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ABSTRACT
Aims/Introduction: Autoantibodies to pancreatic islet antigens identify young children
at high risk of type 1 diabetes. On a background of genetic susceptibility, islet
autoimmunity is thought to be driven by environmental factors, of which enteric viruses
are prime candidates. We sought evidence for enteric pathology in children genetically at-
risk for type 1 diabetes followed from birth who had developed islet autoantibodies
(“seroconverted”), by measuring mucosa-associated cytokines in their sera.
Materials and Methods: Sera were collected 3 monthly from birth from children with
a first-degree type 1 diabetes relative, in the Environmental Determinants of Islet
Autoimmunity (ENDIA) study. Children who seroconverted were matched for sex, age,
and sample availability with seronegative children. Luminex xMap technology was used to
measure serum cytokines.
Results: Of eight children who seroconverted, for whom serum samples were available
at least 6 months before and after seroconversion, the serum concentrations of mucosa-
associated cytokines IL-21, IL-22, IL-25, and IL-10, the Th17-related cytokines IL-17F and IL-
23, as well as IL-33, IFN-c, and IL-4, peaked from a low baseline in seven around the time
of seroconversion and in one preceding seroconversion. These changes were not
detected in eight sex- and age-matched seronegative controls, or in a separate cohort of
11 unmatched seronegative children.
Conclusions: In a cohort of children at risk for type 1 diabetes followed from birth, a
transient, systemic increase in mucosa-associated cytokines around the time of
seroconversion lends support to the view that mucosal infection, e.g., by an enteric virus,
may drive the development of islet autoimmunity.
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INTRODUCTION
Environmental factors acting on a background of genetic sus-
ceptibility are believed to drive pancreatic islet autoimmunity,
leading to the destruction of insulin-secreting beta cells in type
1 diabetes. Circulating autoantibodies to islet antigens are cur-
rently the best-documented marker of sub-clinical (stage 1)
type 1 diabetes. Most children who develop clinical (stage 3)
disease display autoantibodies to one or more of the islet anti-
gens insulin, glutamic acid decarboxylase 65 [GAD], islet-
associated antigen-2 [IA-2], and zinc transporter 8 [ZnT8], by
5 years of age1,2. The environmental factors that promote the
development of islet autoimmunity remain poorly defined, but
enteric viruses are considered prime candidates3–5. We sur-
mised that if enteric or indeed other mucosal infection pro-
moted islet autoimmunity, then the appearance of islet
autoantibodies (“seroconversion”) may be associated with cir-
culating mucosa- and Th17-related cytokines, reflecting muco-
sal inflammation. The Environmental Determinants of Islet
Autoimmunity (ENDIA) study6, in which children with a
first-degree relative with type 1 diabetes are followed from
pregnancy through early life, provided the opportunity to
examine this hypothesis.

MATERIALS AND METHODS
Study protocol
Caucasian children with a first-degree relative with type 1 dia-
betes participated in the multi-site Australian Environmental
Determinants of Islet Autoimmunity (ENDIA) pregnancy-birth
cohort study6. Recruitment to ENDIA commenced in February
2013 and closed in December 2019. The primary endpoint of
ENDIA is seroconversion to islet autoimmunity, defined as the
detection of islet autoantibodies in two or more consecutive
blood tests taken at least 3 months apart. Venous blood is col-
lected from children 3 monthly from birth to 2 years of age,
and 6 monthly thereafter, until 10 years of age, or until the
development of clinical type 1 diabetes as defined by the com-
mencement of insulin therapy. Serum samples were frozen at -
80°C until analyzed.
The analyses described herein were undertaken with samples

and data collected up to the first quarter of 2018 when 1,050
dyads were enrolled, and 970 babies had been born. By this
time, 23 children had seroconverted with at least one persist-
ing islet autoantibody. The investigation of a possible associa-
tion between seroconversion and serum cytokines necessitated
the availability of sequential serum samples in the 6 months
before and after seroconversion. However, because of missed
visits or failure to gain venous access, sample collections in
the months before and after seroconversion were not complete
and only eight of the 23 children met these criteria. These did
not differ in median age, sex ratio, or number of autoantibody
specificities from the 23 in total. Each of the eight seroconver-
ters (cases) was matched for birth sex and age (birth date
–45 days) to a seronegative control who had similarly available
serial serum samples. The smallest date of birth gap between

the pairs was 3 days and the largest 33 days; the median gap
between pairs was 24 days. The characteristics of the cases
and controls are shown in Table 1. In addition, serum cyto-
kines were measured serially in a further 11 unmatched sero-
negative children recruited across the same time period as the
cases.
A difference in the serum concentration of cytokines was

based on comparison of the maximum value (peak) to the
value at the preceding collection time point (pre) of cases
(Table 2). For controls, the same time points as for cases were
used unless there was no matching time point, whereupon the
closest matching time point was used. Seroconversion was

Table 1 | Characteristics of study participants

Characteristic Case
(n = 8)

Control
(n = 8)

Male, n (%) 3 (38) 3 (38)
Female, n (%) 5 (63) 5 (63)
HLA-DR, n (%)
3, 4 4 (50) 2 (25)
3, 3 1 (13) 0
4, 4 0 0
3, X 0 1 (13)
4, X 2 (25) 3 (38)
X, X 1 (13) 2 (25)

Relative with type 1 diabetes, n (%)
Mother 3 (38) 5 (63)
Mother and sibling 0 1 (13)
Father 1 (13) 0
Sibling 4 (50) 2 (25)

Single Ab at seroconversion, n (%) 5 (63) –
Multiple Ab at seroconversion, n (%) 3 (38) –
First autoantibody at seroconversion, n (%)
IAA 3 (38) –
GAD 2 (25) –
ZnT8 1 (13) –
IA2A 0 –
IAA, GAD 1 (13) –
IAA, GAD, ZnT8 1 (13) –

Progression to clinical type 1 diabetes 4 (50) 0
Mean age in months (SD) at diagnosis of
type 1 diabetes

53.7
(26.0)

–

Mode of delivery
Vaginal, n (%) 3 (38) 4 (50)
Caesarean with labor, n (%) 1 (13) 0
Caesarean without labor, n (%) 4 (50) 4 (50)

Infant feeding
Breastfed, n (%) 6 (75) 8 (100)
Missing data, n (%) 2 (25) 0
Mean age (months) at which exclusive
breastfeeding ended

2.2 1.7

Mean age (months) at introduction of solids 4.4 5.0
Immunizations complete in first year of life, n
(%)

5 (63) 8 (100)

Missing data, n (%) 3 (38) 0
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defined as the appearance of one or more confirmed and per-
sisting serum autoantibodies to insulin, GAD, IA-2, or ZnT8.
Health events data of children were documented weekly in

infant feeding diaries completed by parents/guardians during
the first year of life and at 3 monthly study visits until 2 years
of age, and 6 monthly thereafter. All reported illnesses and
symptoms were extracted and classified into World Health
Organization’s International Classification of Diseases (ICD-11)
codes7. These codes were grouped into infection categories
including respiratory and gastrointestinal infections, adapted
from the TEDDY protocol8.

Islet autoantibody assays
Autoantibodies to insulin (IAA) were measured by immuno-
precipitation of 125I-human insulin, corrected for non-specific
binding in the presence of excess unlabeled insulin. In the Islet
Autoantibody Standardization Program (IASP) 2020 Workshop,
this assay had a sensitivity of 36% and a specificity of 100%.
The threshold for positivity was IAA >0.7 Units. Autoanti-
bodies to GAD (GADA), IA2 (IA2A) and ZnT8 (ZnT8A) were
measured by immunoprecipitation of 35S-methionine-labeled
recombinant human proteins. GADA, IA2A, and ZnT8A assays
scored 52, 64, and 52% for sensitivity and 100, 100, and 98%
for specificity, respectively, in the IASP 2016 Workshop. The
results were expressed in arbitrary units in comparison with
positive and negative controls, with positivity defined as GADA
>5.0 Units, IA2A >3.0 Units, and ZnT8A >3.1 Units. Positive
results were confirmed by repeat testing.

Cytokine assays
Cytokines in the Human Th17 Cytokine Panel (listed in
Table 2) were measured using Luminex xMAP technology on
the Bio-Plex 200 platform and analyzed with Bio-Plex Manager
5.0 software (Bio-Rad Laboratories Ltd, Hercules, CA). Serially
diluted standards and test sera diluted 1 in 4 in sample diluent
were added in 50 lL to a plate containing biotin-labeled
antibody-coupled magnetic beads for each of the 15 cytokines
in the panel. Samples were incubated at room temperature on
a plate shaker at 300 rpm for 30 min. Following washing, sec-
ondary detection antibodies were added in 25 lL to each well
and incubated as described above. After a further wash,
streptavidin-phycoerythrin (streptavidin-PE) was added in
50 lL, and the plate incubated at room temperature on an
orbital shaker at 300 rpm for 10 min. Assay buffer (125 lL)
was added to each well before analysis on the Bio-Plex 200 sus-
pension array system. Fluorescent intensities obtained for the
test samples were converted to pg/mL using the standard
curves for each cytokine. Out-of-range cytokine concentrations
were assigned a value corresponding to the minimum or maxi-
mum detectable concentration of the standard. The lower limit
of detection varied for each cytokine (Table 2). According to
the manufacturer’s specifications, the intra- and inter-assay
coefficients of variation were <10 and <20%, respectively, for all
cytokines.

Statistical analysis
For each cytokine response, a separate linear mixed model was
fitted with fixed factors status (case vs control), time (pre and
peak values of cases), their interaction, and a random factor for
matching groups which had eight levels corresponding to each
of the eight matched case and control pairs. Of interest is the
interaction between status and time, as a significant term
implies that the serum cytokine concentration pre vs peak is
different depending on case vs control status. Models were
fitted using the package lme4 for statistical software platform R
v4.1.19. A log transformation of the cytokine response was
employed to meet the underlying model assumptions. Back
transformation of predicted values and standard errors of trans-
formed responses was undertaken10. Back-transformed means
(original scale) are shown (Table 2). A significance level of 5%
was taken for fixed effects with type II testing conducted using
Wald’s test. When a significant interaction between status and
time was found, to compare pairs of means a Tukey’s adjust-
ment to the significance level was made to maintain an overall
family-wise significance level of 5%.

RESULTS
The relationships between serum cytokine concentrations, age,
and islet autoantibodies in cases and matched controls are
depicted in Figure 1a,b and pre and peak serum cytokine con-
centrations are documented in Table 2. Serum mucosa-
associated cytokines increased in all seropositive cases but not
in the matched seronegative controls. When the pre and peak
concentrations were compared, nine cytokines exhibited a sig-
nificant interaction between status (case vs control) and time
(pre vs peak) (Table 2). For IL-22, IL-25, IL-33, IFN-c, IL-4,
and IL-10, the peak values in cases were significantly different
from both pre and peak values in controls; for IL-21, IL-23,
and IL-17F, both pre and peak values in cases were significantly
different from pre and peak values in controls. In 7/8 cases,
serum cytokines peaked around the time of appearance of islet
autoantibodies, and in one case the peak preceded seroconver-
sion. To reinforce the association between the cytokine surge
and seroconversion, serum cytokines were measured serially in
a further 11 unmatched, seronegative children (Table S1). No
child in this validation control cohort exhibited a cytokine
surge.
Parent-reported intestinal or respiratory infections showed

no obvious relationship to either the serum cytokine surge or
seroconversion.

DISCUSSION
In a small cohort of children at increased risk for type 1 diabe-
tes, we observed a transient surge in the serum concentrations
of specific cytokines known to be associated with mucosal
pathology and implicated in the pathogenesis of type 1 diabetes.
Age- and sex-matched seronegative controls, and a separate
cohort of unmatched seronegative children, did not display
equivalent changes in serum cytokines during the study period.
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In most cases, the temporal relationship between the cytokine
surge and the appearance of autoantibodies was reasonably
close, considering the minimal interval of 3 months between
sampling and given the cytokine surge most likely reflected
innate immune and T-cell activation that preceded the evolu-
tion of autoantibodies, the dynamics of which may vary
between individuals. Furthermore, in several cases, the cytokine
surge was associated with a change in autoantibody specificity,
suggesting an association with both primary and secondary
antigenic responses. Timing in relation to the appearance of
islet autoimmunity and before progression to clinical diabetes
links the cytokine surge to disease pathogenesis.
Increased concentrations of serum cytokines have been

reported in children before the onset of clinical type 1
diabetes11–13 but the cytokines were not mucosa-associated or
studied in relation to seroconversion. However, in children
with multiple islet autoantibodies close to diagnosis, Viisanen
et al.14 observed an increase in circulating follicular T helper

cells, a major source of IL-21, a mucosa-associated cytokine.
In the present study, serum IL-21 increased in 7/8 case chil-
dren but in none of the controls. IL-21 is increased in inflam-
matory bowel disease in humans15, drives proliferation of NK
cells, B cells and CD8+ T cells to kill virus-infected cells and,
in concert with IL-23, promotes Th17 lineage differentiation16.
IL-21 also activates production of IL-2217, which promotes
intestinal epithelial integrity and is a key element of the innate
immune response to enteric bacterial infection18. In the non-
obese diabetic (NOD) mouse model of type 1 diabetes, IL-21
has key role in initiating islet autoimmunity by promoting the
expansion of Th17 cells19,20. A phase II clinical trial in adults
with newly diagnosed type 1 diabetes of monoclonal antibody
blockade of IL-21, together with liraglutide (a glucagon-like
peptide-1 receptor agonist that promotes insulin secretion),
found that the combination of agents, but not anti-IL-21 anti-
body alone, sustained endogenous insulin production and
improved glucose metabolism21. Our finding lends support to

Table 2 | Serum cytokine concentrations (pg/mL) in cases and controls

IL-1b (LOD 0.02) IL-4 (LOD 0.52) IL-6 (LOD 0.67) IL-10 (LOD 0.3) IL-17A (LOD 0.49) IL-17F (LOD 0.8) IL-21 (LOD 2.13)

Pre Peak Pre Peak Pre Peak Pre Peak Pre Peak Pre Peak Pre Peak

Case 1 0.34 0.34 1.5 44.8 1.6 26.2 2.1 35.2 2.26 2.3 13.5 190 127 692
Case 2 6.92 2.00 1.5 63.1 49.9 31.8 13.6 34.4 1.76 1.8 11.8 75 15 15
Case 3 0.34 0.34 9.8 42.2 1.6 20.0 8.7 42.4 2.26 2.3 26.7 220 127 1,665
Case 4 0.34 0.34 1.5 37.0 1.6 1.6 2.1 16.8 2.26 2.3 18.1 164 127 809
Case 5 0.34 0.34 20.0 56.4 9.4 25.2 8.7 30.3 2.26 2.3 88.8 283 127 1,015
Case 6 0.34 0.34 7.8 77.3 1.6 41.8 2.1 49.5 2.26 2.3 15.8 500 127 1,295
Case 7 0.34 0.34 14.7 26.8 7.5 11.9 2.1 16.5 2.26 2.3 30.9 106 127 736
Case 8 0.34 4.68 58.1 301 22.2 358 47.7 258 2.26 10.9 192 2,052 1,606 17,395
Case: back
transformed
mean
(95%CI)

0.50
(0.28,
0.87)

0.59
(0.34,
1.03)

6.7
(3.1,
14.6)

59.4
(27.6,
128)

5.17
(2.32,
11.5)

24.3
(10.9,
54.1)

5.59
(2.70,
11.6)

39.1
(18.9,
81.0)

2.19
(1.77,
2.72)

2.70
(2.18,
3.36)

29.9
(16.6,
53.8)

251
(140,
452)

134
(56.4,
316)

835
(353,
1,976)

Tukey group+ – – B A B A B A – – B A B A
Control 1 1.24 1.12 1.48 25.2 5.48 9.72 1.52 12.8 1.76 1.76 2.94 18.8 15.4 15.4
Control 2 0.92 1.24 1.48 1.48 4.04 10.1 9.08 1.52 1.76 1.76 2.94 2.94 15.4 15.4
Control 3 1.12 1.12 16.9 1.48 17.1 15.7 7.12 9.08 1.76 1.76 2.94 2.94 15.4 15.4
Control 4 1.12 0.92 1.48 1.48 4.56 4.20 13.6 1.52 1.76 1.76 2.94 2.94 15.4 15.4
Control 5 1.12 1.04 1.48 1.48 5.48 5.84 1.52 1.52 1.76 1.76 2.94 2.94 15.4 15.4
Control 6 1.24 NA 1.48 NA 4.76 NA 7.12 NA 1.76 NA 2.94 NA 15.4 NA
Control 7 0.80 1.12 1.48 1.48 8.32 5.48 1.52 1.52 1.76 1.76 2.94 2.94 15.4 15.4
Control 8 1.12 1.12 1.48 1.48 13.2 6.20 8.12 1.52 1.76 1.76 2.94 2.94 15.4 15.4
Control: back
transformed
mean
(95%CI)

1.07
(0.61,
1.89)

1.08
(0.60,
1.96)

2.0
(0.9,
4.3)

2.2 (1.0,
5.0)

6.87
(3.08,
15.3)

7.30
(3.12,
17.2)

4.53
(2.19,
9.38)

2.65
(1.22,
5.75)

1.76
(1.42,
2.18)

1.75
(1.40,
2.22)

2.94
(1.63,
5.29)

3.83
(2.05,
7.17)

15.4
(6.51,
36.5)

15.6
(6.25,
38.7)

Tukey group+ – – B B AB AB B B – – C C C C
Interaction
P-Value 0.74 0.006 0.03 0.0002 0.31 0.0005 0.01

+ Letters for pair-wise comparisons between means (if appropriate) of same cytokine. LOD, limit of detection in pg/mL; NA, serum sample not
available.
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the evidence that IL-21 is involved in the pathogenesis of islet
autoimmunity.
IL-23 has a central role in intestinal inflammation, being crit-

ical for the generation and differentiation of Th17 cells that
secrete IL-17F, IL-21, IL-22, and IFN-c22. IL-17F promotes
inflammation in the intestine23 and antibody blockade of IL-17
decreased the incidence of diabetes in the NOD mouse24.
Moreover, IL-17 immunity is upregulated in children before12,13

and at clinical diagnosis of type 1 diabetes25–28. IL-25 (IL-17E)
drives Th2 immunity and suppresses intestinal inflamma-
tion29,30, and protects against diabetes in the NOD mouse24.
IL-33 is produced by intestinal and other mucosal epithelia,
maintains epithelial barrier integrity, and activates innate and
Th2 immunity in the intestine31. In summary, various lines of
evidence link the cytokines we detected in seroconverters to the
intestinal mucosa and the pathogenesis of type 1 diabetes.
While they are not exclusive to the intestine, their detection in
combination in significant concentrations in the systemic

circulation suggests that other tissues, including the pancreas,
are less likely sources of these cytokines.
Mucosa-related cytokines could signal the presence of infec-

tious agents, e.g., viruses known to target both the small intes-
tine and beta cells3–5. Yeung et al.12 did not find a relationship
between serum cytokines and enterovirus detected by PCR in
plasma or stool. However, others have reported that serum IL-
17 and IL-23 are increased in children infected with enterovirus
7132,33 and are positively correlated with enterovirus IgG anti-
body titers in children with celiac disease and type 1 diabetes34.
We sought associations between the serum cytokines and
parent-reported intestinal or respiratory infections, but none
were found. Serial analysis of the gut virome, currently under-
way in ENDIA35, will be a more sensitive and reliable means
to determine if the serum cytokine surge reflects enteric virus
infection.
The strength of this study is the matching of seroconverter

cases and controls within a longitudinal sampling frame,

IL-22 (LOD 0.3) IL-23 (LOD 1.55) IL-25 (LOD 0.07) IL-31 (LOD 0.49) IL-33 (LOD 0.58) IFN-c (LOD 0.43) TNF-a (LOD 0.07) sCD40L (LOD
0.41)

Pre Peak Pre Peak Pre Peak Pre Peak Pre Peak Pre Peak Pre Peak Pre Peak

5.33 34.6 26 797 2.18 13.6 379 426 9.4 115 2.6 104 14.4 22.4 448 525
4.33 4.3 20 400 1.20 6.8 430 329 19.6 145 2.2 54 53.8 33.1 1,596 1,209
5.33 48.1 144 1,007 2.18 20.8 57.8 292 9.4 149 19.9 137 13.7 13.7 276 269
5.33 5.3 131 1,260 2.18 2.2 356 426 9.4 44.3 13.1 97 11.6 18.5 343 601
5.33 31.7 427 1,179 2.18 20.8 57.8 555 63.8 143 59.9 141 10.1 29.3 135 593
5.33 58.2 139 2,222 2.18 38.7 57.8 426 9.4 257 13.1 239 15.0 29.6 221 476
5.33 5.3 244 502 2.18 9.5 461 333 40.0 73.3 22.6 49 18.6 34.8 740 412
88.2 458 1,063 13,515 16.4 426 579 1,331 155 1,928 138 1,258 22.0 83.1 606 1,305
7.38
(3.64,
14.9)

25.3
(12.5,
51.2)

140
(66.7,
295)

1,279
(608,
2,695)

2.60
(1.37,
4.50)

18.5
(9.73,
35.2)

203
(114,
365)

454
(254,
814)

22.3
(11.2,
44.3)

166
(83.3,
330)

15.7
(6.93,
35.5)

141
(62.2,
318)

17.2
(12.2,
24.2)

28.8
(20.4,
40.5)

416
(261,
665)

594
(372,
949)

B A B A B A – – B A B A A A – –
4.33 4.33 20.2 20.2 1.20 1.20 292 366 4.4 33.7 16.9 25.9 35.4 36.8 1,643 1,431
4.33 4.33 20.2 98.4 1.20 1.20 20 123 4.4 4.4 2.20 3.64 20.2 18.1 289 537
4.33 4.33 144 20.2 1.20 1.20 292 142 27.9 4.4 2.20 2.20 31.2 23.3 1,469 489
4.33 4.33 98.4 20.2 1.20 1.20 142 180 4.4 4.4 2.20 2.20 11.5 10.3 588 1,007
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4.33 4.33 20.2 20.2 1.20 1.20 104 123 4.4 4.4 2.20 2.20 30.2 27.3 680 400
4.33 4.33 20.2 20.2 1.20 1.20 311 384 4.4 4.4 3.64 28.6 26.3 25.3 1,485 1,618
4.33
(2.14,
8.76)
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(2.07,
9.25)
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(11.4,
56.2)

1.20
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140
(78.0,
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(105,
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(2.79,
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(2.82,
12.3)

3.02
(1.34,
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(2.04,
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25.8
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(472,
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(493,
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0.04 0.0007 0.0005 0.36 0.004 0.01 0.03 0.52
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Figure 1 | Serum cytokine concentrations in children with islet autoimmunity and in age- and sex-matched controls. Below the x-axis is shown the
absence (-) or presence (+) of islet autoantibodies to insulin (IAA), glutamic acid decarboxylase 65 (GADA), islet-associated antigen-2 (IA-2A), and
zinc transporter 8 (ZnT8A) against age in months. Type 1 diabetes after the last time point indicates the diagnosis of clinical type 1 diabetes. Each
figure set represents data from a matched case and control pair.
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enabling the transient surges in mucosa-related cytokines to be
captured in the seroconverters. The weakness of the study is
that the criteria required to select the cases and controls limited
the number of children available. If our findings are validated
in a larger cohort, they would represent an important clue to
the pathogenesis of type 1 diabetes.
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