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Summary

Several possible distributions for describing quasi-
stationary behaviour within the transient states of a
finite Markov absorbing chain are proposed and studied.

The study is motivated by some work of Bartlett,and
possible population model implications,

The submatrix corresponding to the transient states
is found to be of fundamental importance, the most relevent
results obtained being expressible in terms of the eigen-
vectors corresponding to its spectral radius, when this
matrix is indecomposable., Whereas most attention is
devoted to the primitive and cyclic alternatives of this
case, the theory is extended to the: decomposable set of
states by some results of Mandl, and developed analogously
for the finite case with continuous parameter.

During the evolution of the subject matter, it becomes:
clear thpt, in effect, a generalization of ordinary lMarkov
chains is being considered, this giving rise to the idea of
quasi-chains.y; defined on the transient states. The most
interesting result in relation to this, is the existence
and properties of a reverse Markov chain, defined also only
on the transient states,

The last part of the thesis is devoted to examining
the concept .of quasi~stationary distributions for absorbing
chains with a denumerably infinite state space, in a few
gpecial cases, In the process a theorem of Yaglom, concerm-
ing simple disorete branching processes,is generalized,
Finally, an appendix gives some notes on generating functions
in our context, together with some remarks on the related-
problems for diffusion processes,



This thesis contains no material which has been
accepted for the award of any other degree or-dipiloma
in any University and to the best of the author's
¥nowledge and belief the: thesis contains no material
previously published or written by another person except
when due reference is made in the text of the thesis.

Signed..
(E. Seneta)



INTRODUCTION

It is both theoretically and practically interesting
to study the behaviour within the transient states of a
a finite absorbing Markov chain.. Theoretically,, such a

study is profitable because the problem has received
virtually no attention in the literature, apart from a
few isolated instances(Bartlett, {2]; Ewens, [I0]; Yaglom,
[33] .)where the matter arises; only inecidentally.. From a
practical point of view, such a study is significant in
relation to genetic and stochastic: population models, for
such models are often just finite absorbing Markov chains
(e.g. Ewens, [II]; Watterson, [32].). In such chains the
probability of absorption in a finite time is unity, but
"It may still happen that the time to extinction is so.
long that it is still of more relevence to consider the
effectively ultimate distribution, called a2 'quasi-
stationary' distribution,..."(Bartlett, [2] ). It is with
such quasi-stationary distributions and their variants
that we concern ourselves in this thesis,

Finite chains, with discrete time parameter are given
the most extensive treatment, and the results are developed
analogously for the case of continuous time The methods
used are not applicable when the number of states is
denumerably infinite. However Chapter I0, in which a
few special cases are considered, is included for complete-
ness.,

The general method used is to set up quantities
which are thought to provide suitable descriptions of the
behaviour, in some sense, as time goes on. Thus we often
consider limits as the time parameter increases beyond all
bounds. After investigating existence and aptness, we
compare such quantities. Of considerable interest also,

is the comparison of the various expressions with corres-

ponding expressions occuring in the ordinary theory of



Markov chains, leading to a somewhat parallel evolution
to it. Where relevent, results of other authors (e.g.

Mandl, [ 22] ) are eppropriate, they are adapted to our

needs,with due citation.

The material of Chapters I, 2,, and 8 is not new
apart from the lemmas in I.3. The content of Chapters 3,
4, 5, 6, and 9 is essentially new, except where otherwise
stated. For the most part, Chapter 7T contains new matter,
apart from 7.2, 7.3, 7.4 , while Chapter IO contains
nothing original apart from the generalization of Yaglom's
theorem, .

The most significant result of the investigation
is that it is in fact possible to develop a reasonable,
unified theory of quasi-stationary behaviour. Moreover,,
it is shown that such a theoryis, in fact, more general
. than the ordinary theory of finite Markov chains, in
that certain results are obtained for sub-stochastic
matrices, which contain those for stochastic matrices as
particular cases. Hence it may be Justifiable to speak
of finite Markow chains as a particular case of more
general Markov 'quasi-chains'., However as regards
these statements, this thesis can be regarded as only
a beginning.



I. BASIC DEFINITIONS AND RESULTS.
I.I Non-negative Matrices.

The theory of non-negative matrices has been
applied to finite Markov chains in several books: see
Frechet [I4], Gantmacher [IS], and Romanovskii [23}
Good descriptions of the theory, in English, may be

"found in Debreu and Herstein [8], and Gantmacher; we
merely state what we require.
Definition I.I We will call a matrix A with real

elements non—negative(positive) if all its elements are

non-negative(positive), and write it A>0(A%0)
Definition I.2 The square matrix A= [Quk]is called

decomposable if thre is a permutation of indices (i.e.

simultaneous interchange of rows and columns) which
reduces it to the form

-~ All o ’

A=A &
where A, , A, ,are square. Otherwise the matrix A 1is

indecomposable.,

Definition I.3 The non-nezative indecomposable

matrix A is called primitive if there is a power of A
which is positive i.e., &’>0 for some p> L. Otherwise 1t
is imprimitive(or cyclic) ..

THEOREM I.I An indecomposable non-negative matrix A

a) always has a positive eigenvalue r, which is a
simple root of the characteristic equation;

b) has the moduli of the other eigenvalues at most
r;

¢) has corresponding to T positive left and right
eigenvectors; and

d) if A has precisely h eigenvalﬁes ryAs, ... An of
modulus equal to r, then these numbers are all different
from each other and are roots of the equation

Nart= 0



&
THEQOREM I.2 An indecomposable non-negative matrix

A is primitive iff »r excéeds the modulus of any other
eigenvalue. Hence if h>»DL, such A is cyclic.

THEOREM I.3 If A is cyclic, it may be reduced to the
following cyclic form by a permutation of indices:

(o] All O. % E & Q
N o O Ay - O
= . %
, o 00 Ay
o (o) (o) . Wi b
Ah' o o . l o

where the zero matr{ces along the diagonal are square.

Thus h is is called the period of the cyclie matrix.

THEOREM I.4 (Romanovskii, [29] pp. I5-I6) For an

indecomposable non-negative matrixz A = CQJF]?
min 2 Qie fr ¢ max Z.“ik

L {1} 1
with one equality holding iff both hold.
Definition I.4 We shall refer to r as the spectral

radius of the non-negative indecomposable matrix A.
Definition I.5 A substochastic matrix is a non-

negative square matrix whose row sums do not exceed
unity. (A particular case is the stochastic matrix,

whose row sums are all unity.)
I.2 Ergodic Chains and Absorbing Chains, /
We follow the terminology of Kemeny and Snell [I9],
but the few remarks below serve to redefine the wvarious

types of chains in terms of non-negative stochastic
matrices., This is convenient for comparison purposes,
later, However, for the properties and general theory
of finite Markov chains, the reader is referred to [19),
the approach there being a matrix one also, although the
authors are careful to avoid spectral theory, and follow
the more common classification of chains in terms of
communication relations. 7

a) A regular chain is one with a primitive tran-
sition matrix.



)
b} A ¢yclic chain is one with a cyclic transition
matrix.
¢) An ergodic chain is one which is either regular
or cyclic.
We recall that an absorbing chain is one whose
transition matrix can be written in the form

i o
1.1 = ™ o$2
(1.1) P [ﬁ?g] pe

where Q is sxs and p,, O are both sxl; where the totality
of statesfor this, ;s a;y other finite chain in this
thesis,shall be denoted by S,={Q@,1,2,....sk The

set of transient states,{l,2,.....s} in the absorbing
chain, shall be denoted by T (in general we shall consider
only one absorbing state, 0j), Thus Q is the matrix |
of transitions within the transient states, and has at
least one row sum less than unity(since p,%g),

It is found convenient to define certain random
variables associated with an absorbing chain, which
simplify what is to follow. If the process starts in
state 1¢T at time O, let Y{?=1 or O according as the
process is or is not in state j at time n. Therefore

10)

Y =étj. Further, let

Xy =2 ¥~ . X =Z % 1,47
It follows that s

a} Xij is the total number of visits to state j
bvefore absorption (or alternately, the time spent in
state j vefore absorption) having started from ij;

b) X;is the time to absorption, starting from i. ,
Moreover, when the process starts with an initial
probability distribution who§e component over the
transient set T is 77'(0‘Z@~l), it is convenient to
define random variables X‘,} » X,, to have analogous
meanings, Thus



}QEgJ=JX3J ’ Xp= X
where - we denote byf; the vector with one as the i th
coordinate the othersﬂbeing zero, and by & the unit |
vector, so that e=[#}--- 11, )
Finally, we note that from theorems I.I, I.2 and
I.4 we have for an absorbing chain,with matrix Q
primitive, that

~ -~ ’ k -~
(1.2) C=prwy’ . O(n T'l)
Here.f‘i is the spectral radius of Q, w and.g’are the
corresponding positive left and right eigenvectors
such that yéhl, and'fﬂ‘17 where‘plis the eigenvalue whose
modulus is closest to}b The number k+l is the maximum
multiplicity taken over those eigenvalues whose modulus
is Unl hence it is w l.0.g. the multiplicity Of,PL'
The vectors w and V are also assumed to be normalized
in such a way that.yf 1 , where ¢ is the unit vector.
It is important to note that (1.2) is true for any
primitive matrix Q, apart from the bound onija

I,.3 Two Basjc Lemmas.

Since: it is appropriate to use generating functions
several times in the sections which deal with the discrete
time parameter, we utilize a fairly well known approach
to counting problems in such theory (e.g. Bhat, [ 5] ;
Good, [ 16]) to prove the first of the lemmas. The
second gives an expression for the derivative of a

. matrix power which enters into our generating functions.
ITEMMA I.I Let Q be the substochastie matrix which
corresponds to the set of transient states T in an
absorbing Markev chain. Let Dj(wd be the diagonal
metrix of the same dimension whose Jj th diagonal element.
is w , the others being ones. Then, putting



~77’_Dj(o) . ?’5 (w)

Q2 (w)+ Qj (W)

we have
(1.3 L% PLEy o, Xyem] - j['f‘ () 0] () [I90e]
X3 0 w
X-g - 30' ..'
Proof: EL @~ "] Z. T W% Z’P”" Je. J(J...i;a::“r',‘:’..(-':..‘f.-.d “pio

-

wheire xz'ﬂtis fixed,
T (D[ 9] [T-0] ¢
C Ti(e) Q@) [T-0] €

Hence (1.3), by differentiation and evaluation at
LEMMA TI.2 When Q:is primitive

(1.8) LGl ]y (=D v w Wy’ O
dr U &

where ¥,%j are the j th elements of the eigenvectors v’
and w respectively (see (1.2)).

Proof: ——r ‘ ~-d — o
oo =~ do

ZQ%fd

on O

where % is the j th colum of Q. From (1.1)

Efernger} O ]

(m.i)f wVJEJA':’ +O(f)



- 8
" kil
since y'%'y-‘lg' (!Ip_‘j’..", ) and Z.:'”' (‘fa‘) is bounded, being

M 80

convergent. Hence (1.4).



2, MOTIVATION AND ANALYSIS.
2.1 Bartlett's Approach.
While dealing with stochastic porulation models
of various kinds, Bartlett ([2],p.2l) infroduces the
idea of a quasi-stationary distribution during the
discussion of one which is a Markov chain, with transition
matrix (adapted to our notation and context)

1-¢& & o’

2.1 = A

S [
Here the dimensions of the wvarious components are as in
(1.1) except that O is now (s-2)xl. The states 0,1,2,..,8
actually represent numbers of individuals, and the
transition probabilities are given by

P".".‘i >0 , 142 ¢5-1
fa‘,i-:. > o , 142 45
.[J.:'i > o 715{5 6

Thus when €*0, it is clear that the chain is regular,
whereas if é»2o0 , the state 0 is absorbing (an "exbtinction
state) but the matrix R is primitive. Both these
situations can, of course, be described in terms of random
walks or a general birth-and-death process,

Now, when €:o , extinction occurs in a finite time
with probability 1. To obtain an effectively ultimate
distribution, when the time to absorption may bve long,
he considers a chain which is in an obvious sense "close"
to the absorbing chain, by taking é*o, but small. Since
the chaln is now regular, there exists a limiting distri-
bution 1ndependent of any initial distribution, for which

Bartlett derives an expression, this last depending on &,
At this stage an assumptlon is made to the effect



2.2

10
that, for certain states, the limiting probability is
considerablylgreater than for the zero state, this leading
to an approximation in which all the limits of the non-
zero states are independent of é*o , which cancels in the
gpproximation. This last appears to say that

2.2 (& ~ e (€2 mr 1 2,...,5
(2.2) fm ) =kt S , )
where p(€) is the limiting probability of being in .state
n, and is intuitively obvious under Bartlett's assumption.,.
It will be shown in 2.3 that the right hand side is
independent of &é€>0 ; Bartlett reasons that because of this
the right hand side provides a descrintion for the corres-—
ponding absorbing chain, i.e. whené&=0. This viewpoint
will also be discussed in 2.3.

Ewens' "Pseudo-transient'" Distribution.

Ewens [lO] is concerned (in a zenetic context) with
the formal solution of the stationary equation of a
diffusion process, when both boundaries are "exit" (i.e.
absorbing) inwhich case no non-trivial stationary distri-
bution can exist. With suitable internretation, this
pseudo-stationary distribution is shown tc be the propor-—
tion of time spent in any specified range before absorn—’
tion. We recognize this as being the diffusion analogue
of the type of distribution for which we search.

The parallel discussion for the discrete case is
also carried out in [10]and is again concerned with matrix
(2.1), whereé=0. 1t is clear that the proportion of time
spent in any state J before absorption is

(2.3) b= ZWECHT . ELX) T
[ T ELX&] E (X« ]
1eT

Ewens calls this distribution a pseudo-disiribution
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gince it obeys the formal requirements for a probability
distribution (i.e. always positive, and of total mass
unity), although it is not the distribution of any variate
in the absorbing process. He gives it the name 'pseudo-
transient' because he thinks that "...it describes 1in a ¢
sense the behaviour of the process before absorption®’
(Bwens, [10] ). The sequence of Ewens' papers on this
topic is [10], [11], ana [12].

Discussion.

We first zeneralize and then discuss Bartlett's
approach to the problem. iet us take the chain with
matrix (2.4) where 1>€> 0 and Q merely indecomposable:

-6 g’
(2.4) P (&)=, N pe#©
e Q

I
where 366# 1. Such a matrix represents a resular Markov

. chain in which thereis a probability of escape out of

state O egual to é. Whereas Bartlett took _;-j-'-['.:‘cl,o,----"],
here o is ageneral probability vector whose elements
give the conditional probabilities of escape into states
1,2,...,8.

Hence there exists a unique stationary (and limit-
ing) distribution, denoted by

/
[ o) , i (&) d
whence it follows that

[/Ao(é,g‘-))/;-" (é,%¢)1] 178 &2 - [/Mq(-é;ﬁb),/-*'(f,g';)]
R 9
and therefore the stationary distribution conditional on
the process being in T, 1s
, - e 'LI-07
a,(?"b) - -~ 4 ; J

(2.5) 1= ja(E,2)
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and therefore independent of é*o. This is a generalization
of (2.2). (liote that [I-Q) is non-singular ([19], p.22))

It is,however,quite clear that the absorbing chain
with matrix P(€&, %) where £€=0, and the related chain
where € 20*are only superficially related. Intuitively,
there is a vast difference between a finite regular and
an absorbing chain, no matter how small i1is i.e. there is
a discontinuity at £€=0 as regards the physical system
being described. MWore concretely, we refer to a paper
of Sinkhorn [31] who is concerned with a certain iterative
procedure for positive stochastic matrices, and discussesg
by means of examples, the effect of renlacing 1the zero
entries of non-negative matrices by "small" functions
pq(e)’o. He comments that "Even the apparently natural
artifice of replacing zero entries by 'small' functions
v...and (subsequently) letting €0 leads to difficulties?
anfl also "1I{% may....be a poor policy to use a strictly
positive approximation...., unless there is a very good
reason for a particular selection.".

" Another considerable objection to the use. of giéﬁ in
describing quasi-stationary behaviour, is that it is a far
too general function of ¢ ., It can be made into almost
any probability distribution Z over T by a suitable choice
of ¢, for

al(e) s % ife <2/ [1-0]

) z [1-¢J¢
providing the denominator is not zero. It is also
interesting that the distributions which are excluded
by the denominator being zero, are just those forms which
if resarded as an initial distribution, allow no immediate

absorption. This last, however, secems to be just that
kind of property which would be pleasing in a quasi-
stationary distribution. Bartlett's qpési—stationary
distribution was obtained by taking < =f1,0,.{}0] because

~
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his state 1 corresponds to a population of size 1.

From now on, for the above reasons, we shall concern
ourselves only with absorbing chains, although we shall
have occasion to refer to the distribution a(%) obtained
from the related regular chain,again. The generalization
of Ewens' suggestion is given in 3.1, where we first
take up the extension of possible'modes of description
of behaviour within the transient states, basing our
study on the ideas put forward in-this chapter.
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3, TTWO QUAST =STATIONARY DISTRIBUTIONS :DISCRETE CASE
3.I The Ratio of Means. ' .

The distribution (2.3) seems a reasonable one, even
when the substochastic matrix @ corresponding to T is
arbitrary, so long as it is not stochastic, of course.
The matrix of means ([19),p.46) can be written

c[1-9]

for any such @, and hence (2.3) becomes

(3.1) L(T) = T'11-01"

7' [T-©]'¢
Possibly the most interesting characteristic of this ratio
of means distribution is that

2 i@/ CEJ

o' (T)

providing an interesting link vetween the two. The
resson for this is as follows.

In the chain governed by P({,f), the limiting propor-
tion of time spent in j is m;(€,7), the limiting distribu-
tion. Now, we can think of each passage To the state zero
in this chain as a complete realization of the correpond=-
ing absorbing chain with initial probabilityst=T , Thus
the limiting proportion of time spent in state j#0 in the
‘regular chain gives the ratio of the expected time spent
in j¢T to the expected absorption time in the absorbing
one. A more general application of this "return" process
is described by Kemeny and Snell [19],p.117. It was also
used by Ewens, and is the discrete ~analogue of the

elementary return process of diffusion theory,
The great disadvantage of this distribution is
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that no simple expression for it can be obtained, "even

when @ is primitive. Secondly, it is not independent of

ﬂ', whereas it is reasonable to hope that a 'good' quasi-

stationary distribution would be. Both these facts are r

more readily seen by realizing that

=—

~m ) T

J L.’ J 5

and considering, for instance, the spectral resolutioh
(1.2) for primitive @. We refer also to the example

in 3.3

, 30,2 The Mean Ratio,
In view of 3.1, we are led to consider something . .

'similar, namely the expected fraction of the time spent
in T, as a possible candidate for the same purpose.

E ['X%jj = j;;; fhj

Thus we define, for ZW=1,
)'eT

(3.2) cj«r) =k
x

as the mean ratio distribution. Now

Fl X} « E[L ELX /%3]
X . N 10 R
i ' i Pl XI,,J-U;) IZ:%]

* ¢ 0

f!i ‘ L jer

E 4

mE)
Using LEMMA I.I, (1.3)

;@ o [T m" G e [10]e]

(3.3)

~y =7

ol |
Once again, this expression for cJ(I) does not reduce to
an easily manageable form, nor is it independent of]T
(see next section).
This unfortunate dependence uponzrin both é(E) and
'c(z) can be explained by recalling that any realization



3.3

of the absorbing chain remains in T only a finite time,
and this 1is not long enough for the dependence on the
initial distribution to'wear off!

An Example. |

The example we consider is the substochastic analogue

of the independent trials process. Let

-

where d;,ﬁi’o, i=1,2,...83 j.'-:lf =1,:"/3 =¥y,4x. Thus Q is -

primitive, with spectral radius and all other eigen-
values zero. The corresponding eigenvectors are
Then:—

a) Ratio of lieans.

by () -

™
[
o
\v)
Sl
+
=
N
=l
X

(- o Moo

which even in this very simple case deoendq on T ;
b) Ilean Ratio.(from (3.3))

G- 4[ (a)[r—o]e]w - Z_:m:'otff (°>o s [1-07¢]. .,

miy O

® ” el

7‘/@3 u-oje . A'n. 7‘/ ‘P T rr-07¢ + Zﬂ"fo/a/[o (u)[f’Q]f]

Applying LEMMA I.2, (I.4) to the last summand

: ) y ’ P a =-t) el T-wt
¢y (.7/').-/323-[% ]C-/-]r‘&u/; [j-/,]ez_d: 42&._; K /3[ wp)ew,

T2 -yt

T LI =g ] 4 g T = 1T oy (-0 fI Ty -5 fy T

which is also dependent on 7 .

At this stage it is useful to introcduce some further

16
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notation. Let: X'.j" = Xjj- o‘:'J y X¥=X; - k., It follows that
these random variables disregard the initial occupation
(of state i). - Then the modified quantity

* o =)
(304) “ZTF{E[X’..J.] ,_%7“; ; f"J'
™ e[ x:*] z T T (- proY

= ﬁd. (a Vd'))
which, in this special case, is itndependent of T

. We
cannot however consider a modified mean ratio, since X*

can assume the value zero, even if LT7r=1.

-~

2eT

17



4.1

4, THE LIMITING CONDITIONAL MEAN RATIOQ :DISCRETE CASE

18

On account of the remarks at the conclusion of_3.2,

it is plausible to consider those quasi-stationary
distributions which can be derived, roughly speaking,
by considering only those realizations of an absorbing
chain in which the time to absorption is long. In a
regular chain, the stationary probability of any state

‘is the limiting proportion of the time spent in that

state. One analogue of this for an absorbing chain is
ii(ﬂ)‘ Another, but this time conforming to the above
criterion, is

E| Fnif Xyem
it

where n: is large; it is studied in this chapter only for

the case when Q is primitive, as are also its variants.
Derivation.

For primitive Q corresnonding to T in an absorhing
wmarkov chain

(4.1) lim & f‘..l-!'/x:'“ . Wy,
n =ved rll'

We have in fact that
~ - o
E xﬂ.tj/xﬂ""" = _'i'_ ;_:_ox. P[xlr'd ,-X:P ‘7
}—w ~ (e g™ f[x_sz-mj

it is well known that

Pl Xg=m ] = T'Q""L'I‘Q:]S

from e.g. Bartlett ([1] , p.68); and the numerator is
given by (1.3). Hence it follows that the above is

Fol T ey [I-R0 8 T s,
m T g (T-97¢
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Utilizing (1.2) and (1.4)

-

- ?’:;J:.} Q..:[I-Q]e * W%,gz[j‘—a‘]e[w-lgjb Y .Jf*O(/’)
m-‘/)"“"ﬂ' :’J[’[I"Qje - O(”(”-’) f /ﬁ‘l

A P"'f) ‘o L7918 (TP vy Ty (198 + O(pY
) m P Ty (T-9J * Ofn =17 %7ps7%>)
Ja s

and since Twy'[I-QJ¢ is positive for primitive @, we
finally obtain

(42) E ﬁ,j/ Zyem| = Wiy 4 0% )
X

-

whence (4.1).
Therefore there is no dependence on ﬁ-in the limit.
This exvpression also has an interesting resemblance %o
certain expressions for a regular chaln; this will be
" taken up later.
4,2 A Related Yuantity.

Bxamining (4.2), it may seem physically more relevent
to study a modified distribution, which has the physical
interpretation
"limiting proportion of time n spent in state j T, given

“that the time to absorption exceeds n'"
for j=1,2,...5; viz.

w?
lim £ __x_'i/ X,_‘L”V
n = 0 v

if the initial state is i, where
= 2 .YI'J'

is the number of visits to state j unto time n. The
1imit may be found by a method similar to that used

to derive (4.2)3 however there is an alternative which
we apply. This, conversely, covld have been used to
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derive (4.2). We have

£ [E'J /.X.:’M:} E rin E ,-..Z_ : /I:."M']
. L E Y ’/xl-mj
o

n
r*-'\
Qs
L7

g

"::;y
S 1P
ty,

Le 12}

= __;. cSla" [_,(1' y’j *Og’j
. m i t’J [_Z P wy Vs J;.O{.,, Jn)

from (1.2); i.e. ser

(=)
(4.3) ELZ /T = wiv O (E)
which gives the same limit as before. A similar procedure
cgives the same result for arbitrary distribution 7 over
T. )

There are considerable similarities in the two -
methods, although results (4.2) and (4.3) are not
intuitively obvious as equivalent. The 'reason' for the
similarity, is the close unity between either and the
spectral decomposition (see also Lppendix). ‘thereas it
would be easy to proceed in 4.1 by realizing that

ELYs /Xg=m ] wa‘“"fk., :

KeT

J‘,. meo
a _-.J b}

. o) i

the p.g.f. epproach to derive (4.3), on the contrary, is
cumbersome.
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4,3 Comparison with the Stochastic Case.

4.4

It is. clear that the discussion in 4.2 is valid for
the corresponding stochastic case i.e. for the resular
lfarkov chain (noting that P[X > nj/= 1 ), where now p= 1
W =€, and is the unique stationary distribution. Thus
we have been discussing a generalization of this case, It
is of interest to note that the quasi-stationary probabi-
lity'u3Q'depends on both the left and right eigenvectors:
corresponding to the spectral radius, although for the . -
above particular case, it simwlifies to 5 An interesting
problem is therefore posed: is there a quasi-stationary
probability that depends only upon the left eigenvector 2
In fact there is, and hence again an interesting compa=
rison with the regular chain (see Chapter 5).

Extensions,

® There are several extensions of 4.1 ang 4.2 in the
sense that the same result is obtained in the limit, of
expressions closely related to.ti®e of these sections.
The most important of these is one which sives the
quéntitylﬁVEan interpretation as a limiting proba bility,
extending the analogy with the regular chaing it is

suggested by the derivation of (4.3). Consider for n> m

(4.4) ]?liin state j at time m/not absorbed 2t Iime n ]

b
: P [ LM = J / Z'M #' o j
L ey (1= i)
T T (4= pe
= bzr:e"r 2;21 77:' .P':J’(M).PJ‘"(“-“)
G T VP
i e - (1P T+ O () L)
e O e ()

from (1.2).
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This converges to wjvyas n->°*, The result is once more
valid for a regular chain.

" 0f particular importance is the case when n=m in
(4.4); when the final expression derived is not valid;

this forms a special topic and is deferred to the next®
chapter.
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5., THE STATIONARY CONDITIONAL DISTRIBUTION :DISCRETE CASE

The stationary conditional distribution, which we
are aﬁout to develop, is again derived by effectively
considering only those realizations of the absorbing chain
in which the time to absorption is long. Noreover it
has a limiting interpretation, and is much like the
stationary-limiting distribution for a regular chain.

5.I Definition and Existence.

Let us consider the probability distribution over
all (s+1) states at time n, when @ is indecomposable:

. [ -Iro(”’)

2

T(m)]

and denote by d(n) the conditional distribution restricted
to the transient states i.e. ‘

d(») - T ()
T 1 - T ()

Seeking a guasi-stationary distribution, we shall call d

a stationary conditional distribution over T if
(5.1) o (mer) o dimd -
Since
[ To (w), zr"(m)]'P= [lT,(v_,+-),T"(-+.)J)
it follows that

T/ ) Q- 1,-'(“,)

Hence

d'm) @ opnad Cor?
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Wherejb(n) is a function of n., If d exists,

/
oL'Q plms X,
Since @ is indecomposable and dz 0 , 1t follows from

THECREN I.I and the orthogonslity of left and right eigen-
vectors belonging to different eigenvalues, that

”m) A v
fc)’/’, Ll

and indeed d = V; satisfies the required condition (5.1).
Interpretatipn as a Limit.

To interpret as a limiting distribution, when Q
is indecomposable we treat the two distinct cases, when
Q is primitive and whén it is cyclic, seperately. The
latter is treated in Chapter 6, which is devoted entirely
to it®. \

If the process starts in ‘state i€l with orobability
T, , the probability it has not been absorbed by time n
is

(5.2) L T (1-pi™) = T'o"e

ieT

and the probability of being in state jeT st time n, given
that the process is still in T is
()

(5.3) = T Py - _T'o"d
. 7 uz(J—P:é"’) T/ € ’
TET ~
Notice that this is just (4.4) when n=m. From (1.2)
() "
(504) . ;Ze:'r e .P'J = + O ('nk(slﬁry )
Z T (1- _Pw,) f

2'€T
Therefore the limit as n in (5.3) is , which is

independent of ( c.f. Chapter 4). Aratrer cumbersome
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oroof of (5.4) is given in Theorem 1 of Kandl [22] ,
although the context is somewhat diftferent.

Worth mentioning also is an interesting phenomenon
noticed by Mandl [22] , which involves the stationary and
limiting nature of v. The result 1is of interest particu-
larly in the'absorbgnp chain context i.e.df‘l, although

as usual, it is also true for the resular chain in the
same sense as before. We have that

-

(e

/wa ,9
e

:P[.XZ >~L+M~/Xs’n{}=

é§ “ﬁ

/6)"“-

Thus
P = pa f e > — . -
TL['X.’.' ¥ /'X."f ] f (J.Jo))

which is the frequently occuring zeometric distribution,
with parametg?JD.(This ghows that the assertion of
Kemeny and 3Snell fl9] that eizenvalues have no direct
probability interpretation in .arkxov chain theory is
not entirely true.)

Rates of Convergence.

Frow a physical point of view, & question of the
utmost importance concerning 1limitinz quasi-stationary
distributions, is that of the rate at which they are
approached. In particular, we may say that such a distri-
Tutionis of most relevence, when the rate of convergence
to it exceeds the rate of convergence to zero of the
probability of beingewithin the transient Set at time n.
This statement is equivalent to saying it is of most
relevence, when the time to absorntion in most realizations



is 'long' (c.f. Bartlett, [ 2] pp. 22-25). Therefore we

briefly turn to this, at least for the case when the

matrix @ is primitive, the case of fundamental importance.
The probability of still being in T 2t time n is

(5.5) Z_TTi (1- Pi(:) = O(f“)

from (1.2), where , the spectral radius of Q@ is less than
unity. Now, recalling (5.4),

o -
5 i Py - -0
7‘/6_ ‘lT‘,;(l-'fig')) Vs ‘
d T

It follows that if Uklis small compared ton , the
quantity vy is most satisfactory, in the sense above.
THEOREM I.4 gives that

(5.6) max (1-pie) ’—f > min (1= pre)
feT 2T

with either equality true iff both are; thus, roughly

speaking, we require that min (L-pw) be close to unity.

The same remarks apply to the probability WY, from (4.4)

and the subsequent calculations.

Bartlett [3], comparing the limiting conditional
distribution v with his conditional limiting distribution,
(2.2), comments that the former "...might be defined
even if this distribution had smell'absolute' probabllid;
content,..." whereas, mentioning (2.2), ”.:?the whole
idea of my gquasi-stationary distribution was that it had
large 'absolute! content, at least over some time intervall
He effectively points out, however, that ifjfﬂis small
compared tOJs, the distribution v is indeed relevent.
iioreover, as has been mentioned nreviously, it seems
nore satisfactory than (2.2) for several reasons..
However, there is an interesting ‘relationshin' between
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the two which will be discussed in the next section.

Comparison with a Preceding Distrioution.

We compare V, which has been seen to be both a limit-
ing conditional and conditional stationary dlstrlbutlon,
for primitive @, with a(<) (2.3; (2.5)) which was seen

to be a conditional distribution, in a certain sense.

Using the same notation as before, for &€* O

(~)
(oY = (&) . im Py (&
oy SIDEZ mokdm £ (6)

1 - o (ée) lim (1- Ptb‘w(éz"-u('))

)
. P‘J Cé>
2},1: 1 - f‘“’(e,:c) °

and since el;(s ) is independent of &>0,

J
f..‘“’(é % )

s lifﬂ. lim )
E~> 0% g =0 l Ptf’ Cézﬁ,“)

"On the other hand,

o Lim i Pei (éns
i saam eI L = Pm"”(é, ) e

m o E—~ O+

Thus the two differ'because'the limit operations do not
commute.

Another'difTerence'emerges from the comparison of V
with GL('_’I ) (= 6(1[ )), for

:4;:,_ iy ELC X'J]
aj (1) » 4D = T RECE]
Jpm i Zng PY -’
= lim == = a
P %,-_7 7.’--;_ Z_. (l"P"’f ’
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Before proceeding to the cyclic case, it is,once

more, worth noting that all the preceding discussion is
valid when @ is a stochastic matrix i.e. the transition
matrix Of'a regular chain, since we have nowhere used the
fact that‘f‘i. In this special case the probability of.
non-absorption after n steps:

ET

2T (1-Pprwe '"’),

4

is just unity, for all n.
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6. THE CYCLIC CASE
The purpose of this chapter is to consider the = 1. .

various limiting cdistributions when the matrix Q corres=:
ponding to the transient set T, is dyclic. As with regu-
lar and cyclic chains, the present case can be discussed
by utilizing the material for primitive @ from previous
chépters.

Preliminaries.

For simplicity, «the period of @ is taken as 3, in
which case the matrix can be written in the form
(o] @n 'O
Q_ =|o o Qu_
@ O o :
where the diagonal matrices are square. Let us denote
the corresponding cyclic subsets of states T by Tv,.Ta,

e —

and Ty . Then R.Qu3@ O o
O O Qu. Q;;
QL = @@ O o) Q" -| O @y @Q, O
2
o Q)IQBL o O O Q"Q:LQLE_
where the square matrices[Qiﬁ,an,mﬁg&;aEE = 1,2,3

(subscripts to be reduced mod.3) are primitive, each

. : . 3 .
with the same spectral radluslf s and corresponding to the

ERas

subsets Ty, 1 = 1,2,3 respectively. riting left and ,

. . . ')

right eigenvectors corresponding to Q.. Qﬂ"“LQ.a§ v¥anad
i) - - /o T ) o L

w respectively (These being normalized as usual, so that

~ @ d) e L L . . L .

zwiv, = 1,LY = 1 for every i), the following relations

e J J ,J‘Tl‘: b =y

mist nold:

o’ (2’
(6.1a) }:” P Quy @31 = J"J v
’

(6.110\) z(‘) Q.3 Rsc @ ® f

J,
4
3!(

Ve

v
(6.1c) ‘g(“ @ Qi Qs =j5 yh)
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Multiplying (6.1a) by Q.. and (6.1b) by Q- R , and
o/
invoking the uniqueness of V‘? we have

X4
/ N ~V“ @
! 2 =
(6.22) ..V( g J/""Q,,,f
. 4
’ . ") !”) 011. OI.J
(3 =

(6.2D) Y V@ Qi @22 ®

.We are now in a position to proceed.
6.2 The Limitineg Conditional liean Ratio.

We shall restrict ourselves to considering

(™) ' Z'_:_ o (n=S)
: { xij / X ’”‘] . 1 5o Pij (1-Pjo /
~

- TP

which is cumbersome enough, as always happens in the
cyclic case. Tor convenience, it is considered in several
stages.
a) i, je Ty, 1 = 1,2, 3,
n =3k , k a positive integer

o if'q)(l f(-..-.n J’

=, .-"‘ 4 — LX) - J.o ) o
E i{..'.l / K> o } = ;—1,{ £ 1= pPrg™ * J}

Y 3k 5 Qar-s)

1 & Py QP S

s 3{(‘- { # o P.-o‘“’-') + CS;JS
k o .

L R g

4| Ry

‘5) q N N .
since pij = 0 if s # 3h, h-a positive integer. Since
3h

the elements p& ) , 1, J€ T are the elements of the h th
nower of the primitive matrix Q;ew Quummaluarres, 1t follows
from the theory of 4.1 that this expression becomes
) (€ 2
4w e O () ,
> 4
b) 1€ P, J € Tew, 1 = 1,2,3.
n=23kk , kamnositive integer.



e (9 (3k=%)
) . 1- N 30
S 4 ( I Py (3"Pie .
E_ .}_f.-’ /xt:bm, = SE{._.-‘-." K f':o‘“” ""S‘JE
"

$) : : : k-L)e2
and since p%f =0 if s # 3h - 2, h a vositive integer,rﬁﬂ
=0 if 1 # T , the above becomes

e (3h-z) | Jlk=h)+ 2
L {:’-—.; By J.Ztn'f"l o O]
= 3k Z. _f;".l?m J
" 16773
3 h=1) 3lke-h) (2>
T -SLE' g:l FeTy Bis .PfJ JZQ"I',' ;t'f.'u fjd .Edl + J’J
Z filcsk) 4

1eTy
The calculation now becomes unpleasant, and so is omitted.

We mention only that with the aid of (1.2) and (6,la)-" ..
(6.2b) the last expression can be written as

N ARV O (%
S WY + C ))

as can be expected. -
c) ie Ty, J€ Ty,, i=1,2,3.
n=23k , ka positive integer.
We state the result without derivation:
~ ) (A+a) (Pt

E|ZH ) Xivm . W yJ- + O (%.,)

nz J

d) i€ T, je Ty , i=1,2,3,
3

k + 1 , k a positive integer,

Using obviousrjaﬁatggns, AR 159
1 Ju&  Pij L1-pje o
(3k1) 1- peo0 T o
E YS) (3tk=-K) + 1)
e -1
L { Z, P L, ;0(:-‘]-}
= (jk-+1) 2___: -P)'J (3&e)

26Te (3(le-hd)

* :
1 { E‘l -P"J'“n Jz;Tf*- ;{*’m 'PJn( fcll 4OP\J~§

(Jkol) Z Z _P“‘tj() _PO‘J

leT‘.il O“Ti
) ‘\..)

1
: _i-_ W VJ + O(,-;‘_) D)
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by (1.2). 411 further calculations are omitted. The
results are summarized by the statement

(=
(6.3) l.m ‘;l_.' E [ x,;’- /x._ >M]
~M = o0
1 () (¥ ) . .
= 3 WYy if i, j € Ty
(v ) : m a
- 1 -w;’ J if die Ty, g €& Ty
)
(731) _(ﬁa.) o - )
: § ‘wb vj if 1ely, J € Tasa

Yor any given 1 € T, this can be expressed in matrix

form vig,

-)
(6.4) lim | 2 EC Xy

i o) 0 e {0 ) gn) 2) (2) () O
. > - =Clwyv .. w
/ xl m] - 3 - [ e t-,vb, w,v, ...W'.‘v.‘ W,V ...
m = e oL

where t; is the number of states in T;, t, + T, + 1T,
The reader will notice the similarity of the above to
the case of the cyclic chain matrix, of which it is
clearly a generalization, since we have nowhere used
that pe 1. This will be considered more fully in 6.4,
in the general comparison.

Hote particularly that the result is independent
of the initial state ij; it would have been inconvenient
to have considered an initial distribution as was
done previously, though it is not difficult to see that

in this more.general case the result is indevnendent of

)

.h"‘_'

ZS.

The Limiting Conditional Distribution.
Jor simplicity we define and investigate the guantity
(=) ’ .
- .‘?) _P'.J. ji' Q JJ' . a é T
(605) 51.] = (™) ¢ = 3 'IJ
UN . w e
L Pij Jﬁ Q¢

i€

Since the maximal modulus eigenvalues of U are given by
aTim

f"':fe——s— fn;-"o>.1,2.,



from THEOREM I.I,

it is clear that

. [0 2P 4
lim Sif
M-noo
does not exist. However, from 6.1
(3~)

lim
m ~=w O

-

51'J. Py

being positive iff i and j belong to the same cyelic

"subset T .

lim

M_,W

(6.68)

In fact then

(1)
V .
J ’

. { 3»)
51'J. s

To get a complete description of the behaviour, we must

investigate the other non-trivial cases, viz.

2) lim
an = O
b) lim
on ~200

(3\&') — .
Si'J' v €& i p',J' (-.Tl-"
(3w2)

- Z. & T\‘: / é"-r;".\,

S 1'J' S ) J

the other possibilities having zero valuve for all n,

a) lim
~m ="
(6.6D0)
ie.lim
=g
from 6.1.
b) lim

- <

(Imn+2)
(In+r) PzJ
-5-:'J' e 11171 Z f’J (1)
P a4 J'b71'+c
__ (3n)
c J. im nLn-’?-i P'.J IJJ
n S Z' Z_ '.1"“" .
1
JETV#e 14T f 5 f J
() 5 v o
= 1im 2 3G - Paj
¥ i
n - O wr. 7200 v .
. H J’ET"Q, 1‘.,.'. 1 :J
3w ‘3
S’a'j - v (V¥
dJ >
S e (13
1;] i VJ-

32
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in a similar manner.

Once wmore, the results can be most conveniently

. . - R P Biert Sved
expressed in matrix form, corresponding to Q Q , Q
45 bl 9 ?
t3w) |_E:_r“ 0, [+ ‘j
(6.7a)  lim [ 1= |° BEY . el
M ~> 0> e To T ?l*’%_'i“o:%-
. tinedd -0_ e b : e
(6.7b) lim I Sy o T e o
o =0 L . _“4‘“6"0.‘#'
{3wea? — [
~ o Q g_.w" G 3
(6.7¢) Lim I.S-.J ] = o 50 . v
An = S0 -Q can T oo
— _‘L-_g—Lﬁ .
where ¥'Qia Qi Qﬂ::f‘ v*hnd ywe= 1, (Here e’is the unit

vector with t; elements.) Agaln note the similarity to
the cyclic case, except that here the limit matrices are
obtained as the limits of elements only, whereas in the
cyclic case the corresponding matrices may also be

Juef -

In>ad
, P™%, where P

is the cyclic transition matrix. (P = Q in the above, ior

obtained as limits of the powers P, P
the special case when Q is stochastic)

Contrast with and Similarity to Cyclic Chains.

Since the matter is of considerable importance, we
that allthe results in 6.1-6.3 have

been obtained for an absorbing
the Tact that

valid when @ is =

stress, once more,
chain with cyclic transient
T; however since *1 hes nowhere been used,

everything is stochastic matrix i.e. the

transition watrix of a cyclic chain (sce 4. 3 and 5.4).

This is in accordance with our aim of Zetting a more

seneral theory, of which the correspondine Markov chain
is a particular case,.

Therefore,
(6.7c) i.e.

wnich case

making the approor.. .enges in [(6.3)-
f;‘ in

all the denominators of (6.7a)-(6.7c) become

i ) e
puttlng;y'agiand noting that Qi lu=

unity, familiar results for the cyclic chain emerge, l'or

(6.3) yields,
L EonT L ojeT

example,

lim

- 00



’ - - 3 4
) £ ey N . N
o, y" r], which is, in

where Vv; 1is the j th'element of;f
the stochastic case, the unigue positive left eigenvector
;corresponﬂing top . This is just an expression of the
Césaro summzbility of‘{pJ"] , for a cyclic Markov chain
(see e.g. [19]), p.101). Similarly (6.7a)-(6.7c) yield
the well known limiting results for the n-step transition
probabilities in the cyclic case.

The fact that this treatment is a 'considerable’
generalization, emerges more clearly by noting that, when
Q is not stochastic,

_J-__ [ -v{l) v 3) v fZ] J
5 ? s H] -~

is not the unique positive left eigenvector, corresponding
. L ) ? ’ ’
to;fl. For suppose we denote this last by h =[h. h, hﬂ,
such that he=1. Then

-

(6.8a) ]:-,'Qu ‘j:» J}. ’
(6.80) h.' Qu ‘ p b
(6.8¢c) .h; Qu :,P'ﬁ" .

r

. - . . opnd i
Moreover, h is a leit eigenvector of @ , corresponding
'mif’i.e. from {(6.la)-(6.1lc) we have that

/ ’ y d f

I
v [ 180
h't‘a,!” ’ }'l\- s B v » hs =9 v

~ s ~

Therefore we must determine %, B, 9 20, such that B+84+3
= 1. From(6.5a) and (6.8c), it. follows that

/

’
P, !(1) QH- E‘ =f Ba., 3;3'“@3’ s, i/) 8,

whence



!

R [%lv‘l)
2

(6.9)  h'« Lo

»
(¢ 9]
6; :{“) QIL e'l-g

S

/’
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7
9, pv ]
DS b
R% ‘@) £a

where ® is determined from the normalizing condition

By (1

B

2 ,
Ve O, ea
—

+ < P
s,
v t3) Q.N s,
~b

L -1 -

If Q is stochastic, the normalizing conditionrbecomes

3m=1_iﬁ.%=%and

G-
— H
i<

as reguired.

?

k] -~

4 /
1293 132
v 7, Y]

Finally, 1t is natural to enguire in this more

general case about the Césaro linmit

1lim
"m - oo

e S
m

Z_ S 1:.'-

ra T O

(v

7.',J' ¢ .

7
This exists and is positive for each i, j€ T -and is

independent of i -by the same argument as e.
by Kemeny and Snell,[19] p.101.

Torm is

- (»)
' Svy
(6.10) lim [ 4 z%, d

on =0

as expected.

- ’
e, v )
~ A

€, v

—

Y
S

.

vy’
v

~

e,

—

£
e. gtu @,&
-~

2. that used

e

The result in matrix

'
& YUo.u |

j," (2] 'Qu' {-g"_

-,
/
(] gk ngol

4
o v Qn.QuSl

‘
e !m Qu. ot.\

L "'Qn er

s
€ ¥ Qu

v Q. @3 €3

,
t)
g" ..Y Ql > QLJ

! ll)’Q'L E"

HOTE 1= I w is the unique right eigenvector

!'W ,Q"' Qv &

.t

corresponding

to @, in a manner analogous to the above one may write it

as

’ 14

93.* =4 m_]
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but the normalizing conditions are awkward again. We

o 0
require that yw= 1, which implies

- ’ 0
: 3, &+ v Qs wp*
* P 5, *s =
a&a ‘V" [4 w o 3
: I Qn & ) Vs
p @ Cx ' w
9 9 & [1 + X vy . ye @ ¥ J = i,
() 4 v‘,,l Qll. wn-) yl_“l @3' e,

: : $_ 1.
fhus, except when @ is stochastic (then 8% =3 ),

[Lwv,wmu, wyy, . .. - wyvs]

"79 -J-'[ ST 0y ) (33 ar Mo 00y 3 (8
3

Vv,
WIV,)'_.)wt. Ve, ) Wi e - UJ(.‘ V‘“&, “&V’a"')w'r;ye, J.
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To TRANSITION AND ABSOLUTE WUAST =PROBABITITIES
7.1 The Brgodic dnalosy.

It is possible to derive meny results common to
regular and cyclic Markov chains without distinguishing
between them; thus the two cases may be treated under
the cowmon name of ergodic chains. ZThe sane is true
for our generalized analosues to these two cases, which
have their fundamental interest in the absorving chain
sense.

Reviewiny Chanters 4, 5, and 6, which deal with. an
indecomposable @, we see that the quantities

()
Uabd By s . L
SU = 1 el
(») ’J
Z Pij

N
behave in a manner similar to transition probabilities
of the corresnonding ergodic chains. Moreover, quasi-
stationary distributions defined on T exist, involving
the lef't eigenvector of the matrix Q. Lot only are the
sﬁ" Ce€saro su:mable as expected, but there is another
generalization of the Cdsaro summability, viz.

lim & k[ X‘.-J‘-‘) /X ]
~m -»0% lag?

which also behaves analozously to the case of ergodic

chains. Thus we have some justification in calling

the quantities s&w n-step transition Quasi—nrobabilities;

the quantities
- » --‘“)
ff‘\' me .P'J
. T Pyt

) §ET J'h'l'

the absolute gquasi-nrobabilities a2t time nj and consider

the whole'nrocess' as being a guasi-chain (ergodic), which
is not necessarily a markov chain.
Possibly the most interesting consequence of taking
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this point of view, is that a reverse chain can be

defined on the states of T for an ergodic quasi-chain,
the former bveing in fact a true Markov chain, and being
significant in the guasi-stationary context. The nroced—
ure is analogous to that for the ordinary ergodic chain
(see Feller, [ 13] n373).

The Heverse Process.

A reverse process can be defined on the transient set
T of an absorbing liarkov chain, the transition provability
from.;j to k€T being

()

e Pry

(7.1) Pl dmck | dms=j] e TR R

J,k‘&T'
This reverse process is a Markov chain iff this quantity
is counstant with respect to m for all k, je€T. The
necessary and sufficient condition for this (for indecom-—
posable Q) is

"ﬂ}‘“) ) Ve T
(7'2) trm¥1D = ‘n Vi i,k e :

, (> ‘ ?

g S e 3
The sufficiency is obvious. iiecessity for primitive Q
follows, since for all allowable distributions i.e. with
some mass in T,

(w2

T Vi
W.lm"') == Vs ? J"’ k ‘-T'
) LN

For cyclic @, necessity does not appear to be straight-—
Torward. \

Let g be the veriod of @. Then the maximal modulus
elgenvalues are all different and ziven by

AT 3~

S oo R

as before., HNence

—/J’l-j)‘jw’t-}jﬁjra.’b B'I/:'“Jl'
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The spectral decomposition is therefore

-2 AT S™
-~ = g 4 v ) T] + ¢ 61)*
} J) :).,V tj) [ é 1:)3 Vs e O (m yj ),
where ¢+ 1 is the miltiplicity w.l.o.g. ofjbn. It is
clear that no element of the matrix

= AT 3
(7.3) [ ?-— win'e e g

can be constant with respect to m, for no element can
be zero for all mj; if,for instance, the J» k¥ th element
were, then

(S P4
, Lik

LS

would have g linit wjk*0 as m—o°e - impossible as @ is
cyclic. Therefore, each element of (7.3) is = fdﬁction
of m, bounded but having no limit as m=ee ., We can
therefore write that for suitable:y and sufficiently
large m

(™) —
T éﬂ‘THIUd v, w (™) -
‘.fl'—\"l) : — . ip l“V '+ :"‘“-' ’ Oémdlﬁjﬂl)
T P& Telwol Y LT V)

where the function ﬂg(m) is obvious from (7.3), for
all j, and depends on ™ ., TNow, if the left hand side is
constant for all m, for any Jy K €T, then nutting j=k

() - . o]
G B ey e Yoo
L (w0 — . AT e Jd s
'Tﬁ j—’:‘(_—z_’ Ul Wiy VJ -rJ:e 3 '\U‘}(\n)

where QJZO. Therefore

Vo [1-peS] - Z W rgpyy- 4],

oA €7

: JEL
Hence Y3 (m) is constant, and since ¥ (m+1) =C 3 Yin), 1@(-): 0
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Tor all je T. Therefore

Tk(m) = Ve
_‘. (mr1) ——-V .
T £

It is,moreover, clear that the above, (7.2), holds
for the dquasi-ergodic case if the forward process starts
in state j €T with probability /llg,ouel s J€T. In the
case of primitive @ (quasi-regular case), it %E?O holds

if a sufficiently long time has elapsed for M« to con-

Vic TF("'"/
verge to-jao dJ
Therefore, when the reverse process is a Markov chain,

its transition matrix, defined on the states of T is

P* =1 pﬁ‘.]

®

where fpy = VP i, 1 @
P Vi
ST
i.e, ' P¥ =1V QV
S ,
where V = diagIw,vs, . . - . ,»]. The stationary probabie.

lity vector of this ergodic Markov chain is easily seen
to be

/
v* = Lwwv, wive .00 L0 Jwin],
~

m

This is just the quasi-stationary(vector)distribution
discussed in Chapter 4, at least when € is primitive (
see 10TE, 6.4 also). This is therefore a pleasing link
with the material of this chapter. In the present case
J¥'= 1, endp) =j§ with multiplicity lk+1.

Finally, for primitive Q (and hence P¥%)
description is enlightening. Go forward in time sufficent-
ly far for Ef7wf“%o be replaced by ff{f vi. Given that

the forward processis still in T, come backward for a

, an intuitive
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length of time m along the reverse process. The probabi-
lity of being in state j is then

o Ot (L)

This interpretation of wyy' is qualitatively similar to (4.4),
7.3 The Chapman-Kolmogorov Rquation: An Example.

In view of the foregoing,the cuestion that naturally
arises is, when do the n-step probabilities sﬁr: i, jeT
actually behave as the transition probabilities of an
orainary markov chain i.e. when do they satisfy the
Chapman-Kolmogorov egquation?

This is not true in general, so %that we are interest-
ed in necessary and sufficient conditions on the sﬁ"to
make then satisfy
(7.4) fo-‘“’ 2 62 o @ 5 e

’ Jer o Ly Liw ? ’ i»jé,”', 7
A sufficient condition is that the rows of @ have equal
sums A41, say. In the case of interest A<}, the transient
states of T are said to be lumpable (Kemeny and Snell, [19).
Then

£t wre

and the quasi-stationary probabilitieS'%- and wv are equal
an example of such a matrix is the matrix & of 3.3, in

which case it is particularly interesting that

‘(“) (™7

Sy .P'J = VYV, = Y
. 1 "fl.'o'“, J /SJ

for all n,.

1.4 & More Ueneral Context.

Looling back at the material unto the present, let



42
us notice that we began by considering the important gques-=
tion of pseudo-stationarity in absorbing ilarkov chains,
this giving rise to the allied concept of what has been
described as quasi-chain behaviour. All our theory to
date has therefore heen developed in the context of the
transient states of an absorbing Markov chain. It is
clear, however, that all our quantities can be defined on
snd trested by the use ofonly the substochastic matrix
@ (and of course the initial prdbability). Thus, in a
broader sense, we are not at all concerned with the expli-
cit fact that the ‘*parent' chain is sbsorbing, but only
with a set of states T, transitions between which are
éoverned_by a substochastic matrix @, the set T being

not necessarily exhaustive (if it is , this becomes the

case when Q is stochastic). WNotice that this viewpoint
is closely related to Bartlett's objection, discussed in
5.3. :

Thus, kandl [22] considers any homogeneous iiarkov
chain with an initial probability distributicn; in
particular he takes any subset T ofstates and discusses

the asymptotie behaviour of the conditional probability
(7.5) Plin=i / 7]

that tlie system will be in state 1€ T at time n, under the
condition that iv does not leave the class T.

The relation to our ideas 1s easy to see 1f we denote
by @ the matrix of transition probabilities py between the
states of T only. Then if we define by py'™y i, J€T the
clements of the matrix € , then (7.5, becomes
T opy )

(7.6) —
Z Ty TPt
LET JET
with which quantity we have dealt, at least for indecom-
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nosable @, being nothing more than (5.3). Notice that
ilandl's treatment also allows & to be stochastic, i.e.

T may include all the states of his chain. DBefore proceed-
ing, it is worth noticing that (7.5) is quite different
from Chung's concept of 'taboo' probabilities, [7] .

The way in which Mandl's paper is valuable as Tar as
this thesis is concerned, is that he also treats the limit-
ing bvehaviour of (7.5), and so (7.6), for the case when
is decomposable, We shall return to this later.

Note on a Paper of Breny.

It seems appropriate, as a conclusion to this chapter,
to mention an interesting paper of Breny [6] , primarily
because we can arrive at an interesting consequence of
some of the theory we have developed. 4 second reason is
that the method put forward leads to the construction of
several absorbing chains with one absorbinz state from
one with several absorbing states, Since our theory is
only relevent to the transient set T, his ideas could be -
further developed as a means of 'transforming' the matrix
@. How this comes about will be explained below; however
we will not pursue the topnic beyond this section, although
it is related, as will be shown, to the nature orf the
problems under investization.

YSreny's more zeneral absorving chain has transition
matrix

.5 o

(7.7) £ =
R Q

where P is (s+p)x(s+p), I is the identity matrix, pxp,

and @ corresponding wo the set T is sxs as usual; R is the
matrix of absorrtion transitions and is sxp, being the
peneralization of pe nreviously. (e adont Breny's argumenf
to our needs.) Givins as his reason the fact That the study
oI the passageof a homogeneous chain through its indecom-
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nosable zroups, nas as its chief tool the theory of absorb-
ing chains, he sets out to derive for the chain governed
by P the probabilities

(7'8> ) P [ i.... = J I l.u’i) LD = k:}

i.e 'transition probabilities', given that the state winto
which the system is absorbed, is k, for i, j€T or = k.
It is understood that«w, J can be reached from all iéT.
Subsequently, he proves that the derived process, defined
on T and k is Markovian, whe transition probabilities
(7.8) also being independent of the time parameter n. Thus
for every absorbing state k, a new ilarkov absorbing chain
can be defined, having trensition matrix

1L o

L

'Plu =
Rie Qe

where

Q,]k = D:Q Dy sxs; Rle = D:R,Eu-; sxl;

D = diag ( pIT = @RSy .. -..., 1T~ QIR

If, for simplicity, we suvpose @ »rimitive, we obtain
an interestins connection between it and Q;, as regards
our theory, for since both have ex<actly the seme set of
e¢ivenvalues, the rates of conver ence to the quasi-
stationary distributions are the sane. lioreover, since
the eigenvectors are transformed accordin to

De Je .

14 i Jn.v w =" Do wr
~ et >

we see that althousgh the guasi-stationary distribution v
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changes, the other viz.[ww,...pvs0,his] does not.

We have seen in 7.2 already, that a modiried similar-
ity transformation of @€ has an important conseguence, the
reverse chain., In this section, znother similarity trans-—
Tormation has also led to interesting oroperties.



8.T

46
8. THE DECOMPOSABLE TRANSIENT SET 0¥ STATES

This chapter consists of a brief survey of liandl's

paper,[ 22] , in which he shows +the existence of ang
derives expressions for

i ,T_ 1"‘”'
lin = _& < Py
m-v oo 7’—_ e l)
§7 : J%Y f'J

when the set of states 7T (and so the matrix Q) is decom-
nosable,
Yhe Decomposable Transition Submatrix,

The dMarkov chain which has a decomposable transition
matrix P, is one with a finite number of closed indecon-—
posable sets of states, the stochastic submatrices corres-—
ponding to these being indecomposable. Theremay also be
a set of transient states T, which the system leaves in
a finite time entering the closed sets. The limiting
behaviour of the n-step transition probabilities of such
a chain (apart from the probabilities of transition into
the absorbing sets) can be studied by usinz the results
for an ergodic chain, which has indecomposable matrix,

No difficulty is vresented by the elements of Q” , Since
@~ 0 as n~>, The analogy to the above in the present
case is the study of the above conditional orobabilities
for a set of transient states T which is decomposable.

It is clear that the eigenvalue structure of a decom—
posable Q is compari%ively more ‘complex than for a decom—
posable P, and in fact the former requires guite involved
treatment, 22 , as compared to the latter. If we rewrite
the matrix Q in the same form as we would its stochastic
analogue by a suitable relabelling of the states in T, we
have K2

Q = :
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where Qu  ,.vevee, Qpupn are square. It will be seen that
we cannot in general neglect the effect of the matrix
Qpvp+ , which may itself be decomposable. lioreover, Q, ,
Q. ,...Qpyw may each have any spectral radius not exceed-
ing unity, which is one cause of the relatively greater
difficulty in treatment, than in the stochastic analogue.
A Summary of Mandl's Results.

Any set of states whose submatrix of transition
probabilities is primitive is defined as regular, and
the largest positive eigenvalue (spectral radius) of the

submatrix is called its characteristie number. Before

proceeding, Mandl restricts the complete arbitrariness
of the set T, by assuming that every state of T communie.
cates with itself within T, This enables every state of

T to fall into one of the subsets T of communicating
states into which the set T can be divided. secondly,
these subsets are assumed regular. They can then be
partially ordered in the usual way, i.e. derine a -relation
"¢ ' on the class of subsets of 7, to mean that T, ¢ Ty it
it is possible to pass from Te to T; . This is the well
known ordering of antecedent to consequent, and may be
found e.g. in Chung [ 7] and Romanovskii [ 291 . A last
assumption states that at time zero the systen will, with
positive probability, be in the minimal subsets T 1i.e.
those T for which there exists no Tp & Ty, where Tg# ;-
In the paper, this is referred to as 'Condition A', but
is in effect trivial, as will be seen in a monent.

The theory is developed by first additionally assum-
ing that T is split into sets T, , T, yessseey I3 such
that from Qj the ,system can pass only into TJH. 1t is A

then proved that
~)
. .P"J.(

lj m 16T

= 0 f)'h mb-

[}
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exists, and is positive, where 5;7&: 1l; je Ty
'

i ax ]
f Jtr:,z,...,.l ./)J ?

jﬁ being the characteristic number of T; , and h is the
number of timesJo occurs among thejﬁ'. An expression is
derived for this limit.

When the additional assuuption is removed, it is
proved that for every jeT

(™)
'Z_'_ My f'J
q o 1¢T
41m -
moos 2 T (17 Prf)
reT

exists, and the necessary and sufficient condition for

it to be positive is given. Its value in general devends

on the initial distribution, on the arrangement of the

subsets T within T, and on their characteristic numbers.
A result of particular interest to us, Mandl's

Theorem 5, states that if there is a unique h-member

sequence of subsets, each with characteristic number

where h is the largest positive number (integer) for which

such a sequence can exist i.e.

then the limit is independent of the initial distribution.
An example is given in the next section.

Cormment and Criticism.

The reason why liandl assumes that every state within
T communicates with itself, is to avoid increased complex—
ity in the oroofs of his tlieorems e.g. Theorem 2. If
there exists a state of T for which the above condition
does not ..old, then it can be made into a group by it-

self, and fitted into the partial ordering, as usual,[?].

Since its transition submatrix is the zero element,
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this complicates matters as far as the spectral radius
is concerned. It is therefore more convenient not to
consider sets 1 with:such'nuisance' subsets, which involve
modifications in the proof, nor really fit in with the
assumntion that all the T are regular.

Condition 4, stated here as in Mandl's paper, is
ambiguous. What is intended, as emerges Tfrom the vaper,
is that each of the minimal subsets must have a positive
probability of being occupied initially., If not, then
the minimal subsets having zero initial probability can
be disregarded as, clearly, they they do not affect the
behaviour in other subsets, and have gzero limiting proba+
bilities themselves. That this condition is really tri-
vial follows from the fact that if there is an arbitrary
initial prqbability distribution over T, then if T; is =
¥leastisubset having initial positive probability, (in the
sense that for gll x such that Tet T k # 3, there is
zero initial probability),then all D+ T, X # J, have
zero limiting conditional probabvility for every state of
Tk, and can be discarded as they have no effect on the
behaviour within other subsets. Fence there is really no
loss of generality when Condition A is applied.

A Numerical Example,

liandl [22] sives an interesting examcle at the
conclusion of his paver, but the following numerical one

is helnful in demonstrating the validity of his Theorem 5

, _ . voa 3
(see 6.2). Consider
1% © o
Q@ = e M ©
-
1l a
. 3l i N

Here the rezular subsets are in fact the states iy, A,
and 3 themselves, and there is a unicue two member sequence
~of maximal lengtli*h = 2 and characteristic auwnber lb.

Utilizing the partial fractions approach (or equivalently
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Perron's formula, [29))

\ =32y o ; 3
[1-2Q) = G RCEL (2- 452" | o
E (1-2250 42)"a-72)" z (1~ ,}1).; : (1o3g2)”
whence - . } _:
Q" = |- (35> .
__"(i)"'*él(m nh)me ()" :f( ay )= (2)" - |

Thus if the initial distribution over T is T LF T T
o741 , then considering
Ty o.. ™
lim E; LI
)
1 T w (- P )

s~ veT
i =1 lim T RO )eT ()™ gmen3) 3(7%)7) _
ichaahadls # (.‘;")'+'7T;.(-2/_?)7)“- (3)%) . 'JTJ(-/J}"Z&‘/MI){_-;-‘}Hf/f/:I{/S“'):'(.;-)'

if >0
lim T3 (F(n+) (3)7D . 1
m—so T3 (B G T GEST) =

if W0, W>0 ,,then the limit is 3.

if ™o, TMeo , T>0 , the limit is 1.
J =2

if T3>e, the limit is .

if Mo, wWa>0 , the limit is 7.

if Te, Theo , m >0, the limit is zero.
=3 | \

In all cases the limit is =zero.

Condition A requires %>0, and notice e.g. for j = 1
that % cancelsout; and the answer i§ independent of 7 .
If = 0, T, can .be disregarded, and if %O the independence
of 7 is obtained for the same reason, on T, and T . 75

Tty € the same reasoning applies, ziving the obvious.
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9. THE FINITE CONTINUOUS PARAMETER CASE™ 4
This chapter summarizes the results for continuous

time chains arising out of investigation analogous to the
It is therefore much shorter than the

and also because cyc11c1ty does not

discrete time case.
breceding naterial,
arise with the continuous parameter.

9.1 Prerequisites.
For the basic theory of finite continuous varameter

. Assume, as usual, that if

chains we refer to Doob [9]
the (stationary) matrix transition function is P(t), that

1l

tim pyle) = J:-;{' .

This implies that pJ(t) has a derivative Py (t) for all ¢

> 0, whence we can put

, Ll - PiilA)
ye f-{-ﬂ; t « - prilo)
o 13 Py (%) . 4
Y= dim 5 = Pyl .

The matrix [7UL where ?..1s -7;, is denoted by R. Then

we have
9,{]-2 O’ ?i ’_0) ;4;-_;, 9’,"1-: ?L
Rt
(9.1) PctH=¢ . \ :

The simple absorbing chain in which we are 1nterested

has transition function which can be written
| 1 o :
).2) P(e) = (fo(t)séo £ >0 )
£<e Q) - -
(s+l)x(s+i) and the other dimensions

where the matrix is
it is as usual of rmore releverice

are as bvefore. However,
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to consider the matrix R of infinitesimal transition
probabilities (probability densities)

o ”9’
= o F O
(9.3) R 0 C ) P <
with dimensions analozous to (9.2). Notice that since
Yo # 0, and 9o 0 then at least one of the row sums of C
must be less than zero.

The set T of transient states 1,2,...,s shall be
called regular if every étate of T can be reached from
every other state. This determines an indecomposable (
though not non-negative !) matrix C, and is the case of =
fundamental importance. Then the matrix :

(3

(9.4) Q(t) = &

is an indecomposable substochastic matrix Tor any I O;
since we are dealing with an absorbing chain, it is, as
vefore, strictly substochastic. Following Mandl [23] ,
Theorem 1, there corresponds to C a chracteristic root
P having maximal real part. This root is real,simple, 7
and less than zero. Corresponding to it are positive

left and right eigenvectors V’Cur , and we can write
C < - ! <t / t /.
(9.5) o) = e eTuv Lo eV

wherey@x!é= 1, and‘j°:y° . "This expression is the analozue
of (1.2).
Before proceeding, we note that we can no longer use

the expressions

'time spent in j T before absorption'
and

'number of visits to J T beTore absorption'
interchangeably, the former being the relevent one in our
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is the ratio of means distribution, which is dependent on
T . 'This expression is valid when T is regular.

\ ~

9.3 The Limiting Conditional Mean Katio.

We will only derive the expression analogous to (4.3)
i.e. an expression for

, e o]
é '/
) "J

] 5 t

Iim & %ﬁL( &/Ag*t

t"'—w b
where x,‘-,-[t) is the time spent in state j €T in time t,
having started from ie&T. Referring to 4.2, it is not
difficult to see that .
J Py (1 pjoce-m) ol

z- Pro (t)

E X;[(t)-/ '-X."{: = -t-'é
t

F et Orer?
af e (wry vy wy o V) dx +
Eeltwr z oy . sket)

weT

oWy s O(%)

2
for regular T, using (9.5). Hence

(9.8) limé J_t;g(t)/x,f»t T

+t-> =

as 1s expected. The expressions related to (9.8) hola
,true also, and can be derived similarly e.z. notice that

£
- | & J Xt |2 X J P’U'(">Er1°4'k(*'*’%°d’°7
“lX t L pik(t) o
ke

and that Z. vkgwe>0, from (9.3).

KeT )
It is not nracticable to use a senerating function,

e.g. Lanlace transrorm,approach here.

9.4 The Stationary Conditional Distribution.
) Let us again consider the conditional nrobability
distribution, restricted to the transient states, where
the distribution over all (s+l) states at time t is
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[ Teed, TUEY ). this is

T(ie)
l= To(®) 2

(9.9) Cclcey -

and call it a quasi-stationary distribution if

o (¢) « ol | t>o.
Then since

T'(t) Q(,'t-) C Tk t) i A, o

it follows

) @etsye poeoyd (8 +60) <
If 4 exists it satisfies

/9 plee) df

true for all t, , t,>0. Now, since T is regular, for
fixed t,» 0 Q(t+.) is indecomposable, with snectral racius
ay*bnd corresponding eigenvectors 3', yglwhich are posi-
tive etc., Lence it follows .

A
J‘ d

)(t/ t.) d=v

Conversely, if v = d{(0), then d(t) = V, t >0,
The 1nternre¥atlon as a 11m1t1nv conditional distri-~
bution follows from

Z Tapiitt) T/ Q) _e(p-p)
Rl r- s T Tl
T (2 P T Q(r)e )

from (9.5). The rate of conversence is exponential as in
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_(5.4). The bounds on f , analogous to (5.6) , are

9 -

min Z Grj £ f 4 max ?, g

{eT J¢ yer Jé
with either equality holding iff both do.
Mandl's Results.

Mandl's paper [23] for the continuous varameter, in
particular for T which is not regular, follows the pattern
of [22]) , the results being analogous..:’

The corresponding subsets TJ‘of mutually communicating
states arise from a communication relation defined in
terms of the elements ?ﬁéc, viz. j¢T is a consequent of
ieT if there exists a sequence 1i,, ila,.....,1, of states
of T such that?ﬁ'?ﬂgu9g¢w~$dare all positive. If i is
also a consequent of J then i and Jj are said to communi-
cate. No assumption is made about all states being able
to communicate with themsélves. Instead, every state is
said to communicate with itself. The usual partial order-
ing followe as in the discrete parameter case. The new
feature is that among the submatrices Qjj€C corresponding
to sets TJ, there may now occur one-dimensional Zeros, the
otliers bveing indecomposable.

Condition A is as belore; however there appears to
be an additional assumption that the initial nrobability
distribution is non-zero only in T: this seems unnecess-—
ary. | N '
The proofs follow a similar pattefn to the discrete
case, with the matrices @y ¢ C, 1 # j playing the role
of trensition step matrices between the subsets T, and TJ
i # j, and convolution integrals playing a prominent
role.

NOTE. In ©onclusion to this chapter, we remark that 9.3-*

9.5, and 9.1 (making appropriate at justments) hold =nlso
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for recular sets T such that Q{t) =e® is stochastic i.e.
for regular chains as in the discrete case as regards
9.3 and 9.4,and for decomposable chains, as regards 9.5.
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I0. A DENUNERABLE INFINITY OF STATES

For completeness, we present here the few known facts

gleaned from the literature for particular special cases,
that are relevent to our study in the case of absorbing -
chains with a countably infinite number of states.
A Survey. )

It is apparent that virtually all the preceding matter
is dependent upon the spectral resolution of a finite mmv
matrix. In the present case the matrices are infinite,
and: the same technigue is not generally applicable.

Sarymsakov [30],ff 22~24 attempts to deal with the
discrete parameter case by a passage from finite to infis
nite matrices with the reason that this will afford a
computational procedure. His method is to consider a
sequence of matrices

{ ¢*'3 o 1,2, .
where the matrix @. is composed of the first m rows and
columns of the infinite matrix P, taken to correspond to
e single essential averiodic class of states ( we use
Chung's términology,[7]). A further assuuantion is made,
to the effect that after a finite m all éh are indgcompos—
able, and then 'several theorems about 'eigenvalues' and
‘cotactors' are proved. Lowever, the theory is far {rom
coumplete, and even when Q is of the same form as the above -
mentioned P, does not enable us to obtain results for e.z.
the limiting conditional distribution.

Reuter and Ledermann [28] have developed some spectral
theory, for the special case of bhirth-and-death orocesses
(continuous parameter) along lines which somewhat resemble
Sarymsalkov's.

Karlin and McGregor [17] have obtained some results
for this special case also, and for the discrete (random
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walk) analogue also, [18]1. Their results are applied in
10.3 and 10.4.

Yaglom's paper [33] is important as regards the limit-
ing conditional distribution. A generalization of his
basic theorem is given in 10.2.

In the infinite discrete case, we again consider a =
chain with one absorbing state and a set T of non-essenti-
a1 and therefore non-recurrent states which, for simplicity
may again be called transient, [13]. The non-essential
states fall into non-essential classes, which may or may
‘not be periodic. Chung [T}, p.55 has pointed out that,

in general, the limit of am individual ratio
: (=)
Py . : ,

—

per”

»

does not exist as n-vee for a recurrent aperiodic class,
whereas in the corresponding finite wase it does. @
Whether or not this is also true for i1, 3, k, 1,¢T

with T a sinzle non-essential aperiodic class, does not
appear to be known. A knowledge of what happens in this -
case, would clearly be helpful in considering the limit

of

P
The remaining point of interest which wuist be mentioned,
is that. it only seems relevent to consider the countable

case if absorption is certain i.e.

F L opy T anl ieT

™m0 J'é'J“ ?

whereas, in general, the above sum ¢ 1. '

0.2 The Simple Discrete Branching Process.

A siuple discrete branching process defines an absorb-
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ing Markov chain with a countable number of states, O, 1,
2y4e+... representing the number of individuals in the
population. (For a sketch of branching processes, and
extensive bibliography, see Bharucha-ieid,[4] .) Let
the determining probability distribution, whiéh gives
the probability that the number of individuals x produced
in any one generation by any one individual, be p(x), the
reproduction taking place independently of other individ-
uals; and the rorresponding generating function be

oo

E(s) = 2 fcx>5' 13l =1

Then
_ _ ;
piyj = coefficient of sY¥ in [ F(s)]

To have an absorbing chain, we must allow the possibility
of the population dying out i.e. we nust have O<plo)<]
which meamnsthat absorption can take place in one sted

from any state i =1, 2, 3,......, these being transient.

It is a consequence of the fundamental theorem of
branching processes, that if

lim  F($) = om . # 1 -
S==1-~
then the oprobability of absorption (extinction) is unity,
for any initial probability distribution T , although T
is usually taken as‘ﬁ , since in general we are concerned
with starting from a fixed number of individuals, 1.
- Thus, when m £ ), we have an analogy to the finite case.
Under the assumptions that m < 1 and F''(1)<°®, Yaglom

proves that () o
lim o,f"’ — =V )(Z_'_ 1:]--1 ),
Mmoo L Py Jrro
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He therefore proves the existence of the limiting conditi-
onal distribution for a particular ¥ . We extend this
result, following the lines of his theorem, to obtain the
existence of the limit for a large class‘of T, this limit
being independent of f'.

We need another result before proceeding. Let us
denote the probability generating function of the number
of individuals in the n th generation, starting with one
initially, by F,.(s). It is well known that (e.g. [4) p.
19 ) ‘ : ‘

(10.1) F.(s) # F[F‘M-,'cé):l,

and that if the original number of individuals is i, then
the corresponding generating function is [“Jﬁ” Therefore

(m)

. 2
(%9.2) Py = coefficient of sdin [ A (f)J .
THECHEM : Generalized theorem of Yaglom. "
If m«t | Fri(l=)<oo, O <« LT ¢1, and the initial
14T . oca

distribution ' has finite first moment i.e. 2 ¢T; <°°
XY -

then

L V4

s (
v T, T P

= W .

P S
where %IVJ' = 1,-and Vj is independent of ¥ .
Proof':
| Let = C w2 ]
L Tpy s
e (3) = F T (i) 51 1

2o (£ =R (0))
Ty (1- F-())

™3

[ &

from (1C.2), i.e.
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E Ty (-F:n',(") -J)

: Gm(3)= 1 + 2o .
(10.3) | ( £ (1-E(9)

We now use an extension of a classical result due
to Kanig%AE$W'Kneser [21) (c.f. Yaglom, [33]1). This is
concerned functional iteration in/the form of (10.1),
and considers a function f($) defined in a neighbourhood
of s+¢ , where ¢ is a fixpoint of the function i.e.f (¢)e
and

(10.4) -(-(‘j’(-")-C)-a(s-c)l £ Mis-ecl

in the neighbourhood of ¢ , with a, M>0O | Akl constant
and o<|®l41, . Then, for § sufficiently close to €,

(10.5) €¢s) s lim L;a.""(J’J- (s)-¢)]

A == 0
~

is a solution of Schroder's functional equation
g(cf(s)) : ages)

and the conditions §e)= 0, §c)= 1, -

In our case, we know the function F(s) is analytic
for =1¢ s« 1, with F(1-) = 1. Considering the left
neighbourhood of the point ¢ = 1 we need only verify
that condition (1C.4) is satisfied to be able to apply
Kneser's result. In fact from Taylor's theorem with
femainder

F (s> FQ-)+ Fl1-)(s=1) FO (s

(since F'*(1-) <9Q) for -1< s4¢ 1; and Oém:F'(1-Mas
required, m corresponding e in (10.4). Hence, from (1G.5)
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. F.(s) -1 )
(10.6) - Toka (80

.. e

has the property that

1im L,..(.$~)= H(¢s)

M..vao

which satisfies, in a léft neighbourhood of 1, the
equation '

H(F($)) = am H(SD
ond Ha=-Y=0 , RH11-):1,
Notice that H(0O)< O, since H(s) is non-cecreasing for
Q¢ssdl, from'(10.6), and is strictly decreasing at
s = 1= where it is zero. ‘
Now from (10.6)

)

E.l(s)

(14 mmmbu )

-

N . a I., I
1s i ha ()5 L 3) Gmnkats)) ,_(,,..*qu))) |

since i is a positive integer. Hence

F'i(:_)-f L Lm (30 + O (™™
: RUs)-1
(10.8);, lim 1z Fa (00 . oy > o

The series

e i
T Ty LEEs) -1)
thet = =

is unitormly convergent with'respect to n: from (10.7)
and (10.8) for O ¢ s4 1, we have for K> 0 and n sufficient-
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ly large

I £.1(s)- l,

»

£ s [FH(o)+ K]

m

o9
and sinceé?"i is finite by assumption, +the uniform con-
vergence follows from Weierstrass' M-test.
Therefore, from (10.3), for O ¢ s ¢ 1

Ez’ T H(s)
lim  Gm(3)+ 1+ =Y

v 0o -2 iy H (o)
L
. | L1 - HesSY
. , H (o)

The seriesﬁG,(s) is uniformly convergent with respect to
n for 0:¢ s <« 1, hence the assertion of the theorem.

It is convehient to express the conditions on H(s)
in tefmg of conditions on G(s), where

/

1 - H(S) A G USD
g H(o)

Denoting -H(O) by B, we have from (10.6) that |

G(FU(s))y = "1+ am (GIs)~-1)

-i.e. G(F(S)) : (1"\”\)40‘4&(5/

. ’ CRN(1) e
with & (1-) + 1+ &)'1;6(1-)'._? 3

B
T0.3 Random Walks.

karlin and MCGregor'[l8J have considered the exist-
ence of the limit of

L 0kl €T

in that class of discrete Markov chains termed semi-
finite random walks. The transition matrix P of such
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processes is a Jacobi matrix i.e. piy= O if[1 =~ jl > 1,

where the set of states is 0, 1, 2,..... Ve are concern-—

ed with the particular random walk with an absorbing
state (or barrier) at O, and therefore assume

fno = 1 , P':"l-' =z ?;‘ > O z» 1

f"“-‘_.:fi >O" f"‘v{ = Ay 39 L’ll
7/i+f{+f’i-l ¢z,

(This is in keeping with our previous labelling of states
although -1 is taken as the absorbing state in [18].) Put

P'_P&... s P Y .
Ge Gao - . 7~ YIS 2.

‘tl’l 5 t-=

We then have the fbllowing impértant results of
Karlin and McGregor:

i) If r; =0 for all ieT (i.e. T =4{1,2,3,...} forms

a periodic non-essential class, period 2) then
{aw)

P Q) Qs

T iaAwmy T . -
lim  pel T1 Gul) @t 1f{iy] even
P o d - k-1

P‘.J. (h") . T [. Of Icy O(' L")

lim — ame) ©

where ® > Q. («)> O (see I18}); i, j, k, 1,€ T.
ii) If all ¥;» 0> 0, i e T then
lim f_ﬂ;‘ﬂ) L TN Q) ()
o Pe2’™ Ty Qe ©) @y (=)
for i, j; k, 1,6 T, and is therefore finite and positive.
Only the latter result will be considered here, this
being a case when T is a non-essential aperiodic class

and corresponds to a finite set with primitive submatrix
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(except thatiabsorption into 0 may no longer be certain).
Let us now examine the limiting conditional probability

'2305. P
117‘1\ Z Ty Ll _Plol“‘ o

M =
i=

First take T:f¥ : then the above becomes

(=)

-) £y r oW
lim \Sl'J' ‘ 2 Ii-m 1- py Y L& eT
o > 0o L Bdaiend Aee
lim =
H m L
o - O Z -:.Pi.:.k )
~ Koo .P.'J. ¢
- 1
) 5Tk Pic (v
Ty @ (%)
= Ty QJ' (¢)

Z LrQu(M)
providing it is 0erm1551ble to 1nterchange the limiting
and summatiom procedures. Wotice that if so, the limit

is independent of i.! In the general case

hod {w?

Fowegd” . B TP
11111 e (e 1""'“ gl——w———
z 'TT; (1-,?‘9 ) A~ = e Z qu Z P'

o = O
i) = | #

( E7:0:i0c0) Ty Q) ()
CZ;_“ tkOwld))(E"T; Qr (%))

k-4

2 Tk Dwlet)

independent of T , provided all'thghoperations carried out

Sf_ T @y (o()uo)

to this point are valid:i ( e. =
The validity of such ooeratlons has not been inves-

hut it seems clear that some restriction on

it is conjec—

tigated,
T is necessary (c.f. 10.2). lioreover,
tured that forthese operations to be valid,

with probability 1 is necessary.
Finally, let us remark that everything discussed

absorption

here holds true, Irom [18], when
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in which case the matrix Q corresponding to states 1, 2,.
«o» is a Jacobi matrix, although P is not. This inequal-
ity thefefore Zives a slight extension of the usual random
walk theory.

Thus we have at least some_indication of the exist-
ence of a quasi-stationary distribution independent of7 ,
in tis particular case at least.
The Birth-and-death Process.

In continuous time, the process analogous to a random
walk (I0.3, q.v.) is the birth-and-death process, which
has also been investigated by Karlin and McGregor 17 .

" The results of their two papers [17] and [181] are analog-

ous, apart from the fact .that periodicity cannot occur
when the parameter is continuous.

The birth-and-death process of interest, is the one
with states 0, 1, 2,......with O absorbing, as before,
is specified by the following scheme:

P'-'a-., (t) P ?“,t + \o (e
pin (t) * ﬁit . F o (D 7

pii () 1 - (piegidt rote)

J
as t 0, where py , g¢> 0. Then for Ts, n>1 defined as
in I0.3, we have the result corresponding to ii) of that

section:
lim  PULE) T Qe Qi) v,k 1eT
. , b
L=t prl(Y) Ty @ul=) Qy ()

(The reader is referred to [l7]for the remaining symbols.)
Theremaining discussion is analogous to IO.3.
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APPENDIX
A.T Some Remarks on Generating Functions for Finite Discrete
VMarkov Chains, '
According to Romanovskiy [29J jfﬁ35‘36 generating
functions for finite discrete chains were used by llarkov

himself to prove his limit theorems; subsequently, much
use has been made of them as regards frequency counts (
e.g. Bhat, [ 5] : Good, [16] ; Neuts, [27].), and other

purposes. '

It is noticeable that whenever this method has been
used in this thesis i.e. 1. 3y 3.3, and 4.1, the elgen-
values and eigenvectors of the transient state transition
oubmatrlx @, have figured prominently. A good understand-
ing of this relationship may be obtained by studying

. Romanovski¥'s chapter on characteristic functions; we
shall only briefly indicate the basis of the connection.
The notation is that . of Chapter 1 of this thesis.

Sﬁppose we consider a more éeneral case than
previously l1.e. the probvlem of obtaining the joint p.g.f.
of Xm: , Xea yeveeessy, Xns , with time to absorption
fixed viz. Z Xr,y =Xy = n. It then follows, by & method
analogous to that of 1.3, that this is

j” (c;.n., Wi, W5 )= T ¢ WD, ., “J‘)Q"-('u,,,,,w,) (-0l

rfv W, fn [ SN -‘-ﬁlwlw ﬁl"‘?

Ty w

WheI'e 1’..”. .P.;Us NG f‘l“l Y
Q (wneon,....,we)= | | . ' ,'.’.r[“'--"v"")'

[Poress praon - - - puss i

or, &s in 1.3 } B =3

S (e, o0 =T D [EIITLICTE
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where D = diag Ly wa,. « oy Wi J.
According to the Cayley-Hamilton theorem QD satis-
fies the equation

(A.l) ]AI'Q)I’O.

(4.2) |ET-@2)gm=0

\Iow, it is certainly true that 3..-3.. (W e, .. .wi) satisfies
the difference equation

2

from (A.l), where E is the shift operator in the finite
difference calculus (sece aiso~Bartlett, [1] v.32). The
characteristic equation of (A.2) is (A.l) and its charac-
teristic values are the eigenvélues of QD (depending on
Wiy eooosyWws, but reducing to those of & when the para-
meters are equated to unity). B

It is now clear that the p.g.f. annroach is tanta-
mount to a apectfal resolution nrocedure, exnlicitly or
implicitly. BExtensive discussion of the behaviour of the
generating function in the vicinity of (Wh,....ws)= (1, 1,
cees,1l) is given by Homanovskii [29], althouzh he discuss-—
es characteristic functions rather than nrobability
generating ones.
The Problem for Dliiu31on Processes.

Apart from his papers [22] and 1237 , .andl has been
concerned with the analogous mroblem Tor diffusion nrocess-—
es rounded on one side by a reflecting, absorbing or
elastic barrier, the results of his investiqétions being
contained in [24) , [25) anda [26] (c.f. %wens, [102 ,
{11] , [121 ). e uive his staterent Tor the case of
absorving and reflecting barriers, from [25] :

"...t0 find the conditions for the covergence to a limit
distribution of the probability distribution of the
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rposition of the particle at time t, under the condition
that the particlé was not absorbed before the time t."

' However, it is not within the scope of this thesis
to study diffusion processes, therefore we do.not pursue
it further, but hope to take up the study in the future.



71
Conclusion.

In this thesis, we have developed some ideas relevent:
to the description of transient behaviour in absorbing
larkov chains, In particular, this has been done for
discrete finite chains, and extended to finite continu-
ous chains. The material lent itself easily to the concept
of a generalized finite Markov chain, and several analog-
ous results to the ordinary larkov chain theory were
obtained.

There is obviously a great deal vet to be done,
particularly when %he number of states is denumerably
infinite. Clearly, more sophisticated tools need to Dbe
used than are to be found in the present thesis.

Moreover, a vast new field for these ideas 1is contained
in the theory of diffusion processes, in which several

papers have already appeared. 1n particular, the inter-
| pretation of the formal solution of the stationary
equation, when no stationary distribution can exist, has
éauseq considerable controversy.

It is hoped that this thesis may be a small beginning
to the study of the ideas outlined in i7.
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