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Abstract

Hyperspectral and multispectral imaging

of cell and tissue autofluorescence is an

emerging technology in which fluores-

cence imaging is applied to biological

materials across multiple spectral chan-

nels. This produces a stack of images

where each matched pixel contains infor-

mation about the sample's spectral prop-

erties at that location. This allows precise

collection of molecularly specific data

from a broad range of native fluorophores. Importantly, complex information,

directly reflective of biological status, is collected without staining and tissues

can be characterised in situ, without biopsy. For oncology, this can spare the

collection of biopsies from sensitive regions and enable accurate tumour map-

ping. For in vivo tumour analysis, the greatest focus has been on oral cancer,

whereas for ex vivo assessment head-and-neck cancers along with colon cancer

have been the most studied, followed by oral and eye cancer. This review

details the scope and progress of research undertaken towards clinical transla-

tion in oncology.
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1 | INTRODUCTION

The characterisation of cells and tissues in oncology may
be undertaken for a wide variety of reasons, notably for
tumour diagnosis and monitoring, disease prognosis, and

surgical margin definition. Conventional diagnostic
methods, for example, non-invasive radiological imaging,
or tissue sampling via surgical access, are often not suffi-
ciently informative for optimal clinical decision making
[1, 2]. Additionally, they can require the use of exogenous
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agents (e.g., radiographic contrast agents,
5-aminolevulinic acid) which can have drawbacks or con-
traindications, or the collection of tissue biopsies, which,
depending on context, may have diagnostic limitations or
lead to negative patient outcomes [3–5]. As such, there is
a clinical demand for genuinely label free, non-invasive
methods of assessment for cells and tissues, able to non-
invasively provide the complex biochemical information
needed for tumour characterisation and mapping.

Assessment of the native fluorescence of endogenous
fluorophores—autofluorescence imaging—has received
growing attention as a potential solution to this chal-
lenge. Numerous metabolites exist that can be excited to
emit light at specific, sometimes uniquely characteristic
wavelength ranges [6, 7]. Although often regarded as
interfering noise in bioimaging technologies that rely on
tagging molecules of interest with fluorescent markers,
autofluorescence directly reflects cell and tissue biochem-
istry and metabolic changes without biopsy, fluorescence
probe staining or fixation. Amongst the most prevalent
autofluorophores are key indicators of cellular metabo-
lism and its redox state, reduced nicotinamide adenine
dinucleotide (NADH) and flavin adenine dinucleotide
(FAD), whose relative concentrations give the optical
redox ratio [8]. NADH and FAD are the principal elec-
tron donors and acceptors of oxidative phosphorylation,
respectively. NADH has excitation maxima at 290 and
351 nm and emission maxima at 440 and 460 nm, while
FAD has a single excitation maximum at 450 nm with its
corresponding emission maxima at 535 nm [9] (Figure 1).
Other related endogenous fluorophores, such as NADPH
and other members of the flavin family, have sufficiently
similar excitation/emission profiles that they are not
spectrally distinct from NADH and FAD, but differences
in their decay rate (assessable by fluorescence-lifetime
imaging microscopy (FLIM) [10]) can allow them to be
discriminated if needed.

By imaging the same area with a series of different
excitation and/or emission combinations (channels) it is
possible to obtain spectral profiles of the cells or tissue
under examination. This imaging strategy is termed multi
or hyperspectral imaging—depending on the number of
channels ultimately utilised—multispectral imaging gen-
erally refers to a small number of bands (e.g., 3–10) while
hyperspectral images have more bands (up to hundreds,
typically with much narrower spectral bandwidth). Here,
these terms are used interchangeably. The hyperspectral/
multispectral images can then be mapped to the charac-
teristics of known autofluorophores with greater preci-
sion than techniques that only target select key
wavelengths of individual autofluorophores [7, 11–13]. In
this process, adjustments typically need to be made for
background fluorescence [14, 15] from other
autofluorophores.

Hyper- and multispectral imaging quantify autofluor-
escent molecules at a single pixel level, making it possible
to produce spatial maps of these informative disease
markers in cells and tissues [7, 11, 16]. In hyper and mul-
tispectral imaging, every pixel is characterised by its own
spectral profile reflecting the distributions of fluoro-
phores. The hyper- and multispectral imaging data sets
contain spatial and molecular information which can be
assessed through Big Data-driven modern image analysis
methodologies for the direct prediction of highly infor-
mative cell and tissue characteristics [17, 18]. The spec-
tral and spatial features extracted via image analytics
provide an additional dimension of assessment than stan-
dard spectrometry without image information [19].
Importantly, hyper- and multispectral imaging of auto-
fluorescence can yield non-invasive methodologies for
rapid assessment [20], requiring very limited amounts of
sample, down to the single cell level [21]. Some of these
use single-photon fluorescence which has low-cost
instrumentation whereas two-photon autofluorescence

FIGURE 1 (A) Excitation and (B) emission spectra of endogenous tissue fluorophores, adapted with permission from Wagnieres

et al. [9].
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requires specialised instrumentation and highly trained
personnel [22, 23].

Beyond all other conditions, research attention has
been focused on the application of hyper and multispec-
tral imaging of cell autofluorescence to oncology. The
native fluorescence from cancerous tissue/cells has been
utilised to examine their physiological processes and
changes at the cellular level. Changes in the metabolic
environment of cells (e.g., normal vs. cancer cells,
changes after treatment) can be explored through the
fluorescence spectra and abundance of fluorophores.
Endogenous fluorophores including NADH, NADPH,
FAD and porphyrins have generally been explored to
analyse metabolic changes [24, 25], whereas elastin [26]
and collagen have been used to look at structural
changes [27].

The metabolic profile between healthy cells and can-
cer cells differs due to their varying genetics and meta-
bolic microenvironment. Tumours create a hypoxic
environment where oxygen levels are approximately 1%–
2% lower compared to healthy tissue [28]. In this case,
glycolysis is the main form of ATP production compared
to oxidative phosphorylation in normal cells. In glycoly-
sis, the cellular redox status changes where NAD+ is
reduced to NADH. It also supports the pentose phosphate
pathway (PPP), aiding in the production of NADPH [29].
Consequently, this increase in production of NADH and
NADPH is important for cancer cells to maintain meta-
bolic homeostasis [29].

The changes in metabolism in cancerous and non-
cancerous tissue have been studied by analysing the fluo-
rescence spectra of fluorophores [24, 25]. NADH and
FAD are the main coenzymes involved in cellular metab-
olism and are generally the predominate fluorescent sig-
nals present, thus are often used as metabolic
markers [30]. Dramicanin et al. found increased NADH
concentration in malignant breast tissue, suggesting that
this was due to damaged mitochondrial metabolism and
a shift to anaerobic metabolism [25]. They also found an
increase in intensity of PpIX in the malignant tissue, due
to the tissue having better vascularity [25]. Similar results
were found by Pu et al. who observed an increase in
NADH and FAD content in breast tissue compared to
normal tissue, however, there was a decrease in colla-
gen [24]. The main fluorophore in the ECM of breast tis-
sue is type 1 collagen. For cancerous tissue to
metastasise, they degrade the ECM, consequently leading
to the loss of collagen [31, 32]. Therefore, by analysing
the fluorescent intensity/profile of these autofluoro-
phores, biochemical and physiological information can
be collected.

Tryptophan is another autofluorophore that has been
studied in cancer research. Tryptophans are amino acids
and are important for protein synthesis. Zhang et al.

found a higher concentration of tryptophan in MDA-MB-
231 breast cancer cells compared to MCF-7 (non-
aggressive breast cancer cells) or normal fibroblast
cells [33]. Cancer cells are known to take up more trypto-
phan as there have larger amino acid transporters on the
cell membrane, thus leads to the suppression of the
immune response against the cancer cells [33].

As such it has been clear from the earliest stages of
research on endogenous fluorescence that there was great
potential to address the major oncological priorities of
accuracy in detection (minimising false negative results
which result in treatment delay and false positives which
can cause further invasive testing and unnecessary ther-
apy) as well as speed of tissue characterisation (intra-
operative assessment being extremely valuable and rapid
diagnoses improving treatment planning and sparing
patients potentially unnecessary periods of stress).

In this review, we explore all potential clinical appli-
cations of hyper and multispectral imaging of cell and tis-
sue autofluorescence that have been investigated for the
field of oncology, and summarise the evidence currently
supporting their translation.

2 | HYPER AND MULTISPECTRAL
AUTOFLUORESCENCE IN
ONCOLOGY

A scoping review strategy [34] was employed to identify
all contemporary studies on hyper and multispectral
imaging of autofluorescence with a focus on addressing
an oncologic, clinical issue. We utilised title, key and
indexing terms (e.g., multispectral, hyperspectral, spec-
tral, multi-modal, endogenous fluorescence, native fluo-
rescence, autofluorescence) joined by Boolean operators
in Pubmed, Scopus, and Embase, from 2010 to September
2021. An initial 3307 potential studies were identified,
which was reduced to 213 on review of the titles and
abstracts with a final 32 studies included after consider-
ation of the full texts. These showed that studies have
been carried out for multiple forms of cancer, with
diverse applications considered. The approaches taken
and resulting findings of these studies are detailed in this
review to provide an overview of the field and inform
future research and translation.

Cancers that have been investigated using hyper/
multispectral imaging include colon [35–39], oral
[40–48], head and neck [49–53], skin [54, 55], breast
[56, 57], cervical [58], gastric [59], ocular [17, 20], blad-
der [60], lung [61], brain [62, 63], and ovarian [64]
(Table 1). Research interest in this area is intensifying,
with seven publications published 4 years covered by this
scoping review, eight in the second, and 16 in the most
recent.
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TABLE 1 Clinical applications of hyperspectral imaging of autofluorescence to cancer.

Excitation Emission

Single
or two
photon Context Finding

Cancer (in vivo)

Oral

(Roblyer,
Kurachi
et al. 2010)
[40]

365, 380, 405
and
450 nm

18 emission
features
based on
RGB colour
channels

Single Surgical microscope; non-
neoplastic, dysplastic
and cancerous oral
tissue. Detection.

Sensitivity 100% Specificity 85% for
discriminating dysplasia/cancer
samples from non-neoplastic samples

(Jo, Cheng
et al. 2018)
[41]

355 nm 390 ± 20, 452
± 22.5,
>500 nm

Single Handheld FLIM
endoscope; mild-
dysplasia, early stage
oral cancer, benign
lesions. Detection and
delineation.

Sensitivity >90%, Specificity >85%, ROC-
AUC >0.9, Negative predictive value
98% for diagnosis

(Lu, Wang
et al. 2018)
[42]

455 nm 500–720 in
5 nm steps

Single CRI Maestro; oral
neoplasia (mouse
tongue model).
Detection.

Regions of tongue neoplasia were defined
with ex vivo AUC 0.87 ± 0.03, in vivo
AUC 0.84 ± 0.06. Accuracies for
normal, dysplasia, carcinoma in situ
and squamous cell carcinoma were
75%, 76%, 83% and 91%

(Pal, Edward
et al. 2017)
[43]

780 nm 400–650 nm Two Multiphoton microscopy
system with
incorporated
spectrometer; DMBA
hamster model of oral
pre-cancer and OSCC.
Characterisation.

Control and neoplastic tissue samples
characterised. The intensity of a PpIX
peak and its ratio with a blue–green
peak were significantly different in
control and neoplastic tissues.

(Duran-
Sierra,
Cheng et al.
2020) [44]

355 nm 390 ± 20 nm,
452
± 22.5 nm,
>500 nm

Single FLIM endoscopy;
precancerous and
cancerous oral lesions.
Characterisation.

Several autofluorescent features were
significantly different between
precancerous/cancerous oral lesions
and normal oral tissue.

(Bedard,
Schwarz
et al. 2013)
[45]

405 nm 471–667 nm Single Snapshot imaging
spectrometer; lesions
and clinically normal
sites in oral cancer
patients.
Characterisation.

Lesions had decreased overall, blue/
green and red wavelength intensities.

Skin

(Romano,
Teixeira
Rosa et al.
2020) [54]

355 nm 390 ± 20, 452
± 22,
>496 nm

Single FLIM dermoscopy system
with handheld probe;
patients with diagnosed
nodular BCC lesions,
normal regions.
Detection.

Statistical classifiers from FLIM features
discriminated BCC from healthy tissue
with ROC = 0.82

(Lihachev,
Derjabo
et al. 2015)
[55]

405 nm Red and
green
spectral
bands

Single Samsung Galaxy Note 3
phone camera; skin
neoplasms from BCC
patients and an atypical
nevus patient.
Characterisation.

BCC cases had lower autofluorescence in
malignant tissue compared with
healthy skin. In all BCC cases, the
Normalized intensity decrease maps
had high-intensity decrease rates at the
tumour areas with low intensity in
comparison with healthy skin and the
internal ulcerating area.
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TABLE 1 (Continued)

Excitation Emission

Single
or two
photon Context Finding

Cervical

(Bae, Lee
et al. 2016)
[58]

638 nm Visible
spectral
range and
700 nm

Single Animal scope;
tumorigenic cells
grafted into the thighs
of nude mice.
Characterisation.

NADH and flavin autofluorescence as
background to PpIX highlighted
tumours

Cancer (ex vivo)

Head and neck

(Halicek,
Dormer
et al. 2020)
[49]

455 nm 500–720 nm
in 10 nm
increments

Single Cri Maestro; specimens
from patients
undergoing resection of
thyroid tumours or
salivary gland tumours.
Detections

All thyroid tumours AUC = 0.85 ± 0.2;
papillary thyroid carcinoma
AUC = 0.81 ± 0.03; medullary and
insular thyroid carcinomas
AUC = 0.86 ± 0.06; follicular adenoma
and carcinoma AUC = 0.95 ± 0.02;
poorly differentiated carcinoma
AUC = 0.98 ± 0.01. Parotid salivary
tumours AUC = 0.60 ± 0.30; other
salivary tumours AUC = 0.80 ± 0.14.

(Halicek,
Dormer
et al. 2019)
[50]

455 nm 500–720 nm
in 10 nm
increments

Single Maestro spectral imaging
system; specimens from
patients undergoing
head and neck SCC
resection. Delineation.

Conventional SCC; AUC = 0.93 for
discriminating tumour only from
normal only, for HPV positive SCC
AUC = 0.86.

(Fei, Guolan
et al. 2017)
[52]

455 nm 450–950 nm Single Maestro imaging camera;
surgical tissue
specimens of head and
neck cancer patients.
Delineation.

In the oral cavity, normal tissues
discriminated from cancerous tissue
AUC = 0.83 ± 0.1; in the thyroid gland
AUC = 0.74 ± 0.33

(Lu, Little
et al. 2017)
[53]

455 nm 450–950 with
2 nm
increments

Single Maestro imaging system;
surgical tissue
specimens from head
and neck cancer
surgery. Delineation.

Cancer from normal tissue in the: oral
cavity AUC = 0.82 ± 0.20 thyroid
gland AUC = 0.72 ± 0.31; larynx and
pharynx AUC = 0.74 ± 0.26 paranasal
and nasal AUC = 0.81 ± 0.11

(Shah and
Skala 2015)
[51]

750, 890 nm 440/80,
550/100.
450/35 nm

Single Inverted multiphoton
microscope and time-
correlated single photon
counting electronics; ex
vivo tissue from head
and neck cancer
patients.
Characterisation.

Adenocarcinoma tissue had higher redox
ratios and lower NADH and FAD
fluorescence lifetimes than to
squamous cell carcinoma

Oral

(Yan, Huang
et al. 2017)
[46]

365, 405 nm 490–590, 590–
690, 650–
750 nm

Single Portable LED-Induced
Autofluorescence
multispectral imager;
normal and tumour
regions in resected oral
squamous carcinoma.
Discrimination.

Normal tissue discriminated from
tumour regions with
sensitivity = 84.68%,
specificity = 76.24% accuracy = 80.66%

(Continues)
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TABLE 1 (Continued)

Excitation Emission

Single
or two
photon Context Finding

(Yan, Cheng
et al. 2021)
[47]

365, 405 nm 470, 505, 525,
532, 550,
595, 632,
635, 695 nm

Single Portable LED-Induced
Autofluorescence
multispectral imager;
tissue from patients
with suspicious oral
lesions. Discrimination.

Normal tissue discriminated from
tumour regions with
sensitivity = 96.15%,
specificity = 69.55%, and
accuracy = 82.85%.

(Duann, Jan
et al. 2013)
[48]

330–385, and
470–
490 nm

400–1000 nm Single Regular inverted
microscope; keratinized
tissues from oral cancer
patients.
Characterisation.

Independent component analysis
resolved more reliable spectral
fingerprints for keratinized tissues for
all oral cancer tissue sections than
principal component analysis.

Colon

(Deal, Mayes
et al. 2018)
[35]

360–550 in
5 nm
increments

378/16,
402/16,
449/15,
501/15,
561/14 nm

Single Custom inverted
microscope; Normal and
neoplastic tissue from
resected human colon
sections.
Characterisation.

Neoplastic to normal ratio for elastin was
<1 for 8 of the 9 patients; NADH >1
for 6 of the 9 patients.

(Banerjee,
Rial et al.
2013) [36]

260–650 nm 340–650 nm Single Prototype wide-field
spectral imager; normal
mucosa, polypoid and
flat adenomas,
adenocarcinoma from
surgical colon
specimens. Delineation

Dividing image intensity of tryptophan
with the image intensities of FAD and
collagen achieved superior contrast for
visualising colonic neoplasms.

(Banerjee,
Renkoski
et al. 2012)
[37]

260–650 nm 340–650 nm Single Prototype multispectral
imaging system; surgical
specimens of colonic
neoplasms and normal
mucosa after resection.
Characterisation.

Peak emissions, from cancer cells for
spectra consistent with tryptophan
were twice that of normal cells.

(Meyer, Stella
et al. 2020)
[38]

785 nm 425–650 in
10 nm
increments

Two Custom-built multi-
photon microscope;
cancerous and normal
epithelial colon cells
cultivated to form
spheroids.
Discrimination.

31.5% improvement in discrimination
compared to values from published
literature.

(Kim, Lew
et al. 2021)
[39]

375 nm 420–700 in
�20 nm
steps

Single An endoscopic system
with four imaging
modalities; fresh-frozen
tissues from colon
cancer patients.
Delineation.

Normal compared to cancerous tissue:
sensitivity = 0.86, and
specificity = 0.85.

Brain

(Poulon,
Chalumeau
et al. 2018)
[62]

275 nm,
690–
1040 nm

Tyrosine,
tryptophan,
collagen,
NADH

Single Intraoperative optical
probe for optical biopsy;
fixed biopsy tissues of
primary (glioblastoma),
secondary (metastasis)
tumour and control
cortex. Delineation.

Tyrosine-tryptophan, tryptophan-
collagen, and tryptophan-NADH ratios
achieved 90% sensitivity, 73%
specificity. NADH-FAD and Porphyrin-
NADH ratios achieved 97% sensitivity
and 100% specificity.
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TABLE 1 (Continued)

Excitation Emission

Single
or two
photon Context Finding

(Poulon,
Pallud et al.
2018) [63]

890 nm 380–780 nm
in 10 nm
steps

Two Multimodal two-photon
microscope; freshly
extracted normal,
glioblastoma, and brain
metastasis from adult
patients. Delineation.

NADH/FAD, fitted SHG intensity and
average lifetime achieved 100%
sensitivity and 50% specificity.

Breast

(Carver,
Locknar
et al. 2019)
[56]

375, 405 and
488 nm

Spectrometer
with 10
emission
bins

Single Multispectral confocal
scanning system; fresh,
ex-vivo, surgical
specimens. Delineation.

NADH and FAD concentrations were
definably different between cancer and
a benign condition fibroadenoma.

(Keller,
Majumder
et al. 2010)
[57]

340 nm 400–720 nm Single Portable spectroscopic
system; samples from
total or partial
mastectomies

Negative and positive margins delineated
with sensitivity = 85%
specificity = 96% specificity.

Eye

(Habibalahi,
Bala et al.
2019) [17]

340, 368,
373, 378,
382, 388,
391, 394,
405,
413, 432,
441, 455,
460, 470,
491, 510
± 5 nm

420–460, 454–
496, 573–
613, 575–
650 nm

Single Custom-made wide-field
fluorescence microscopy
system; formalin-fixed,
paraffin-embedded
OSSN in tissue biopsies.
Delineation.

Pixel-wise correlation between histology
assessment and multispectral analysis
of �78% for inter-patient classification
and �94% for intra-patient
classification.

(Habibalahi,
Allende
et al. 2019)
[20]

340, 368,
373, 378,
382, 388,
391, 394,
405, 413,
432, 441,
455, 460,
470, 491,
510
± 5 nm

420–460, 454–
496, 573–
613, 575–
650 nm

Single Custom-made wide-field
fluorescence microscopy
system; formalin-fixed,
paraffin-embedded
OSSN in tissue biopsies.
Delineation.

OSSN detected with 1% and 14%
misclassification errors.

Gastric

(Li, Xie et al.
2019) [59]

361 nm 450–680 in
2 nm
increments

Single Hyperspectral microscopy
imaging system; patients
diagnosed with non-
atrophic gastritis,
premalignant lesions or
gastric cancer.
Discrimination.

Accuracy, specificity and sensitivity
>94%.

Bladder

(Pradère,
Poulon
et al. 2018)
[60]

870 nm 380–780 in
10 nm steps

Two Multimodal two-photon
microscope; fixed
samples of healthy and
cancerous urothelium.
Characterisation.

Significant differences in intensities for
high and low-grade tumours. Redox
ratio higher in healthy tissue than
tumour, and low grade higher redox
ratio than high.

(Continues)
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It is readily apparent that work has focused on acces-
sible tumours that can be reached endoscopically
(e.g., colon and oral) or external tumours (e.g., ocular
and skin). This is unsurprising as this optical imaging
technology is best suited for application in areas of the
body which do not require surgery to access. As such, it
is meaningful to consider studies in terms of which were
applied to live tumours still in the body (in vivo;
Section 3) and which assessed excised and surgical speci-
mens (in vitro; Section 4).

3 | IN VIVO ASSESSMENT OF
CANCER

The characterisation of tissues by autofluorescence can
be carried out non-invasively, without necessitating its
removal for processing and histology staining. As such,
one of the key areas of interest for the application of
multi and hyperspectral microscopy to oncology has been
cancer screening. Many forms of cancer diagnosis involve
the invasive collection of biopsies, which creates a diffi-
cult balance for clinicians who must judge when suspi-
cious tissue warrants further investigation.

3.1 | Oral cancer

Oral cancers, which have good accessibility for in vivo
assessment and screening have received significant atten-
tion for the application of hyperspectral imaging of

autofluorescence. Early research by Roblyer et al. [40]
used a surgical microscope for the assessment of non-
neoplastic, dysplastic and cancerous oral tissue. Excita-
tion was at 365, 380, 405 and 450 nm (each with �50 nm
bandwidth) and 18 emission features were obtained using
colour channels, including the mean values of the red,
green, and blue channels as well as the ratio of the mean
red-to-green, red-to-blue, and green-to-blue pixel values.
They found that excitation at 405 nm gave the best image
contrast, and the ratio of red-to-green fluorescence inten-
sity computed from these images provided the best classi-
fication of dysplasia/cancer versus non-neoplastic tissue,
with a sensitivity of 100% and a specificity of 85% in the
validation, although the ability to separate precancerous
lesions from cancerous was more limited. Using a multi-
spectral FLIM handheld endoscope [41] excited clinically
suspicious oral lesions at 355 nm, collecting emission
bands at 390 ± 20, 452 ± 22.5, and >500 nm. They were
able to diagnose mild dysplasia and early-stage oral can-
cer with AUC > 0.9. Furthermore, with a negative pre-
dictive value (the ratio of true negatives to total negative
test results) of 98%, this gives strong support that the
multi-spectral assessment of oral lesions could be used to
avoid unnecessary biopsies in this region.

In vivo, hyperspectral imaging of autofluorescence
(455 nm excitation, 500–720 nm emission) applied to a
mouse model of oral cancer, detected tongue neoplasia
with an AUC of 0.84 ± 0.06 [42]. Classification of specific
neoplastic transformations was also undertaken with
accuracies of 75%, 76%, 83% and 91% for normal, dyspla-
sia, carcinoma in situ and squamous cell carcinoma

TABLE 1 (Continued)

Excitation Emission

Single
or two
photon Context Finding

Lung

(Kilin, Mas
et al. 2017)
[61]

720 nm 400–650 nm
in 10 nm
increments

Two Laser-induced
autofluorescence
microscopy system;
three-dimensional in
vitro model of lung
cancer.
Characterisation.

Non-cancerous tissue had two times the
autofluorescence intensity of
cancerous, with decay in the direction
of the main tumour body.

Ovarian

(Renkoski,
Hatch et al.
2012) [64]

365 nm 400–600 nm Single Wide field spectral imager;
freshly resected human
ovaries. Discrimination.

Normal and cancerous ovaries
discriminated; sensitivity = 100%
sensitivity, specificity = 51%.
Specificity increased to 69% by dividing
autofluorescence data with green
reflectance values.

Note: Detection = studies with a focus on the detection or grading of neoplasia at the lesion level (potential application to screening or diagnosis);

Delineation = studies with a focus on defining tumour regions within tissue (potential application to the definition of surgical margins);
Characterisation = Studies with a focus on investigating the properties of neoplastic tissues without applying those findings to differentiation.
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respectively. In an in vivo study using a hamster model,
Pal et al. [43] used multiphoton autofluorescence micro-
spectroscopy (780 nm excitation, emissions collected
400–650 nm) to characterise oral epithelial squamous cell
carcinoma (OSCC). A red shift of a blue–green (480–
520 nm) peak and a prominent peak for OSCC and some
high-grade dysplasia at 635 nm (which was attributed to
PpIX) were observed. The fluorescence intensity of the
PpIX peak and the ratio of this peak and the blue–green
peak had statistically significant differences between con-
trol and neoplastic tissues.

Other works have focused more on the characterisa-
tion of neoplastic properties over the development of
diagnostic algorithms. Another study of FLIM endoscopy
(emission 390 ± 20, 452 ± 22.5, and >500 nm; excitation
355 nm) [44] found several autofluorescent features with
statistically significant different distributions between
precancerous and cancerous oral lesions and normal oral
tissue. While a single device which combined assessment
of reflectance and autofluorescence (with an emission
range of 471–667 and a 405 nm LED used for excitation)
was used to create snapshot images of normal controls
and patients with oral cancer [45] and demonstrated that
abnormal tissues had autofluorescence spectra with low
intensity, relative decreases in blue/green wavelength
region and an increase in red wavelength region.

3.2 | Skin cancer

Skin cancers have similarly ready accessibility for in vivo
assessment to oral cancers. Fluorescence lifetime imaging
(FLIM) dermoscopy was used by Romano et al. [54] with
a triple emission band 390 ± 20, 452 ± 22, and >496 nm
and excitation at 355 nm to discriminate nodular basal
skin carcinoma (BCC) CC from healthy tissue, achieving
an AUC of 0.82. Interestingly, in Lihachev et al. [55], the
advancing quality of smartphone cameras was exploited
to develop a translatable system suitable for remote pri-
mary evaluation of suspicious skin lesions. Here skin
autofluorescence was assessed at 405 nm excitation, with
emissions captured in the red and green spectral bands
by a Samsung Galaxy Note 3 smartphone-integrated
CMOS RGB image sensor, with BCC shown to have low-
ered intensity compared to surrounding healthy skin.

3.3 | Cervical cancer

Another in vivo study was carried out in a mouse model
of cervical cancer (TC-1 cells transformed with human
papillomavirus, injected into the flank) [58]. Here, multi-
spectral imaging—with a 638 ± 3 nm LED and a

multiband-pass filter with the visible spectral range tai-
lored to detect NADH and flavin autofluorescence (used
for background image) and 700 nm for PpIX—helped to
visualise and highlight tumours by distinguishing them
from normal areas. This study also found that their sys-
tem was sensitive to real-time dynamic photochemical
reactivity through assessment of PpIX photobleaching,
raising its potential application for treatment monitoring.

4 | EX VIVO ASSESSMENT OF
CANCER

Despite its advantages for clinical translation applica-
tions, the in vivo assessment of tumours can be difficult
to achieve, especially for areas less accessible than oral
and skin cancers. As such, the majority of research on
the application of hyper and multi-spectral assessment of
cancer autofluorescence has been carried out ex vivo on
tissue biopsies or, in some cases, in vitro cultured cells
from neoplastic cell lines. Even here, the accelerated
nature of this form of imaging, which does not require
periods of fixation and staining, has major potential for
guiding surgeries and some of the research has direct
potential for translation.

4.1 | Head and neck cancer

One group of authors has published several studies inves-
tigating the use of hyperspectral imaging of autofluores-
cence for assisting surgeries for head and neck cancer. In
Halicek et al. [49], they applied their system, which for
fluorescence microscopy used a 455 nm excitation source
with emissions collected every 10 nm from 500 to 720 nm
at 10 nm increments, to the detection of cancer in thyroid
and salivary glands using normal tissues, tissue from the
primary tumour and tissue from the tumour margin from
patients undergoing resection. For thyroid tumours, they
obtained AUCs of 0.85 ± 0.2 for all thyroid tumours,
0.81 ± 0.03 for papillary thyroid carcinoma, 0.86 ± 0.06
for medullary and insular thyroid carcinomas, 0.95
± 0.02 for follicular adenoma And carcinoma, and 0.98
± 0.01 for poorly differentiated carcinoma. For salivary
tumours, AUC was 0.60 ± 0.30 for parotid, and 0.80
± 0.14 for other tumours. The same system was applied
in [50] for the investigation of head and neck squamous
cell carcinoma (SCC) margin detection in surgical speci-
mens. For their conventional SCC cohort, inter-patient
experiments had a median AUC of 0.93 for discriminat-
ing tumour only from normal only, while for HPV-
positive SCC the median was 0.86. Their study showed
that autofluorescence hyperspectral imaging (and also
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reflectance) outperformed fluorescent dye-based imaging
methods, with the capacity to accurately detect cancer
margins in ex-vivo specimens within minutes.

In two further studies, hyperspectral imaging of auto-
fluorescence was compared to hyperspectral imaging of
reflectance [52, 53]. As above, cancers were delineated
from normal tissue in fresh surgical specimens of people
with head and neck cancer using 455 nm excitation and
collecting emissions at 10 nm intervals from 500 to
650 nm [53]. Overall, they obtained AUCs of 0.82 ± 0.20
for oral cavity, 0.72 ± 0.31 for gland, and 0.74 ± 0.26 for
larynx and pharynx and 0.81 ± 0.11 for paranasal and
nasal. In another study aiming to apply hyperspectral
imaging, with autofluorescence contrasted to reflectance
for tumour margin assessment in surgical tissue speci-
mens [52], normal tissues were discriminated from can-
cerous tissue in the oral cavity (AUC = 0.83 ± 0.19) and
the thyroid gland (AUC = 0.74 ± 0.33). In both cases,
hyperspectral imaging of reflectance was noted to have
outperformed autofluorescence.

Using an inverted multiphoton microscope with time-
correlated single photon counting (enabling FLIM imag-
ing) a different group investigated hyperspectral imaging
of ex vivo head and neck cancer patient tissues and
showed that adenocarcinoma tissues had higher redox
ratios coupled with lower NADH and FAD fluorescence
lifetimes compared to squamous cell carcinoma tis-
sue [51]. NADH signal was isolated with excitation wave-
length at 750 nm and a 440/80 nm bandpass emission
filter, while FAD signal was isolated with an excitation
wavelength at 890 nm and a 550/100 nm bandpass emis-
sion filter. Adenocarcinoma samples additionally had
higher collagen content than squamous cell carcinoma
tissues (identified through second harmonic generation
imaging).

4.2 | Oral cancer

In addition to the in vivo studies of multispectral imaging
of oral cancer autofluorescence (Section 3.1) several
works have also investigated excised tissue sections—
generally with a view towards developing the technology
towards in vivo application. Two such studies, Yan 2017
and Yan 2021 applied different constructions of their
LED-Induced Autofluorescence (LIAF) multispectral
imager to ex vivo sections of tissue from oral cancer
patients and healthy controls. The first study [46] investi-
gated using 365 or 405 nm excitation and emission filters
at 490–590, 590–690 and 650–750 nm to discriminate tis-
sue sections from patients with oral cancer from those
without. Optimum discrimination (sensitivity 84.68%,
specificity 76.24% and accuracy 80.66%) was achieved by

illumination with the 365 nm LED and no filters. In a
follow-up study [47], 365 and 405 nm excitation LEDs
were applied with emission filters with centre wave-
lengths at 470, 505, 525, 532, 550, 595, 632, 635, and
695 nm. Single-layer network processing was used to
select six classifiers using the 470, 505, 532 and 550 nm
emission filters which could predict the presence of oral
cancer with a sensitivity 96.15%, specificity 69.55% and
accuracy 82.85%. Based on the high sensitivity and non-
reliance on expert interpretation the authors concluded
that the LIAF multispectral imager would be useful for
rapid screening and early detection of oral cancer.

Another study applied independent content analysis
to separate spectral mixtures in hyperspectral images of
keratinised tissues from oral cancer patients [48]. They
used two excitation wavelengths (330–385 and 470–
490 nm) with emissions collected by a ‘hyperspectrom-
eter’ [48] spanning 400–1000 nm, and obtained good cor-
relation coefficients with the known characteristics of
autofluorophores (0.92 ± 0.09 and 0.97 ± 0.03, respec-
tively). The authors noted that the detection of kerati-
nised tissue was of no particular diagnostic value for the
early diagnosis of cancer (occurring as it does in the later
stages), but the study was undertaken as an early pilot of
the application of the technology to diagnostics.

4.3 | Colon cancer

Most studies described in this review studied systems
with an increased number of emission wavelengths
assessed, stimulated by a comparatively limited number
of excitation wavelengths. In contrast, Deal et al. used a
very broad range of excitation wavelengths (360–550 nm)
in 5 nm increments, with a long-pass emission filter and
dichroic beamsplitter used to separate excitation and
emission light at 550 nm [35]. They demonstrated that
their technology was able to separate signals of endoge-
nous fluorophores (collagen, elastin, PpIX, FAD and
NADH) in order to detect relative differences in concen-
trations of fluorophores between normal and neoplastic
colon tissue.

The Identification of specific fluorophores as bio-
markers in colon cancer was also the focus of a study by
Banerjee et al., who undertook hyperspectral imaging
with a wide field Xenon-lamp based spectral imager
capable of illumination from 260 to 650 nm and detection
from 340 to 650 nm [36] to target tryptophan (excitation
280 nm, emission 300–410 nm), collagen (excitation
370 nm, emission 410–500 nm as well as excitation
440 nm, emission 600–680 nm), FAD (excitation 440 nm,
emission 500–600 nm). They showed that by dividing the
image intensity of tryptophan—pixel by pixel—with the
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image intensities of FAD and collagen they achieved
superior contrast for enhancing the visibility of colonic
neoplasms. This built on work from the same group in
colon cancer where they found that hyperspectral imag-
ing with excitation from 260 to 650 nm and emission col-
lection from 340 to 650 nm resulted in cellular emission
spectra with a peak at 330–340 nm when excited at
280 nm—consistent with the emission of tryptophan—
and that peak emission from cancerous cells was about
twice that of normal cells [37]. Meyer et al. investigated
the discrimination of 2D cultured cancerous and normal
epithelial colon cells by redox ratio using two-photon
excited fluorescence (TPEF) and an algorithm for the
selection of optimised bandpass filters for the detection of
autofluorophores without reliance on prior knowledge of
their characteristics [38]. Their hyperspectral multipho-
ton microscopy system (which applied a 785 nm laser
and spectrometer detection of emission) achieved a 31.5%
improvement of cancer–non-cancer discrimination com-
pared to the use of previously researched values from
published literature.

An endoscopic system which combined four imaging
modalities—white light imaging, high-frequency ultra-
sound brightness-mode imaging, integrated backscatter-
ing coefficient (IBC) imaging and also multispectral
autofluorescence imaging (375 nm excitation, emission
collected 420–700 in �20 nm steps)—was used to charac-
terise excised colon tissue [39]. The multispectral assess-
ment achieved sensitivity 0.86 and specificity 0.85 for
discriminating between normal and cancerous tissue.

4.4 | Brain cancer

Fluorescence-guided surgery is already in common use
for brain surgery, typically making use of
5-aminolevulinic acid (5-ALA) stimulation of the accu-
mulation of the autofluorophore PPIX in order to better
define tumour margins and optimise the safety of the re-
section of tumours [65]. A study was undertaken on fixed
biopsy tissues of primary (glioblastoma), secondary
(metastasis) tumour and control cortex to define bio-
markers to aid in the surgical resection of high-grade
brain tumours without the administration of exogenous
factors [62]. Excitation was performed in deep UV
(275 nm) and near infra-red (690–1040 nm) with the
detection modalities including fluorescence imaging,
spectroscopy and fluorescence lifetime imaging. These
were used to define ratios for tyrosine-tryptophan,
tryptophan-collagen, and tryptophan-NADH which
enabled discrimination with 90% sensitivity and 73%
specificity as well as NADH-FAD, and Porphyrin-NADH
ratios which enabled 97% sensitivity and 100% specificity.

A multiscale algorithm which used the three most effec-
tive markers. Porphyrin-NADH ratio, Tryptophan colla-
gen ratio and average lifetime at 890 m separated
primary tumours from healthy regions with only 1.8%
overlap, secondary tumours and healthy regions with 0%
overlap, and primary tumours from secondary tumours
with 6.7% overlap. The same group used two photon
microscopy to discriminate normal brain tissue from glio-
blastomas and brain metastasis in fresh biopsies [63].
Excitation at 890 nm with emission measured from
380 to 780 nm in 10 nm steps was used to define used
NADH/FAD, fitted SHG intensity and the average life-
time which resulted in 100% sensitivity and 50%
specificity.

4.5 | Breast cancer

The real-time detection of breast cancer was investigated
by Carvar et al. [56] who created single colour-coded
images for the assessment of surgical margins and
needle-based biopsies using data cubes with excitations
at 375, 405 and 488 nm with 10 spectral bins bounded by
two of the emission wavelengths. By assessing cellular
concentrations of NADH and FAD they found definable
differences between cancer and a benign condition
fibroadenoma for which differential diagnosis is needed.
These authors built a high-speed set-up which could gen-
erate 10 data cubes per second, which was sufficiently
rapid to be able directly to monitor surgical margins at
the cellular level during lumpectomies. An earlier study
investigated the use of autofluorescence (excitation
340 nm, emission detected from 400 to 720 nm) com-
bined with diffuse reflectance spectroscopy to evaluate
tumour margins in tissue masses removed during partial
mastectomies [57]. They achieved 85% sensitivity and
96% specificity for the classification of negative and posi-
tive margins. Additionally, neo-adjuvant chemotherapy-
treated and non-treated tissue could be discriminated
with 100% accuracy.

4.6 | Eye cancer

Despite its accessibility and the desirability of technol-
ogy which would minimise the collection of biopsies,
relatively little work was found that applied the hyper-
spectral assessment of autofluorescence to the detection
of ocular cancers. Habibalahi et al. investigated ocular
surface squamous neoplasia (OSSN) in tissue biopsies
and mapped the samples' multispectral profiles to
expert histological assessment [17]. They applied a high
number of LED excitation wavelengths (340, 368,
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373, 378, 382, 388, 391, 394, 405, 413, 432, 441,
455, 460, 470, 491 and 510 ± 5 nm) with emissions col-
lected across filters at 420–460, 454–496, 573–613 and
575–650 nm. They obtained a pixel-wise correlation
between histology assessment and multispectral analysis
of �78% for inter-patient classification and �94% for
intra-patient classification. As their methodology was
fully automated with the potential to produce diagnos-
tic maps rapidly and in quasi-real time, they noted its
potential for translation for intraoperative assessment
for defining tumour boundaries for OSSN. This was
reinforced in a related work where the application of
10 or 5 select channels from their set could detect
OSSN with 1% and 14% misclassification errors,
decreasing imaging times by 75% and 80%, respec-
tively [20]. In an additional work published since this
review's primary search, the same group used a similar
technology with 59 channels to automatically discrimi-
nate pterygium and/or OSSN from 50 patients from
normal tissue with an accuracy of 88%, and also defined
boundaries in close agreement with hematoxylin and
eosin stained sections [66].

4.7 | Gastric cancer

The potential application of hyperspectral imaging of
autofluorescence to the early diagnosis of gastric cancer
was studied by Li et al. [59]. Here, samples from patients
pathologically diagnosed as non-atrophic gastritis, pre-
malignant lesions or gastric cancer were collected and
imaged using hyperspectral technology (361 nm excita-
tion, emission 450–680 nm, collected every 2 nm). They
showed that the average spectra of the investigated forms
of gastric cancer differed at 496, 546, 640 and 670 nm
emission wavelengths. A diagnostic model which used
the hyperspectral data achieved accuracy, specificity and
sensitivity above 94%, which the authors concluded sup-
ported the application of hyperspectral imaging of auto-
fluorescence for the non-invasive, sensitive, real-time
diagnosis of early gastric cancer.

4.8 | Bladder cancer

In Pradère et al., the potential of multispectral imaging of
autofluorescence for the detection of bladder cancer was
investigated using fixed samples of healthy and cancerous
urothelium [60]. Excitation was at 870 nm with emission
detection covering 380–780 nm in 10 nm steps. Signifi-
cant differences in intensities of emission were observed
for high and low-grade tumours. Further, the calculation
of the redox ratio indicated that healthy tissues had a

higher ratio compared to tumour samples, and low-grade
tumours had higher ratios than high.

4.9 | Lung cancer

Using a three-dimensional in vitro model of lung cancer
(reconstructed human epithelium with human lung
fibroblasts and lung adenocarcinoma cell lines) a two-
photon laser-induced autofluorescence microscopy sys-
tem (excitation at 720 m, emission 400–650 nm in 10 nm
steps) was able to detect differences in spectral and inten-
sity heterogeneity at the edges of tumours [61]. Non-
cancerous tissue had twice the intensity of cancerous,
with autofluorescence decaying in the direction of the
main body of the tumour—indicating potential sensitivity
of multispectral assessment of autofluorescence to the
impact of tumours on their microenvironment.

4.10 | Ovarian cancer

Renkoski et al. imaged freshly resected human ovaries
with excitation at 365 nm and emission collected on eight
spectral bands from 400 to 600 nm as a step towards
developing a tool for screening for ovarian cancer [64].
Linear discriminant analysis was used to define a model
which was able to classify normal and cancerous ovaries
with 100% sensitivity and 51% specificity, with specificity
being able to be increased to 69% by dividing autofluores-
cence data with green reflectance values to correct for
variations in tissue absorption. The same algorithm clas-
sified ovaries with benign neoplasms as non-malignant.

5 | CONCLUSIONS

Hyper and multispectral imaging of autofluorescence has
been trialled in vivo and ex vivo for the non-invasive
characterisation of neoplastic tissue and suspect lesions.
A primary driver of in vivo human translation seems to
be tissue accessibility, as the non-invasive nature of the
technology means that it can be trialled on surface con-
texts (e.g., skin and oral cancer) with no real potential for
negative patient outcomes. Despite its potential to enable
non-destructive assessment, ex vivo applications of multi
and hyperspectral imaging dominate the field. Colon can-
cer stands out as cancer with relatively good in vivo
accessibility that has not been investigated in this con-
text. At the same time, we highlight brain tumours as
cancer which, despite the comparative difficulty of acces-
sing in vivo, would benefit greatly from a reduction in
the clinical burdens created by the biopsy.
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Most studies, in vivo and ex vivo, used human clinical
samples, with cell and animal models being relatively
uncommon. Although this is an advantage to the field
sample sizes were relatively low with studies positions as
pilots of proofs-of-concept, and consequently little con-
sideration was given to the generalisability of clinically
meaningful comparisons (e.g. discriminating visibly sus-
picious lesions from fully healthy tissue). Additionally,
many works limited themselves to identifying whether
quantifiable differences in autofluorescence could be
established, without investigating these characteristics'
actual utility for cancer identification. Other studies
which did investigate accuracy would have been
improved by comparisons to current standard methods.
Greater translational work is needed for this technology
to achieve its potential.

Desirable optical characteristics for the non-invasive
assessment of cells and tissues by hyperspectral imaging
are highly specific to the intended application, with areas
of functionality often laying in direct conflict with one
another. Speed of image acquisition, for instance gener-
ally comes at the cost of image resolution and/or number
of spectral channels assessed. Increasing the intensity of
light used can mitigate this specific trade-off—enabling
high-resolution images to be captured quickly—but this
creates the potential for photobleaching and damage to
sensitive tissues in vivo. High-sensitivity cameras for cap-
turing emissions represent another mitigatory strategy,
but their sensitivity applies equally to background light—
difficult to control for in vivo, clinical applications—and
they can be very costly with diminishing returns. Simi-
larly, high magnification objectives can improve resolu-
tion without necessitating increased exposure times or
higher intensity light, but are also expensive and give a
more limited field of view, slowing data collection. How-
ever, with a considered focus on necessary characteris-
tics, the process of optimisation can enable the
development of hyperspectral devices able to perform
their target function even under highly restrictive cir-
cumstances. A good example from outside of oncology is
given by a series of works [67–73], where the develop-
ment and validation of a hyperspectral catheter, able to
generate real-time images inside of a beating to guide tis-
sue ablation for the treatment of atrial fibrillation.

Two main technological strategies were observed;
the application of one or very few excitation wave-
lengths with broad (often spectroscopic) assessment of
emissions, and the use of a higher number of excitation
wavelengths with a lower number of emission wave-
lengths assessed, often using wavelength-specific fil-
ters. Generally, the former was applied when specific
fluorophores were being targeted as disease biomarkers
and the latter was used when the intention was to
develop a discriminatory spectral signature. Where the

objective was tissue characterisation with real-time vid-
eography both excitation and emission wavelengths
were constrained relative to other applications. The
overwhelming focus has been on the discrimination of
neoplastic tissue from normal tissue or suspicious but
benign lesions. However, there is some indication that
autofluorescence can indicate tumour characteristics,
including metastatic potential [74] and drug response
[75, 76], and future works should consider novel appli-
cations for the technology.
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