
PNAS Nexus, 2022, 1, 1–11

https://doi.org/10.1093/pnasnexus/pgac258
Advance access publication date: 21 November 2022

Research Report

Hip osteoarthritis: A novel network analysis of
subchondral trabecular bone structures
Mohsen Dorraki a,b,c,h,*,1, Dzenita Muratovic d,1, Anahita Fouladzadeh e, Johan W. Verjans a,b,f,g, Andrew Allison c,h,

David M. Findlayd,h and Derek Abbott c,h

aSouth Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
bAustralian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, SA 5000, Australia
cSchool of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
dCentre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, SA 5000, Australia
eCentre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
fRoyal Adelaide Hospital, Adelaide, SA 5000, Australia
gAdelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
hCentre for Biomedical Engineering (CBME), The University of Adelaide, Adelaide, SA 5000, Australia
∗To whom correspondence should be addressed: Email: mohsen.dorraki@adelaide.edu.au
Edited By: Shibu Yooseph

Abstract

Hip osteoarthritis (HOA) is a degenerative joint disease that leads to the progressive destruction of subchondral bone and cartilage at
the hip joint. Development of effective treatments for HOA remains an open problem, primarily due to the lack of knowledge of its
pathogenesis and a typically late-stage diagnosis. We describe a novel network analysis methodology for microcomputed tomography
(micro-CT) images of human trabecular bone. We explored differences between the trabecular bone microstructure of femoral heads
with and without HOA. Large-scale automated extraction of the network formed by trabecular bone revealed significant network
properties not previously reported for bone. Profound differences were discovered, particularly in the proximal third of the femoral
head, where HOA networks demonstrated elevated numbers of edges, vertices, and graph components. When further differentiating
healthy joint and HOA networks, the latter showed fewer small-world network properties, due to decreased clustering coefficient and
increased characteristic path length. Furthermore, we found that HOA networks had reduced length of edges, indicating the formation
of compressed trabecular structures. In order to assess our network approach, we developed a deep learning model for classifying HOA
and control cases, and we fed it with two separate inputs: (i) micro-CT images of the trabecular bone, and (ii) the network extracted
from them. The model with plain micro-CT images achieves 74.6% overall accuracy while the trained model with extracted networks
attains 96.5% accuracy. We anticipate our findings to be a starting point for a novel description of bone microstructure in HOA, by
considering the phenomenon from a graph theory viewpoint.
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Significance Statement:

In this paper, we have explored a novel network analysis methodology for describing microcomputed tomography images of human
trabecular bone. In addition, we have explored differences between the trabecular bone microstructure of femoral heads with
and without hip osteoarthritis, with the aim of improved quantitative understanding of the underlying characteristics of those
differences.

Introduction
Hip osteoarthritis (HOA) is a degenerative hip joint disease that
leads to progressive damage of articular cartilage (1), and struc-
tural changes underlying the subchondral bone that clinically
manifest with overall changes in the (i) shape of the femoral head,
(ii) loss of joint space, (iii) frequent severe pain, and loss of joint
function (2). Consequently, HOA is considered as a major cause of
disability and loss of life quality (3), with a prevalence of around
10% for people above 65, where 50% of these cases are symp-
tomatic (4). With an aging global population, the prevalence of
osteoarthritis (OA) is continuing to increase (5), and is associated

with escalating healthcare costs (6). Thus, optimal management
of HOA is of vital importance, which relies on an improved un-
derstanding of the underlying factors for disease initiation and
progression.

It has become clear that events in the subchondral bone under
the articular cartilage are intimately involved in the development
of OA (7). In particular, it is well-documented that HOA involves
pathological changes in the trabecular bone of the femoral head
(8, 9). The sequence by which these abnormalities contribute to
disease initiation and progression and how they develop, has not
been elucidated (10).
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The subchondral bone together with articular cartilage forms
an “osteochondral” functional unit with its primary role to main-
tain joint function. Once synergy between cartilage and subchon-
dral is disrupted, significant structural changes occur in the whole
joint. The application of high-resolution imaging approaches such
as computed tomography (CT) and magnetic resonance imaging
(MRI), in the evaluation of OA patients, has enabled detection of
specific OA tissue characteristics in the osteochondral unit and
expands the possibilities for diagnosis of disease at an early stage.
Of the particular interest are structural changes within subchon-
dral bone. Both animal and human studies indicate that changes
of subchondral bone take place early and may precede changes in
the articular cartilage and, thus it may contribute to not only the
initiation but progression of disease (11).

Subchondral bone immediately beneath cartilage comprises
two parts: the subchondral plate and subchondral trabeculae. The
subchondral plate is formed by a thin layer of dense bone, from
which arise thin trabeculae, forming an intricate and complex
network of trabecular bone. Subchondral sclerosis, which encom-
passes thickening of both the subchondral plate and subchon-
dral trabeculae, is commonly observed in advanced OA and is,
thus considered as a hallmark of OA (12). However, it has been
reported that in the various stages of OA, different microstruc-
tural changes of subchondral bone occur, and it depends on the
distance from the articular surface (13–17). For example, in both
humans and animal models of disease during early stages of OA,
elevated bone remodeling, subchondral bone plate thinning, and
increased porosity were shown to be significantly correlated with
cartilage damage (13). Also during the late stage of OA, apposi-
tional bone tissue growth is noted and results in increased sub-
chondral bone apparent density, thickening of the subchondral
bone plate, increased bone volume, decrease of trabecular sep-
aration, increased trabecular thickness, and change of trabeculae
from rod-like into plate-like structures, which associate tempo-
rally with articular cartilage thinning and deterioration (10). Re-
gardless of elevated bone volume density, subchondral bone is less
stiff, less mineralized, and less able to withstand repetitive load-
ing (18).

First, described by Wolff (19), the bone undergoes dynamic bone
remodeling to adapt to the loads, to which it is subjected, and
to maintain structural and mechanical integrity. Later, Radin and
Rose proposed that an increase in bone density may potentially
lead to elevated stiffness that introduces unfavorable stress con-
centrations resulting in damage to the cartilage (20, 21). More re-
cently, it was suggested that conventional assessments such as
thickening of trabeculae, bone volume density, and changes of and
thickening of trabeculae structure model index can be insensitive
to more subtle changes, and that application of modern image
analytical approaches such as individual trabecula segmentation
(ITS), are necessary for detection of more early and subtle changes
in the properties of the subchondral trabecular bone structure in
health and disease (22–24).

A machine learning approach was proposed to assess the abil-
ity of semiautomatically extracted MRI-based radiomic features
from tibial subchondral bone to distinguish between knees with-
out and with OA. Although the approach was able to classify OA
and normal cases, it was not able to explain the link between in-
dividual radiomic features and OA (25).

Also, a deep learning approach was used for grading HOA fea-
tures on radiographs. In a similar way with previous approach, this
study used machine learning as a “black box” classifier and it was
not able to elucidate the relation between OA and visual features
in radiographs (26).

Here, for the first time we propose a novel “network” approach
to analyze the trabecular structure based on the concepts of graph
theory in the human femoral head in subjects with advanced HOA
and we made comparisons with age matched control bone with
no history of bone disease. Then we develop a machine learning
model to classify HOA and control cases. In contrast to previous
machine learning approaches, our network approach is now able
to elucidate the link between the incidence OA and network visual
features that demonstrate for the first time.

There are several examples of biological networks, such as
metabolic networks, protein interaction networks, neural net-
works, and vascular networks (27–30). Several complex systems
have been investigated recently from a network viewpoint that
links the different elements comprising them (31). The develop-
ment of tumor vascular networks has recently been explored via
graph theory (32). Network analysis can qualitatively and quan-
titatively reveal vital information on the unique characteristics
of biological phenomena (33–36). The question we explore here
is: can trabecular bone microstructure of the femoral head, de-
scribed as a network graph, visualized by a group of vertices and
edges, distinguish between control and HOA bone? Addressing
this question may lead to the development of a framework for
understanding the progression of the abnormalities in HOA.

We find that a network approach can accurately distinguish
between trabecular bone of the femoral head and HOA disease
from control bone, despite the wide variability of presentation
of trabecular bone between HOA samples. The extraction of the
trabecular architecture obtained from microcomputed tomogra-
phy (micro-CT) imaging into a mathematical graph maps the data
from a high dimensional space into a low dimensional space. Us-
ing a machine learning model, we demonstrate that the low di-
mensional network representation retains meaningful properties
of the original data, near to its intrinsic dimension.

Results
OA structural abnormalities assessed by
micro-CT
In this study, high-resolution ex vivo imaging using micro-CT pro-
vided an opportunity to study the microstructure in the trabecular
bone of the femoral head in HOA patients, compared with unaf-
fected hips. Macroscopically, the HOA femoral heads showed con-
siderable variability, qualitatively and in terms of disease severity.
The general characteristics, as shown in Fig. 1(A), were described
on the basis of damage of cartilage (loss of cartilage volume and
integrity), and development of subchondral bone sclerosis, osteo-
phytes, and bone cysts. A representative micro-CT image of con-
trol trabecular bone is shown in Fig. 1(B), while 1(C) shows images
of micro-CT slices of an HOA femoral head.

The femoral heads obtained from subjects undergoing hip re-
placement surgery and from control (CTRL) individuals without
a history of bone disease were scanned using micro-CT (Skyscan
1076, Kontic, Belgium, isotropic resolution = 20.5 μm). After ac-
quiring the micro-CT images, the numerical (trabecular number,
bone volume fraction, thickness, and separation) and topographic
(degree of anisotropy, structural model index, and trabecular pat-
tern factor) properties of subchondral bone microstructure were
assessed. Using NRecon software, v2.0.4.2, data were analyzed
separately for three volumes of interest: whole sample (total of
1,950 images = 40 mm), first half of the specimen (images 0 to
975 = 20 mm), the proximal portion of the femoral head, which
articulates with the acetabulum of the pelvis (severely affected by
OA-related changes such as loss of cartilage integrity, presence of
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Fig. 1. Femoral head abnormalities in HOA. (A) HOA symptoms and abnormalities are shown. (B) A representative micro-CT image of trabecular bone
in control femoral head without bone-related diseases and (C) micro-CT images from A–A and B–B sections corresponding to a HOA patient illustrate
the abnormalities in trabecular bone. (D) An analysis of micro-CT images obtained from a cohort of seven patients with HOA and a cohort of seven
CTRLs shows the parameters of trabecular thickness, trabecular bone volume, structural model index, trabecular separation, trabecular number,
degree of anisotropy, trabecular bone pattern factor, and fractal dimension. Means and SDs are shown on the bars for the first half (blue), second half
(orange), and whole femoral head (yellow). Here, ∗ indicates statistical significance (P < 0.05) between CTRL and HOA. The comparison among the
group were performed using unpaired t test.

subchondral bone cyst), and the second half (images 976 to 1,950
= 20 mm), the distal portion, toward femoral neck (relatively in-
tact cartilage and no subchondral bone degradation).

The results presented in Fig. 1(D) for the first half (blue bars),
the second half (orange bars), and whole femoral head (yellow
bars) indicate that HOA trabecular bone had increased bone vol-
ume, due mainly to an increased trabecular thickness compared
to controls. A similar finding was seen by comparing the trabec-
ular thickness and separation, comparing whole volumes of the
femoral head. Trabecular separation is described as the thickness
of the spaces measured after image binarization. In this study, the
increase of trabecular separation in HOA samples is consistent
with the presence of numerus bone cysts present in volume of

interest. By contrast, the HOA trabecular bone showed decreased
topographical properties, such as structure model index, degree
of anisotropy, and trabecular pattern factor, compared to controls.
The structure model index shows the relative prevalence of plates
and rods. Isotropy is an indication of 3D symmetry or the pres-
ence or absence of preferential alignment of structures through a
specific directional axis. Trabecular pattern factor is a measure of
connectivity, where a highly disconnected trabecular structure is
indicated with a higher trabecular pattern factor. The results did
not show any significant difference for fractal dimension between
HOA and CTRL cases. Fractal dimension is a measure of surface
complexity of an object, that quantifies how an object’s surface
fills space.
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Although these parameters provide useful information about
the whole femoral head, they are volume-based parameters and
do not shed light on the effects of HOA at different depths.
In addition, the large SDs in Fig. 1(D) indicate the presence of
uncertainty as the data points are far from the mean. There-
fore, defining a more accurate framework that can reveal the
differences caused by HOA, across the depth of the sample, is
desirable.

HOA: a network analysis
Next, we examined the trabecular networks imaged as micro-CT
image slices, obtained from the HOA and CTRL femoral heads. A
section of hip bone indicating cartilage, subchondral bone and
trabecular bone from proximal (top) to distal (bottom) is shown
in Fig. 2(A). As described previously, we found that HOA trabecu-
lar bone was structurally disordered; this was mainly due to in-
creased trabecular thickness. We analyzed the trabecular bone
in HOA and CTRL groups as a set of networks and investigated
the behavior of networks as a function of bone depth. As an ex-
ample, four sections at various depths (5, 15, 25, and 35 mm) are
shown in Fig. 2(B), and the corresponding HOA and CTRL micro-
CT images are shown in Fig. 2(C) and (D). It may be seen that the
CTRL trabecular structure appears more uniformly distributed
and that the network pattern in both cases changes as a function
of depth.

To investigate the trabecular bone network in HOA samples, we
developed customized image processing software using MATLAB
that is able to extract 2D networks in micro-CT images and display
the vertices, edges, and several graph parameters in the networks.
As an example, in Fig. 3(A), a micro-CT image is shown on the left
side, and the extracted edges (red lines), vertices (yellow nodes),
and branches (green nodes) are illustrated on the right. To further
understand the network behaviors, the networks for a HOA and
a CTRL case were “regraphed,” and the networks were visualized
using circular layouts, as shown in Fig. 3(B). It can be seen that the
entire number of vertices and edges relating to the HOA network
is greater than for CTRL, indicating the formation of compressed
trabecular structures.

Complex biological networks are often characterized by nonlin-
early interacting parameters. To study this intricate connectivity,
we further investigated several network parameters, in particu-
lar number of vertices, number of edges, number of graph com-
ponents, clustering coefficients, characteristic path length, and
length of edges in Fig. 3(C). To achieve this, we analyzed micro-CT
images from HOA (red) and CTRL (blue) groups—solid lines and
shading indicate mean and SD, respectively.

For the micro-CT slices close to the top of the femoral head, the
number of vertices and edges grows faster for HOA cases; how-
ever, when they reach the maximum point at the first third (top)
of the femoral head, both HOA and CTRL decline gradually at a
similar rate. These observations show that although HOA trabec-
ular bone has a greater number of vertices and edges, the net-
work in CTRL bone is more connected, as HOA possesses more
graph components than CTRL. Notable also was a similar trend
in the clustering coefficients in HOA and CTRL; however, it may
be seen that there is a minor increase in the HOA clustering co-
efficients. The characteristic path length in HOA is greater than
CTRL and both show a fluctuating pattern. The shorter length of
edges in HOA indicates the impact of the abnormalities caused
by sclerotic changes, increased anisotropy, and elevated plate/rod
ratio.

The method given here for presenting HOA and CTRL micro-CT
images via a network framework can be integrated potentially into

machine learning models for HOA diagnosis. As future intelligent
disease diagnosis relies on optimizing machine learning methods
and focusing on data-centric approaches, our network represen-
tation shows promise as an effective feature for perform machine
learning classification.

Network properties: effective feature for machine
learning models
To evaluate the outcome of network analysis, we employed a ma-
chine learning model for classifying HOA and CTRL. We developed
a deep convolutional neural network (CNN) and fed it with two
separate inputs (i) micro-CT images of the trabecular bone, and
(ii) the network extracted from the images.

With the advent and progress of AI, researchers have been at-
tempting to employ deep neural networks as a novel approach for
diagnosis based on clinical and medical data. As machine learning
is evidence-based and can analyze problems in an unbiased way,
it can be helpful for making objective diagnosis from biomarkers
or clinical data (37, 38). Among the deep learning architectures,
CNNs are particularly suitable for medical image classification
due to their ability to take advantage of natural image properties,
such as shared weights, local connections, and pooling. They em-
ploy several layers of feature detectors to perform preferred anal-
ysis (31) and also they are able to perform data processing tasks
in the form of multiple layers.

Several CNN architectures are used widely for medical image
diagnosis, including mitosis detection in breast cancer (39), de-
formable registration of MR brain images (40), and classification of
skin cancer (41). Recently, the advent of machine learning systems
has attracted the attention of OA researchers. A classification ap-
proach based on a probabilistic neural network (PNN) classifier
was proposed for the characterization of hips from pelvic radio-
graph images as OA or normal (42). Textural features in this study
were extracted from X-ray images. The model accomplishes a high
classification rate; however, a limitation is that it lacks automated
performance, as it needs a manual procedure via a graphics cur-
sor for recognizing regions of interest (ROI) in the X-ray images.

We designed a multiple layer CNN architecture and trained it
on 90% of our dataset. Here, Fig. 4 shows the architecture of the
proposed CNN deep network. To evaluate the network analysis,
we trained the model first with the micro-CT images, and then as-
sessed the classification output. Then, in a separate procedure, we
fed the model with the extracted networks. The database contains
(i) 360 OA and 360 control micro-CT images that are composed
of human expert-labeled images, and (ii) the corresponding net-
works. We divided the dataset under analysis into training (90% of
images) and test (10% of images) sets. After training the deep CNN,
we validated the performance of the approach using the test data.
The CNN trained on plain micro-CT images achieved 74.6% overall
accuracy while the CNN trained on extracted networks attained
96.5% accuracy on a subset of the test set. Here, Fig. 4 summarizes
our results for CNN model during both experiments.

Discussion
In this study, we investigated a novel approach for analyzing the
microstructure of the trabecular bone in HOA, compared with
healthy control bone, from a graph theory perspective. By applying
our software to high-resolution micro-CT images to analyze the
entire trabecular microstructure at various depths, we discovered
significant differences in the network configuration in HOA com-
pared with controls that were not apparent using conventional
outcome measures.
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Fig. 2. Representative 3D model of subchondral bone changes as a function of depth. (A) A section of hip bone showing cartilage, subchondral bone,
and trabecular bone. (B) Four sections at various depths, 5, 15, 25, and 35 mm, are considered, and the corresponding (C) HOA and (D) CTRL micro-CT
images are shown. Although the CTRL trabecular structure appears smoother, the network pattern in both cases changes as a function of depth.

Imaging approaches such as MRI and radiography have been
used widely to diagnose HOA (43). Unlike plain radiographs,
CT can quantify femoral and acetabular forms and evaluates
anatomic relationships independently of patient position, and

through several postprocessing methods is able to render a 3D
visualization of the hip that simplifies observation of bone mor-
phological features. The CT scan provides an accurate assessment
(44) of the bone anatomy of the hip with a high accuracy of 1◦ to
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Fig. 3. HOA network analysis. (A) An example of identifying edges and vertices from micro-CT images showing networks in HOA (seven femoral heads)
and CTRL (seven femoral heads). (B) Circular layout of HOA and CTRL corresponding to an HOA and a CTRL case (shown previously in Fig. 2(C) and (D)
demonstrating a reducing number of vertices and edges at various depths. (C) We analyzed micro-CT images obtained from seven HOA (red) and seven
CTRL (blue) cases and calculated mean (shown with solid lines) and SD (shaded areas). The corresponding number of vertices, number of edges,
number of graph components, clustering coefficients, characteristic path length, and length of edges show the evolution of the bone network in HOA
and CTRL cases as a function of depth.
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Fig. 4. Machine learning model overview. (A) The system includes micro-CT imaging and a pipeline of preprocessing techniques fed separately with
raw images and extracted networks. (B) Schematic of the CNN operation. It comprises four blocks, each of which are made of a 3 × 3 convolution layer
with stride [1 1], a batch normalization and finally a ReLU function. Also, three max pooling layers with stride [2 2] reduce the size of images is used in
this architecture. It is followed by two fully connected layers, a Softmax layer and a classification output. (C) Here, a ROC curve for the approach is
shown in blue (without network extraction) and red (with network extraction) lines, where the second experiment outperforms the first at the task of
classification. In addition, the confusion matrices are illustrated for both experiments.

4.5◦. Despite all these advances in imaging technology, how these
OA abnormalities change as a function of depth into trabecular
bone was unknown until now.

The development of high-resolution imaging, along with the
advent of powerful computational approaches, has recently at-
tracted the attention of HOA researchers due to their power in
detecting early alternation in bone structure. The imaging tech-
nologies including peripheral quantitative computed tomography
(pQCT), MRI, dual-energy X-ray absorptiometry (DXA), and micro-
CT have revealed the main evidence that elucidates the signif-
icant role of trabecular bone in the pathogenesis of HOA. The
high-resolution micro-CT used for the present ex vivo study ex-
ceeds the resolution provided by current clinical imaging. Clini-
cally used CT scanning works in a similar manner but with lower
resolution. However, pQCT scanning is rapidly approaching a res-
olution sufficient for a version of the analysis described here, sug-
gesting that detection of bone abnormalities at early stages and
improved understanding of heterogeneity may soon be possible,

and importantly offering the potential for early identification and
treatment of these abnormalities. This in turn may potentially
lead to attenuation of cartilage damage and the prevention of OA
progression (45–48).

To understand more fully the changes that take place in the
subchondral bone in HOA, we assessed the network properties
within bone microstructure of femoral head of HOA cases and
CTRL bone. Our results show important changes in trabecular
bone parameters, with increases in mean trabecular thickness,
bone volume, and trabecular separation in HOA, and a concomi-
tant decrease in degree of anisotropy, trabecular pattern factor,
and structure model index. The novel feature of this study is the
inclusion of network parameters. Our results show that the most
significant network changes in HOA such as the number of edges,
vertices, and graph components appear in first third (most prox-
imal) of the femoral head (from top to 1,300 μm), and after that
both HOA and CTRL networks show similar behavior. This sug-
gests that subchondral bone changes relate to the OA disease and
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do not pre-exist the disease. We suggest that these changes and
abnormalities in trabecular bone proximal to the diseased joint
will open up new avenues for designing artificial intelligence (AI)
approaches for HOA diagnosis and classification.

Our analyses reveal that HOA networks are characterized by
reduced length of edges, indicating the compressed trabecular
structures in patients with HOA. Also, HOA networks show ele-
vated characteristic path lengths and reduced clustering coeffi-
cients, therefore, lowering the small world network characteris-
tics as they evolve. A network possesses small world properties
where its characteristic path length is relatively low, and where its
clustering coefficient is relatively high (49). A high clustering co-
efficient occurs with highly connected groups, while a short mean
path length occurs with rapid information spread (50–52).

Additionally, we demonstrated the effectiveness of deep learn-
ing for HOA classification via plain micro-CT images and the
extracted networks. Using a CNN trained on both datasets, we
have shown that employing our network approach for feature ex-
traction can significantly increase the classification accuracy. Al-
though we highlight that clinical HOA diagnosis is based on sev-
eral factors beyond the morphological features in CT scan images,
the ability to diagnose OA with high accuracy has the potential to
enable earlier intervention and to expand access to vital medical
care.

We anticipate our findings to be a starting point for a more so-
phisticated description of bone microstructure in HOA, by consid-
ering the phenomenon from a graph theory viewpoint. Network-
based quantitative measures potentially open new avenues for as-
sessing trabecular bone microstructure at other skeletal sites and
in other skeletal disease states.

Because OA etiology is likely multifactorial, and comprises
multiple phenotypes, in this study only subjects with primary ra-
diographic and symptomatic OA were included to ensure that de-
tected changes in subchondral trabecular bone are related to this
disease. Several diseases such as: OA, rheumatoid arthritis, os-
teoporosis, and psoriatic arthritis are characterized with severe
structural changes in subchondral bone. Note that the subchon-
dral bone changes in all these diseases are elicited mainly due to
altered bone turnover but their manifestations are various from
bone erosion to bone sclerosis (53).

An interesting open question, for future study, is to analyze the
number and characteristics of branches in the network to check
for correlation with bone resorption.

One of the limitations in this study is that the model did not
assess other abnormalities that may coexist with HOA. However,
in this study our focus was to investigate and document if a
network representation can be used to inform us about bone
changes beyond increase/decrease of bone trabecular volume and
bone mineral density in the whole femoral head rather than
with small volumes of interest that are often used in animal
and/or human studies. Therefore, this method may potentially be
adapted and used in future clinical HOA studies to benefit medical
practice.

A second limitation of our study regards the small number of
samples. Although the number of samples in this study was suf-
ficient for statistical investigation and building network analysis,
more examples are needed to prove the generality of our findings
and to increase the accuracy of our machine learning model. This
study is also a cross-sectional study and could not evaluate how
the bone structure changes from early stage to late-stage HOA dis-
ease. In general, it is challenging to analyze bone microstructure
in early-stage HOA patients by micro-CT, since the bone samples
are not accessible and/or cadaveric tissue with early HOA changes

is not easily available. Thus, it will eventually be of clinical in-
terest to investigate a larger cohort longitudinally to determine if
our method might play a useful role in assessment of bone across
disease severity and/or may help to differentiate OA from other
diseases of the joint.

In addition, clinical use of ultrahigh (7 Tesla) MRI has improved
sensitivity for detection of pathologies within subchondral bone
such as bone marrow lesions, and early changes within bone mi-
croarchitecture. Thus, we believe that the network analysis pre-
sented in this study will be a promising pathway for future deter-
mination of the role of subchondral bone in progression of OA and
an early detection of changes within subchondral bone character-
istic for humans OA disease.

Moreover, parameters describing subchondral trabecular bone
structure in HOA (bone volume fraction, trabecular bone pattern
factor, trabecular number, trabecular thickness, trabecular sep-
aration, and structure model index) that are often described by
micro-CT are already adapted and evaluated in vivo using mul-
tidetector row CT (54–56). More recently, it was elegantly demon-
strated that use of clinical CT is a new and promising imaging
tool in clinical assessment of both hip and knee OA (57–59). Thus,
we believe that our method will further enrich current knowledge
about subchondral bone involvement in pathogenesis of HOA.

In summary, the goal of the paper was to show that the tra-
becular structure forms a network that can be mathematically
characterized, and this is our new fundamental result. It is well-
known in the machine learning community that if data has too
many features (ie. high dimensionality) the amount of training
data required exponentially increases. This is a well-known prob-
lem called the curse of dimensionality, coined by Richard E. Bell-
man (60). One of the steps toward robust machine learning is to
first preprocess the data to reduce its dimensionality so that only
essential features are classified. By extracting network parame-
ters of the trabecular structure and using this reduced data, we
are in fact reducing dimensionality as desired. Consequently, our
paper shows that classification accuracy is 74.6% and this signif-
icantly increases to 96.5% when we reduce dimensionality as de-
scribed.

Materials and Methods
Human material
A total of seven femoral heads (four males and three females aged
71.7 ± 14.6) were collected from patients who have undergone
total joint replacement for late-stage HOA at the Royal Adelaide
Hospital and seven cadaveric femoral heads (five females and two
males aged 65.8 ± 15) accessed through the SA Tissue Bank, SA
Pathology, Royal Adelaide Hospital Mortuary.

Inclusion criteria for HOA subjects were radiographic HOA with
severe symptomatic disabilities including limited mobility and se-
vere pain. Inclusion criteria for nondisease subjects were no evi-
dence of radiographic HOA or joint pain in medical history. Exclu-
sion criteria for both groups: osteoporosis, rheumatoid arthritis,
metabolic bone disease, history of malignancy, and medication
that may have affected bone turnover. Written consent was ob-
tained for all subjects and the study received prior approval from
the Human Research Ethics Committee.

Data collection
To collect the data related to the microstructure of the trabec-
ular bone, whole femoral head samples were scanned using a
micro-CT scanner (Skyscan 1276, Skyscan-Bruker, Kontich, Bel-
gium). Scanner settings: 20.5 μm isotropic pixel size, source volt-
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age 100 kVp, current 200 μA, rotation step 0.4◦, 180◦ rotation, ex-
posure time 700 mm, and 3-frame averaging.

For an individual femoral head this generated 3,305 X-ray pro-
jection images (826 projections per step), image resolution was
3,872 × 3,872 pixels (79,453 × 79,453 μm) in size with depth res-
olution of 20 μm, in 16-bit Tiff format, producing a total dataset
of 24.3 GB, scan duration approximately 4 h.

To ensure adjustment for clustering (multiple regions of inter-
est) and impact of age and sex, the data were analyzed in a series
of separate linear mixed effects regression models to control the
confounding of age and sex as independent variables.

Statistical analysis
The Shapiro–Wilk test was employed to test normality of the data
distribution. Differences between groups (control vs. HOA) were
described using the unpaired t test. We performed the statistical
analyses via GraphPad Prism software (Version 9.2.0 for MacOS).
Data is reported as the mean ± SD. The critical value of P < 0.05
was chosen for significance.

Deep learning model
Our CNN model shown in Fig. 4(B) contains four blocks, each of
which comprise a 3 × 3 convolution layer with stride [1 1], a batch
normalization layer and finally a ReLU function. In addition, three
max pooling reduces the size of images, and the network followed
by two fully connected layers, a Softmax layer and finally a clas-
sification output.

The layers where filters are applied to the original image are
called convolutional layers. Batch normalization is applied to the
output of the previous layers allowing every layer of the network
to learn more independently. It can be considered as regulariza-
tion to avoid overfitting of the model. We used a ReLU activation
function to control the output. Note that ReLU is a linear function
that will output the input directly when it is greater than zero,
otherwise, it forces a zero output.

In Fig. 4(C), a receiver–operator characteristic (ROC) curve and
confusion matrices were obtained as model metrics. A ROC curve
is a graph illustrating the performance of a classification model at
all classification thresholds. The confusion matrix is a table with
two rows and two columns that reports FN, TP, TN, and FP.

Here, FN represents false negative, an incorrect prediction in
the negative class; TP represents true positive, a correct prediction
in the positive class; TN is true negative, a correct prediction in
the negative class; and FP represents false positive, an incorrect
prediction in the positive class.

The network analysis software
The trabecular structures of the bone were extracted using our
custom MATLAB software. This computational approach, based
on image processing tools, assists in extracting useful informa-
tion from trabecular networks, avoiding miscalculation. There-
fore, we developed software that receives the network images and
precisely outputs a number of useful parameters such as number
and position of lines and junctions, histogram, graph parameters,
and so on.

The algorithm consists of the following steps:

Step (1) Reading image: read in the bone micro-CT images.
Step (2) Image adjusting: the RGB images are converted to

grayscale and image intensity values or colormap is ad-
justed to improve image contrast. In addition, the area of
interest is segmented, and any object out of border of area
can be removed.

Step (3) B/W filtering: the grayscale images converted to B/W,
and after image enhancement, the small holes in vessel im-
ages can be removed. In addition, the scatter points related
to a few cells that are not connected to tubular structures
may be removed.

Step (4) Outline extraction: using this morphological op-
eration, all objects are reduced to lines in 2D binary
images.

Step (5) Finding an individual line: trabecular junctions are ex-
tracted, and the lines between them identified as an in-
dividual ridges. This information assists to calculate the
graph parameters. We provide open access to this software
for use by future researchers through https://github.com/D
orraki/Bone

Small-worldness, clustering coefficient, and path
length
In a network consisting of N vertices, the distance Lij between two
vertices, ni and nj is given by the length of the shortest path be-
tween the vertices, that is, the minimal number of edges that need
to be traversed to travel from vertex ni to nj. The average or char-
acteristic path length L = < Lij > of a network is defined as the
average distance between all pairs of vertices. The clustering co-
efficient relates to the local cohesiveness of a network and mea-
sures the probability that two vertices with a common neighbor
are connected. In the case of undirected networks, given a ver-
tex ni with ki neighbors, there exist Emax = ki (ki − 1)/2 possible
edges between the neighbors. The clustering coefficient Ci of the
vertex ni is then given as the ratio of the actual number of edges
Ei between the neighbors to the maximal number Emax, therefore,
Ci = 2Ei/ki(ki − 1). Small-worldness can be achieved via both char-
acteristic clustering coefficient (C) and path length (L) with respect
to a single reference graph: σ = CCr/LLr, where Cr and Lr are the
mean clustering coefficient and characteristic path length for an
equivalent random network, respectively (32).
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