusters were also detected in 78 OAC samples
from TCGA (Supplementary Fig. 15e–h).

The estimated cell type proportions from RNA-seq using CIBER-
SORTx (Fig. 5b) were consistent with ConsensusTME. We also investi-
gated the proportions of 10 immune cell types in the TME using the
methylation data (n = 24) withmethylCIBERSORT27 (Fig. 5c). There was
a positive correlation between cell type estimates from methylation
and transcriptomic data for B-cells (Pearson Correlation, r = 0.67, and
p = 3e−04), neutrophils (Pearson Correlation, r = 0.57, p =0.0038) and
CD8 T-cells (Pearson Correlation, r =0.48, and p = 0.017) (Supple-
mentary Fig. 16a–c). However, monocytes, NK-cells and T-regulatory
cells did now show significant correlations between methylation and
transcriptomic data possibly due to distinct signature matrices (Sup-
plementary Fig. 16d–f). CD4 T-cells and Eosinophils were zero in most
estimations of methylation data.

The four clusters were associated with OS (adjusted log-rank,
q =0.003) and PFS (adjusted log-rank, q =0.00009), with the immune
suppressed cluster (Cluster 2) showing the worst survival and the
immune hot cluster (Cluster 1) showing the best survival (Fig. 5d). In
TCGAdata therewere a similar proportion of samples assigned to each
cluster (Supplementary Fig. 17a), and although not significant, a similar
trend in OS was observed in TCGA data although it was not significant
for all clusters (Supplementary Fig. 17b).

Differential gene expression analysis comparing each cluster to
the remaining clusters was performed to identify characteristic genes.
Cluster 1 (immune hot), associated with better survival, contained
decreased expression of 24 genes (q <0.05) and increased expression
of 244 genes (q <0.05) with the top genes being the immune genes
CCL5,NKG7,GZMA,GZMB,GBP5,CD8A, LAG3 and IDO1 (Fig. 5e). Cluster
2 (immune suppressed), associated with the worst survival, demon-
strated 151 down-regulated and 382 up-regulated genes (q <0.05) with
the top genes associated with the extracellular matrix and EMT mar-
kers such as SPP1,MMP3 and COL4A1 (Fig. 5f). We performed gene set
enrichment analysis (GSEA) using Hallmark gene signatures to identify
signalling pathways in each cluster. Cluster 1 (immune hot, better
survival) was uniquely enriched with interferon alpha/gamma
responses, TNF-alpha signalling via NFKB, IL2/STAT5 pathway, apop-
tosis, hypoxia and p53 pathway, and showed lower levels of cell cycle
and progression pathways such as E2F targets and G2M checkpoint
(Fig. 5g). Cluster 2 (immune suppressed, worse survival) was uniquely
enriched with cell cycle and progression pathways such as E2F targets,
G2M checkpoint, and represented a lower level of p53 pathway
(Fig. 5h). Both Cluster 1 and 2 showed activation of the KRAS signalling
pathway and epithelial-mesenchymal transition (EMT). Cluster 3
(immune moderate) uniquely demonstrated lower levels DNA repair
pathway. Cluster 3 also showedahigher level of p53pathwayand lower
levels of immune responses as well as apoptosis (Supplementary
Fig. 18a). Cluster 4 (immune cold) was enriched with metabolism
pathways such as fatty acid metabolism and was high in protein
secretion (Supplementary Fig. 18b).

To further investigate the clusters, immunohistochemistry (IHC)
was performed using an antibody to CD8.We found a high correlation
of CD8 protein expression with the CD8A gene (Pearson Correlation,
r =0.82, and p = 1e−08) (Fig. 5i) and confirmed Cluster 1 had the
highest expression of CD8 and Cluster 3 had moderate expression
(Fig. 5j). We also investigated the inter-tumour heterogeneity of CD8
T-cell populations in tumours from the four immune clusters by
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assessing whole slide IHC images of CD8. Tumours in Cluster 1 had an
overall staining intensity of score 3+, however, the distribution of
CD8 T-cells within the TME from these tumours may vary across the
tumour tissue with low to strong staining in different parts of
the tumours (Supplementary Fig. 19). Cluster 2 tumours have
CD8 staining that varies from negative to low in different regions of
each tumour, with few areas that are enriched with high CD8 T-cell

populations and an overall intensity score 1+ (Supplementary
Fig. 20). Cluster 3 tumours display intra-tumour heterogeneity with
regions showing negative to strong CD8 T-cell staining with the
overall intensity score 2+ (Supplementary Fig. 21). Cluster 4 tumours
are negative for CD8 T-cell staining with the overall intensity score 0
(Supplementary Fig. 22). These results suggest intra-tumour het-
erogeneity of CD8 T-cell population in Cluster 1 (immune hot),
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Cluster 2 (immune suppressed) and Cluster 3 (immune moderate),
but the overall CD8 intensities were consistent with the estimated
CD8 T-cell population from RNA-seq deconvolution analyses.

Clinico-pathological features of each immune cluster suggested
higher nodal involvement inCluster 2 (immune suppressed) compared
to Cluster 1 (Kruskal–Wallis test, p =0.026) (Supplementary Fig. 23a),
while no stage biases were found for this subtype. Although not sig-
nificant, lower pathological responses were found in Cluster 2
(immune suppressed) compared to all other clusters (Supplementary
Fig. 23b). Immune cell composition in each cluster was further inves-
tigated using the ratio of neutrophils/T-cells (CD4+ and CD8+) across
tumours. Accordingly, Cluster 2 (immune suppressed) and Cluster 4
(immune cold) showed a higher ratio of neutrophils/T-cells (CD4+ and
CD8+) compared with Cluster 1 (immune hot) and Cluster 3 (immune
moderate) tumours (Kruskal–Wallis, p = 0.00013) (Supplementary
Fig. 23c). This supports a previous finding of an association of high
CD8:CD163 ratio in OAC, comparable with Cluster 1 in our study, with
an improved disease-free survival28.

We next examined whether genomic features were associated
with the four immune clusters in 45 samples with available RNA-seq
and WGS. Strikingly, we found that the samples with rearrangement
signature RS6, linked to clustered SVs, were enriched in Cluster 2 (two-
sided binomial test, p =0.0185; expected frequency 16%) (Supple-
mentary Fig. 24a). Although not significant, we also found a higher
percentage of kataegic loci in Cluster 2 compared to all other clusters
(Supplementary Fig. 24b). Finally, Cluster 3 (immune moderate)
showed lower Signature 17 compared to other clusters. (Supplemen-
tary Fig. 24c). We found the tumour mutation burden was lower than
themean8.35mutations/Mb (range 3.1–6.2mutations/Mb) in Cluster 3
tumours.

Oesophageal adenocarcinoma and the tumour
microenvironment
We investigated bulk tumour expression (n = 68) of immune check-
point molecules including CTLA4, PD1, TIM3, LAG3, PDL1, PDL2, CD27
and TIGIT in the context of the four immune clusters (Kruskal–Wallis,
p =0.00032, p = 9e−07, p = 4.6e−07, p = 8.8e−08, p =0.00031, p = 4.4e
−05, p = 5.9e−05, p = 2.6e−05) (Supplementary Fig. 25a–h). Antibodies
for these immune checkpoint molecules have been tested for other
cancer types in the clinical trials. Cluster 1 hasbetter survival and ahigh
presence of lymphocytes and myeloid-derived cells demonstrated by
high levels of immune checkpoint molecules which suggests a poten-
tial response to ICB immunotherapy. Cluster 2 has an immune-
suppressed phenotype and is associated with complex rearrange-
ments, which may contribute to the immune-suppressed phenotype.
Cluster 2 showed moderate to high expression levels of immune
checkpoint molecules with the highest expression for TIM3 which
suggests they could potentially be eliminated with ICB

immunotherapy. Cluster 3 showed moderate OS, contained moderate
lymphocytes in their TME and had a moderate expression of immune
checkpoint molecules. This suggests potential benefits from ICB
immunotherapy but with lower degrees compared to Cluster 1 and
Cluster 2. Cluster 3 also contained a lower percentage of mutation
signature 17. Finally, Cluster 4 was marked by low immune infiltrate
and low expression of immune checkpoint molecules suggesting
potentially no benefit from ICB immunotherapy. Together, our results
reveal the presence of four candidate clusters of OAC tumours char-
acterized by the TME and linked to patient survival (Fig. 6).

Discussion
With advances in treatments, the understanding of the molecular
features of OAC tumours and how these influence patient survival and
treatment selection is essential. Previous studies established that OAC
tumours with complex genomes are more aggressive and frequently
diagnosed at later stages9,29,30. We explored whether WGS of OACmay
indicate who will respond to neoadjuvant therapy and additionally if
we could identify possible treatment strategies for those with poorer
responses. We characterized 115 pre-treatment OAC tumours mostly
from the DOCTOR phase II clinical trial using genomics, tran-
scriptomics and methylation profiling, and stratified patients accord-
ing to prognostic outcomes. The DOCTOR trial showed an early
metabolic response (EMR) on PET scan to Cisplatin/5-FU chemother-
apy in OAC was associated with a favourable survival outcome17. In
non-EMR patients, the addition of docetaxel and radiation therapy
improved PFS and OS in line with EMR patients. By combining geno-
mic, transcriptomic and methylation profiles from the DOCTOR trial
treatment arms, we show that OAC tumours contain genomic markers
associated with good patient survival outcomes and propose four
immune subgroups that could potentially predict response to immu-
notherapy in the future.

Oesophageal tumours may contain a large amount of intra-
tumour heterogeneity with frequent genome gains9,11. We found that
PET responders contained a lower percentage of sub-clonal copy
number alterations, which suggests that tumours with less genomic
heterogeneity responded better to treatment. Moreover, patients with
tumours that did not contain complex genomes but were high tumour
ploidy had worse survival. Recently, it was proposed that polyploidy in
oesophageal adenocarcinoma originates frommitotic slippage caused
bydefective chromosomeattachments31, ourfindings suggest thismay
be a mutational mechanism that is a feature of late-stage oesophageal
cancer, and warrants further investigation. Other genomic mutational
features associated with patient survival were the AID/APOBEC muta-
tional signatures and the RS3 and RS5 rearrangement signatures, and
may point to potential mechanisms of OAC tumorigenesis. Consistent
with previous reports32. A higher proportion of APOBEC signatureswas
detected in stage III compared to stage I tumours, however, the

Fig. 5 | Immune microenvironment predicts patient outcome and future pre-
cision immunotherapy candidates. a K-mean unsupervised clustering of patients
(n = 68 biologically independent samples) using GSVA scores from ConsensusTME
transcriptomic deconvolution of 18 immune cell types. The upper colour bars
represent from top to bottom: immune cell cluster, overall stage, allocated treat-
ment, PET response and tumour cellularity. The histogram is the overall patient
survival, white indicates patients who are alive and blackwho are dead.b Estimated
cell type proportion for the 68 patients using transcriptomics data and CIBER-
SORTx. c Estimated cell type proportion for patients (n = 24) with methylation
profiling using MethylCIBERSORT. d Kaplan–Meier plot of overall survival (OS; left
plot) and progression-free survival (PFS; right plot) using log-rank test to compare
the four immune subtypes. The number of patients in each group is indicated
below the plots. e Volcano plot of differential gene expression analysis comparing
Cluster 1with other immune clusters. Geneswith absolute log scale fold change>1.5
and q <0.05 are shown in red. fVolcano plot of differential gene expression analysis
comparing Cluster 2 with other clusters. Genes with absolute log scale fold change

>1.5 and q <0.05 are shown in yellow. g, h GSEA normalised enrichment scores (x-
axis) and enriched pathways (y-axis) using the genes differentially expressed in
Cluster 1 (g) compared to other clusters and Cluster 2 (h) compared to other
clusters. Represented pathways had an adjusted p-value <0.05 with GSEA, the pink
background represents up-regulated pathways, the blue background down-
regulated pathways. i Pearson correlation (two-sided) of the percentage of CD8
positive cells detected using immunohistochemistry (IHC; y-axis) and CD8A gene
expression from RNA-seq (TMM; x-axis) for n = 32 biologically independent sam-
ples. Shading indicates 95% confidence intervals. j CD8 IHC was performed for
n = 32 samples biologically independent samples, immunohistochemical staining
for two representative samples from each of the four immune subtypes is shown
(representative samples are highlighted in panel i). Images scanned at ×40 mag-
nification, scale bar represents 50 μm. PET, positron emission tomography; CF,
Cisplatin and 5-Flurouracil; DCF, CF and docetaxel; RT, 45Gy radiotherapy; GSEA,
gene set enrichment analysis. Source data are provided as a Source data file.
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APOBEC signature correlated with worse OS even after adjusting for
stage. The AID/APOBEC family enzymes induce endogenous muta-
genesis through cytidine deaminaseDNA-editing activity, although the
factors responsible for activating mutagenesis remain unclear33. The
mechanism of APOBEC-mediated mutagenesis are thought to be ‘epi-
sodic mutagenesis’, where mutations can be generated in short bursts
of activity followed by long periods of inactivity34. Somatic AID/APO-
BEC-associated mutations have been linked to clusters of local
hypermutation, termed kataegis, and have been observed in multiple
cancer types35,36 including OAC as well as pre-cancerous Barrett’s
oesophagus14. Co-localization of APOBEC-mediated kataegis and
genomic breakpoints have been linked to complex events, in support
of this we identified an enrichment of APOBEC-mediated kataegic loci
occurring in tumourswith complex events. Our analyses, indicated the
APOBEC-mediated kataegic loci associated with SVs is contributing to
tumorigenesis by impacting recurrently altered driver genes inOAC, in
particular those on chromosome 7, 8 and 18 such as EGFR, MTMR9,
GATA4, GATA6 and SMAD4. However, the timing or relationship
between the complex structural events and APOBEC-mediated muta-
genesis is still unclear. Methylation profiling did not suggest an asso-
ciation between methylation changes and complex events at EGFR,
MTMR9, GATA4, GATA6 and SMAD4 genes regions. However, aberrant
methylation has been previously linked to tumours with more SV
events and tumours with focal amplifications37.

Future studies focusing on ATAC-seq or direct DNA long read
sequencing to resolve complex events and simultaneously profile
methylation may provide insights into the mechanisms surrounding
the complex genomic events andmethylation patterns. Little is known
about the contribution of complex genomic events to treatment
response.However, APOBEC-mediatedmutagenesis hasbeen linked to
innate immunity, and it has been proposed that tumours harbouring
APOBEC mutation signatures may benefit from immunotherapy34,38.

Furthermore, APOBEC enzymes may themselves present potential
therapeutic targets in OAC39.

SV signature analysis suggested six known rearrangement sig-
natures in OAC genomes22 including RS3-like and RS5-like signatures.
RS3 and RS5 signatures have been linked to BRCA1 aberrations and
HRD22. However, pathogenic somatic or germline mutations in HR-
related genes were lacking and we found few samples considered as
HRD according to HRDetect/HRDscores, indicating that PARP inhibi-
tors may be ineffective and that an alternate DNA repair may be per-
turbed. Interestingly, the RS5-like signaturewas higher in patients with
better overall survival, however, we are unable to conclude if this is due
to tumours with an RS5-like signature responding to DNA damaging
agents (cisplatin and 5-Fluorouracil) or whether other factors such as
the possibility of RS5-like tumours being less aggressivemay be linked
with the better response. Therefore, further investigation would need
to be conducted to confirm the patient survival effect of the RS5-like
signature.

Future studies utilising patient-derived organoids (PDO) or
patient-derived xenografts (PDX), could verify the genomic features
associated with treatment response and clinical outcomes, including
the number the sub-clonal copy number alterations and the presence
of the AID/APOBEC or RS5-likemutational signatures. Previous studies
have generated PDO from OAC tissues that histologically recapitulate
the originating tissue sample40–42. Genome sequencing has shown a
general concordance of mutations in OAC driver genes between the
PDO and originating tissue samples, with fewmutation differences40,42,
and multiple sub-clones have been identified in PDO models high-
lighting tumour intra-heterogeneity withinOAC samples42. PDO can be
used to measure treatment response as they may recapitulate the
clinical/pathological response seen in the patient to treatment40,41,
including responses to cisplatin and FOLFOX. In recognition of the
value of PDO models a trial, registered in ClinicalTrials.gov
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(NCT03283527), is enrolling oesophageal cancer patients with the aim
to create a PDO biobank to assess the response to chemotherapy.
Excitingly, several approaches for PDO generation have also been
developed to preserve features of the TME43,44, including tumour-
infiltrating lymphocytes, which represent a platform to study the
impact of the different immune clusters on immunotherapy response.

The tumour microenvironment impacts tumour development
and response to treatment, therefore understanding the TME and how
it shapes or is shaped by genomic features within tumour cells is cri-
tical. We identified four distinct clusters in OAC linked to the immune
cells within the TMEand associatedwithOS and PFS. ImmuneCluster 1
(Immune Hot) was enriched with lymphocytes (i.e. CD4+ and CD8+
T cells) as well as myeloid lineage cells (i.e. macrophages, monocytes,
and dendritic cells) and had the best OS and PFS of all the clusters. This
is consistent with previous studies that associated immune hot
tumours with prolonged survival in other cancer types45–47. It has been
suggested that possessing thememory phenotype of lymphocytes can
prolong the survival of patients48. The immune hot tumours in TCGA
OAC cohort did not have significantly better survival compared to
immuneCluster 4 (ImmuneCold) tumours, possibly due to differences
in survival between TCGA and the WGS OAC cohort, and/or the
effectiveness of 5-FU in our cohort compared to TCGA OAC cohort
who are not treated with neoadjuvant therapy.

The 5-FU was a shared therapeutic agent in the DOCTOR trial
treatments and 5-FU has been reported to eliminate myeloid-derived
suppressor cells in immune hot context49. Cluster 1 (immune hot)
tumours were marked by high expression of immune genes such as
CCL5,NKG7,GZMA,GZMB,GBP5, LAG3,CD8A,CXCL9,CXCL10and IDO1.
Previous studies reported CCL5, NKG7, CXCL9 and CXCL10 as bio-
markers for better survival in oesophageal squamous carcinoma and
other cancer types50,51, and high expression of CD8A, GNLY, CCL5,
CXCL9 and CXCL10 in pre-treated OAC tumours with high T-cell infil-
trates was linked to complete response to neoadjuvant
chemoradiotherapy28.

Similar to previous reports in gastroesophageal
adenocarcinomas52 the immune hot tumours in Cluster 1 were enri-
ched with cytokine and immune-related pathways such as interferon
alpha/gamma, EMT as well as p53 pathway. While Cluster 1 tumours
showed lower levels of cell cycle and progression pathways such as the
G2M checkpoint. The higher expression of immune checkpoint
molecules, including LAG3, in the immune hot tumours may suggest
potential benefits of ICB immunotherapy.

Cluster 2 (Immune Suppressed) tumours were depleted of lym-
phocytes but enriched with myeloid-derived cells. Immune-
suppressed tumours showed the worst survival among all tumours in
both our and TCGA OAC cohorts. Intriguingly, immune-suppressed
tumours were not associated with stage but showed invasive and EMT
phenotypes such as angiogenesis, G2M checkpoint, MYC and E2F
targets activations. These tumours had a high number of dysregulated
genes, a high expression of immune suppression markers (i.e. SPP1)
and the highest number of nodal involvements after surgery. SPP1
(Osteopontin) is secreted by tumour cells and myeloid cells and is
associated with aggressiveness and immune suppression in the TME53

and has been reported as enriched in pre-treated OAC tumours which
did not respond to neoadjuvant chemoradiotherapy28.

Interestingly, we found a higher number of clustered rearrange-
ments in immune-suppressed tumours, which agrees with previous
reports that tumours with complex genomes are more aggressive and
have lower responsiveness to therapies9,54. Moreover, the immune
checkpointmolecules demonstratedmoderate to high expression and
the highest was observed for TIM3 which suggests this potentially as
the best ICB immunotherapy target for immune-suppressed tumours.
The identification of the immune-suppressed cluster demonstrates the
importance of developing treatments, potentially against EMT, MYC,

E2F targets or with immunotherapy, exploiting complex genomic
events, to overcome the immune-suppressed environment.

Immune Cluster 3 (Immune Moderate) was depleted of myeloid
lineage cells and macrophages but showed moderate levels of lym-
phocytes. Cluster 3 tumours weremarked by higher p53 pathway level,
lower DNA repair pathways, lower mutation burden and a lower pro-
portionofmutation signature 17. The aetiology of signature 17 remains
unclear, but in our cohort, it may be caused by oxidative damage19

during digestion or chronic reflux as opposed to treatments with
5-FU16, as the OAC tumours in our cohort were collected prior to any
treatment. Therefore, the lower levels of signature 17 within Cluster 3
could potentially be explained by the lower levels of error-prone DNA
repair pathways, or by an environment with less oxidative damage. In
support of previous reports55, we found a correlation between
neoantigens and SNVmutation burden. Although we did not identify a
higher neoantigen burden in Cluster 1 (Immune Hot), we did see a
lower SNV mutation burden in Cluster 3 which was linked with mod-
erate infiltrations of lymphocytes. Cluster 3 represented moderate
expression immune checkpoint molecules and suggests a moderate
benefit of ICB immunotherapy in the future.

Immune Cluster 4 (Immune Cold) was depleted of any immune
cell types or immune and inflammatory related pathways, but they
were enriched with metabolic pathways including fatty acid metabo-
lism. The low expression of immune checkpoint molecules and dys-
regulated metabolic pathways in Cluster 4 suggest patients with
immune cold tumourswould not benefit from ICB immunotherapy but
metabolic enzyme targets and small molecules could possibly be an
effective treatment strategy in future. Using a multi-omic analysis of
patients treated with current therapies, we confirm that a favourable
immune landscape is required for long-term survival56, and present
data that provides a basis for understanding OAC responses to ICB.
Data fromCheckmate-57757, Keynote-5904, Keynote-1805 and Keynote-
18158 demonstrating benefit for ICB in the adjuvant and metastatic
setting make these data timely. However, in general, the majority of
OAC patients do not respond adequately to immunotherapy, and to
date, robust biomarkers of response have been elusive4,5,58. Pro-
grammed death ligand 1 (PDL1) is a biomarker to select patients with
gastroesophageal cancer for ICB immunotherapy, however, this mar-
ker has not been validated for OAC59. The OAC immune clusters
reported here may indicate potential responses to immunotherapy or
neoadjuvant therapy. Combination therapy approaches, such as
immunotherapy, chemotherapy and/or radiotherapy, are emerging
and may demonstrate greater therapeutic benefits for patients. A
challenge remains to better characterise immune evasion seen in the
majority of OACpatients57. Futurework to study samples pre and post-
treatment to investigate the immune clusters, and spatial impact of
cells within the TME using single-cell and spatial transcriptomics will
provide more insights into the interplay between the tumour and the
microenvironment during treatment.

In summary, we investigated genomic, transcriptomic and
methylation features of OAC tumours from patients who were part of
the phase II clinical trial using neoadjuvant therapy. We proposed
genomic prognostic features including mutational signatures, rear-
rangement signatures, copy number alterations, clonality, and com-
plex genomic events. We identifying distinct immune clusters that
correlate with OS and PFS of pre-treatment neoadjuvant therapy and
simultaneously predicting the potentials of ICB immunotherapy. We
introduced genomic and transcriptomic biomarkers for the immune
clusters that potentially facilitate stratifying patients for selected
therapy in the future. Markedly, we characterized genomic and tran-
scriptomic features of the poor prognosis patients Cluster 2 (Immune
Suppressed) which helps to predict responses to neoadjuvant therapy
and also develop better selected therapy, monotherapy, or combina-
tion therapy with chemotherapy and/or radiotherapy in the future.
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Methods
Sample cohort, DNA and RNA extraction
This study includes OAC samples (n = 91) from patients recruited
through DOCTOR clinical trial (ANZCTR - ACTRN12609000665235).
Approval has been granted by theMetro South Health Research Ethics
Committee (HREC/2020/QMS/62117), the University of Queensland
Research Ethics Committee (UQ2020/HE001913), and the QIMR Ber-
ghofer Research Ethics Committee (P3559). Additional OAC samples
(n = 24) were obtained through the Cancer Evolution Biobank (HREC/
10/QPAH/152, UQ/2011001287). All participants (n = 115) provided
written informed consent. Sex and/or gender of participants was not
considered in the study design;most participants weremale (80 of 89)
which is expected for OAC. Sex of participants was determined based
on self-report. We did not perform a sex analysis, as our aim was to
look for markers relevant in all OAC samples.

OAC patients from the AGITG DOCTOR clinical trial received pre-
operative chemotherapy and/or radiotherapy. They were treated with
cisplatin and 5-fluorouracil (CF), and all were assessed by PET scan on
Day 14. Patients who showed EMR went through second CF. Non-
responderswere randomized for two arms including CF and docetaxel
(DCF, ArmA) or DCF concurrent with 45Gy radiotherapy (DCF and RT,
Arm B). Patients who were off-DOCTOR trial received preoperative
treatments, palliative treatments, or went directly for surgery.

For each patient, a tumour and a matched normal sample were
available. The normal sample was obtained from the buffy coat or
normal tissue adjacent to the tumour site. Tumours were frozen in
RNAlater for downstream genomic analysis. DNA and RNA were
extracted using the Qiagen AllPrep DNA/RNAmini kit according to the
manufacturer’s protocol (Qiagen, Germany). Buffy coat DNA was
extracted using the Qiagen Flexigene kit according to the manu-
facturer’s protocol (Qiagen, Germany). An additional tumour speci-
men was also formalin-fixed paraffin-embedded (FFPE). Hematoxylin
and eosin (H&E) slides were assessed for tumour content by an ana-
tomical pathologist. Clinical follow-up information was precisely
recorded for maximum 5.5 years and is shown in Supplemen-
tary Data 1.

Whole-genome sequencing and SNP array
Prior to WGS, the tumour content of DNA samples was assessed using
SNP array analysis using the Omni 2.5–8, V1.0—Illumina BeadChips
according to manufacturer’s instructions (Illumina, San Diego, CA,
USA). Tumour cellularity (tumour content) of each sample was esti-
matedwith the qpure tool60 (v1.0.0). Samples with a tumour cellularity
>~40% were selected forWGS which was performed using the HiSeqX-
Ten (Illumina, San Diego, CA, USA) at either Macrogen (Geumcheon-
gu, Seoul, South Korea) or The Kinghorn Cancer Centre, Garvan
Institute of Medical Research (Sydney, Australia). The sequence data
for 22 samples in the off-DOCTOR trial cohort were reported
previously9. After sequencing, adaptors were trimmed with Cutadapt
(v1.9) and reads were mapped to human reference genome GRCh37
using BWA-MEM (v0.7.15) and SAMtools61 (v1.9) Duplicated read were
marked with Picard MarkDuplicates (https://broadinstitute.github.io/
picard) (v2.8.15). The mean coverage was estimated for samples using
qCoverage tool (v0.7) (https://github.com/AdamaJava/adamajava).
Tumour andmatched normal samples had amedian coverage of 67.38
(range 48.00–80.66) and 33.77 (range 23.97–39.20), respectively. All
samples demonstrated tumour purity >26% using ascatNGS62 (v4.0.1)
(median purity 53%).

Somatic SNV and indel calling
Somatic SNVs were called using a dual calling approach via consensus
of two distinct tools, qSNP63 (v2.1.4) and GATK HaplotypeCaller64

(v4.0.4.0). Indel calling was performed using GATK64 (v4.0.4.0) and
variant annotation using gene consequences was implemented using
SnpEff65 (v2.1.2).

Mutational signature analysis
Mutational signatures inWGS and TCGA samples were identified using
a non-negative matrix factorization (NMF) method33. Mutational sig-
natures retrieved from NMF analysis were compared to known muta-
tional signatures v2 inCOSMICdatabaseusing cosine similarity (http://
cancer.sanger.ac.uk/cosmic/signatures, applied April 2020). The con-
tribution of each signature across samples was estimated using a
quadratic programming approach available in the R package Signa-
tureEstimation. To avoid over-fitting, signatures <10% for each sample
were omitted and mutations were reassigned to the remaining
signatures.

Neoantigen prediction
Class I HLA genotypes were computed for tumour-normal pairs ofWGS
using Optitype (v1.3.1) with default parameters. Predicting neoantigens
was performed using pVAC-Seq66 (v4.0.10) pipeline with default para-
meters and binding affinity was estimated using NetMHCpan (v4.0).
Variants were annotated forwild-type andmutant peptide sequences as
recommended through variant effect predictor (v86) (VEP) from
ENSEMBL. We considered epitopes with binding affinity Inhibitory
Concentration (IC50) ≤500nM as potential neoantigens that bind to
HLA alleles. Epitopeswith strong binding affinitywere considered those
with IC50 of <50 nm. We prioritized and identified expressed neoanti-
genswith an IC50≤500nMusing qbasepileup tool (https://github.com/
AdamaJava/adamajava/tree/master/qbasepileup). Individual samples
were run in SNPmode through qbasepileup in order to count reference
genomebase andmutant bases at each SNPposition in alignedRNA-seq
BAM. Duplicate and poorly mapped reads were excluded and a muta-
tionwas considered to be expressed if therewas aminimumof 10 reads
with evidence of the mutation.

Significantly mutated gene analysis
We performed a consensus approach using multiple tools to identify
significantly mutated genes (SMGs) affected by SNVs/indels. These
tools were OncodriveFML67, MutPanning (v2.0) and MutSigCV, and
were run with default parameters. We execute OncodriveFML using
CADD v1.0 via the web interface (http://bbglab.irbbarcelona.org/
oncodrivefml/home) and MutPanning through the available module
in GenePattern (https://www.genepattern.org/modules/docs/
MutPanning). We used the threshold q-value <0.1 for OncodriveFML67

and MutSigCV68, and FDR<0.05 for MutPanning69. We reported the
gene as significant if it was considered significant in two or more tools.

Structural rearrangement variants, copy number alterations
Structural variants (SV) were identified using qSV70 (v0.3). SV break-
points and potential consequences of rearrangements are called using
ENSEMBL annotation (v75) of knowngenes. All COSMICCancer census
genes were downloaded (https://cancer.sanger.ac.uk/cosmic), and
tier1 and tier2 genes were selected. Additionally, any known driver
genes8–11 were included in our analysis. Copy number calling was exe-
cuted on sequencing data using ascatNGS62 (v4.0.1). To annotate copy
number status, we categorized copy number alterations (CNA) to copy
number loss (copy number 1), copy number gain or amplification
(copy number ≥6) and homozygous deletion (copy number 0). CNAs
at the gene level were identified through annotating according to
ENSEMBL known genes (v75). Recurrent CNAs were identified for
chromosomal regions using GISTIC2.071. A gene considered significant
if affected by focal copy number changeswith a confidence level >0.95
and a q-value <0.05. Only significant driver genes identified through
SMG analysis and/or reported previously8–11 were chosen for further
investigation.

Structural rearrangement signature and clustering
We used a similar approach to mutational signature analysis and
applied NMF to identify structural rearrangement signatures33. SVs
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were assigned categories as previously described22. Essentially, SVs
were initially classified into: deletions, inversions, duplications and
inter-chromosomal translocations, then SVs were further annotated
according to size and whether the breakpoints were clustered or non-
clustered. We considered different-sized groups for all events except
translocations, and these groups were: 1–10 kb, 10–100 kb,
100 kb–1Mb, 1–10Mb, andmore than 10Mb.Clustered SVbreakpoints
were identified using the BEDtools cluster function72. Cluster events
were defined as the occurrence of ≥10 breakpoints in a 1Mb genome
bin as reported by Letouze et al.73.

Homologous recombination deficiency analysis
We estimated levels of homologous recombination deficiency (HRD)
using two distinct approaches scarHRD R package74 (https://github.
com/sztup/scarHRD) and HRDetect23 (https://github.com/eyzhao/
hrdetect-pipeline). The scarHRD package uses next-generation
sequencing data including WGS and WES to calculate levels of telo-
mere allelic imbalance (tAI), loss of heterozygosity (LOH) and the
number of large-scale transitions (LST). scarHRD computes the
unweighted numeric sumof LOH, tAI, and LST reported as HRD-sum74,
and represents HRD score in this study. The HRDetect package is a
WGS and WES-based classifier predicting BRCA1 and BRCA2 defi-
ciencies. The package uses SNV signatures, rearrangement signatures
and HRD index including tAI, LOH and LST scores. The package com-
putes a HRDetect score, a probability value quantifying the degree of
BRCA1/BRCA2 defectiveness. In this study, we classified samples as
HRD with an HRD score >42 and HRDetect score >0.7.

Sub-clonal copy number alterations
We identified sub-clonal copy number alterations fromwhole genome
sequencing using Battenberg R package35. All parameters were set on
defaultmode. GRCh37 reference files required for running Battenberg
were downloaded as recommended (https://github.com/Wedge-
Oxford/battenberg). All required files were generated as recom-
mended (https://github.com/cancerit/cgpBattenberg). An ignore file
was generated to include chromosomes 1-22. In the output, segmental
solutions, p-values and fractions were listed from A (the most con-
fident solution) to F (the least confident solution). We selected seg-
ments with significant copy number alterations FDR <0.05. The
proportion of sub-clonal copy number alterations for each chromo-
some and whole genomewere calculated for each sample through the
following approach: (a) Sub-clonal CNAof individual chromosome:We
summed the length of significant segments with copy number altera-
tions located at each chromosome and divided by length of the
chromosome. (b) Sub-clonal CNA of whole genome: We summed the
length of all significant segments with copy number alterations across
the genome and divided by the length of the genome. Proportions
were multiplied by 100 to calculate the percentage.

Complex events and kataegis
Localized complex events and chromothripsis were identified using
ShatterSeek R package54 (in https://github.com/parklab/ShatterSeek).
ShatterSeek identifies chromothripsis using copy number alterations
and structural variants. We prepared structural variants from qSV
(v0.3) and copy number inputs from ascatNGS (v4.0.1) as instructed.
We identified high-confidence calls as previously described54, and to
avoid false positive calls in quiet genomes we set higher thresholds
compared to Isidro Cortés-Ciriano et al.54. These thresholds include
clusters of interleaved SVs >10, oscillations between twoor three copy-
number states >6, q-value <0.05 for chromosomal enrichment and an
exponential distribution of breakpoint test, and q-value <0.2 for the
fragment joins test.We additionally included localized complex events
identified with clusters of interleaved SVs >30 and an exponential
distribution of breakpoint test q-value <0.05. Finally, we performed an
in-depthmanual curation to remove falsepositives. Sampleswithmore

than one complex event were considered as complex genomes (Sup-
plementary Data 2).

Localized hypermutations (kataegis) were detected using SeqKat
R package75,76 (https://cran.r-project.org/web/packages/SeqKat/index.
html). Seqkat uses a sliding window approach to test the deviation of
SNV trinucleotide content and also an inter-mutational distance from
the expected chance. SeqKat performs an exact binominal test to
evaluate whether the proportion of each of the 32 tri-nucleotides
within each window is higher than expected. The resulting p-values
were then adjusted using FDR. We used default parameters in this
study. SeqKat computes a hypermutation score and AID/APOBEC-
mediated kataegis score separately for each window as described here
(https://cran.r-project.org/web/packages/SeqKat/index.html). We
downloaded trinucleotide count file and chromosome length file for
GRCh37 reference genome from https://cran.r-project.org/web/
packages/SeqKat. We estimated the percentage of genomic bins with
APOBEC kataegic loci and rearrangement breakpoints more than the
mean of normal distribution for both events across the genome (refer
to Fig. 4). We also examined in which chromosomes this percentage is
higher than the mean percentage across the genome (highlighted the
percentages with bold font in Fig. 4). To identify chromosomes the
most enriched by APOBEC kataegic loci and rearrangement break-
points, we estimated the frequency of APOBEC kataegic loci over-
lapping with rearrangement breakpoints through multiplying: (a)
frequency of kataegic loci for each chromosome, (b) percentage of
genomic bins with high APOBEC kataegic loci and rearrangement
breakpoints; and then ranked the combined percent from high to low
(refer to Supplementary Data 4).

Methylation profiling
Whole-genome DNA methylation profiles from 72 samples are inclu-
ded in this study (Fig. 1 and Supplementary Data 1). Methylation data
for 31 samples assayed by methylation Illumina 450K arrays was
downloaded and processed (accession number: GSE72874)13. We per-
formed methylation profiling for an additional 41 samples with suffi-
cient DNA (performed at Macrogen) using 0.7 µg of DNA and the
Illumina EPIC arrays.

Methylation analysis of complex genomic events and
Homologous recombination deficiency
To investigate methylation patterns surrounding complex genomic
events we analysed DNA methylation profiles of 69 samples with
matchedWGS (Supplementary Data 1), 31 of the samples were assayed
with methylation Illumina 450K arrays (accession number:
GSE72874)13 and 38 samples with the EPIC array. The raw idat files for
the 450K and EPIC array data were imported using minfi77 and probes
were removed if the detected p-value was >0.01 or there were fewer
than three beads in at least 5 % of samples using ChAMP78 (v.2.12.4). A
total of 442,767 common probes were identified between the two
platforms (450K and EPIC arrays). These probes underwent a β-
mixture quantile normalization (BMIQ)79 to account for probe type 1
and type 2 biases, followed by a quantile normalisation (QN). Further
filteringwas performed to remove: (1) probes in non-CpG sites; (2) X or
Y chromosome; (3) single-nucleotide polymorphism-related poly-
morphisms as per Zhou et al.80; and (4) probes that map to multiple
locations as per Nordlund et al.81. After filtering, 377,176 probes
remained andwere used in further analysis. A batch correctionprocess
was applied using removeBatchEffect from the limma package
(v3.38.3). We performed gene-level methylation analysis for the genes
identified within recurrent complex events that co-localised with
kataegic loci or recurrent copy number changes, including EGFR,
MTMR9, GATA6, GATA4 and SMAD4 located at chromosome 7, 8 or 18.
In this analysis a ploidy correction was used to determine whether
genes were amplified, whereby genes were considered amplified when
ASCATploidy was <2.7 and the copy number for the gene was ≥6 or
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ASCATploidy was ≥2.7 and the copy number for the gene was ≥9. We
also investigated BRCA1 methylation levels in samples with and with-
out HRD. Probes mapped to these genes were evaluated for methyla-
tion levels according to their genomic features (complex events,
recurrent copy number and kataegic events). We performed pairwise
comparisons between samples with and without the events at the
chromosome level for chromosomes 7, 8 and 18 (complex events in
each sample are included in Supplementary Data 2). To investigate
methylation and HRD, eight HRD samples and 61 non-HRD samples
with available methylation profiles were included in the analysis.

RNA sequencing and normalisation
RNA sequencingwas performed on 79 RNA tumour samples with a RIN
score (>5). Libraries were prepared from RNA using the TruSeq
Stranded mRNA kit and sequenced with 100bp paired-end reads.
Sequencing data were aligned to human reference genome GRCh37
using STAR aligner82 (v2.5.2a). Sequencing adaptors were trimmed
using Cutadapt83 (v1.9) and gene annotation, transcript and exon fea-
tures of ENSEMBL (release 89) were used to compute counts of indi-
vidual genes for all samples. Quality controlswere assessed using RNA-
SeQC84 (v1.1.8) and gene expression was estimated using RSEM85

(v1.2.30). According to the counts, gene annotations and sequencing
depth of the samples, transcripts-per-million (TPM) was computed
across samples. TMM (trimmed mean of M values) normalization was
performed using R package edgeR86. Linear scales of TPM and TMM
were used in analyses unless explained.

RNA deconvolution of the tumour microenvironment,
clustering and differential expression analysis
The cell types within the Tumour microenvironment (TME) were
estimated for 68 samples from RNA sequencing data using
ConsensusTME R package87 (https://github.com/cansysbio/
ConsensusTME) and CIBERSORTx26. We initially assessed the robust-
ness of cell type estimation for 79 samples (linear scale TPM normal-
ized data) using CIBESRORTx, but of these only 68 samples showed
statistical significance p <0.05 for robust cell type estimation andwere
therefore included for TME analysis using ConsensusTME (Supplemen-
taryData 1). The purity of excluded samples (n = 11) was toohighor too
low and possibly the reason for statistical failure. ConsensusTME per-
forms a consensus approach for 18 different cell types that compiles
gene sets from seven published TME cell estimation methods: CIBER-
SORTx, Bindea et al.48, Danaher et al.88, Davoli et al.89, MCP-counter90,
TIMER91 and xCell92. ConsensusTME combines gene-set-based methods
and regression-based methods using multiple statistical tests to infer
cell-type enrichments. ConsensusTME was run using linear scale TPM
normalized data with the Gene Set Variation Analysis (GSVA) enrich-
ment method87. GSVA is a non-parametric, unsupervised method for
estimating the variation of gene set enrichment through expression
data set and is ideal for standard analytical methods such as survival
analysis and clustering93.WeperformedK-means clustering analysis on
inferred GSVA scores for 18 cell types across the cohort. The optimal
number of clusters was calculated through a consensus approach
integrating different methods including elbow, silhouette, gap statis-
tics, and Euclidean distances (general agreement of three out of four
methods). The clustering was permutated (n = 1000) to find the most
stable and robust clusters.

Differential gene expression analysis was performed to compare
immune clusters. Effective library sizes were estimated by TMM
method through edgeR86 prior to voom function from the limma-
voom R package (https://bioconductor.org/packages/release/bioc/
html/limma.html). We performed differential analyses for each clus-
ter versus other clusters and used the designmatrix “~0+factor”. The p-
values were adjusted using Benjamini–Hochberg procedure.

Pathway enrichment analysis was performed using pre-ranked
gene set enrichment analysis (GSEA) and Hallmark gene signatures

from the Molecular Signatures Database (MSigDB, http://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp). The GSEA input was pre-
pared by ranking the genes using log-fold changes from differential
expression analysis. Pathways with adjusted p-value <0.05 were inclu-
ded in analyses.

Methylation deconvolution of the tumour microenvironment
We used DNA methylation data for cell type deconvolution analysis.
This analysis was restricted to 24 samples with available matched
methylation profiling and RNA sequencing data from the same tissue
biopsy and RNA data that showed statistical significance p <0.05 for
robust cell type estimation using ConsensusTME (Supplementary
Data 1). Six of the samples were assayed with methylation Illumina
450K arrays (accession number: GSE72874)13 and 18 samples were
assayedusing Epic array (accessionnumber: GSE200707).We followed
the normalisation process as described for analyses of methylation
data for complex events. Here we identified 443,544 probes common
between the two platforms (450K and EPIC arrays), and after filtering
377,909 probes remained for further analysis. DNA methylation
deconvolution was performedwith the R packagemethylCIBERSORT27

using the oesophageal cancer signature matrix provided in the
methylCIBERSORT package. Cell type abundance was estimated using
CIBERSORT26.

Validation of findings using TCGA data
To validate our findings, we analysed RNA sequencing data from the
ESCA TCGA cohort. We downloaded the ESCA TCGA BAM files from
https://portal.gdc.cancer.gov/projects/TCGA-ESCA using an approval
from QIMR Berghofer Research Ethics Committee (P2095). We selec-
ted 78 samples of oesophageal adenocarcinoma subtype (classified as
Esophagus Adenocarcinoma (NOS)) in the clinical information (cBio-
Portal, https://www.cbioportal.org/). We performed RNA sequence
analysis (sequence alignment, normalization and TME profiling) using
the same processes as described above.

Immunohistochemistry
IHC staining was performed to assess CD8 expression on 32 samples
that had undergone RNA sequencing and for which FFPE tumour
blocks were available. Staining was performed using an automated
Roche Ventana Discovery Ultra® (Roche Diagnostics AG, Rotkreuz,
Switzerland). The slides were placed in the stainer with primary anti-
Human CD8 (Dako, #M7103, Clone: C8/144B, mouse monoclonal,
diluted 1:4000) and secondary antibodies (Anti-mouse HQ and HQ-
HRP) followed byDAB to develop the chromogenic staining. IHC slides
were scanned at ×40 magnification on an Aperio ScanScope AT turbo
Brightfield Slide Scanner (Leica Biosystems, Germany). Whole-slide
images were captured as TIF images using Aperio ImageScope soft-
ware (v12.3.3). IHC slides were assessed by a pathologist (SS) using a
semi-quantitative approach to estimate the maximum number of
positively stained lymphoid cells (cytoplasm/plasma membrane) per
high power field. The overall intensity of whole-slide images of
immune clusters was scored as negative (score = 0), low (score = 1+),
moderate (score = 2+) and strong (score = 3+). Overall intensity was
scored considering all sections of slides for each immune cluster. IHC
TIF images were loaded into ImageJ, where a scale bar was included on
each image.

Statistical analysis
Statistical analyses were performed using R (v3.6.2). The significant
threshold for p-values and false discovery rate (FDR)was less than0.05
unless specified. Comparisons of three or more groups with con-
tinuous variables were performed using Kruskal–Wallis test. Pairwise
comparisons were tested using Wilcoxon rank-sum test and multiple
testing problems were removed by calculating FDR. All the Box plots
show the median values with the interquartile range (lower and upper
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hinge) and ±1.5-fold the interquartile range from the first and third
quartile (lower and upper whiskers). Survival analyses were performed
using a log-rank test in categorical comparisons and cox regression for
continuous variables. Log-rank survival test for immune clusters was
adjusted for treatment and stage using inverse probabilityweighting94.
Multi-variate Cox regression model was applied to predict the corre-
lation of APOBEC mutation signature and Overall Survival (OS) after
adjustment for stage. A two-tailed binomial test was performed to test
the overrepresentation of samples with present RS6 signature (>15%)
in Cluster 2. All figures are prepared in R (v3.6.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The whole genome and RNA sequence data presented in this study is
available at the EGAunder accession number EGAS00001002864. The
sequence data are generated from patient samples and therefore are
available under restricted access. Data access can be granted via the
EGA with completion of an institute data transfer agreement, and data
will be available for a defined time period once access has been gran-
ted. Methylation array data used in this study are available from GEO
[https://www.ncbi.nlm.nih.gov/geo/]. Methylation array data for 31
samples was downloaded from GEO under accession number
GSE72874. Methylation data for an additional 41 samples is available
fromGEOunder accession number GSE200707. Data generated in this
study are provided in Supplementary data files. Exome and RNAseq
data from TCGA for ESCA adenocarcinomas were downloaded from
TCGA [https://portal.gdc.cancer.gov]. The sequence data is controlled
access data which requires dbGaP Access. Source data are provided
with this paper.
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