i;i%[7[81-;

THE TESTABILITY OF MICROPROCESSOR SYSTEMS - AN ASSESSMENT OF
SIGNATURE ANALYSIS AS A METHOD OF FIELD-SERVICE.

M.J. Liebelt B.Sc., B.E.(Hons.)

A thesis submitted for the Degree of Master of Engineering Science
in

The Department of Electrical Engineering,

The University of Adelaide.

September 1981.

results of supervised

This thesis embodies the
11 of the work for the

project work making up 2
degree.

(1)

TABLE OF CONTENTS

Page

Table of Contents (i)
Summary (vi)
Declaration (viii)
Acknowledgements (ix)
CHAPTER I INTRODUCTION ' 1
1.1 Test Environments for Digital Systems 1
1.2 Testing Practice Before the Introduction of LSI 3
1.2.1 Characteristics of digital systems before LSI 3

1.2.2 - High-volume testing of SSI/MSI logic 4

1.2.3 Low-volume testing of SSI/MSI logic 9

1.3 The Effects of LSI on Testing Practice 11
1.3.1 The characteristics of LSI 11

1.3.2 The effects of LSI on automatic testing 14

1.3.3 The effects of LSI on field service 17

1.4 Summary 20
CHAPTER 11 RECENT DEVELOPMENTS AND CURRENT TESTING PRACTICES 21
2.1 The Response to LSI 21
2.2 Developments in Automatic Testing 21
2.2.1 Practical developments 21

2.2.2 Theoretical developments 27

2.3 Developments in Field Service 28
2.3.1 | Board swapping 28

2.3.2 New test instruments 29

2.3.3 Self-testing 34

2.3.4 Signature analysis 36

2.3.4.1 The principles of signature analysis 37

2.3.4.2 Developments of signature analysis 44

2.4

2.3.5 Portable ATE

Conclusions

CHAPTER TIII AN IMPLEMENTATION OF SIGNATURE ANALYSIS

8
3.2

3.3

3.4

3.5

3.6

Aim of the Implementation
The Target System
3.2.1 General requirements
3.2.2 The Intel SDK-85
3.2.2.1 Description of the system
3.2.2.2 Local modifications
The Signature Analyser
3.3.1 iSignature analyser design
3.3.2 Signature analyser performance
Development of the SA Procedure
3.4.1 Design philosophy
3.4.2 Stage I
3.4.3 Stage II
3.4.4 Stage III
3.4.5 Documentation
Testing the SA Procedure
3.5.1 Verification
3.5.2 Application of the procedure to faulty systems
3.5.2.1 Faulty SDK-85
3.5.2.2 Faulty 8085
' 3.5.2.3 Faulty 8355
3.5.2.4 Faulty 8155
3.5.2.5 Faulty 8279
3.5.2.6 P.C.B. bridging fault

Summary

(i)
Page
47
48

51
i
52
52
53
53
56
57
58
59
61
61
64
72
81
92
96
96
97
98
100
104
105
105
106
107

CHAPTER IV ASSESSMENT OF SIGNATURE ANALYSIS

4.1 Unique Properties of the SDK-85 Implementation
4.1.1 Peculiarities of the SDK-85
4,1.2 Peculiarities of the SA procedure

4.2 Implications of the SDK-85 Implementation
4.2.1 Implementation problems
4.2.2 Ease of use of the SA procedure
4.2.3 Effectiveness of the SA procedure

4.3 The Importance of the Deficiencies of SA
4.3.1 The observability of signatures at all nodes
4.3.2 Individual device tests
4.3.3 Input/output device tests
4.3.4 Failure of the SA procedure in the presence of

certain faults
4.4 Conclusions
CHAPTER V - TESTS FOR COMPLEX LSI DEVICES

5.1 Method of Implementation

5.2 The Generation of Practical Device Tests
5.2.1 Functional tests
5.2.2 Literature on functional testing
5.2.3 Discussion

5.3 8085 Functional Test

OL 3 al
9.8 .12
5.3.3

The approach to development of the test
The 8085 functional model

Development of the 8085 test

5.3.3.1 Instruction complexity
5.3.3.2 The accumulator test

5.3.3.3 Varijation of FU grouping

5.3.3.4 Remaining tests

(iii)
Page
108
108
108
109
111
111
116
121
127
128
133
137

143
145

148
148
151
152
154
162
164
164
165
172
172
176
181
184

5.3.4
5.3.5

CHAPTER VI

6.1
6.2

6.3

Implementation of the 8085 self-test program

Evaluation of the 8085 self-test program

FUNCTIONAL TESTING OF A PERIPHRERAL DEVICE

Aim of Development of the 8279 Test

The 8279 Functional Test

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

The approach to development of the test
The 8279 functional model
Development -of the 8279 test

Qutline of the 8279 test

Limitations of the 8279 test

* Evaluation and discussion

Conclusions on Functional Testing

CHAPTER VII

7.1
7.2

7.3

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

CONCLUSIONS

The Completeness of the "SA Solution”

Future Prospects of Signature Analysis

7.2.1
7.2.2

Trends in microprocessor system development

The applicability of SA to future systems

Chip-Level Design for Testability

A

SDK-85 CIRCUIT DIAGRAMS

LISTING OF THE SIGNATURE ANALYSER SIMULATION PROGRAM

SDK-85 EXTERNAL TEST HARDWARE

OVERALL FLOWCHART FOR THE SDK-85 SIGNATURE ANALYSIS
PROCEDURE

LISTING OF THE SDK-85 SIGNATURE ANALYSIS PROCEDURE
SOFTWARE, STAGES II AND III

(iv)
Page
191
194

200
200
201
201
201
206
209
215
216
220

225
225
227
228
230
234

238

242

245

250

252

(v)

Page
APPENDIX F SDK-85 SIGNATURE ANALYSIS PROCEDURE OPERATING
INSTRUCTIONS 281
APPENDIX G LISTING OF THE 8085 FUNCTIONAL TEST PROGRAM 324
APPENDIX H SIGNATURE SET FOR THE 8085A FUNCTIONAL TEST 344
APPENDIX I LISTING OF THE 8279 FUNCTIONAL TEST PROGRAM 347

APPENDIX J 8279 FUNCTIONAL TEST ROUTINE OPERATING INSTRUCTIONS 362
REFERENCES 369

LIST OF ABBREVIATIONS 384

(vi)

SUMMARY

Digital electronic systems must be tested many times throughout their
useful lives, from the beginning of the manufacturing process until the
time at which they are removed from service. Each of these testing pro-
cesses can be classified into one of two broad categories: high-volume
testing, typically performed by Automatic Test Equipment (ATE) during, and
at the end of, the manufacturing process; and low-volume testing, typified
by the repair of a single system which has failed in the field (that 1is,

field service).

The advent of Large Scale Integration (LSI) Has had a profound effect
in both of these areas of testing. The complexity and architectural charac-
teristics of LSI devices, and microprocessors in particular, have created
problems which have necessitated the development of new techniques for both
automatic testing and field service. While new developments in ATE have
been numerous, a result of vigorous activity in the ATE marketplace, there

have been relatively few developments in the area of field service.

One field service technique which has been developed and is widely con-
sidered to be more promising than any other method is signature analysis
(SA). Many advantages have been claimed for SA, but there has been Tittle
documented verification, so a trial implementation of the technique was
performed on a small microprocessor system (the Intel SDK-85) with a view
to assessing its effectiveness as a field service method. This revealed
that a number of factors might 1imit the effectiveness of SA in practice.
The most serious problem appeared to be that there was no accepted approach
to developing thorough tests for individual LSI devices as part of the SA

procedure.

(vii)

As a means of overcoming this deficiency the implementation of
systematic "functional" test routines in the context of SA was investi-
gated. Self-test routines were developed for the 8085 microprocessor and
the 8279 keyboard/display controller in the SDK—85._ However, certain
architectural properties of the devices and the lack of detailed documen-
tation of their internal workings limited the extent to which the tests

could be developed systematically.

It was concluded that the ability to test LSI devices and, in the
future, VLSI devices, could only be ensured if some provision is made in
the design of each device to make it easily testable - that is, if the
principle of design for testability is applied at the chip level. This is
seen as being essential if digital systems of the future are to be effec-
tively tested in the field, whether by signature analysis or any other

method.

(viii)

DECLARATION

This thesis contains no material which has been accepted for
the award of any other degree or diploma in any university, and
to the best of my knowledge and belief, contains no material pre-
viously published or written by any other person, except where
due reference is made in the text.

M. J. LIEBELT.

(ix)

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. D.A. Pucknell, for his
advice, help and encouragement during the course of this project.

Figures 3.1, 3.3, 5:1 and 6.1 and Appendix A are reprinted
by permission of Intel Corporation.

A11 instruction mnemonics copyright Intel Corporation 1981.

CHAPTER TI.
INTRODUCTION

1.1 Test Environments for Digital Systems

In the Tifetime of any electronic device or system, from the
commencement of manufacture to obsolescence, the unit is, in general,
tested many times, in several different environments[l]. A digital
integrated circuit, for example, may be tested as an isolated chip
before packaging, after packaging, during burn-in (if any), prior to
insertion into a printed circuit board, as part of the completed
printed circuit board, as part of a complete system containing the
printed circuit board and, variously, when the system is tested as

a result of failure in the field.

It is important that at each stage of testing, the testing pro-
cess is performed thoroughly, but also efficiently. Only then can
the manufacture and maintenance of a reliable system be carried out
economically. Inability to satisfactorily test a device or system
at any stage of manufacture may mean that faulty devices or systems
will pass the test, only to go through to a later stage of manufac-
ture, or to application in the field, where the fault may be detected
and will be much more expensive to repair. The property of test
economics that faults become progressively more expensive to detect
and repair at Tater stages of manufacture has become known as the
"ten times ru]e”[z][3] because it is estimated that testing costs

rise by a factor of ten at each successive stage.

Each of the testing phases mentioned above can be broadly classi-

fied into one of two categories: high-volume testing or Tow-volume

testing. High-volume testing is typically carried out by the manu-

facturer of devices or systems who must test a relatively large.
number of identical units during or after manufacture. In such cases
the time taken to test a single unit is multiplied by the production
volume and may be a limiting factor on the overall production rate[4].
Because large numbers are involved, and small improvements in unit
test times can significantly improve production rates, high-volume
testing almost invariably requires the use of automatic test equip-
ment (ATE) which, although expensive, is cost-effective in testing

large numbers of identical units[S][S].

Low-volume testing is typified by the process of field service -
the repair of a system which has failed in the field. In this case,
the system is usually tested by one technician who must systematically
test each section of the system, using general purpose instruements,
until the fault is isolated and repaired. Because only one system of
a given type is serviced af a time, the expense of ATE is clearly not
justifiable (quite apart from the fact that most ATE is large and not
portable). The process of manually testing a system is inherently a
very slow, and therefore expensive one and for that reason field ser-
vice is at the top of the "ten times rute" as the most expensive

testing phase.

It is also important to note that in the field service environ-
ment the objective is usually to isolate and repair a fault in the
system under test, whereas in many cases (notably in the testing of
individual devices) ATE s used simply to detect faults. As faulty
devices are discarded, the matter of fault isolation - of determining
the nature of the fault - is of 1ittle importance. High and low
volume testing therefore often differ not only in economics and

method, but also in objective.

Over the past ten years increasing difficulty has been exper-
jenced in all stages of testing digital devices and systems as a
result of the introduction of large scale integration (LSI). To
appreciate and place into context the problems which the advent of
LSI has created, it is first necessary to briefly review testing
practices for digital systems prior to the introduction of LSI.
‘Because of the vastly different approaches used in high and low
volume testing, the ATE and field service environments will be con-

sidered separately.

1.2 Testing Practice Before the Introduction of LST

1.2.1 Characteristics of digital systems before LSI

Before the introduction and acceptance of Targe scale integra-
tion in the early 1970's, digital systems were most commonly imple-
mented in small scale integration (SSI) and medium scale integration
(MSI) integrated circuits. Devices in the SSI family are characterised
by having fewer than one hundred transistors (approximately) integrated
onto each chip, while MSI devices contain one thousand transistors or
fewer, this beina the 1imit of technology in the late 1960's. Logic
functions implemented in SSI and MSI devices were therefore limited
by the number of transistors available on each chip, and constrained
by the need to package useful, general purpose logic elements. Con-
sequently, functions packaged in SSI/MSI tended to be simple - com-
binational Jlogic gates, flip-flops, counters, multiplexers and so on.
Almost invariably the operation of these devices chould be described

by a simple truth table or characteristic table.

Sequential devices of the SSI/MSI families possessed a property
which might be called "low sequential depth" - all sequential Togic
elements contained in the devices were not deeply buried, but had
outputs taken either directly or through simple combinational logic
to device output pins. Consequently, the operation of each sequential
logic element in a device could be easily observed without requiring
that logic values be propagated through multiple levels of sequential
logic. This property results from the fact that more sequential func-
tions which could have been implemented with Tess than one thousand

transistors were not general enough to be commercially worthwhi]e[G].

This functional simplicity of SSI/MSI devices meant that indiv-
idual devices were easy to test. To completely 1 test a device it
was sufficient to simply verify that it behaved as its truth table
specified, while if the internal logic circuit of the device was known
(and this was usually the case) it could often be even more simply
tested for the presence of a restricted set of faults. The success
of ATE and field service practices in testing SSI/MSI based systems

were a result of this property of SSI/MSI devices.

1.2.2 High-volume testing of SSI/MSI Togic

Automatic test equipment for SSI/MSI devices and systems was
typically based on a minicomputer which would apply a test stimulus
to the unit.under test (UUT) and monitor its response[7]. The test
stimulus was a pre-determined sequence of logic values (often referred
to as a "test set") which was applied to the device or board inputs

to stimulate the internal logic. It is the different means of gen-

1 A "complete"” test imn this context refers to a complete functional test,
rather than parametric test [7]. '

erating the test set and of analysing the UUT response which disting-

uish the various ATE methods employed.

While individual devices were quite easily tested, it was much
more difficult to test and isolate faults on boards containing many
devices. ATE employed one of two techniques to stimulate and test
‘1ogic on a board. The first of these, functional testing, involved
the straightforward application of the test stimulus to the avail-
able inputs (usually at an edge connector) of the UUT, and observation
of the response of the UUT at its available outputs. The test set
would be designed to exercise the board as a whole in such a way that
any faults present in the internal logic could be identified from

the response observed at the board outputs.

The second technique, known as in-circuit testing, avoided the
difficulties of generating a test-set for the board as a whole by
testing devices on the board individually. The input and output pins
of each device was accessed using either an integrated circuit (IC)
clip or a bed-of-nails fixture which allowed access to any node
on the board, rather than just the input and output connections.

The generation of test sets for in-circuit testing of boards there-
fore essentially consisted of developing tests for individual SSI/MSI
devices which, as we have seen, was relatively simple. However this
ease of developing test sets was achieved at the expense of effective-
ness in fault detection. In-circuit testers typically detected faults
in approximately 80% of faulty boards tested, whereas functional
testers achieved fault detection rates of 95% or more[3][5]. The

greater effort (and expense) of generating test sets for functional

testing was therefore often worthwhile.

Two general methods of generating test sets for functional test-
ing were employed. For certain types of combinational systems, methods
were developed for analytically deriving minimal test sets guaranteed
to detect certain faults. Two of the better known methods, the D-
Algorithm and the Boolean Difference technique are described by several
authors[7][8][9]. The methods were initially applied to detect stuck-

at (s-a) faults[71181110]

in irredundant combinational logic networks,
but there have been many developments of these and other analytic tech-
niques, extending fault coverage to other fault classes and more com-
plex systems. The literature also contains many papers on the develop-
ment of minimal test sets for certain classes of combinational Togic
networks and on the design of combinational networks to minimise test

[7][8][11]. However little success has been achieved along similar

91

sets

lines for sequential networks

The second method of test set generation used for functional test-
ing was pseudo-random generation, often used for systems to which
analytic methods could not be applied. This involved the generation,
by the ATE, of pseudo-random test vectors which were applied as stimulus
to the UUT. The existence of any faults in the UUT would be detected
by comparing its response (possibly in real time) to that of a unit
which was known to be good ("comparison testing"[7][12]) or to that

[5][7]. In either case

of a computer simulation model of the system
the response data for a fault free system could be stored on-line by
the ATE for comparison with the response of the UUT ("stored response

testing” or "stored truth table testing" 711121y

With a computer simulation model of the system to be tested it

was possible to introduce a known fault into the model and record the

response date for the system with that fault. The procedure
could be repeated for many different faults, thereby

constructing a "fault dictionary" containing response data for the
system under each of the fault conditions simu]ated[S][7]. If a

fault were to be detected in the UUT, its actual response could be
compared with the contents of the fault dictionary to determine fhe
likely nature of the fault. Simulators also allowed a degree of inter-
action, enabling the test programmerto manually modify the test set

so that it would detect certain faults in the system which might

otherwise go undetected[7][9][13]. Similarly, a simulator could be

used to assess the fault coverage of a given test set.

ATE manufacturers developed various software aids to increase
the flexibility and power of their equipment. These aids included
simulators and automatic test pattern generators, such as that des-

[14]

cribed by Thurman , to allow on-line generation and development

of test patterns. Various forms of diagnostic software were also

«[71113] which

developed for ATE, including "guided probe diagnostics
allowed the ATE,with the aid of a manually operated logic probe, to
examine nodes interval to a board and track down a faulty device on

the board.

The inevitable growth in the size and complexity of SSI/MSI based
systems made fault detection and isolation in these systems by ATE
increasingly difficult. This gave rise to a discussion in the Titera-
ture of the principle of "design for testability", particularly as
applied to the Togical and physical design of SSI/MSI boards so that

p[1111151 (1611171181 [19]

they could be easily tested by AT The common

theme in these papers was the specification of design guidelines which,

if followed in design of a system would ensure that ATE could quickly

and effectively test the system.

Typical guidelines were:
(i) .‘provide reset lines, accessible by the tester, for all
sequential logic;
(1) provide means of access by the tester to the system clock
(for synchronization);
(iii) provide an adequate number of test points, to allow internal
logic elements to be easily controlled and observed (that is,

to improve system controllability and observability);

(iv) avoid the use of monostables and asynchronous Togic elements;
(v) avoid the use of wire-AND and wire-OR logic;
(vi) avoid the use of redundant logic.

In most cases, the implementation of these guidelines involved
an increase in the design and manufacturing costs of the system, but
it was considered that this would be more than offset by savings in

testing costs over the life of the system[5][11][20].

It is important to notice that the success with which ATE was
applied to SSI/MSI systems was due to the functional simplicity of
SSI/MSI devices. It was only because the function of individual com-
binational devices could be described by a simple mathematical equation
that the D-Algorithm and Boolean Differencé technique could be used
to derive test sets for networks composed of these devices. Similarly,
simulators for SSI/MSI networks could only be developed because the
behaviour of individual devices could be described by simple truth
tables. However, it must also be noted that as the size of SSI/MSI

networks increases, both the complexity of the analytic calculations

and the computer simulation time increase dramatically and there is
a practical 1limit upon the size of SSI/MSI networks which can be

dealt with using these methods[S].

1.2.3 Low-volume testing of SSI/MSI logic

Low volume testing (that is, field service) of SSI/MSI based
systems was, as discussed above, a slow process usually performed by
one technician using general purpose instruments. The usual approach
to isolating a fault during field service was based on the observation
of the behaviour of individual devices. Unlike automatic testing in
which access to individual devices on a board is limited, the field

service technician can gain access to, and observe, any device, at will.

Because SSI/MSI devices were characterized by simple behaviour,
it was a relatively simple matter for the technician to observe the
inputs and outputs of a device, and to decide whether it was function-
ing correctly or not. The means of observation varied from device to
device, but in all cases the principle applied that because the devices

had simple truth tables they were individually easy to test.

The size of the system being tested was, as for automatic testing,
an important consideration. However, because individual devices could
be observed directly, the size of the system affected not the ability
to test the system overall, but the ease with which faults could be
diagnosed from observed system behaviour. Individual devices could
be tested just as effectively in a large system as in a small one (al-
though adherence to the "design for testability" guidelines for ATE
could make the process a little easier), but a technician would be ex-
pected to find greater difficulty in deciding which device to test in

a large system.

10.

For some systems long periods of down-time, while field service
procedures such as described above were performed, are not tolerable.
In such cases the practice of "board swapping" was, and still is,
used to repair the system. Board swapping involves the immediate re-
placement of any board or boards in a system which are suspected of
containing faults, instead of attempting to isolate and repair the
fault on the board in the field. The suspect boards are returned to
a central repair site where they are tested (possibly by ATE) and
repaired before being returned to the field to be swapped for other
suspect boards. Board swapping is an expensive repair method, because

(211 put it is

large stocks of spare boards must be held in the field
cost-effective in large systems for which down-time is expensive. It
also serves as a final solution for other systems at times when the
traditional field service approach of component-level repair in the

field, fails.

Despite the relative expensiveness of field service, it is
apparent that the problems experienced dealing with SSI/MSI based
systems were few, even as system complexity increased. This is con-
firmed by the observation that the literature contains virtually no
discussion of any problems of field servicing SSI/MSI systems. This
may be contrasted with the increasing concern expressed in the mid
1970's about the testability of complex SSI/MSI based systems by

ATE, as discussed above.

11.

1.3 The Effects of LSI on Testing Practice

1.3.1 The characteristics of LSI

The introduction of the 4004 microprocessor in 1971 by the
Intel Corporation heralded the start of the era of LSI[22][23].
With 2250 transistors on one chip[24], the 4004 was the first of a
family of devices which currently contain up to 70000 transistors

on one chip[23].

The introduction of LSI increased the number of logic gates in-
tegrated in one device by a factor of ten to one hundred over SSI and
MSI devices. While this simple fact created problems in testing LSI
devices and systems,othercharacteristics of LSI (obviously a product
of the higher gate count per device) have more directly affected test-
ing practices. For some time before the introduction of LSI, device
designers had found that it was no longer satisfactory to place more
and more éomp]ex logic building blocks on a singie chip, as had been
the custom with SSI and MSI. Building blocks which were sufficiently
general in function did not use the full capabilities of the integra-

[6]. Consequently, the first significant use of LSI

tion technology
was to produce completely different types of devices - in particular

memories and, with the 4004, microprocessors.

LSI devices were therefore, from the outset, architecturally very
different to their predecessors and did not possess the functional
simplicity of SSI and MSI devices. With the exception of memory
devices which, because of their very regular structure, fall into a
class of their own, the new LSI devices were highly sequential. They

contained very large numbers of sequential logic elements which were

‘12.
no longer easily observable, but were "buried" within the device[zs].
Not only did LSI devices have very many more states than their SSI/MSI
predecessors, (because of the greater number of sequential logic
elements they contained), but the accessibility of internal logic
elements was much reduced, which made the devices immeasurably

harder to test[26].

The intuitive concept of accessibility of logic elements in a
network from its test points (the device pins in the case of LSI

devices) has been put on a more formal basis by Go]dstein[27]. H

e
presents a quantitative measure of the ease of testing a logic net-
work in terms of combinational and sequential "controllability and
observability numbers". These numbers are an increasing function of
the number of combinational and sequential logic elements between a
given logic element and the primary inputs and outputs of the network.
They indicate the ease with which the inputs of such a logic element
can be controlled ("controllability") and the outputs observed ("ob-
servability") from the network inputs and outputs, through surround-
ing logic. Goldstein proposes that the higher the controllability
and observability numbers of a network are, the harder it is to test,
because internal logic is harder to exercise. The greater Tlogic
depth inh LSI devices than in SSI/MSI devices means that LSI devices

would have higher controllability and observability numbers and would,

therefore, exhibit much poorer testability.

From a different point of view, the reduced accessability to
internal logic in LSI devices can be viewed as a reduction in the
test point-to-gate ratio over SSI/MSI systems of equivalent complexity.
It is accepted that on a SSI/MSI based board, there should be one to

[16]

two test points for every package on the board If it is assumed

13.

that gate integration levels for LSI devices are one hundred times
greater than typical SSI/MSI devices, by this principle a typical
LSI device should have 100 to 200 test points, whereas few devices

have more than forty pins.

Apart from the significant internal architectural differences
between LSI and SSI/MSI devices, and the consequent problems of
device testability, LSI devices (and the microprocessor in particular)
differ from SSI/MSI devices in that the architecture of the device
to a large extent defines the architecture of the system of which it
is to be part. The microprocessor, unlike a fl1ip-flop, multiplexer
or counter, is designed in such a way that it can only be used in,
or designed into, a system in one way, with a specific set of peri-
pheral components (ROM, RAM, etc.). Thus the design of the micro-
processor itself largely dictates that most LSI-based systems must
be bus-structured systems, in which the busses are very often multi-
plexed and bidirectional. SSI/MSI based systems, on the other hand,
have widely varying architectures and no similar generalisations can

be made about their design or structure.

Finally, new failure modes in LSI devices have created difficul-
ties in testing. The much smaller device geometriesand Tine widths
in LSI devices have increased the susceptibility of devices to dynamic

(2811291 (3011311 [y 45

(or "soft") failures and pattern sensitivity
therefore no longer sufficient to test for stuck-at and bridging
faults when testing LSI devices. New fault classes exist and test

procedures must be designed to detect them.

14,

1.3.2 The effects of LSI on automatic testing

The effects which the introduction of LSI has had on the field
of automatic testing arise out of three of the characteristics of
LSI discussed above. They are device complexity, susceptibility to

dynamic failures and LSI system architecture.

The simple fact that LSI devices contain many thousands of |

transistors, forming a logic network of thousands of gates, means

that the analytic methods employed to generate test sets for SSI/MSI
based systems may be impractical for LSI devices and systems. Williams
and Parker[%o] have stated that the ability to generate tests auto-
matically for general sequential networks decreases to unacceptable
levels as the networks grow to the region of 1000 to 2000 gates. A
typical LSI device now contains more than 1000 gates and therefore

[32]

falls into this category. Lyman reports that automatic test

generators for LSI based systems have been found wanting, requiring

[33] state that

expensive manual assistance, while Breuer and Friedman
automatic test generators are "grossly ineffective" for VLSI devices
such as microprocessors, Even if the problems of computational
feasibility were overcome, the ability to automatically generate test
sets for LSI devices would be limited by the facts that device manu-
facturers seldom supply gate-level equivalent circuits for their

[107[30][341[35][36]

devices and that methods of generating tests for

large sequential networks are not well developed in any case[37].

Given that these problems of automatically generating tests for
LSI devices and systems exist, other approaches must be considered.
However, it is apparent that any form of "complete" test is impractical.

Jefferies[38] has estimated that a typical 8 bit microprocessor could

15%

be tested "exhaustively", by forcing it to execute all possible in-

structions, with all possible data values, in all possible sequences,

608

using 2 test vectors which would take an impossibly long time.

[35] estimates that to test a microprocessor fully, checking

23000

Bilton
for pattern sensitivities, would take over 10 years! It is
clear, then, that any practical test for LSI devices must be less
thorough than tests which could be performed on SSI/MSI based boards,

and must be developed on the basis of less complete, less rigid fault

models.

The use of simulators to develop test sets for LSI based systems
has been found to be difficult, for reasons similar to those behind
the problems of automatic test generation. LSI device complexity,
and the lack of gate level information about the devices make the
modelling of LSI devices (and hence, of LSI-based systems) at the

[391[40][41] Consequently, inter-

gate level virtually impossible
active manual development and evaluation of test sets, and the con-

struction of fault dictionaries are difficult to achieve for LSI.

Whichever technique of generating test sets for LSI devices and
systems may be used, the test sets and response sequences are in-
variably very long, because of device complexity. This means that
for stored-pattern testing, ATE required a very large on-line storage

[4][42][43][44]. Furthermore, test times for individual

capacity
devices and boards can become unacceptably large unless the ATE is

very fast[4]. The effective testing of LSI in a production environ-
ment therefore requires the use of ATE which is fast and has a large

on-line storage capacity and which is, therefore, very expensive.

16.

Memory devices are somewhat exceptional LSI devices in that
their complexity does not present such serious problems for ATE.
Because the logic in memory devices is arranged in a regular struc-
ture, it is possible, knowing that structure and 1ikely failure modes
at the gate level, to develop test algorithms which will detect the
most important faults, including pattern sensitivities and dynamic
faults. Chen et al[45] describe a procedure for generating a RAM
test based on known failure modes. There exists a wide range of
"standard" and ad hoc RAM test algorithms, which are variously des-

[710461[471[48][49] although, as noted by

cribed in the literature
Hayes and Mcp]uskey[31] the underlying models on which many of these
algorithms are based, are unclear. Purkis[26] remarks that "the
success that has been achieved with efficient memory testing is
largely due to clever software", whereas LSI devices which are much

less reqularly structured do not lend themselves to being tested by

"clever software".

The susceptibility of LSI devices to dynamic failures and the

consequent need to test them at their rated clock speed[50],

re-
inforces the need (discussed above) for very fast ATE. With some

LSI devices now working at clock frequencies greater than 10MHz, ATE
must supply test vectors and either analyse or store responses at
speeds approaching that figure, if the devices are to be tested in
real time. Although the need to test in real time is not universally
accepted[32], several manufacturers are committed to the principle,

and the motives of those ATE manufacturers who deny that it is necessary

must be suspected.

The use of tri-state bus structures in LSI-based systems has

17.

created the need for special interface "pin" electronics 1in ATE.
Together with the need to test systems at high speed, the use of
bi-directional busses means that the input/output test pins of the
ATE must be capable of changing direction at high speed[l][43][51].
This problem was almost unknown in SSI/MSI systems testing because it

was generally true that the pins of SSI/MSI devices were unidirectional.

The use of bus structured architectures has also meant that in
LSI based systems there are generally more devices connected to bus
nodes than would normally be-connected to a single node of an SSI1/MSI
based system, and, furthermore, that most of those devices are capable
of driving the node. Therefore, if a stuck-at fault is detected on a
bus node, some form of current tracing technique must be used to iso-
Jate the device which is the source of the fau]t[l]. Various current
tracing tools are available for ATE[30][43][52], but they invariably
require that a probe is manually moved over the board, possibly under
the guidance of software running in the ATE. This is a cumbersome,

slow, and therefore very expensive process.

1.3.3 The effects of LSI on field service

It was noted earlier in this chapter that the process of field
seryicing SSI/MSI based systems relied on the observation of the be-
haviour of individual devices and, because device behaviour was quite
simple, presented few problems. The problems experienced in field
servicing LSI based systems are not a result of device complexity as
such, but arise because the perceived behaviour of LSI devices is,

in contrast to SSI/MSI devices, very complex.

To view the highly sequential nature of LSI devices in another

1ight, it is evident that the behaviour or activity of an LSI device

18.

at any given time can depend on inputs applied to the device millions
of clock cycles earlier. For example, the behaviour of a micropro-
cessor at any time can depend on data stored in its internal regis-
ters at some arbitrary earlier time. This means that it is not poss-
ible to determine whether the microprocessor is functioning correctly
if it is only observed over a short period of time. Thus the approach
used to field-service SSI/MSI based systems is generally not suitable

for LSI based systems.

Given that faults in an LSI based system cannot, in general, be
diagnosed through the observation of individual devices, it is logical
to consider the observation of overall system behaviour as an approach
to diagnosing the fault. Several architectural properties of LSI (in
particular, microprocessor) based systems make this approach

difficult>3).

The principal path of communication in a microprocessor system is
the data bus, which is multiplexed and, in general, has several devices
which could drive it at various times. Consequently, it is difficult
to interpret the data present on the data bus at a given time and,
therefore, to determine what the system is doing. Waveforms present
on system busses also tend to be non-repetitive, which makes the obser-
vation of data with conventional test instruments (such as an oscillos-

cope) extremely difficu1t[54].

Bus structured system architecture creates the same problems
during field service in isolating stuck-at and bridging faults on
system busses as during automatic testing. Here again a current tracing

device must be used to locate the source of the fault. However, this

is a less serjous problem in the field service enviroment than in the

19.

ATE environment because field service is itself a slow, manual pro-
cess. The time taken to perform current tracing therefore does not
significantly increase overall system test time during field service

whereas it certainly does during automatic testing.

The architecture of a microprocessor system is such that the
activity of the various devices in the system is very dependent upon
the behaviour of other devices in the system. This, again, is in con-
trast with SSI/MSI based systems in which it is generally possible to
determine whether a device is functioning correctly or not, irrespec-
tive of the behaviour of other devices in the system. The close in-
terdependence of devices in microprocessor systems is a result of the
multiple feedback paths (notably the data bus) which exist in such

systems[55].

It has long been recognised that the presence of feedback loops
in SSI/MSI based systems makes the systems difficult to test[19] and
this is equally true for LSI based systems. If a system contains feed-
back loops, a fault in one device will create errors which may propa-
gate around the loops and affect the behaviour of devices which pro-
vide inputs to the faulty device. Thus, a short time after the fault
first occurs, several devices will be behaving incorrectly, with no
obvious indication of which is the faulty one. If the fault is to be
isolated, the device which misbehaves first must be found and this
will, in general, be a tedious and time consuming task because it re-

quires that system activity be followed in detail.

The final, and perhaps most serious, problem which microprocessor

based systems present during field service is that they are software

driven. To know what should be happening within a system and what

1.4

20.

each device should be doing at a particular time, and to follow ac-
tivity in the system, the field service technician must be able to
understand and follow the system software, wh{ch is generally an
extremely difficult task. Only if the technician is very familiar
with both the hardware and software of a system is he in a position
to deal with all types of fault in the system. This means, in prac-
tice, that before attempting to debug a system the technician must
spend some time becoming:familiar with the sysfem, which makes the

field service process even slower and more expensive.

Summary

It may be concluded from the preceding discussion that the in-
troduction of LSI has seriously affected the ability to test digital
devices and systems at all levels. Test techniques developed for SSI
and MSI based systems have proven to be inadequate for LSI based
systems, although it is apparent that automatic testing methods have
proven less deficient than field service methods. The problems pres-
ented to automatic testing have, more than anything else, created a
demand for very fast, powerful and expensive ATE. For field servic-

ing, however, a completely new approach is clearly necessary.

The test and instrumentation industry has been far from static
in the past ten years and, pressed by the need to contain testing
costs at all levels, has refined existing instruments and techniques,
and developed new ones. Some of these developments in both ATE and
field service will be discussed in Chapter II, together with those

problems which still exist in spite of the developments.

2.1

21.

CHAPTER 11
RECENT DEVELOPMENTS AND CURRENT TESTING PRACTICES

The Response to LSI

2.2

2.2.1

A variety of techniques to deal with the problems described in
Chapter I have been developed since the introduction of LSI. Although
the problems encountered in automatic testing and field service arise
from the same basic properties of LSI devices, because of the different
methods used and economic considerations involved in the two environ-
ments, those problems are quite different and have prompted very
different solutions. For this reason it will once again be convenient
to consider the automatic test and field service environments

separately.

In this chapter, and throughout the remaining chapters, the micro-
processor and related LSI devices will be considered in particular.
They are the most widely used LSI devices, are among the most complex,
and certainly have received the most attention in the literature. Con-
sideration of the problems and methods of testing this particular family
of LSI devices will cover most of the problems and methods of testing

LSI devices in general.

Developments in Automatic Testing

Practical developments

The traditional techniques for automatic testing of SSI/MSI based

systems have, as discussed in Chapter I,proven to be inadequate for

dealing with LSI based systems. However, most of the developments in

22.

the practice of automatic testing to enable LSI devices and systems
to be effectively tested have been refinements or adaptations of

those traditional techniques.

One method which was used initially to test boards containing
an LSI device and some SSI/MSI Togic was to place the LSI device
“in a socket on the board, to be removed from the board during test-
ing[16][17][18][56]. The board would then be tested by traditional
methods, while the LSI device would be tested separately. While
this approach effectively avoided the problems of testing LSI-laden
boards, the need to physically remove and replace the LSI device in-
creased both handling costs and test times. It therefore only served

d[51]. As the use of LSI devices became more

as a stop-gap metho
widespread, it became common to find several on one board, and the
costs of placing several devices in sockets, and of removing them
during testing,made the approach unattractive. In many current

systems if all LSI devices were to be removed for testing, there

would be little left on the board to test.

By about 1977 methods of modelling LSI devices for the purpose
of simulation had been developed. As discussed in Chapter I, it is
practically impossible to model LSI devices at the gate Tevel. How-
ever, several authors have reported the development of "block box"
or "high level functional" models for individual LSI devices[39][51]
or groups of devices[57], which could be incorporated into a simulator
to generate test sets for LSI-based boards as a whole (with the LSI
devices in place). These high Tevel models simulate the behaviour
of the device as seen by the rest of the circuit at the device pins.
No attempt is made to accurately model logic internal to the device,

[39]

or to develop detailed tests for the LSI device which would

23.
typically be tested separately, prior to insertion into the board[57].

Although simulators continue to be used in various forms,
several problems exist. The generation of device models, even at
the "black box" level, is a slow process which must be performed
manually and is therefore expensive. It has been found that new
LSI devices are released at a greater rate than simulation models can

be developed[34][52].

Furthermore, the documentation supplied for
LSI devices is often not sufficient to allow accurate models to be
developed, even at the "black box" 1eve1[1][30][32]. For example, it
may be necessary, simulating a microprocessor system under fault con-
ditions, to model the behaviour of the microprocessor itself in res-
ponse to an "illegal" dinstruction code. This behaviour is rarely
documented by device manufacturers 1, so the behaviour of the device
under these conditions must be regarded as unpredictable, and vari-

able from one chip to another. This means that no model of the device

could be both complete and accurate.

Teradyne have very recently announced a software tool called
TML[58][59] which accepts a functional description of an LSI device
and compiles a gate level equivalent circuit for the device, which
may be used by the LASAR simulator to simulate a complete system
containing the device. While this does overcome the problems of

manual generation of device models, and allows for the generation

In an extreme example of this lack of documentation, Intel chose
not to announce several working and useful instructions designed
into the 8085 microprocessor [22].

24.

of tests for the LSI device based on the gate level eqguivalent cir-
cwit, the problem of incomplete documentation of the functional
behaviour of devices remains. There also appéars to be no guarantee
that tests developed to detect classical (stuck-at) faults in the
gate-level equivalent circuit will detect faults which are likely

[60][61][62]. In other words, the

to physically occur in the device
equivalent circuit may not accurately represent the physical imple-

mentation of the device.

Comparison testing - particularly in real time, with a fixed
reference device - has proven to be one of the most widely used tech-
niques for testing LSI devices and systems. It is particularly
popular for testing individual devices (for which diagnosis of any
observed fault is usually not required) by device manufacturers, and

at incoming inspection by board manufacturers[zg][38][44].

Comparison testing, of course, is not without its problems. The.
use of a fixed réference device limits the flexibility of ATE[4],
while difficulties exist in comparing the response of two devices to

undefined instruction codes[38].

The main problem with comparison
testing, however, is, as discussed in Chapter I, the generation of

the stimulus test set. The simplest means of stimulating the unit
under test (UUT) and the reference device, is by applying a pseudo-
random data sequence to their inputs, which can be done in real time
and requires no storage of stimulus data. However, it is difficult

to assess the effectiveness of pseudo-random test sets in testing LSI
devices[61] and McLeod[63] reports that the method is not particularly
successful because it is difficult to propagate pseudo-random data

through members of the current generation of programmable LSI devices.

Manual generation of stored test sets is an alternative, but an

25.

expensive one[44].

Algorithmic pattern generation (A.P.G.) is another real time

[29][42][64], in which the test set is

test vector generation method
a sequence of microprocessor instructions generated on-line by a
microprogrammed sequencer, rather than a pseudo-random data sequence.
It is usually used in conjunction with a technique known as "module
senorialisation” which allows suitable test instruction sequences

to be derived from the architecture of the device. The major ad-
vantage of A.P.G. is that, like pseudo-random testing, it removes the

need to store large quantities of stimulus data and is, therefore,

relatively inexpensive.

Bisset[65] and B]uestone[lz] describe two similar methods of
implementing comparison testing in which the device under test
operates in its "natural environment" - a system of the type in which
it is typically used. Thus the stimulus is provided from within the
system, so the test set for the device is, in effect, generated by

programming the system to perform typical operations.

In-circuit testing has become increasingly popular as a means of
testing LSI-based boards[66][67][68] because it allows the very com-
plex LSI devices on the boards to be tested essentially in 1so]ation[69l
The problem here, as in the testing of isolated devices, 1is the gene-
ration of suitable test sets for the devices. Therefore, while in-

circuit testing reduces the problems of testing LSI based boards, it

does not solve them.

There is a wide range of commercial ATE currently available and

in development, which use a variety of the methods described above,

26.

and some OtheY‘S[qq][E)z] oAl [701071) [72] .

These systems vary in
their intended application, speed, software support, test effective-
ness and, of course, price. While the literature contains frequent
announcements of new ATE, with new capabilities, the full details of
the test methods used by new equipment are very rarely divulged - a
consequence of the intense competition between ATE manufacturers. It
appears that the current generation of ATE is coping satisfactorily
with most LSI devices, but concern is being expressed about the
ability of ATE to deal with the upcoming range of very large scale

[32][73]. In any case, it is clear that

integration (VLSI) devices
no single test method is in itself a complete solution and, notwith-
standing the ability of the different methods to variously deal with

LSI at present, problems still do exist.

Faced with these problems, ATE manufacturers (and others) have
begun to demand that device manufacturers not only provide more com-

plete documentation for their products, but also design them so that

d[3ﬂ[7$[7ﬂ[75

they can be more easily teste Some authors have

gone as far as to suggest that the growth in the use of LSI and VLSI

will be Timited by problems of testability unless devices are designed

(91[10]

with testability in mind A number of system manufacturers

have recently provided testability features in devices being built
into their systems, the best known example being IBM's use of Level

[10107411761177) tpere

Sensitive Scan Design (LSSD) in chip design
has been some preliminary independent research into other methods of
enhancing device testability by improving controllability and observ-

[78]. [32]points out that until

ability of internal logic However, Lyman
the concept of on-chip testability aids is accepted by independent

device manufacturers, it is unlikely to have a significant impact on

the general testing scene.

27.

2.2.2 Theoretical developments

It is significant that the test techniques being used in prac-
tice, and outlined above, have 1ittle basis in theory and involve
Tittle analytic or automatic test pattern generation. In fact,
there has been very 1ittle theoretical work published which is at
all directly relevant to testing LSI in practice. Much of the on-

 going theoretical research on testing digital systems is still con-
cerned with purely combinational networks, with a 1ittle work on

[37]

sequential networks at the gate level. Bennetts remarks upon
the lack of work on sequential systems at a practical level and
identifies some of the areas in which research is needed to meet

the problems of testing LSI.

One of the few developments in the area of analytic test gen-
eration, at other than the gate level, is presented by Breuer and

[33]. They describe a method, analogous to the D-Algorithm,

Friedman
of generating tests for "high level functional primitives" - that is,
register level components such as counters and shift-registers. It
is clearly not directly applicable to LSI devices, but does address

test generation at a higher level than earlier analytic methods and

is a step in the right direction.

Thatte and Abraham[36]describe a method of generating test in-
struction sequences for microprocessors, based on a register-transfer
level (RTL) model of the microprocessor which can be derived from its
instruction set description. The method is not fully analytic, in
the sense that the algorithms presented involve many heuristic
decisions. Nevertheless it, too, is a step in the right direction
from the use of pseudo-random test sets, or purely heuristic test

instruction sequences.

“and research on the topics discussed by Bennetts

2.3

2.3.1

28.

Apart from these two methods there have been few developments
which are immediately relevant to the practice of testing LSI. In
the absence of any sound and generally applicable theoretical basis
for generating tests for LSI devices, the use of ad hoc and empirical
test methods in ATE will continue. However, there is no guarantee
that such methods will be adequate for testing devices in the future,
[37]

is clearly

necessary.

Developments in Field Service

The development of field service techniques to deal with LSI
based systems has been somewhat more revolutionary than the develop-
ment of automatic testing, with several entirely new instruments and
techniques having been developed. The more significant field service
methods which have been developed since the introduction of LSI will

be outlined in the following paragraphs.

Board swapping

One of the first solutions to the problems of servicing LSI-
based systems in the field to be adopted was the greater use of
board swapping. This, in effect, allowed the LSI test problem to be
removed from the field into a service centre where it could be dealt
with by ATE, or, at least, by a technician who was familiar with the

faulty board.

While board swapping was a satisfactory method of maintaining a
small range of LSI-based products, the increasing use of micropro-

cessors in a variety of products meant that many manufacturers found

29.

that the stock of spare boards required in the field to maintain their

products became uneconomically 1arge[1][5][21][52][79].

Other prob-
lems experiences with board swapping programs were that the turn-
around times for boards returned to be repaired were often very
Tong, which further increased the necessary size of the spare board
stocks which were held in the field, and that a large number of
boards which were returned for repair showed no fault when tested

at the central repair site[l][521[79].

The latter problem was con-
sidered to be partly due to marginal interface characteristics

between boards in the faulty system, and partly due to the unnecessary
replacement, of good boards in the system by field service technicians,

in an effort to effect a quick repair.

In some applications, particularly in the case of manufacturers
who only produce a small range of LSI based products, and have a
small field service staff, board swapping is still an attractive
solution. In general, however, it is not a satisfactory solution

and many manufacturers have been forced to find alternative methods.

2.3.2 New test instruments

The first instrument which was developed specifically for the
diagnosis of LSI based systems was the logic state analyser, intro-
duced by Hewlett-Packard in the early 1970'5[80]. Early logic
analysers could record and display up to sixteen words of sixteen
bit data, sampled on a clock signal which was derived from the system
under test, and had the facility to commence recording the data after
the occurrence of a selectable data pattern, or "trigger word". In
a microprocessor system, the execution sequence of the microprocessor
could be displayed if the sixteen data Tines were connected to the

data or address lines, and the clock signal were derived from a

S0k

suitable microprocessor status on strobe line. This solved the prob-
lems of observing and interpreting nonrepetitive bus waveforms.

The current range of logic ana]ysers[GG][SO][81][82] have the
ability to record up to 1000 words of data up to 64 bits wide, and to
display the data in binary, octal or hexadecimal notation. Other
models can record data asynchronously at clock speeds up to 400MHz,
and produce a timing display of up to 16 data channels. Another
group of logic analysers have "personality modules" for a range of
different microprocessors which allow the analyser to be connected
directly to.the microprocessor through a forty pin test clip so that
the instruction execution sequence can be traced. The modules often
enable the instruction sequence to be displayed in disassembled (that

is, mnemonic) form.

Logic analysers are, without doubt, the most powerful and versa-
tile instruments available for diagnosing LSI based systems, but there
are a number of disadvantages involved in their use for field ser-
vice[79][80]. The most serious of these is that the diagnosis of
faults using logic analysers is necessarily a very slow process. This
is because, in the first instance, unless a personality probe is
available for the microprocessor being tested, the connection of the
multitude of data and clock probes to the system under test is a very
slow process, as is changing the probes in the course of diagnosis.
Secondly, and more significantly, the interpretation and analysis of
the data displayed is a slow, detailed process for which a thorough

knowledge of the system and how it should behave 1is required[53][83].

31.

These characteristics of the use of logic analysers have two
consequences in practice. The first is that, because tracing system
activity instruction by instruction is such a.slow process, field
service using logic analysers is very expensive. The second is that,
because the technician must be very familiar with the system under
test, he must spend a lot of time becoming familiar with both hard-
ware and software before testing the system. If he is required to
service several different systems, a lot of time will be spent purely
on familiarisation, effectively increasing the repair time for each
system, which makes the field service process even more expensive,
Logic analysers, therefore, are not an attractive solution to the
problems of field service and are not widely used in that application
except to deal with particularly difficult problems. The main area
of application for logic analysers is the development of LSI based

systems, for which they are invaluable.

It is appropriate to consider single-stepping as a means of
debugging microprocessor systems in this section because, although it
is a new technique rather than a field service instrument, it is one
which has much in common with the use of logic analysers. The imple-
mentation of single stepping requires that simple hardware be included
in the microprocessor system so that the system can be switched into
a mode in which execution by the microprocessor proceeds step-by-step
(usually one instruction or clock cycle at a time). In this single-
step mode, logic levels on the address, data and control busses are
held constant at each step and a Togic probe may be used to observe
them. It is a very simple, yet often very effective means of enhan-

cing the testability of a microprocessor system.

32.

Like logic analysis, single-stepping allows execution by the
microprocessor to be traced step-by-step, but the hardware provided
usually does not include triggering facilities to allow execution to
be traced through only specific sections of a program. Moyer[84]
describes an unusually elaborate single step unit which does provide
such facilities. Single-stepping also shares the characteristics of
iogic analysis that it is a very slow process and requires familiarity
with system hardware and software. It has the additional disadvantage
that it obviously does not test the system at full speed. Nevertheless
it can be as effective as the use of a logic analyser in detecting

"hard" faults (stuck-at nodes, open circuits, bridging faults etc.)

without requiring expensive test hardware.

Another technique related to the use of logic analysers which was
developed specifically as an aid for the development and diagnosis of
microprocessor systems is in circuit emulation (ICE). An in circuit
emulator is a piece of hardware which emulates the behaviour of a
particular microprocessor, usually under the control of software running
in a microprocessor development system. The emulator fis connected to
the system under test through a plug inserted into the microprocessor
socket (in place of the microprocessor) and appears, to the system, to
be a functional microprocessor. The emulator hardware usually provides
the facilities to trace and record "processor" activity in real time,
to start recording after certain trigger data occurs, and to cause a
break in the execution sequence on the occurrence of "breakpoint" data.
These facilities can be controlled through commands issued from the
console terminal of the development system, and trace data can be dis-
played on the console terminal. Other facilities often provided in-

clude the ability to access development system memory as if it were

memory contained in the target system, and the ability to perform

335

emulation at the end of a software development process (assembly or
compilation) and use symbolic.address and variable names, as defined

in the program.

In circuit emulators are generally more flexible and powerful
in debugging microprocessor systems than Togic analysers, because
‘they share the power and resources of the development system. How-
ever, they exhibit the disadvantage that the system under test 1is
usually only accessed through the microprocessor socket, which means
that essentially only the system busses are directly visible. Activity
in Togic which is not connected directly to the busses cannot easily
be monitored, as it can with a logic analyser. Because they are used
with expensive development systems, in circuit emulators are also
more expensive than logic analysers. Furthermore, they share the
disadvantages of logic analysers that they are slow to use and require

[79]. For these reasons,

a thorough knowledge of the system under test
in circuit emulators as just described are rarely used in field ser-

vice applications.

In recent years, however, several portable in circuit emulators
have been developed for use as field service 1nstruments[85][86].
These instruments provide similar facilities to the development sys-
tem based emulators, but with commands issued and data observed
through switches and displays on the front panel of the instrument
itself. They are generally less flexible than the original emulators
because they lack the resources of a full development system, but
they are correspondingly less expensive. Once again, they share the

disadvantages of other instruments in this class that they are slow to

use, require detailed knowledge of the system under test and therefore,

are expensive to use.

34.

A more recent group of field service instruments combine ICE
with the facility to download test routines for the system under test
from a remote computer through a modem and 1nbﬁi1t serial data inter-
face, which enables the system to be tested almost automatically.
These instruments will be discussed in a Tittle more detail Tater in

this chapter.

2.3.3 Self-testing

A technique which has, in recent years, become very popular as
a means of enhancing the testability of microprocessor systems is
self-testing, This has been encouraged to some extent by continually
decreasing memory prices which have meant that it is possible to in-
clude a ROM containing a self-test program in a system, without sig-

nificantly increasing its cost.

Self-test programs in typical microprocessor based equipment are
executed when power is first applied to the equipment, or when init-

iated by an operator[87].

In the execution of a typical self-test
routine the microprocessor would calculate a checksum on the contents
of all ROM in the system, perform a simple read/write test on system
RAM to detect any obvious faults, perform simple tests on input/output
(1/0) devices such as switches and displays,and, possibly, perform

some form of test on the CPU itself [31][35][88][89][90].

If any
errors were detected while performing any of these tests, some indica-
tion would be given to the operator that the system contained a fault.
The complexities and thoroughness of tests perfofmed during self-test
routines vary, there being a tradeoff in the sense that better fault
coverage can only be achieved at the expense of more ROM to hold longer

test routines[ggl. In systems which are provided with extensive self-

test routines, some indication of the nature of any fault which may

35.

be detected is usually given to the operator. An even more extensive
system of self-test and se]f-diagnostic routines for a microprocessor

system is described by Srini[gl].

The popularity of self-test routines in microprocessor systems

is larcely due to the ease with which self-test programs can be
written which, in turn, is a consequence of the inherent modularity

of microprocessor systems. The fact that the major system components -
ROM, RAM and I/0 - can be addressed and tested almost independently
because of the modular architecture of microprocessor systems, means
that test routines can be written independently to test each module

as thoroughly as is convenient. In fact, this modularity means that
self-test programs are usually designed to test one module at a time

and are therefore, to a large extent, self-diagnostic.

There are three significant limitations on the usefulness of
self-testing as an aid to field service. The first of these is that
self-test routines commonly only give a "go/no go" indication after
the system is tested. Even the more extensive self-test routines
only diagnose faults down to the module level and cannot identify
which component is faulty, which is what is ultimately required.
Indeed, it is difficult to test, in a self-test routine, any devices
which are not directly connected to the system busses, so complete
fault resolution could not be expected from any self-test routine

alone.

The second limitation is that certain faults in the system can
prevent execution of the self-test program. Each microprocessor

system possesses a "kernel" - that section of the hardware which must

36.

be fault-free for the system to execute programs stored in ROM. If
a fault develops in the kernel the self-test program will not be

executed and will be of no use at a11[91][92].

Finally, when a system performs a test upon itself there exists
a possibility that a fault in the system will go undetected because
of a second fault in the system which prevents’ the self-test routine

[35] and Ba]]ard[93] discuss this

from working correctly. Bilton
phenomenon of "fault masking" in self-testing systems and suggest
an approach to writing self-test routines in such a way that it is

Teast likely to occur.

Despite these limitations, which lead to the obvious conclusion
that self-testing is not a complete solution to the problems of field
service, self-testing is a useful technique, particularly for notify-
ing an operator that the equipment he is about to use is faulty. It
is because self-testing provides this "fail-safe" feature that it is

so widely used in microprocessor based equipment.

2.3.4 Signature analysis

In 1977 Hewlett-Packard announced the development of signature
analysis, the first really new approach to field servicing micropro-

cessor based equipment[54][94][95].

It was developed as an alterna-
tive field service method to board swapping which had promised to
become an extremely expensive process for Hewlett-Packard, a manu-

facturer of a large range of microprocessor-based equipment.

Signature analysis (SA) was a completely new approach to the
diagnosis of faults in digital systems which, it was claimed, would

overcome most of the 1imitations of the methods previously used (and

37.

discussed above).

2.3.4.1 The principles of signature analysis

SA is based on the technique of data compression by a linear

feedback shift register
under test are sampled and compressed by the feedback shift register
"to form a sixteen bit "signature" which characterises the data
sequence. The data is sampled from the system synchronously with a
clock signal which is derived from the system, over an interval
defined by "START" and "STOP" pulses, also derived from the system
under test (Figure 2.1). The sampling and compression of the data
are performed by an instrument known as a signature ana]yser[94].
Thus, instead of a data sequence being identified by a timing trace

on an oscilloscope or logic analyser, it is identified by a four hexa-
decimal digit signature. Because of the feedback, the signature
depends on the length of the sampled data sequence and on the value

of each bit in the sequence. If two data sequences produce different

signatures the sequences must be different.

With a sixteen bit shift register there are only 65536 different
signatures. However, there is an infinite number of possible data
sequences which may be observed at a given node, only one of which
will be "correct" - that is, the data sequence which would appear at
that node in a fault-free system. Therefore, there exists a possi-
bility that an incorrect data sequence at a node would produce the
same signature as the correct sequence and would be interpreted as
being correct, if it were observed by the signature analyser.
Frohwerk[96] has shown that the probability of such an error is less

16

than 2°°° or .002% and that if a data sequence differs from the

correct one by exactly one bit, it will produce an incorrect signature.

38.

| \ !
/. DATA = Z J

SHIFT REGISTER
CLOCK =i GATE
From the system < CONTROL
under test
. START
\‘ﬁ_STOP

(a) Feedback Shift Register.

rnaniiipigizisigigiipigigiph

START (%) Y

STOP (L&) /ﬁ -

DATA

SAMPLED DATA - - - - 1 0 1 1 0 i - - &

(b) Example Data Seguence.

Figure 2.1. Operation of the Signature Analyser

Data is clocked into the feedback shift register between the specified edges
of the START and STOP pulses (that is, while the "gate" is open).

39.

SA is used to test a component in a system in the following
manner. Signatures at the inputs and outputs of the component are
observed while the component is being exercised or stimulated within
the system. If the device produces correct output signatures in res-
ponse to the correct input stimulus (that is, if all input and output
signatures are correct) then it is assumed to be fault-free. If,
however, its input signatures are all correct but one or more output

signatures are not, it is assumed to be faulty.

To enable components to be tested in this way there are two re-
quirements. IThe first is that the component must be stimulated within
the system to repetitively perform some meaningful operation which
will indicate whether or not the device is functioning correctly.
Appropriate START, STOP and CLOCK signals must be provided to enable
the input and output data to be sampled synchronously. The operation
must be'performed repetitively so that signatures may be taken in
turn for each of the input and output data streams, over the one

sample interval delimited by the START and STOP pu]ses[97].

The second requirement is that all feedback to the inputs of the
device under test (DUT), from its own outputs and from other untested
Togic in the system, must be removed. Otherwise if the DUT were
faulty, or if a fault existed elsewhere in the system, the feedback
may result in an incorrect input data sequence to the device, which
would produce incorrect input and output signatures. Such a result

is inconclusive.

Because of these two requirements SA is usually appiied to test

[53].

microprocessor systems as a two stage procedure The micropro-

cessor (CPU) itself is the first device to be tested as it is the

40.

central controlling element in the system and will subsequently be
used to stimulate other devices in the system. However, it receives
feedback (primarily on the data bus) from other devices in the
system. In particular, if the ROM containing the program code were
faulty, it would supply the CPU with incorrect instruction codes,
which would cause the CPU to perform incorrect operations and would
result in an inconclusive test of the CPU. Whjle the CPU is tested
the data bus must therefore be disconnected from the rest of the
system. The usual way of achieving this, while still stimulating

the CPU so that it can be tested, is to permanently force the "no
oﬁeration" (NOP) opcode onto the CPU data bus. This is sufficient
stimulus for it to continually attempt to fetch an instruction (the
NOP) and increment the address placed on the address bus. Other in-
puts to the CPU - typically bus request, interrupt and "wait" lines -
must also be disconnected from other components in the system and

tied to inactive levels.

While the CPU is continually executing NOP instructions ("free~
running") it should produce the correct status and strobe 1ine out-
puts to read data from memory, while the address bus contents are
repetitively incremented through the range from O to 216—1 (assuming
a sixteen bit address bus). Signatures can be taken of the data
sequences which appear on the address and control busses and if these
are all correct the CPU is assumed to be functional. During this
"free-run" stage it is also possible to check the contents of the
ROMs in the system. While free-running, the CPU produces the correct
status and addresses to read the ROMs, which therefore place data on

their data bus outputs even though the CPU does not actually see the

data read from the ROMs. If signatures are taken at the "ROM side"

of the data bus, the contents of each ROM location are sampled and

41.

can be verified.

After the free-run stage it will have been verified that the CPU
can fetch instructions and that the ROM's can supply the correct data
when properly addressed. The data bus is then reconnected and the
CPU is forced to execute a program which is stored in ROM. This pro-
‘gram is designed to stimulate the remaining components in the system
so that the signature analyser can be used to verify their behaviour.
The tests (which must be performed repetitively) would typically in-
clude a simple RAM test, a "walking bit" test on parallel ports and

other sundry tests designed to exercise random Togic in the system.

This two stage application of signature analysis is described in

A[54] [941195] It s

more detail in the introductory literature on S
what might be called the "standard approach" to the application of SA
to microprocessor systems, being universally advocated as the procedure

to follow for all such systems.

A number of advantages are claimed for SA over other field ser-

[54][94][95]. The free-run stage of the standard pro-

vice methods
cedure allows the system kernel (CPU, ROM, busses and address decoding
logic) to be quickly and conveniently tested before the "software
driven" second stage is started. Therefore it can be reasonably ex-
pected that if no errors are found during the first stage the test
program for the second stage will be executed correctly. This over-
comes one of the more serious problems of self-testing. SA offers the

additional advantage over self-testing of being more thorough because

each device in the system can be tested explicitly and directly.

42.

SA can,in general, be applied to test a system much more quickly
than logic analysis. The signature anlayser only has four leads
which must be connected to the system under test, so the setup time
is much shorter than for a logic analyser. The signatures do not re-
quire any interpretation - they are either right or wrong - so diag-
nosis of the systems need not take a Tong time, nor does it require
detailed knowledge of system operation. If the set of signatures
expected in a fault-free system is documented in enough detail a
technician with virtually no knowledge of the system can test it,
taking signatures as instructed by the documentation and replacing
the device specified by the documentation when an incorrect signature
is found. To summarise, SA held the promise to be a thorough, fast
(and therefore inexpensive) field service method which could be
applied to any system designed to accommodate it, and for which only
a single inexpensive test instrument was required (the HP5004A sig-

nature analyser costs around one thousand dollars).

The price which must be paid for the benefits offered by SA is
that each system must be designed in the first instance to be tested

by the method[95].

Provision must be made, in the form of jumpers
or buffers, to open-circuit the data bus and other inputs to the CPU,
and to force the NOP instruction code onto the CPU data bus during

[10][79][98]. The test stimulus routine for the software-

free-running
driven stage of SA must be written and a ROM to hold the test routine
must be designed into the system. Connectors must also be provided

to allow the signature analyser control lines to be connected to
suitable START, STOP and CLOCK signals (which may need to be generated
explicitly with otherwise unnecessary logic). Finally, and very im-

portantly, the signatures for a fault-free system must be documented

in a form which allows fast fault isolation by a relatively unskilled

43,
technician.

While a substantial effort must be put into designing a system
to accommodate signature analysis, Hewlett-Packard estimate that the
increment in design time and hardware costs involved is only about
one per cent[54][99] and this is more than offset by savings in field
service costs. It is possible to design SA into an existing micfo-

[541(100] and Stefanski[loll_des-

processor system ("retrofitting"),
cribes how this can be done for systems based on one of several
different microprocessors. However, it is to be expected that retro-
fitting will require some modification to existing system hardware

and, in general, will be more difficult than incorporating SA into a

new design.

Since 1977 SA has been slowly gaining acceptance as a field

[99][102][103]. Hewlett Packard was, of course, the

(5311541921 [104]

service technique

first company to use the method in a range of products

[10

but recent reports] indicate that over 300 companies now use the

method for field service. It has also been adopted for use in ATE,
employing essentially the same approach for testing microprocessor
systems as in field service[so][los][106] but with the additional
facilities of automatic test generation and control line switching.
Its data compression properties have also been used to aid in-circuit

testing of LSI devices[69].

SA is widely considered to be the best field service method

[70] states that is is "the most promis-

[98]

currently avajlable. Hutcheson

ing of all [field service methods]" while Stephen considers it to

[79]

be "the only reasonable alternative". Nicholson , reviewing several

field service methods, states that "SA seems to offer most promise".

44,

Support for the technique has not been unqualified, however.

[107] notes that it is the most popular technique, but

t[108]

Riezenman
solves only five to ten per cent of problems and Bod expresses

reservations that it "“doesn't give 100% answers". A limited range of
unsupported figures on the fault coverage of SA in practice have been

variously published, but no consistent trend is.evident.

2.3.4.2 Developments of signature analysis

Since the introduction of signature analysis and the HP5004A
signature analyser, several field service instruments have been devel-
oped which either offer improvements on the basic technique, or employ

it in a slightly different manner than originally 1ntended[80][82][109].

One of the earliest and most significant developments was the

)[98]. As well as performing the

Millenium Microsystem Analyzer (uSA
function of a basic signature analyser, this instrument incorporates
in circuit emulation facilities similar to those described in Section
2.3.2, which allow the sianature analysis free-run and software-driven
stages to be run under the control of the uSA. Currently, in-circuit
emulation of the Zilog Z80, Intel 8080 and 8035, and Motorola 6800
microprocessors is supported. The uSA has complete control over the
CPU and can intercept and redirect data appearing at the CPU's data

bus pins. Thus the CPU can be free-run without any hardware in the
system under test being changed, and a test routine for the software
driven stage can be executed by the CPU out of a ROM which plugs into
the uSA. The uSA therefore largely removes the requirement for extra
hardware to be included in the system under test for it to be tested by
SA. In particular, this makes retrofitting SA to an existing system

much easier than when using only the HP5004A.

45.

The pSA has an RS232C compatible serial port through which system
test routines may be downloaded via a modem from a remote computer.
This facility, coupled with an automatic test generation software

n[110] allows for semi-automatic testing, with

package called "Fastprobe
guided probe diagnosis, in the field, The uSA also has the facilities
to measure frequency, time intervals and other circuit parameters. It

costs about five times as much as the HP5004A[79].

Several other instruments are available which combine the function
of a signature analyser with other capabilities. The Tektronix 308
logic analyser, for example, can take signatures in the same manner as
the HP5004A and display them on its CRT display, as well as perform

[83] describes

functions normally expected of a logic analyser. Spector
the Paratronics 532 logic analyser, which employs a parallel data com-
pression technique, similar in principle to signature analysis, to gen-
erate a characteristic signature for its stored data. This signature

may be compared to that of a set of prestored data (usually response

data of a fault-free system), which enables a technician to very quickly
see whether the data recorded from the system under test is as it should
be. The value of data compression in this application, as in "traditional"
signature analysis is that differences between two large sets of data can
be very easily detected. The 532 also includes a non-volatile wmemory,

in which response data for a known-good system and test setups can be
stored for reference while servicing a system in the field. Like the

uSA, it has a serial port through which test data can be downloaded from

a remote computer. In his discussion of the features of the 532, Spector
concedes that the flexibility offered by the logic analyser is obtained

at the expense of the ease of use of the single channel signature

analyser.

46.

In mid-1980 Solartron announced an instrument which they called
the "Locator" which can be used to, in effect, perform signature analysis

t[79][107]. It employs a

on systemswith their feedback loops intac
technique known as "Trace Analysis", in which all bits of a data sequence
(up to 32,000 bits long) are sampled and stored internally, and signa-
tures can be displayed for selected sections of the stored data. If

the signature for a data sequence is incorrect (because the data seduence
contains errors) the operator can, by examining signatures for selected
sub-sections of the data sequence, determine where in the sequence an
error first occurs. Data sequences are sampled at various nodes around
the system until the device is found which has an error at its outputs

earliest in the sequence. This device is considered to be the source of

the error and therefore, faulty.

Because the Locator can isolate faulty devices in a system with
feedback loops intact, many of the design overheads required to imple-
ment traditional signature analysis are no longer necessary. Further-
more, the Locator, 1ike the uSA can stimulate the system under test by
in circuit emulation, which removes the need to design a ROM containing
test routines into the system. It is a very new instrument which has
not yet had time to penetrate the field service market, and acceptance

of the technique to data is hard to assess.

At about the same time as the Solartron Locator was released,
Hewlett Packard announced the development of the HP5001A microprocessor
exerciser[lll][IIZ], which stimulates a microprocessor system for test-
ing by signature analysis in a similar manner to the Millenium uSA.

The 5001A operates similarly to an in circuit emulator. It plugs into
the microprocessor socket of the system under test, while the micropro-

cessor is inserted into a socket on the 5001A. In response to codes

47.

entered on a small keyboard the device can cause the microprocessor to
free-run (without any changes to the hardware of the system under test),
or execute one of several simple stored test routines for RAM, ROM, I/0
or the CPU jtself. It also includes a feature whereby data appearing

on the eight data bus 1ines may, in some tests, be serialised to pro-
duce a single signature, instead of the eight signatures otherwise re-
qdired to characterise data on the data bus. As in the case of the uSA,
the inbuilt free-run hardware and the stored test routines of the 5001A
mean that retrofitting of SA to a system is now much simpler, and
that design overheads in a new system are considerably reduced.

Currently only a Motorola 6800 version of the 5001A is available.

Finally, in late 1980 Hewlett Packard announced the HP5005A

[113]. It offers improved performance over the

signature multimeter
HP5004A signature analyser and incorporates voltmeter and counting
functions. It does not represent any development of the basic SA tech-
nique and is only interesting from the point of view that Hewlett Packard

appear to be supporting the trend towards multi-function field service

instruments such as the pSA, Tektronix 308 and the Solartron Locator.

2.3.5 Portable ATE

The development of instruments such as the Millenium uSA and
Paratronics 532 reflects a trend towards more automatic testing in the
field. Several manufacturers of large ATE also produce smaller, less
expensive "portable" ATE for use in the fie]d[13][21][109]. These
testers use a variety of the ATE techniques discussed earlier to test
both boards and individual devices, but differ from larger ATE primarily
in respect of having little or no test sequence development facilities.

Typically, test sequences are initially generated on compatible Targe

ATE and then stored in some form in the portable ATE for later use in

2.4

48.

the field. The performance of portable ATE, in terms of both test
speed and the ability to perform on-line diagnosis is, of course,
poorer than large ATE. The ability to download test sequences through

a serial port is a common feature of this type of instrument.

Equipment of this type is still relatively expensive, with
typical prices ranging up to thirty thousand dollars. In general it
is too expensive to be used by individual technicians in one-off field
service tasks, so portable ATE is typically used in local field service
depots[66], possibly to provide a more Tocal test and repair site for

boards replaced under board swapping programs.

Conclusions

The various instruments and techniques which have been discussed
in this chapter, developed by the test industry to meet the challenge
of testing LSI components and systems, have proven to be satisfactory
in many applications. In the field of automatic testing in particular,
many of the techniques which had been used to test SSI/MSI based sys-
tems have been successfully adapted to test LSI. However, it is clear
that there is a need for ongoing development in all fields of testing
so that the more complex LSI and approaching VLSI devices and systems
may be effectively tested. Existing methods will not cope indefinitely

as device complexity continues to increase.

Steady increases in device integration levels will, in the fore-
seeable future, give rise to a constant demand for new, faster, and

more powerful ATE. The ATE market is a very competitive one, in which

49.

there is currently a great deal of activity. The commercial manufac-
turers are clearly heavily involved in research and development on
improving ATE techniques but (presumably because the field is so com-
petitive) very little of this work is published. For this reason, and
because of the strong market pressures which motivate ATE manufacturers,
it is doubtful whether any research outside of the market could be of
any immediate or practical significance. The areas of research iden-
tified by Bennetts[37] would appear to be the most suitable for inde-

pendent investigation.

The problems of field service seem to be somewhat more immediate.
Signature analysis and its derivatives appear to have overcome many of
the problems of earlier field service methods. As discussed earlier in
this chapter, SA is widely considered to be the most promising field
service technique but support for it is by no means universal. While
there have been many claims about the advantages of SA and the insig-
nificance of the extra design effort required to implement it, there has
been very little published in the way of documented implementations
which might support these claims or the claims of the critics of SA.
Without a fully documented assessment of SA in practice,it is impossible
to identify its strengths and weaknesses or to undertake any further dev-
elopment of the technique. Indeed, because SA is widely accepted as
the best field service method, without such an assessment it is not
possible to identify which field service problems remain and how they
might be increased by the advent of VLSI. Hewlett Packard have very
recently added two case studies to their set of application notes on
SA[114][115], (one of them is a reprint of the article by Rhodes-

Burke [112])

, but these serve more as a guide to the detailed imple-
mentation of SA than an assessment of the difficulties of the imple-

mentation,or of SA overall.

50.

Therefore, as a means of assessing the effectiveness of SA in
practice in isolating faults in typical microprocessor systems, and
to identify any specific problems in the implementation of the tech-
nique with a view to an overall assessment of the current problems of
field service, it was decided to implement SA in a microprocessor
system. The details of this implementation will be presented 1in
Chapter III. Chapter IV will contain a detailed assessment of SA

based on the trial implementation.

51.

CHAPTER ITI
AN IMPLEMENTATION OF SIGNATURE ANALYSIS

3.1 Aim of the Implementation

The aim of performing an implementation of signature analysis
was to determine how effective the technique is in isolating faults
in LSI based systems, and to reveal any deficiencies or disadvantages
of the technique which are not documented elsewhere. In this way it
was hoped to determine to what extent SA is a solution to the prob-
lems of field servicing LSI and which of these problems remains to

be solved.

Ideally the performance of SA would be assessed on the basis of
fully documented implementationson a wide range of LSI based systems.
However, it was clearly not possible to perform a variety of imple-
mentatfons in the time available for this study and, in fact, this
time restriction meant that it would be possible to perform only one
implementation. It was therefore important that this one implementa-
tion should be a "typical" application of SA to an LSI based system,
to ensure that the results obtained would be representative of other
applications, and would allow a meaningful assessment of SA and its

capabilities.

This requirement meant that the jmplementation of SA must be
carried out on a system which is typical of most L3I based systems,
and yet has features which would be Tikely to show up problems which
could occur in larger and more complex systems. Furthermore, the im-
plementation must follow the most commonly used procedure for applying

SA, as closely as possible. In practice, this meant that the "standard

approach" to applying SA described in the early SA literature

[531[541(941195] st be followed.

3.2 The Target System

3.2.1 General requirements

As discussed at the beginning of Chapter II, microprocessor
systems are the most widely used and documented LSI based systems, so
it was logical to choose a microprocessor system as the target of the
SA implementation. These systems typically include several LSI
devices (CPU, RAM, ROM and 1/0 devices) and, for reasons discussed
in Chapters I and II, have the distinction of being one of the most

difficult classes of systems to test.

Given that the target system was to be a microprocessor system,

two approaches to the SA trial implementation were possible: either

a new system could be designed and built, incorporating SA; or SA
could be retro-fitted to an existing system. The second of these
alternatives was chosen for several reasons. As there was no immediate
application for a microprocessor system of typical size and complexity
at the time of commencing the implementation, a new system would have
been designed without any specific design goals other than testability.
This would have resulted in an atypical, perhaps even unrealistic,

system on which a fair assessment of SA would not have been possible.

Secondly, when SA is retrofitted to a system it is necessary to
make changes to the system hardware. The process of explicitly chang-

ing system hardware, rather than incorporating hardware into a new

53.

system, emphasizes the differences between the original "untestable"
system and the modified "testable" system. That is, the process
highlights the steps which must be taken (or the price which must be

paid) to include SA in a system.

Finally, it was expected that the benefits offered by the
HP5001A, the Millenium uSA, and other instruments which can externally
stimulate a microprocessor system could be better judged if the ex-
ercise of retrofitting SA to a system was actually performed. A major
selling point of these instruments is that they greatly simplify retro-
fitting of SA. The importance of this advantage would be better apprec-
jated after the problems of retrofitting had been experienced in

practice.

3.2.2 The Intel SDK-85

3.2.2.1 Description of the system

The system which was chosen as the target of the implementation
of SA is the Intel MCS-85 System Design Kit (or SDK-85). This is a
single board microcomputer based on the Intel 8085 eight bit micro-
processor. In its basic configuration it includes a 24 key keyboard,
a six digit display, an 8355 (or 8755) 2K x 8 bit ROM with two I/0
ports, an 8155 256 x 8 bit RAM with three I/0 ports and an 8279 keyboard/
display controller, A description of each of these devices may be

found in the Intel Component Data Catalog 1980[116].

The system can be expanded by the addition of a second 8355 ROM or
8755/8755A EPROM, a second 8155 RAM and buffers for all data, address
and control bus lines which are then accessible at connectors on the

board. There is a wire-wrap area on the board on which other logic

54.

may be added to the system. Figure 3.1 is a block diagram of the

SDK-85.

The 8355 ROM supplied with the basic SDK-85 contains a monitor
program which allows programs or data to be entered into RAM and
tested. The monitor provides for either the on-board keyboard and
display or a 110 baud serial terminal to be used for the entry and
display of commands and data. A more detailed description of the
SDK-85 is contained in the SDK-85 User's Manual!l}/} and circuit

diagrams for the system are presented in Appendix A.

There were, again, several reasons for choosing the SDK-85 as
the target system. Not the least of these was that it was considered
to be typical of systems commonly in use, in respect of the use of an
eight bit microprocessor, the ROM and RAM capacities, and the I/0
facilities provided. It is a readily available commercial system
which means that any experiments performed on the system could be

readily repeated and independently verified.

The system possesses certain architectural features which
appeared to make it a particularly suitable target for the trial im-
plementation of SA. One of the most important of these is that it
contains several LSI devices with integration levels which were
typical of state-of-the-art devices in the late 1970's. The 8279,
in particular, is one of a family of intelligent peripheral controller

[118][]19]. Since the

chips which are coming into more popular use
problems of testing digital systems so obviously depend on the inte-
gration level of the devices they contain, the SDK-85, with several
state-of-the-art LSI devices, was expected to illustrate well many

of the problems of testing complex LSI devices. However, it was con-

55.

ADDRESS | ROM/O (8355) | [[
cPuU DECODER EPROM/IO (8755) AAM/I0/COUNTER KEYBOAAD DISPLAY FOR BUS EXPANSION
=4, EEROM/IO (8755) BAM/Q/COUNTER KEVBOAAD.DISPLAY EOR BUS EXPANSION
| | | | ADDRESS DATA
| FIELD FIELD
| ! ! e EEEE IR EER
I | I I
| SDK -85 KEYBOARD LAYOUT |
| | I I meseT [VECTl c | o | e | ¢
| | | SINGLE 8|9 |
| ?_ﬂsp bl 1 W e |
| | | | Sunst Exam| 4 | 5 16 | 7
[Mem Inea (seiseifpentpeL
seamat | | | | REXTIEXECl o [1 2] 2 | r————- 5
10 10
821
T | 10 LINES | 10 LINES | I A’:XL °]
I /f\ (| T
I [| 7415156 DATA
]
]'”—_—““l | I]d 12 ?:__,11 p -"*\ﬁi"tl {‘? | 8US
L] | A e = I —=-==A
I 1
mvz'mﬂg i) 8085 | 8205 I 8355 L 4) 8155 - 8279 | :2 8216 \
| | U -
T s ass | 75 | 7S l
e T 1 i
DATA/ i| | | | ka,._..--,
ADORESS | A ' 8212
BUS] I ¥ | ' [|
| | l | [16) ADDRESS
BUS
I | | |
== o
ADDRESS AV 1 | Pt 1, J
sus [| | =] VY' o1z
| | | |
I | I | |
re===q
CONTROL [N\ | AV } AV 4 { AV 1 3, ents CONTROL
BUS 3 h BUS
I I | I | O
I I I 1 |
T T T Tl OPTIONAL A PLACE HAS BEEN PROVIDED ON THE PC BOARD FOR THE DEVICE BUT THE
- DEVICE IS NOT INCLUDED.

Figure 3.1.

SDK-85 Block Diagram.

(Reprinted by permission of Intel Corporation, Copyright 1981.)

56.

sidered to be a sufficiently small system that a thorough application
of SA and a detailed study of all problems arising in the system
would be possible in the available time. A larger or more complex
system would certainly have introduced extra difficulties and high-
Tighted more problems, but a detailed study of all of them would have

taken much longer than the study of the SDK-85.

Finally, several SDK-85 kits had been used for several years in
the Department of Electrical Engineering at the University of Adelaide.
During this. time a number of problems with the kits had been detected,
and these promised to be suitable test cases which might be used to

evaluate the SA procedure which was to be developed.

3.2.2.2 Local modifications

The particular SDK-85 which was used for the implementation of
SA differed from the standard commercial system in several minor

details. These differences were:

(1) The optional expansion 8155 RAM and all buffers in the system
had been installed.

(i) A 24 pin socket had been added to the wire-wrap area of the
board to accommodate a 2708 (1K x 8 bit) EPROM. Simple
address decoding logic, which mapped the EPROM into the
address range 8000H to FFFFH, was included, A -5 volt series
regulator was also added. In the implementation of SA all of
this "external" hardware was ignored and the SA procedure
was developed as if the address.range 8000H to FFFFH were

unoccupied.

3.3

57.

(iii) A -12 volt, rather than -10 volt, power supply was used (for
compatibility with the 2708 EPROM). Two resistors in the
twenty milliamp serial interface were replaced with resistors
of a higher value to compensate for this change.

(jv) A 10kQ resistor was connected from pin 29 of the 8085 (the
WR/ output) to the +5 volt supply rail, to tie the WR/ Tine
high during system reset. The 8085 WR/ output goes into a
high impedance state during reset, and it had been found that,
in all SDK-85's which had been expanded as described in (i),
RAM locations were overwritten during reset. With WR/ tied
high this problem no longer occurred. The remedy is recommended
in the MCS-85 User's Manua1[120] but, surprisingly, is not
implemented in the standard SDK-85 kit.

With the exception of the installation of the expansion RAM and

buffers, none of these alterations was considered to be significant

for the purposes of evaluating signature analysis on the SDK-85.

The Signature Analyser

Primarily because of problems with the availability of the
commercial unit (the HP5004A), a signature analyser was designed and
constructed for the purposes of implementing SA on the SDK-85. A
Tocally built unit offered the additional advantages that modifica-
tions to the function of the unit could be easily achieved if they
proved to be desirable, and that the Timitations of the unit could

be better understood.

For example, with an intimate knowledge of the operation of the

58.
instrument, the reason for an incorrect or unstable signature with a
particular control 1ine setup could be more easily appreciated and

an alternative setup found.

3.3.1 Signature analyser design

The objective in designing the signature analyser was to achieve
a level of performance as near as possible to that of the HP5004A[94]
subject to the constraint that readily available components must be
used. Thus, the analyser was designed to accept a maximum clock fre-
quency of 10MHz, require data and control signal setup times of about
15ns, and have high impedance inputs with standard TTL input logic

levels.

The design uses predominantly Schottky and lTow power Schottky
TTL devices. It is based on four 4 bit shift registers with feedback
(from bits 7, 9, 12 and 16, as in the HP5004A) through exclusive-or
gates. The remaining logic is associated with the START and STOP
gating controls, the display, and the unstable-signature detector.
A bipolar PROM, programmed to produce the modified hexadecimal charac-
ter set of the HP5004A, is used as the display decoder. The four
input signals (DATA, CLOCK, START and STOP) are buffered by LM360
hjgh speed comparators with feedback to produce the nominal 0.8V and
2.0V input threshold levels. Input to the buffers is through a 51KQ

resistor, shunted by a capacitance of approximately 3pF.

A simple self test facility was provided in the form of a
"divide by forty" counter clocked by the display multiplexing clock.
The clock and "clock + 40" signals are brought out to a connector on
the front panel of the instrument, to which the CLOCK, START and

STOP leads can be connected, with the DATA probe connected to a con-

59.

stant '1' input. If the correct signature is then displayed, the in-

strument is assumed to be operating correctly.

The logic probe feature of the HP5004A was not implemented
because it was considered to be unnecessary for the purposes of this
study. Similarly, the HOLD mode of operation was not implemented,
‘although if it had proven to be desirable, only minor changes to the

hardware would have been required to implement it.

Figure 3.2 is a block diagram of the signature analyser.

3.3.2 Signature analyser performance

It was possible to meet the design goals for the signature
analyser using readily available components only by assuming that the
propagation delays of the four input signals through their respective
buffers would be equal. In practice these delays varied by up to
15ns, which meant that it could not be guaranteed that the instrument
would perform satisfactorily at frequencies up to 10MHz with the
specified input setup times. The unit was tested on various circuits
and it was found that it performed satisfactorily in all cases at
clock frequencies up to approximately 5MHz, but at higher frequencies

unstable signatures were obtained in some cases.

Although the performance of the unit is certainly inferior to
that of the HP5004A, it was considered to be adequate for use on the
SDK-85, in which the highest clock frequency is 3MHz, and the shortest
valid pulse width is greater than 100ns. In practice the unit did
perform satisfactorily on the SDK-85, with unstable signatures being

very rare. Certainly, its performance was adequate for the purposes

adl

A

* A A

(
(
:ﬁ :: Data

BUFFERS
DATA o__{:j> _
; C19gk Shift
\ SHIFT REGISTER
CLOCK o—->— EDGE . 16
SELECT P
START ™ EDGE || < 16
"1~ | SELECT
e LATCH
LOGIC
STOP o1 EDGE |
SELECT
+ 16
GROUND L 16 116 L 16
=L 0SCILLATOR
AND COMPARATOR
SELF-TEST L2 ’ f): B
i J l l Gate@? Unstable ,___J
Sig. i
Clock Stop = -) DISPLAY
Start Data

Figure 3.2.

Signature Analyser Block Diagram.

09

61.

of this investigation.

The correctness of the signatures produced by the analyser was
verified by two methods. A computer program was written to simulate
the operation of the analyser, and this was used to confirm signa-
tures obtained from various counting circuits. This program, written
in Pascal to run on a Cyber 173 computer, is listed in Appendix B.
Secondly, the signatures observed on the 8085 address bus during free-
run were checked against the expected signatures, tabulated by

Stefansk1[101].

3.4 Development of the SA Procedure

3.4.1 Design philosophy

As discussed at the beginning of this chapter, because the trial
implementation of SA must be a "typical" one, the standard approach
to the applicaton of SA must be followed. The standard procedure des-

A[53][54][95] consists of

cribed in the introductory Titerature on S
the free-run and software driven stages of SA, in which the major
components of the system (CPU, ROM and RAM) are tested in a prescribed
manner. However, the methodsof testing other components in the system
are not prescribed (presumably because there is so much variation in
minor components from system to system) and the designer is left with
no rigid guidelines on how to proceed in designing a test for these
other components. Some suggestions are made in the application notes

on SA[95][114][115] but, clearly, much must be left to the discretion

of the individual designer.

62.

A fundamental decision which must be made at the outset concerns
the degree of fault resolution which will be attempted with the SA
procedure. If only the basic steps of testing CPU, ROM, RAM and I/0
as prescribed in the literature were carried out, faults in the
system could be isolated to one of these major system components, or
to the remaining (untested) minor components as a group. If, on the
-other hand, the test procedures were to be extended to explicitly test
all components then, ideally, any fault could be resolved down to a
single component, which could then be replaced. The penalty which
must be paid for the greater fault resolution would be that the test
procedure must be longer and more complex, and the documentation of

the procedure must be more detailed.

For the SDK-85 implementation of SA it was decided to attempt
fault resolution down to a single replaceable component, as this was
expected to allow a fuller assessment of the capabilities of SA. Any
inherent limitations on the ability of SA to isolate faults would
only be fully revealed if complete fault isolation with the technique
were attempted. If a less ambitious goal had been set, the capabilities

of SA would not have been tested as fully.

Given this decision to test each component in the system it re-
mained to be decided how, and in what sequence, minor components were
to be tested. In this respect the only guidance provided by the SA
literature is in the form of a suggested overall approach to testing
components. The underlying philosophy of the prescribed tests for
major components appears to be that they should be exercised in some
way. This is referred to by Gordon and Nadig[54] and in Hewlett

W195)

Packard's "Designer's guide to signature analysis "node-

wiggling". The emphasis is not on testing components exhaustively

63.

so much as on stimulating them to perform some operation which might
indicate whether they are working correctly. The tests for minor
components in the SDK-85 were in general developed to be consistent
with this approach and hence, with the tests performed on major com-

ponents.

In fact, the details of exactly how and when each component
was to be tested were determined by an evolutionary, or iterative
process, rather than by a firm decision at any stage in the develop-
ment of the procedure. The procedure was gradually developed from
the basic prescribed sequence of testing major system components, to
include tests for as many minor components as possible, in the most
efficient sequence possible. The iterative approach was found to be
necessary to develop an efficient testing sequence, which involves the
smallest possible number of signature analyser control line changes,
but which also tests components in the order dictated by their input

and output signal interdependence.

In its final form the procedure consists of three stages. The
first stage is the traditional free-run stage of SA in which the CPU,
data and address busses, address decoder, ROM and buffers are tested.
The second stage is the software driven stage in which the CPU executes
a program to test RAM and the parallel ports. The test program for the
second stage is stored in a 2K byte EPROM, installed as the expansion
ROM (A15) in the SDK-85. The third and final stage of the procedure
is a self-test stage in which the CPU executes a second program (also
stored in Al15) which was designed to exercise the more complex

facilities of the SDK-85, which are not tested in the first two stages.

In the following sections the sequence of tests performed in

64.

each stage will be discussed so that the problems encountered in
the implementation and the factors which determined the degree of

success of SA in the application might be appreciated.

3.4.2 Stage I
The Stage I test sequence closely follows the standard free-run
test procedure described in the SA literature. At the first step the

system hardware must be reconfigured to cause the CPU to free run.

The 8085 microprocessor has a multiplexed address and data (AD)

[120]. In each memory cycle the eight least significant bits of

bus
the address are placed on the AD bus early in the cycle, and data 1is
transferred over the AD bus late in the cycle. Therefore, if the pro-
cessor is to be free-run with all sixteen bits of each address propa-
gating throughout the system, it is not sufficient to simply open-
circuit the AD bus and force the NOP instruction code onto these
lines. Stefanski[lol] describes a free-run adapter for the 8085 which
incorporates buffers whose function is to isolate the eight address
bits output on the AD bus from the NOP instruction code read in on the
same lines. The 8085 must be physically removed from its socket in
the system under test and placed in a socket on the adapter, while a
forty pin plug from the adapter is inserted into the socket in the
system under test. The socket on the adapter ties all CPU inputs

(except the data bus and RESET) to inactive Tevels so that there is

no feedback to the CPU from the rest of the system.

An adapter almost identical to the one described by Stefanski
was constructed. The only change made was that a 74LS04 inverter was

included to buffer the RD/output of the 8085 which has up to three

Schottky TTL loads to drive on the SDK-85 board, and would otherwise

65.

have had another four low power Schottky loads to drive on the

adapter. A circuit diagram of the adapter is contained in Appendix C.

Before the Stage I test procedure is commenced, the various
1inks on the SDK-85 board must be inserted to tie external inputs
to inactive levels and to configure the data bus buffers so that ex-

H[117]. For

ternal memory lies in the address range 8000H to FFFF
the first test in Stage I, the 8085 is placed in its socket on the
free-run adapter and the signature analyser START and STOP leads are
connected to the most significant address line (A15)1 and the CLOCK
Tead to the address latch enable (ALE) line. After the power supplies,
RESET and other inputs to the CPU have been verified as being at their

correct levels, the signature on the sixteen address lines are ob-

served, to verify that the 8085 is free-running correctly.

It should be noted that the signatures of the eight least sig-
nificant address lines are observed at the outputs of the buffers on
the adapter, which indicates an underlying assumption that the adapter
jtself is fault free. This assumption applies throughout all stages
of the SA procedure to all external test hardware (including, of

course, the signature analyser).

A second important point which should be noted with regard to
the free-run test of the CPU is that it is possible for an incorrect

signature to be observed on one or more address Tines as the result

1. In Intel circuit diagrams and literature, integrated circuits
on the SDK-85 are denoted Al to Al7, while address lines are
similarly denoted A8 to Al5. To avoid confusion, in any dis-
cussion of the SDK-85 the integrated circuits will be referred
to as Al to A17, as in the Intel literature, but references to
address lines will be subscripted (as Ag to A).

66.

of a fault on the address bus, rather than a faulty CPU. Such a
fault may occur at the input of any other device connected to the
address bus, or on the printed circuit board as a bridging fault
between conductors and,unless a current tracer were used,would be in-
distinguishable from a fault in the CPU. Therefore, if an incorrect
signature is observed on the CPU address lines and replacement of
the CPU does not correct the problem, a current tracer must be used
to isolate the fault on the bus. The same procedure must apply in
all cases in which the output signature of a device is observed to

be incorrect.

While the CPU is free-running and incrementing its address values,
it provides an excellent stimulus by which the continuity of the
address bus may be checked. Signatures are observed at the address
inputs of all devices connected to the address bus. Since it has al-
ready been verified that the CPU is placing correct addresses on the
address bus, an incorrect signature at any point must be the result

of a faulty connection from the CPU socket to that point.

It may be noticed that this practice of veryifying only the
address inputs to all devices on the address bus at one time differs
from the practice recommended in much of the SA Titerature of checking
all inputs and outputs of a single device at one time. It was nec-
essary to use this approach to keep the number of times that the control
lines of the signature analyser had to be changed during Stage I down

to a reasonable value.

For most devices in the SDK-85, all input and output data cannot

be observed with a single control line setup for the signature analyser.

In fact, this is true of many components in microprocessor systems,

67.

particularly those in systems which use multiplexed busses. There-
fore, if all inputs and outputs of a device were to be checked at
once, it would be necessary to change the sigﬁature analyser START,
STOP and CLOCK inputs at least once for most devices, which would
result in an unacceptably slow test procedure. In order that the
number of control line changes would be minimised, it was decided,
instead, to plan the procedure so that for a given control line setup,
all possible signals would be verified before the setup was changed.

Thus, all address line inputs are verified together.

The 8205 address decoder (A10) is somewhat exceptional in that,
because it is a purely combinational device, its inputs and outputs
can be observed on the same clock. The outputs of the 8205 are ob-
served first and then, if any of the output signatures are incorrect,
its inputs are checked. If all outputs are correct its inputs are
assumed to be also correct. In the most likely case that the 8205
is fault-free and its input data is correct, it will only be necessary
to observe the outputs of the device to check it, so this practice
reduces the number of signatures which must be observed.

(95 yas used in the tests for

This technique of "half-splitting
all of the few devices in the SDK-85 which have inputs and outputs
which can all be observed with a single setup for the signature
analyser control lines. It was also used in some tests designed to
verify device interconnections and connections to output connectors.
It was not more widely used because of the many different signature
analyser setups which are required for the observation of the various
signals in the SDK-85. For example it was decided not to verify the

the outputs of the 8355 ROM before its inputs because, if an error

had been observed, it would have been necessary to change control

68.

lines to observe its inputs. Similarly, half-splitting was not em-
ployed on a system-wide scale (as recommended in the "Designer's Guide
to Signature Ana]ysis"[95]) because this would have virtually required
a new control line setup for each set of signatures observed. Thus

the Stage I test procedure evolved as an expanding kernel test in which

(in most cases) all device inputs are verified before their outputs.

After the address decoder is tested the chip select inputs to the
various devices on the data bus are checked, which verifies the connec-
tions from the address decoder to those devices. This is the last test

to be performed with ALE as the signature analyser clock.

The signature analyser CLOCK input is next connected to the RD/
output of the 8085, with data being sampled on the trailing (positive-
going) edge of the RD/ pulse. This edge occurs late in every memory
read cycle, at a time when all status and control outputs from the
CPU (SO, S1, INTA/ I0/M, HLDA and WR/) are valid. With
RD/ as clock, these signals are checked at the processor output pins
and at the corresponding inputs of all devices to which they should
be connected, in a similar manner to that in which the address lines
were tested. For reasons which will be explained in the discussion of

Stage II, SO and S1 are not included in this test.

While the processor is free-running, it is continually executing
an "instruction fetch" memory cycle, so the status and control outputs
(as observed on the trailing edge of RD/) should be static and produce
stuck-at-one or stuck-at-zero signatures (0001 or 0000 respectively).
Therefore, this part of the test procedure serves more to verify that
the status and control inputs to the various devices in the SDK-85 are

at the correct levels than to verify that the lines are not stuck-at or

69.

open. Each of these lines must be tested at a later stage to ensure

that it can assume either logic Tevel.

The path of the RD/ signal throughout the system cannot be fully
checked simply by the observation of signatures at RD/ nodes, clocked
in the positive edge of RD/. If there were no faults on the RD/ line,
this would result in a stuck-at-zero signature din all cases, which
(naturally) would also result if the node were stuck-at-zero. It is
therefore necessary to verify that the signal at each point which
should be connected to RD/ s high when RD/ is high and low when RD/
is low. If a HP5004A signature analyser were being used its inbuilt
logic probe would be used to verify that each nade is not stuck-at,
which, together with the correct signature,would be sufficient to
verify that the signal is correct. As the signature analyser being
used on the SDK-85 did not have an inbuilt Togic probe, the RD/ line
is instead verified by the observation of two signatures at each point -
one with the positive edge of RD/ used as the clock, and one with the
negative edge of RD/ used as the clock. These signatures should res-

pectively be the stuck-at-zero and the stuck-at-one signatures.

The RD/ clock is also used to check the small amount of combin-
ational logic which enables the external data bus input buffers, Ad
and A7. This section of the circuit has RD/ as one of its inputs so
it is again necessary to observe two signatures at each node, one

clocked on the positive edge of RD/ and one on the negative edge.

The system clock signal, CLK, and the small amount of logic
associated with it must be tested with CLK itself used as the signature
analyser CLOCK input because CLK is the highest frequency signal present

in the system. Once again signatures must be observed at each point

70.

with both posifive and negative CLOCK edges. For the purpose of
verifying the CLK signal path the START and STOP inputs of the sig-
nature analyser are connected to RD/, which produces a signature

gate interval of four clock periods (the time taken by the 8085 to
execute a NOP instruction). RD/ is used for the START and STOP in-
puts rather than the most significant address line (A15) because the
8085 data sheet[116] does not specify an absolute timing relationship

between CLK and A 5 and signature instability proved to be a problem

1
when A15 was used. There was much less difficulty with signature in-

stability when RD/ was used.

The CLK signal is traced from its source (the 8085) to each device
to which it is an input, and from the output of buffer A5 (which, by
this stage has had all of its inputs verified) to the external connector
Jl. CLK is also an input to the hold acknowledge synchronization flip-
flop (A9), and signatures are taken at its outputs to verify that they

are at the correct (static) Tevels.

In the next step of the Stage I procedure the path of ALE through
the system is checked. As in the cases of RD/ and CLK, there is no
signal in the SDK-85 which could be used as the signature analyser
CLOCK input for the purpose of verifying the ALE signal. Therefore,
it is once again necessary to use the signal itself as the CLOCK
input, with.signatures observed on both clock edges. Address line
A15 is again used as the START and STOP input to the signature
analyser. Although A15 is not auaranteed to be valid on the leading
edge of ALE it was found that stable signatures are obtained on
either edge of ALE if the gate interval is started on the positive

edge of A15, and stopped on the negative edge.

71.

After the ALE input to address Tatch A6 has been verified, all
of the inputs to all buffers to the external connectors have been
verified, so the outputs to the connectors can be checked. The out-
puts of the data bus buffers (A4 and A7) are observed to see that
they contain the eight most significant address bits during the
early part of each machine cycle (that is, on the negative edge of
IALE). The address buffers are tested by the observations of their
outputs later in each cycle (on the positive edge of RD/), which also
verifies that the latch, A6, retains the data placed on the data bus

while ALE is active.

For some of these buffers, as for the 8205 address decoder, Al0,
it proved to be possible to observe both inputs and outputs with a
single signature analyser control line setup. In such cases signatures
are observed at the buffer outputs first, and input signatures are
only observed if an error is detected. For this reason address inputs
to buffer Al are not verified earlier in Stage I when address inputs
to all other devices are verified. In the more likely cases that the
buffer is not faulty it will not be necessary to observe its inputs,

so the total number of signatures which must be observed is reduced.

At the final step in Stage I, the contents of the two ROM's (Ald
and Al5) are checked. By this time all control and address inputs to
the two devices have been verified, so any errors observed at the ROM
outputs must indicate a faulty ROM. While the CPU is free-running, it
strobes data sequentially from all locations in each ROM onto the data
bus, as explained in Chapter II. For each ROM, the signature analyser
START and STOP lines are connected to the chip select line of the ROM

(starting on the leading, or negative, edge and stopping on the trail-

ing, or positive, edge) with the trailing edge of RD/ used as the

72.

clock. Signatures can then be taken on the data bus to verify the
data read from the ROM. Because data is sampled only while the chip
select 1ine of one ROM is activated, only data from that ROM is in-
cluded in the signature[97], so an incorrect signature can only be

caused by incorrect data placed on the data bus by the selected ROM.

At the end of Stage I, all data and address bus connections have
been verified, and the various control and status lines have been
partially tested. It has been verified that the CPU can fetch in-
structions and execute at Teast one. Just as importantly, it has been
verified that both ROM's can place the correct data from any of their
2K locations onto the data bus when properly addressed. It can there-
fore be reasonably assumed that a test program stored in ROM will be
correctly executed by the CPU, which means that the software driven

stage of signature analysis can be started.

3.4.3 Stage II
With the kernel having been verified in Stage I, the system is
reconfigured in Stage II to allow the CPU to execute a test program
which stimulates the system so that the remaining major components
(RAM and 1/0 devices) may be tested. The CPU is therefore removed
from its free-run adapter and is replaced into its socket (A11) in

the SDK-85.

Clearly, some change to the SDK-85 hardware is required to force
the CPU to execute the stimulus program instead of its normal "applica-
tion program" - the SDK-85 monitor. The simplest approach would be to
remove the SDK-85 monitor ROM from the Al4 socket and replace it with
the ROM containing the test program. However, this was considered to

be an unsatisfactory approach because it would involve the removal of

73.

a major section of the system, significantly changing its normal
operating configuration. If the monitor ROM were to be removed, any
faults in the operation of its I1/0 ports obviously could not be

detected during Stage II.

The approach adopted was to store the stimulus program in the
expansion ROM (A15) in the SDK-85, and, for the duration of Stage II,
swap the chip select lines (CSO/ and €S1/) to the two ROMs,. Al4 and
Al5. Thus, throughout Stage II, Al4 occupies the address range
0800H to OFFFH, while A15 occupies 0000H to O7FFH, so the first in-
struction fetched by the CPU after reset is read from Al5. In addition
to the changes to the chip select lines, the address Tine AlO input
to Al5 is tied high during Stage II, so the first instruction fetch
cycle after reset (from address 0000H) actually addresses location
400H in A15. In fact, the Stage II test program occupies locations
400H to 522H in Al15, most of the remaining space being occupied by

the Stage III program.

To implement these addressing changes, thé €S0/, CS1/ and A10
lines on the SDK-85 board were cut, and connections were made to a
socket on the wire-wrap area of the board. For normal operation of
the system, (and during Stage I) a jumper plug is inserted which
simply restores the broken connections. For execution of the Stage
II program, a second plug, which changes the connections as described
above, is inserted. A circuit diagram showing details of this address-

ing scheme is contained in Appendix C.

The Stage II test program stored in Al5 (and listed in Appendix
E) is designed to stimulate the system RAM, the parallel ports, and

the 8279 keyboard/display controller. The parallel ports are first

74.

initialised as.output ports, and all output Tines are set to zero.
The 8279 is then initialised and a "walking ones and zeroes" pattern
is written to its display RAM, to stimulate the display multiplexing
and driving circuits. A loop is then entered in which three tests
are performed repetitively. The first test writes a simple "walking
bit" to each of the parallel ports in the system, to enable the
connections from the ports to the I/0 connectors (J3, J4 and J5) to
pe checked. The other two tests are independent tests on each of

the 256 byte RAM's in the system.

Each of these tests is constructed in such a way that it requires
that a set of signatures be observed over a gating interval which
lasts for the duration of that test only. Thus in each pass through
the test loop there are three separate gating intervals during which
signatures are taken to test the output ports, the basic 256 byte RAM,
and the expansion 256 byte RAM. The START and STOP pulses which
delimit these three gating intervals are produced at the unused out-
puts of the 8205 address decoder by the execution of dummy input and
output instructions which activate these outputs as appropriate at
the beginning and end of each test. Thus, the output port test is
performed between instructions which activate the CS2/ and CS7/ out-
puts, the first RAM test between CS7/ and €S6/, and the second RAM
test between CS6/ and CS2/. In each case the decoder output is ac-
tivated by both input and output instructions so that either RD/ or

WR/ may be used as clock for the signature analyser, as convenient.

At the first step in Stage II all inputs to the 8085 (except
the data bus) are checked to ensure that they are inactive, and the
reset input and output lines of the CPU are tested with a logic probe.

While the CPU is executing the Stage II test program its activity is

75.

much more varied than in Stage I, in which all memory cycles are in-
struction fetches. During execution of the Stage Il program, the
processor performs input/output and memory reéds and writes,
"wiggling" the WR/, SO, S1 and 10/M 1ines which are static throughout
Stage I. Although some of these lines are checked during Stage I,
this is only done to verify that all inputs to devices which are
tested during Stage I (the ROMs in particular) are correct. SO and
S1 are not used as inputs to any devices other than buffers, and
therefore need not be, and are not, tested in Stage I. All of these
lines are therefore tested early in Stage II to verify that none of

them is stuck at either logic Tevel.

The WR/ signal path is checked first of all, with WR/ itself
being used as the signature analyser clock, and signatures being ob-
served on both clock edges. The negative edge of ALE is used as the
clock to trace the other status outputs, with the negative edge of
CS7/ being used as the START edge, and the positive edge of CS6/ as
the STOP edge (that is, the status lines are monitored during execution
of the first RAM test). The START and STOP edges were selected so that
the state of the status lines during execution of the input and output
instructions which generate the START and STOP pulses would be sampled,
so that a logic '1' Tevel would be observed on the I0/M line (which is

otherwise always '0' during the RAM test).

The tests performed so far in Stage II are, in effect, leftovers
from Stage I - those tests of system busses which could not be effec-
tively performed while the CPU was only free-running. At. the next step,
the results of the first test performed explicitly by the Stage Il

program (the RAM test) are oBserved.

76.

The RAM test consists of a simple read/write test which is per-
formed independently on each of the two RAM's in the system, with
data read from the RAM's being verified by the signature analyser.
For this purpose, the signature analyser is clocked on the positive
edge of RD/, with its START and STOP inputs connected to the 8205
€S7/ and CS6/ outputs (respectively) for the first RAM test, and to
€S6/ and CS2/ for the second RAM test. With the signature analyser
set up in this manner, signatures observed on the data bus depend on
the data read from RAM during the RAM test. In fact, signatures ob-
served reflect data read from ROM during the RAM test as well as data
read from RAM, but since the ROM contents have been already verified,
an incorrect signature must be the result of incorrect data being read
back from RAM. It should also be noted that the signature analyser is
configured to start sampling on the positive edge of the START pulse,
and stop on the negative edge of the STOP pulse. Thus the (undefined)
data present on the bus during execution of the input instructions

which create the START and STOP pulses is not included in the signatures.

The RAM test is constructed such that each 256 byte RAM chip is
tested separately and, because all temporary variables are maintained
in CPU registers throughout the test, will execute correctly even if
neither RAM chip is present. The test was not intended to be exhaustive
nor to detect any particular form of pattern sensitivity. It was des-
igned to that verify each 8155 RAM chip contains 2048 unique storage
bits, organised as 256 eight bit bytes. As the first part of the al-

[71147] is performed on the

gorithm a "marching ones and zeroes" test
RAM, which verifies that there are 256 addressable locations, that
writing to any one location does not overwrite any other, and that none
of the RAM bits is"stuck-at" 1In the second part of the algorithm, the

data sequence 55H, 33H, OFH is written to, then read from each RAM

77.

location, to vefify that each bit in each byte is unique, and not
stuck together with any other bit in the byte. It would have been
possible to perform a more elaborate RAM test, based on a better
defined fault model, but this algorithm performs a reasonable func-
tional test on the two RAMs, occupies Tittle ROM space and has an

acceptably short execution time.

After the two RAMs have been tested, signatures are observed
at the output lines of all parallel ports to verify that they are
responding correctly to the walking bit test. The signature analyser
gating interval for the parallel port test is delimited by a start
pulse at the 8205 CS2/ output and a stop pulse at the CS7/ output.
The stimulus program initially sets the outputs of all ports (there
are eight in a fully expanded SDK-85) to zero and then walks a 'l' bit
across each port in turn. The output data sequence at each of the
port lines (there are up to 76) is initially observed with the signature
analyser at the external port connectors (33, J4 and J5). If the sig-
natures for a given port are correct, both the port itself and the con-
nections between the chip and the port connector are assumed to be
fault free. If an incorrect signature is observed at the connector,
the signature at the corresponding output pin of the RAM or ROM device
is observed to determine whether the fault is in the device or in the

connection to the external port connector.

The CLOCK input to the signature analyser for the parallel port
test was connected to the RD/ line, with data being sampled on the
positive edge. The propagation delay through the 8755 and 8155 ports,
from the trailing edge of the WR/ pulse which strobes data into the

ports to the change of data at the output lines, can be up to 400ns.

However, the trailing edge of the first RD/ pulse after data is written

78.

to the ports (generated during the fetch of the instruction immediately
following the OUT instruction to the port) occurs no less than 790ns
after the trailing edge of the WR/ pulse, so data on the port output

1ines must be stable on the positive edge of RD/.

Finally in Stage II, a preliminary test is performed on the 8279
keyboard/display controller and its associated key scanning and display
driving circuits. At the start of the Stage II test program the 8279
is initialised to display sixteen digits, with encoded scanning of the
display and keyboard. Data is also written into the display RAM of the
device, to generate a "walking one" and "walking zero" pattern on its
eight segment Tatch output Tines as the display is multiplexed. When
the controller is operating in its sixteen digit encoded scan mode, a
binary count from 0000 to 1111 should be produced at its scan line
outputs (SLO - SL3). During this count the display and keyboard are
each scanned twice because the most significant scan line (SL3) is
not connected to the 74LS156 demultiplexer. This should result in the
top eight bytes and the bottom eight bytes of data in the display RAM
being effectively superimposed when displayed on the seven segment dis-
plays. Thus, since the top eight bytes and bottom ¢ight bytes of the dis-
play RAM are initialised to contain complementary data, all segments of

each of the six display digits should be uniformly 1it during Stage 1I.

The first step in testing the 8279 is verification of the scan
Tine outputs. For this purpose, SL3 is used as the START and STOP
inputs to the signature analyser, with both edges of SLO used as the
clock. Signatures are observed on each of the scan 1ine outputs. The
same control setup is used to check the outputs of the 74L5156 demul-
tiplexer, Al2. However, because they are open coliector outputs, it

is necessary to connect a 10kQ resistor between the signature analyser

79.

data probe and the +5V supply rail to pull the outputs up to a logic

"1' level when they are inactive.

The same set of control inputs to the signature analyser is
also used to test the keyboard. Signatures are observed at each of
the eight return line (RL) inputs to the 8279, while each key is pressed
in turn. At each return 1ine if no key connected to that tine is
pressed, the signature should be the stuck-at-one signature because of
the internal pullup resistor at each of the 8279 RL inputs. If a key
connected to the line is pressed, the signature observed should be that
of the corresponding scan output of the demultiplexer, Al2. If an
incorrect signature is observed at one of the RL inputs while a key is
pressed the connection from the output of AlZ, through the switch, to

the RL input, must be checked with an ohm-meter or similar instrument.

It was found to be impossible to check the segment outputs of
the 8279 by signature analysis. Although the segment output data is
synchronous with the scan line count, a blanking mechanism in the 8279
places the digit blanking code (FFH) on the segment outputs while the
scan lines are changing. Therefore data sampled at any segment output
on either edge of SLO will always be '1', so if SLO is used as the
clock, the signature observed at the segment output will be the stuck-
at-one signature,irrespective of the data appearing at the output

between scan line changes.

The timing of all of the 8279 outputs is derived from the CLK
input and so, in principle, it should be possible to use CLK as the
CLOCK input to the signature analyser for the observation of any 8279
output. However, it was found in practicg that when CLK was used as

the signature analyser clock, signatures observed at the scan line and

80.

segment outputslwere all unstable. Changes in the scan line outputs
(that is, on the SLO output) occur at a frequency which is Té%ﬁ-of the
CLK frequency, where n is the value of the programmble prescale factor
and is usually set to 31 in the SDK-85 to give the recommended 5.1
millisecond keyboard scan time. However, the 8279 data sheet[116]
does not specify an absolute time relationship between CLK and SLO.
The signature instability is therefore attributed to an accumulation
of propagation delays (possibly exceeding one period of CLK) within
the 8279 clock divider chain resulting in indeterminate values of the
output lines on the clock edges. Observation of the CLK and SLO sig-

nals on an oscilloscope confirmed that changes in the SLO outputs did

not occur at any consistent point within the CLK cycle.

Because there is no suitable clock signal which may be used to
observe the 8279 segment outputs in particular, the data appearing at
these outputs could not be verified directly. However, in spite of
this Timitation it is possible to detect some faults in the display
driving circuitry (including the segment outputs of the 8279) by ob-
servation of the display. A display other than one in which all seg-
ments are uniformly 1it indicates a fault in either the driving tran-
sistor and associated hardware or the 8279 itself. If an incorrect
display pattern is observed, conventional methods (such as diagnosis
of the display circuit with an oscilloscope) must be used to isolate
the fault. Even if the 8279 segment outputs could be observed with
the signature analyser, it would still be necessary to use an oscillos-
cope to isolate any faults in the display driving circuits because the
voltage levels around the driver transistors are not standard TTL
levels and could not be observed with the signature analyser. Never-

theless, the inability to directly verify the 8279 segment output data

does complicate the process of isolating faults in the display circuit

81.
considerably.

If no faults are apparent in either the keyboard or the display
circuits after these preliminary tests it may be reasonably assumed
that there are no serious faults in these sections of the circuit. If
the 8279 is also free of serious faults, it is now possible to use the
keyboard and display to interact with a program running in the SDK-85

which performs a series of more complex, automatic tests in Stage III.

3.4.4 Stage III

The purpose of Stage III of the signature analysis procedure is
to test those facilities in the system which could not be conveniently
tested in Stages I and II. These include facilities which cannot be
tested repetetively or in such a way that they can be verified by
signature analysis; which require human intervention during the test;
or which can be more quickly and completely tested entirely under the
control of a self-test program. The feature which distinguishes Stage
III from the earlier stages is that it involves extensive interaction
(through the keyboard and display) with the operator - the person con-
ducting the test. Instead of a few simple tests being performed
repetitively to allow observation of activity within the system with
a signature analyser (as in Stage II), in Stage III several complex
tests are performed once only, with the response to each test being
monitored by the CPU itself under the control of the self-test program.

The outcome of each test is indicated to the operator on the display.

The "standard approach" to SA, as described in the early SA
Titerature, does not include the equivalent of Stage ITI. In fact,
Stage III was only included in the SDK-85 SA procedure to test the

system more thoroughly than a straightforward application of the

82.

"standard approach" would have done, inanattempt to achieve the goal of
fault resolution to a single component. The SDK-85 is a somewhat
unique system in as much as it has facilities fdr human interaction and
it is a general purpose system with many general purpose facilities
(1/0 ports, interrupts etc.) which should all be tested. Most micro-
computer systems would not have all of these facilities, so the need
for a final, automatic, interactive test stage would not be as great.
Indeed, if a system does not have some means of human interaction, a

series of tests such as performed in Stage IIT would not be possible.

The Stage III test program,which is Tisted in Appendix E, is
stored in the 2K byte expansion ROM (Al5) together with the Stage II
program. It is much longer than the Stage II program and occupies
locations 000H to 331H and 640H to 73FH in Al5. Execution of the Stage
111 program on reset is arranged by the insertion of a third jumper
plug into the address selection socket on the wire wrap area of the
board. This plug interchanges the CSO/ and €S1/ line to ROMs Al4 and
A15, but leaves the A10 address line connection to Al5 intact. Thus,

on reset the CPU starts executing from location 00CH in Al5.

At the start of the Stage III program further tests are performed
on the 8279 keyboard/display controller. It js initialised and then
data is written to its display RAM so that a sequence of 24 characters
should appear to be continually shifted across the six digit display.
If any errors are observed in the display sequence the fault is assumed
to 1ie in the 8279 since the display driving circuitry is assumed to
be fault free after Stage II. When the operator is satisfied that the
display sequence is correct he must press one of the keys on the key-

board and the test will be stopped.

83.

While performing the display test the 8085 monitors the 8279
input buffer status and its interrupt line to determine whether any
characters have been entered into the buffer (fhat is, whether any
keys have been pressed). If the display sequence does not stop when
the operator presses a key, this procedure for detecting a key closure
has clearly failed and the 8279 is assumed to be faulty because the
keyboard and all address data and control bus connections to the 8279

are assumed to be fault free.

When a key closure is detected the 8085 starts executing a routine
which is desjgned to test both the 8279 interrupt generation logic and
the operation of the 8085 RST5.5 interrupt. Tests are performed to

verify that:

(a) the RST 5.5 interrupt of the 8085 is asserted if, and only if,
the 8279 input buffer is not empty;

(b) when the RST 5.5 input is asserted, 8085 interrupts are enabled
and RST 5.5 is unmasked, a RST 5.5 interrupt does occur; and

(¢) the 8279 keyboard buffer becomes empty after one character is

read from it.

If an error is detected in any of these tests the message "Err In"
is written to the display, where "n" is a number which indicates which
of the tests failed. If the first test fails the logic levels of the
8279 INT output pin and the 8085 RST 5.5 input pin must be examined to
determine which of the two devices (or the interconnection between
them) is at fault. If the second test fails the fault clearly lies
in the 8085, which is replaced. If the third test fails a multiple
key entry has occurred and the test is repeated to determine whether

the error is persistent. If it does occur again the 8279 is assumed

84,
to be faulty.

If all of these tests are executed without error a character,
which corresponds to the key originally pressed, is displayed on the
right hand digit of the display. Any key except "NEXT" may then be
pressed and its corresponding character will be written to the display.
The operator is required to press each key on the SDK-85 keyboard (ex-
cept "RESET" and "VECT INTR") in turn and verify that the correct charac-
ter appears on the display. The test is intended to check the key en-
coding logic of the 8279 to ensure that each of the 22 keys in the key-
board matrix can be uniquely identified by the controller. The "NEXT"
key should be the last one to be pressed, as it will terminate the
test and start execution of the next test in Stage III. If both the
display and the keyboard tests have run without error it is assumed
that the 8279 is fault free and may be confidently used in subsequent
tests as a medium of communication between the Stage III test program

and the operator.

It should be noted at this point that development of these first
two tests in Stage III took far longer than any of the other tests in
the entire procedure. This was principally because a number of diffi-
culties were experiences in attempting to use the 8279 keyboard/display
controller. In particular, it was found that if commands are written
to the 8279 command register in arbitrary order a garbled display can
result. It was found, for example, that a "clear keyboard FIFO" command
could not be issued after data had been written to the display RAM with-
out the display being corrupted. While this, in itself, is not an
unreasonable restriction, it is one which is not documented in the 8279

data sheet[116]. Consequently, it was only by trial and error that the

correct command sequence was found which would cause the 8279 to operate

85.

as desired.

The third test to be performed in Stage III is the serial input/
output test, for which a test plug must be inserted into the serial
1/0 socket (J7) to loop the serial output data back to the serial
input. The test program first sets the 8085 serial output data line
(SOD) then, after a short delay to allow the input filter capacitor
(C5) to charge, checks that the serial input data Tine (SID) is high.
SOD is then set to '0' and SID is read again to verify that it follows.
If the test fails an error message is displayed and a loop is entered
in which SOD is toggled every millisecond to allow an oscilloscope to
be used to isolate the fault in the serial I/0 circuit. If a square
wave is not present at SOD or is present at both SID and SOD the 8085
jtself is assumed to be faulty. When the "NEXT" key is pressed exe-

cution of the test loop stops and the next test is started.

Two tests are performed next on the I/0 facilities of the 8355/
8755 and 8155 devices. The first of these is a simple write/read test
on the parallel I/0 ports which requires that test connectors be in-
serted into the sockets J3, J4 and J5 to connect corresponding bits
of the A, B and C ports on each device together. Thus data written
to port A of any of the chips can be read back through port B (and
port C in the case of the 8155s) of the same chip. The test program
writes a walking bit pattern to port A of each device, reading back
through port B (and C), and then writes the walking bit pattern to
the B ports, reading back through the A ports. Thus the input cap-
abilities of each port are checked. If any errors are detected they
must be due to a fault in the port because connections from the ports

to J3, J4 and J5 were verified during Stage II, and the test connectors

are assumed to be fault free.

86.

The second of the two tests is for the counter/timer on the
basic 8155 (A16) and the 8085 TRAP input, which is connected to the
timer output of Al6 on the SDK-85 printed circuit board. The timer
is initialised to produce a pulse at its output after a short delay,
then a delay routine is executed. If a TRAP interrupt has not

occurred on exit from the delay routine an error flag is set.

If any errors are detected in either of the parallel I/0 or

TRAP tests an appropriate error message is displayed and both tests

are repeated at one millisecond intervals. Repetition of the tests
allows the timer output of Al6 to be traced, to determine whether the
cause of the TRAP failure was the timer in Al6 or the 8085. As before,
repetition of the tests stops when the "NEXT" key is pressed. The
parallel I/0 and TRAP tests are performed together, with results of
both being displayed at once, so that Al6 is "fully" tested at one
time and the tests for its I/0 ports and counter/timer are not sep-

arated unnecessarily.

After the paraliel port and TRAP tests the second part of the
Stage III procedure, in which the SDK-85 external interrupt and hold
facilities are tested, commences. Up to this point in the SA proced-
ure links 3-4, 7-8 and 20-21 on the SDK-85 board must have been in
place, tying the RST 6.5, INTR and HOLD inputs to their inactive (low)
levels. 1In the second part of Stage III the Tinks are to be removed
and these inputs are to be connected to an output port, so that they
may be asserted under software control. These input lines are con-
nected to inputs of an 8216 buffer which, being TTL compatible, float
to the "high" state. Therefore if, in the process of removing the
links and connecting the inputs to the appropriate output port, the

inputs were allowed to float, the RST 6.5, INTR and HOLD Inputs to

87.

the CPU would all be asserted and the SDK-85 would hang until the
inputs were taken low again. In order that this does not occur the

following procedure is adopted:

As port A of Al15 is the one which is to be used to control the
RST 6.5, INTR and HOLD inputs, at the end of the TRAP test the rele-
"vant output bits of this port are set to zero. A message is then
written to the display informing the operator that the next test is
about to be performed and prompting him to change the test connectors.
He must first remove the connectors currently in sockets J3, J4 and
J5, then insert all connectors for the remaining tests in Stage IT1
(and, in particular, the one which connects the RST 6.5, INTR and
HOLD inputs to Port A of Al5) and finally remove 1inks 3-4, 7-8 and
20-21. He must do this without removing power from the system or
pressing "RESET". Only in this way will a continuous "Tow" level at

the RST 6.5, INTR and HOLD inputs be maintained.

It may be noted that these precautions would not have been
necessary if the three inputs concerned had been active Tow inputs,

which would float to the inactive state when left disconnected.

The first test to be performed in the second part of Stage III

is on the RST 6.5 facility and consists of the following steps:

(1) The RST 6.5 input to the 8085 is read to check that it fis
initially low.

(i) Data is written to port A of Al5 to take the external RST 6.5
input high and the RST 6.5 input to the 8085 is again read to

verify that it then goes high.

88.

(iii) 8085 interrupts are enabled and RST 6.5 is unmasked. A
flag in RAM is then read to verify that a RST 6.5 interrupt

has occurred.

If any of these tests fail an error message is displayed and
the test is repeated continually until the "NEXT" key is pressed.
Repetition of the test allows the pulse train generated at the ek-
ternal RST 6.5 input to be traced (with a CRO or logic probe) through
to the 8085, so that the fault may be isolated to the 8085, the

input buffer (A5), or an interconnection.

After the RST 6.5 test a message is written to the display which
indicates the start of the vectored interrupt (RST 7.5) test. In
response to this prompt the operator must press the "VECT INTR" key,
which should produce an active transition at the 8085 RST 7.5 input.
The test program checks for a transition at this input and, when one
is detected, unmasks the RST 7.5 interrupt and enables 8085 interrupts.
If a RST 7.5 interrupt does not then occur the 8085 must be faulty
so an error message is displayed. If the active transition on RST 7.5
is not detected (that is, if nothing appears to happen when the
"WECT INTR" key is pressed) the operator must press the "NEXT" key.

An error message is then written to the display to emphasize that

the test was illegally terminated, probably due to failure of the
test. An oscilloscope or logic probe can then be used to determine
whether the fault is in the "VECT INTR" key and its associated com-
ponents or, failing that, in the 8085. When the "NEXT" key is pressed

again the next test routine is entered.

The next test in Stage III is the INTR test. When the 8085 re-

ceives an INTR interrupt it issues the interrupt acknowledge strobe

89.

(INTA/) and expects to read an instruction code (usually a restart
instruction) back from the data bus. For the INTR test, a short in-
terrupt service routine is stored in the test ROM at location 0018H.
Therefore external buffers which place the RST 3 instruction code
(DFH) onto the data bus when INTA/ is issued are required for this
test. Appendix C contains the circuit diagram of a suitable adapter
which is connected to the SDK-85 data bus at connector J1 and to INTA/
at connector J2. These connections are made to the board at the
beginning of the second part of the Stage III procedure. If the RST 3
buffers are not available the "NEXT" key can be pressed in response

to the display which marks the start of the test and the test will be

skipped.

Execution of the INTR test commences when the "EXEC" key is
pressed. Data is written to port A of AI5 to take the INTR input
high and 8085 interrupts are enabled. If a RST 3 interrupt does not
then occur an error message is displayed and the test is repeated
until the "NEXT" key is pressed. If a fault were to prevent the RST 3
instruction being placed on the data bus in response to INTA/, the most
likely occurrence is that the 8085 would read all ones (FFH) from the
bus and execute a RST 7 instruction. As a precaution against this
causing the test program to fail, a RET instruction is stored in the
test ROM as a RST 7 service routine, to allow an orderly recovery

from failure of the test.

There is a relatively large amount of untested Togic - including
the data bus input buffers -involved in passing INTR to the 8085,
INTA/ to the external connector and the RST 3 instruction back to

the 8085. If the INTR test fails all of this logic must be tested

with an oscilloscope while the test is being repeated so that the

90.

fault may be isolated.

The INTR test is followed by a test for the counter/timer on
the expansion RAM chip, Al7. As Al7 is an optional component the
operator has the option of skipping the test by pressing the "NEXT"
key in response to the message on the display which marks the start
of the test. For this test a plug must be inserted into connector
J5 to connect the timer output of Al7 to bit 7 of its A port. Link
17-18, which connects CLK to the timer input of Al7 must also be in

place.

The test commences when the "EXEC" key is pressed, and consists

of the following steps:

(i) The timer output is read (through port A of Al17) and tested
to verify that it is initially high.

(1) The counter is initialised and a short delay routine is en-
tered, during the execution of which the timer output must
go low.

(iii) A second delay routine is entered, during which the timer

output must return to the high level.

If any of these tests fail an error message is displayed and the
test is repeated at one millisecond intervals until the "NEXT" key is
pressed. A Togic probe or oscilloscope may be used to trace the
pulse train which should appear at the timer output. If the pulse
train does not appear at the timer output Al7 is assumed to be

faulty.

91.

The next step in the Stage III procedure is not so much a
specific test as a routine designed to stimulate any external memory
connected to the SDK-85 through the data and address buffers. With
link 25-27 in place on the SDK-85 board the data bus input buffers
are enabled whenever the CPU performs a read operation from memory
addresses 8000H to FFFFH, or from I/0 addresses 80H to FFH. Thus
‘any memory or I/0 devices in this address range are assumed to be
external to the SDK-85. . Since the nature of any such external mem-
ory or I/0 will vary from system to system, no specific test could
be performed to check it. Instead a general purpose stimulus routine
is executed, in which the data bytes OOH and FFH are repetetively
written to, then read back from each memory location in the range

8000H to FFFFH.

The response of external memory (if any) to this stimulus will,
of course, depend on what type of memory it is, so the stimulus
routine ignores the data read back. Some other means of verifying
the response of the memory (such as signature analysis) must be used,
and for this reason START and STOP pulses for the signature analyser
are generated at unused outputs of the 8205 address decoder (A10)
each time the routine is executed. No stimulus is provided explicitly
for external I/0 devices since stimulus data for I/0 devices generally
must be quite specific to elicit any meaningful response. A general

purpose stimulus would therefore be unlikely to be very useful.

In an SDK-85 with no attachments this test can be ignored. It

is stopped when the "NEXT" key is pressed.

The last test performed in Stage III is the HOLD test. A

message which indicates that the test is about to be performed is

92

written to the display, then data is written to port A of Al5 to
assert the external HOLD Input. If the hold mechanism works correctly
the 8085 should then enter a HOLD state from which it cannot exit.
With the system hung in this way it is possible to test the logic
associated with the hold acknowledge status 1ine (HLDA) while it is

in its active state. This section of the circuit is tested in Stage
I, but only while HLDA is inactive so it is necessary to test it

again while HLDA is active to ensure that there are no stuck-at-zero
faults present (particularly around the HLDA synchronization flip-

flop, A9).

If the hold mechanism fails and the system does not hang, exe-
cution of the test program continues and an error message is written
to the display to indicate a HOLD fault. The CPU then halts. Once
again a logic probe or oscilloscope may be used to trace the path of
the HOLD input signal so that the source of the fault may be found.
If the HOLD input pin of the 8085 is found to be asserted then the
fault must lie in the 8085 itself.

This test completes the signature analysis procedure for the

SDK-85.

3.4.5 Documentation
The documentation of a signature analysis test procedure for any
system will clearly have a critical effect on the success with which
the procedure is applied to the system. The SA literature presents
several alternative methods of documentation which the designer may

choose to use[92][95].

93.

In the simplest method of documentation the "correct” signatures
which are expected at each node in the system are printed adjacent to
their respective nodes on the circuit diagram. It is then the task
of the field service technician, while servicing the system, to observe
signatures at whichever nodes he considers appropriate based on his
knowledge of the system, and to .identify the faulty component as the
one with good input signatures and bad output signatures. This 6b-
viously requires some knowledge at least of the operation of each
component in the system. Thus, to some extent it nullifies one of
the major advantages claimed for signature analysis - that the service
technician does not need to be highly trained or very familiar with

the system to apply SA to it.

In complex systems, in which many signatures must be taken,
possibly with many different control Tine setups, the method becomes

impractica1[92][95].

In such cases there is simply too much informa-
tion to be Tegibly included on the circuit diagrams. Furthermore, it
would be virtually impossible for a technician to approach the diag-
nosis of a large system systematically and efficiently without some

overall guidelines on the order in which signatures should be taken.

Therefore some more extensive form of documentation is required.

In a second method of documentation signatures are tabulated
in the service manual of the system, while signals paths within the
system are shown as arrows printed on the printed circuit board. In
servicing the system the technician must follow the arrows, verifying
signatures along the signal paths until the faulty device is found.
This method also is not well suited to application in large complex

systems because only a limited amount of information can be intell-

94.

igibly printed on a printed circuit board. It is certainly not
suitable as a means of documenting a retrofitted SA procedure because
of the difficuoty of printing the required information on the printed

circuit board.

In the third method of documentation a flow-chart is constructed
which gives explicit directions to the service technician, specifying
which signatures should be observed, how the signature analyser should
be set up to observe them, and what action should be taken when an
incorrect signature is observed. This method allows the designer to
include much more detail in the documentation of the SA procedure than
either of the other two methods. He can thus, with the benefit of an
overview of the system, plan the SA procedure in detail so that diag-
nosis of the system will, in each case, proceed as quickly and effic-
jently as possible with Tittle demand on the diagnostic skills of the
service technician. Indeed, if the flow-chart is sufficiently detailed
the diagnosis of a quite complex system can, in principle, be performed
by a technician with absolutely no knowledge of the system. It must be
acknowledged, however, that a flow-chart containing such detailed in-
structions must be quite complex. It is also clear that such a rigidly
defined test procedure cannot be expected to deal with all possible
fault conditions and will, in some cases, fail to correctly isolate
the fault. Thus Sharritt[gz] remarks that the flow-chart approach
can be "risky and cumbersome" when a too rigid specification of the

test procedure is attempted.

Nevertheless, in the case of the SDK-85 the flow-chart method
of documentation is the only practical alternative. Because the pro-
cedure was designed to isolate faults to a single component and con-

sequently involves the observation of a large number of signatures

oo,

with various control line setups, the documentation of the procedure
must be quite detailed. In several places in the procedure it was
necessary to include unconventional directions (such as to observe
signatures with certain keys pressed) which could not easily be
documented by one of the other methods. In Stage III, because the
tests are so complex and varied,a flow-chart form of documentation is
virtually mandatory. A1l of these constraints were evident at the
start of the development of the SA procedure and it was therefore dev-
eloped with the intention of documenting the procedure in flow-chart

form.

The final form of documentation for the SDK-85 SA procedure is,
in fact, based on an adaptation of the flow-chart method. The docu-
mentation consists of a numbered sequence of explicit instructions
for each step of the procedure, listed in the general order in which
the tests are to be performed. The instructions are generally
followed in numericalsequence although depending on the outcome of
the tests, the technician may be instructed to skip one or more steps
or to replace a component and start the procedure again. This format
was adopted in preference to the more conventional flow-chart because
it allowed greater flexibility in the description of each step of the
procedure, particularly in Stage III, in which the instructions for
some tests are quite long. The principle disadvantage of this format
is that it results in a very long set of instructions which a service
technician may be reluctant to follow in detail from beginning to end.
Nevertheless it was considered to be necessary, given that the test
procedure itself, being intended to isolate faults to a single compon-

ent, is quite Tong and detailed.

96.

The main section of the documentation is divided into three
sections corresponding to Stages I, II and III. This is preceded by
a set of general notes which must be read befoée diagnosis of the
system is started. These notes give general instructions on how
the technician should proceed and how he should interpret the instruc-
tions for each of the three stages. They also contain specific notes
concerning unstable signatures; the observation of signatures at
device outputs and the possibility of bus faults; the need to observe
signatures on both edges of some clock signals; and the fact that the

procedure is not infallible.

The complete set of instructions for the procedure is contained

in Appendix F.

3.5 Testing the SA Procedure

3.5.1 Verification
It was verified that each of the three stages in the SA procedure
do test the systems as they were intended to during the development
of the various individual tests, primarily with the aid of a logic
analyser and an oscilloscope. For Stages II and IIT in particular
the logic analyser was used to monitor activity in the system at
critical sections of the test programs to ensure that the test soft-

ware was correct.

During development of the three stages, and when the final set

of "good" signatures was recorded, the procedure was performed several

times, with particular attention being paid to signature consistency

97.

and stability. As all signatures were found to be repeatable and
(except in one case) stable, it was concluded that all instructions
for the observation of signatures are valid. The one case of sig-
nature instability was attributed to violation of the data setup and
hold times of the signature analyser due to propagation delays through
a buffer. No suitable alternative method could be found for the ob-

servation of the signature at the node in question.

It was found that it initially took approximately 90 minutes to
perform the entire SA procedure on the fault-free system. As might
be expected, .as familiarity with the procedure increased the time
taken to perform the procedure decreased. However, it was not found
to be possible to reduce the total time taken to Tess than 80 minutes -
comprising 45 minutes for Stage I, 30 minutes for Stage II, and 5
minutes for Stage III (with no test performed at step 9 - the external

memory test).

3.5.2 Application of the procedure to faulty systems

The only way in which a method of isolating faults in a system
can be assessed in practice is by application of the method to a
faulty system to see how quickly it does isolate the fault (if at
all). Thus the effectiveness of the SDK-85 SA procedure was assessed

by trial application to systems which were known to be faulty.

After the modifications described in Section 3.2.2.2 had been
made to all available SDK-85's, only one faulty system was available.
Therefore, so that the SA procedure could be more fully tested, it
was necessary to introduce various faults into a working system and
then apply the SA procedure to that. The procedure was designed ex-

plicitly to detect almost all possible stuck-at and open-circuit faults

98k

faults on the SDK-85 board and, for any given fault in this class,

it could be easily predicted whether the procedure would isolate the
fault and, if so, at what stage. Therefore it was not considered to
be worthwhile to introduce stuck-at and open-circuit faults into the

system to test the effectiveness of the SA procedure.

The approach adopted instead was to selectively replace good
components in the system with components which were known to be
faulty (although the nature of the faults were not known) and then

apply the SA procedure to try to isolate the faulty devices.

The results of the various trials of the SA procedure are des-

cribed in the following sections.

3.5.2.1 Faulty SDK-85
The first trial application of the SA procedure was to an SDK-85

which contained an unknown fault. 1In normal operation the system was
found to run satisfactorily for short periods but it was observed that
the monitor would display its error message at apparently random times

in response to valid key sequences.

Examination of the faulty system revealed that it was different
from the one on which the SA procedure was developed. In particular,
the display scanning logic was obviously different, employing an 8205
one-of-eight decoder instead of a 74LS156. Some of the other minor
components were also different. The fact that these differences
between the systems existed meant that the extent to which the devel-
oped SA procedure could be applied to the faulty system was limited.

The procedure is obviously very specific to a particular circuit and

even minor changes in the circuit may mean that a large part of the

2L

SA procedure must be changed for it to be applicable. It was there-
fore considered to be impractical to revise the procedure to suit

the faulty system. In any case, a circuit diagram for the system was
not available so a revision of the procedure would have been virtually

impossible.

It was possible, however, to perform the free-run test on the
8085 CPU because it only involves the CPU and is independent of
system configuration. At step 3 in Stage I, pin 3 of the 8085 was
found to be pulsing and, when monitored on an oscilloscope, proved
to be producing a 3MHz square wave whereas it was expected to produce
the static RESET OUT signal. Closer examination of the behaviour of
the chip, and the printed circuit board, revealed that this particular
8085 had its CLK output at pin 3 and its RESET OUT output on pin 37
(that is, pins 3 and 37 were swapped around from the usual pin con-
figuration for an 8085). The printed circuit board had obviously
been designed to accept this particular version of the 8085. It can
only be assumed that the 8085 was an early version of the device,
while the system was a correspondingly early version of the SDK-85.
No information could be found in the available Intel literature about

a version of the 8085 with the functions of pins 3 and 37 interchanged.

The printed circuit board was modified to accept a "standard"
8085 and the system then appeared to work faultlessly. Because of
the circuit differences between this and the original SDK-85 it was
only possible to run the free-run test on the CPU and Stage III of the
SA procedure. None of the tests showed any errors, although during
the external memory test in Stage III the display flashed on and off,
presumably as a result of the differences in the display scanning

logic which were mentjoned above. It appeared, then, that the fault

100.
in the system was cured when the "old" 8085 was replaced with a "new"
one, which suggests that the fault either was due to the layout of
the printed circuit board (which was changed slightly for the new

8085) or was in the old 8085.

While this faulty SDK-85 proved to be a rather unsatisfactory
test case for the SA procedure, it did serve to illustrate two 1h—
portant points. The first is that the SA procedure can detect "faults"
in the system (in this case, a quite drastic "fault" in the CPU). The
second is that the procedure, as developed, can only be applied to the
exact system for which it was developed; even minor changes to the
circuit may mean that the SA procedure must be completely revised. At
the very least it would be necessary to revise the documentation and

record an updated set of "good" signatures after a circuit change.

3.5.2.2 Faulty 8085
For the second trial application of the SA procedure, the CPU

chip in the original SDK-85 (the one on which the procedure had been
developed) was replaced with one which was known to contain a fault,
although the nature of the fault was unknown. The only error then
apparent in the operation of the system was that when it was first
turned on the display was garbled, instead of showing the expected
"_ 8085" monitor sign-on message. After the RESET key was pressed
once, the display would be correct and the system would operate

normally.

It was observed that the problem was not overcome by holding
the RESET key down as the system was powered up, so it appeared that

the fault was not related to the length of time for which RESET was

active. It was also observed that, although the display was initially

101.

garbled, the monitor was apparently running correctly as RAM 1locations

could be modified by the usual key sequences.

Application of Stages I and II of the SA procedure to the system
revealed no errors at all. At the start of Stage III the display was
again garbled immediately after power-up, instead of showing charac-
ters shifting across the display. If the instructions were to be
followed at that point (step 2 of Stage III) the 8279 keyboard/display
controller would be replaced because the display was incorrect. How-
ever, the fault was known to 1ie in the 8085 and not the 8279, so the
SA procedure .clearly failed to isolate the fault. If the 8279 had been
replaced according to the instructions the fault would not have been
cured and there would have been no indication of any likely alternative

source of the fault.

After the RESET key was pressed the correct display sequence was

produced and all remaining tests in Stage III executed without error.

It was decided to attempt to determine the nature of the fault in
the 8085 so that the reason for the failure of the SA procedure to
isolate the fault might be discovered. A logic state analyser was
used to monitor the behaviour of the CPU (that is, to trace the sequ-
ence of addresses referenced by the CPU) immediately after power-on.
This revealed that the CPU started executing code at address 0024H in
the monitor before the instruction at address 0000H was fetched and
executed. The TRAP interrupt of the 8085 forces the CPU to execute
from address 0024H onwards, so it was apparent that the 8085 was ser-
vicing a TRAP interrupt as soon as it commenced execution after being

reset at power-on. In the course of execution of the TRAP routine in

the monitor,data is written to the 8279 control and data registers, so

102.

in this case data was being written to the 8279 before it was properly
initialised. This premature writing of data to the 8279 apparently
caused the garbled display when the device was properly initialised
and data was placed in its display RAM, after execution of the TRAP

routine had been completed.

It was therefore concluded that the nature of the fault in the
8085 was that it was sensing a TRAP interrupt immediately after power-
on reset. The fault was clearly not due to the timer in Al6 because
its TIMER OUT pin was observed to go high while RESET was active, and
stay high while the 8085 was coming out of reset. It should be noted
that, apart from the problem at power-on reset, the TRAP mechanism
appeared to be functioning correctly, as implied by the error-free
execution of the TRAP test at step 7 of Stage III, and by the correct

operation of the monitor single-step function.

A possible interpretation of this fault is evident from the cir-
cuit diagram of the TRAP logic given in the 8085 data sheet and re-
produced here as Figure 3.3. If the connection from the 8085 RESET
input to the TRAP flip-flop clear input were open-circuited the flip-
flop would not be cleared on reset and may, in fact, be set after
power is first applied to the 8085. A TRAP interrupt would then be
sensed by the CPU and serviced as soon as possible after reset,
thereby clearing the TRAP flip-flop. A second reset would result in
the correct execution sequence by the CPU, as the TRAP flip-flop

would be clear.

It is interesting to note that this fault would only result in
incorrect behaviour by the CPU immediately after power-up, or during

normal execution if a reset were to occur in the short interval

103.

INSIDE THE
EXTERNAL possA
TRAP
INTERRUPT

REOUEST | tRaP

RYSETIN SCHMITT
TRIGGER

AESET TRAP
'D!Mumupv

wv—{p CLK AEQUEST
o
>
FIF
|P):>c' cLean
INTERNAL TRAP F F
TRAP
ACKNOWLEDGE

Figure 3.3. Internal TRAP Logic of the 8085.

(Reprinted by permission of Intel Corporation, Copyright 1981.)

104.

between the TRAP flip-flop being set and the CPU servicing the in-
terrupt. This explanation of the fault accounts for the observed
behaviour of the system during Stage III of the SA procedure and, in
particular, for the inability of the procedure to correctly isolate
the fault. It is significant that a physical explanation of the
fault could only be postulated because the circuit diagram of the

relevant section of the 8085 happened to be available.

3.5.2.3 Faulty 8355

The second "known faulty" device to be used to test the SA pro-
cedure was an 8355 ROM containing version 1.2 of the SDK-85 monitor.
Once again the nature of the fault was not known. The device was
placed in socket Al4 in the SDK-85, and no errors were observed in

normal system operation.

The SA procedure was applied to the system with the result that
no errors were found in any of the three stages of the procedure.
It was therefore assumed both that the contents of each location in
the ROM were correct and that the operation of the two I/0 ports in
both input and output modes was correct. However, it is possible
that the device did contain a fault which only occurred when the 1/0
ports were configured in a particular way, or after a particular
sequence of input data to the chip. If the device was indeed faulty,
the fault was most 1ikely to have been some such form of pattern
sensitivity rather than a simple stuck-at, bridging, or open-circuit
fault of the type tested for in Stages II and III. A second, seem-
ingly less Tikely, possibility is that an error occurred during the
tests but was not detected by the signature analyser because it pro-
duced the "good" signature. The probability of such an occurrence

(Tess than .002%[96])15 small enough to be negligible.

105.

3.5.2.4 Faulty 8155
An 8155 RAM device - also assumed to be faulty, but with the

nature of the fault unknown - was placed in socket Al6 on the SDK-85
board, in place of the "basic" RAM chip, with no apparent errors during
normal system operation. The SA procedure was once again applied, with
no errors being detected.

Like the 8355, then, if the 8155 was faulty, the fault was most
-1ike1y to have been one which only occurred in a mode in which the
8155 was not tested, or which was some form of RAM pattern sensitivity.
It should be noted that the 8155 is functionally more complex than the
8355, having several possible operating modes for its I/0 ports and
counters and yet its I/0 section is no more thoroughly tested than that
of the 8355. The possibility of the SA procedure not detecting a fault

in an 8155 is correspondingly greater than for an 8355.

3.5.2.5 Faulty 8279

A faulty 8279 was inserted in place of the good 8279, with no
errors evident during normal operation of the system. TheSA procedure
was applied, with only one error being observed. This occurred at step
2 of Stage III, in which characters are shifted from right to Teft
across the display. It was observed that the bottom ("d") segment of
the left-most display digit was turned on at certain times when it
should not have been, so that a "4", for example, would appear as a "y".
The error did not appear on any other digit and there was no obvious
correlation between the occurrence of the error on this digit and the
turning on of any other segment in any of the digits.

The SA procedure requires that the 8279 be replaced when an in-
correct display is observed, so in this case the faulty device was

correctly identified.

106.

3.5.2.6 P.C.B. bridging fault

It is appropriate to consider at this point a fault which was not
deliberately introduced to test the SA procedure, but which was dis-
covered during development of the procedure. The effects of the fault
were first observed during development of the Stage III test program
(which was developed before the Stage II program), as unexpected be-
haviour of the system after the serial I/0 test had been performed.

A logic state analyser was used to trace the activity of the CPU,
monitoring the sequence of addresses placed on its address bus, with
the negative edge of ALE used as clock. It was found that after port A
of Al5 was enabled as an output port for the first time (at the start
of the parallel I/0 test) the sequence of addresses output by the 8085
bore no re]ationsﬁip to the following instruction sequence. This im-
plied that the 8085 had stopped executing instructions out of the ROM.

After some experimentation it was found that the cause of this be-
haviour was a short circuit on the printed circuit board between the ALE
line and bit 6 of port A on Al5. In the presence of the short circuit,
with this bit of the port acting as an output, the 8085 could not drive
its ALE output to valid logic levels and therefore could not fetch in-
structions from the ROM. The fault had no effect before the parallel
I/0 test because until that point in the test port A of AlS had only
been enabled as an input port and bit 6 therefore would not have affected
the ALE signal.

It is interesting to consider the effects which the fault would have
had during normal execution of the SA procedure. Stage I would have re-
vealed no errors because all ports remain in their initial (input) mode
throughout Stage I. In Stage II, however, all ports are enabled as
output ports by the first few instructions executed after reset, after
which the system would start to misbehave. Since none of the Stage II

test program would be correctly executed, START and STOP pulses for the

3.6

107.

signature analyser would not be generated and no signatures could be
observed. This would first be noticed at step 4 of Stage II, with a
consequent direction to replace the 8085.

The SA procedure would therefore have failed to correctly isolate
the fault and it would then be necessary to use conventional tech-
niques to try to isolate it. This procedure would be made more diffi-
cult by the facts that the error only occurs when the port is pro-
grammed as an output port, and that the fault involves the ALE line,
which was not directly involved in the observation of signatures at
step 4 in Stage II. A technician would need a Togic state analyser
and some familiarity with the program being executed when the error

first appeared (the Stage II test program) to isolate the fault.

Summary

The implementation of signature analysis on the SDK-85 described
in this chapter was a task which required a great deal of attention
to detail and many decisions and compromises. Some of this was fore-
shadowed in the SA literature, but much of it could only be appreciated
after performing a detailed implementation. The compromises, which
were mostly made necessary by practical considerations of the length
of test programs and test execution time, clearly affected the effec-
tiveness of the final procedure and tests carried out on the procedure
have shown that there is some room for improvement.

The implications of the observations made in this chapter about
the implementation and effectiveness of SA on the SDK-85 will be dis-
cussed in Chapter IV. In particular, the extent to which SA is seen
to be the complete field service solution and the more serious areas

of deficiency will be discussed.

108.

CHAPTER IV
ASSESSMENT OF SIGNATURE ANALYSIS

4.1 Unique Properties of the SDK-85 Implementation

Before the effectiveness of signature analysis (SA) can be
assessed on the basis of the implementation described in Chapter III,
"it is necessary to identify any unique characteristics of that im-
plementation which may influence the assessment. In particular, the
effects of any pecu]iarities.of the target system and the approach

to the implementation must be considered.

4,1.1 Peculiarities of the SDK-85

Although the SDK-85 was chosen as the target system for the im-
plementation of SA largely because it was considered to be a typical
microprocessor system, it does have the distinction of being a general
purpose system with a wide range of I/0 and interrupt facilities. A
complete test for the system should test all of these facilities in
all possible operating modes. In a dedicated system there would
typically be fewer facilities, which would only ever be used in a
restricted set of operating modes and which, therefore, would only

need to be tested in those modes.

The need to test the various I/0 facilities of the SDK-85 com-
plicated the SA procedure to the extent of requiring a third stage in
the procedure. However, Stage III and the various tests it contains
have only served to illustrate,in one implementation, many of the
problems which may be variously encountered in attempting to test the

I/0 facilities of a range of different systems.

A second unique characteristic of the SDK-85 is its cost. Being

4.1

109.

a "bare-bones" system, supplied without power supply, elaborate pack-
aging or front panel controls, it is somewhat cheaper than a fully
packaged system of equivalent functionality would be. The SA develop-
ment costs, extra hardware costs and overall repair costs will be a
greater proportion of the value of the SDK-85 than of an equivalent
packaged system, Therefore, the fact that the various pieces of test
hardware required for the signature analysis of. the SDK-85 are worth
about twenty per cent of its total value (approximately $350) should
not be taken as being significant. For a packaged system the propor-

tionate cost would be significantly less.

.2 Peculiarities of the SA procedure

Apart from the inclusion of Stage III the most important unique
characteristic of the SDK-85 SA procedure is that it was designed to
jsolate faults down to a single replaceable component. This resulted
in a procedure which is quite long (particularly Stages I and II) be-
cause it involves a lot of signal tracing from chip to chip. If a less
ambitious goal for fault resolution had been set it would not have
been necessary to test each component separately and the procedure
could have been significantly shorter. Therefore it is fair to say
that the SDK-85 implementation must exaggerate the problems and tedium

of tracing signals from chip to chip and the slowness of the procedure.

The aim to achieve fault resolution to a single component also
had the effect of reducing the extent to which half-splitting could be
used, as discussed in Chapter III. Once again this resulted in a pro-
cedure which is lonaer than it would otherwise be. It can be said,
however, that the restricted use of half-splitting in favour of an

"expanding kernel" approach made the organisation of the documentation

for the procedure much simpler. If half-splitting had been more ex-

110.

tensively used there would have been many more branches, or decision
points, in the documented procedure, which may have meant that the
already lengthy documentation would have become unmanageably complex.
It is likely that half-splitting could have been used to greater
advantage on the SDK-85 than it is in the procedure described in
Chapter III, but it is not expected that this would have significantly

reduced the total time taken for the procedure.

A third characteristic of the procedure is that the thoroughness
of the tests performed on individual devices in the system varies con-
siderably. Whereas almost all nodes in the system are "wiggled" to
test for stuck-at and bridaging faults and are thereby tested quite
thoroughly, some devices receive only a cursory test. It proved to
be quite easy to test most nodes in this way, particularly during the
free-run stage in which most system nodes are "wiagled" by the CPU,
and yet the technique provides quite a substantial fault coverage.
Node-wiggling also provides a very convenient and effective stimulus
by which some devices, including the 8205 address decoder and the two

ROMs, can be tested.

In contrast, it proved to be very difficult to fit a thorough
test for the 8085 CPU and 8279 keyboard/display controller into the
context of node-wiggling and, in the case of the 8279, it was necessary
to devise an explicit test. Even more extensive tests for the 8085,
8279 and other devices could have been included in the procedure, but
this would have been inconsistent with the "node-wiggling" approach
to stimulating devices, and the suggestion in the "Designer's Guide
to Signature Ana]ysis“[95] that to test LSI devices one should simply
"apply whatever stimulus is required to exercise them". The important

point to note is that the "node-wiggling" form of stimulus advocated

111.

in the SA literature does test some devices very thoroughly, but is
completely unsuitable for others and therefore results in device tests

which are not uniformly thorough.

It is clear, then, that there are several characteristics of the
SDK-85 SA Implementation in respect of which it differs from what
might be considered a truly typical implementation. However, it is
not considered that any of these would prevent a fair assessment of
SA in general based on the SDK-85 implementation, provided that their

effects on the procedure are kept in mind.

4.2 1Implications of the SDK-85 Implementation

It is now possible to consider the developments and tests des-
cribed in Chapter III and their implications about SA and its general
effectiveness as a field service technique for microprocessor systems.
To do this, three aspects of the SDK-85 procedure will be considered.
They are the problems involved in the implementation of the procedure
on the SDK-85; the ease with which the procedure is applied; and

the effectiveness of the procedure in isolating faults in the system.

4.2.1 Implementation problems

The outstanding feature of the process of designing the SA pro-
cedure was that it proved to be a much longer and more demanding task
. than expected. As discussed in Chapter III, it was necessary to per-
form several refinements of the procedure, resequencing tests to en-
sure that each device was tested as easily and efficiently as possible.
A great deal of attention to detail (particularly signal timing) was

required and in many cases it was necessary to exercise a degree of

112.

jnventiveness, to devise suitable tests for devices or to find
suitable control signals for the signature analyser. In short, the

design process was not straightforward.

However, in the more usual day-to-day implementation of SA two

factors would act to make the design process faster and easier:

(i) Experience. As a designer gains experience in the application
of SA he will be able to anticipate, to some extent, the best
time and method for testing each component in the system. He
will therefore create, at the first attempt, a SA procedure
which is close to the optimum in terms of the use of half-
splitting, the number of control 1ine changes, and the number
of signatures which must be observed. This "learning curve
principle" is noted 1n[95].

(i1) Initial design. When SA is incorporated into a new system it is
the system designer who is most 1likely to plan the SA procedure.
His knowledge of system operation is likely to make it much
easier for him to determine when and how each component should
be tested. Secondly, in designing the system, he can incorporate

features which will make the implementation of SA easier than it

was for the SDK-85.

Because of these two factors and the unusual economics of the
SDK-85 noted earlier in this chapter, the SDK-85 implementation of SA
provides no reason to disagree with claims by Hew1ett—Packard[54][99]
that incorporation of SA into a product increases its development

costs by only one per cent.

The second problem which was encountered during development of

113.

the SA procedure was that there are several features of the SDK-85
design and architecture which made the use of SA to test some devices
difficult or impossible. The first of these, and one which the

SDK-85 shares will all microcomputers is the use of busses, as dis-
cussed in earlier chapters. Unless some form of current tracing is
used it is impossible to isolate a bus fault to a single component on
‘the bus. This is an inherent limitation on the ability of SA, or any
other voltage sensing technique, to isolate faults. It means that if
an incorrect signature is observed on a device output as the result

of a fault elsewhere on the bus, the field service technician must use
some other means of isolating the fault. To do this he needs a rela-
tively high level of technical knowledge and some familjarity with the
system under test. This problem therefore represents a significant
restriction on the ability of SA to quickly and cheaply isolate faults,
albeit one which is shared by most other techniques and is virtually

inevitable.

The second feature of the SDK-85 design which made the implemen-
tation of SA difficult was the inclusion of circuitry which exhibits
non-standard (that is, non-TTL) logic Tevels. Voltage levels present
in the serial interface and display driving circuits are incompatible
with the input logic levels of the signature analyser, so signatures
simply cannot be observed in those sections of the circuit. An os-
cilloscope must be used to trace any faults which may occur there.
Although the circuits involved are quite simple and can be satisfac-
torily (perhaps even more easily) diagnosed with an oscilloscope, it
does mean that once again a skilled technician with some knowledge of

the system must use an alternative method to SA.

114.

If these sections of the circuit had contained any sequential
Jogic or feedback, then diagnosis with an oscilloscope would be much
less straightforward and signature analysis may have offered some
advantages. The implication for system design is clear: for the
most straightforward application of SA to a system, all system nodes
should exhibit standard logic levels and, in interface circuits, in

" which this is not possible, feedback should be avoided.

An obvious basic requirement for the application of SA to any
system is that there be suitable START, STOP and CLOCK signals avail-
able for the observation of the signatures of all signals in the
system. These control signals proved to be quite easy to find for
most of the signals present in the SDK-85, most data in the system
being synchronous with ALE, RD/ or WR/. However for some lines (notably
ALE and CLK) there was no suitable signal of higher frequency avail-
able which could be used as a clock. In these cases it was necessary
to use the signal being observed as clock, and observe signatures on
both positive and negative edges of the clock - an inconvenient but
satisfactory method. The need to use several different clock signals
at various times and the consequent need to change signature analyser
control lines also proved to be inconvenient and both slowed down the
procedure and restricted the use of half-splitting, as discussed in
Chapter II1. Clearly, the multiplicity of clocks, or strobe signals,

in the SDK-85 was, in itself, a problem.

Ideally, all signatures in a system would be observable with
just one clock signal so that few control Tline changes would be re-
quired. Signatures could then be observed throughout the system in

any convenient order and a faster SA procedure would result. Although

115.

the SDK-85 is a synchronous system, with all signals being derived
ultimately from the 6.144MHz oscillator, the relevent data sheets[116]
do not specify a fixed time relationship between this clock (or its
derivative, CLK) and other signals in the system. Therefore, while
the 6.144MHz clock could, in principle, be used to sample data at all

nodes in the system, it is not possible in practice and several

‘different clocks must be used.

A related problem was the inability to observe signatures at the
segment outputs of the 8279 keyboard/display controller because a
suitable clock signal was not available. Again, in principle, CLK
could have been used for this purpose, but in practice unstable sig-
natures resulted. The segment latch outputs change synchronously
with the SLO scan line output, which is derived from CLK, but the
signature instability would suggest that there is a long and somewhat
variable propagation delay in the clock divider chain. In fact, the

n[95] remarks specifically on

"Designer's Guide to Signature Analysis
the difficulties of observing signatures around I.C. keyboard encoders
(such as the 8279) and the possibility of signature instability when
testing long ripple counter chains. The inability to observe all
outputs of the 8279 meant that the device could not be directly tested
as fully as it should have been. This type of restriction clearly
compromises the effectiveness of SA although in this case there is

some compensation in the fact that the display can be examined to

detect errors in the segment output data of the 8279.

Finally, two features of the SDK-85 design created minor prob-
lems which could easily have been avoided and would have, had the

system been designed with SA in mind. When observing the outputs of

116.

the 7405156 demultiplexer it is necessary to use a pull-up resistor
on the data probe of the signature analyser, so that the open collec-
tor outputs appear to be in the high state when not active. This is
only a minor inconvenience, but it is one which would have been
easily overcome by the inclusion of pull-up resistors on the 7415156

outputs in the original design.

Secondly, the fact that the external RST 6.5, INTR and HOLD in-
puts to the system are active high proved to be very inconvenient
when it was necessary to change test connectors during Stage III.
Had these inputs been active low they would have floated to their
inactive (high) Tevel when disconnected and there would have been no
need for special precautions when the connectors were changed. Indeed,
if the inputs were active low there would have been no need for the
links on the board which tie the inputs to their inactive Tevel when

not in use.

These last two points serve to illustrate that for successful,
trouble-free implementation of SA in a system the design of the system
to accommodate SA must be considered in great detail. This is part-
icularly so if fault resolution to a single component is to be
attempted. Certainly it is necessary to consider design of the system
for SA in greater detail than is implied in the SA application

Titerature.

4,2.2 Fase of use of the SA procedure

The most striking aspect of the actual use of the SA procedure
is the time taken to complete it. Application of the procedure to a
fault-free SDK-85 takes at least 80 minutes, of which 45 minutes is

occupied by Stage I, 30 minutes by Stage II and 5 minutes by Stage ITI.

117.

If a fault were to be found in the system this time would obviously
increase, particularly if it were one which had to be isolated with

an oscilloscope or current probe.

The impression which was gained while performing Stages I and
II of the procedure was that it involves a lot of slow, tedious trac-
-ing of signals from one chip to another, with a lot of time being
spent simply locating specific device pins. There seemed to be few
changes in signature anaiyser control line setups, and these did not
seem to occupy a significant amount of time overall. The amount of
device-to-device probing could be reduced either by redesign of the
procedure sé that all signatures for each device are observed at once
or by the greater use of half-splitting. However, as discussed
earlier, either of these changes to the procedure would dramatically
increase the number of control Tine changes required and, consequently,
the time taken for the procedure would not be reduced significantly,
if at all. Only if most signatures in the system could be observed
with a single control 1ine setup would either of these changes offer
any significant improvement over the existing "expanding kernel" pro-
cedure. Half-splitting, as noted in [95], is most suitable for systems
in which there is a clear signal propagation path, with little feed-

back, which is certainly not the case in the SDK-85.

It should be noted, once again, that the slowness of the pro-
cedure and the amount of device-to-device probing involved are largely
a result of the fact that the procedure was designed to isolate faults
to a single component. In other implementations they may be less of

a problem.

118.

It is significant that Stage III, in which several relatively
complex tests are conducted, takes much less time to perform than
either of the other two stages. This is entirely a result of the
fact that in Stage III the response to each test is monitored under
software control by the system itself. This is, of course, much
faster than manual observation of the test results by signature

‘analysis (or any other method). It is clear, then, that as a general
practice as much of the system as possible should be tested by self-
diagnosis, with signature analysis used only to test those sections
of the system (CPU, ROM, RAM, I1/0) which must be tested before sel f-
diagnosis can take over. This means that if a system does not have
some form of output display or input switches which can be used for
interaction with the operator during self-diagnosis, they should be

designed into the system specifically for this purpose.

Because Stage III executes so quickly it might be considered
worthwhile to use it as a quick (but not conclusive) system verifica-
tion routine. However if any errors were to be detected during Stage
111 it would then be necessary to apply the full SA procedure, start-
ing with Stage I, to isolate the fault because the results of the
Stage I1II tests depend on the error-free execution of Stages I and II.
That is, an error during Stsge III may be the result of a fault which
would be detected in one of the earlier stages. Therefore, while
Stage III may be used as a convenient self-check routine it provides

1ittle useful diagnostic information if executed alone.

The eighty minutes taken for the execution of the SA procedure,
while seeming to be a long time, should be considered in the context

of almost complete fault resolution. During those eighty minutes al-

most every component and node in the system is tested in some way, SO

119,

that if no errors are detected the level of confidence in the system
under test should be quite high. If a less thorough test were to be
performed (for example, only a major system components) the time
taken for the test would be much less, but at the cost of reduced

fault resolution.

It is unlikely that the SDK-85 could be tested by traditional
field service techniques as thoroughly as by the SA procedure in
less than eighty minutes. For example, it would probably take well
in excess of eighty minutes (not including the time taken to become
familiar with the system) to use a logic stage analyser to isolate
an obscure but commonplace fault such as a stuck-at bit in a RAM.
In such a case the time actually taken to isolate the fault would
depend on several factors, including luck. However it would certainly
take a very long time to test the system such that all faults which
the SA procedure can detect, would be detected. This speed advan-
tage of signature analysis is due to the fact that the compression
of data and extensive documentation of "good" signatures make veri-

fication of even complex data sequences very easy and fast.

A second aspect of the ease with which the SA procedure may be
used is the degree of technical skill and system familiarity required.
One of the major advantages claimed for SA is that the operator does
not need a high level of technical knowledge or familiarity with the
system under test to diagnose faults in the system. In fact, because
the documentation for the SDK-85 SA procedure is quite detailed,
virtually no knowledge of the system is required to apply the proced-
ure in most cases. Generally it is only necessary to be able to
locate the various devices and connectors on the board and identify

which pin must be probed to observe a signature. This clearly requires

120.

very little technical knowledge.

However, if a fault exists in the system which the SA procedure
cannot isolate then the demands made upon the field service tech-
nician are somewhat greater. If it becomes necessary to use a
current probe to isolate a bus fault, or to use an oscilloscope to
trace a fault in the serial interface or display circuits, or if the
procedure identifies a wrong component as being faulty, then the
technician must use some technical skill to isolate the fault. Only
in the last case - the complete failure of the SA procedure to correct-
ly isolate the fault - is a significant degree of familiarity with
the system required, because the technician must then use traditional
techniques to isolate the fault "from scratch". 1In such a case it
may, in fact, prove to be more economical to simply replace the board
and have it repaired at a central site - that is, employ board-

swapping on a limited scale for cases in which the SA procedure fails.

For the most part, then, it is true that neither technical skill
nor familiarity with the system are required to apply the SA proced-
ure to the SDK-85. For some faults a degree of technical knowledge
is necessary, and in extreme (and hopefully rare) cases familiarity
with the details of operation of the system may be required. It is
significant that an understanding of system software would only be

necessary if the SA procedure failed completely.

It can be concluded, then, that although the application of SA
to the SDK-85 is not a fast process, it will in general isolate
faults faster than traditional methods. Furthermore, SA generally
requires that much less time be spent becoming familiar with the

system and can be used by less skilled personnel than traditional

121.

methods. However, it is still a labour-intensive and therefore

expensive process.

4.2.3 Effectiveness of the SA procedure

The effectiveness of the SA procedure in the SDK-85 can only be
assessed in terms of the ability of the procedure to isolate faults
in the system. This assessment can only be based on the few trials
of the procedure which were described in Chapter 111, and on any

general difficulties or limitations which may be foreseen.

The difficu]ties presented by the bus oriented architecture of
the SDK-85, the use of discrete components, and the inability to
observe signatures at certain nodes, were all discussed in Section
4.2.1. These problems obviously place a limitation on the ability
of SA to isolate faults to the component level and, in that sense,
1imit the effectiveness of SA in the SDK-85. However, the Timita-
tions of the procedure are probably better i1lustrated by the trial

applications of the procedure.

In the case of the 8085 in which the TRAP mechanism appeared to
be faulty it is apparent that if the conclusion reached about the
exact nature of the fault (that the TRAP flip-flop is not cleared on
reset) is correct,the fault would only ever be evident after the CPU
is reset. This fault, or any other fault only evident at reset, could
not be directly detected by the SA procedure because the procedure
only tests devices in what might be called "steady state" operation.
Signature analysis is usually, and most conveniently, applied to

(95] and

observe the results of tests which are performed repetitively
therefore would not detect errors which only occur during transient

or "once-only" activity of the system, such as at reset.

1%2),

It is possible to observe signatures of once only events using
the "HOLD" facility of the signature analyser, and activity at all
nodes in the system immediately after reset could be monitored if
the SA procedure were so designed. The problem with this approach
is that there are countless faults which could take effect at reset,
and during other special states of the system and it would be extremely
difficult to arrange the SA procedure to try to test for them all.
Furthermore, it may be noted that the behaviour of the 8085 immediately
after reset was found to be somewhat erratic and, in any case, is not
fully documented by the manufacturers. Therefore while in principle
it is possible to verify system behaviour after reset by signature
analysis, it is not so in practice because the behaviour of the 8085
must be regarded as being variable from device to device and from
time to time. The 8085 TRAP fault is therefore one which, by its very

nature, could not be directly isolated by signature analysis.

With the faulty 8085 in the system the SA procedure ultimately
jdentified the 8279 as being the faulty component. This constituted
a complete failure of the SA procedure and, to isolate the fault, the
only alternative left would have been to resort to traditional methods.
This situation could have been avoided if for the given error,as well
as identifying the component which was most Tikely to be faulty (the
8279), the documentation specified an alternative device which could
be faulty and cause the error. Then, when replacement of the 8279 did
not cure the fault, the alternative device (most 1ikely to be the 8085
in this case) would have been replaced and the procedure would have
then correctly isolated the fault. It seems desirable, then, that the
documentation for a SA procedure include at least one alternative when-
ever a faulty device is identified after an error is observed, particu-

larly when the reasons for selecting that device as the faulty one in

123.
the first place are not very strong.

The fact that the 8279, rather than the 8085, was identified
as being the faulty component reflects the assumption that, at that
stage in the procedure (early in Stage III), the 8085 has been tested
satisfactorily and is fault-free. The assumption that the CPU is
fault-free after it has passed the free-run test is basic to the.
whole SA procedure, as described in the introductory literature. A1l
tests performed after the free-run stage are software driven and
therefore rely upon the integrity of the CPU. In the case in point
the test for the 8279 failed simply because the 8085 did not init-
jalise the device properly when it was assumed that it would. It is
therefore very important that the CPU (along with other kernel com-
ponents) is adequately tested before the software driven test stages.
Any fault in the CPU which goes undetected may well prevent it from
correctly performing software driven tests, in which case the SA pro-
cedure is likely to fail by identifying the worng component. In view
of this conclusion it is doubtful whether the simple free-run test
performed on the CPU, being the only explicit CPU test, is thoréugh

enough.

In the SDK-85 SA procedure the free-run test is supplemented by
several quick tests performed during Stage II. While the CPU is ex-
ecuting the loop to perform the RAM and output port tests the signatures
which are taken to verify the WR/, SO and S1 outputs also verify that
the CPU is executing the test program correctly - that is, peforming
the correct number of the correct type of machine cycles. Similarly,
when the stuck-at-one signature with RD/ as clock is observed during

each RAM test, it is verified that the CPU is executing the correct

number of read cycles during the test. In the sense that the CPU is

124.

performing a variety of operations during these tests, they con-
stitute a much better (although certainly not complete) test of the
CPU than the free-run test. These simple tesfs therefore reduce
the likelihood of a fault in the CPU going undetected. They do
not, however, test the CPU in well defined or systematic way, so it

is difficult to say by how much they reduce this likelihood.

The failure of the SA procedure to detect any faults in the 8155
and 8355 devices which were assumed to be faulty illustrates that the
results obtained from the procedure can be inconclusive. While it is
1ikely that.neither of these devices was, in fact, faulty, there re-
mains the possibility that one (or both) contained a fault was simply
not detected by the tests performed. Faults which may not have been

detected include:

(1) faults only evident in operating modes of the I/0 ports which
were not tested;

(i) faults only evident under transient conditions (such as
reset);

(ii1) RAM pattern sensitivity (in the case of the 8155);

(iv) intermittent faults;

(v) a.c. or d.c. parametric faults.

There is the further possibility, that the only reason no faults
were detected in the devices was that the faults happened to produce
correct signatures. The important points arising out of this dis-
cussion are that neither the 8155 nor the 8355 is completely tested
and that faults do exist which would not be detected by the SA pro-

cedure.

125.

Although the 8155 and 8355 tests are incomplete and arguably
unsatisfactory, it is important to realise that tests on the I/0
sections of these devices, and I/0 devices in'general, are not as
important as thorough tests on the CPU. As we have seen, the success-
ful execution of tests in the later stages of the SA procedure dep-
ends on the integrity of the CPU, and any undetected faults in the
CPU may cause the procedure to fail. Input/output devices, however,
are not as important to the procedure. Although some tests in Stage
111 make use of I/0 ports, there are only a few of these tests and
they are documented in such a way that if any of them fails because
an I/0 port is faulty,the fault can be traced back to that port.
Therefore, while incomplete testing of an I/0 device may result in
a fault in that device going undetected, it is unlikely that another

device will be judged to be faulty because of it.

The one successful application of the SA procedure was in the
case of the faulty 8279, which 1it the bottom segment of the left-
most display digit at the wrong times. Although the procedure did
correctly isolate the fault the success in this case was not particu-
larly reassuring. The fault was clearly one which was pattern sensi-
tive in some way, because it only occurred when certain characters
were being displayed and did not show up at all during normal opera-
tion of the system. It must therefore be considered very fortunate
that the fault happened to show up with the particular display se-
quence used for the test. If another sequence had been chosen the
fault may not have been detected. If it had been possible to observe
the segment outputs of the 8279 during Stage II the fault may have
been detected then, but again there is no guarantee that the data in
the display RAM during that test would have shown the fault up. This

case once again suggests that thorough device tests, rather than

126.

simple device exercise routines which might by chance show up a

fault, are desirable.

The bridging fault between ALE and bit 6 of port A of the expan-
sion ROM, described in Chapter III, is an example of a type of fault
with which signature analysis cannot deal in practice. The fault
would have caused complete failure of the SA procedure (if it had
been applied) because it created a feedback path from port A to the

CPU which eventually caused the CPU to stop executing the test program.

It haslbeen noted several times that the successful application
of SA to a system requires that all feedback paths from untested
Togic to a device under test be opened. For this reason all tests
performed in Stages I, II and III were carefully sequenced so that
no device is tested before devices which affect its inputs. However,
in the design of a SA procedure it is not possible to allow for the
existence of extra feedback paths, such as the one created by this
bridging fault, simply because there are so many possibilities. When
such faults occur it is therefore 1likely that they will invalidate
the procedure. The property of bridging faults that they can create
feedback paths is well known in the theory of testing combinational
circuits, in which they can cause sequential behaviour and complicate

(710121]

test procedures considerably The principle is the same in

the case of the bridging fault in the SDK-85.

The failure of the SA procedure in the presence of this fault
would be complicated by the fact that it would first be noticed while
performing a test which is nominally for the 8085 WR/ output. Replace-

ment of the 8085, in accordance with the instructions for the proced-

ure, would not cure the fault so it would be necessary to use tradit-

127.

ional techniqués to isolate the fault from that point. The fact

that the fault would only be evident when port A of Al5 was pro-
grammed as an output port would make this process much more difficult.
Indeed, unless the technician was familiar with the Stage II test
program he may even be unable to reproduce the error. Any fault

like this, which would prevent the test procedure from being exe-
cuted correctly and which therefore would produce misleading symp-
toms when the procedure was applied, would be particularly difficult

to diagnose.

This fault illustrates that the only way to ensure that all
possible faults in a system are detected and correctly diagnosed is
to test the system in each of its possible operating states. If
port A of Al15 had been enabled as an output port during Stage I
the fault would have been detected when the ALE signal path was
checked, and could have been isolated with a current tracing tool.
However, it is simply not practical to repeat all of the Stage I tests
with the system in each of its possible operating configurations so
that faults such as this would be detected. As discussed in Chapters I
and II, it is not practical to test any LSI based system in all of its
possible operating states, so faults such as this bridging fault, which
cannot be allowed for in the design of the SA procedure, must be

accepted as threats to the effectiveness of the procedure.

4.3 ‘The'Importance of the Deficiencies of SA

The strengths and shortcomings of SA observed in the SDK-85

implementation were discussed in the preceding section. Some of the

observed deficiencies (such as the apparent tedium of performing

128.

Stage I of the procedure) are not of great consequence, whereas
others are more serious and significantly reduce the overall effec-
tiveness of the technique. In this section thé more serious defic-
jencies of SA which were evident from the SDK-85 implementation and
their significance will be discussed, together with possible develop-

ments which may overcome the deficiencies.

, If must be stressed that the properties which will be discussed
are more concerned with the means of implementing SA than with SA per
se. It is clear that SA will only be fully effective in a system if
all implementation problems can be overcome, and it is apparent from

the discussion in the first part of this chapter that implementation

problems provide greatest limitation on the effectiveness of SA.

4.3.1 The observability of signatures at all nodes

The ability to observe signatures at all nodes in a system is an
obvious requirement for the successful application of SA to the system,
particularly when it is desired to test each component individually
and thereby achieve complete fault resolution. It was apparent during
development of the SDK-85 SA procedure that to achieve this it is
necessary to pay a great deal of attention to details of system design
and the characteristics of system components - more so than had been

expected after reading the early SA application literature.

In the SDK-85 implementation two properties were found to limit
the observability of signatures: voltage levels and timing. If sig-
natures are to be observed at all nodes, logic levels at the nodes
must be compatible with signature analyser input Tevels, so all nodes

in a system should ideally exhibit standard TTL or CMOS Togic levels.

129.

While the new HP5005A signature mu]timeter[113] does have adjustable
input threshold levels, it is obviously not practical to adjust the
threshold to suit each node. For the reasons discussed in Section
4.2.1 the use of discrete components should be avoided, particularly
in sections of a circuit which include feedback. Given the ongoing
trend away from the use of discrete components, it seems 1ikely that
problems of this sort will become less common as a matter of course,

rather than as a result of any trend towards design for testability.

The jssue of timing and synchronization in systems is more com-

plex. The basic requirement is that there be suitable start, stop

and clock signals for the observation of data at every node in the
system. In addition, it has been seen that it is desirable that there
be as few different control line setups for the signature analyser as
possible. In fact there would ideally be just one clock signal which
could be used for the observation of all signatures in a system. In
the SDK-85, as we have seen, this is possible in principle but not 1in
practice because timing specifications for the system are not suffic-
iently precise. Thus it was necessary to use several different clock

signals at various times, including CLK, ALE, RD/, WR/ and SLO.

Ideally, in every system there would be one signal which is twice
the frequency of the highest-frequency signal of interest in the sys-
tem. This could then be used as the s{gnature analyser clock and
either edge of that clock could be used to observe each signal on the
board. Because its frequency is twice that of the highest-frequency
signal of interest, either clock edge can be used to sample that
signal in both logic states, removing the need to observe signatures

on both clock edges, as was necessary for CLK, ALE, RD/ and WR/ in

the SDK-85. Thus, in the SDK-85 the 6.144MHz clock would ideally be

130.

used to observe all signatures in the system (if the timing relation-
ship between it and the other signals in the system were well enough
defined and propagation delays were not large enough to cause signa-

ture instability).

As an illustration of this principle, consider the segment out-
‘puts of the 8279 keyboard/display controller, which could not be ob-
served because no suitab1e clock was available. These outputs change
synchronously with the SLO output, which is derived from the CLK in-
put by division by the programmable clock prescale factor (which is
normally set to 31), then by a further factor of 128. The most suit-
able clock for the observation of both the segment and the scan Tine
outputs would be one which is twice the frequency of SLO (or CLK +

(prescale factor) * 64) as discussed above.

To verify that the availability of such a clock would enable the
8279 to be more easily tested, the clock prescaler for the 8279 during
Stage Il was changed to 16 (the nearest possible power of two to 31)
as in the listing in Appendix E. Thus SLO became the CLK input div-

ided by a factor of 211 p 4040 cMOS divider chip was connected to

10, clock sianal, which was twice the

the system to provide a "CLK + 2
frequency of SLO, but with a variable phase relationship to it, as
shown in Figure 4.1. With this signal used as the signature analyser
clock, and with SL3 used for the START and STOP inputs, it was found
that stable signatures were observed at all scan line outputs, seg-
ment outputs, outputs of the 74LS156 and return Tine inputs to the
8279 with either clock edge (although it was sometimes necessary to
reset the system to adjust the phase relationship between the clock

and SLO). Thus it became much easier to test the keyboard and display

scanning circuit, because it was only necessary to observe signatures

131.

SL2

SL3
QUTPUTS \
(Output of

4040 divider)

[
Variable

Figure 4.1. Provision of a Signature Analyser Clock for 8279

Scan Line and Segment Outputs.

132.

on one clock edge and the 8279 segment outputs could be verified

directly.

Although the extra hardware required to achieve this improve-
ment in the testability of the system was quite simple, the princi-
ple it demonstrates is important. The existence of precisely
defined synchronism 1in all sections of a system will considerably
improve its testability by signature analysis. It is obviously pre-
ferable to be able to use a single clock for the observation of sig-
natures at all nodes in the system, but in sections of the system in
which prepagation delays may make this impractical, a "lTocal" clock
should be provided - with extra hardware if necessary. In the case
of the SDK-85 this would involve the addition of one component (the
4040 divider - itself easily tested) to allow the 8279 to be more

easily tested.

A much better general solution to the problems of testing the
8279 would be the provision by the manufacturer of the required clock
signal at an output pin of the device itself. Then an 8279 in any
system could be tested by signature analysis without any external
hardware. However, I/0 pins on LSI and VLSI devices are a precious

[25

resource] and manufacturers are understandably reluctant to dedi-
cate any to improving the testability of the device, particularly if

it only improves the testability for one specific method such as SA.

Nevertheless, complete synchronism within a system is essential
if SA is to be easily applied and fully effective. The better the
synchronism is defined (that is, the more complete the timing speci-
fications are) the easier it will be to implement SA. While this

would ideally be considered by device manufacturers, who would pro-

133.

duce devices and specifications accordingly, it would be unrealistic
to expect this to become common practice in the foreseeable future.
The system designer will therefore be constrained to use devices
which do present problems for SA and he must be prepared to include
extra hardware in the system to overcome specific problems. This
will require that he consider the problems of timing and synchroniza-
tion in detail, and even (as was necessary with the 8279) experiment
with devices to find suitable signature analyser setups with which

they can be tested.

The prqb]em of signature observability at all nodes in the sys-
tem is therefore one which can be largely overcome with sufficient
attention to design of the system in the first place. However, it
is apparent that in some cases an inordinate amount of effort will
be required to overcome specific problems. Certainly it is clear
that the design of a system to include SA involves a good deal more

than the provision of test programs and means of free-running.

4.3.2 Individual device tests

Perhaps the most outstanding result to come from the SDK-85 im-
plementation of SA is that the tests performed during the SA pro-
cedure on individual LSI devices (the 8085, 8155, 8355 and 8279) are
not thorough enough. The trials which were performed with the faulty
8085, 8155 and 8355 all demonstrate that the tests performed on these

devices during the SA procedure are inadequate.

It was noted in Chapter III that the aim in developing the tests
for each of these devices (except the 8085, for which the method of
testing is prescribed in the SA literature) was to exercise or stimu-

late the device in some manner, consistent with the "node-wiggling"

134.

philosophy underlying the approach to SA implementation. For simple
SSI and MSI devices in the system, such as the 8205 address decoder,
this produced a virtually complete test. It also proved to be possible
to easily and thoroughly test the ROM section of the 8355/8755 and
the RAM section of the 8155. However, the 8085 and 8279, being func-
tionally more complex devices, were much less thoroughly tested. In
other words, the "reasonably convenient" tests performed during the
SA procedure tend to test devices up to a certain fixed level of
functionality. This is a result of the fact that the effort which
was put into deriving tests for each device was deliberately limited.
It is clear, then, that node-wiggling" is an excellent stimulus for
simple (especially combinational) devices, but is a poor stimulus for

complex LSI devices.

As we have seen, it is particularly important that the CPU be
adequately tested early in the SA procedure because later tests depend
on it and assume that it is fault free. This was illustrated by the
effect of the TRAP fault in the 8085. However, SA guidelines only
provide for a very simple test of the CPU. The free-run test only
tests the CPU during esecution of one instruction (NOP), which is
probably the simplest instruction in its repertoire. Even if the
free-run signatures are correct there is no guarantee that execution
of the NOP instruction does not have any side effects within the CPU.
There are countless possible CPU faults which would not be detected
by the free-run test, of which the TRAP fault described earlier is
just one. The supplementary tests performed on the CPU during Stage
I1 would detect many of these faults, but still only constitute a
partial test of the CPU. There is a clear need for a specific, system-
atic and thorough CPU test early in the SA procedure, which would

test all or most of the CPU facilities in a uniform manner. Only

1S5,

then could subéequent tests be performed with a high Tevel of con-

fidence.

The 8155 and 8355/8755 tests are certainly more complete than
the free-run test for the 8085. Ignoring the possibility of an error
going undetected because of the data compression performed by the
signature analyser, the ROM section of each 8355/8755 is fully tested,
and the 8155 RAM test is reasonably thorough. The I/0 facilities of
the devices are also tested quite extensively. However, the tests
are not sufficiently thorough that it is not possible to postulate
plausible faults which would not be detected by the tests. Here
again there is a need for systematic and thorough tests for these
devices which would test all of the facilities of the devices for

the presence of any plausible fault.

The 8279 is functionally much more complex than either the 8155
or the 8355/8755 and the tests performed on it are the most extensive
in the SDK-85 SA procedure. However the 8279 test is much less com-
plete than the tests for the 8155 and 8355/8755. Although several
tests are performed on the 8279 during Stages II and III, it is only
operated in two of its several possible modes and many of its facili-
ties are not tested at all. It is exercised, but by no means thoroughly.
The mode in which it is tested most extensively is the one in which
it is operated by the SDK-85 monitor and is therefore the only one
in which it is 1ikely to operate in this system. Thus, if the device
were to be fully tested in that one mode it might be considered to be
acceptably tested. This type of limited function testing has been
used in the ATE environment to keep device tests down to a reasonable

3011411

lengt Ideally, however, the device should be tested in all

possible operating modes, particularly in a general purpose system

136.
such as the SDK-85.

As noted in Chapter III the 8279 is a member of a rapidly
growing family of intelligent microprocessor peripheral devices.
In fact it is one of the simpler devices of this type. All of these
devices must be pre-programmed, or initialised (with quite Tengthy
data sequences in some cases) before they will perform any meaning-
ful function and therefore cannot be tested by a simple "node-
wiggling" stimulus. An explicit programmed test for each device is
necessary. The difficulty of testing these devices by simple node-
wiggling may be compared with the difficulties, noted by McLeod[63]
of testing LSI devices with random test sets. As these devices be-
come more popular, and it becomes common to find several in one
system, it will become essential to adequately test each device so
that the system as a whole can be effectively diagnosed. Therefore,

once again, guidelines for developing systematic and thorough pro-

grammed tests for peripheral devices are necessary.

The conclusion to be drawn from this discussion is clear. The
effectiveness of SA in any system depends largely on the thoroughness
of tests performed on individual devices and in this respect current
SA guidelines are inadequate. The general node-wiggling approach to
stimulating the system is satisfactory for simple devices, but not
for complex programmable LSI devices. For these it is necessary to
develop systematic programmed test routines which will test the
devices thoroughly and uniformly. As yet, no guidelines for the

development of such tests in the context of signature analysis exist.

137.

4.3.3 Input/output device tests

The issue of how I/0 devices and facilities in a microprocessor
system can be tested is closely related to, but separate from, that
of LSI device tests, discussed in the preceding section. The parti-
cular difficulty in testing I/0 facilities is that a suitable exter-
nal stimulus must be applied to the device under test, and its external

outputs must be verified.

In the case of the SDK-85 it proved to be quite a simple matter
to test most of the 1/0 facilities. For the parallel and serial 1/0
port tests external connectors are used to Toop outputs back to inputs
and it is simply verified that data written to the output ports can
be read back correctly through the input ports. The paraliel ports
are tested in one mode only with a "walking bit" pattern but there is
no reason (apart from test execution times and ROM space requirements)
why the tests could not be more extensive. Even the more complex 1/0
facilities of the SDK-85, including timers and interrupts, are easily
tested, with parallel ports used to simulate input signals and verify
outputs. It should be noted, however, that each of these tests re-
quires some external hardware, generally consisting of a simple Toop-
back connector, although external buffers are required for the INTR
test. The 8279 test is an exception in that it does not require any
external hardware. The "loop-back" of output data (the display) to

inputs (the keyboard) is performed by the operator.

The ease with which tests were developed for the SDK-85 I/0
facilities is largely a result of the fact that the CPU has simple,
almost direct, control over the outputs and can almost directly ob-

serve inputs. The parallel and serial I/0 ports in the SDK-85 do

138.

not process the data passed between the CPU and the external world,
so that data appearing at output lines is essentially identical to
that written to the port by the CPU, and data read by the CPU is
identical to that appearing at input lines. It is therefore a simple
matter for the CPU to set output lines to specific logic levels and,
with the aid of a loop-back plug to an input port, examine and verify
‘the data present on those lines. The principle also applies to the
8279, although this device does perform some code conversion and
multiplexing. The human element in the loop-back path helps over-
come this difficulty by performing intelligent interpretation of the

8279 output data (that is, the displays).

Another important characteristic of the I/0 facilities on the
SDK-85 is that output 1ine changes only occur when initiated by the
CPU, and similarly, the CPU can observe all input line changes as
they occur. Again, the multiplexing action of the 8279 is an exception

to this rule.

These characteristics may be contrasted with those of I/0 devices
which more extensively process data passed between the CPU and the
external world. Examples of such devices which have become available
from several manufacturers in recent years are cathode ray tube (CRT)
controllers, floppy disk controllers, serial communication controllers,

[116][11811119] i ase "intelligent” peripheral

and GPIB controllers
controllers have the common characteristic that data read from the
device by the CPU depends not only on the current, instantaneous input
value, but also on the past sequence of values over some period of

time. Similarly, output lines may adopt an extended sequence of

values in response to a single write operation by the CPU. Further-

more, the logical relationship between data written and read by the

139.

CPU, and data appearing at output and input pins can be simplie (as in
the case of a serial line controller) or complex (as in the case of a

floppy disk controller).

Consequently, for many 1/0 devices it would not be a simple
matter to simulate realistic input data in real time with programmed
writes by the CPU to a parallel output port. Neither would it be
simple to monitor device outputs through an input port and check them
under software control. Apart from the fact that the input and output
data sequences may be at a high frequency, the CPU must simulate the
encoding and,decoding behaviour of the device under test, to provide
it with realistic inputs and to check its outputs. This means that
in the case of devices like a floppy disk controller, for which input
and output data sequences are time critical, the CPU could not simu-
late inputs and monitor outputs in real time so it is simply not poss-
ible to test the device by this technique. An alternative to the self-
test (loop-back) method used in the SDK-85 must be found.

One possible solution to this problem is the use of an external
1/0 emulator which would provide input stimulus data and check output
data for a given device. Instruments which perform this function for

[122]. Stand-

serial 1/0 controllers have been available for some time
ard test sequences for each device could be defined so that the emu-
lator would apply a standard input sequence to the device, and the CPU
would then check its response. Similarly, the CPU would program the
device to perform a standard sequence of operations and the emulator
would check the data sequence produced at the device's output pins.
The principal disadvantage of this approach is its likely cost. One

emulator would be required for each different type of I/0 device to

be tested in this way, and in many cases the emulator itself would

140.

be a very complex instrument. While there is no doubt that the
technology is available to achieve the required complexity and speed,
and it would be possible to justify the cost of such an instrument
for high volume testing applications (some ATE provide such facili-
ties), it is a much less practical proposition for low volume, field

service testing.

Another possible approach is to test I/0 devices in what has
been calied their "natural environment”[12] - that is, with the nor-
mal external I/0 hardware connected. Thus a floppy disk controller
could be tested by writing data to and reading data from a floppy
disk, so there would be no need to provide "artificial" input/output.
The difficulty with this approach is that unless the external hard-
ware (the interface electronics, the floppy disk drive and the disk)
is known to be fault-free, failure of the test would be inconclusive
because the fault may lie in any of this hardware, rather than the
device under test. While other I1/0 controllers have Tess complex I1/0
environments, the principle still applies that unless the external
hardware is known to be completely fault free, it only serves to com-

licate the diagnosis of the fault if an error occurs.

A variation of "natural environment testing" may provide a
practical solution to this problem. If a "known good" device of the
same type as the device under test is connected in parallel with it
(so that the two devices receive identical inputs, but only the D.U.T.
outputs are connected back into the system) a comparator may be used
to detect any differences in their behaviour. This arrangement is
illustrated in Figure 4.2. With suitable allowances for varying
propagation delays and critical timing events, if the comparator

detects any differences between the responses of the two devices to

141,

PASSiFAIL
_._____.__\ /1__._
VI COMPARATOR |,
N ﬂ“——“"w
-/ —
REFERENCE
B DEVICE
t:::> \—
REST OF |,
MICRO- / i
DEVICE)
PROCESSOR [\ Y EXTERNAL
system L | Lﬂﬂ*ﬁ QRQEF <;_ | HARDWARE

Figure 4.2. Natural Environment Comparison Testing

of I/0 Devices.

142.

external input and CPU writes then the D.U.T. is assumed to be faulty.

This method is similar to that of comparison testing discussed
in Chapters I and II, the difference being that the stimulus for the
known good device and the D.U.T. is provided by the natural environ-
ment of the D.U.T. instead of a pseudo-random vector generator.
Bisset[65] describes the use of this technique in commercial ATE,
while in [12] Bluestone describes the similar use of "Conditioned
Natural Environment” test%ng to perform parametric tests on LSI
devices. It is interesting to observe that chips in the recently
announced InFe] iAPX 432 microprocessor chip set[123] have a "checker

mode" which can be used in a very similar form of comparison testing.

The method suffers the disadvantage that it does require device-
specific hardware. For each different type of device to be tested by
this method a known-good device, the means to connect it in parallel
with the D.U.T. and the comparator are required. Furthermore the
design of the comparator may need to be quite complex to allow for
variations in propagation delays and the response to critical timing
events. There is no doubt that this hardware would be Tess expensive
than the 1/0 emulator discussed above, but it may still prove to be
an economically less attractive method for fault isolation than simple

chip substitution.

Whichever method is used to provide the I/0 stimulus to test an
1/0 device -~ and it is clear that simulation by the CPU is not always
a practical approach - the problems, discussed in the preceding sec-
tion, of developing an effective test for the device remain. The only
way in which I/0 devices differ from other LSI periphera]s'in this res-

pect is that it is necessary to determine a suitable external stimulus

143.

to test the device, as well as the stimulus which the CPU should
apply. However, the test procedure which is developed for an I/0
device must, to some extent, be determined by the means which are
available of applying external stimulus to the device. The means of
applying external stimulus will therefore have an effect upon the

effectiveness with which the device is tested.

4.3.4 Failure of the SA procedure in the presence of certain faults

In the case of two faults described in Chapter III - the 8085
TRAP fault and the bridging fault on the printed circuit board - the
SA Procedure, failed completely, identifying the wrong component as
being faulty, with no means of recovery. As discussed in Section
4.2.3 total failure of the procedure in the event of an incorrect
jdentification could be avoided in many cases if an alternative device
to be replaced were specified in the documentation, and this practice

is recommended for future SA implementations.

The failure of the method to isolate these two faults is due to
the fact that each fault violated an assumption made in early in the
SA procedure. The TRAP fault violated the assumption that the CPU is
fault-free after the free-run test, and the bridging fault violated
the implicit assumption that no feedback from the output ports exists

which could affect the behaviour of the CPU.

We have already seen that no reasonable provision (other than
the one noted above) could have been made in the design of the SA pro-
cedure which would have allowed either of these faults to be correctly
isolated. For the TRAP fault to be isolated correctly it would be

necessary to test the CPU during reset, for which SA is not particularly

144,

suitable, and for the bridging fault it would be necessary to per-
form the Stage I tests with the system in each of its possible op-

erating configurations, which is a practical impossibility.

It is clear, then, that in any SA procedure there will exist
the possibility that a fault will occur which violates some assump-
tion made on the basis of an incomplete test, and cause the procedure
to fail. This must apply to any "automatic" test method which re-
quires little interpretation of test results by the person applying
the method. A1l such methods must rely on the execution of individual
tests in a logical sequence, with later tests in the procedure being
based on assumptions made about the system after the execution of
earlier tests. If any assumption made on the basis of one of these
tests is wrong the procedure must be expected to fail at a later
stage. This is the reason that it is so important to conduct thorough,
effective and conclusive individual tests during the SA procedure. It
must be recognized, however, that simply because of device complexity
it will never be possible to completely test every component in a
system, so the possiblity of failure of the procedure will always

exist.

The fact that these two particular faults caused the failure
of the SA procedure is a consequence of the properties of the SA
method. That there will always be faults which could cause any auto-
matic test method to fail is an inevitable consequence of device and
system complexity. In implementing SA or any other test method in a
system, the designer can only try to minimise the 1ikelihood that a

common fault will invalidate the procedure.

145.

4.4 Conclusions
It is apparent from the discussions in this chapter that, as

far as can be assessed on the basis of the SDK-85 implementation, SA
does offer many advantages as a method of field service for micro-
processor systems, most of which are highlighted in the SA Titerature.
The price which must be paid to obtain these advantages could not be
accurately assessed from the SDK-85 implementation, for reasons dis-
cussed earlier in this chapter. It is worth noting, however, that
the attempt to achieve fault resolution to a single component with SA
involved a greater design effort and more attention to detail than

indicated by. the SA literature.

A number of deficiencies of SA were also observed. These are
characteristics of the technique, or its recommended method of imple-
mentation, which limit its effectiveness, preventing it from being
the (fictitious) ideal field service method. These deficiencies can

be classified into three groups:

(1) Those which are inherent to the method. Problems in this
category include failure of the method in the presence of cer-
tain faults and the inability to isolate bus faults. When
these problems occur they can generally be overcome by resort-
ing to traditional methods and they occur sufficiently infre-
quently that they do not detract greatly from the attractive-
ness of SA.

(ii) Those which can be avoided by sufficiently careful design of
the system. This category includes the problems of inability
to observe signatures at some nodes, and minimization of the
number of different control line setups for the signature

analyser.

146.

(iii) Others - problems which don't fit into either of the above
categories and which, therefore, represent areas in which
further development of the SA method 1§ desirable. These in-
clude the development of effective tests for LSI devices and

the provision of I/0 stimuli for testing complex I/0 devices.

The two problems cited as examples in this last category con-
stitute a serious deficiency of SA as discussed earlier in the chap-
ter. As the number of LSI devices used in microprocessor systems in-
creases and as integration levels increase, SA will only be effective
if individual devices (including 1/0 devices) can be thoroughly and
effectively tested. Bennetts[1] similarly concludes that the success-
ful testing of systems depends on the ability to effectively test LSI

devices, but for somewhat different reasons.

Since the problem of testing LSI devices is neither inherent to
SA nor easily overcome by measures adopted during design of a system,
it is a problem which could, but need not, 1imit the effectiveness of
SA in the future. If it is not to do so, some development of tech-

niques for testing LSI devices during SA is necessary.

The issue of testing I/0 devices encompasses that of developing
thorough tests for individual LSI devices, as noted earlier. In fact,
the particular problems which I/0 devices present only become sig-
nificant after systematic test strategies for the devices have been
developed. For this reason it is considered that the problem of devel-
oping systematic, thorough device tests is of more immediate concern
than that of developing methods of providing real time I/0 for testing

1/0 devices. Indeed, it is considered that this is the greatest single

problem limiting the effectiveness of SA.

147.

It was decided, therefore, to further investigate the problem
of testing LS; devices in the context of SA. The aim of the investi-
gation was to determine whether a general systematic approach is
feasible and, if so, whether suitable methods exist and could be
adapted for use in the context of SA. If a systematic approach were
found to be infeasible, it was hoped to identify the particular
éharacteristics of devices or systems which make it so. The results

of this investigation are presented in Chapters V and VI.

148.

CHAPTER V.
TESTS FOR COMPLEX LSI DEVICES

5.1 Method of Implementation

The ability to effectively test individual LSI devices, such as
microprocessors and their peripherals, has been seen in earlier
chapters to be crucial to the successful testing of LSI based digital
systems. This is true for both high volume automatic testing and low
volume field testing, but in Chapter IV it was seen to be so for
signature analysis in particular. It is the problem of effectively
testing LSI devices during the SA procedure which will be considered

in this Chapter.

No one single technique has been applied universally to test LSI
devices. The pseudo-random and comparison testing methods discussed
in Chapter II, combined with in-circuit testing where necessary, are
used with some success by ATE, but it is clear from the literature
discussed in Chapter II that they are not complete solutions. ATE
methods for testing LSI devices tend (naturally) to take advantage
of the speed and computing power of the test equipment, which is be-
coming larger, faster and more powerful as LSI devices become more
complex. These methods are therefore not directly applicable to the
testing of LSI devices in a field service environment. Ideally, a
method of testing LSI devices during field service would require
little external test equipment and could be applied by an unskilled
serviceman in very little time. It should, in other words, share the
characteristics of signature analysis. Therefore, in attempting to

find a more effective method of testing LSI devices during the SA

procedure, it is important to not depart significantly from the gen-

149,
eral SA approach as it now stands.

Because the device tests must fit within the context of SA it is
clear that each device in the system must be tested in the circuit,
preferably without the use of any device or system specific test
equipment. The logical approach, then, is to stimulate each device
from within the system - that is, implement the device tests as a
self-test routine executed by the CPU on itself and its peripherals.
The alternative would be £o stimulate the devices with an external
tester of some sort, which would be expensive and would be unlikely
to offer any’more power and flexibility than test routines executing
within the system itself. Several authors discuss the advantages of

(3111881331 which takes advantage of the flexibility of

self-testing
the microprocessor and the modularity of microprocessor systems to in-

dividually stinulate and test each major device in the system.

In a self-test the set of test vectors applied to the device under
test is the program stored in ROM (in the case of the CPU) or the data
written to the device by the CPU as it executes the self-test routine
(in the case of other devices). The response of each device to this
stimulus can be observed in one of two ways. Either the test program
can include routines to monitor the response of the device and give a
pass/fail indication at the end of the test or the outputs of the
device can be observed directly (in which case the signature analyser
would be the logical instrument to use). Subject to the ability to
observe signatures at all device outputs of interest, the latter method
allows more direct verification of device behaviour and may therefore

be preferred.

It should be noted that self tests of the type described above,

150.

with both forms-of observation of device response,are performed ex-

tensively in Stages II and III of the SDK-85 SA procedure. However,
all of these tests were developed on an ad hoc basis and the aim now
is to find a more systematic approach to the development of such

tests.

While device testing through the executionof a self-test program
does minimise external hardware requirements, which is important in
the field service environment, it also imposes several restrictions.
The most obvious of these is that because the self-test program is
stored in ROM, and there are practical limitations on the amount of
ROM storage which can be provided in a system, the size of the self-
test program is restricted. Srini[gl] describes an extensive self-
test scheme in which large diagnostic routines are held in on-Tine
secondary storage and are loaded into RAM and executed as required.
However, in general, microprocessor systems will not be equipped with
secondary storage facilities, so test routines must be resident and
therefore cannot be made arbitrarily large. As the cost of primary
storage for microprocessors decreases the size of resident test routines
will become less significant although in some applications it will con-

tinue to be important to minimise the amount of ROM storage required.

The second restriction is that the stimulus applied to devices
can only be in the form of valid bus operations. The only way in which
a CPU can be stimulated is by reading data from ROM through the data
bus, while stimulus for a peripheral device is restricted to CPU "write"
operations (together with any external input which may be applied to
an 1/0 device). For example, it is not possible in a self-test routine
to stimulate a peripheral device by setting its RD/ and WR/ inputs low,

as this is not a valid bus operation. Thus the set of input vectors

5.2

151.

which may be applied to a device is restricted. However, as these
devices will almost invariably have been designed to operate on a
bus and only respond sensibly to valid bus operations, stimuli which
are not valid bus operations would be of questionable value. There-

fore this restriction is not considered to be a serious one.

The final restriction, as noted in Chapter II, is that before a
self-test routine can be executed, the system kernel must be tested
and verified to be working - at least to some extent. A self-test
routine for the CPU can be written in such a way that only the ROM,
address decoding and busses are required to be fault-free. Peripheral
tests, however, will in general use some RAM and therefore require
that both the CPU and the system RAM be fault-free as well. In the
context of the SA procedure these requirements are satisfied if the
CPU test is conducted after Stage I, in which the system kernel is
tested, and the peripheral tests are conducted after Stage II, in

which the RAM is tested.

Finally, it may be noted that although the emphasis of this investi-
gation is on developing device tests in the context of SA, because
they are to be implemented as self-tests, any results obtained will
have wider application to all forms of self-testing in microprocessor

systems.

The Generation of Practical Device Tests

The discussion so far in this chapter has been concerned with the
most suitable means of implementing LSI device tests (that is, of

applying the test stimulus and observing device response) during sig-

152.

nature analysis of a microprocessor system. The process of generating
the tests (that is, of devising the most suitable test stimulus for

each device) will now be considered.

Ideally a device would be tested by the application of all possible
input vectors in all possible sequences. However, as has been noted
many times already, this approach is simply not practical and some
form of compromise is necessary, in which a restricted set of test
vectors is applied to each device. The process of generating a device
test is one of finding the most suitable and effective compromise for
a given test environment (the field service/signature analysis environ-
ment in this case). The ad hoc device tests developed as part of the
SDK-85 SA procedure are attempts at such compromises, but are clearly
not the best ones possible. Those tests placed more emphasis on ex-
ercising the devices in some convenient manner than on testing the
devices thoroughly, and in consequence were not as effective as desir-
able. A more systematic approach to the development of thorough, but

reasonably sized, tests is required.

5.2.1 Functional tests

Up to the present time the approach to the development of system-
atic tests for LSI devices (particularly microprocessors) which has
been adopted almost universally has been to develop the test based on

the devices internal architecture[8].

The principle underlying this
approach is similar to that involved in the difference between func-

tional and in-circuit testing of systems at the board Tevel.

To briefly repeat the discussion of these two methods presented

in Chapter I, functional testing involves the exercising and observa-

tion of a board from its external inputs and outputs, with the aim of

153.

detecting, and possibly isolating, faults in the board. Thus tests

are developed for the board as a whole, and can be very complex for
boards containing many devices. In-circuit testing, on the other hand,
tests devices on the board individually, on the assumption that,

because the devices are independent, if each device is tested and

found to be fault-free then the board as a whole will function correctly.
Because devices are tested individually, in-circuit tests consist of a
sequence of several relatively simple device tests, rather than a

single complex test for all logic on the board. In-circuit tests are

therefore easier to develop than functional board tests.

At the level of LSI device tests the development of a test for
the device as a whole is analogous to the development of a functional
board test. The length and complexity of the test can be reduced if
the LSI device is considered as a set of independent modules (analogous
to individual devices on a board) which are tested individually. Then
the device test will consist of a sequence of relatively simple tests
for each of its modules, on the assumption that if each module is
tested and found to be fault-free then the device as a whole will be
fault-free. This approach takes advantage of the fact that most LSI
devices are modular in design and are physically composed of independant
modules or "functional units" (FU's) which can often be identified in

[42]. Individual modules perform well

a photomicrograph of the device
defined and often simple functions independently of other modules.
Tests may therefore be constructed to exercise the function of one

module without greatly affecting others.

The fact that tests based on this approach seek to verify that
each module, or FU, functions correctly has led to the unfortunate use

of the term "functional tests" to describe the approach, even though

154,

the principle followed is more in line with in-circuit board testing
than functional board testing. The term "functional testing" will
henceforth be used only to refer to the modular tests performed on

LSI devices.

Although functional testing shares a common principle with in-
circuit board testing, there are two important differences between
the techniques. The first, and most obvious is that whereas individ-
ual devices on a board can be accessed directly in in-circuit testing,
with a bed-of-nails or I.C. clip, this is not possible for the functional
units within LSI devices. The internal FU's must be exercised by the
application of test vectors to the external device pins. This means
that it is not possible to exercise one FU in isolation. Any opera-
tion performed by the device in response to an input stimulus will, in

general, involve several FU's.

The second difference is that the aim in performing LSI device
tests is simply to detect faults of any kind in the device. The iden-
tity of any FU which contains a fault is of no concern because if a
fault is detected the whole device is replaced. This is to be con-
trasted with in-circuit board testing in which the device tested is
replaced if found to be faulty, rather than the entire board. The
diagnostic requirements in functional device tests are therefore less
demanding, which is some compensation for the fact that FU's cannot

be accessed directly.

5.2.2 Literature on functional testing

Several authors have proposed methods for generating tests for

LSI devices based on consideration of device architecture. Up to the

present time these have all been developed specifically for micropro-

155.
cessors rather than LSI peripheral devices.

Chiang and McCask111[42] describe a method for generating tests
for microprocessors which they call "module sensorialization”. To
apply this method the microprocessor is conceptually divided up into
modules, including the arithmetic logic limit (ALU), register array,
program counter, instruction decoder and timing, Togic. A series of
short instruction sequences is applied to the device, each designed
to exercise and verify the correct operation of one of these modules.
For example, the first stage of the test is to continually force a
"no-operation" instruction onto the data bus of the microprocessor, (as
in the free-run stage of signature analysis), to test the program
counter as it is incremented through its full range of possible values.
The test for each module is designed to be a "worst case" test in some
sense. The register array, for example, is tested with a galloping ones
and zeros pattern, while the instruction decoder is tested by the exe-

cution of all instructions in the device's instruction set.

The authors propose the technique of "algorithmic pattern genera-
tion" (APG) to apply the test vectors (that is, the instruction sequence)
to the device under test. A microprogrammed control unit generates
the required instruction sequence to be applied to the DUT, using a
small control store, thereby avoiding the need for a large on-line
store to hold long test instruction sequences. It is important to
notice that the test instructions generated by APG are applied to the
microprocessor, rather than fetched by the microprocessor in the normal
sequence of execution. Thus there are no Timitations imposed by the
need to fetch instructions from contiguous memory locations, and tests

which manipulate the program counter can be performed freely.

156.

[64] also discusses module sensorialization, noting that

Crichton
because of device complexity and the unavailability of gate-Tevel
logic diagrams for devices, it is not practicai to test devices as a
whole using conventional methods. He gives a little more detail on
the derivation of test instruction sequences, considering the "data
Togic" and "control logic" of the microprocessor separately, and states
that each module should be tested "with as much data as can be practic-
ally tolerated". It is noted that although the control and data logic
sections of the microprocessor are conceptually tested separately, it
is not possible to exercise one without involving the other, and that
it is therefore impossible to test modules in isolation. However, if

the device is fault-free all tests will be passed irrespective of

whether modules are exercised in isolation.

The APG implementation of module sensorialization is criticised

by Smith[124]

on the grounds that, in testing modules within the micro-
processor, it does not test for interaction between the modules -
between registers in the register array, for example. He proposes

that the existence and uniqueness of each module within the micropro-
cessor should be verified. An example instruction sequence which would
verify the existence and uniqueness of the registers in an Intel 8080
microprocessor is given. Significantly, this test sequence, being more
thorough than those given by Crichton[64] and Chiang and McCaski11[42],

is also Tonger.

Although module sensorialization and APG were originally proposed
for the ATE environment, module sensorialization could be applied in
the form of a self-test routine, with the test instruction sequences

stored in ROM. However, this would place some restrictions on the tests

which could be performed because the instructions must all be fetched

157.

from the ROM. Tests which modify the program counter, for example,
would be restricted. The response of the microprocessor to the test

sequences could be readily observed with a signature analyser.

None of the papers discussed above gives any specific directions
on how test instruction sequences for modules in the DUT should be
deve]oped, or defines which faults are detected by the method. That
is, the method of module sensorialization is not based on a specific

fault model. Chiangand McCask1]1[42], Crichton[64]

and Barraclough
et a1l47] all state in general terms that the aim of the procedure is
to verify the function of each module in the DUT with as much data as
possible, or under worst case conditions, but give no guidelines for
the generation of instruction sequences beyond that. Individual test
sequences must therefore be developed on an ad hoc basis.

Robach and Gobbi[125]

consider the testing of microprocessor sys-
tems in several environments, including that of the device manufacturer,
who can use knowledge of the mask layout of the device to generate

tests for it. For the system manufacturer, an external tester is
recommended, to exercise subsystems within the microprocessor system,
performing simple RAM, ROM, CPU and peripheral tests of the type per-
formed in Stages II and ITI of the SDK-85 SA procedure. A method of
testing a microprocessor system in the field through the execution of
its "application program" is also presented. It is based on a method
of testing computer control units presented in an earlier paper by

Robach and Saucier[126].

The entire microprocessor system is con-
sidered as a set of functional units, cohprising the "operative part",
while the application program is the "control part". To test the system,
the set of inputs applied to the control part (that is, the input data,

or parameters applied to the system) are manipulated so that, during

158

execution of the application program, all functional units in the
operative part are exercised and subsequently observed. Algorithms
are presented by which a suitable sequence of execution within the
application program may be determined, such that all functional units
are eventually exersised and all possible execution paths within the

application program are tested.

Although this method could, in principle, be applied to LSI device
testing within a microprocessor system, for several reasons it is not
particularly suitable for application in the context considered in
this chapter. The extent of the tests performed on FU's within the
system appears to be somewhat arbitrary. There is the implication in
the approach that a FU is fault-free if it is involved in some opera-
tion which yields a correct result. Certainly the approach would not
produce the thorough tests for LSI devices which are the subject of
this chapter. The means by which the results of operations should be
observed are not made clear. Thatte and Abraham[36] state that diffi-
culties may be experienced in applying the method to testing micropro-
cessors because of the limited accessibility of CPU registers and the
consequent impossibility of observing the results of operations

directly.

Clearly, the method can only test those FU's used by the applica-
tion program. This may be satisfactory in a dedicated system, but is
not so for a general purpose system such as the SDK-85. The applica-
tion program of the SDK-85 (the monitor) does not use some of the
facilities in the system, so these facilities could not be tested by
execution of the application program; a specific test routine is re-
quired. Finally, the method does not appear to be particularly suit-

able for isolated device tests because it requires that the entire

159.

system be divided up into (presumably small) FU's. The procedure
for applying the method to a system which contains several complex
LSI devices and a Targe application program would therefore be very
complex and time consuming.

The testing of microprocessors is considered by Ba]]ard[93] in
the context of fault detection in microprocessor systems. He dis-
cusses, among other methods, the execution of a self-test routine by
the microprocessor to detect any faults within the device. In part-
jcular, he considers thd problem of "fault masking" - the mechanism
whereby a fault in the device is not detected by the test procedure
because of the existence of a second fault which "masks" the first.
With a view to reducing the likelihood of this occurring in a micro-
processor self-test he proposes a method for determining the most
reliable, or simplest, instruction and the most reliable functional
unit of a microprocessor. Sr1n1[91] presents a similar method. The
simplicity of an instruction is assessed by counting the number of
attributes or FU's involved in the execution of the instruction, while
the reliability of a FU is determined by the number of gate levels,
feedback paths, instructions and clocks used by the FU. The test
routine is constructed so that it first exercises the most reliable
FU using the simplest instructions (thereby minimising the probability
that fault masking will occur). This FU is then used to test the
second most reliable FU and instructions and so on, until all FU's
are tested. Bi]ton[35] describes a similar bootstrapping technique

for testing microprocessors.

The purpose of performing this bootstrapping procedure is not ex-

plained well by Ballard and needs some clarification. The ultimate

aim in performing a self-test on a microprocessor (or any other device)

160.

is to determine whether the device functions correctly - that is,
whether it contains any faults. In the field service environment the
nature of any fault detected is of no concern because a faulty device
will simply be replaced and discarded. Functional tests of the type
described in this chapter aim to detect faults in the DUT by individ-
ually exercising the various independent FU's within the device as
thoroughly as possible, on the assumption that if all FU's are found
to function correctly then the device as a whole will function

correctly.

The only means of exercising a FU within a microprocessor is to
force the microprocessor to execute an instruction sequence devised
for that purpose. However, this must also involve several other
(untested) FU's within the CPU, such as the program counter, data
input buffers and instruction decoder. As noted earlier, it is there-
fore impossible to test any FU in isolation; the test for any FU
must be supported by other FU's. Thus, a fault in the accumulator,
for example, may go undetected because the data input buffers exhibit
a complementary fault which gives rise to the correct results from a
test devised for the accumulator. The likelihood of this type of
fault masking occurring between FU's is reduced by minimising the in-
volvement of extra FU's in the test for a given FU (unless the extra
FU's have already been tested). For this reason the test for a FU
should be constructed from the simplest possible instructions - those

which use fewest other FU's.

In practice it is generally not possible to construct a test for
a FU with only the simplest instructions of the CPU. As noted by

Bi]ton[ss], instructions in test sequences are often chosen for

reasons of convenience rather than simplicity alone, although the

161.

simplest instructions should always be used when there ié any choice.
After a FU has been tested with simple instructions, it may be used

to support tests for other FU's, which employ less simple in-
structions. That is, instructions which use the tested FU may be used
in tests for other FU's. It should be noted, however, that while
tests should be conceptually bootstrapped in this manner, the actual
order of execution is irrelevant. It doesn't matter which of the FU
tests is executed first if the results of all FU tests are observed,

and the DUT is only passed if they are all correct.

It is apparent, then, that Ballard's proposition that "using the
most reliable instruction and functional unit, the CPU may be exercised
from the most to the lTeast reliable of its elements" need not be
followed literally. To determine which FU is the most reliable based
on the criteria proposed by Ballard would require a gate level logic
diagram of the CPU, which is generally not available. Furthermore,
there appears to be no reason that the simplest or most reliable FU
should be tested before any other. The FU to be tested "first" should
be the one which can be tested by the simplest instructions - those
which use fewest other FU's. The Togical complexity of a FU is there-
fore a less important consideration than the way in which it fits into
the device's architecture, and the degree to which it can be tested in
isolation. The complexity of a FU will be reflected in the number and
type of instructions which are required to exercise it, but its com-
plexity will not determine its position in the test order so much as

the availability of simple instructions to exercise it.

The final architecture based method to be considered is that dev-

[36]

eloped by Thatte and Abraham Information which can be readily

obtained from the instruction set description of the microprocessor is

162.

used to construct a register-transfer level graph-theoretic model

of the device, in which nodes represent CPU registers and data flow
between the registers is represented by 1inks.between the nodes.
Simple fault models are proposed in terms of the register decoding,
instruction decoding and data transfer functions within the CPU. The
device is tested by executing instruction sequences devised to move
data between registers along the various data paths and out to the
external world for observation. Several algorithms are presented by
which instruction sequences can be devised to detect all faults in
the fault model. However, the algorithms require ad hoc decisions

about which data and instructions should be used at various stages.

It is clear that the method, as presented, is specific to micro-
processors, with their data path oriented architectures and would not
be readily applicable to general LSI devices. The fault model is also
very specific to microprocessors and would be irrelevant for many LSI
peripherals, for which it would be necessary to propose and justify

new fault models.

5.2.3 Discussion

The methods for developing microprocessor device tests discussed
above all rely on consideration of the architecture of the device and
the ‘division of the device into independent functional units as a
means of devising a test program of reasonable length. The differences
between the techniques arise from the different methods of dividing
the device into FU's and the different intended applications of the
test routine. They are all (with the exception of the method of
Robert and Gobbi, which is applied at the system level) specifically

concerned with testing microprocessors.

163.

None of the methods discussed defines an algorithm in sufficient
detail to allow a test sequence to be derived without some judgement
or inventiveness being exercised by the author of the test program.
This fact is reflected by Bilton's statement[35] that test engineer-
ing is still "something of an art". None of the methods, with the
exception of Ballard, is particularly well suited to the signature
analysis self-test environment, for the reasons discussed in the pre-
cedina section. However, all of the methods do have their merits and
there is scope for variations upon the methods (themselves variations
on the modular or functional testing principle) to suit the particular
test application and environment. Certainly the functional testing
approach seems to be a suitable, practical approach to the generation
of thorough LSI device tests. Indeed, in the absence of any documented
alternative approach or any serious disadvantages apparent from the

foregoing discussion, it is the most suitable approach.

As discussed at the beginning of this chapter, the requirement in the
signature analysis context is for a test method for general LSI devices
which is systematic and thorough, but also practical. The desirability
of the self-test implementation has already been established and it is
now apparent that functional testing is the most suitable approach to
development of the tests. It was decided, therefore, to attempt to
extend the SDK-85 SA Procedure by the inclusion of tests, developed

by this approach, for the two most complex devices in the system (the
8085 and the 8279). It was anticipated that in so doing any limitations
of functional testing in this environment would become apparent. In
particular, any problems peculiar to peripheral devices as opposed

to microprocessors would be identified. A description of the develop-
ment and evaluation of a functional test for the 8085 follows, while

the 8279 test and overall conclusions about functional testing will

164.

be presented in Chapter VI.

5.3 8085 Functional Test

5.3.1 The approach to development of the test

In developing a functional test for the 8085 the intention was
to form the basis for a systematic test approach for complex LSI
devices in general. It was therefore important that the approach
adopted not be too specific to microprocessors. It was also clear
from the outset that the extent to which a systematic procedure can
be applied will be determined by the architecture of the device being
considered. Therefore the test was not developed to detect a pre-
defined set of faults. Rather, the goal adopted was to develop a
test which would detect the most general set of faults possible,given
the 1imitations imposed by the device architecture. Only thus would
the true limitations of functional testing in this application become
apparent. It was clear, however, that it would be necessary to assume
that any faults existing in the DUT were "hard" faults - that is,
neither intermittent nor pattern sensitive. The initial fault model
adopted for the 8085 (and subsequently the 8279) was simply the set of
all hard faults.

Given this very general fault model, and the need to adopt a
generally applicable approach, the functional test was devetloped

d[93] and Srini[gl]. A

broadly along the lines described by Ballar
functional model of the CPU was adopted and its functional units were

identified. A test sequence was developed using the simplest possible

instructions to test each FU as thoroughly as possible without creating

165.

an unduly long test. That is, the function of each FU was tested
with as much data as practically possible. It was then intended to
adopt an identical approach to the development of the 8279 functional

test.

It was decided that the signature analyser would be used to ob-
serve the data appearing on the CPU data and address busses during
the test, thereby monitoring its response to the test. This method
of observation allows the behaviour of the CPU to be monitored more

directly, as discussed earlier in this chapter.

5.3.2 The 8085 functional model

The first step in the development of the 8085 functional test
was to adopt a functional model of the device, in effect breaking it
up into FU's. Clearly, the more detailed the model is - that is, the
smaller and simpler the FU's are, subject to the condition that aill
FU's should function independently - the more effective the functional
test procedure can be. The most detailed information about the 8085
which is readily available is contained in the MCS-85 User's Manua1[120]
which defines its architecture and interfacing characteristics. In a
manner which is typical for microprocessors of its class, the operation
of the 8085 is described in terms of the effects which its various in-
structions have on its attributes. Since the device can only be tested
by executing valid instructions, it is clear that the functional units
should correspond to the entities manipulated by the instruction set -
the registers, accumulator, ALU, program counter etc. These functional
units are shown in the "functional block diagram" of the 8085 given in

its data sheet[116][120].

The operation of the Intel 8080A microprocessor, to which the 8085

166.

[22], is described in more detail in

is architecturé]]y very similar
the Intel 8080 Microcomputer Systems User's Manua1[127] than the
operation of the 8085 is in the MCS-85 User's Manual. The functional
block diagram of the 8080A which it contains includes more detail

than that of the 8085, and a state transition table is provided (on

pp 2.16 - 2.20) which gives details of the clock cycle by clock cycle
activity of the CPU in terms of the entities shown in its functional
block diagrém. Because a state transition table, or information
equivalent to it, is required to develop a functional test at the

level of the FU's shown in the functional block diagram, it was dec-
ided to derive the functional model of the 8085 from that of the 8080A.
Assuming that activity within the 8085 is similar to that within the
8080A during instruction execution, the derived state transition table
would then represent what physically occurs within the 8085. Thus the
8085 functional model would be physically meaninaful. Without the
state transition table only a logical model of activity within the

8085, which may or may not be physically accurate, could be developed.

The functional block diagram used to develop the 8085 functional
test is shown in Figure 5.1. It was adapted from the 8080A functional
block diagram to allow for obvious architectural and implementational

differences between the processors as follows:

(1) The.8080A Data Bus Buffer/Latch was modified to include inputs
from the eight least significant bits of the address latch,
providing for the multiplexed data/address bus of the 8085.
Accordingly, the Address Buffer is now only eight bits wide.

(1) A serial I/0 module was included to allow for the serial
input/output facilities of the 8085. A bidirectional connec-

tion to the internal data bus was provided to allow data

(8-81T)

INTERNAL DATABUS

Sop SID

P s

Serial 1I/0 |

INTA
INTR

RST
5.5 6.5 7.5 TRAP

e

> Interrupt Control

(8-81T)
INTERNAL DATA BUS

Qg

J

ACCUMULATOR
(8}

(8)

"1°G 24nbLy

“weabelrq 2014 Leuo;ﬁaunj G808

y

INSTRUCTION
REGISTER (8)

U

U

INSTRUCTION
DECODER
AND
MACHINE
CYCLE
ENCODING

A

! MULTIPLEXER
w (8) z (8)
TEMP REG TEMP REG

B (8) [of (8)
5 REG REG
w
B D (8) E (8)
& REG REG
B H (8) L (8)
E’ REG REG
Q
& STACK POINTER {16)

PROGRAM COUNTER (16)

INCREMENTER/DECREMENTER
ADDRESS LATCH (16}

|__ REGISTER
ARRAY

(" 1861 1yb1LaAdo)y ‘uoigedoduo)d [93U] JO uoLssiwaad Aq pajuLaday)

U L_ A FLAG (5) -
FLIP-FLOPS |
ACCUMULATOR
LATCH (8) ? y
i
A \! ARITHMETIC
/A LOGIC UNIT
ALU
(8)
k —
Lé
L A
¥
DECIMAL
ADJUST FE—1
L < ——
+
eower |~ 1OV TIMING AND CONTROL
SUPPLIES
— GND

Y

Ll

ADDRESS BUFFER

r DAT@G&%EF&ESS

RESET

1

OUT ALE

I
v

HOLD

FTTEIrT

R 55 5 10/M HLDA
READY

CLK Xl

L91

AD7 = ADO :

168.

transfer between the accumulator and the serial I/0 pins
during execution of the 8085's RIM and SIM instructions.

(iii) The interrupt logic and control lines were separated from
the Timing and Control module. A bidirectional connection to
the internal data bus was provided to allow interrupt status
to be read and the interrupt masks to be set by the RIM and
SIM instructions.

(iv) The external control and status lines emanating from the
Timing and Control module were changed to those of the 8085.
The internal crystal oscillator was included in the Timing
and Control module.

(v) The -12 volt and -5 volt power supply inputs were eliminated.

Some of these revisions were influenced by the functional block
diagram given in the 8085 data sheet and the modified functional block
diagram (Figure 5.1) is consequently very similar to it. However,
Figure 5.1 does show a 1ittle more detail, including the accumulator
latch, register multiplexer, register select module and the decimal
adjust module. Although some of these modules may not exist as such
in the 8085 it was necessary to include them from the 8080A functional
model because the 8080A state transition table, which was to be adapted
for the 8085, contains references to them.- If these modules had been
omitted (as in the block diagram in the 8085 data sheet) significant
changes to the state transition table would have been necessary,
largely defeating the purpose of using it. The changes which were
made to the 8080A functional block diagram do not conflict with any

activity defined in the state transition table.

The state transition table for the 8080A[127] was modified for

the 8085 to accommodate the known differences between the two devices

which could determined fromtheir respectiveUser's Manuals

169.

[120]7[127]

In so doing it was assumed that, because of the architectural simi-

larity between the devices, only minimal differences exist in their

state-by-state activity. The following changes were made to the state

transition table:

(i)

(i1)

RIM and SIM instructions were included. for the 8085. The
assumed state-by-state activity during execution of these two
instructions, which is based on the M1 cycle activity for
other instructions, is shown in Table 5.1.

The ,numbers of clock cycles (states) occupied by some instruc-
tions were changed. The number of machine cycles used by the
8085 for each instruction is the same as for the 8080A but the
number of states occupied is different in several instances.
The MCS-85 User's Manua][120] states that, with the exception
of M1 (opcode fetch) machine cycles, all machine cycles occupy
three states. M1 cycles occupy either four or six states.
Thus to account for the documented 8085 state times, the Ml
cycles of the following instructions were assumed to be one

state longer than in the 8080A:

INX rp; DCX rp; SPHL; CALL addr; Ceond addr;
Reond 3 RST n; PCHL; PUSH rp; PUSH PSHW.

On the other hand, the following instructions were assumed

to have M1 cycles which are shorter by one state:

MOV »1, r2; INR »; DCR »r; Jeond addr.

170.

Table 5.1. State Transition Table Entries for the 8085 RIM and SIM
Instructions
Mnemonic M1
T1 T2 T3 T4
RIM PC OUT PC=PC + 1 |INST-TMP/IR | (INTERRUPT,
" STATUS SERIAL 1/0) +A.
SIM PC OUT PC=PC + 1 INST +~TMP/IR | (A) = INTERRUPT,

STATUS

SERIAL I/0

(iit)

171.

During the execution of conditional jump and call instructions
the 8085 does not read the second byte of the destination
address if the condition specified is not satisfied. In such
cases the Jeond addr and Ceond addr instructions are one
machine cycle (three states) shorter. These instructions
were assumed to be otherwise identical to the 8080A instruc-
tions, except that the program counter was assumed to be in-
cremented twice during the second machine cycle and, as noted
above, the Ml state times are different. This behaviour im-
plies a greater complexity in the Timing and Control logic of

the 8085, but is otherwise inconsequential.

The only 8080A instruction which has a machine cycle (other
than an M1 cycle) of more than three states is XTHL, which

has an M5 cycle of five states. The M5 cycle of the 8085 XTHL
instruction must be only three states long, although it is not
clear how the necessary activity during M5 can occur in only
three states. This anomoly may indicate that a feature was
omitted from the functional block diagram which would allow
greater parallelism during this cycle. However, in the absence
of further information this was assumed not to be the case and
the involvement of FU's in the M5 cycle of XTHL was assumed to

be as for the 8080A.

It should be noted that the 8080A state transition table
appears to be in error because it does not show that the
stack pointer is decremented during the M4 cycle of XTHL, as

must be the case.

172.

The assumptions made with regard to the functional model of the
8085 were based largely on the degree of architectural similarity
between it and the 8080A. It was assumed that the differences
between the implementations of the two 'devices were as few as poss-
ible, given the documented differences between the devices. The
validity of these assumptions is, of course, open to question but
in the absence of further information no other reasonable assumptions
could be made. Any inaccuracies in the assumed functional model
could be expected to give rise to a less effective functional test
because the model used would then be a logical cone, rather than one
which represents the physical implementation of the device. Neverthe-
less the model serves to illustrate the process of developing a func-
tional test for a microprocessor as well as any, and in this respect
can at least be expected to be reasonably representative of the 8080A,

if not the 8085.

5.3.3 Development of the 8085 test

5.3.3.1 Instruction complexity

To determine which instructions of the 8085 are the least complex
and therefore are most suitable to be used in test sequences for FU's,

[93] and Srini[gl] was

a table similar to that suggested by Ballard
constructed. It was derived from information obtained directly from

" the state transition table and showed, for each instruction of the
8085, which functional units or attributes of the device are used
during execution of the instruction, and how many times they are used.
For each instruction two measures of the complexity of the instruction
were calculated, and these are listed in Table 5.2. The first of these

measures - denoted 'F' - is simply the number of FU's affected or used

during execution of the instruction, wherein each flag flip-flop

173.

Table 5.2. Complexity Values for 8085 Instructions

. Number of functional. Complexity
Instruction ks, F C
MOV »r1, »2 10 21
MOV r, M 10 24
MOV M, » 12 26
SPHL 11 23
MVI », data 10 26
MVI M, data 10 32
LXI rp, data 11 39
LDA addr 12 46
STA addr 12 46
LHLD addr 13 62
SHLD addr 13 62
LDAX rp 11 22
STAX rp 11 22
XCHG 12 28
ADD r 18 29
ADD M 18 33
ADI data 16 35
ADC » 18 30
ADC M 18 34
ACI data 16 36
SUB r 18 29
SUB M 18 33
SUI data 16 35
SBB r 18 30
SBB M 18 34
SBI data 16 36
INR » 15 26
INR M 15 35
DCR » 15 26
DCR M 15 35
INX rp 10 24
DCX rp 10 24
DAD rp 18 47
DAA 16 25
ANA r 18 29
ANA M 18 33
ANI data 16 35
XRA » 18 29
XRA M 18 33
XRI data 16 35
ORA » 18 29
ORA M 18 33
ORI data 16 35
CMP » 18 28
CMP M 18 32
CPI data 16 34
RLC 12 19
RRC 12 19
RAL 12 19
RAR 12 19

(Table 5.2 continued on Page 174.)

Table 5.2 (continued)

174.

. Number of functional Complexity
Instruction units, F C
CMA 11 17
CMC 10 16
STC 10 15
JMP addr 11 38
Jeond addr 12 39
CALL addr 12 65
Ceond addr 13 66
RET 12 38
Reond 13 39
RST n 12 46
PCHL 10 22
PUSH rp 12 43
PUSH PSW 15 43
POP rp 12 38
POP PSW 15 . 38
XTHL 15 64
IN port 12 36
OUT port 12 33
EI 9 15
DI 9 15
HLT 8 20
NOP 8 14
RIM 15 21
SIM 11 17

175.

is counted as a separate FU, as suggested by Ballard. The second
measure - the complexity, or 'C' - was intended to provide a finer
indication of instruction complexity. It was calculated as the sum
of the number of individual operations on each FU (where, for example,
each writing of the program counter to the address latch would be
counted separately) and the maximum number of states occupied by a

machine cycle of the instruction.

The tabulated C and F values were derived from the assumed func-
tional model of the 8085. The method of calculating these measures
of complexity was based on that proposed by Ba]]ard[93] and Srini[gl]
and was considered to be a reasonable approach to the task. However,
it is clear that many variations of this method of calculating in-
struction complexity are possible and equally reasonable. The part-
icular values calculated are not accurate measures of any particular
property of the 8085, and were not intended to be. They were intended,
simply, to provide a broad indication of which instructions are least
complex. Because many other equally valid calculations of instruc-
tion complexity could have been performed the details of the calcu-
lation of C and F are not presented here. It is expected that any
calculations performed along the Tines described above would provide

an adequate indication of instruction complexity.

It may be noticed from examination of Table 5.2 that there is
an obvious correlation between the sequences of F values and C values.
Given that these values are not to be taken as accurate in any sense,
it is apparent that either F or C could be used to compare the suit-
ability of two instructions for use in a FU test sequence. However,

C does provide a finer indication of instruction complexity and con-

firms, for example, the intuitive results that a DCR M instruction

176.

(F = 15, C = 37) is more complex than a DCR » (F = 15, C = 26) and
that a DXC rp (F = 10, C = 24) is more complex than a STC

(F = 10, C = 15). Therefore, to choose between two alternative in-
struction sequences for testing a given FU, the sums of the C
values for instructions in the two sequences were compared and, in
general, the sequence with the lower total C was used. However, it
could be argued that the more easily calculated F values for in-

structions could have been used without significant penalty.

Finally, it should be noted that while the C values were used
to choose between FU test instruction sequences, it was often necessary
to use instructions with quite high C values for reasons of conven-

[35]. In some cases, particularly when

ience - as mentioned by Bilton
choosing between instructions of similar complexity, it was also
found to be necessary to apply other criteria - specifically, which

extra FU's are affected by an instruction.

5.3.3.2 The accumulator test

Disregarding, for the present, the free-run test performed on
the 8085 during Stage I of the SA procedure, the first FU of the 8085
for which a test was generated was the accumulator (ACC). It was
clear that it could be tested more easily (that is, involving fewer
extra FU's) than any other FU, because of its direct connection to
the internal data bus and the consequent ease with which data could
be moved between it and the external data bus. ACC functions simply
as a register, so given that the fault model includes only hard
faults, the most general test for it as an independent FU would be
one which verifies its ability to store all 256 possible data values

and reproduce those values on the internal data bus. The functional

block diagram (Figure 5.1) shows a data path from ACC to the accumu-

177.

lator latch (ACT) but, for reasons which will be explained in the
discussion of the ALU test, it is not necessary to test this path

as part of the ACC test.

Given that the ACC test should consist of writing and reading
256 distinct bytes of data, an instruction sequence to store the
data in ACC and read it out again must be chosen. The simplest such
sequence (the one involving fewest extra FU's) would consist of 256
MVI A instructions to store the data and OUT instructions to read it
back again. (The STA and MOV M, A instructions could also be used
to place the contents of ACC onto the external data bus, but neither
was seriously considered because STA has a very high C value and
MOV M, A moves the data through the temporary register (TMP).) How-
ever, such a test would require four bytes of ROM storage for every
byte of test data, yielding a 1K byte test sequence just for ACC.
While this in itself is tolerable, tests of this Tength could not be
tolerated for each FU in the 8085 because the amount of available ROM
storage is limited in practice. A test for a sixteen bit register
equivalent to that proposed for ACC would occupy 256K bytes of storage
which is clearly out of the question. It is interesting to note that
Chiang and McCask111[42] report that only six micro-instructions are re-

quired to generate this 256K byte test stimulus by APG.

Because of the storage limitations imposed by the self-test
implementation, it was necessary to use a method of generating the
test data for ACC which is more economical than storing the test data
explicitly in ROM. This meant that the test data must be generated
internally to the 8085 which, in turn, meant that the ALU or the six-
teen bit incrementer/decrementer must be involved in the test, and a

conditional jump instruction must be used. There are many possible

178.

instruction sequences which would generate the 256 bytes of data for
the ACC test but the one chosen, for reasons of simplicity (Towest

total C value) was

MVI A, OCH
LOOP: INR A

OUT OOH

JNZ LOOP

where the output address OOH was chosen arbitrarily.

Although this loop constitutes the simplest test of its type, it
does make use of several FU's apart from ACC, and the input buffers,
instruction register and instruction decoder which must be involved
in the fetching and execution of instructions. The extra FU's in-
volved are the TMP register (which is used by INR A), the ALU (by
INR A), the data output buffer (by OUT OOH), the Z flag (by INR A and
JINZ), and the W and Z registers (by JNZ). In general each of these
FU's could contain a fault which would mask a fault in ACC. That is,
even if the data observed on the data bus during execution of the OUT
instruction were correct, it could be that this resulted from two
complementary faults - one in ACC and one in another FU. Indeed, it
is easy to postulate possible (if physically unlikely) fault pairs in
ACC and almost any one of the other FU's involved in the test which
would still yield the correct output data. It is complications of this
type which make the generation of complete, conclusive tests for FU's

difficult, even in the case of an FU as simple as the accumulator.

If the set of allowed faults in the device is restricted (that is,

if the fault model is made less general) then the ACC test given above

179.

is complete and conclusive. If, for example, it is assumed that only
one FU in the DUT can be faulty at a time - which, given the physical
modularity of LSI devices noted earlier, is not an unreasonable
assumption - then incorrect ACC operation could not be masked by a
second fault. Correct output data would then unambiguously indicate
that the accumulator is fault-free. In practice, however, it is
"difficult to justify the assumption that only one FU can be faulty

and the probability of complementary faults in two FU's, however small,

is not zero.

A second restricted fault model which may be considered is one
which includes only stuck-at faults. If any bit of ACC were stuck at
one or zero, ACC could only store 128 distinct bytes of data. In that
case no simple stuck-at fault in any of the other FU's involved in
the ACC test could result in the correct 256 byte data sequence appear-
ing at the output buffers. Once again the ACC test given above would

be complete and conclusive.

Although the test was constructed specifically for the accumu-
lator, it may be observed that during the test 256 distinct bytes of
data are passed through the data output buffers. Therefore, applying
the same reasoning as for the accumulator, under either of the two
restricted fault models described above, the data output buffers are
fully tested. The same is also true of the TMP register which, during
the test, stores and passes on to the ALU 256 distinct bytes of data.
Note, however, that the data path from TMP back to the internal data
bus is not tested. It should also be noted that the other FU's in-
volved in the ACC test cannot be considered to be fully tested under

either fault model because they are not fully exercised during the

test. The data input buffers, for example, only pass seven distinct

180.
bytes of data.

The two restricted fault models discussed above are two for which
it happens that the ACC test is a complete test for the accumulator
(and two other FU's). These models cover many possible faults in the
8085, but certainly not all of them, and there is no guarantee that
they cover the majority of faults which occur in practice. The valid-
ity of the stuck-at fault model for LSI devices, in particular, has
been questioned by Galiay et a1[60]. In fact, in the absence of ex-
tensive information on the nature of faults which do occur in practice,
the only way to assess the effectiveness of this particular test is
by trial on a large number of 8085's which are known to contain accumu-
lator faults. The effectiveness of a test such as this can therefore

only be determined in the course of time.

It would have been possible to conduct a Tess extensive test on
ACC which involved fewer extraneous FU's. For example, it would have
been practical to perform a walking bit test on ACC, consisting of
eight MVI A and OUT Instructions, which would not have involved the
TMP register, ALU, Z flag or W and Z registers. Because fewer FU's
would be involved in the test, masking faults would be much less likely
to occur in the first place, and it would have been easier to account
for all possible masking fault pairs in analysis of the test. However,
in simplifying the test so that it is easier to allow for general
faults in multiple FU's and so that it is therefore not necessary to
adopt a restricted fault model, the set of ACC faults tested for would
be reduced considerably (which implicitly restricts the fault model)!
That is, if a walking bit test were to be performed on ACC, it would

only be tested for stuck-at and some bridging faults which would then

be the extent of the fault model. Therefore, it was considered to be

181.

preferable to test each FU as fully as possible, with the minimisa-
tion of involvement of other FU's as an important, but secondary,

consideration.

Ideally the fault model under which the ACC test is complete
would not be restricted at all. The test should detect the most
general set of 8085 faults which include a fault in ACC. However,
the given ACC test is, in practical terms, the best one which could
be constructed. Therefore the possibility that a fault in ACC is
masked can only be discounted if the other FU's involved in the test
are shown to,be fault-free by subsequent tests. If all of these FU's
can be shown to be free of an unrestricted set of faults then ACC can
be guaranteed to also be free of an unrestricted set of faults. In
that sense the effectiveness of the ACC test depends on the effective-
ness of the tests for the data input buffers, data output buffers, ALU,
Z flag, and TMP, W and Z registers. However, in attempting to con-
struct tests for these FU's the same difficulty arises as in the ACC
test - namely, that no FU can be tested in isolation and therefore
fault masking between FU's can occur if the most general class of

faults is to be considered.

5.3.3.3 Variation of FU grouping

One approach which can be adopted in an attempt to overcome this
difficulty is to logically isolate FU's by performing several almost
jdentical tests in which just one of the FU's involved is varied.

For example, to test the TMP register and ALU increment operation

(which may be considered as a single FU for present purposes because
they are always used together in the ACC test) a similar test to the
ACC test, but using another register, could be performed. Thus, if

no errors are detected during executijon of the following test:

182.

MVI B, OOH
LOOP: INR B

STAX B

JNZ LOQP

after the ACC test has been successfully executed,then it may be
‘assumed that the TMP/ALU increment function works correctly for data
from the B register, as well as for data from ACC. Therefore, if a
fault in ACC had been masked during the ACC test by a complementary
fault in TMP/ALU, the same fault in TMP/ALU must also be masked by

a fault in B. Thus if a fault did exist inm ACC, it could only be
masked by a fault in TMP/ALU if an equivalent fault (to that in ACC)
existed in B. Such an occurrence must be considered to be extremely
unlikely - much more so than the occurrence of a complementary pair

of faults in ACC and TMP/ALU.

Inevitably, however, the B register test given above involves
FU's other than B and TMP/ALU. 1In particular, it uses the register
multiplexer (MUX), the register select logic, the address latch and
the address buffers. The last two of these are used by the STAX B
instruction to pass the contents of B out to the external address bus
for observation. The STAX B instruction was used as a means of observ-
ing the contents of B to avoid passing the test data through the

accumulator.

None of the four FU's mentioned above is directly involved in
the ACC test and each could mask a fault in B. The likelihood of
this occurrence is reduced considerably by repeating the test for

each of the other registers in the register array. Thus if the multi-

plexer, for example, were to mask a fault im B, its fault must be

183.

masked by equivalent faults in the five other registers in the array.

However, there remain several other potential fault masking pairs

which could not be eliminated in this way, including the multiplexer

and the address latch, and TMP/ALU and the input buffer. These

possibilities must be eliminated by subsequent tests before the reg-

ister tests could be considered to be conclusive.

It may be appreciated from the foregoing discussion that the

task of systematically eliminating all fault masking possibilities in

this manner is extremely complex, even when only a few simple FU's

are involved and fault masking between only two FU's 1is considered.

Attempts to generate conclusive tests for all FU's in the 8085 by

doing this were unsuccessful for several reasons:

(1)

(i1)

(iii)

The large number of FU's necessarily involved in each test
meant that a very large number of possible fault masking
pairs existed for each FU test.

The 8085 contains very few FU's which are equivalent to the
extent that one could be simply replaced in a given operation
by another. Thus, with the exception of the registers in

the register array,no two FU's could be tested by exactly
equivalent instruction sequences using the same set of ex-
traneous FU's. Elimination of fault masking pairs by vary-
ing -FU groupings in this way therefore proved to be less than
straightforward. It is expected that the task would be much
easier in a device with a more regular architecture, and more
"equivalent" FU's.

The fault model was too general. Because no restrictions

were placed on the faults which were allowed in the DUT it

was not possible to eliminate fault pairs on the grounds that

184.

they were unreasonable or extremely unlikely, even though

this may well have been so.

It is apparent, then, that a systematic approach to the genera-
tion of complete and conclusive FU tests in a device such as the 8085,
for a general set of faults, is too complex to be tractable. This
difficulty arises principally from the fact that it is impossible to

gain access to FU's and test them without involving many other FU's.

However, a self-test routine for the 8085 was developed by
application of the principles of functional testing and, as far as
possible, of variation of FU grouping to eliminate possible fault
masking pairs. There is no doubt that the resultant test procedure
is far more thorough than any test performed on the CPU during the
SDK-85 SA Procedure (particularly the free-run test). The failure of
this exercise lay in the inability to develop a test which could be

guaranteed to detect a very general set of faults.

5.3.3.4 Remaining tests

The details of development of test sequences for the remaining
FU's in the 8085 are in many cases quite involved and will not be given
here. The ACC and register tests described above illustrate the
principles which were applied in developing each of the FU tests. As
noted above the systematic approach to development of these tests was
not entirely successful and most of the tests are inconclusive. Many
of the FU tests include features which are a legacy of the attempts
to develop the tests systematically. These features were Teft in the
tests because it was felt that although they did not make the tests
conclusive, they did at least make them more effective. The final

version of the 8085 functional test procedure is Tisted in Appendix G.

185.

Some general notes on the various FU tests are listed below.

(i)

(ii1)

The emphasis in implementation of many of the tests proved to
be on verifying data paths. The ACC test for example, con-
sists in principle of verification that 256 distinct bytes

of data can be stored in ACC. In implementation the test
verifies that the data can be written from the internal data
bus to ACC, then read from ACC back onto the data bus. Simi-
larly the B register test verifies that data can be read from
B, through the multiplexer, onto the data bus, written back
through the multiplexer to B, then read from B to the address
latch. In the course of the test procedure it was attempted
to verify each such data path within the CPU, using as much
data as practicable. For most data paths this could be
achieved in the process of performing tests on the various
FU's but a few test sequences were included specifically to
test data paths which were not otherwise tested. Examples

of such tests (referring to Appendix G) are "WZ register test",
"BC and DE access from incrementer/decrementer", "Reading SP
through MUX" and "Writing SP through MUX".

The self-test program is intended to be run as part of the
SDK-85 SA procedure and must be preceded by the 8085 free-run
test. This test exercises both the program counter and the
sixteen bit incrementer, so no other tests were included
specifically for these FU's.

The register array test differs slightly from that described
in the preceding section. The six registers are initialised
to different values so that the test also verifies the unique-

247

ness of the registers, as suggested by Smith[1 An instruc-

tion which moves the register to itself immediately after the

(iv)

186.

register is incremented was included in each register test.
The instruction was included as part of an inconclusive
series of tests which were designed to eliminate the possi-
bility of any faults in the multiplexer and its transferral
of data from registers to the internal data bus.

The temporary register (TMP) test was designed to verify that
data written to TMP from the data bus can be correctly read
back onto the data bus. The data path from the data bus

through TMP to the ALU is tested during the ALU test.

In the ALU test all possible ALU operations are performed on
all possible input data combinations, including both values
of the carry flag where appropriate. The result of each ALU
operation (that is, the contents of ACC and the flag register)
can be observed on the data bus during execution of a POP PSW
instruction after each operation. The data paths from TMP to
the ALU and from ACC through ACT to the ALU each pass 256
distinct bytes of data during this test and are therefore com-
pletely tested by it. These paths are only ever used in the
course of performing an ALU operation, so there is no need

to test them separately from the ALU. In fact, it would be

impossible to do so.

The DAA instruction is tested with all possible initial data
values in the accumulator and the carry (CY) and auxiliary
carry (AC) flags, with the result once again being observed
during execution of a PUSH PSW Instruction.

There are two possible means of writing data to the flag
register, and three possible means of reading it back. Data

can be written to the flags as the result of an ALU operation,

187.

or loaded from the data bus during a POP PSW instruction.
Data in the flag register can be read by the ALU (CY and AC
flags only), read onto the data bus during a PUSH PSHW or
tested during execution of conditional jump, call and return
instructions. During the ALU test each of these three methods
of reading the flags is tested and conditional jump instruc-
tions were inserted into the test for that purpose. The
"Flag/jump/call/return test" tests each of the three methods
of reading the flag register after it has been Toaded from
the data bus. Thus all six possible read/write combinations
for ,the flag register are tested.

(vi) In the test for the conditional jump, call and return instruc-
tions each flag flip-flop is set in turn and a sequence of all
possible conditional instructions is executed. The execution
path through the conditional instructions can be monitored by
observing the address sequence appearing on the address bus.
The flags are initialised by the execution of a POP PSW in-
struction, which retrieves the appropriate data from a table
stored in ROM. A table is also stored in ROM which contains
a sequence of return addresses for the conditional return in-
structions. If a conditional return is successful an address
is popped from the table so that execution continues at the
next conditional return instruction. Otherwise the stack
pointer is incremented twice, which in effect also pops the
entry from the table.

(vii) The temporary registers W and Z could not be tested by the
usual method of writing and reading back 256 distinct bytes
of data because there is no means of storing internally gene-

rated test data in W or Z. The only way in which data can be

written to these registers from the internal data bus is by

(viii)

188.

execution of an instruction containing immediate data or an
absolute address. As discussed earlier, it is simply not
practical to store 256 such instructions in the test ROM.
Therefore a simple "walking bit" test is performed on these

registers.

Sixteen SHLD and LHLD instructions are executed, which load
the specified address into W and Z and then transfer the con-
tents of W and Z to the address bus for observation. The
eight addresses used for the LHLD instructions were chosen so
that,they refer to ROM locations, so predictable data will
appear on the data bus during execution of those instructions.
Eight OUT instructions are also executed to verify that W and
Z are both correctly loaded with the specified eight bit I/0

address during execution of I/0 instructions.

A walking bit test is also performed on the data path from the
internal data bus, through MUX to the stack pointer (SP) be-
cause this path is only exercised by the LXI SP instruction,
which specifies immediate data.

Only a very brief test is performed on the interrupt logic of
the 8085 during the self-test program because a more extensive
test would involve external hardware which is not tested

until a later stage of the SA procedure. Similarly, the serial
I/0 logic is not tested because it would also require external
hardware. The tests for these facilities are deferred until

Stage II1 of the SA procedure.

The only tests on the interrupt logic which could be performed

within the CPU were simple write/read tests on the interrupt

(ix)

189.

mask, the mask enable bit and the interrupt enable flag.

This limitation on the test of the interrupt logic illustrates
that the extent of the test performed'on any FU is Timited by
the accessibility of that FU to the device's instruction set.
Thus, even though the interrupt logic is quite a complex FU

it canh only be tested in a rather cursory manner at this stage
because there is no way in which it can be exercised more ex-
tensively by the 8085 instruction set.

The final test in the 8085 self-test program is the instruction
decoder test, in which all instructions not used in other

tests are executed. By this stage of the test routine all FU's
in the 8085 (except the instruction decoder) have been tested.
Therefore the only purpose in executing all untried instructions
is to verify that the instruction decoder and the timing and

control logic function correctly for each instruction.

In the first part of this test unused arithmetic and logical
instructions are tested. For each class of arithmetic or
logical instructions the registers are initialised from a
table stored in ROM, then a series of instructions involving
each of the registers is executed. The data initially Toaded
into the registers was chosen so that each operation performed
would influence the final result produced by the instruction
sequence. This result is placed onto the external data bus
for observation during execution of a POP PSW instruction. To
test the memory addressing mode (the 'M register') the H and L
registers are initialised with data such that the address con-
tained in H and L refers to a ROM location. The data read from

that address is therefore predictable.

190.

The second part of the instruction decoder test consists of
the execution of eight "immediate" arithmetic and logical in-
structions. The eight bytes of immediate data used by these
instructions are unused opcodes of the 8085 which would other-
wise not be read in through the data input buffers. Thus,
remembering that almost all 8085 instructions are fetched

and executed during the self-test program, all of the 256
possible data bytes are read in through the data input buffers
during execution of the program. The buffers are therefore

completely tested.

The many MOV instructions of the 8085 are tested next. The
MOV instructions are executed in groups of seven which pass
data around each of the registers. DCR instructions are in-
serted between the MOV instructions so that at the end of the
seven MOV instructions, the registers contain different data.
Thus the seven DCR instructions are tested as well. The con-
tents of the registers are pushed at the end of each group so
that they may be observed on the data bus. The H and L regis-
ters are initialised before every MOV r, M instruction so that

the data read from memory comes from ROM.

Finally, several miscellaneous instructions are executed in a
sequence such that the data appearing on the data and address
busses depends upon the effect of each instruction. The sequ-
ence finishes in a chain of restart instructions, from RST 7
to RST O (stored in appropriate ROM Tocations), wHich causes

execution to return to the start of the program.

Only two instructions (HLT and IN) are not executed during

191.

the self-test program. The HLT instruction could not be
tested because it would prevent the program from being exe-
cuted repetitively, which in turn would prevent the observa-
tion of data with the signature analyser. The IN instruction
could not be fully tested because data appearing on the data
bus during its execution would depend on external, untested
hardware. However, all FU's involved in the execution of an
IN instruction are tested, and an IN instruction is executed
during the routine, as explained below. Therefore, the level

of confidence in the instruction should be quite high.

5.3.4 Implementation of the 8085 self-test program

As discussed earlier in this chapter the 8085 self-test program
was intended to be run during, and as an extension of, the SDK-85 SA
procedure. It must be executed after Stage I, in which the system
kernel is verified, and before Stage I1I, in which the CPU is used to
test other system components. It was therefore implemented as Stage
IA of the procedure. An overall flowchart of the SA procedure, in-

cluding Stage IA, is contained in Appendix D.

The two test programs for Stages II and IIT occupy most of the
2K byte expansion EPROM (Al15), so it was necessary to store the 900
byte 8085 self-test program in the external 2708 EPROM. This EPROM
had been added to the wire-wrap area of the SDK-85 at address 8000H,as
noted in Chapter III, and had been ignored up until this time. To
force execution of the self-test program after reset a fourth jumper
plug was wired for the address selection socket (also described in
Chapter III). This plug interchanges the CS0/ and CS1/ chip select
lines and ties the A9 and A10 address inputs to the expansion EPROM

(A15) high. Thus, on reset execution commences at location 600H in

192.

in Al5, which contains a jump to the self-test program proper at 8000H.,
A15 also contains the chain of RST instructions (stored at 608H, 610H,
. , 638H) which is executed at the end of the self-test program. It
may be recalled that the subroutines for the Stage III test program
are stored from location 640H up, while the Stage Il test program is
located from 400H to 522H. The final arrangement of code in Al is

shown in the memory map, Figure 5.2.

It should be noted that the fact that the self-test program was

stored in external EPROM is regarded as being incidental and of no

real consequence to the investigations discussed in this chapter. The
code was stored externally simply because there was not enough internal
ROM space to accommodate it, and in other implementations the code
would certainly be stored in the same ROM area as the Stage II and

111 test programs. Therefore, while the Stage I procedure should have
been modified to test the data bus input buffers and the external ROM
to fully integrate Stage IA into the SA procedure, this was considered

to be neither necessary nor useful for present purposes.

As implied in the design of the self-test program the response
of the CPU to the test is verified by the observation of signatures
on the data bus (using both RD/ and WR/ as clocks) and on the address
bus (using ALE as clock). In this way all data input to and output
from the CPU, as well as all addresses referenced during the test are
verified. In fact it is not necessary to verify input data (that is,
sample data on the data bus with RD/) because all relevant input data
comes from ROM which (in principle) will have been tested during Stage
I. However, verification of input data does provide an extra level of
checking in the system and results in a more explicit test on the CPU

alone. It also serves to verify that the CPU is not being affected

Address
7FF
Vacant
740
73F
SUBROUTINES FOR
STAGE 111
TEST PROGRAM
640
63F JUMP AND RST INSTRUCTIONS
600 FOR 8085 SELF TEST PROGRAM
5FF
Vacant
523
522
STAGE I1I
TEST PROGRAM
400
3FF
Vacant
332
331
STAGE III
TEST PROGRAM
000
Figure 5.2. Final Memory Map of the Test EPROM, Al5.

193.

194.

by unwanted feedback from devices which may be stimulated by CPU

activity during the test.

To provide START and STOP pulses for the signature analyser with
each of the three clocks used, IN and OUT instructions to addresses
30H and 38H (which activate the CS6/ and CS7/ outputs of the address
‘decoder) are executed at the start of every pass through the program.
The chip select pulses are gated with the I0/M status line by exter-
nal logic to generate START (I0CS6) and STOP (IOCS7) pulses, as shown
in Figure 5.3. The signature analyser is configured to start sampling
on the negative (trailing) edge of START and to stop on the positive
(1eading) edge of STOP, so that data present on the data bus during
execution of the IN instructions is not sampled. Thus, while the IN
instruction is executed during the test program, its effects are not

tested explicitly.

5.3.5 Evaluation of the 8085 self-test program

In the first instance the self-test program was verified by
tracing execution through critical sections of the program with a
logic state analyser, to verify that all tests were performed as in-
tended. During this process it was observed that the ALU test and the
sixteen bit register tests occupy by far the greatest part of the total

test time.

Each pass through the test lToop takes approximately ten seconds,
which meant that it took thirty to forty seconds to observe each signa-
ture and ensure that it was stable. Therefore the total test time, for
the observation of 27 signatures,was approximately fifteen minutes,
which increased the total Tength of the SDK-85 SA procedure to 1 3/4

hours. Once again the process seemed to be very tedious, because it

195.

CS6/ .o

(from A10-9) ___ﬂi:::::>o«——————4 10CS6 (START)
CS7/ «

(from A10-7) _ jdj:::jx»——*~‘——¢ 10CS7 (STOP)

I0/M
(from Al11-34)

) 741L.502

Figure 5.3. START and STOP pulse generation for the 8085 Functional Test.

196.

was necessary to wait thirty seconds for each signature. It might be
argued that a test for any single component in a system should not
take as long as fifteen minutes because the extra information obtained
from the test is unlikely to be sufficient to justify the time spent.

Ideally, then, the 8085 test should be significantly shorter.

It has been noted by w11k1nson[34] and Bi]ton[35] that the effec-
tiveness of any self-test program in detecting faults in a device is
very difficult to assess. Application of the test to known-good
devices merely verifies that the test yields consistent results on
good devices, without giving any indication of its ability to detect
faults. As discussed in the context of the ACC test the only way to
fully assess the effectiveness of such a test is to run it on a very
large number of faulty CPU's and observe whether or not it does detect
the faults. Unfortunately, only a limited number of 8085's were
available, only one of which was known to be faulty, so such a full

assessment was not possible.

The test was run on six different 8085 devices. The first three
of these were current Intel 8085A chips, which all produced the same
set of data and address bus signatures, which are assumed to be the
correct ones. These signatures are listed in Appendix H. The fourth
device which was tested was the one which exhibited the TRAP fault
described in Chapter III. It was also an 8085A and produced the same
set of signatures as the other three 8085A's, which implied that it
was fault-free. Thus the self-test program clearly failed to reject
a device which was known to be faulty. However, this failure was ex-
pected. As discussed in Chapter IV, the nature of the TRAP fault is

such that it could not be detected by signature analysis, irrespec-

tive of the tests performed by the self-test program, or the accuracy

197.

of the device hode] on which it is based. There was no test for the
TRAP logic included in the test program because no test could be.
This failure was therefore not significant as far as assessment of
the effectiveness of the test is concerned. Indeed, because the
device produced correct signatures it can only be assumed that apart

from the TRAP fault it was fault-free.

The last two devices to which the test was applied were Intel
8085 chips. These two chips produced the set of data bus signatures
listed in Appendix H, but they both produced a set of address bus
signatures which differed from that in Appendix H. Ordinarily this
would imply that the two devices were faulty. However, because they
produced the same address bus signatures and the data bus signatures
were correct, it was assumed that the "incorrect" address bus signa-
tures were observed because they were 8085, rather than 8085A devices,
not because they were faulty. The fact that both sets of data bus
signatures (with RD/ and WR/ clocks), including the VCC signatures,
were correct implied that the 8085's performed the same number of
data bus operations as the 8085A's, and that the data transferred dur-
ing each operation was also the same. This must be the case if the
8085 and the 8085A are operationally equivalent devices. Similarly,
the different VCC signatures obtained with ALE used as the clock im-
plied that the 8085's issued a different number of ALE pulses during

execution of the test program than the 8085A's did.

The conclusion which was drawn from these observations was that
during the execution of some instruction, or instructions, both ver-
sions of the device execute machine cycles without issuing RD/ or

WR/, during which one of the versions does issue an ALE pulse, and the

other does not. This must be the case because only one ALE pulse

198.

can be issued in each machine cycle, and RD/ and WR/ cannot be issued

during a machine cycle without ALE.

Inspection of the (assumed) 8085 state transition table revealed
that machine cycles M2 and M3 of the DAD rp instruction are the only
ones in the entire instruction set which do not involve a data bus
transaction. It was concluded, then, that the difference (or one of
the differences) between the 8085 and the 8085A is that one generates
ALE during the last two machine cycles of the DAD rp instruction,
whereas the other does not. A logic state analyser was used to monitor
the execution of the DAD rp instruction by both versions of the pro-
cessor. This showed that the 8085 strobes the address of the follow-
ing instruction onto the address bus with ALE during both M2 and M3
of the DAD rp instruction, whereas the 8085A does not issue ALE during

either cycle.

This difference between the two versions is not documented explic-
itly in the available Intel literature. However, the fact that the
8085A does not issue ALE during M2 or M3 of DAD rp is documented in

t[116].

the form of a footnote to Table 3 of its data shee The only

reference to the 8085 (as opposed to the 8085A) which could be found

1[120] in which the behaviour of the

was in the MCS-85 User's Manua
8085 during DAD rp is implied by the statement on page 2.3 that "ALE

is present during [clock cycle] T1 of every machine cycle".

This matter.of the two versions of the 8085 illustrates that even
minor differences between versions of a device, of 1ittle operational
consequence, can be very important when developing a test for the

device at the level of detail of the test developed for the 8085. The

existing documentation of the difference between 8085 versions in exe-

199.

cution of DAD rp is appropriate for its low level of importance to
the general operation of the 8085. However, if devices are to be
tested in any detail, it is necessary that there be readily avail-

able, detailed and rigorous documentation of each version of the

device, at least at a level comparable to the state transition table

[127]. If state transition tables for the 8085

provided for the 8080A
and the 8085A had been available the DAD rp discrepancy could have

been allowed for from the outset.

Apart from highlighting the need for detailed documentation, the
8085/8085A incident demonstrated the ability of the selif-test program
to detect a discrepancy in device bahaviour which might be interpreted
as a fault. However, the absence of any 8085(A)'s with obvious func-
tional faults has meant that the overall assessment of the effective-
ness of the test program was very inconclusive. Certainly there are
some sections of the 8085(A) (such as the timing and control logic)
which are not explicitly tested by the procedure, but the significance

of these omissions is not evident.

Nevertheless it is clear that the test developed for the 8085(A)
is more thorough and effective than the free-run test and the "inci-
dental" tests performed in Stage II of the SDK-85 SA Procedure (none
of which detected the difference between the 8085 and the 8085A).
There is no doubt that, with the knowledge of the type of tests per-
formed during the functional test routine, a much higher level of con-
fidence would be held in a device which had passed it than in one

which had only passed the free-run test.

200.

CHAPTER VI.
FUNCTIONAL TESTING OF A PERIPHERAL DEVICE

6.1 Aim of Development of the 8279 Test

As for the 8085, the primary aim of developing a functional
test for the 8279, as an example of a peripheral device, was to
produce a test routine which would be more thorough and effective
than the one originally included in the SDK-85 SA Procedure. Al-
though the earlier discussion of methods of developing systematic
tests for LS} devices was directed particularly towards micropro-
cessors, the principles involved and the virtues of functional

testing apply equally to peripheral devices.

As a general class, however, peripherals are architecturally
quite different from CPU's and have a very different mode of opera-
tion. They are generally designed to serve as slaves to a CPU and
receive instructions under program control from the CPU. They are
also commonly designed to interact with the world external to the
microprocessor system. These differences meant that in attempting
to apply the principles of functional testing to peripherals,
different problems and limitations to those of microprocessors would
be encountered. Thus a secondary aim of development of the 8279
functional test was to determine some of the particular problems

which peripherals present.

201.

6.2 The 8279 Functional Test

6.2.1 The approach to development of the test

It was intended from the outset to use the same approach to
development of the 8279 functional test as was adopted for the 8085 -
namely, to attempt to test each identifiable FU of the device as

"fully as possible without restricting attention to a particular

fault model. The reasons for adopting this approach were discussed
at the start of the description of the 8085 functional test. It has
been seen that the approach was not entirely successful in the case
of the 8085, but certainly did Tead to a more effective test for the
device. There was no reason to expect that the approach would be any
more successful for the 8279, but it was expected that it would pro-
duce a more thorough test for the device than the ad hoc test origin-

ally developed as part of the SA procedure.

6.2.2 The 8279 functional model

It is a noticeable trend that the documentation supplied by
device manufacturers for their peripheral devices is much less exten-
sive than for their microprocessors, despite the fact that many peri-
pheral controllers are as complex as some microprocessors. Thus, while
Intel give a fifty page description of the 8080A and its operation in
the 8080 Microcomputer System User's Manua1[127], formal documentation
of the 8279 consists of a twelve page data sheet[116]. As we have
seen, the 8080A documentation includes a functional block diagram of
the device and a clock-cycle by clock-cycle description of activity
within the device in terms of the block diagram. In contrast, the
8279 data sheet briefly (and incompletely) describes the overall

effects of each device command, as loosely related to its functional

block diagram. Certainly no information as detailed as the 8080A

202.

state transition table is given. In the absence of this type of
detailed information about device operation it was only possible to
base the functional model of the 8279 on its functional block diagram,
which is shown in Figure 6.1. It may be observed that the functional
block diagram does not contain a lot of detail. However in comparison
with those supplied for many other peripherals (such as the 8271

[116]) it is quite informative.

floppy disk controller
As noted above, one characteristic which distinguishes peripheral
devices from CPU's is that they are intended to function as slaves -
to act on commands received from a controlling device (the CPU) rather
than fetch and execute instructions of their own accord. They must
therefore be stimulated under program control by the CPU. The stimulus
data will consist of a series of valid commands and test data, selected
to exercise the various functions of the device. The 8279 has only

eight valid commands to which it responds. These are:

Set keyboard/display mode;

Program clock prescaler;

Read FIFO/sensor RAM;

Read display RAM;

Write display RAM;

Set display write inhibit/blanking;
Clear;

End interrupt/set error mode.

In addition, it is possible to read the status register, to read
data from the FIFO/sensor RAM, and to write data to or read from the
display RAM. These commands are the basic tools which may be used

to stimulate the device and exercise the functional units within it.

CLX RESEY D8o-7

i

AD WR

|

i

203.

RO

DATA
BUFFERS

1/0 CONTROL

FIFO/SENSOR
RAM

STATUS

i

FJ

IKTEANAL < DATA BUS (81

OISPLAY
ADDRESS
REGISTERS

g U

i

CONTROL AND
16x8 TIMING
DisPLAY REGISTERS

L3N]
FIFO/SENSOR
RAM

KEYBOARD
DEBOUNCE
ANO
CONTROL

|

AAM
TIMING
AND
/7 CONTROL
DISPLAY
REGISTERS [-
'
OUT Agy OUT Bgy 13

Figure 6.1. 8279 Functional Block Diagram.

SCAN COUNTER

Slo3

RETUAN

SHIFT

RlLgr CNTL/STE

(Reprinted by permission of Intel Corporation, Copyright 1981.)

204.

It is immediaté]y clear that this set of commands is much Tess ex-

tensive than the 8085 instruction set and must therefore provide much

less flexibility in stimulating the device under test.

Examination of the 8279 functional block diagram and the des-

cription of each of the commands given in the data sheet also reveals

the following significant differences between the 8279 functional

model and the 8085 functional model discussed earlier in this chapter:

(1)

The 8279 functional block diagram contains less detail than
that, of the 8085. For example, in the diagram of the 8085

all CPU registers are shown, as are all internal data paths.
In the 8279 diagram, however, individual registers and the
data paths between them are not shown, but are included within
larger, more complex modules. Because of their greater com-
plexity these modules must be harder to test than the 8085
FU's, many of which were single registers. The exact func-
tions of the modules in the 8279 are also not as well defined

as the functions of the 8085 FU's.

Since the effect of each 8279 command is broadly specified in
terms of these modules, and no finer detail was available, it
was apparent that the FU's of the 8279 could be no smaller
than the modules shown in the functional block diagram. The
individual FU tests for the 8279 would therefore be more com-
plex and less effective than those of the 8085.

Access paths to the 8279 modules are less direct than those

to 8085 FU's. Whereas most FU's in the 8085 could be accessed

almost directly from the internal data bus, data paths in the

8279 are fewer and less direct. Consequently, while data can

205.

be quite easily written to and read from some 8279 modules
(such as the display RAM), others are not directly connected
to the internal data bus and can on]y'be indirectly exercised
through several other modules. This, once again, meant that
some modules would be more difficult to stimulate and hence,
test than the 8085 FU's.

(iii) It was seen in the case of the 8085 that the inability to
test FU's in isolation was, to some extent, compensated for
by the ability to test FU's in various groups, thereby re-
ducing the probability that a fault in one FU would mask a
fault in another. This variation in grouping was only poss-
ible because of the flexibility of the 8085 architecture and
the ability of the device to perform many operations on several
distinct, but similar FU's. This flexibility of the device is
reflected in the size of its instruction set. However, as
noted above, the 8279 "instruction set" is very much smaller
than that of the 8085. This means that when the device per-
forms an operation in response to a given command its modules
tend to be used in fixed groups. Thus the return latches,
keyboard debounce and control logic, and the FIFO/sensor RAM
all tend to be involved in any keyboard operation and there
is no test which could be performed on any one without involv-
ing the others. The display RAM is something of an exception
to this "fixed grouping" property because data can be written
into and read from it without extensively involving other FU's,

so it can be tested as a separate and largely independent FU.

The consequence of these three properties of the 8279 - the com-

plexity of its modules, the poor accessibility of some modules, and

the inflexibility of its architecture - is that the functional units

206.

of the device are effectively much larger than the modules shown in
its functional block diagram. It is not possible with the available
set of commands to individually exercise these modules or use them
outside of their "fixed groups". In other words, these modules cannot
be treated as FU's because they are not sufficiently independent. In
fact, with the exception of the display RAM, the 8279 consists of

only two FU's - one which performs the display -control function, and
one which performs the keyboard input function. It is only at this
relatively high level that the FU's are sufficiently independent and

can be individually exercised and tested.

6.2.3 Development of the 8279 test

For the sake of consistency with the approach adopted for the
8085, and in spite of the observations discussed above, a table was
constructed which showed each 8279 command and each module or attribute
of the device, with the intention of finding its simplest commands or
instructions. Not surprisingly, this proved to be of very little
value. It merely showed (as far as could be determined from the brief
description of each instruction given in the data sheet) that each
command acts on a specific, fixed set of modules, and that individual
modules are affected by very few commands. Therefore, in seeking to
exercise a given module there would be very Tittle (if any) choice of
which command or commands to use. Thus, while the consideration of
which command is simplest,and hence Tleast likely to give rise to
fault masking, is relevant in principle, in practical terms it is

completely irrelevant.

This result simply confirmed that to test the 8279 it would be

necessary to consider it as consisting of Jjust two independent FU's,

both of which have several operating modes. The functional test must

207.

therefore consist of a sequence of commands which exercise both FU's
in each of their modes as fully as possible. That is, the test
sequence must be composed of a series of normal commands to the 8279
which instruct it to perform its usual tasks of keyboard scanning and
display multiplexing. The only flexibility allowed in the construc-
tion of the test is in the selection of the test data used for the
Ikeyboard and display RAM's. Thus the development of the 8279 test
degenerated into an exercise in operating the device in each of its

possible modes.

Ideally, the 8279 test would be a self contained, automatic
test performed very early in the SA procedure, as the CPU, ROM and
RAM tests are. However, because the 8279 is an I/0 device, any
thorough test for it must include the application of external input
data (at the keyboard return line inputs) and the observation of out-
put data (at the scan line and segment outputs). If the test were to
be fully automatic it would be necessary to stimulate the return line
inputs under program control (probably by looping parallel output
ports back to the 8279 RL inputs), attempting to simulate operation
of the key matrix. In view of the fact that the RL inputs are sampled
synchronously with the scan line outputs, the simulation of realistic
key closures (including key bouncing) in software would be quite diffi-
cult. In an automatic test of the type performed on the 8085 it would
also be necessary to observe data appearing on the scan line and seg-
ment outputs during the test with the signature analyser. While this
is possible in principle, in the course of the test the keyboard and
display modes must be changed frequently, with unspecified effects on
the scan line and segment outputs, so problems with signature instab-

ility could be expected.

208.

It was therefore considered to be better to test the 8279 in
its "natural environment" - that is, with manual keyboard input and
display verification. This meant that the test should be included
in Stage III of the SDK-85 SA procedure, together with other tests
for which operator interaction is required. In fact, it could dir-
ectly replace the existing tests 0 and 1 of Stage III, which comprise
the original test for the 8279. In this form the test would not be
as self-contained and independent as the CPU test, but no test for
an 1/0 device could be. The important point is that the test is con-
ducted at the start of Stage III, so the 8279 is tested before it is

used in tests for other SDK-85 facilities.

In development of the 8279 functional test the aim, as for the
8085, was to test each FU as thoroughly as possible. In practice, as
discussed above, this amounted to aiming to test each attribute and
operating mode of the two 8279 FU's as fully as possible. In a sense
this was a regression to the approach which was adopted to the develop-
ment of the original device tests in the SA procedure,of testing device
operation as thoroughly as reasonably convenient. Consequently, the
8279 functional test turned out to be similar in many respects to the
original 8279 test (tests O and 1 of Stage I1I1). The reason for this
similarity is that the two FU's considered in the functional test are
not much simpler than the device as a whole, which the original test
addressed. . However, because the functional test was designed to test
each attribute and mode of operation of each FU, it must be more

systematic and thorough than the original.

During development of the test difficulties were once again ex-

perienced in attempting to use the 8279 in some of its modes. In

addition to those mentioned in Chapter III, several other undocumented

209.

characteristics of the device were discovered. They included: that
when the operating mode of the display is changed the keyboard FIFO
character count is set to zero; that in sensor matrix mode a key
closure is represented by a 'l' in the sensor RAM, not a '0' as

would be expected; and that the sensor closure flag is latched when
a key is closed, and reset only when the corresponding interrupt is
cleared. None of these characteristics constitutes unreasonable
behaviour by the device, but they all should be documented - particu-
larly the effective inversion of sensor matrix data. This once again
illustrates the generally inadequate level of documentation of peri-

pheral controllers.

The final test routine, which is Tisted in Appendix I, is nearly
900 bytes long. For the purposes of evaluation it was stored in the
external 2708 EPROM at address 8000H, temporarily replacing the 8085
self-test program. The Stage III program was temporarily patched to
include a jump to location 8000H immediately after initialisation,
and at the end of the 8279 test the Stage III routine is entered again
at the start of test 2 (the serial I/0 test). The instructions for
running the test are presented in Appendix J. If the test were to be
included as part of the final SA procedure these instructions would
replace those for tests 0 and 1 in the Stage III procedure (contained

in Appendix F).

6.2.4 Qutline of the 8279 test

A brief description of each of the steps of the 8279 functional

test follows:

(i) A "clear all" command is written to the 8279 and tests are

conducted to verify that the "display unavailable" flag (Du)

210.

in the status register is cleared within the specified 160us,
that the keyboard input FIFO is empty and that the FIFO under-
run flag is set if the FIFO is then read. A subroutine is
then entered which waits for a character to be entered into
the FIFO, which is taken as an indication from the operator
that the display (which should consist of all segments being

uniformly 1it) is correct.

The display is then cleared again, but with 20H used as the
clear code, so 'b' display segments should turn off. Du 1is
checked again and the FIFO status is read, to verify that the
previously entered character was not lost during the display
clear operation. After a second keyboard entry (indicating
approval of the display) the same sequence of tests is repeated,
but with FFH used as the display clear code. After the third

keyboard entry the next step of the test is commenced.

If an error is detected in any of these tests an error display
routine is entered, which writes a unique error number to the
display for each possible error. It is possible, of course,
that an error message would not be displayed correctly be-

cause of a fault in the 8279, but any variation from the ex-
pected display sequence is sufficient to indicate that the
device is faulty. Unique error numbers were used primarily as
an aid in debugging the program, and also to identify particular
errors (associated with interrupt operation) for which further
action is required to determine whether the 8279 or the 8085 is

at fault.

(iii)

(iv)

211,

The second test in the sequence is a read/write test on the
display RAM which is intended to verify that all RAM loca-
tions are unique and contain no stuck-at bits. The test

also exercises the display RAM address auto-increment and
direct select mechanisms. It should be noted that the dis-
play RAM test is an unusually simple and complete one, largely
because of the good accessibility of this particular module
(noted earlier).

The operation of the display blanking and write inhibit con-
trols is tested, with input from the keyboard to confirm that
the resulting displays are correct.

Thelstatus of the FIFO is read to confirm that it has been
unaffected by the preceding tests and still contains all
characters entered from the keyboard so far. A "clear FIFQ"
command is written to the 8279 and the status flags are read
to see that they have all been cleared. The display RAM is
also read to verify that it was not affected by the FIFO clear
operation.

A walking bit test is performed on the display output buffers.
Each of the eight display segments is turned on in all display
digits for approximately half of a second. An entry from the
keyboard is taken as confirmation that the display sequence
was correct.

In the next test the four encoded scan display modes - eight
and sixteen digits, left and right entry - are tested. In
each mode the sixteen hexadecimal digits form '0' to '9' and
‘A" to 'F' are shifted across the display. The display
scanning circuit in the SDK-85 does not decode the most sig-
nificant scan line, SL3, so in the sixteen digit display modes

the eight most significant digits ('8' to 'F') are superim-

(vii)

(viii)

(ix)

212.

posed on the eight least significant digits ('0' to '7').

In the eight digit right entry mode the entry of characters
from the middle of the display is tesfed. In each case a
keyboard entry is taken as an indication that the display
sequence was correct. |

The display is finally tested in the decoded scan mode. Again
because of the particular display scanning circuit used in

the SDK-85, only digits three and five are scanned in the
decoded scan mode, while none of the keyboard rows are scanned.
The display should therefore show only two characters, which
were, Teft in the display RAM after the previous test. This
display is maintained for a fixed period of five seconds be-
cause the keyboard cannot be used to indicate that the display
is correct.

The keyboard controller test commences with a "clear ali™"
command to the 8279. The FIFQ status is read to ensure that
the FIFO is empty, and the state of the RST 5.5 interrupt in-
put to the 8085 is read. If it is asserted an error message
is displayed and the operator must then use a logic probe to
trace the line from the 8279 IRQ output to the 8085 RST 5.5
input, to determine which device is at fault.

The next test checks the operation of the 8279 interrupt logic
together with the 8085 RST 5.5 interrupt, which could not be
tested during the 8085 test because it involves the 8279. The
routine waits until a character is entered at the keyboard

(as indicated by the FIFO character count in the status byte)
and then checks that only one character has been entered. The
state of the 8085 RST 5.5 input is read and, if an interrupt

is pending (as should be the case) RST 5.5 is unmasked and

interrupts are enabled. A test is conducted to verify that

(x)

(x1)

(xii)

213.

the interrupt does then occur. The FIFO is then read and
the RST 5.5 input status is checked to see that it is no
longer asserted. Finally, FIFO status is read to verify

that the FIFO is empty again.

An error detected in the interrupt tests could be due to a
fault in either the 8279 or the 8085, so once again a logic
probe must be used to isolate the faulty device if one of
these errors occurs.

The FIFO overrun mechanism is tested next. A routine is
entered which waits until eight characters have been entered
into the FIFQ, and then waits until the overrun flag is set
by the entry of one more character. An error is indicated
by the display remaining blank after nine key entries.

The digit '0' is displayed in the right-most digit of the
display, prompting the operator to press the '0' key. HWhen
the correct key code is read from the FIFO the display is
updated to '1' and the operator must enter 'l'. This process
is repeated until all 22 keys have been entered in sequence.
The keyboard controller is re-initialised to operate in sen-
sor matrix mode and to read the sensor RAM in auto-increment
mode. Up to 64 "end interrupt" commands are written to the
device to remove any interrupts resulting from the change in
operating mode. A1l sensor RAM locations are then read to
verify that they all contain OOH, indicating that no keys
are pressed. The sensor closure flag (SC) is also read to

verify that it is clear.

Once again '0' is displayed, prompting entry of the '0' key.

When a key is pressed, as indicated by SC being set, the pres-

(xiii)

214.

ence of a pending RST 5.5 interrupt is verified, an "end
interrupt" command is written to the 8279, and the R3T 5.5
input to the 8085 is checked again to see that the interrupt
request has been removed. Row zero of the sensor RAM is
then read and the data is subsequently checked to see that
the key pressed was the correct one. The routine waits until
the key is released (SC is cleared) and then clears the
associated interrupt. If the key entered was not '0' the

process is repeated until the correct key closure is detected.

After the '0' key closure has been detected and processed,

'1' is displayed and the procedure described above 1is repeated
for the '1' key. In this case, however, the auto-increment
read mode of the sensor RAM is disabled and the key closure
interrupts are removed by reading the sensor RAM. Once again
the routine is repeated until the correct key is pressed.
After '1' is entered the auto-increment read mode is enabled
again and each of the remaining twenty keys is prompted in
turn. For each character displayed, whenever a key is entered
the sensor RAM is scanned to verify that the correct key was
pressed.

Finally, the "N-key rollover" and "2-key lockout" modes of
the keyboard controller are tested. The device is re-
initialised to operate in the N-key rollover, scanned keyboard
mode and a loop.is entered in which the display shows a charac-
ter corresponding to the last key character entered into the
FIFO. To test N-key rollover operation the operator must
verify that the display is updated as each new key is pressed,

whether or not any other keys are already pressed.

215,

When the 'NEXT' key is pressed the "2-key lTockout" mode is
selected and a similar display loop is entered. The operator
should then verify that if a key is pressed a second key
closure is not recognized until the first key is released.
When the 'NEXT' key is detected again the 8279 test has been
completed and the Stage III test program is re-entered at the

start of the serial I/0 test.

6.2.5 Limitations of the 8279 test

The test described above does test the 8279 in most of its operat-
ing modes, exercising most of the attributes of each functional unit.
However some sections of the device, including the clock prescaler,
the keyboard (in the decoded scan and strobed input modes), the special

error flag and the sensor RAM, are not fully tested.

For the clock prescaler to be fully tested it would be necessary
to program each value of the clock prescaler in turn, and for each
one verify that the correct frequency ratio then existed between CLK
and SLO. This would require the use of an oscilloscope or (preferably)
a signature analyser, which would be inconvenient and would not fit
in with the context of the test. It is also doubtful whether a sig-
nature analyser could be used successfully, in view of the difficulties
which were experienced (and discussed in Chapter III) in attempting
to obtain stable signatures on the scan line outputs with CLK as clock.
Furthermore, the use of very small clock prescaler values would have
created problems with key debouncing and made sequencing of the tests
(which is achieved through keyboard input by the operator) very diffi-

cult.

The omission of tests on the keyboard in decoded scan and strobed

216.

input modes was necessary because of limitations imposed by hardware
provided on the SDK-85. The particular arrangement of the keyboard
scanning circuitry means that, with only 22 out of a possible 64 keys
present in the matrix, no keys are scanned in the decoded scan mode,
so keyboard input could not be tested in that mode. The fact that
only 22 keys are provided in the matrix also means that a complete
"test of the sensor RAM (one which tests all 64 bits) is not possible.
There is simply no hardware which would allow the strobed input mode

to be conveniently tested.

The "special error" mode flag of the 8279 could only be tested
by the application of two simultaneous key closures in the N-key roll-
over mode, which is virtually impossible to achieve manually. This
could have been done if the input stimulus had been applied from a
parallel output port rather than manually, but, as discussed earlier,

there were good reasons for not adopting this approach.

It may be seen, then, that these limitations on the coverage of
the 8279 test were imposed by external hardware restrictions of one
type or another. It may also be noted that the display scanning hard-
ware is responsible for difficulty in verifying displays in the sixteen

digit display modes, because it causes characters to be superimposed.

6.2.6 Evaluation and discussion

Once again, in seeking to assess the effectiveness of the test
developed, the problem arises that the only way to do this is to apply
the test to a large number of faulty 8279's. Without such a range of
known-faulty devices it is not possible to determine whether a particular

step of the test, or the test as a whole, is effective.

217.

Only one 8279 which was known to be faulty was available for
evaluation of the test - the one discussed in Chapter III which
incorrectly turned on the bottom segment of the left-most display
digit. The fault was detected by the functional test procedure,
which was to be expected because it contains the same "character
shifting" test which detected the fault in the original procedure
(that is, test 0 of Stage III). No other errors were detected during
the functional test. While the test did detect the known fault in
the device, this success is once again not very reassuring because
none of the other steps of the test procedure detected the fault,
which only appears with certain display patterns. One cannot help
but feel that if a different character sequence had been used to
test the four display modes then the fault would not have been detected.
Thus the fault appears to have been detected more through good Tuck
than good planning, which implies that the test is not sufficiently
thorough or systematic. Other 8279's which were tested showed no

errors during the functional test.

Therefore, as in the case of the 8085 functional test, the limited
evaluation of the 8279 test which could be performed was very incon-
clusive. Like the 8085 test, however, it is clear that the new 8279
test is a more thorough and systematic test than the one originally
performed in the SDK-85 SA procedure, and would instil a higher level
of confidence in an 8279 which passes it. However, because the princi-
ples offuncﬁiona] testing were applied less successfully to the 8279
than to the 8085, the 8279 functional test would appear to be Tess of
an improvement over the original 8279 test than the 8085 functional

test is over the original test for it (the free-run test).

Some of the difficulties which might be expected in the develop-

ment of tests for peripherals in general did not prove to be signifi-

218.

cant in the case of the 8279. Testexecution timewas nota problem be-
cause application of input stimulus and verification of output was
performed manually, which meant that the actual CPU execution time
for the test was insignificant in comparison with the time taken by
the operator to perform his share of the test. In fact, the test can
be completed in less than five minutes, so the updated Stage III can
' be completed in less than ten minutes. This is still much shorter
than the earlier stages of the SA procedure, so the more thorough
8279 test does not involve a significant penalty in test execution
time. In general this would not be the case. If signature analysis
were to be used to verify output data in tests for other peripheral
controllers, test times approaching the fifteen minutes taken by the
8085 test could be expected. In fact, because the stimulus data is
applied to peripherals under program control, at a lower data rate
than a CPU can fetch its own stimulus from ROM, peripheral tests

might well be expected to take longer than CPU tests.

The problem of providing external I/0 stimulus and verification
was also not very significant for the 8279 because of the particular
nature of the interfacing task which it performs. As discussed above,
some limitations were imposed on the test by the lack of suitable
hardware which could be used to test some operating modes and features.
It should be noted, however, that those modes and features of the 8279
not tested could not be meaningfully used in the SDK-85 during normal
operation because of this lack of hardware. Therefore, as far as
application of the device in the SDK-85 is concerned, these omissions

from the test procedure are of no consequence.

In general, however, when developing a functional test it can be

useful to cause a device to perform an operation which is not normally

219,

meaningful, just to exercise a particular FU. Therefore, if a hard-
ware limitation in a system restricts the set of operations which a
device can perform (whether meaningful in a harticular application

or not), it limits the fiexibility available in developing the func-
tional test - and it has been seen that flexibility can be very im-
portant in the development of functional tests. Thus minor I/0 hard-
ware limitations of the type observed in the SDK-85 can have an
indirectly, but significantly, detrimental effect on the development
of functional tests. This is a possible further disadvantage of the
"natural environment" method of testing I/0 devices discussed in

Chapter IV.,

It may be seen, then, that in some respects the 8279 was easier
to test than general peripheral controllers might be exepected to be.
This is a result of its simplicity relative to many other peripherals
and of the fact that it is intended to provide the interface between
the microprocessor and an operator, The 8279 is not, however, the
simplest of all peripheral controllers available. The Intel 8259 in-

[116], for example, performs a relatively simple

terrupt controller
function and has greater accessibility to internal registers than

the 8279, so it would be even easier to generate a functional test
for it. The 8279 is therefore not an atypical peripheral controller,
and does share most of the characteristics of such devices, including:
being essentially dedicated to a single task; being a slave device
for a CPU; having a fixed, inflexible architecture; having a fixed
I/0 environment; and being incompletely documented. To that extent,

the experiences with the 8279 described in this chapter are relevant

to peripheral controllers in general.

220.

6.3 Conclusions on Functional Testing

It has been seen that in the case of neither the 8085 nor the
8279 was it possible to achieve the ideal of functional testing -
to test the device by completely testing all independent functional
units within the device individually. It proved to be possible only
to follow the general principle of the method (to a greater or lesser
' extent) to develop tests which were undoubtably more thorough and
complete than the original tests for the devices, but which could
not be proved to be more effective. In fact, in the limited trials
performed, the two functional tests were no more successful in
detecting device faults than the original tests. During development
of the tests it was found to be necessary to use ad hoc techniques
extensively, but this appears to be the case for all of the functional

testing methods discussed in Chapter V.

The basic limitation on the success with which functional testing
can be applied to a device is the accessibility (that is, controlla-
bility and observability) of its functional units. This, in turn,
depends upon the architecture of the device, which determines whether
it is possible to exercise and observe sufficiently simple FU's with-~
out involving many other FU's. In the case of the 8085 it was possible
to compensate to some extent for accessibility problems by taking ad-
vantage of the flexibility of its architecture to exercise FU's in
different groups, thereby minimizing the 1ikelihood of fault masking.
This was not possible in the case of the 8279 because its architecture,
characteristically of peripheral controllers, is very inflexible.
Clearly, the principles of functional testing would be most easily

applied to a device with a very regular and flexible architecture.

The calculation of instruction complexities, to determine which

221.

instructions are most suitable for use in functional test routines,
proved to be of some use for the 8085 test, but much less for the
8279 test because there was little choice of which commands should
be used to exercise a given FU. Even in the case of the 8085 test,
considerations of instruction simplicity were often overridden by
the need to produce efficient test code, and in later sections of
the test were substantially ignored. There is no doubt that the
principle of involving the fewest extraneous FU's in the test for
any FU is important. However, in the absence of any specific fault
model, it is not clear just how important it is.

[93]and Sr1n1[91] that

It is implied in the reasoning of Ballard
there is a reasonable likelihood that a fault in one FU will be
masked by a fault in one other FU, but that the 1ikelihood of fault
masking between three or more FU's is negligible. The proposition
is certainly logical, but the point at which the Tikelihood of fault
masking becomes negligible may be questioned. In fact, there is no
evidence to support this proposition or any other such proposition
concerned with such loosely defined faults and functional units. In
view of the questionable degree of importance of minimising the number
of FU's involved in tests, and the limited use which can be made in
practice of assessments of instruction complexity in any case, it may
be that such quantitative assessments are not necessary and that an

intuitive assessment of instruction complexity would be sufficient

for generating simple test sequences.

It was found that the time taken to perform the 8085 functional
test was unacceptable. Most of the fifteen minutes required for the

test is spent on the ALU test, so it is expected that equivalent

tests for other eight bit microprocessors would take approximately

222.

the same time. Equivalent tests for very complex peripherals might
take even longer, for the reasons discussed in the preceding section.
It may be that the benefits obtained by perfofming such a Tong device
test are not worth the fifteen minutes of technician's time which
they cost. In fact, it may prove ito be more economical to simply
replace the device every time than to spend the time testing it,
given that the test is not conclusive. Certainly such long device
tests will become less attractive as labour costs rise and device

costs fall.

For the CPU test to be useful, then, its Tength should be re-
duced, either by reducing the thoroughness of the tests for some FU's
(particularly the ALU) or by finding an even more efficient means of
verifying input and output data than conventional signature analysis.
If any FU test sequences were shortened the overall effectiveness of
the CPU test must be reduced, which leads to the traditional tradeoff
between test speed and test effectiveness. In this type of functional
test in particular it would be very difficult to determine what the
best compromise would be. As a more efficient means of observing
data on the CPU busses during the test, a data serialising facility,
such as provided on the HP5001A microprocessor exerciser[lll][llz] or
the generation of signatures for parallel data, such as performed by

[83], may be considered.

the Paratronics 532 Togic analyser
Finally, the investigations described in this, and earlier chap-
ters showed the great importance of comprehensive documentation from
device manufacturers for all types of LSI devices. Most obviously
this must include a complete description of the behaviour of the
device as observed at its output pins, so that it may be designed

into and used in a system without requiring (as the 8279 did) experi-

223.

mentation to determine exactly what it does. Nicho1son[128] brief]y
discusses this need for more complete documentation of device behav-
jour, together with some of the reasons that it is difficult to
achieve. Nevertheless, the omission of important details of operation
from data sheets such as was observed in the case of the 8279 should
not occur. Secondly, device documentation must include a detailed
“description of internal device activity (equivalent to the state
transition table of the 8080A) if any form of functional test is to
be developed for the device. It is also important that, while there
is any possibility of different versions of a device being encountered
in the field, device manufacturers clearly document all differences
between the versions, even though they may not be operationally sig-
nificant. In the course of this study three different versions of
the 8085 were encountered, and current Intel Titerature only acknow-
ledges the existence of one. The existence and nature of earlier
versions of the device should at least be mentioned in data sheets

for the current version.

In summary, it has been seen that the principles of functional
testing serve as useful guidelines for the development of thorough
tests for LSI devices in the context of signature analysis. The ex-
tent of the success achieved in developing a systematic device test
depends very much on the architecture of the device in question. In
this respect, and others, it is harder to generate systematic tests

for intelligent peripheral controllers than microprocessors.

The ability to generate an effective functional test for a device
relies ultimately on good accessibility to simple internal functional

units and comprehensive documentation of the device. Therefore there

224.

is Tittle that a system designer can do to increase the ease with
which a given device can be thorough]& tested. This is the respon-
sibility of the device manufacturers and it is clear that unless they
improve the level of documentation and make provision for device
testability, as more complex devices are introduced it will become
impossible to effectively test devices in the field, even to the

Jimited extent to which the 8085 and 8279 were tested.

225,

CHAPTER VII.

CONCLUSIONS

7.1 The Completeness of the "SA Solution"

The aims of this study were to investigate the problems of field-
servicing microprocessor based digital systems, to assess the effec-
tiveness of current methods, and to determine what further develop-
ments are required in this area. The literature survey revealed that
signature analysis appeared to be the most promising solution to the
problems of field servicing. Consequently, a trial implementation of
SA was performed on the SDK-85 with a view to determining how complete
the "SA solution" to the problems of field servicing is. It is now
possible to present an overall assessment of the effectiveness of SA

based on this implementation.

In practice SA showed all of the advantages claimed for it, in-
cluding: being an inexpensive, fast method of resolving faults down to
the component level; being very thorough (given sufficient effort at
the design stage); and requiring Tittle skill on the part of service
personnel. However, several limitations were also apparent. It was
found that fault resolution to component level could only be achieved
by a great deal of attention to details of testability during the design
of the system. The technique proved to be unable, in practice, to cope
with certain faults. Most seriously, the provision for systematically
testing LSI devices proved to be inadequate, and this appeared to be
the greatest single limitation on the ability of the technique to iso-

late faults in microprocessor systems.

On the basis of this conclusion it was decided to investigate

226.

means of providing more thorough tests for LSI devices during a SA
procedure. Architecture-based methods of testing, and in particular
functional testing, appeared to be the most popular approaches to the
generation of thorough, efficient tests for microprocessors and were
therefore considered to be most suitable for development in the SA
context. Attempts were made to apply the principles of functional test-
ing to generate tests for the 8085 and the 8279, the conclusions from

which can be summarised as follows:

The extent to which a thorough test can be developed for a device
is Timited primarily by its architecture, and in particular, by the
accessibility of simple functional units within the device. There is
no doubt that the two tests developed under the functional testing
guidelines were more thorough than the ad hoc tests used initially in
the SA procedure but, without a fully systematic approach, the general
success of the method in developing an effective test cannot be guaran-
teed. It is clear that if LSI devices are to be efficiently and effec-
tively tested, some form of on-chip provision for easier access to in-
ternal functional units is required as a means of improving device
testability. This is certainly true for functional testing, and it is
difficult to see how any other device test method could be both effec-
tive and efficient on LSI devices unless some provision is made for on-
chip testability to componsate for device complexity. The study of
functional testing also showed that device documentation is generally
inadequate and in some cases insufficient to allow the device to be

used without experimentation.

It must be noted that these conclusions have been formed on the

basis of only one trial implementation. Efforts were made to ensure

that the implementation would be representative of a wide range of

7.2

227,

microprocessor systems and, to that extent, the results obtained are
considered to be representative. However, there is certainly a need
for confirmation of these conclusions about both signature analysis

and LSI device testing, based on further trial implementations.

Subject to this qualification it can be concluded that given
sufficiently detailed attention to testability during system design
and means of adequately testing individual complex devices, SA is very
nearly the complete field service solution for current eight bit micro-
processor systems. Unfortunately, satisfactory means of testing com-
plex devices in general are not available and this, being the most
severe limitation on the effectiveness of SA, now appears to be the

most serious problem of field servicing microprocessor systems.

Future Prospects of Signature Analysis

It is characteristic of the microelectronics industry that the
"state of the art" changes very rapidly, with device integration

(61123111293 ' There-

levels doubling every eighteen months to two years
fore conclusions which may be drawn about eight bit microprocessor
systems, which represented state-of-the-art technology in the late
1970's, may not be relevant to state-of-the-art systems in the early

1980's.

The above discussion of the effectiveness of SA was concerned
specifically with eight bit microprocessor systems which are, and will
be for some time, very widely used despite the current availability of
more sophisticated and powerful sixteen bit microprocessors[221[24][130].

Therefore the conclusions discussed above will be directly relevant for

228.

several years to come. However, it is appropriate to briefly consider
current trends in the development of microprocessor systems, and the
effects which these will have on the effectiveness and applicability

of signature analysis and functional testing.

7.2.1 Trends in microprocessor system development

In recent years the most obvious development has been the steady

increase in device complexity, as measured by the number of transistors

(231

integrated onto a single chip This increase in integration levels

has allowed the development of a new generation of microprocessors, with
the current state of the art being represented by the Motorola M68000
sixteen bit microprocessor which contains approximately seventy thousand

[129]

active devices Over the next year or two the first 32 bit micro-

processor will be introduced[24][123].

It is possible to discern certain trends in the architecture of
these new microprocessors. Generally their architectures are more
regular and orthogonal than their eight bit predecessors[24][l3o].

They contain several essentially general-purpose registers which can

be used as operands in most CPU operations. Most instructions can

access operands using a wide range of addressing modes, with very few
"special case" instructions and addressing modes which only act on
specific registers. The new devices include several more complex in-
structions which provide support for high level (and often structured)
programming languages, one example being the instructions of the Motorola

[130][131]

M68000 which Tink and unlink procedure stack frames The

Intel FAPX 432 32-bit processor was designed specifically to support

[123]. Most of the new devices are micro-

(130]

the high level language Ada
programmed, although the Zilog Z8000 is a notable exception

Finally, the new devices variously include a range of capabilities

229,

designed to allow the development of very large, complex systems.
These capabilities, which increase the complexity of the behaviour of
the devices, include memory management, instruction pre-fetching, and

system and user modes of operation[130][131][132][133].

As LSI devices have become cheaper and as peripheral devices have
become more powerful and intelligent, there has been a trend in system
design towards distributed processing (or distributed inte111gence)[13OL
Apart from the more common use of intelligent peripheral controllers,
this trend has also seen the increasing use of multi-processor systems
(to the extent that the new microprocessors include instructions and
hardware features intended to make the implementation of multi-processor

systems easier[1301[1311[13211133]y

With regard to future developments, it has been predicted that it
will be possible to integrate one million transistors onto a single

chip by the mid-1980's. Patterson and Sequin!!

291 discuss the micro-
processor of the mid-1980's (which they refer to as "p1985"), po{nting
out that system designers do not have the design tools or the imagina-
tion to fully exploit the capabilities which a one million transistor
microprocessor could possess. This presents a problem of VLSI product

(6] patterson and Séquin predict

definition, as predicted by Moore
that P1985, instead of being a very much more powerful CPU with an
enormous and extremely powerful instruction set, will contain vast
quantities of on-chip memory. Thus the greatest part of the chip will
consist of a regular memory array, thereby making the most efficient
use of the available chip area, at the same time taking advantage of

the processing speed improvements which are possible with on-chip

memory. The memory will be arranged in a multiple level heirarchy,

ranging from relatively slow, dense primary memory to smaller quantities

230.

of much faster memory used in various caches. The memory heirarchy
will include error detection and correction and, significantly, will
allow for extensive microdiagnostic routines.' Thus it may be expected
that devices of the mid-1980's will be designed with a view to inte-
grating large portions of a system onto a chip, rather than simply
producing CPU's which are many times more powerful than current sixteen

bit devices.

Finally, trends in the economics of field testing should be con-
sidered. Device costs, system costs and labour costs can all be ex-
pected to change during the next few years, in a way which may make
component level repair of microprocessor systems less attractive. It
is beyond the scope of this discussion to predict whether component
Tevel repair in the field will become uneconomical, but as skilled
labour rapidly becomes more expensive, the economics of field service
must be continually reassessed to see whether an effective component

level field service method is even wanted.

7.2.2 The applicability of SA to future systems

The trends and architectural changes discussed above will clearly
affect the ability of the combination of SA and functional testing to
isolate faults in state-of-the-art systems to the component level
(assuming that this continues to be desirable). Different device
architectures and greater device complexity will present different
problems to those encountered in the SDK-85, so it is necessary to con-
sider the relevance of the conclusions drawn from the SDK-85 implementa-

tion to future systems.

It has been seen that the two greatest limitations on the effec-

tiveness of SA in the SDK-85 were the inability to observe signatures

231.

at certain nodes and the inadequacy of device tests performed during

the procedure. There appears to be no reason to expect that these would
not also be the greatest limitations in more recent and future systems.
The first of these two problems can be overcome, as for eight bit
systems, by sufficiently careful design of the system in the first
instance to ensure that data at all nodes in the system can be observed
with a signature analyser. It may be expected .that this will incur a
penalty either in system performance or in system cost because of
additional hardware requirements. However, there is once again no
reason to expect that these penalties will be significantly greater

than for a system such as the SDK-85.

Multiprocessor systems have the potential to create serious prob-
lems for signature analysis because they typically consist of several
asynchronous subsystems, with no well defined control heirarchy. How-
ever, it is very difficult to generalise because there is no single
established system architecture and particular difficulties will vary

from system to system. The best approach for loosely coupled systems
n [95]

would be, as suggested in the "Designer's Guide to Signature Analysis
to take advantage of the relative independence of each processor and
test each subsystem separately, ensuring that its inter-processor
communication mechanism in particular is fully tested. For this reason
the multiprocessor interface should be as simple and well defined as
possible. More tightly coupled systems will exhibit a greater degree
of synchronism so the application of SA on a system-wide basis should

be more feasible. Again, it is difficult to generalise, but it should
be possible to avoid most problems by sufficient attention to detail

during design of the system.

It would appear, then, that as for eight bit systems like the

232.

SDK-85, the applicability of SA to more advanced systems can be en-
sured by sufficiently careful design for testability. The primary
aim is still to achieve completely synchronous and predictable be-
haviour within the system but, because these systems will generally
be more complex, this is expected to involve more design effort and

time than for simple eight bit systems.

The issue of device testing represents a far greater problem,
simply because devices will be very much more complex. For example,
it would be impractical to perform a functional test equivalent to
that of the 8085 on a sixteen bit processor, because the ALU is sixteen
bits wide and has 232 possible input combinations (not counting initial

16 for the 8085. The difficulties pres-

flag settings), compared with 2
ented by much greater device complexity are offset to some extent by
the more regular and flexible architectures of the devices which must

make functional testing easier, but they are still overwhelming.

It would appear, in fact, that functional testing as applied to
the 8085 and the 8279 (with limited success) may not be a feasible
proposition for more recent and future devices. The greater complexity
of these devices must mean that accessible FU's within the devices are
more complex and therefore, harder to test. It is only necessary to
examine the literature currently available for the Intel 8086 sixteen
bit microprocessor[116][132] to see that the functional block diagram
and information about internal activity which are provided are much less
complete than the information which is available for the 8080A. Indeed,
as devices become more complex it will become impractical to supply as
much information about their internal behaviour as is supplied for the
8080A. It should also be noted that as CPU instructions become more

complex and oriented toward the support of high level 1anguages[24]

233.

they become removed from the internal hardware - effectively buffered
from it by the microcode for the device. Thus, in processors such as
the Intel iAPX 432 it will not be possible to exercise internal FU's
with the device's instruction set because the instructions will not be
defined in terms of their effects on internal FU's, but rather, in
terms of their effects on high level data "objects" and processor

[123].

resources Details of implementation of the processor may be

obscured completely.

It is also to be expected that the algorithmic test methods, such

[125] (363 i1 be-

as those of Robach and Gobbi and Thatte and Abraham
come ineffective for much more complex devices, either because the al-
gorithms will become computationally infeasible or because the ad hoc
decisions required during execution of the algorithms will be too
complex to be dealt with. This is a direct result of the exponential
increase in device comp1ex1ty. The method of Thatte and Abraham faces
the additional problem that it is based on a RTL model of the CPU and
relies upon an instruction set description at that level. It would

appear that CPU architecture will cease to be defined at that level,

so the information required by the method will no longer be available.

Therefore it is once again clear that if devices are to be tested
effectively there must be some provision made on-chip for testability.
This is impartant for devices of equivalent compiexity to the 8085,
but is absolutely essential for devices of significantly greater com-
plexity. None of the current test generation techniques can be expec-
ted to generate an effective and efficient test for such devices if

they must be tested only from their external I/0 pins.

7.3

234.

Finally, the difficulties of testing I/0 devices in particular
will only increase as the complexity of the devices increases and
they become able to handle much more complex 1/0 environments. There
is no accepted current method of testing the 1/0 behaviour of these
devices in the field in real time. The technique of "natural environ-
ment" testing discussed in Chapter IV is one method which may be
developed, but without further investigation it is difficult to assess

its potential. This whole aspect of device testing is very open.

Chip-Level Design for Testability

It may be seen, then, that signature analysis should be applic-
able to microprocessor systems of the future just as it is to small
eight bit systems, but that its effectiveness will, more than ever,
be Timited by the problems of testing individual devices. Unless
these problems are overcome neither signature analysis nor any other

method will be successful in the field service environment.

The inevitable conclusion, and one which has been echoed many
times in the course of this study and in the literature, is that some
form of on-chip provision for testability is essential. This will ob-
viously involve a penalty in the form dedicating some portion of chip
area and possibly some I/0 pins for testing purposes. However, given
that device manufacturers are able to integrate more logic onto a
chip than they can often use[6], the extra logic requirement for test-
ing purposes is not considered to be a severe penalty. Input/output

pins are a more precious resource, so no more than one or two (possibly

multiplexed) pins could be used for testing.

235.

There are many possible approaches to improving device testa-
bility. At the simplest level extra registers could be included on
a chip to provide greater accessibility to internal FU's, and ailow
the external inputs and outputs of the device to be manipulated and
observed. Such facilities could have improved the testability of the
8279 considerably but the approach may be Tess useful for devices of
very much greater complexity, because they would require very many

such test registers to provide adequate accessibility to internal FU's.

The functional conversion method described by Kénemann, Mucha and

Zwi ehof £ 78]

, in which on-chip logic is converted to function as a
feedback shift register which takes signatures of FU outputs, thereby
improving their observability, would again be suitable for relatively
simple LSI devices. However, the difficulty of stimulating FU's so
that they are meaningfully tested would appear to 1imit its suitability
for more complex devices. Level Sensitive Scan Design, discussed
briefly in Chapter II, is a third method of enhancing device testability,
and is one which has the potential to provide the most complete fault
coverage. It has the disadvantage that it requires that the device

be considered at the gate lTevel during both design and testing, which
may not be practical for a device containing one million transistors

or more. For such a device, test times would also be very large be-
cause of the need to shift data serially through each storage element

in the device[78].

A fourth method of providing on-chip testability is that used in

[134], which executes an

the Motorola M6805 single-chip microcomputer
internally stored test routine whenever the appropriate input pin is
raised to eight volts. The outcome of the test is indicated on two

lines of one of its output ports. The tests performed are similar to

236.

the type conducted in the SDK-85 SA procedure, but there is no reason
why in general more elaborate tests could not be performed. Perhaps
the most complete solution to the problems of field servicing would

be for all devices (or at least all complex devices) in a system to
independently and simultaneously perform a self-contained test on them-
selves, giving a simple pass/fail indication at the end of the test,
similarly to the M6805. These tests could conveniently be performed
whenever the system is first powered up. It would then be unnecessary
to test devices by forcing the CPU to execute a system-wide self-test

program of any sort.

The most thorough and effective means of implementing these on
chip test routines would be in the form of microdiognostics, as pro-

[129]. It is possible to more effectively

posed by Patterson and Sequin
test each FU within a device by microprogram, simply because pro-
gramming in microcode allows much greater accessibility to FU's. With
the direct control over each FU provided by microprogramming the issue
of device complexity becomes less important. As in the ideal func-
tional test, each simple FU can be tested fully and independently, so
the device tests would consist of a sequence of simple microprogrammed
FU tests. The degree of accessibility allowed by the device's (macro)
instruction set would no longer be a problem. If suitable provision
were made in the design of the chip, all internal logic right up to
the device I/0 pins could be tested by the microdiagnostics. This may
mean that it would not be necessary to test the external I/0 behaviour

of the device, so all of the difficulties of doing that would no longer

be important.

A completely self-contained microdiagnostic test of each device

has the additional advantage that the test routine for each device

237.

need only be developed once, by the chip designer. The effort re-
quired of the system designer to ensure system testability would
therefore be very little - ideally, consisting only of ensuring that

device interconnections can be verified.

Clearly, such extensive self-contained tests will require very
Targe diagnostic routines, and until the technology to integrate one
million transistors on a single chip becomes available, they may be
impractical. Nevertheless, some form of on-chip provision for test-
ability is required, even for current devices, and the sooner self-
contained te§ts of this type can be implemented, the sooner will com-
plete system testability be ensured. In the meantime, device manu-
facturers should consider some of the simpler methods of enhancing

device testability.

The principle of design for testability is one which has been
advocated for several years and is now well known. It must be concluded
from this study that if current and future digital systems are to be
effectively and economically tested in the field (and elsewhere) then
the principle of design for testability must be considered at all
levels of design. Furthermore, as technology allows an ever-increasing
portion of complete systems to be integrated onto a single chip, the
design for testability increasingly becomes the responsibility of the

chip designer and manufacturer.

238.

APPENDIX A

SDK-85 CIRCUIT DIAGRAMS

(Reprinted by permission of Intel Corporation, Copyright 1981.)

L}
8 | 7 | 6 | 5 il 4 ! 3 I 2 | 1
[
o]
A)
Ay
: 587 ot g'ﬁjéaw s LT U
Ly Cn Hox &
BT w1 e Cy
1
£Z2z —=3AL o i)
EZ2an —28 2iico HEN 28, S0
sz
(i
To ol 2 t‘a‘:’@ 5
2 o2 ey
- A3
= 718 -
= ﬂ) @
: 1 R v Ty ENEZD07
’ » =2
y L v € Jen
Tl “24 o o
—— i H P ,73&6
i w 5. N
== CE s e SSOEN
”—"—Jn"': .3 /)Sm
C
38
o EE—
g4
— GNO (ET—
- >
a1t 5 NBO
-L L
k)
oD EES—— - Dl - 056G
|
= s o | osis | ara |+ | e | 2 | se I‘_* B> Tens
EREREZEE -{;4““'3"9{@"’7
; 23R | P P o
% bl wh i s — bl el
ey o1 LS P P y Loy
8 [R 90 1HE 150 g
"%‘m“%se'%i-\o "o Hu He
X)4 I3
ExECT WEXT” ‘@07 LumsT Exam S € *
. - MEM REG DYEP
-V
== -av
refsget 0 as
e |- e) Q I WENTEL
reve T Toriale
o 00 9! =
nNOTESS e L1 _ L 1 o
DNLESS OMHERWISE SPECQIFIED, e |
L REUSTOR VALUES ARE N L O T TN !)
=N W, .
GENESNI (i FOWER SUPPLY I O D - . =
A B> +iis ein ouT arRANGEMENT = L ST
M PIN QUT A ™ TAE GATE COONT T DCGUATOD NLOPIE T —
REP SENTS & INDIVIDUAL 7 - xar MURE T By - -
RS S0 Ditiave TriL 3. B> JUMPER ST 3 AND G TDS TNPE | REF O0 |Gt Joot moaE UED o [ine | ok [t | oo ooty (5 s s
ALL ANODE CONNECTIONS OF THE VYHEN BUS EXPANSION CIRCLITS i cto =1 =1=% =
CORRESPONDING SEGMENTS ARE WIRED ARE NOT INSTALLED.) o (Lo L S -
TOGETHER. CATHODES ARE WIRED rsm AT Pﬂ}!““_ T h SCHEMATIC
SEPARATELY TO EACH TRANSISTOR /G10-QIS) Qe T — W Finh SUCTEM DETIGN KT
Crles 2 [= R W | owsewm o 3
. 4001117 R 6o — TN BT L, QTR N
32 [1 oon | el wn Jei e 3| DMDL 200I0S) iA
[1=t = S =
2 7 I 6 5 T 4 3 1 2 1

"6€¢

—_—
8 | 7 6 5 b 4 3 | 2 | 1
e
I] Pof l-I D I - I on | ow
_ta‘h' T ol g o [- |SLg SwELY ¢ J— | = j—
=) :ﬁw oo a 43
1als | G755 (o -]
B tesan) | ! i
] &5 =
D = H SHESE
s e - =
G i, U)
iy i = ":;;" 2= 1 o
F‘E'(lm-" ST \ ia oa il
rl S AL = 1z
¥ foyy oy By =13
il an PBAREES]af PORT L
ek e AT 2 a
cser i l‘_- iz e
pEoEo W ¢ b
- s = i
1
| —-“:-50 o : '
e e
Ty B
2 2
a3 23} st 8
1 =2 I
: 1] by
i = |
C T r] 23 f
T i &
"~ l [1 . 2) comT 9
Ll i >)
S - —‘3‘9 2
1 3 ../-‘ ?
2 s b)
- I o 4= =
1 H 1] Y.
X L3 7oe
= -
| Y S
- ru s %i
I 52 4) rOmT 21m
S
. ‘g Sl
’ - ey Sl
-y | 3 LA
‘.‘lm . - —— ’_‘-.él
e L Jar W ehS - 411 g Tisl
\ H Filll] s — > ='a | PCRT 221
- I3l ao 2f5 ¢ %a'
B |] seos3ts : aap
s L) = i *a Ry
e eps I — E3 N
Vs 1pa T PORT 2R
3
o Lz H2
= I'j 5
1} -f—
s =g
L2 S B = a
— s I) == 2} FORT zom
i + s i . P
it = g]
- T 1 =] 7,
izos {3 —H : ik 2
e 1.I T3 = L2 é‘
= + ChE -
o 1 3 B =4 31 PORT ZAM
e e
7 = e
T z | &
-: — A "
A Y] < ol
-,%1: POPT 280
1w
R B
TiwER ouT/
I ZEITIMER Iny
) Y e — - ;“-
&.m-;;{l) bt e &llal:] !A
Lo TR

=T 7 6 5 4 4 I 3 | 2

"Ove

Y | 4 i 6 I 3 L 4 4 I 3 | 2 | 1

-
e gy, m] ucerTos _I_ oy L“J aa
= "o =it SEET L ===
o] S b o2
Doz =
Z1an o] 4 2 o, [oLCT = S—
QO
. - iy vez o
ooaph
7% Lt izl :..; oza 5
m.ﬂ.ﬂ-
]
des 1
=3 b,
=
Ay ZEOL 0 ceala
0Od =+ et Zce
~at 2o Dg! R Zce
ZZ286 oo +av
“] DIZ DBQ 2 ‘I:‘
=4
I : e~ 2 | e e e
iy 6.5 B - e E) B3t __T_gf@j > |5
A4 D3 R] 04 4l .z EE"? :
o o]
3
i rqcs A 2 926 ez e cazps i e oo
) g0 6216 | 2o Jale el 1 = s,
= 4 =3 ogalis z ng
DO ap4, =4 528
L] 205
9. 1 inTaz B DIEN r ﬁ R o
"~ R
pe o g 5) P Sy
HoLD [&H I v chas ! |— béi\b i
0o b
; [~] y 3 J i —_—r L) - ::2 B AZ
‘f joll} rg 1 = 5 @13 -<m B AL
= 00| 4 2 Tz 2=l 24
y ey 2 ol 3 HI1 e A3
a7 e X e be2j 20—y e S = i red
Oo2r it — 2] 2-A0
LY 23 casl2 sl oo cant—- = =l 8-A7
JesEl S Do s
2SN D2 e
= DO
o o= >'°3:_ 2L e pRzpt
eV Bele =
3 w3 tasle
mt I
2 B OEM
fan] B e PP -3 = A 2
ca Ll e L~ | 74514 s =B 5 Eieas
_- _ AG- = o (5] © Ao
e B2k oy | g A!L
oy i - : e
= r : : AL
= e 51 e As
T
1 vl L[N =
L) ALE
—£2 —1
e
7m0 i = ———
—AiE = .
My e

g AE SR L B 1 ol
-m.'u-ol D |'a‘.'li [ile L] ; A

T @] £ 1 5 3 2 I 3] 2 I 1

"¢

242.

APPENDIX B

LISTING OF THE SIGNATURE ANALYSER SIMULATION PROGRAM

(00006
QCO0AGA
000464
000464
000464
(00464
000A64
000464
000464
000464
000464
000464
000464
000464
000464
000464
000464
000464
000464
000464
000464
000464
000464
GU0464
ooD4ES
G004t 4
00046
000471
000512
000532
000533
0005 32a
0005235
000336
000%236
Goo00Ld
¢eo00L3
000007
000020
000026
000030
000031
000032
0060032
600033
000033
000034
000035
0G0036

o Oodpo ot [-X-N_¥_-1
o Doooeo co2a
N O MRpo O~

D ke o N

-

000021
€00003
060003
000007
000010
000015
oo0b186
000027
000030
000031
600036
000036
000040
0000%6
600056

000071
000071
0060603
000003
000007
000016

PRGGRAM SALINPUT,OUTPUTI)}

(» TH1S PROGRAM SIMULATES THL OPERATLION DF A 17T &1
ANALYSTRe THF NUMBEW OF DATA SAMPLFS (CLOCK PULSES),
BACK BITS OF YHF SHIFT REGISYER, AND THt SAMPLEC LATA
FROM THE INPUY FllLie THE R&eSULTANT SIGNATURE XS5 WRIT
OUTPUT FILE
THE FIRSY LINI OF THME THNFUT FILC MUSY CONTAIN A1
INTEGERS, THE FIRST SPECIFYING THE NUMHBEFR OF CLUCK
TH: SLCCGND SFECTFYING TH: KUKMBELK GF FELLBACK BITS FROM
RCGISTER. TIF THI SECOND NUMECR JS NEGATIVE,
LY THE HP®%004A (T7,8,12 AND 1&) ARE ASEUMCD.
POSTTIVF, (11 MUST BC
(CETWEZN 1 ANG 161 MUSY FOLLUW,.
THE REMAINING LINES OF THE INPUT FILE MUST CONTAIN ONLY 1t8
OR 0t5, SPECIFYING THE INPUT DATA SAMPLES,
RUNS OUY BEFCLRE THF SPECIFIED NUMBFR OF CLOCK CYCLGEN,
BIT VALUL READ IS5 USLZD AS [ATA FOR ALL REMAINING CLGCK CYCLES,
TYPE BIT=0ee1;
HEXNURBER=S o o 15§
ZERGTUL1650eelb}

VAR CLOCK,NOFDBKk;NCPIINTEGER ;
T,J17EROTD16
DIARRAYLZEROTO16Y OF BIT}
FELOEACKI ARKAYLHE XNUMBER] OF ZEROTO16}
CH!CHAR;
NIHEXKUMBER §
DATAIBIT;
CRKOKSBOOLEAN]

PFROCFDPURE INLTIALISE;

BLGIN

ERROIIZEFALSL §

FCR If=1 TG 16 00 CLYI1 8% Q3
FLAD (NCP,NOFDBK) ;

IF NOUFDBK<O THEN BUGIN

FEEDBACKI[1)8a7T}
FELDNACKI2Y1 a4}
Fet CBACKI3)3=12}
FEENBACKIAISI=286¢
NUFDEK =4
LMD
ELSF
FOK 1¢=1 TO NOFOBK DO
READ (FEEDBACKLIY)$
READLNG
IF [OF THEN BEGIN
WITTELN (m NG DATA DN INPUT FILLEW)
ERFOKIZSTRUL
€nD
END 3
(#INIYIALILES®]}
PROCEDURE GETCH;]
BEGTN
1IF tULN AND NOY EOF THEN READLNG
IF NOY LOF THEN REAL(CHD
END§

($GETCHe®)

PROCEDUKF GETINPUT;

BEGIN

DATAS=C}

GLTCH}

IF (CH<>s0e) AND (CH<>s1®) THEN BEGIN
ERRORI=TRUE ;
WEKITELN (& LINVALID INPUY DRATA AT CLUCK PULSE
END

EL<E
OATAI=CQRD{CH=Eu]) §

FOR 13=1 TD NOFDBK
DATA:=(EATAOD[F£LDBALKCIJJD MOD 23

DCLOTI=DATA

END}

{SGETINPUT®)

PRDCEDUFE SHIFTRIGHT;
BEGIN
H 16 DOWNTO & DO
Ctilisbir=1)
EKD;
(®SHIFTKIGHT®)

16 B

THL 4 bL1TS
IF Yht NUMBFR IS
< 173 THE NUMBLCRS OF ALL FRLEDBACK BIYS

IF THI 1INPUT DATA

weCLOCKEA)

LeEaxT TWO
PULSE Y

243.

244,

000026

000026 PROCEDURE WRTIVYESIGHMATURE §

000003 BEGILN

000003 WRITE (m STGNATURE AFTERP @ HCPIaps CLOCK FULSES 1S m)g
000024 FOR I3=4 DCWNTO 3 DO BEGIN

000031 Jizael}

000033 $=D{JU=31¢200[U=2]+4*D[J=1]+48¢0[J1];
000053 CASE N OF
000037 OICHI=E(CR
000061 LiCH =s1m
000063 2iCHi=zm2a;
600065 31CHIi=w3m}
000067 AICHI=ngE
00007 SiCHizEc®m}
000072 B:CHi=sEm
000¢G7S 7iCHS=nT®]
000077 8iCHEzbm}
001012 9iCHIcaBN :
000103 10tCHE=eAnR
000104 11¢CHi=8Cu
000106 12tCHtceF&;
000110 13:CH=aHE §
000112 1asCHi=epa;
000113 15i1CHtesUR
000113 ENDS
000135 VRITFICH)
000141 END§
000143 WRITYELN
000143 END;)
{¢WRITESIGNATURES }
000153
000153 BEGIN (OMALN PROGHRAMS)
0001533 INITIALISE;]
00002% CLOCKE=1}
000028 WHILY (CLOCK<=NCP) AND NOY ERROR DO BEGIN
000032 GETINPUT
000033 SHIFTRIGHTY
000034 CLOCKI=CLOCK+1

END}
If NOT ERRON THEN WRITESIGNATURE
000037 END.

X -2
(X1
oo
e
e
R

SIONATURE AFTER 40 CLOCK PULSES 15 5158

245,

APPENDIX €

SDK-85 EXTERNAL TEST HARDWARE

246.

040
40

%u V.. 039

741.504 35 READY 035

A b itRaP Xy | —o 1

: : 7 RsT7.5 Xp |-2 o 2

i | 8 IRsT6.5 "RST OUT |2 o 3

_:< : 9 RST5.5 sop |2 o 4

_|a<l 10 IINTR SID |2 o 5

=1 39 HoLp INTA/ (1 011

8T< 9 = 5 S0 = -

—< RD/ WR/ (31 031

= ":1;1 51 (33 033

, > 12 A00 10/M [34 034

—,E%—.J RESET IN |36 036

: s 13 b1 CLK 7 37

—,[?i—.l HLDA |38 238

: _:_I 14 Iap2 A8 (21 021

] - i A9 2e 02 2

I -1 15 D3 A10 [23 623
_{>_J' I] g2 24

[o ALl 024

= “‘)’;] 16 IAD4 AL2 [25 025

—.[j>i: i A13 (28 —026

- - 17 D5 A14 (27 027

”‘L%J ALS [28 4128

: _:] 138 lAp6 ALE [30 030

Ee% 0 6

| <1 19 1AD7 V. o 7

————— JB1 20 °2§

- = SRR

7415241 Test pins o 10

:.32

019

018

217

.16

015

o 14

013

012

40 pin DIP plug

(a) 8085 Free-run Adapter.

247.

(i) Address selection socket (on the SDK-85 wire-wrap area.)

o ° >— To Al4-1 (CE/)
From A10-14 (CS1/) s— To A15-1 (CE/)
From Al11-23 (A1g) 0 0 s— To A15-23 (A;q)
Y etk Lo L]

From Al11-22 (Ag) 5 »— TO Al5-22 (Ag)

From A10-15 (CS0/)

e v W
>
[

|

4

The following connections on the SDK-85 printed circuit board
must be broken:

A10-15 to Al4-1

A10-14 to Al5-1
' Al1-23 to Al5-23

A11-22 to Al15-22

(i1) Jumper plugs.

= ~ ~ -
Normal Stage II Stage III Stage IA
operation
(WHITE) (ORANGE) (BLUE) (GREEN)

(b) Addressing Changes.

248,
(1) Serial I/0 test connector (P7).

13 12 7

< P7-25 pin male 'D'
| I | connector

390

(i) 8755 port loopback connector (P3).

2. 34

PP P 27 S /S ° «-P3-24 pin female
1 AR AR] 3 [S 35) Scotchflex connector.

(ii1) 8155 port loopback connectors (P4 and P5).

2\\“\"\"\\'\\ s °26.g_—_ P4, P5-26 pin female
1 >]’ I e 025 Scotchflex connectors.

(iv) 8155 timer loopback connector (P6).
da @ B ° v 26 P6-26 pin female
e * B ‘J ° 25 Scotchflex connector.

(c) Stage III Test Connectors and Hardware.

249,
(v) HOLD, RST6.5 and INTR test connectors (Pl and P2).

o o Qo o o
Q

o o © Q o

P2-34 pin female
Scotchflex
, connector

o -] o -] o
Q

-]
o ¢
[}
o
]]

*/
33° ° 34

= +5V (flying lead)

lo o 2
o o©
1k o o
o ©
o o
o Mo
_——= YP1-40 pin female
" o p»Scotchflex
oj,connector
o o
U
[T~ Lo | 0 o
;e p——— S i N
I ~! 1Lg” ! ° v
| T o o
| [\\\LIO/ | o Mo
If\\L‘f‘/ | o N
LAl 39° % 40
2x74LS125
T

(c¢) Stage III Test Connectors and Hardware (continued).

APPENDIX D

OVERALL FLOWCHART FOR THE SDK-85 SIGNATURE ANALYSIS PROCEDURE

2

0.

START

STAGE I:
8085 free-run test;
ROM test;
bus tests.
Vv
STAGE IA:

8085 functional test
(Optional)

STAGE II:

RAM tests;

parallel port tests;

display scanning logic
test.

STAGE III:

8279 test;

1/0, intervupt and hold
facilities tests.

STOP

251.

Approximate
duration

45 minutes

(15 minutes)

30 minutes

5 minutes
(10 minutes if the 8279
functional test is per-
formed.)

80 minutes
(100 minutes with
options.)

Overall Flowchart of the SDK-85 Signature Analysis Procedure

252.

APPENDIX E

LISTING OF THE SDK-85 SIGNATURE ANALYSIS PROCEDURE
SOFTWARE, STAGES IT AND III
(SDK85S.V34)

25m80 1P11sdkB89s5,v34 mod8S macrofile radewidth(110)

ISI5-11 8080/8085 HACRD ASSEHELER: V30 MODULE PAGE 1

LoC o84

LIKE

[y
S N0 0 SN O L B el PO e

—
—

— ok ek et d A A
O D S DN e D

[S I o i 5 Y 6
Lo Ld P O O

ra

)
o~

3
~

r

el Tt P
< D O

(ol (ot €od Col Cud
I RO e

o Lol Cal Fal
0~ O~

9
40
41
42
43
44
43
46
47
48
49
50

PRI MR R L R B R R L L R

§

.
!

PEER P HREHE B RS R E R T RO S b R S R 1 e

¢ DIAGKDS

SOURCE STATEHENT

TITLE(’SDR-83 Self Diadnostic V34')

SIK 83 DIAGNOSTIC SOFTUARE

COFYRIGHT (C) 1980

#e Jo LIEBELT
ELECTRICAL ENSINEERING DEFARTHENT
UNIVERSITY OF ADELAIDE
14/04/80

THIS SOFTHARE FOR THE SIGNATURE ANALYSIS AND SELF
NOSIE OF THE SDIK-85 IS STORED IM AN 8733 2K EFROW
AHD IS DIVIDED INTO TUO SEPARATE FRUGRAMS. THE FIRST
15 STORED FROH 400H TO SFFH WITHIN THE EPRON AND IS
EXECUTED IN STAGE II OF THE SIGNATURE ANALYSIS ROUTINE.

i THE SECOND IS STORED FROM O0CH TO JFFH AND IS EXECUTED

Il STAGE TII OF THE SIGHATURE ANALYSIS ROUTINE. USTING
SUEROUTINES STORED FROM &40H TQ 7FFH,

THE 8755 EPROM CONTAINING THIS TEST SOFTHARE IS5 10
BE PLUGGED' INTO A SCCKET AT ALS OK THE S[IK-B83 BOARL,

FCR NORMAL OFERATIOR OF THE SDR-85 (I.E. TO EXECUTE
THE KONITOR ON RESET) THE WHITE PLUG #UST BE INSERTED
I THE ADDRESS SELECTION SGCKET.

THE STAGE IT PROGRAN IS EXECUTED UFOH RESET WHEM THE
DEANGE PLUG IS IMSERTED INTO THE ALIRESS SELECTION
SOCKET. THIS EXCHANGES THE TS0/ AlD €S1/ CHIP SELECT
LINES 10 Al4 AND A1Gy MAPFING A1S INTO THE ADDRESS
KEHGE OGOCK 10 O7FFH, THE PLUG ALSO TIES ADIRESS INPUT
A10 T0 A15 HIGH, SO EXECUTIOR STARTS FROM ADEDRESS 400H.

THE STAGE I11 FROGRAN IS EXECUTED OM RESET WHEN THE
BLUE PLUS IS IHSERTED INTQ THE ADDRESS SELECTION
SOCXET, THIS ALSO IMTEZRCHANGES CSO/ AHD CS1/s BUT
LEAVES THE CONMECTION TO #10 INTACT, SO EXECUTION
STARTS AT 00OH OM RESET.

NOTEy THEFEFORE, THAT IN THE FOLLOUIHG PROGRAMS 8755 #1

PORTS (COH - O3H) ARE THOSE ON Al5s UHILE 8753 42 PORTS
(08N - QRH) ARE THOSE ON THE HONITOR RO Ald.

EJECT

253.

ISIS-I1 8020/8085 MACRO ASSEMBLER, V3.0

SDK-85 Self Diagnastic Vi4

Loc 0BJ

0000
0001
0002
0003
0008
0009
000A
000B
0020
0021
0022
0023
0024
0025
0028
0029
0024
0028
002C
002D

0010
0030
0038

1800
1900

2000
2800

2100

0050
0031

LINE

51 ROH1A
J2 ROH1E
53 DIRLA
54 DIRLR
35 ROM2A
36 ROH2B
37 DDR2A
o8 DIR2B
99 CTRL1
60 RAH1A
61 RANIB
62 RAMIC
63 TIKILO
64 TIMIRI
65 CTRL2
66 RAN2A
67 RAN2B
48 RAM2C

T 89 TIN2LOD

70 TIM2HI
71

72 €52
73 €56
74 €87
75

76 KICD
77 KICC
78

79 RAKY
80 RAN2
81

82 TOPST
83

84 EXEC
83 NEXT
B4

87 $EJECT

EQU
EQU
EQU
EQU
EQU
E0U
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQu
EGU
EQU
EQU
EGU
EQU
EQU

EQU
EQU
EQu

EQU
EQU

EQY
EQU

EQU

EQU
EQU

SOURCE STATEHENT

OCH
O1H
024
03H
08H
0%
OAH
OFH
20H
214
220
23H
24H

HODULE PAGE 2

18735 #1 PORT A
18755 %1 PORT B

i8755 #1 DIR A

18755 #1 DIR B

18755 $2 PORT A

18755 $#2 PORT B

18755 #2 LR A

i8755 #2 DIR B

8155 #1 CONTROL REG,
8153 #1 PORT A

18153 #1 PORT B

iB155 ¥t FORT C

78153 #1 TIHER LOW BYTE

TIHILO+178155 #1 TIKER HIGH BYTE

284
29H
2AH
2BH
2CH

18155 #2 CONTROL REG.
18155 #2 PORT A

18155 #2 PORT B

8153 #2 PORT €

18153 #2 TIHER LOW BYTE

TIH2LO+138155 &2 TIMER HIGH BYTE

10H
J0H
38H

1800H
1900H

2000H
2800H

2100H

S0H
51K

18205 CS2/ ADDRESS
8209 CS4/ ADDRESS
8205 CS7/ ANDRESS

18279 DATA REGISTER
i8279 CONTROL/STATUS REG.

1256 BYTE RAM #1 ADDRESS
1236 BYTE RAH $2 ADDRESS

iTOF OF STACK

i‘EXEC’ KEY CODE
i ‘NEXT’ KEY CODE

254.

255.

ISIS-IT1 80B0/8085 MACRO ASSENMELER» V3.0 HODULE PAGE 3
SDK-8 Self Diadnostic V34

LoC 0BJ LINE SOURCE STATEHENT

8% i

80 FEEPEEEEERBRERIEEEEFLI R B HHHE I I R R

!
90 i
91 3 STAGE III
92 3 EEE P]
93 i
94 i THIS PROGRAM IS A SELF DIAGHOSTIC,» DESIGNED TO EE RUN
95 i AT THE LAST STAGE OF SIGNATURE ANALYSIS OF THE SDK-85. IT
96 5 INTERACTS WITH THE KEYROARD AND DISFLAY TO TEST HOST OF
97 i THE FACILITIES ON THE BOARD' NOT TESTED IN STAGES I AND
98 i I,
99 i
100 ;
0000 101 ORG 00O0OH
102
103 5 INITIALISATION
104 5
0000 F3 . 105 DI
0001 3EDF 104 MVI A»QDFH +SET ALL HASKS: CLEAR RST7.3» SO0=1
0003 30 107 SIM
0004 310021 108 LXI SPyTOPST JINITIALISE STACK FOINTER
0007 3E00 109 MWWI &s00H iPROGRAH RAM PORTS FOR INPUT
000 DI20 110 Ut CTRLL
0008 D328 111 ouT CTRL2
000D D302 112 QUT DDRIA iPROGRAN ROM PORTS FOR INFUT
0Q0F D303 113 QUT DDRIR
0011 D30A 114 OuT [DR2A
0013 D3I0E 115 OUT DIR2R
0015 C33F00 116 JUF PASTIR JLEAVE ROOH FOR INTERRUPT
117 i ROUTINES (THIS INSTRUCTION
118 i IS IN 15Hs16He17H)
119 iNOTE - TO EXECUTE THE 8279 TEST
120 i ROUTINE (KECTST.V9) THIS INSTR-
121 i UCTION KUST BE CHAHGED TO:
122 i JiP BOOOH
123
124
125 jommmmmmmm e
126 i
127 i INTERRUPT ROUTINES
128 i
129 3
0018 130 DRG 001BH iRST 3 (INT) ROUTINE
0018 F5 13 FUSH FSH
0019 3E01 132 HVI AsOIH
001B 320120 133 STA INTFLG 15ET “INT’ FLAG
001E F1 134 FOP PSY
001F C9 1335 RET
136
0024 137 ORG Q024K iRST 4,5 (TRAP) ROUTINE
0024 F3 138 FUSH PSH
0025 3E01 139 HVT AsOIH
$027 320320 140 STA TRPFLG 1SET ‘TRAF’ FLAG
002A F1 141 POP PSY

0028 CY 142 RET

256.

151S-11 8080/8085 MACRO ASSEMRLERs V3.0 HODULE PAGE 4
SDK-83 Self Diadnostic V34
LOC ORJ LINE SOURCE STATEMENT
143
002C 144 ORG 002CH iRST 5.9
002C £3 143 RSTIR: PUSH PSW
002D JE01 1446 KD Ay 0QiH
002F 320220 147 STA RSTFLG iSET ‘RESTART’ FLAG
0032 Fi 148 POP PSU
0033 C9 149 RET
150
0034 151 ORG 00344 yRST 8.3
0034 C32C00 152 JHP RSTIR
153
0038 154 QRG 0038H jRGT 7 --~ THIS VECTOR IS INCLUDED
0038 C9 125 RET # IN CASE THE 8085 RESPONDS TO
154 i FFH (RST 7) IF IT IS NOT GIVEN
157 i AN INTERRUPT VECTOR IN TEST 7.
158
003C 159 ORG 003CH iRST 7.5
003C C32C00 , 160 JHP KSTIR
161 1
162 4
163 jo=-mmmmm e
164
163
003F 210019 166 PASTIRY LXI H.KDCC }PROGRAH 8279 FOR B CHAR. RIGHT ENTRY
0042 3410 167 HI M 1OH i ENCODFD SCANs 2 KEY LOCKOUT.
0044 363F 168 HVI HedFH jCLOCK FRESCALER = 31,
0046 3690 149 HI Ha%0H PWRITE DISFLAY RAMy AUTO-INCR.
0048 3640 170 ML Hi40H iREAD FIFO,
171
0044 34CD 172 MVI HyQCDH jCLEAR FIFD § DISPLAY RAM.
004C JEO1 173 MWI AOLH iWAIT 1ns FOR DISPLAY CLEAK,
004E CD4006 174 CALL DELAY i
175 3
176 3 TEST 0
1778 e
178 i
179 § THIS TEST VERIFIES CORRECT DISPLAY OPERATION BY
180 § SHIFTING CHARACTERS ACROSS THE DISPLAY. THE TEST
181 5 1S TERKIMATED BY ENTERING ANY CHARACTER AT THE
182 § KEYRCARD. AN ERROR CODE IS DISPLAYED IF ANY ERROR
183 § 1S DETECTED IN ACCEPTING THE CHARACTER FROM THE
184 § KEYEOARD.
185
0051 25 184 TESTOY DER H 1 (HL) = 1800H = KDCD
0052 0E18 187 RFYCH: HWVI C,24D iHO, OF CHARS. IN THE TARLE.
0054 112807 188 LXI [HCHRTAE +ADLRESS OF CHAR. TABLE.
0057 1A 189 NXTCHY LDAX D SWRITE CHAR. TO DISPLAY RAH.
0038 77 150 HOV HiA
0039 CDADOS 191 CALL DLYS300 JWATT 1/2 SECOND.
003C (D3804 192 CALL TSTKED iCHECK FOR KEYBOARD ENTRY,
00SF B7 193 ORA A yTEST RESULY.
0060 C24R00 194 JNZ ENDO fEXIT IF ANY ENTRY
0043 0D 193 IR € $TEST FOR END OF TABLE.
0064 CAS200 194 Jz RPTCH 1START AGAIN IF SO,
0067 13 197 INX D JELSE FOINT TD NEXT CHAR

257.

ISIS-IT B0B80/8085 MACRD ASSEMELER: V3.0 HODULE PAGE 3
SDK-83 Self Dizgnostic VI4

LOC 0BJ LINE SOURCE STATEHENT

0068 C35700 198 JHP NXTCH i AND DISPLAY IT,

0048 24 199 ENDOY INR H # (HL) = KICC,

004C 3400 200 NVI MsOO0H $FPROGRAY KDC FOR LEFT ENTRY,

004t B7 201 ORA A $TEST KEYEQARD ENTRY.

Q0&F F27B00 202 5P TEST! iNEXT TEST IF VALID ENTRY

0072 2F 203 CHA iTARE 275 COMP, OF ERROR COCE

0073 3C 204 INR A ?

0074 47 205 HOV BiA 1SAVE ERROR CODE IN B,

0075 0EOL 206 WI Cy01iH iPUT TEST NO. IN C.

0077 CLYFO4 207 CALL ERRDSP 1 DISFLAY ERROR HESSAGE

0074 76 208 HLT 3+oAND STOP (KEYROARD ERRCE
209 115 FATAL),
210 i
211 4
212 3 TEST 1
A3 s
214§

. 215§ THIS TEST VERIFIES KEYRDARD OPERATION BY DISFLAYING THE

214 3 CODE FOR WHICHEVER KEY IS PRESSED, INITIALLY THE DISPLAY
217 1 UWILL SHOW THE CODE FOR THE KEY USED TO END TEST 0. THIS
248 § TEST 15 ENDED WHEN THE ‘NEXT s/ KEY IS PRESSED.
219 3

0078 4F 220 TESTIY MOV CsA $SAVE EMTERED CHAR INM C.

007C CLDBOA4 221 CALL CLROSP §CLEAR THE DISPLAY,

Q07F 3683 222 HVI MsBSH JURITE DISFLAY RAM LOC. 5

0081 25 223 ICR H # (HL) = KDCD

0082 79 224 MoV AC yRETRIEVE CHAR,

0083 E&JIF 225 DISKFCH: ANI O3FH iCLR ‘CHAR PRESENT’ FLAG.

0085 CDE20¢ 224 CALL CONVRT iCONVERT TO DISPLAY CODE,

0088 77 227 HOV HsA iHRITE TO DISPLAY.

0089 CD4LQS 228 gALL DLYS00 FHAIT 5006s,

0038C CLEF04 229 UFIFY CALL RDKED fTEST FOR KEYBOARD EMNTRY.

008F B7 230 ORA A ’ .

0090 CARCO0 24 JZ WFIP PHAIT IF HD ENTRY,

00%3 FESL 232 CPI HEXY iNEXT TEST IF /NEXT’

0095 £28300 233 JNZ DISPCH fELSE DISPLAY THE CHAR.
234§
235 % TEST 2
286 e
237 i
238 § THIS TEST VERIFIES CFERATION OF THE SERYAL I/0 LINES.
239 § 500+ IS SETs THEN RESET AND SID IS TESTED IN EACH CASE TO
240 5 CHECK THAT IT FOLLOWS SOD, IF NOT» AN ERROR MESSAGE IS

241 § DISPLAYED AND A LOOP IS ENTERED TO TOGGLE SOD EVERY lmss

242 § T0 ASSIST IN TRACING THE FAULT (C,G.WITH A CRO), THIS
243 § LOOP WILL EE LEFT T0 PROCEDE TO THE HEXT TEST WHEN THE
244 § 'NEXT »’ KEY IS5 PRESSED,
245 § IF NO ERROR OCCURSy TEST 3 IS EMTERED IMMEBIATELY,
246 7 THE TEST REGUIRES THE 25 PIN CANHON TEST PLUG Y0 BE
247 % INSERTED INTD J7 7O LOOP SERIAL QUTFUT BACK INTO SERIAL
248 3 INPUT,
249 &

0093 OEQ2 250 TEST2: WVI Ch02H sFPUT TEST HO. IN Ce

0094 1EB0 2al HWI EsB0H iSET MSE IN E. -
009C 3ECO 232 HWI 4,0C0K #SET SOD,

IS1S-1I 8080/8025 HACRO ASSEMELER, V3.0
SDK-85 Self Diagnostic V34

. Loc 0BJ

009E 30
M9F 57
0040 3ELE
00A2 3D
00AZ C2A200
00A6 20
00A7 Af
00AB A3
0049 C2B400
00AC 74
00AD AR
00AE F29EQ0
00B1 C3CDOO
00B4 CDFFO4
00B7 0401
00R? CDYFO4
00BC 7A
00BD AR
00BE 57
00BF 30
00C0O 3E01
00C2 CD4006
00CS CIEFO4
00C8 FES1
00CA C2BCO0

Q0CD ChoRo7
00D0 COFF0S
0003 010300
00D6 3JEQL
00ne D320
Q0DA 1328
00DC 3EFF
00DE D302
00EQ D30A

00E2 3JE01
00E4 57

00ES 11321

SOURCE STATEMENT

LINE
233 SERDUTY SIM
204 HOV
295 HVI
236 DLYSID: DCR
257 JNZ
258 RIH
259 XRA
260 ANA
261 JNZ
262 MoV
263 XRA
264 Jp
265 JUP
266 SERERR: CALL
267 HVI
268 CALL
269 CHSODY HOV

L2720 XRA
21 HOV
272 SIH
273 HVI
274 CALL
275 CALL
276 CPI
277 JNZ
278 i
279 i
280 i
281
282 i
283 i
284 i
285 i 1/0 DEVICE,
286 3
287 j
288 i
287 §
290 i
2%
292 3
293 7 PERFORMED,
294 3§
299 TEST3: CALL
296 CALL
297 LXI
298 RPT34: MVI
299 put
300 our
301 HVI
302 out
303 out
304
305 KVI
J06 SHFTAT MOV
307 ouT

OrA

A 300
A
LYSID

D

£
SERERR
ArD

E
SEROUT
TESTZ
CLRERD
B:01H
ERRISP
AyD

E

[rd

A»01H
DELAY
ROKBD
NEXT

CHSOD

MODULE PAGE &

1SAVE SIN EYTE IN D,

$WAIT 150us FOR SID INPUT

i T0 SETTLE.

]

1 TEST 51D

1CONFARE WITH DATA WRITTEN,
iHASK MSE.,

'ERROR IF MSB NOT 0,
{RESTORE SIM BYTE,
yCOMPLEMENT SOD BIT,
iREPEAT TEST FOR 50D = 0.
sEXIT FROM TEST IF BOTH DONE.
iCLEAR KEYRDARD FIFO,

tFUT ERROR COLE IN B,
iDISPLAY ERROR MESSAGE.
iLOAD SIH BYTE,

3 COMPLEMENT SOD.

iSAVE THE RYTE AGAIN.

1

1WAIT ims,

1]

1CHECK FOR KEYBOARD ENTRY,
1SEE IF “NEXT‘ ENTERED.
§CONTINUE WITH TEST IF NOT.

THIS TEST VERIFIES THE IRFUT CAPABILITIES OF THE I/0

PORTS. TEST PLUGS HUST BE INSERTED INTO SOCKETS JIs J4 AND
J5 TO COMNECT TOGETHER THE As B AND C PORTS OF EACH PARALLEL

258.

PORTS A ARE FIRST PROGRAMMED AS OUTPUTS AND A ‘1’

CLRFLG
CLRKED
Br00032H
ArQ1H
CTRL1
CTRL2
ArOFFH
DIR1A
DDR24

O]
DA
RAN1A

15 WALKED ACROSS EACH FORT» WHILE THE B (§ C) PORTS ARE READ
T0 VERIFY THAT THEY CAN READ INPUT DATA,
THEN SET TO INPUT AND B 7O OUTFUT AND THE TEST IS REPEATED
TO CHECK THE INFUT CAPARILITIES OF THE A PORTS,

IF ANY FORT FAILS THE READ TESTy A BIT IS SET IN THE
ERROR CODE TO INMICATE THE FAILED DEVICE, THE
ERROR HESSAGE IS NOT DISPLAYED UNTIL TEST 4 HAS BEEN

iCLEAR 'REPEAT TEST‘ FLAG.
iCLEAR KEYROARD FIFD,
iLOAD TEST AND ERROR CODE.
JSET FORTS A AS OUTPUT,

i OTHERS AS INPUT.

i
1
i
i
i INITIALISE TEST BYTE.

1SAVE THE BYTE IN D,
iOUTPUT TD A PORTS,

THE A PORTS ARE

ISIS-11 8030/8085 MACRD ASSEMBLERs V3.0
SDK-85 Self Diagnostic Y34

LoC OBJ

(OE7 D329
00E9? D300
00ER D308

(00ED DR22
OOEF AA
00F0 C41407
00F3 DB23
00FS AA
00F6 E63F
00F8 C41407

00FB DB2A
00FD AA
00FE C41907
0101 DB2B
0103 AA
0104 E63F
0104 C41907

0109 DBOY
010B AA
010C C41EQ7

010F DBO?
0111 AA
0112 C42307

0115 74
0116 07
0117 12E400

0114 3E00
011C 1302
011E D30A

0120 JEFF
0122 D03

0124 D30B
0126 3E02
0128 1320
0124 D328

012C 3E01
012€ 57

012F D322
0131 DI2A
0133 B304
0135 D309

0137 DB21
0139 AA
013A C41407

013D DR29

LINE

308
309
310
It
312
33
I14
315
314
317
318
319
320
321
322
323
324
323
326
127
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
343
344
347
348
149
350

- 351

352
353
354
355
354
357
358
359
350
361
362

SHFTR:

SOURCE STATEHENT

ouT
ouT
ouT

IN

XRA
CNZ
IN

XRA
ANI
CNZ

I

XRA
tNz
IN

XRA
ANI
CNZ

IN
XRA
CNZ

IN
XRA
CNZ

KoV
RLC
JNC

HVI
out
ouT

HVI
QutT

ouT
HVI
ouT

ouT

KVl
Hov
ouT
out
ouTt
puY

IN
XRA
CHZ
IN

RAM2A
ROM1A
RON2A

RAN1B
D
ERR1
RANIC
)

IFH
ERRY

RAN2B
i
ERR2
RAH2C
D

3FH
ERRZ

ROK1B
D
ERR3

ROMZ2B
{
ERR4

AsD

SHFTA

ArO0H
BORLA
DIIR2A
ArOFFH
DORLR
DDR2B
Ar02H
CTRLY
CTRL2

ArOLH
Didh

RAMIB
RAX2B
RON1B
RONM2B

RAH1A
]
ERRI
RAN2A

259,

HODULE PAGE 7

iREAD B PORT.

PCOHPARE WITH DATA WRITTEN,

#SET ERROR FLAG IF NOT SAHE,
iREAD THE C FORT,

1COHPARE WITH DATA WRITTEN.

iBOTTOM & RITS ONLY.

iSET ERROR FLAG IF NOT SAME.

iREPEAT FOR RAM 2 PORTS.

- e aE

-

iRON 1 PORTS,

!
.
!

FROR 2 PORTS,
i
i

iRESTORE TEST BYTE.

iSHIFT TEST BIT LEFT,
iREFEAT IF 8 BITS NOT NONE,

HOW REFEAT WITH B FORTS AS OUTFUT A AS INPUT,

iSET ROM A PORTS AS IHPUT,
i

)
iSET ROM B PORTS AS DUTPUT,
i

0

T
iSIMILARLY FOR THE RAN PORTS,
]

tRE-INITIALISE THE TEST BYTE,
iSAVE THE BYTE,

iWRITE CUT TO B FORTS.,

; .

i

i

e me e

260.

388
189
390
391

QUTFUT GOES RIGH AGAINs ANDN IF A TRAP IS KDT DEVECT-
ED WITHIN 200D CYCLES &N ERROR FLAG IS SET. IF THERE
ARE ANY ERRORS FROM EITHER TEST 3 OR TEST 4 THE ERROR
CODE IS DISPLAYED ANDI BOTH TESTS 4RE REPEATED AFTER

1SIS-11 B0B0/8085 MACRO ASSEHBLERy V3.0 HODULE PAGE 8
SDK-83 Self Diadnostic V34
LOC OBJ LINE SOURCE STATEHENT
013F AA 363 XRA D i
0140 C41907 164 CHZ ERR2 i
0143 DBOO 369 IN ROH1A i
0145 AA 364 XA D i
0144 CALE07 367 CHZ' ERR3 i
0149 DROB 368 IN RON2A ;
014B AA 349 ¥RA D i
014C C42307 370 CHZ ERR4 i
.73
014F 7A 172 NOV AsD FRETRIEVE THE TEST BYTE,
0150 07 373 kLC FSHIFT THE TEST BIT LEFT.
0151 D22E01 374 JHC SHFTB FREPEAT UNTIL 8 BITS DONE,
375
376
377
378 i
379 3 TEST 4
I A
K{: 3
382§ THIS TEST CHECKS THE OPERATION OF THE TIMER ON
383 7 RAM CHIP 1 AND THE CFU TRAP INPUT (THE TINER OUTPUT
384 7 IS PERMANENTLY COMHECTED TO THE 8085 TRAP INPUT ONM
385 § THE SK-85 ROARD).
386 3 THE TIMER 1S PROGRAMMED TO GO LOW AFTER 128 CYCLES
387 4 FOR 128 CYCLES, A TRAP SHOULD OCCUR WHEN THE TIMER
1
i
i
i
392 ¢ VAITING Ims. THIS IS MECESSARY TO EMALLE TRACING OF THE
193 5 TINER DUTFUT IF THE TRAP TEST FAILS, THE TESTS REPEAT
394 § UNTIL YHEXT o¢ 15 ENTERED AT THE KEYEOARD,
395§ IF THERE ARE KO ERRCKS THE TEST- 5 ROUTINE IS ENTERED
194 7 IMMEDIATELY,
97 3
0154 AF 398 TEST4: XRA A $CLEAR ‘TRAP’ FLAG.
0155 320320 399 STA TRPFLG &
0158 2E01 400 HVT AsOLH iFROGRAM THE TIHER (128 CYCLES
0154 D325 401 QUT TIMIHI 5 HIGHy 128 CYCLES LOW).
015C 3E00 402 HUT ArOOH i
015€ D324 402 oUT TINILO 6
0160 3ECO 404 MYT AsOCOH #START THE TIMER (AND SET ALL
0162 1320 405 0UT CTRLE i PORTS TO IHPUT),
0164 3E14 406 HVI As20D JHAIT 300 CYCLES.
0166 3D 407 WFTRPY DCR A i
0167 C26601 408 JNZ UFTRP i
016A 3E80 409 HUI AvEOH iSTOP THE TINER AFTER
014C 11320 410 OUT CTRLY i TERHDNAL COUNT.
016E 340320 411 . LDA TRPFLG iLOAD TRAP FLAG.
0171 57 412 HOV Do iSAVE IT IN D,
0172 340020 13 LBA RPTFLG $SEE IF THE TEST IS BEING
0175 §7 414 ORA A i REFEATED,
0174 £29101 415 JHZ ITRI4 §1F S0y SKIP THE TEST FOR ERRORS.
414

0179 74 417 HOV AsD iRETRIEVE THE TRAP FLAG.

261.

ISIS-I1 8080/8095 MACRD ASSEMELER) V3.0 MODULE PAGE 9
SDK-85 Self Diasnostic V34

LOC OB LINE SOURCE STATEKENT

0174 17 418 ORA A JTEST 1T,

017k C28301 419 JNZ IOERT $SKIP 1F FLAG SET.

017E 0E04 420 MVI Cr0H FELSE SET TEST MO, TO 4

0180 £38801 1 JiP TOERR i AND DISFLAY ERKOR MGG

0183 78 422 T0ERT: KOV AsB iTEST FOR ANY ERRORS FROM

0184 B7 123 ORA A i THE INPUT TEST (3).

0185 CAYEO! 424 JI TESTS $SKIF TO NEXT TEST IF NOME,

0188 CD0707 425 10ERR: CALL SETFLG iSET ‘REPEAT TEST FLAG.

0198 CDFFO4 424 CALL CLRKRD $CLEAR THE KEYROARD FIFO,

018E CDO7F04 427 CALL ERRDSF yDISFLAY THE ERROR CODE.

0191 3E01 428 ITR34% KU1 AsOIH JDELAY 1ms (FOR THE TIMER

0193 CI4004 129 CALL DELAY i T0 RESET).

0194 CLEFO06 430 CALL RDKED STEST FOR KEYRDARD ENTRY.

0199 FES1 431 CPL NEXT i 'NEXT ENTERED?

0198 C2D4600 432 JHZ RPT34 iREPEAT TESTS IF NOT.
433
434

, 435
434
437
438 TEST 5
P
440 3
441 4 TEST 5 CHECKS THE OPERATION OF THE RST 6.5 INPUT DF
442 § THE 8085, THE 1/0 COMNNECTORS KUSY BE CHANGED, TO LOGP
443 § THE ROM 1 A PORT BIT 0 (J3 PIN 31) BACK TO THE RST 6.5
444 § INFUT OF THE BOARD (J1 PIN 20), THIS COKMECTOR WILL ALSD
445 3 CONNECT EIT 1 OF THE PORT (J3/32) TO THE INTR INPUT (J1/18)
446 § FOR USE IN TEST 7» AND BIT 2 OF THE FORT (J3/29) TO THE
447 § HOLD INFUT (J1/14) FOR USE IN TEST 10.
448 3 AFTER THE COMNECTOR HAS BEEN INSERTED THE THREE LINKS
44% 5 SHORTING THE RS5T4.5» INT AND HOLD INPUTS YO GROUNMD HUST BE
450 § RENOVED, NOTE THAT THE FORT DUTFUTS ARE SET 10 0 BEFORE THE
451 § CONMECTOR 15 IHSERTED SO THAT WHEN THE LINKS ARE REHOVED
452 § THE THREE INFUTS ARE HELD LOW, THIS IS PARVICULARLY
453 i IMPORTANT FOR THE HOLD INPUT.
454 i THE TEST NUMBER 1S FIRST DISPLAYED TO PRONPT THE CHANGE
ASS § OF COMNECTORS. WHEN ‘EXEC’ 1S ENTERED THE TEST PROCEEDS
456 § WITH THE INTERRUPT BIT FIRST SET T0 0 THEM 1, A RIN
457 § INSTRUCTION IS EXECUTED IM EACH CASE TO VERIFY THAT THE
458 § RST 6,5 INFUT PIN IS FUSCTIONING, AN THEN THE RST 6.5
459 § MASK 15 CLEARED TO ALLOY THE INTERRUPT T9 OCCUR.
460 § IF AWY OF THESE TESTS FAIL AN ERROR MESSAGE IS DISP-
- 461 j LAYED AND THE TEST IS REFEATED UNTIL ‘HEXT' IS ENTERED,

462 i IF N0 ERRORS OCCUR TEST 4 COMMENCES INMEDIATELY.
463 3

019E 3£00 464 TESTSS HUI A/OOH URITE 0°S TO THE ROM A PORT,

01A0 D300 465 OUT RONEA i :

0142 3E07 Iy M1 AsO7H SENABLE THE BOTTON THREE BITS

01A4 D302 467 0UT DOR1A § AS OUTPUTS.

0146 CIFF06 468 CALL CLRKRD iCLEAR THE KEYRDARD BUFFER,

0149 IE05 449 VI A0SH iDISPLAY IHPENDING TEST NO.

01AB CDEFO 470 CALL DSPTST 3

01AE CDODO? 471 CALL CLRFLG JCLEAR ‘REPEAT TEST' FLAG.

01R1 CDEFO4 472 WAITSY CALL RIKBD iWALIT FOR KBD. ENTRY.

262.

ISIS-IT B0B0/8085 MACRO ASSEMBLERs V3.0 HODULE PAGE 10
SDK-83 Self Diadnostic V34
LOC 0B LINE SOURCE STATEMENT
01B4 FESO 473 CPI EXEC i'EXECY 7
0184 C2R101 474 JNZ O WADYS JHAIT IF NOT.
473
0189 010300 476 LXI Rs0005H $LOAD ERROR AND TEST NO.
01BC 3JEOD 477 HI A)ODH FUNMASK RST 4.5,
01BE 30 478 SIM i
O1BF 20 479 RPTS: RIH sTEST RST 4.5 INPUT.
01C0 E420 480 ANT 20M i
01C2 C41407 481 CNZ ERR1 {ERROR IF MOT 0,
01C5 JE01 482 VI A OIH $SET THE INTERRUPT BIT.
01C7 D300 483 QUT ROM1A i
01C9 20 484 RIM $TEST THE RST 4.5 IHPUT,
0ICA E620 485 ANI 20H i
01CC CC1907 4B4 CZ ERR2 fERROR IF MOT SET.
Q1CF AF 487 XRA A {CLEAR “RST’ INT, FLAG,
0100 320220 483 STA RSTFLG i
01D3 FB 489 £l 1ENABLE INTERRUPT TO OCCUR.,
01D4 00 490 NOP i
0105 00 491 NOP i
0104 F3 492 oI yDISABLE INTERRUPTS.
0117 3E00 493 HVI As00H PREMOVE THE INTERRUPT.
0119 D300 494 OUT ROMH1A [
01DB 3K0220 4935 LDA RSTFLG iSEE IF INTERRUPT OCCURRED,
01DE B7 496 ORA A i
01DF CC1E0? 497 CZ ERR3 +SET ERROR FLAG IF NOT.
01E2 340020 498 LDA RPTFLG JSEE IF THE TEST IS BEING
01ES B7 499 O0RA A i REPEATED,
01E6 C2F701 500 JNZ O ITRS §SKIF THE TEST FOR ERRORS IF SO
01E? 78 301 HOV Ash JTEST THE ERROR FLAG.
01EA R7 202 ORA A i
O1ER CAFFO1 903 JZ TESTH {NEXT TEST IF NO ERRORS,
01EE CD0707 504 CALL SETFLG iSET THE ‘REPEAT TEST’ FLAG.,
01F1 CDFFO4 503 CALL CLRKED iCLEAR THE KEYBOARD BUFFER.
01F4 CD9FO4 906 CatL ERRDSP 7DISPLAY ERROR CODE,
0LF7 CDEFO4 907 ITRST CALL RIKBD iTEST FOR "HEXT'
O1FA FESS 508 CPI HEXT i ENTERED,
01FC C2hF01 509 MNZ RPTS {REPEAT THE TEST IF NOT,
510 3
it TEST 6
w2y e
B3 5
314 § THIS TEST CHECKS OFERATION OF THE RST 7.5 CPU
515 § INTERRUPT AND THE ‘VECT INTR‘ KEY. THE TEST MO,
916 i IS DISPLAYED AMD THE RST 7,5 MASK IS CLEARED. A

i

!

i

¥

H

i

!

917 ¥ LOOP IS THEN ENTERED TO WAIT FOR EITHER A “MEXT'
918 # ENTRY AT TRE KEYBOARD OR A RST 7.5 INTERRUPT

319 i IHFUT,

920 § IF THE RST 7,3 INPUT IS LETECTED,» INTERRUPTS ARE
921 § ENABLED AND A TEST IS MADE TO SEE IF THE RST 7.3
922 i
523 3
024
929 i
326 3
327 3

INTERUPT OCCURS, IF NOTy OR IF THE KEYBODARD ENTRY
IS DETECTED BEFORE THE RST 7,3 IHPUT (WHICH WOULD
HAPFEN IF THE ‘WECT INTR’ KEY HAD KD EFFECT AND THE
‘NEXT” KEY WERE PRESSED TO STOP THE TEST) AN ERROR
MESSAGE IS DISFLAYED UNTIL 'REXT’ 1S ENTERED AGAIN
(THE TEST IS NOT REPEATED).

1S16-11 8080/8085 HACRD ASSEMRLERy V3.0
SDK-85 Self Dizdnastic V34

Loc 0BJ

01FF COFFOS
0202 010600
0205 77
0206 CLBFOS
0207 3JEOB
0208 30
020C AF
0200 320220
0210 CDEF06
0213 FES!
0215 CA2R02
0218 20
0219 E640
021B CA1002

021E FB
021F 00
0220 00
0221 F3
0222 340220
0225 17
0226 C23A02
0229 0401
0228 04
022C CIFFO4
022F CD9FO06
0232 CDEFCS
0233 FESL
0237 €23202

263.

KODULE PAGE 11

LINE SOURCE STATEMENT

528 ; IF MO ERRORS ARE DETECTED THE TEST 7 ROUTIRE IS
529 § ENTERED INMEDIATELY.

530 4

531 VESTé! CALL CLRKED iCLEAR KEYBOARD BUFFER.
332 LXI Es000&6H iLOAD TEST AND ERROR HO.
533 MOV ASC iDISPLAY PROMPT FOR TEST 6.
324 CALL DSFTST i

335 MVI A)OBH i UNHASK RST 7.5,

334 SIH i

537 YR A iCLEAR ‘RST’ FLAG.

338 STA RSTFLG i

539 WAITAL CALL RIKERD i TEST FOR /NEXT’ ENTRY,
540 CPI © NEXT i

941 JI EXITé FEXIT WITH ERROR IF 50,
342 RIN . +TEST FOR RST 7.3,

943 ANT 40H i

944 JI UAIT6 FCONTINUE WAITING IF

543 i NOTHING HAS HAPPENED.
544 El iALLOY INTERRUPT TO OCCUR.
947 HOP i

948 NOP 1

549 DI iDISABLE INTERRUPTS.

990 Lba RSTFLG jSEE IF INTERRUPT OCCURED.
331 ORA A i

352 JNZ TEST? iPROCEED TO TEST 7 IF SO,
353 MV BsOIH JELSE SET ERROR ND. TO 2.
594 EXIT6Y INR B iUPDATE ERROR NO.

VRN] CALL CLRKBD CLEAR KEYBOARD BUFFER.
396 CALL ERRDSF iDISFLAY ERROR CODE,

957 WT&! CALL RDKED JWALT FOR “REXT',

558 CFT NEXT j

599 JHZ - WTé j

340 i

561 3 TEST 7

62 s

363 3

S44 § TEST 7 IS AN DPTIONAL TEST 7O EXERCISE THE ‘INT'
565 ; FACILITIES OF THE BOARD. THE TEST REQUIRES AN
566 § EXTERNAL BUFFER COMNECTED TO THE SDK-B3 DATA BUS
547 7 BUFFERS TO SUPPLY THE ‘RST 3/ VECTOR IM RESPONSE
948 7 TO INTA/.

569 5 THE TEST MUMEER IS FIRST DISPLAYED AND THE KEY-
570 § BOARD IS MOMITORED FOR INPUT, ‘EXEC WILL CAUSE
571 i THE TEST TO FROCEED, WHEREAS ‘NEXT' WILL ABORT
§72 § THIS TEST AND THE MEXT TEST ROUTINE WILL BE ENTER-
573 § ED IMHEDIATELY.

574 5 THE TESY SIMPLY ASSERTS THE ‘INT' INPUT TO THE
575 § BOARD VIA BIT 1 OF ROM 1 PORT A (REFER TO HOTE
S74 § UM TEST 5), HAVING ASSERTED “INT‘, INTERRUPTS
577 i ARE ENAELED AND & TEST IS MADE TO DETERNINE

578 § WHETHER AN RST 3 OCCURS, IF S0y THE TEST 8

579 i ROUTINE IS ENTERED. IF NOTs AN ERROR HESSAGE
580 3 IS DISFLAYED AND THE TEST IS REPEATED UNTIL THE
581 & ‘NEXT’ KEY I3 PRESSED.

1

982

ISIS-1T B0BO/80BS MACRO ASSEMBLER» V3.0

SDK-83 Self Diagnostic V34

Loc 0BJ LINE
0234 COODO7 983 TE
0230 CLFFOA 584
0240 3E07 383
0242 CDBFO& 986
0245 CDEFQ4 a87 WA
0248 FEN 568
024A CABAO2 289
024D FES0 390
024F €24302 391
592
0232 CDFFO4 293
0235 3EOF 394
0257 10 395
258 AF 396 RP
0259 320120 397
025C 302 398
025 D300 399
0260 FB 600
0261 00 601
0242 00 602
0263 F3 603
0264 3E0Q 604
0266 D300 603
0268 340020 506
0268 B? 607
026C £28202 508
026F 3A0120 609
0272 87 610
0273 C28A02 611
0276 CDO707 612
0279 CDFFOS 613
027C 010701 614
027F CDYF0s 6135
0282 CDEF0& 616 1T
0285 FESL 817
0287 €25802 618
619 i
620 i
621 i
622 i
623 i
624
623 i
826 i
827 i
628 4
629 i
630 i
631 i
632 i
633 i
634 i
£33 5
626 3
i

637

SOURCE STATEMENT

§T7¢ CALL
CALL
HV1
CALL

IT7¢ CALL
CrI
JZ
CPI
JNZ

CaLL
W1

SIM

17, XRA
5TA
HVI
ouT
£l
NOP
NOP
DI
HVI
ouT
LTA
ORA
JNZ
LDA
ORA
JhZ
CALL
CALL
LXI
CALL

R7: CALL
Crl
JNZ

TEST 8 1S A TEST FOR THE TIMER IN THE SECOND B135

CLRFLG
CLRKBD
ArO7H
ISPTST
RUKBD
NEXT
TESTS
EXEC
YAIT?

CLRKED
AsOFH

A
INTFLG
ArO2H
ROM1A

ArO0H
ROH1A
KPTFLG
A

ITR7
INTFLG
A
TESTE
SETFLG
CLRKBD
Bs0107H
ERRIISP
ROKED
NEXT
RPT7

(IF IT IS PRESENT),

AND THE KEYBOARD IS HONITOREDR FOR IHPUT. ‘NEXT’
WILL ARORT THE TEST AND 'EXEC’ WILL CAUSE IT TO

FROCEED,

THE TEST REQIRES & JUMPER PLUG TQ BE INSERTED INTO
Jo TO LOOP THE TIMER OUTPUT OF TRE 8155 (PIN 23) BACK

HODULE PAGE 12

1CLEAR ‘REFEAT TEST’ FLAG,
iCLEAR KEYROARD BUFFER,
$DISFLAY TEST NUMBER,

]

iWAIT FOR INPUT.

§ONEXT! 7

iSKIP TO HEXT TEST IF SC.
1'EXEC’ 7

iGO BACK AND WAIT IF NOT.

iCLEAR KEYEOARD AGAIN.
$MASK ALL RST INTERUPTS.
H

iCLEAR “INT’ FLAG,

;

$ASSERT /INTY.

i

ALLOY IMTERRUPT.

H

j

iDISABLE INTERRUPTS,
iREKOVE THE INTERRUPT.

i

$SEE IF REPEAT TEST.

i

iSKIP TEST FOR ERROR IF §0.
iSEE IF INTERRUPT OCCURRED,
i

iSKIP 70O TEST 8 IF S0,
iSET ‘REPEAT TEST’ FLAG.
jCLEAR KEYEDARD BUFFER,
iLOAD THE ERROR CODE. ..
ive AND DISPLAY IT.
$TEST FOR “MEXT',

i

JREPEAT TEST IF NOT.

THE TEST WUMBER IS DISPLAYED,

70 THE HSE OF ITS A& PORT (PIN 23).

THE TIKER IS PROGRAMMED TO GO LOW FOR 128 CYCLES
THE OUTFUT IS THEN HONITORED TO
ENSURE THAT IT FOLLOUS THE SEQUENCE 1->0->1 WITHIN

AFTER 128 CYCLES.

THE SFECIFIED TIME,

ERRDR HESSAGE IS DISPLAYED AND THE TEST IS REPEATED
AT 1ms, INVERVALS UNTIL THE ‘NEXT’ KEY IS PRESSED.

IF ANY ERROR IS LETECTED AH

264 .

265.

ISIS-11 8080/8085 MACRO ASSEHBLER, V3.0 HODULE PAGE 13
SDK-83 Self Diadnostic V34

LOC OBJ LINE SOURCE STATEMENT
0284 COFFO6 638 TESTB: CALL CLRKBD jCLEAR KEYEOARD BUFFER.
4280 3E08 639 HWI - Ar08H iDISPLAY TEST NO.
028F CIBFO6 640 CALL DSPTST i
0292 CDEFO4 441 UAITBY CALL RDKRD iWAIT FOR INPUT,
0295 FES1 642 CPI NEXT i'NEXT’ => NEXT TEST.
0297 CAF402 643 JI TEST? i
0294 FESO 444 CPI EXEC i‘EXEC’ => PROCEED.
029C C29202 643 JNZ WAITA JOTHERWISE WAIT.

644
029F CDFF04 647 CALL CLRKRD §CLEAR KEYEOARD AGAIN.
0242 010800 648 LXI Bs0008H FLOAD TEST AND ERROR HO.
0243 DR29 649 IN RAH2A sREADN TINER OUTPUT STATE,
0247 B7 650 ORA A iTEST M5B (TIHER OUT/).
02A8 F2D402 651 JP ERSL 1ERROR IF MOT = 1.
02AB 3JEOO £52 MVI As00H iPROGRAN TIMER (HIGH 128
024D D32C 653 OUT TIM2LO § CYCLESs LOW 128 CYCLES).
024F 3JE01 654 KT AsOIH i
021 D320 653 OUT TIM2HI i
02R3 JECO 654 MVI AsOCOH §START THE TIMER.
0285 1328 637 puT - CTRL2)

658
0287 1607 659 KV DyO7H $TIKEOUT COUNTER.
0289 15 640 WTFOY DCR D iTEST THE COUNTER.
028~ CADI02 61 JI ERB2 JERROR IF COUNT IS UP.
02BD DB29? 682 IN RAM2A iTEST TINER OUTPUT,
02BF &7 663 ORA A i
02C0 FAB902 864 J§ o WTFO fWAIT IF NOT O YET.

665
02€3 1607 bbb KVI D O7H #TIHEOUT COUNTER.
02C5 15 867 WIFL: DCR D iTEST THE COUNTER.
02C6 CADZ02 668 JZ ERE3 tERROR IF COUNT IS UP,
02C9 DR29 469 IN RAN2A iREAD TIMER OUT/.
02CB B7 670 1) i .
02CC F2C502 671 JPWTFL fWATT UNTIL 1 AGAIN,
02CF C3r402 672 JHF - TESTY N0 ERRORS-GO TO TEST 9.
0202 04 673 ERB3: INR B iBi=3.
0203 04 674 £R82 INR B iBi=2,
02D4 04 675 ERB1Y INR B iBi=1,
0205 CDFFO6 676 CALL CLRKRD iCLEAR THE KEYRODARD BUFFER.
02018 CDYF06 877 CALL ERRDSP iDISFLAY ERROR CODE,
0208 3t01 678 RPTB: HVT AsOLH JWAIT FOR 1MS AND! RESTART THE TIMER.
0200 CD4004 679 CALL DELAY i
0280 3EQO 680 HVI AsQ0H i
02e2 pazc . 681 DuT TIMZLO i
02E4 3E01 682 KD AvQlH [
02E4 32D 683 OUT TINZHI i
02E8 3ECO 684 HVI AsOCOH iSTART THE TIMER.
02EA 1328 685 OuT CIRL2 i .
02EC CDEFO6 684 CALL RDKED tREPEAT THE TEST UNTIL
0ZEF FESI 687 CPI NEXT i ‘NEXT’ IS ENTERED,
02F1 C20B02 683 JNZ RPT3 i

487 i

690 4 TEST 9

Y N

692 i

IS1S-IT1 B0B0/B0BS MACRO ASSEMBLERy V3.0

MODULE PAGE 14

SDK-85 Self Diagnostic V34

LoC 08J

02F4 CDFF04
02F7 3EQY
02F9 CUEFO6
02FC 0600
02FE DBB38
0300 D338
0202 210080
0305 70
0306 7€
0307 23
0308 7C
0307 B3
030a C20503

030D 78
030E 2F
030F 47

0310 B7

0311 FAO203
0214 IR0
0316 1330
0318 CDEFO4
0318 FES1
031D C2FE02

0320 IE14

LINE

693
694
693
696
697
698
699
700
701
702
703
704
705
706
707
708
709

711

712 BRFFY LXI
713 NXTAD} HOV M.R

714
A
716
717
718
719
720
721

22
723
724
725
726
727
728
729
730
731
732
733
734
733
736
737
738
739
740
741
742
743

744§

745
746

747 LASTY KV

(710 RPT?Y IN - CS7

i
"
T
i
1
"
!
i
"
)
.
!
i

i
i
i
i

i
i
i

SOURCE STATEHENT

THIS TEST IS INTENDED TO EXERCISE EXTERNAL HEMORY
(IF ANY) AND THE DATA BUS BUFFERS., THE TEST HUMBER
1S DISPLAYED AND THE TEST STARTS IMMEDIATELY.

THE 8205 C§7/ OUTFUT IS5 FULSED 7O SIGHAL THE
START OF THE TEST (FOR USE WITH A SIGNATURE ANALYSER
- IF REGUIRED) AND THE ENTIRE EXTERNAL HEMORY SPACE
(BOOOH TO FFFFH) IS WRITTEN WITH QOH AND THEN READ.
THE PROCESS 1S THEN REFEATED: MRITING FFH, FINALLY
CS6/ IS PULSED TO SIGNAL THE END OF THE TEST SEQU-
ENCE.

THE TEST IS REPEATED UNTIL THE ‘HEXT’ KEY IS
PRESSED,

EST9: CALL CLRKBI iCLEAR THE KEYRDARD BUFFER.
HVI AsO%H +DISPLAY THE TEST NO.
CALL DSPTST i
KVI R QOH iDATA TO BE WRITTEM.

iFULSE €57/ WITH RO/ AND

i WR/ T0 FLAG START OF TEST,
iSTART OF EXTERHAL MEMORY.
fHRITE TO THE ATIDRESS.

ouT CS?7
H1BOOOH

OV Al iREATt FROW THE ADDRESS.

X H iPOINT TO MEXT LOCATION,

MOV AsH $TEST FOR UPPER LINIT (Q000H),
ORA L i

JHZ NXTAD i

KOV AsB FCOMPLEMENT THE TEST BYTE,

CHA i

HOV RyA i

ORA A iTEST FOR O (SECOND TIME
7 THROUGH THE TEST),

JH WRFF iNOT O-REFEAT WITH FFH.

IN (86 100-SIGNAL END' OF TEST

puT CSé i

CALL RDKBD iTEST FOR KEYBOARD ENTRY.

CPT NEXT P/NEXT* 7

JNZ RPT9 iREFEAT THE TEST IF NOT.

TEST 10

THE FINAL TEST EXERCISES THE HOLD INFUT OF THE CPU.
THE “FINAL TEST’ MESSAGE IS DISPLAYED AND THE HOLD
TNFUT IS ASSERTED, IF THERE IS NO FAULT THIS WILL
CAUSE THE SYSTEK TO HANG.

1§ WRITTEN TO THE DISPLAY,
HOLD AND HLDA LINES MAY BE TRACED T0 FIND THE SOURCE
OF THE FAULT,

TRIS TEST REQUIRES RIT 2 OF FORT A ON A15 (J3/29) 10
REFER TO

BE COHNECTED TO THE SDRES HOLD INPUT (J1/14),
THE NOTE ON TEST 3.

Ar16H iDISPLAY "vvss o4 FOR LAST TEST,

IF THE HOLD IS HOT SUCCESS-
FULs HOWEVERs, EXECUTION CONTINUES AHD AH ERROR KESSAGE
THE CFU THEN HALTS AHD THE

266.

267.

ISIS-I1 8030/8095 HACRO ASSEMELERy V3.0 HODULE PAGE 15
SDK-85 Self Diagnostic V34
LoC 0BJ LINE SOURCE STATEMENT
0322 CDBFO4 748 CALL DSPTST '
0325 JE04 749 MV Av04H #ASSERT HOLD,
0327 0300 790 OUT RON1iA i
0329 00 751 NOP i
0328 00 792 NOP $THE CPU SHOULD' BE HUNG BY NOW.
0328 011010 753 LXI BsI1010H sDISFLAY ERR MESSAGE IF NOT.
032E CD9FO4 754 CALL ERRDSP i
0331 76 759 HLT iSTOP,
756

757 $EJECT

ISIS-11 8080/808Y 1ACRO ASSEMBLER, V3.0

268.

HODULE PAGE 16

SDK-83 Self Diadrostic V34

LoC 0BJ

0440

0640 DS
0641 16D6
0643 15
0544 £24304
0547 3D
0648 C24104
0641 I
064C C9

054D JEFA
044F CLI4004
0632 IEFA
0634 CNA00S
0637 C?

LINE SOURCE STATEMENT

758 ik o o R gy
759 i

760 i

761 i SUBROUTIKES FOR STAGE III

762 i

763 i

744 3

765 i THE SUBROUTINES FOR STAGE IIT ARE STORED IN THE TOP 448 BYTES
766 i OF THE ROM BECAUSE THERE IS NOT ENOUCH ROOM LEFT IN THE BOTTOM 1Ky
767 i WHERE THE HAIN FROGRAM IS STORED. THE SIGHATURE ANALYSIS DIAGMOSTIC
768 3 PROGRAM (STAGE IT) FITS IN THE 512 DYTES STARTING AT Q400H.
769 7 LOCATIONS 400H TO 44FH ARE RESERVED FOR THE USE OF THE 8083 SELF
770 i TEST FROGRAM, WHICH MAY BE STORED IN EXTERNAL ROM (B0OO0-B3FFH) AND
771 3 EXECUTED LEFORE STAGE II (REFER 7O THE LISTING OF SLFTST.VB).
772 i

773 i

774 ORG 0&40H

73 3

776 7 1 NILLISECOND DELAY ROUTIME,

777 4

778 i THIS ROUTINE GEMERATES A DELAY OF (A) MILLISECONDS.

779 3

7680 LELAY: FPUSH D i

781 LOOP2Y MWD De214D i14%214=2996 CYCLES,

782 LOOPL: DCR D]

783 JNZ - LOOPY i

764 ICR A i

785 JHZ - LOOP2 H

784 eGP D i

787 RET i

7688 i

789 3

790 + HALF SECOND DELAY ROUTINE.

791 i

792 i THIS RGUTIKE GEMERATES A DELAY OF S00es USING THE ims

793 i DELAY ROUTINE.

7194 i

795 DLYS0G: KVI As250D i

794 CALL DELAY ?

797 WI - 42300 i

798 CaLL DELAY i

99 RET i

8OO i

801 5

BO2 # KEYEOARD TEST ROUTIKE.

BO3 1

804 § THIS ROUTINE PERFORMS THE INITIAL YEST QH THE OPERATIOM

B03 i OF THE KEYEQARD CONTROLLER., BOTH THE NO, OF CHARACTERS

BO6 § IN THE FIFC AND THE RSY 5.5 TRPUT ARE TESTED TD DETERHIMNE

807 + WHETHER ANY KEYBOARD ENTRIES HAVE REEN MADE, 1F BOTH

B0R § TESTS ARE NEGATIVE THE ROUTINE RETURMS BITH (A) = 00,

BOY i IF ONE TEST SUCCEELS AND THE OTHER FAILS THE ROUTINE RET-

810 i URNS WITH AN ERROR FLAG SET (A<0), IF BOTH TESTS SUC-

811 7 CEEL THE RST 5.5 INTERRUFT IS ALLOWED TO OCCUR AND A

812 § CHECK IS HMALE TO DETERMINE WHETHER 1T WAS SUCCESSFUL,

ISIS-11 80B0/808S MACRD ASSEHRLER, V3.0
SDK-85 Self Diacnostic V34

Loc 08

0658 ES
0659 210019
065C 7€
063D E607
063F 47
0660 20
04661 E610
0663 80
0654 CABDOS
0647 FE10
0649 CABFO6
0880 FA9304

Q66F AF
0670 320220
0673 3JEOE
0675 30
0676 FB
0677 00
0678 00
0679 £F3
0474 3a022
0671 B7
067E CA9704
0481 25
0582 46
0483 24
0684 7E
0685 E607
0687 £29B06
0434 78
048D Fb640
043D EX
048E C9
048F 3EFF
0691 E1
0592 C9
0693 JEFE
0693 Et
0696 C9
0697 3EFD
0699 EY
0494 C9
049R JEFC
069D E1
06%E C9

LINE

813

815
816 4

SOURCE STATENMENT

i AN ERROR FLAG BEING SET IF MOT,
814 3 IS READ FROM THE FIFO AND' ANOTHER ERROR IS FLAGGED IF
i ANY HMORE CHARACTERS ARE LEFT IN THE FIFO.

817 TSTKEDY FUSH H

818
819
820
821
B22
823
824
923
816
827
823

. 829
, 830

831

832

833

814

833

816

837

838

B39

840

841

B42

843

844

845

844

847

848

849 RETURK:
830

951 KBDELS
852

853

854 KRDE2)
833

- Bé

857 KBDEZ:
858

959

840 KEDE4:
861

862

863 i

Bo4 i

BbS i
847 i

LXI
Hov
ANI
Koy
RIH
ART
ADD
JZ

Cr1
JZ

JH

XRA
sTA
HVT
SIN
£l

NQP
HGP
Il

LDA
ORA
JZ

DCR
MOV
INR
HoV
ARI
JNZ
MoV
ORI
Fop
RET
HYI
FOP
REY
MVT
POP
RET
KVI
Pap
RET
e
Fop
RET

HyKOCC
Arl
07R
BrA

10H

B
RETURH
10H
KEIEL
KBOE2

A
RSTFLG
f#»OEH

RSTFLG
A
KBDEJ
H

EiH

H

Aol
07H
KBIEA
frB
40H

HODULE PAGE 17

¥

8279 CONTROL REG. ADRS.
iREAD FIFO STATUS INTO A.
iMASK NO. OF CHARS, IN FIFOD.
iSAVE IN E.

iTEST RST 5.5 STATUS,

]

JADD IN HO. OF FIFOD CHARS.
JRETURN IF NO INT.» NO CHARS.
FINT, WITH RO CHARS.?

iSET ERROR FLAG IF 50,
iCHARS, AND NO INT,?

iINT, AND CHARS.
iCLEAR ‘RST’ INT. FLAG.
1UNHASK RST 5.5,

¥

FALLOW INT. TO OCEUR.
i

i

iDISABLE INTERRUPTS.
tSEE IF INT. OCCURRED.
'

iERROR IF NOT,

i (HL)= KDCD.

iREAD CHAR. 1HTO B.
#(HL) = KDCC.

§READ STATUS AGAIN,
iHASK HO. OF CHARS.
iERRCR IF NOT 0.

iPUT CHAR. INTO Aues
iSET FLAG FOR CHAR. PRESENT.
i+ AND RETURK.

!

iSET ERROR CODE=1

i

5

iSET ERROR CODE=2,

a

14
iSET ERROR CODE=3
i

4.

L]
1SET ERROR CODE=4
i
i

1
1
863 # ERROR DISPLAY ROUTINE
1
1

THIS ROUTINE DISPLAYS THE 2 DNGIT ERROR CODE PASSED

FINALLYs THE CHARACTER

269.

ISIS-II 8080/8085 HACRO ASSEMBLERs V3.0

SDK-85 Self Diagnostic V34

Loc 0BJ

049F F3
0640 ES
0sA1 210019
0644 CDIBCA
06A7 35690
06A% 23
068A 3668
064C J6FA
Q6AE J4FA
04RO JOFF
0682 79
06B3 COE204
06B6 77
0687 78
0688 CDE206
04kB 77
06BC El
06RD F1
04BE C9

04BF 15
06C0 ES
06C1 210019
06C4 ChIBOS
06C7 3690
06C9 25
04CA CDE206
04CD 14F7
04CF 72
0600 72
0601 72
0602 72
0603 72
064 77

0403 EY
06D6 D1
0407 €9

LINE

868
869
870

871 i

[
)
y
.
’

SOURCE STATEHENT

270.

HODULE ~ PAGE 1B

IN BC, THE MSD (IN C) IS THE NUMBER OF THE TEST INM
WHICH THE ERROR WAS DETECTED AND THE L3D (IN B) IS
THE ERROR CODE.

72 ERRDSP: PUSH

873
874
875
876
877
878
879
880
881
882
883
B84
883

' 884

887
838
889
890

891 4
892 i
893 i
894 i
893 i
896 i
897 1
89t i
899 i
800 §
901 3

902
903
704
905
904
907
908
909
710
211
912
913
914
15
916
917
918
1Y
920
721
922

!
!
?
!
'
!
!
}
!
f
!

FUSH
LXI
CALL
HVI
D0CR
HVI
HVI

NVI

HVI
Hov
CALL
Hov
MoV
CaLL
Kov
FOF
POP
RET

()

H
HsKDCC
CLRDSP
}+ 0H
H
H148H
K1 OF AH
Hy OF AH
HrOFFH
ArC
CONVRT
HeA
AR
CONVRT
Hrh

H

PSH

Y

!

8279 CONTROL REG.

iCLEAR THE DISPLAY.

iWRITE DISP, RAM (AUTO-INC.).
i (HL) = KICL.

iWRITE “E* TO LOC. 0.
it

; 1 lrl

i ' ELANK,

jCONVERT NUNBER TO DISPLAY
i CORE.

URITE DISPLAY CODE.
iREPEAT WITH SECOND DIGIT.

5

1
sRETURN,
i
;

TEST NUMBER DISPLAY ROUTINE.

THIS ROUTINE DISFLAYS THE NUMBER PASSED IN A T0
IHDICATE THE TEST ABOUT TO BE PERFORMED. THE

DISPLAY WILL SHOW!
IXRE N} ON

OF THE TEST.

[EFTSTY PUSH

.
7
N
!

PUSH
LXI
CALL
HVI
ICR
CALL
HVI
Hov
KOV
Hov
Hov
Hov
LI

FopP
pop
RET

D

H
HsKICC
CLRDSP
1y 90K
H
CONVRT
Iy OF7H
Ml
KD
KD
HsD
He D
HiA

H
D

HHERE N IS THE NUMEER

s
y
a

i

18279 CONTROL REG.

iCLEAR THE DISPLAY.

$URITE DISP. RAM (AUTO-INC.).
i (HL) = KDCD.

iCOHVERT NO. TO DISP. CODE,
iCODE FOR 77

PWRITE 4+’ IN FIRST 3

i LOCATIDNS.

i

i

iWRITE THE H0. IN THE LAST
i LOCATION.
i
i
i

CLEAR DISFLAY ROUTINE

271.

ISIS-II 8080/8083 MACRO ASSEMBLER: V3.0 HODULE PAGE 19
SDK-85 Sel? Diagnostic V34

. 'L0C 0BJ LINE SOURCE STATEHENT

923 ;

924 i THIS ROUTINE WRITES A ‘CLEAR DISFLAY’ COMMAMD TO THE 8279
925 § CONTROL REGISTER AND WAITS lems FOR THE CLEAR OPERATION TO
926 7 COMPLETE (IT SHOULD TAKE 140us), OM ENTRY HL HUST CONTAIN
927 # THE ADDRESS OF THE 8279 CONTROL REGISTER (1900H). THIS
928 i VALUE IS NOT HODIFIED,

929 3
0618 FS 930 CLRDSP? PUSH PSH i
046D% J&LC 931 HWI Ms0DCH SWRITE ‘CLEAR DISPLAY’ CHD TO KDCC.
040B 3E01 932 HI - AOLH PWAIT FOR las.
041D C04006 933 CALL DELAY ’
06E0 F1 934 Pop PSY i
04EL C? 933 RET i
936 i
937 i
938 i DISPLAY CODE CONVERSION ROUTIKE.
939 i
940 § THIS ROUTINE COWVERTS THE NUMBER IN A INTO THE
" 941 i COLE TO BE WRIVTEN TO THE DISPLAY CONTROLLER TO
942 7 DISPLAY THAT HUMEER. IF (AY>15, THE CODE RET-
943 5 URNED' WILL BE THAT OF THE CORRESFONDING CHARACTER
944 5 IN THE TABLE (CHRTAB), FOR EXAMFLEs» IF (A) = {7D
945 § THE CODE RETURKNED WILL BE 9BH,» WHICH IS THE LISP-
946 i LAY CODE FOR “H'y THE 17TH CHARACYER IN THE TABLE,
947 1 1F (A)>24D0 THE RESULT WILL BE URPREDICTABLE.
948 i
06E2 ES 949 CONVRY: PUSH H i
04E3 C3 930 PUSH B j
046E4 212807 731 LXI H,CHRTAR §ADRS. OF CHAR. CODE TAELE.
06E7 0600 952 HVI EiQOH iPUT THE HD. YO BE DISP-
06E9 4F $53 HoV C:A § LAYED INTO BC.
04EA 09 954 DAD B iADD OFFSET TO BASE ADRS,
0¢ER 7E 795 KOV A iFETCH THE CODE.
04EC C1 956 FOP B §RETURN,
06ED E1 957 POF H i
O4EE C9 258 RET i
959 i
960 i
961 5 READ KEYBOARD ROUTIKE
942 i

963 i THIS ROUTINE READS THE FIFD STATUS TO SEE IF ANY CHARACTERS

964 7 ARE IN THE FIFOy RETURNING WITVH (A) = 0 IF HOT. IF A CHAR-

965 i ACTER IS AVAILAELE, IT IS PLACED IN A AND RIT & I5 SET T0

966 + SHOE THAT A CHARACTER WAS READ. THE RST 5.5 INTERRUPT IS
967 § NOT USED.

968 4

Q4EF ES 969 RDKBD: PUSH H j

06F0 210019 970 LXI HsKDCC 18279 COMTROL REG.

04F3 7E 971 OV AUl FREAD FIFO STATUS.

04F4 E6OF 972 ANI OFH jHASK NO, OF CHARACTERS (FIFO
973 # FULL => 8 CHARS),

06F& CAFDOS 974 JZ RTRNM iRETURN WITH A=0 IF NONE.

0&FT 23 975 ICR H 1(HL) = KICIL

04FA 7E 975 KOV Aol iREAD A CHARACTER.

06FB F640 977 DRI 40H 1SET FLAG FOR CHAR. PRESEMWT,

ISIS-IT 8080/8085 MACRO ASSEHBLERy V3.0
SDK-895 Self Disgnostic V34

LoC OBJ

06FD Et
06FE C9

04FF E
0700 210019
0703 34C2
€703 Et
0706 C9

0707 ¥5

0708 3JE01
0704 C30F0Q7

070D F3
070E AF
070F 320020
0712 F1
0713 €9

0714 3E01
0716 €32507
0719 3E02
071B C32207
071E 3E04
0720 C32507
0723 3E08
0723 BO
0726 47
0727 C9

SOURCE STATEMENT

H

HsKDCC
Hr0C2H
H

PSY

ArO1H
STORE

PSH

A
RPTFLG
FSH

ArOiH

SETEBIT
As02H

SETRIT
Ay 04H

SETBIT
fy(8H

B

BiA

LINE
978 RTRN: PO
979 RET
90 §
981 §
982 §
983 §
984 §
985 i
986 § ENTRIES,
987 i
988 CLRKED! PUSH M
989 LX1
990 KU1
991 POP
992 RET
993 3
994 §
995
996 i
997
999
1000 5
1001 SETFLG! FUSH
1002 KV
1003 JHF
1004
1005 CLRFLG? PUSH
1006 XRA
1007 STORE! STA
1008 FOP
1009 RET
1010 §
1011 5
1012 §
1013 5
1014 §
1015 §
1016 § DETECTED,
1017 §
1018 ERRL? HVI
1019 JHP
1020 ERR2! KV
1021 JF
1022 ERR3} WU
1073 J¥p
1024 ERRAY NV
1025 SETBIT! ORA
1026 HOY
1027 RET
1028
1029
1030
1031

1032 §

MODULE PAGE 20

FRETURN,

KEYBOARD BUFFER CLEAR ROUTIKE

THIS ROUTINE URITES A 'CLEAR FIFQ’ COMHAND TO THE
8279 CONTROL REG. TO DISCARD ALL PREVIOUS KEYBOARD

i

18279 CONTROL REG.
iCLEAR FIFO COMHAND.
iRETURN,

‘REFEAT FLAG’ SET AND CLEAR ROUTINES.

i THESE ROUTINES SET AND RESET THE FLAG RPTFLG WHICH
998 i WHEN SET» ININDICATES THAT THE CURRENT TEST IS BEING
i

REPEATEDy FOLLOWING DETECTION OF AN ERROR IM THE TEST,

s
H
a
!

JUNP TP STORE 1 IN RPTFLG

P

iCLEAR &,

iSTORE IN RPTFLG
iRETURN.

SET ERROR FLAG ROUTINES

THE FOLLOWING ROUTINES (ERR1 - ERR4) SET A BRIT IN
THE B REGISTER TO INDICATE THAT AN ERROR HAS EEEN

iSET BIT 0.
j
iSET BIT 1.
i
1SET BIT 2.
i

iSET BIT 3,
iSET THE EIT IN B,

IRETURN.

272.

273.

I61S-11 8080/8085 HACRO ASSEMBLER: V3.0 HODULE PAGE 21
SDK-83 Sel? Diadgnostic V34
LOC 0BJ LINE SOURCE STATEHMENT
1033 i DISPLAY CHARACTER TABLE
1034 ;5 = =
1039 i
0728 oC 1034 CHRTARY DB OCHs9FHs4AHsORH 10111243
0729 9F
0724 4A
0728 OB
072C 99 1037 DB 99H» 29H, 28H» 8FH 14191647
0720 2%
072E 28
072F 8F
0730 08 1038 DR O08Hy09H,88H,3IBH i81rib
0731 09
0732 88
0733 18
0734 4C 1039 DB ACH»1AHs6BHsOEBH iCydsErF
0735 1A
0734 48 ,
0737 E8
0738 98 1040 DB 98Hy7CHsOCBHy1CH tHsLoPyU
0739 7C
0734 C8
0738 1C
073C FA 1041 DB OFAH:78HsOF7H,OFFH 3rsty.2Sprace
073D 78
073E F7
073F FF
' 1042
1043
1044
1043
1044
1047 §
1048 RAH LGCATIONS
1049 3 0 meeeecessanee
1050 4
2000 1051 ORG 2000H
2000 1052 RPTFLG: DS 1
2001 1033 TNTFLGY IS i
2002 1054 RSTFLG) DS 1
2003 1033 TRPFLG: DS i
2004 1056 DS TOPST-$ $STACK
1057

-1058 $EJECT

274,

ISIS-11 8080/8085 MACRO ASSEMBLERs V3.0 HODULE PAGE 22
SIK-85 Self Diasnostic V34
LOC 0OBJ LINE SOURCE STATEMENT

1009 FRERHER SRR HA AT HELE A B RHLLE LTS0S LSRR R L0 4 R R R 10000 5 i
1060
1061 i
1042
1063 i
1044 §
1063 i
1066 §
1047 i
1048 7 STAGE II
1049 sr=zrzz=
1070 §
1071 ¢
1072 5 THIS PROGRAH EXERCISES THE OM BOARD RAM AND 1/0 FORTS
1073 # OF THE SDK-85 FOR VERIFICATION USING SIGNATURE ANALYSIS.
1074
1075
1074
1077
1078 § TSTID MACRO TESTS THE <NORITS> WIDE QUTPUT
1079 i PORT AT ADDRESS <IDADR> BY WALKING A 1 ACROSS
1080 § THE PORT. EACH TIHE NEW DATA IS WRITTEN TO A
1081 5 PORT BY THE ‘QUT‘ IHSTRUCTIONs THE NEW DATA IS
1082 § FIRST CLOCKED INTO THE SIGNATURE ANALYSER RY
1083 7 THE FOSITIVE EDGE OF RIV WHEN THE MEXT INST-
1084 3 RUCTION IS FETCHED, THIS ALLOWS AT LEAST 720ns
1085 # FOR THE LiATA TD SETTLE AT THE OUTRUTS.
1086 i
1087 T5TI0 MACKRO IOADR,NOBITS
1088 LOCAL MXTRIT
10Q9

- 1090 MVl C,yNORITS ifMO, OF RITS YO TEST.

- 1091 NXTBITY OUT ICALR #iWRITE TEST PATTERH.

- 1092 RLC $SHIFT TEST RIT LEFT,

. 1093 bk C i1STOP IF ALL BITS TESTED.

- 1094 JNZ NXTBIT il

- 1093 YRA A #1CLEAR THE PORT AGAIN.

- 1094 OUT I0ADR]

- 1097 IHR A #1SET TEST BIT AGAIN,

- 1098
1099 ENDN
1100

1101 $EJECT

275.

ISIS-IT 8080/8085 MACRD ASSEMBLER, V3.0 MODULE PAGE 23
SDK-85 Self Diagnostic V34

Loc o0BJ

0400

0400 F3

0401 JEOF
0403 D320
0405 1328
0407 3EFF
0409 D302
0408 D303
040D D30A
040F D30R

0411 AF

0412 1321
0414 D322
0416 D323
0418 D329
0414 D324
041C 1328
041E D300
0420 D301
0422 D308
0424 D309

0426 210019
0429 3408

042B 3530
042D 3490

042F 36CD
0431 JECS
0433 3D
0434 C23304

0437 25
0438 B7
0439 3E01
0428 77
043C 17
043D [I23RO4

0440 3EFE
0442 77
0443 17

SOURCE STATENENT

04004

ArOFH iPROGRAN RAM PORTS
CTRL1 # AS DUTPUTS,

CTRL2 i

ArOFFH JPROGRAM ROM PORTS
IDR1A i AS BUTPUTS.
DDR1EB i

ODR2A i

DDR2B i

A

RAMLA
RAN1B
RAM1C
RAH2A
RAMZR
RANZ2C
ROM1A
ROK1R
ROM2A
RON2B

8279 KEYBCARD/DISFLAY COHTROLLER

HyKDCC JADRS DF 8279 CONTROL REG.
H»08H 1PROGRAM FOR 16 CHAR. LEFT
i ENTRY DISFLAY, ENCOLED SCAN
i 2 KEY LOCKOUT KEYBOARD.
He30H iSET CLOCK CTR TO 14
He FOH FWRITE DISPLAY RAN» AUTO-
i INCREMENT.
HrOCOH SCLEAR DISPLAY RAH AND FIFOD.
A12000 iWAIT Ims FOR DISPLAY TO
A i CLEAR.

LINE

1102 ORG
1103

1104 DI
1105 HVI
1106 ouT
1107 put
1108 HVI
1109 puT
1110 ouT
1111 ouy
1112 ouT
1113 j

1114 7 SET ALL OUTFUTS TO 0.
1115 i

1114 XRA
1117 ouT
1118 ouT
1119 ouT
1120 out
12 ouT
1122 ouT
1123 out
(124 ouT
1125 outT
1126 ouT
1127 i

1128 § INITIALISE
1129 i

1130 LXI
1131 M1
1132

1133

1134 WV
135 MVI
1136

137 HVI
1138 HV1
1139 WICLRY IDCR
1140 JNZ

1141
1142 §
1143
1144
1145
1144
1147
1148
1149
1150 WALKLG
1151
11352
1133
1154
1155 WeLKO:
1156

- WL MR ame e e

DCR
ORA
HVI
Hov
RAL
JNC

KVI
HoV
RAL

HTCLR i

TEST THE DISPLAY CONTROLLER OQUTPUTS BY STORING
WALKING 1S AND 0'S IN THE DISPLAY RAK. THE
DISFLAY SHOULD SHOW:

8.8.8.8. 8.8,

H ${HL) = $BOOH

A 1CLEAR CARRY.

A 01H i

HiA yHRITE DATA TO DISP. RAH.

iSHIFT THE BIT LEFT.
HALK1 iREPEAT UNTIL B BITS
i ARE TESTED.
ArOFEH #CARRY 1S SETIREPEAT
HeA + WITH WALKING 0.

1SIS-I1 8080/8085 MACRD ASSEMBLER, V3.0
SDK-85 Self Diadnostic V34

Loc 0BJ

0444 DA4204

0447 DB3D
0449 D338

044B 115404
044E 210020
0451 C3ECO4
0454 [IR30
0436 D330

0438 115104
0458 210028
045€ CIECO4
04461 DB10
04463 D110

0445 3£01

0467 OE0B
0469 D300
0468 07
046C O
04460 C26904
0470 AF
0471 D300
0473 3C

0474 OECB
0476 1301
0478 07
0479 O
0474 C274604
047D AF

276.

MODULE PAGE 24

fPULSE CS7/ (UITH RD/ AND WR/)
i TO SIGHAL START OF RAN #$1
i TEST (AND END OF 1/0 TEST).

THE RAM TEST SUBROUTINE IS ACCESSED BY A JHP
INSTRUCTION, YITH THE RETURN ALDRESS STORED IN
DEy TO AVDID USING UNTESTED RAM FOR SUBRODUTINE

iSAVE RETURN ADDRESS.
START ADLRESS OF RAM 1.
iJUMF TO RAM TEST S/R.
§PULSE CS46/ -END OF RAN 1
i TEST AND START OF RAM

i ¥2 TEST,

iSAVE RETURM ADDRESS.
§START ADDRESS OF RAM %2.
iJUHP TO RAM TEST S/R.
PULSE €S2/ -END OF RAH §2
i TEST AND START OF 1/0

i TEST.

THE OUTPUT CAPABILITIES OF THE I/0 PORTS AND THE
INTEGRITY OF THE CONNWECTIONS TO THE I/D CONNECTGRS
ARE TESTED BY WALKING A ‘1’ ACROSS ALL 10 PORTS.

FINITIALISE THE TEST BIT.

i1/0 TEST MACRD CALLS.

LINE SOURCE STATENENT
1157 J WALk
1158 §

1159

1160 RAM TEST
141§ emeeeees
1162

1163 LOOP! IN CS7
1164 ouT €87
1145

1166

1167 i

1168 §

1169 §

1170 i LINKAGE,

1171 LXI DsRET!
1172 LXI HiRAN1
173 JHP RAMTST
1174 RETES IN 086
1175 0T CS
1174

1177 LXI DWRET2
1178 LXI HyRAH2
1179 JHP RANTST
1180 RET2! 1IN CS2
1181 0uT €52
1182

1183

1184 QUTPUT FORT TEST
S I
1184 §

1187 §

1188

1189 }

1190

1191 MV AsOIH
1192

1193 TSTI0 ROM1A+8
11944

1195+ W 08
11964770001 OUT ROMIA
1197+ RLC

1198+ DR C
11994 I 770001

12004 XRA A
12014 OUT RON1A
12024 IR A
12034
1204 TSTIO RON1B:8
1205+
1204+ WI €8
120747700028 OUT ROM1B
1208+ RLC
12094 DR €
12104 JNZ 7?0002
12114 XRA A

ISIS-1I B0S0/808% MACRO ASSEMBLERy V3,0 HODULE PAGE 23
5DK-85 Self Diadnostic V34

LOC 0OBJ

047E D301
0480 3C

0481 0£08
0483 D308
0485 07
0486 0D
0487 £28304
0484 AF
0488 D308
048D 3C

048E OLOB
0490 D309
0492 07
0493 oD
0494 £25004

0437 AF
0498 1309
0494 3C

0478 (EC8
049D D321
049F 07
0440 0D
04A3 C29004
0444 AF
0445 D321
0447 3C

0448 (EOB
04AA D322
04AC 07
04AD 0D
04AE C2AA04
04B1 AF
0482 1322
04B4 3C

04ES OE0H
0487 D323
0489 07
04BA 0D
04BR C2B704
04BE AF

LINE

12124
1213¢
12144
1215
12164
12174
12184770003}
12194
12204
12214
12224
1223+
12244
1223+
1226
12274
122684
, 12294770004
1230+
12314
12324
1233+
12344
1235+
1236+
1237
1218+
1239+
124047700053
12414
12424
12434
12444
1245¢
12464
12474
1248
12494
12504
12514770006¢
1232¢
1253t
1254¢
1255+%
1256+
12574
1256+
1259
12604
12614
126247700073
1263+
1264+
12654
12664

SOURCE STATEMENT

OUT ROM!B
IR A

TSTI0 ROM2A)8

I Ci8
UT ROM2A
RLC

DR C

JNZ 770003
XRA A

OUT ROM2A
IR A

TSTIO ROM2R:8

WL 8
ouUT ROM2R
RLC

bR €

JNZ - 7R0004
XRA A

DUT ROMZER
INR A

TSTID RAK1AsB

Wi C.8
OUT RAMIA
RLC

DR C

JNZ 770005
XRA A

OUT RAMIA
INR A

TSTIO RAMiB.8

Wi C8
OUT RAMIB
RLC

IR C

JHZ - 770006
XKA A

QUT RAHIR
INR A

TSTID RANIC»6

VI Cé
OUT RAMIC
RLC

DCR €

JNZ 770007
XRh A

277.

ISIS-11 B080/8085 MACRD ASSEMBLER, V3.0
SDK-85 Self Diadnostic. V34

Loc owJ

04BF D323
04C1 3C

04C2 0E08
04C4 D329
04C6 07
04C7 ¢D
04C8 C2C404
04CB AF
04CC [329
04CE IC

04CF 0E0B
0401 D324
0403 07
04b4 OD
0403 C21104
0418 AF
0409 1324
040B 3C

04DC OEQS
04DE D32B
04E0 07
04E1 0D
04E2 C20E04
04ES AF
04E6 D32B
04E8 IC

04ES C34704

- 1310

LINE

12674
12684
12694
1270
12714
1272+
127347700081
1274+

12754

12764

12774

12784

12794

1280+

1281

1282+

12834
128447700091
1283+

1286+

12674

1268+

1289+

12904

12914

1292

1293+

12944
129547700101
1296+
12974
1298+
1299+
1300+
1301+
1302+
1303
1304 i
1305
1304
1307
1308
1309

1314
1312
1313
1314
1345
1316
1317
1318
1319
1320
1321

r mb mE e @ A aa MBF WP F mp OB P e SGS @S SR Sw

SOURCE STATEMENT

OUT RANIC
IR A

TSTIO RAH24,8

KWI Ci8
OUT RAM2A
RLC

BCR C

JHZ 770008

XRA A
OUT RAKH2A
INR A

TETID RAH2E,B

K1 €8
OUT RAM2B
RLC

DCR C

JNZ 770009
XRA A

OUT RANM2B
INR A

TSTID RAM2C+6

HI O
OUT RAH2C
RLE

DCR C

JNZ 770010

XrRA A
OUT RANZC
IR A

JKP LOOP

HODULE PAGE 26

iREFEAT TESTS INDEFINITELY,

RAI TEST SUBROUTINE,

THIS ROUTINE TESTS THE 256 BYTE BLOCK OF RAH
STARTING AT (HL) AS FOLLOWS:

1, THE Ra IS FILLED WITH OOH,

2, FFH IS WRITTEM INTO EACH LOCATIONs AFTER
READING THE LOCATION (TO VERIFY IT STILL CONTAINS

00H)y FROH YHE TOP DOWM,

FOR FFH.

OF EACH BIT.

3, O0H IS AGAIN WRITTEN FROH BOTTOM UPy AFTER CHECKING

4, EACH LOCATION IS TESTED BY WRITING AMD READING THREE
BYTES (OFK,33H,55H) TO CHECK THE INDEPENDENCE

THE DATA REAIl BACK IS VERIFIED BY THE SIGNATURE
AHALYSER,

278.

ISIS-I1 8080/8085 MACRD ASSEHBLER, V3.0
SDK-85 Self Diadnostic V34

Loc oRJ

04EC 0E0O
04EE 3600
04F0 0C
04F1 CAFB04
04F4 23
04F5 CIEEQA

04F8 7E
04F9 J&FF
04FE 0OC
04FC CAQ305
04FF 2B
0500 C3FB04

0503 7t
0504 3500
0506 OC
0507 CAOEQS
0504 23
050k C30303

050E 360F
0510 7€
0511 3433
0513 7E
0514 3655
0516 7E
0517 3600
0519 0C
0514 CA2103
051D 2B
051E CI0EQS

0521 ER
0322 E9

PUBLIC SYHBOLS

EXTERNAL SYMBOLS

LINE SOURCE STATEMENT

1322 §
1323 RANTSTY MVI Cs00H
1324 NXTLOC? MVI HyOOH

HODULE PAGE 27

i INITIALISE BYTE CTR.
iWRITE 0’S IN ALL

i LOCATIDNS.

iSTOP IF 254 DONE.
JELSE INCREHENT ALRS

i AND CONTINUE.
AND WRITE FFH.

iDUHMY READ.

1STORE 1’S.

15T0P AFTER 236

i LOCATIONS,
JDIECRENENT ADRS AND
i REPEAT,

DUNHY READ,

1STORE 0’S.

i

i

i INCREHENT ADDRESS.

i

1325 INN C

1324 JZ REARDO
1327 INX H

1328 JUP NXTLOC
1329 5

1330 ¥NOW READ RACK THE DATA
1331 4

1332 READOS WOV &M
1333 KT HsOFFH
1334 INN C

1335 JZI READ1
1335 pCX H

1337 JKP READO
1338 i

, 1339 PREAD BACK FF‘S AND WRITE 00'S AGAIN.
1340 i

1341 KEADLY MOV AsH
1342 HVI MsQOH
1343 IR C

1344 JZ BITCHK
1345 INX H

1344 J¥P READM
1347 5

1348 NOW TEST THE INDEPENDEMCE OF EACH BIT IN EACH BYTE
1349 iBY URITING A UNIQUE BINARY SEQUENCE TO EACH BIT,

1330 5

1351 BITCHK! HVI ¥y OFH
1332 KOV AsM
1353 HVD M) 33H
1334 HOV Asif
1355 HVI My5CH
1354 MOV AaM
1357 HVI HyOOH
1358 IR C
1359 JZ ENDTST
1360 DX H
1361 JHP - BITCHK
1362 i

1363 §

1364 i 1IN DE.
1363

1366 ERDTST? XCHG

1367 PCHL

1368 §

1369 3

1370 END

fWRITE AND READ
i 00001111,
JURITE AKD READ
i 00110011,
FURITE AND READ
i 01010101,
iCLEAR THE BYTE.
236 BYTES DONE?
tEXIT IF S0,
ELSE DECREMENT AND
i REFEAT,

RETURN BY JUMPING TO THE ADDRESS SAVED

(DEY->(HL)
i (HLY=>(PC)

279.

ISIS-11 8080/8085 HMACRD ASSEMBLER, V3.0
SDK-B3 Self Diagnostic V34

USER SYHBOLS
BITCHE A 0S0E
CONVRT A 064E2
- DDR1A A 0002
DLYS00 A 064D
ERB2 A 0213
ERRDSF A Q4FF
ITR34 4 0191
KBDE4 f 049B
LODF2 A 0641
RAML A 2000
RANZB A 0024
RET1 A 0434
RON2B & 0009
RPTCH A 0052
SEROUT A 009E
TESTO 4 0031
TEST6 A O1IFF
TIH2HT A 002D
WRITS A 01B1
WFIP A 00BC
WTF1 A 0205

ASSEMBLY COMFLETE

CHRTAB A 0729
€S2 A 0010
[DRIB A 0003
DLYSID A Q0A2
ERB3 A 0202
EXEC A 0030
ITRS A O1F7
KICC A 1900
NEXT A 0051
RANIA & 0021
RAH2C A 002B
RET2 A 0441
RFT34 A 00D6
RFTFLG A 2000
SEYRIT A 0723
TESTL 4 0078
TEST? A 0234
TIM2LO A ©02C
WAITE A 0210
HFTRF A 0164

NO ERRORS

CHSOD A 00BC
CS6 A 0030
[DR2A A 000A
DSFTST A O4BF
ERR1 A 0714
EXITS A 022

ITR7 A 0282
KBCD A 1800
HXTAD A 0305
RAFLE A 0022
RAHTST A Q4EC
FETURNH A 048D
RPTS A OIRF
KETFLG A 2002
ELTFLG A 0707
TEST2 A 0098
TEST8 A 028A
TOPST A 2100
WAITZ A 0243
BRFF A 0302

HODULE PAGE 28

CLRDSP A 06D8

£57 A 0038
DDR2B A 0008
ENDO A 004B
ERR2 A 0719
INTFLG A 2001
KEDEL A Q48F
LAST A 0320
NXTCH A 0057
RAHIC A 0023
RIKBD A D&EF
ROKiA A 0000
RPT7 A 0258
RSTIR A 002C
SHFTA A OQEA
TEST3 A 0QCD
TEST? A O2F4
TRPFLG A 2003
WAITE A 0292
WT6 A 0232

CLRFLG & 0700
CTRLY A 0020
DELAY A 0640
ENDTST A 0321
ERRI A 071E
T0ERR A 0188
KBDE2 A 0693
LOOP A 0447
NXTLOC A O4EE
RAM2 A 2800
READO A 04F8
ROMIE A 0001
RPT8 A 02DR
RTRN A G&FD
SHFTE & O12E
TEST4 A 0154
TIKIHI A 0025
TSTID + 0000
WALKO A 0442
WICLR & 0433

280.

CLRKBD A Q&FF
CTRL2 A 0028
DISPCH A 0003
ERE1 A 0214
ERR4 A 0723
I0ERT A 0183
KBLE3 A 0697
LOOPL A 0443
PASTIR A QO3F
RAM2A A 0029
REAIM A 0503
ROM2A A 0008
RPT9 A 02FE
SERERR A 0054
STORE A 070F
TESTS A 019
TINILD A 0024
TSTKRD A 0438
HALK1 A 0A3E
WTFO & 02B°

281.

APPENDIX F

SDK-85 SIGNATURE ANALYSIS PROCEDURE OPERATING INSTRUCTIONS

282.

SDK-85 SIGNATURE ANALYSIS PROCEDURE

(For an SDK-85, using V1.2 of the SDK-85 monitor, with V34 of the SA
test program (SDK85S.V34, Appendix E) and V8 of the 8085 self test

program (SLFTST.V8, Appendix G).)

The signature analysis routine for the SDK-85 is divided into

three stages:

Stage I is the basic stage, designed to verify the CPU, ROM and

bus integrity while the CPU free-runs through its entire

address range,

Stage I1 is an intermediate stage designed to test RAM, output

ports and those bus signals not testable at Stage I.

Stage II1 is the self-diagnostic stage in which the processor

executes a program stored in the test ROM to verify some
of its more complex operations, as well as to more fully

test its peripheral chips.

In each stage the procedure must be followed through step by step
{(1), (2), (3) etc.}, performing the specified test or taking the speci-
fied signature at each test. If the result of a test is incorrect, the
1ikely cause of the fault will be indicated in the procedure. EACH FAULT
MUST BE CORRECTED AS SOON AS IT IS IDENTIFIED AND THE ENTIRE SIGNATURE
ANALYSIS ROUTINE MUST BE STARTED AGAIN - FROM STAGE I STEP (1). The
only exceptions to this rule occur in Stage IiI, in which some errors
may be stepped over to proceed to later tests, as described in the pro-

cedure for Stage III.

283.

To accommodate signature analysis, the SDK-85 must have been modified
to include an address selection DIL socket. The appropriate plug (white,
orange or blue) must be inserted in this socket at each stage, as speci-
fied in step (1) of each stage. For normal operation (i.e. execution of
the SDK-85 monitor stored in the ROM, A14) the WHITE plug should be in-

serted.

In addition a free-run adapter (holding buffers Bl and B2 and a zero

insertion force socket for the 8085 (All)) is needed for Stage 1.

A number of test connectors - P3, P4, P5 and P1/P2 (including a
buffer to apply an interrupt vector to the 8085 data bus) - are required
to execute all tests at Stage III.

IT IS ASSUMED THAT ALL TEST HARDWARE (ADAPTERS AND CONNECTORS) IS
WORKING CORRECTLY THROUGHOUT THE S.A. ROUTINE. If there is any doubt this

(simple) external hardware should be tested separately.

Signature analyser connections to the system are generally specified

in the form

CLOCK (}) to < pin number >

START (t) to < pin number >

STOP (£) to < pin number >

where (F) or (1) indicates that the given signature analyser input

should trigger on the negative or positive edge (respectively).

284.

<pin number> will be specified in the form:

while

IC or connector number - pin number

(e.g. A7-1 is pin 1 of IC A7).

Signature analyser connections to the system may not be changed

power is applied to the system (but positive/negative edge trigger

switches, of course, may be). The power must be turned off, new connec-

tions

test.

NOTES:
(1)

made, power turned on and RESET button pressed to proceed with the

The procedure in some steps may involve instructions to proceed to
subsequent steps under certain test conditions. These must be

obeyed if the given test condition is satisfied. If there is no in-
struction to the contrary, proceed to the following step unless a
fault is identified, in which case it must be repaired and the routine

recommenced.

Where instruction to replace a device is qualified by an asterisk
(e.g. replace All*) it should be noted that the faulty behaviour of
the device may be due to a short circuit on one or more of its output

lines, rather than an internal fault.

In such cases either use a current tracing device to isolate any
short circuits before replacing the device or replace the device and
look for short circuits on the output lines if the fault occurs

again.

Some pins at which signatures are to be taken are marked with a

double asterisk (e.g. Al11-32**). 1In these cases two signatures are

285.

to be taken -

one with the CLOCK input set to trigger on the positive edge

one with the CLOCK input set to trigger on the negative edge

with the START and STOP inputs as specified in the first instance.

The signatures expected are noted in the form
positive edge / negative edge
and both must be correct.

After taking these signatures, the CLOCK edge select switch must be

returned to the originally specified position.

It is possible that, due to timing margin differencesand spurious
effects within the system, some signatures will appear a little
unstable. However, if one occurs much more frequently than any

other then it can be taken as a valid signature at that point.

The procedure is neither foolproof nor complete, so the conclusions

drawn by following the procedure may be incorrect in some cases.

If, after following the specified procedure,a fault is not cured
then more conventional debugging techniques must be used - with or
without the help of any information that may have been obtained by
following the signature analysis procedure up to the point of its

failure.

286.

Link Placement

In Stages I and II, and up to step (6) of Stage III, when three
links must be removed, the following links on the SDK-85 board must be

inserted or removed as specified below.

Link Status

1-2 Out if A9 is installed, In otherwise.

3-4 In if buffer A5 in installed, Out otherwise.
SRS Out if buffer A5 is installed, In otherwise.
6-8 Out if buffer A3 is installed, In otherwise.
7-8 In if buffer A3 is installed, Out otherwise.
9-10 In

11-12 In

13-14 Qut

15-16 Out

17-18 In

18-19 Out
20-21 In

22-23 In

23-24 Qut

25-26 Out
25-27 In

28-29 In if Al4 is 8755, Out if Al4 is 8755A.
29-30 Out if Al4 is 8755, In if Al4 is 8755A.
31-32 In if AlS is 8755, Out if Al5 is 8755A.
32-33 Out if Al5 is 8755, In if Al5 is 8755A.

287.

SDK-85 SIGNATURE ANALYSIS

Stage 1

(1)

(2)

INITIALISATION:
Remove 8085 (All) from its socket on the SDK-85 board and place in

the free-run adapter (Appendix C).

Plug the 40 pin plug from the adapter into the 8085 socket.

Ensure the WHITE plug is inserted in the address selection socket.
Connect the}signature analyser leads as follows:

GROUND to GND (Adapter test pin 1)
CLOCK (%) to ALE (Adapter test pin 4)
START (1) to Al5 (Adapter test pin 2)
STOP (1) to Al5 (Adapter test pin 3)

Apply power and, using a logic probe, voltmeter, or CRO verify that:

Pin All - 20 is at GND (OV)
Pin All - 40 is at Vee (5V)
Pin All - 36 is Hi, and goes Lo when the RESET key is

pressed.

If not, check the connections to the 8085 through the adapter cable

and the socket on the SDK-85 board.

Again using logic probe, CRO a voltmeter, check that pin All - 3
is Lo, and goes Hi when the RESET button is pressed. If not replace

All.

288.

(4) Verify the following signatures:

Pin Signal Name Signature
All - 5 SID 0000
-6 TRAP 0000
-7 RST 7.5 0000
-8 RST 6.5 0000
-9 RST 5.5 0000
- 10 INTR 0000
- 35 RDY 0001
- 39 HOLD 0000

If any errors then the free-run adapter is faulty.

(5) Take signaturesat the following pins:

Pin Signal Name Signature
All - 28 Al5 755U
- 27 Al4 3827
- 26 Al3 3C96
- 25 Al12 HAP7
- 24 All 1293
- 23 A10 HPPO
- 22 A9 2H70
- 21 A8 HC89

If any errors then replace All*.

(6)

Pin Signal Name Signature

Bl - 18 BA7 52F8

- 16 BA6 UPFH

- 14 BAS OAFA

- 12 BA4 5H21

B2 - 18 BA3 7F7F

- 16 BA?2 cccce

- 14 BAl 55565

- 12 BAQ Uuuu

NOTE: Bl and B2 are buffers on the test adapter.

1f any errors then go to (7).

else to to (8).

289.

(7)

Pin Signal Name Signature

A1l - 19 AD7 52F8

- 18 AD6 UPFH

- 17 AD5 OAFA

- 16 AD4 5H21

- 15 AD3 7F7F

- 14 AD2 ECeE

- 13 AD1 5555

- 12 ADY uuuu

If any errors then replace All

else there is a short circuit on the system data bus.

(8) Verify the signature at all of the listed pins.

Pins Signature

A13-19, A14-19, A15-19, Al6-19, A17-19, A4-12, A4-14, A6-22| 5258
A13-18, Al4-18, A15-18, Al6-18, Al7-18, A4-9, A4-11, A6-20| UPFH
A13-17, Al4-17, Al15-17, Al6-17, Al7-17, A4-7, A4-5, A6-18 OAFA
A13-16, Al4-16, Al5-16, Al6-16, Al7-16, Ad-4, A4-2, A6-16| 5HZL
A13-15, Al4-15, A15-15, Al6-15, Al7-15, A7-12, A7-14, A6-9 7F7F
A13-14, Al4-14, A15-14, Al6-14, Al7-14, A7-9, A7-11, A6-7 EECE
A13-13, Al4-13, A15-13, A16-13, Al17-13, A7-4, A7-2, A6-5 5555
A13-12, Al4-12, Al5-12, A16-12, A17-12, A7-7, A7-5, A6-3 uuuu

A14-21, A15-21, Al3-21 HC89
A14-22, A15-22 2H70
A14-23, A15-23 HPPO

If the signature at any pin is wrong theh there is an open circuit
on the address/data bus 1ine to that pin from All. Trace and repair

the Tine.

290.

(9)

Pin Signal Name Signature

Al10 - 7 cS7/ A68C
-9 CS6/ A277
- 10 CS5/ 9840
- 11 cs4/ 8P4P
- 12 €S3/ 5P18
- 13 cs2/ 2828
- 14 CS1/ 02H7
- 15 €S0/ 3ADF

If any errors then go to (10)
else go to (11).
(10) —

Pin Signal Name Signature

Al0 - 1 A1l 1293
-2 Al2 HAP7
-3 Al3 3C396
-4 Al4 3827
-5 Al5 755U
-6 Vee 0001
-8 GND 0000
- 10 Vee 0001

If any errors then there is an open circuit to the input pin of AlO

else replace AlO*.

- 291.

(11)
Pin Signal Name Signature
Al7 - 8 CS5/ 9840
Ale - 8 cS4/ 8P4P
A15 -1 cS1/ 02H7
Al4 -1 cSo/ 3APF
A13 - 22 €S3/ 5P18

If any errors then there.is an open circuit in the 1ine to that
pin from AlO.
(12) Change the ;ignature analyser connections:
CLOCK (f) to RD/ (All - 32)
START (%) to Al5 (TP2)
STOP (1) to Al5 (TP3)

Verify the following signatures:

Pin Signal Name Signature
All - 11 INTA/ 0001
- 31 WR/ 0001
- 32%% RD/__ 000070001
- 34 I0/M 0000
- 38 HLDA 0000

If any errors then replace All*

else go to (13)

292,

Check all of the following signatures:

Pins 8&2221 Signature
A13-9, Al4-4, Al5-4, Al6-4, A17-4, AS-10 | RESET 0000
A14-2, Al5-2, CE 0001

A13-10, A14-9, Al5-9, Al6-9, Al7-9*%* RD/ 0000/0001
A14-5, Al5-5 Vpp 0000
Al14-8, Al5-8 I0R/ 0001
A14-10, A15-10, Al6-10, WR/ _ 0001
Al4-7, Al5-7, Ale-7 I0/M 0000

A2-T7** RD/ 0000/0001
A2-8, A4-8, A7-8, A9-7 GND 0000
A2-15 GND 0000
A2-16, A4-16, A7-16, A9-14 Vee 0001
A1-2, A3-1, A5-1, A6-2 GND 0000
Al-11, g Vee 0001
Al-12, A3-8, A5-8, A6-12, A8-7 GND 0000
A1-13, » A6-13 Vee 0001
Al-14, , R6-14 Vee 0001
A1-24, A3-16, A5-16, A6-24, A8-14 Vee 0001
A3-15, A5-15, GND 0000
A3-4, HOLD 0000
A3-9, HLDA 0000
A3-12, » A8-1 INTA/ 0001
A5-12 RST6.5 0000
, A8-4 A15 755U

» A8-12%* RD/ 0000/0001

, A8-13** RD/ 0000/0001

If any errors then the connection to the pin in error is open

circuited.

(15)

Verify the following signatures; ' remedy the fault specified if the

signature at any pin is incorrect else go to (15)

Pin Signature Fault if incorrect signature(s)

Al3-4 0000 A13 faulty - replace*

Al6-6 0001 Al6 faulty - replace*

A8-11** 000170000 A8 faulty - replace*

AB-5** 0001/0000 Open cct from A8-11 to A8-5
AB-p** 755P/0001 A8 faulty - replace*

AB-2%** 755P/0001 Open cct from A8-6 to A8-2
A8-3** 755U/0000 A8 faulty - replace*

A7-15%* 755U/0000 Open cct from A8-3 to A7-15
Ad-15%* 755U/0000 Open cct from A8-3 to A4-15

Change the signature analyser connections to the following:
CLOCK (F) to CLK (A13-3)
START (}.) to RD/ (Al1-32)
STOP (%) to RD/ (A11-32)
Take signature at All-37**
If signature(s) are 0000/000U then go to (16)
else replace All* or there is an open
circuit from All-37 to A3-3.
Pin Signal Name Signature
A13-3%* CLK 0000/000U
A14-3** CLK 0000/000U
Al15-3** CLK 0000/000U
Al6-3** CLK 0000/000U
A17-3** CLK 0000/000U
18-9** CLK 0000/000U
AB8-19** CLK 0000/000U
A5-7** CLK 0000/000U
J5-24** CLK 0000/000U

If any signature is wrong then there is an open circuit from

Al1-37 to that pin.

(17)

Pin Signature(s) Fault if bad signature

A5-6** 0000/000U A5 faulty - replace*

Jl1-4** 0000/000U Open circuit from A5-6 to Ji-4

AB-8** 000uU/0000 A8 faulty - replace*

AQ-3** 0o0u/0000 Open circuit from A8-8 to A9-3

A9-1 000U Bad connection from Vec to AS-1

A9-2 0000 Open circuit from Al11-38 to A9-2

A9-11 0000 Bad connection from GND to A9-11

A9-12 0000 Bad connection from GND to A9-12
| A9-13 0000 Bad connection from GND to A9-13

A9-9 000U A9 faulty - replace*

A9-4 000U Open circuit from A9-9 to A9-4

A9-5 0000 A9 faulty - replace*

Al-1 0000 Open circuit from A9-5 to Al-1

A2-1 0000 Open circuit from A9-5 to A2-1

Ad-1 0000 Open circuit from A9-5 to A4-1

A6-1 0000 Open circuit from A9-5 to A6-1

A7-1 0000 Open circuit from A9-5 to A7-1

If no errors then go to (18).

(18) Change signature analyse connections to:

CLOCK (£) to ALE (Adapter TP4)

START () to Al5 (Adapter TP2)

STOP (}.) to Al5 (Adapter TP3)

Pin Signature(s) Fault if incorrect signature
Al4-11** | 0000/755U Open circuit from A11-30 to Al4-11
A15-11** | 0000/755U Open circuit from A11-30 to Al5-11
A16-11%* | 0000/755U Open circuit from A11-30 to Al6-11
A17-11** | 0000/755U Open circuit from A11-30 to Al7-11
A2-0** 0000/755U Open circuit from Al1-30 to A2-9
Ab-11** 00uUU/755U Open circuit from Al1-30 to A6-11
A2-10%** 0000/755U+ | A2 faulty - replace*

J1-10** 0000/755U+ | Open circuit from A2-10 to J1-10
L

If no errors then go to (19).

1+ These signatures are prone to instability.

294 .

295.

(19) Set signature analyser up as follows:
CLOCK (7}.) to ALE (Adapter TP4)
START (}.) to Al5 (Adapter TP2)
STOP (V) to Al5 (Adapter TP3)

Pin Signal Name Signature
J1-26 B-D7 52F8
J1-28 B-D6 UPFH
J1-30 B-D5 OAFA
J1-32 B-D4 5H21
J1-34 B~-D3 7F7F
J1-36 B-D2 ccce
J1-38 B-D1 5555
J1-40 B-D@ uuuu

If no errors then go to (21)

else go to (20).

(20)
Pin Signal Name Signature
A4-13 B-D7 52F8
A4-10 B-D6 UPFH
A4-6 B-D5 OAFA
A4-3 B-D4 5H21
A7-13 B-D3 7F7F
A7-10 B-D2 ccce
A7-3 B-D1 5555
A7-6 B-D@ uuuu

If any errors then replace A7* and/or Ad*
else the fault is an open circuit on a line from

A7/A4 to J1.

296.

(21) Change the signature analyser connectionsto:
CLOCK (4) to RD/ (A11-32)
START (}) to AL5 (TP2)
STOP (}.) to Al5 (TP3)

Pin Signature(s) Fault if incorrect signatures
| A2-6** 0000/0001 A2 faulty - replace*
J2-6%* 0000/0001 Open circuit from A2-6 to J2-6
A3-3 0000 A3 faulty - replace*
A3-10 0000 | A3 faulty - replace*
A3-13 0001 A3 faulty - replace*
A5-13 0000 A5 faulty - replace*
Jl-12 0000 Open circuit from A3-10 to Jl1-12
J1-16 0001 Open circuit from A3-13 to Ji-16

If no errors then go to (22).

(22)
Pin Signal Name Signatures
J2-10 B-A15 755U
J2-12 B-Al4 3827
Jz2-14 B-Al13 3C96
J2-16 B-A12 HAP7
J2-18 B-All 1293
J2-20 B-A10 HPPO
J2-22 B-A9 2H70
J2-24 B-A8 HC89

If no errors then go to (25)

else go to (23).

(23)

Pin Signal Name Signatures
Al1-21 B-A15 755U
Al1-19 B-Al4 3827
Al-17 B-A13 3C96
Al-15 B-A12 HAP7
Al1-10 B-All 1293
Al1-8 B-Al10 HPPO
Al-6 B-A9 2H70
Al-4 B-A8 HC89

If any errors then to to (24)
else there is an open circuit in line(s) from
Al to J2.
(24)

Pin Signal Name Signatures
Al1-22 BA15 755U
Al1-20 BA14 3827
Al1-18 BA13 3C96
Al1-16 BA12 HAP7
Al1-9 BAl1l 1293
Al-7 BA10 HPPO
Al-5 BAS 2H70
Al1-3 BA8 HC89

If any errors then there is an open circuit on Tine(s) from

else replace Al*,

A1l to Al

297.

(25)

(26)

Pin Signal Name Signature
J2-26 B-A7 52F8
J2-28 B-A6 UPFH
J2-30 B-A5 OAFA
J2-32 B-Ad 5H21
J2-34 B-A3 7F7F
J2-36 B-A2 cccc
J2-38 B-Al 5555

| J2-40 B-AQ uuuu
If any errors then go to (26)
else go to (27).

Pin Signal Name Signature
A6-21 B-A7 52F8
A6-19 B-A6 UPFH
A6-17 B-A5 OAFA
A6-15 B-A4 5H21
A6-10 B-A3 7F7F
A6-8 B-A2 ccce
A6-6 B~Al 6555
A6-4 B-AQ uuuu

If any errors then replace A6*

else there is an open circuit on 1ine(s) from A6

to J2.

298.

(27) Change the signature analyserconnections to the following:
CLOCK (£) to RD/ (A11-32)
START (}.) to CS@/ (Al4-1)
STOP (£7) to CSP/ (Al4-1)

Pin Signal Name Signature
Al4-12 D@ PHAC
-13 D1 H75P
~14 D2 31CF
-15 D3 FO41
-16 D4 UAU4
-17 D5 07UU
-18 D6 F894
-19 D7 UP74

If any errors then replace Al4.

(28) Change the signature analyser connections to the following:
CLOCK (4) to RD/ (A11-32)
START (1) to CS1/ (A10-14)
STOP () to CS1/ (A10-14)

Pin Signal Name Signature
Al15-12 D@ 6PF3
-13 D1 2398
-14 D2 PAAS
-15 D3 0AOC
-16 D4 C37F
-17 D5 HHU8
-18 D6 4FCC
-19 D7 O1FC

If any errors then replace Al5.

299.

300.

Stage II

(1) INITIALISATION
Replace the 8085 (A11) in its socket on the SDK-85 board.

Insert the ORANGE plug into the address selection socket.

Connect the signature analyser leads as follows:

GROUND (_f) to WR/ (Al11-31)
START (1) to CS7/ (Al10-7)
STOP (£) to CS6/ (A10-9).

(2) Apply power to the SDK-85 and, using logic probe, CRO or volt-

meter verify that

Pin A11-20 is at GND (0V)
Pin Al1-40 is at V . (5V)
Pin A11-36 is LO, and goes HI when the reset

key is pressed.

If not, check the appropriate connection to All from the power

supply and/or the RESET key.

301.

(3) Check the effect of the RESET key at the following pins and if the

effect is not as specified, remedy the fault indicated.

Pin Rgiglsggt pﬁggzéd Fault if not correct
All-3 LO HI All faulty - replace*
A13-9 LO HI Open circuit from All-3 to Al3-9
Al4-4 LO HI Open circuit from All-3 to Al4-4
Al5-4 LO HI Open circuit from Al1l-3 to Al5-4
Al6-4 LO HI Open circuit from All-3 to Al6-4
Al7-4 LO HI Open circuit from All-3 to Al7-4
Al2-2 LO HI Open circuit from A1l-3 to AlZ2-2
A12-14 Lo HI Open circuit from Al11-3 to Al2-14
A5-4 LO HI Open circuit from All-3 to A5-4
A9-10 LO HI Open circuit from All-3 to A9-10
A9-9 HI LO A9 faulty - replace*
A9-4 HI LO Open circuit from A9-9 to A9-4
A9-5 LO HI A9 faulty - replace*
Al-1 LO HI Open circuit from A9-5 to Al-1
A2-1 LO HI Open circuit from A9-5 to A2-1
A4-1 LO HI Open circuit from A9-5 to A4-1
Ab-1 LO HI Open circuit from A9-5 to A6-1
A7-1 LO HI Open circuit from A9-5 to A7-1
A5-3 LO HI A5 faulty - replace*
J1-22 LO HI Open circuit from A5-3 to J1-22
i

If no errors then go to (4)

(4) Check the signature at A11-40 (V_)

ccC

If signature - 1HCP then go to (5)

else replace All* - WR/ output error.

Check the following signatures

Pin Signal Name Signature
Al11-6 TRAP 1HCP
A11-7 RST 7.5 1HCP
Al11-8 RST 6.5 0000
A11-9 RST 5.5 0000
A11-10 INTR 0000
A11-35 RDY 1HCP
A11-39 HOLD 0000

If any errors then there is a bad connection to this pin from

logic elsewhere on the board (which was checked at Stage I).

302.

Pin Signature(s) Fault if incorrect signature
Al13-11** 0000/1HCP Open circuit from All-31 to Al3-11
Al4-10** 0000/ 1HCP Open circuit from Al1-31 to Al4-10
A15-10** 0000/ 1HCP Open circuit from All-31 to Al15-10
Ale-10** 0000/ 1HCP Open circuit from All-31 to Al6-10
Al7-10** 0000/ 1HCP Open circuit from Al1-31 to A17-10
A2-12%** 0000/ 1HCP Open circuit from All-31 to A2-12
A2-13** 0000/1HCP A2 faulty - replace*

J2-4%** 0000/ 1HCP Open circuit from A2-13 to J2-4

If no errors then go to (7).

(7)

(8)

Change the signature analyser connections to the following
CLOCK (%) to ALE (A11-30)
START (&) to €S7/ (A1l0-7)
SToP (£) to CS6/ (Al0-9)

Pin Signal Name Signature

A11-29 SO PH34

Al1-33 S1 61F0

Al11-34 I0/M HOAS8

If any errors then replace All*

else go to (8).

303.

Pin Signature Fault if incorrect signature
Al4-7 HOA8 Open circuit from Al1-34 to Al4-7
Al5-7 HOA8 Open circuit from All-34 to Al5-7
Al6-7 HOAS8 Open circuit from All-34 to Al6-7
A17-7 HOA8 Open circuit from All-34 to Al7-7
A2-4 HOA8 Open circuit from Al1l-34 to AZ2-4
A2-3 HOA8 A2 faulty - replace*

A3-7 PH34 Open circuit from Al11-29 to A3-7
A3-6 PH34 A3 faulty - replace*

A5-9 61F0 Open circuit from Al1-33 to A5-9
A5-10 61F0 A5 faulty - replace*

J1-6 61F0 Open circuit from A5-10 to J1-6
J1-8 PH34 Open circuit from A3-6 to J1-8
Jz2-8 HOA8 Open circuit from A2-3 to J2-8

If no errors then go to (9).

(10)

(11)

Change the signature analyser connections to the following:

CLOCK (£) to RD/ (A11-32)
START () to CS7/ (A10-7)
STOP (%) to CS6/ (A10-9)
If A16-40 = 9PHH then go to(10)

else replace All

Pin Signal Name Signature
Al6-19 D7 11F4
A16-18 ; D6 2107
Al16-17 p5 44FP
A16-16 D4 AUGA
A16-15 D3 4583
Al6-14 D2 554A
A16-13 D1 2515
Al6-12 D@ 735F

If any errors then replace Al6

" else go to (11).

Change the signature analyser connections to the following:

CLOCK (f) to RD/ (A11-32)

START (£) to €S6/ (A10-9)

STOP (}) to €S2/ (A10-13)
If A17-40 = 9PHH then go to (12)

else replace All.

[0}

304.

(13)

Pin Signal Name Signature
Al7-19 D7 11F4
Al7-18 D6 2107
Al17-17 D5 PPU9
Al7-16 D4 055F
Al7-15 D3 37U9
Al7-14 D2 UU7F
Al17-13 D1 2515
Al7-12 D@ HI6A

1If any errors then replace Al7

Change the signature analyser connections to the following:

else go to (13).

CLOCK (f) to RD/ (A11-32)

START (£) to €S2/ (A10-13)

STOP (%) to CS7/ (A10-7)

I1f A11-40 = 28P9 then go to (14)

else replace All.

305.

(14)

306.

For each of the following output port signatures, first take the

signatures at the specified connector pin (J3, J4, J5).

If this is correct then

If this is correct

proceed to the next pin

else check the signatures at the corresponding

1/0 port (Al4, Al5, Al6, Al7).

then the fault is an open circuit between the

I1/0 port and the connectors

else the I/0 port is faulty, replace the chip.*

Connector Pin I/0 Port Pin Signature
J3-1 Al14-38 4195
J3-2 A14-39 2483
J3-3 Al4-36 6P58
J3-4 Al14-37 FAHF
J3-5 Al4-34 05uU
J3-6 Al14-35 2F0C
J3-7 Al14-32 H6F4
J3-8 A14-33 UUAH
J3-9 A14-30 804A
J3-10 Al14-31 4500
J3-11 Al14-28 8H66
J3-12 Al14-29 251A
J3-13 Al4-26 8917
J3-14 A14-~27 €312
J3-15 A14-24 puU32
J3-16 A14-25 8CHP
J3-17 A15-38 056U
J3-18 A15-39 2P0A
J3-19 A15-36 FP9H
J3-20 A15-37 C79H
J3-21 Al15-34 54H1
J3-22 A15-35 4PA9
J3-23 A15-32 7470
J3-24 A15-33 68P9
J3-25 A15-30 7743
J3-26 A15-31 02pPP
J3-27 A15-28 FO2A
J3-28 A15-29 A19?
J3-29 A15-26 A6UP
J3-30 Al5-27 954H
J3-31 A15-24 92AA
J3-32 A15-25 7U25

(continued on next page)

(14) Continued

Connector Pin I/0 Port Pin Signature
Jd-1 Al6-2 3761
J4-2 A16-5 FP6P
J4-3 A16-39 4FP3
J4-4 Al6-1 C099
J4-5 Al16-37 FH48
Jd-6 Al16-38 719A
Jéd~7 A16-35 6F39
J4-8 Al6-36 82H8
J4-9 A16-33 7031
J4-10 Al6-34 1FPO
J4-11 Al6-31 426H
J4-~-12 Al6-32 1884
Ja-13 A16-29 6258
J4-14 A16-30 36F4
J4-15 Al6-27 HO63
J4-16 A16-28 8HAO
Ja-17 A16-25 F860
J4-18 Al6-26 3190
J4-19 A16-23 2UH2
J4-20 A16-24 305U
J4-21 Al6-21 A7A2
J4-22 Al6-22 P94U
Jb-1 Al17-2 U8UH
Jb-2 Al17-5 1UU1
J5-3 A17-39 7F8U
J5-4 Al7-1 7PU9
J5-5 A17-37 uciz
J5-6 Al7-38 47U6
Jb-7 A17-35 7215
J5-8 Al7-36 7PP4
J5-9 A17-33 5FF7
J5-10 Al7-34 0AC9
Jb-11 A17-31 HU7H
J5-12 Al17-32 63CP
J5-13 Al17-29 5C31
J5-14 Al7-30 CPC6
J5-15 Al17-27 9463
Jb-16 Al17-28 1128
Jb-17 Al7-25 Fo962
Jb-18 Al17-26 3192
J5-19 A17-23 8A80
J5-20 Al7-24 C115
J5-21 Al7-21 189F
J5-22 Al7-22 4031

If no errors then go to (15).

307.

308.

(15) Change the signature analyser connections to the following:
CLOCK (4) to SL@ (A13-32)
START (7)) to SL3 (A13-35)
STOP (7}) to SL3 (A13-35)

Pin Signal Name Signature(s)
A13-40%+ Vee 00UP/00UP
A13-35%* SL3 000U/ 000U
Al3-34** SL2 0033/0033
A13-33** SL1 - 0055/0055
A13-32** SL@ 0000/00UP

If any errors then replace Al3*

‘else go to (16).

(16)
Pin Signal Name Signature(s)
Al2-1 SL2 0033
Al2-3 SL1 0055
Al12-13** SL@ 0000/00UP
Al12-15 SL2 0033

If any errors then there is an open circuit on line(s) from Al3 to Al2

else go to (17).

309.

(17) To perform this test on the open collector outputs of AlZ, it is
necessary to connect a 10K pullup resistor from the signature

analyser data probe to Vcc'

Pin Signal Name Signature(s)
Al2-4** 1Y3 00UP/00PU
Al12-5%** 1Y2 OOPU/0OOUP
Al2-6%** 1Y1 OCUP/0O0HF
Al12-7*%%* 1Y9 OOHF/00UP
Al12-9** 2YQ 0077/00UP
A12-10** 2Y1 00UP/0077
A12-11** 2Y?2 QOCA/00UP
A12-12%* 2Y3 O0UP/00OCA

If any errors then replace Al2*

else go to (18).

(18)

KEYBOARD TEST

310.

Verify that the following signatures are obtained at the Return Line

inputs to Al3 with the specified keys pressed.

In the tables below '~ denotes the \lCC signature (OOUP).

A. With CLOCK (£) connected to SLP (A13-32)

Key
Pressed

Al13 Input Pin

A13-38 A13-39 Al3-1

Al3-2 A13-5 Al3-6

A13-7

A13-8

None
IOI
I1I
I2I
I3l
I4I
l5l
l6l
I7l

"EXEC'
"NEXT!

IGOI
'SUBST
MEM'

"EXAM
REG'

'SINGLE
STEP!

0077 .

0077 -

1

o

o

o

x>
1

311.

B. With CLOCK (%) connected to SL{ (A13-32)

Key Al13 Input Pin

Pressedipis-38 A13-39 A13-1 A13-2 AL3-5 AL3-6 AI3-7 A13-8

'8’ 0077 - -
‘9! - 0077 -
"A' - 0077
IBI
ICI
IDI
1E|
IFI

1
o
o
1 1 1 1 ~01 1
~

o
o
| I I B N I R R R |
~J
o
o
| N D T N N B B |
~
o N0 TN DS B B B B |

o
(o]
~

If any errors then there is a fault in the interconnection from Al2
to the keyboard, the keyboard itself OR from the
keyboard to Al3. The appropriate 1ine may be
traced with an ohm-meter

else go to (19).

312,

(19) Examine the display, which should show
8. 8. 8. 8. 8. 8.

with all segments of approximately equal brilliance.

A. If one segment of one display only does not Tight then that

display is faulty OR the connection to that segment is bad.

B. If all segments of a display are off then there is a fault in the
corresponding digit driver circuit (Qll - Q15 and associated

resistors).

C. If one segment is off in each display then there is
either a fault in the segment driver circuit (Q3 - Q4 and
associated resistors)
or the segment output from Al3 is stuck high.

The cause of the fault can be isolated using a CRO.

D. If all segments in one digit are brighter than the others then
the corresponding digit driver is stuck on - isolate the fault

with a CRO.

E. If one segment in each display is brighter than the others then
either the corresponding segment drive is stuck on

or the segment output from Al3 is stuck low.

F. If two segments in each digit are brighter than the others then
there is a short circuit between the two segment drivers or

between two segment outputs of Al3.

313.

G. If all segments of two digits are brighter than the others

then there is a short circuit between the two digit drivers.

H. If any other (irregular) pattern is observed then replace Al3.

314.

Stage 111

(1) INITIALISATION

Insert the BLUE plug in the address selection socket.

Insert the 25 pin CANNON test plug in the serial I/0 socket (J7).
Insert test connector P3 into J3.

Insert test connector P4 into J4.

Insert test connector P5 into J5.

(2) Apply power to the system and press RESET.

The display should go blank and the character sequence

0123456789 ABCDEFHLPUYrTLt. <blank>

should shift from left to right across the display continuously.

If any errors then replace Al3.

(3)

Press '"NEXT' key.

315,

Display Procedure
L Go to (4)
Err 11 I1f Al3-4 is high then replace Al3*
else
if Al11-8 is Tow then replace All
-else there is a bad connection from Al3-4
to All-8.
Err 12 If Al1-8 is high then replace All
else
if Al13-4 is low then replace Al3*
else there is a bad connection from Al3-4
to All-8.
Err 13 Replace All.
Err 14 Press RESET and repeat the test.

If the same error occurs then replace Al3.

Any other display

Replace Al3.

(4)

Press each key in the sequence given below and verify that the

correct character is displayed.

Key

Display

le
Ill
|2I
I3|
I4I
l5l
l6l
|7l
I8I
l9l
IAI
IBI
ICI
IDI
IEI
IFI
'SINGLE STEP'
IGOI
'SUBST MEM'
'EXAM REG!'
"EXEC

TS CUTO +TMMUOmIOWONOOPWNRFLO

If any errors then replace Al3.

316.

(5)

317.

Press 'NEXT' key

Display Procedure
..... 5 Go to (6).
Err 21 Serial 1/0 error. The processor will loop, producing a

1KHz square wave at SOD (All-4).

If the square wave is not present at All-4 then replace
All*

else

if the square wave is present at All-5 then
replace All

, else there is a fault in the interface circuit -
trace with a CRO and fix the fault.

To proceed with tests press 'NEXT' and go to (6).

|

Err 3X
Err 4X

X is any hex digit.
Parailel I/0 / timererror.
The second hex digit (X) indicates which device(s)

failed the parallel I/0 test with a bit set for each
device which failed.

Bit @ set - replace Al6
Bit 1 set - replace Al7
Bit 2 set - replace Alb
Bit 3 set - replace Al4,

If no device failed the I/0 test the second digit will
be '@'. If all failed it will be 'F'.

If the first digit is 4, a TRAP error is indicated as
well. The processor will Toop repeating the I/0 and

trap tests, producing a low pulse of duration 43us at
Al6-6 every 2.4ms.

If pulses do not appear at Al6-6 then replace Al6*

else

if pulses appear at All-6 then replace All
else there is an open circuit from Al6-6 to All-6.

In either case, to proceed to next test press 'NEXT'
and the display should show 5. Go to (6).

Remove connectors P3, P4 and P5 from J3, J4 and J5.

Insert connector P1 into J1 and P2 into J3.

Insert connector P6 into Jb.

Remove 1link 2@-21 from SDK-85 board.

Remove 1ink 4-3 from SDK-85 board.

Remove 1link 7-8 from SDK-85 board.

WITHOUT REMOVING POWER OR PRESSING RESET.

Press 'EXEC' to execute the RST 6.5 test.

318,

Procedure

Go to (7).

Xis 0,1, 2, 3, 4,5, 6 or 7.

X indicates the type of failure detected in
tion of RST 6.5 as follows:

Bit @ set - RST 6.5 input detected as high

Bit 1 set - RST 6.5 input detected as Tow a
set high.

Bit 2 set - RST 6.5 interrupt did not occur

Bit 3 is always clear.

The processor will enter a loop repeating t
test which will produce a train of high pul
A15-24 (155us in 4.4ms)

If there is no pulse train at Al15-24 then r

else

the opera-
initially.
fter being
he RST 6.5

ses at

eplace Alb*

if there is a pulse train at Al1-8 then replace

All

else the signal from Al5-24 is not pro
from Al15-24 to Al1-8. Trace the
a CRO to indicate the cause. Rep
it appears at A5-12 but not A5-13

To proceed to the next test press 'NEXT'.
should show6.

Go to (7).

pogating
signal with
lace A5* if

The display

319.

(7) Press 'VECT INTR' key.

Display Procedure

ives @/ Go to (8).

Err 62 An active transition was detected at the RST 7.5 input,
but the interrupt failed.
Replace All.

vees 46 No active transition at the RST 7.5 input was detected.

Press 'VECT INTR' and observe the logic state at All-7.
If A11-7 goes Tow when key is pressed then replace All

else the key, or connection to Al1-7 is faulty.

To proceed to the next test press 'NEXT' and display
shows 'Err 61°. ,

Press 'NEXT'again and the display shows '.... .7'
Go to (8).

320.

The 'INTR' test is optional, and need not be executed if the hard-
ware to produce the interrupt vector is not present.

If the test ;s not to be executed then press 'NEXT' (display should
Show8 :

Go to (9).

else to execute the test press 'EXEC'.

Display Procedure

soie #9 Go to (9).

Err 71 Interrupt failure. The processor will loop, repeating
the interrupt test. A train of positive pulses 12us
wide at 67us intervals should appear at A15-25 through
connectors Pl and P2 to Al1-10. All should produce a

.train of INTA/pulses %us wide at 67us intervals at
Al1-11 through A3 and J1 to the external interrupt vec-
tor hardware. This should apply a RST 3 vector through
Jl, A4/A7, to All.

This path is too difficult to debug completely but the
following procedure may be followed:

A. If INTA/pulses are produced at All-11 then go to C.

B. If INTR pulses are present at All1-10 then replace
All*

else ,
if no pulses at Al15-25 then replace Al5*

else there is an open circuit from Al5-25 to
A11-10.

C. If INTA/pulses are present at A3-12 then go to D

else there is an open circuit from All-11 to A3-12.

D. If INTA/pulses are present at J1-16 then go to E

1se

[¢]

if no pulses present at A3-13 then replace Al3*

else there is an open circuit from A3-13 to
Jl-16.

E. Replace All and repeat the test(s).
If the same error occurs then replace A4 and A7.

To continue to the next test press 'NEXT' and the display
will show '.... .8 Go to (9).

321.

Test 8 is a test for the time on the optimal expansion RAM chip Al7.

If the test is not to be executed then press 'NEXT' and the display
will show9

Go to (10)

else press 'EXEC'.

Display Procedure

cane w9 Go to (10).

Err 81 Timer output was read in as initially low. The pro-
cessor will Toop repeating the test every lms, which
should produce a low pulse of duration 40us every 1ms
at Al7-6.

If no pulse train present at Al7-6 then replace Al7*
else

if pulse train is present at Al7-28 then replace
Al7

else there is an open circuit from Al7-6 to
A17-28.

Err 82 Timer output remained high for too long after the
timer was started. Proceed as for Err 81.

Err 83 Timer output remained Tow for too long after the high
to Tow transition. Proceed as for Err 81.

To proceed to next test press 'NEXT' and the display
will show9.

Go to (10).

322.

(10) While the display shows9 the processor is Tooping, writing to

and reading from each address in the range 8000H to FFFFH.
The processor writes OOH to each location, then reads it back for
each of the 32K locations. The process is then repeated, writing

and reading FFH.

The test is designed to exercise any memory entered to the SDK-85

board, as well as the read logic associated with buffers A4 and A7.
A start pulse at Al10-7 and a stop pulse at Al0-9 are provided
(clocked on RD/ or WR/) to enable the use of a signature analyser

to verify the data read or written.

The test procedure will depend on the lTogic attached to the board, so

no specific procedure is given.

To proceed to the next test press 'NEXT'.

Go to (11).

323.

Display Procedure

...... The final test has succeeded and the processor has
entered a permanent HOLD state. (See note (1) below.)
Testing of the SDK-85 is complete.

Err HH The attempt to place the processor in a hold state has

failed and the processor is

A. If A11-39 is high then
B. If A3-4 is high then

else
C. If A3-3 is high then
? else
D. If Al5-26 is Tow then

else

now halted.

replace All else to to B.

there is an open circuit
from A3-4 to Al1-39

go to C.
replace A3*

go to D.
replace Alb*

there is an open circuit

from Al5-16 to A3-4.

Note (1):

With the processor in the hold state it

is possible to verify the hold acknowledge
logic as follows:

If Al1-33 is high then

B. If A3-9 is high then

else

go to B else replace All*.
go to C

there is an open circuit
from Al11-39 to A3-9.

go to D

open circuit from A11-39
to A9-2.

go to F

go to E.

C. If A9-2 is high then
else
D. If J1-12 is high then
else
E. If A3-10 is low then

replace A3*

open circuit from A3-10 to

J1-12.

else

F. If A9-5 is high then

else

G. Check that Al-1, A2-1,
high.

from A9-5 to that pin.

go to G

replace A9*.
A4-1, A6-1 and A7-1 are all

If any pin is not, there is an open circuit

324.

APPENDIX G

LISTING OF THE 8085 FUNCTIONAL TEST PROGRAM
(SLFTST.V8)

325.

3830 1f1is1ftst.vB noddS macrefile ragewidth(110)

1SIS-T1 80B0/808Y MACRC ASSEMBLER, V3.0 HODULE PAGE 1

Loc o0Rd

0039
0038

LINE

—
— O O 0a N O LN S Gl B e

Y—
ra

—
P 78

—
{54

[A o
D ~o O N o~

37
I8
39
40
41
42
43
44
45
46

SOURCE STATEMENT

ERATELSRFEATIRISERPREIREAIDEILICEEIEIIOALIIIEEIAEHEEISEETISPIIERNLIEIPE 24
i

$ TITLE (‘8083 Self-test Prodram VB')

)

REE0AR 4R 0E000 RS0 7RE0000R3800080 08030020000t 800080000t 00 03P RsEY!

BOBS SELF TEST PROGRAM

COPYRIGHT (€} 1930

Wy Jo LIEBELT
ELECTRICAL ENGINEERING DEPT.
UNIVERSITY OF ADELAIDE
11/07/80

85083 ETHALAOBSEIRREPIEIATRVELTRORIIITLIEEVST2R008080003 4020843803350 2 1

!

j

}

i

i

i

1

i

'

i

i

!

]

j

i

i SLFTST IS A SELF' TEST PROGRAH FOR THE 8085 MICROFROCESSCR, INTENDED 10

¢ VERIFY THE INTEGRITY OF THE CHIP BY EXERCISING ITS FUNCTIONAL UNITS (ALUs
i ACCUHULATOR, REGISTER ARRAYy ETC.). THE PROGRAH IS DIVIDED INTO A SERIES
+ OF TESTS, EACH DESIGNED TO TEST THE OPERATION OF OME FUNCIOHAL UNITy OR A
3 SHALL GRIUP OF RELATED FUNCTIONAL UNITS. THE OPERATION OF THE FUNCTIONAL
i UNITS IS VERIFIED BY PLACING LATA (WHICH DEFENDS OM CORRECT OPERATION OF TH
i FUNCTIONAL UNIT) ONTO THE DATA AND ADDRESS BUSSES. THIS PATA IS OBSERVED
i+ USING A SIGNATURE AMALYSER CLOCKED OH RIi/+ WR/ OR ALE.

L
i
i
i
L
)
i
i
i
¥
H

THE TESY IS TO BE EXECUTED IMMEDIATELY AFTER STAGE I OF THE SDK-83 SIGHAT
URE ANALYZIS ROUTINE. IT IS EXECUTED OH RESET WHEN THE GREEM FLUG IS INZER
INTO THE ADURESS SELECTION SOCKET ON THE SIK-85 ROARDs WHICH INTERCHANGES
THE €SO/ AND CS1/ LINES TO DEVICES Al4 AND A1S, IT ALSO TIES ADERESS LIRES
AF AMD ALD DN THE EXPANSTION ROH (A13) HIGHs WHICH CAUSES THE FPROCESSOR TO
START EXECUTING AT LDCATION 400H IN A15. THE FIRST FEW LOCATIONS FROH £00H
CONTAIN A JUHP TO THE EXTERNAL ROM AT BOOOH, WHICH CONTAINS THE SELF TEST
PROGRAH FROFER.

LOCATIONS 400H TO &3FH IN ALS ALSO CONTAIN A CHAIM OF ‘RST‘ INSTRUCTIOMS
USEDr IN THE COURSE OF EXECUTING THIS FROGRAH.

i
;

£E4 EQU J0H
£s7 EQU 36H

§EJECT

326.

TSIS-11:9080/80%5 KACRO ASSEMBLER, V3.0 MOLULE PAGE 2
8085 Self-test Frodram VB
LOC ORJ LINE SOURCE STATEMENT
0400 47 ORG 0400H +IN A5,
48
‘ 49
0400 F3 50 STARTY DI :
0401 C30280 51 Jup SLFTSTY iJUHP TO MAIN PROGRAM.
92
53
0608 54 ORG START+OBH fRST 1 LOCATION
0408 C7 93 RST 0
56
0610 57 ORG START+10H iRST 2 LOCATION
0410 CF S8 RST . 1
o9
05618 60 0ORG START+18H iRST 3 LOCATION
0618 D7 41 kST 2
42
0620 63 ORG START420H iRST 4 LOCATION
0620 DF , 64 RST 3
65
0628 86 ORG START+28H iRST 5 LOCATION
04628 E7 67 RST 4
48
0430 49 0RG START+30H iRST 6 LOCATION
0630 EF 70 kST 3
"
0638 72 ORG START+38H iRST 7 LOCATION
04638 F7 73 RST é
“ 74

79 $EJECT

327.

IS15-11 8080/8085 HACRO ASSEMBLERy V3.0 HODULE PAGE 3
8085 Self-test Prodras VO
LoC 0BJ LINE SOURCE STATEHMENT
8001 76 ORG 8001H
8001 40 77 bR 40H iDATA FOR ARIVHMETIC IHSTRUCTIONS
78 v TEST.
79 i
80 4 START AMD STOF PULSES FOR THE SIGMATURE AMALYSER ARE PROVIDED BY
81 5 EXECUTING IN AND OUT INSTRUCTIONS AT 38H (8205 C57/) AND J0H (8203 C58/)
82 § FOR START AND STOF RESPECTIVELY. EXTERNAL LOGIC 1S REGUIREL TO DECODE
83 i THE CHIP SELECT LIMES WITH THE I0/M STATUS LINE TO PRODUCE THE START
84 i AND STOP FULSES, ROTH IN AND OUT ARE EXECUTED TO ALLOYW EITHER RD/ OR
85 # YR/ TO BE USED FOR THE SIGNATLURE AMNALYSER CLOCK.
Bé 3
B002 DBIB 87 SLFTST: IN C57 #STOP FULSES,
8004 D338 88 ouT £s? H
8004 DE3ID 89 I CSé $START PULSES.
8008 D330 90 out C54 [
91
92 3
93+ START OF THE SELF TEST FROGRAH FROFER.
"94;
95 i
94 i ACCUMULATOR TEST
9243F mmeememseecaseaes
98 i
$9 § THE ACCUMULATOR TEST STORES AND READS 256 BYTES OF DATA FROH A» HRITING
100 § THE DATA READ FROM A TO THE DATA BUS BUFFERS FOR VERIFICATION.
101 4
8004 JEOO 102 W1 As00R
BOOC 3C 103 L1} 1HR A
800D D00 104 out 00H
BOOF C20C60 105 JHZ L1
104 5
107 4 REGISTER ARRAY TEST
108 §
107 3
110 ; THE REGISTER ARRAY TEST STORES AND READS 256 EYTES OF DATA IN EACH OF THE
111 § REGISTERS BsCsDsEsH & L. THE DATA IS OBSERVED BY WRITING REGISTER PAIRS T0
112 § THE ADDRESS BUS (MOV MsA 5 STAX B 3 STAX D).
113
8012 JEOC 114 Myl fAyO0H
8014 04601 115 Hvl E»O1H
80146 QEO2 116 MVI Cy02H
8018 1403 117 MVl I 03H
BO1A 1E04 118 HVI Ey04H
B01C 2405 119 HVI Hy0SH
BOIE 2E04 120 K1 L104H
8020 77 121 LS KOV i A
8021 64 122 HOV HiH
8022 77 123 HOV Heth
8021 24 124 THR H
8024 3C 125 INR A
8025 C22080 126 JNZ L2
8028 77 127 L3t Hov K1 h
8029 4D 128 KOV LyL
8024 77 129 Hov Hrh

802B 2C 130 INR L

1818-I1 8020/8083 MACRO ASSEHBLERy V3.0

8085 Seif-test Prodram V8

LOC COBJ

802C 3C
8020 22880
2030 12
8031 32
8032 12
8033 14
8034 3C
8035 C23080
8038 12
8029 S
B03A 12
803B 1C

803C IC
803D C23£80

8040 02
8041 49
g042 02
8043 04
8044 3C
8045 24030
8048 02
8049 49
8044 02
804B OC
B0AC 3C
804D C24860

8050 0600
8052 2

8053 70
8054 04
8055 C25280

8058 310000
BOSR 3EQD
803D 47
BOSE L5
805F 2B
8040 3C
8061 C25E80

LINE

134 IHR
132 JNZ
133 148 STAX
134 Hov
135 STAX
136 INR
137 INR
138 JHZ
139 L3: §TAX
140 HoV
141 5TAX
142 INR -
143 IR
144 Nz
143 L&} STAX
144 Hov
147 STAX
148 INR
149 INR
130 JNZ
151 L7} STAX
152 HOV
153 STAX
154 IHR
155 IR
154 JNZ
137 4

158 3

159 i

160 3

161 §

162 i

163 §

164 i

185 VI
164 L83 DCR
167 Hov
168 INR
169 Mz
170 4

171 %

172 3

173 4

174 i

175 3

176 § UALUES.,
177 v OFERATION,
178 3

179 LXI
180 KVl
181 Hov
182 L9: PUSH
183 nex
184 IR
183 JNZ

328.

HODULE PAGE 4

SOURCE STATEMEHT

Bs B
B
B
A
Lé
B
Gt
B
C
A
L7

THF TEST

THE TEMPORARY REGISTER TEST URITES 256 BYTES OF DATA TO THE REGISTER

SP AND LECREMENTER TEST

AND READS IT RACK ONTO THE INTERMAL DATA BUS» THEN THROUGH
THE DATA BUS BUFFERS TO THE EXTERNAL DATA EUS.

Ry GOH

H iCHANGE CONTERTS OF THP.,
i) il -> THP -> DATA EUS.
B

L8

THIS TEST DNECREMENTS THE STACK POINTER THROUGH ALL 63536 VALUES: AT

THE SAME TIME TESTING THE OPERATION OF THE DECREMENTER ON EACH OF THESE
STACK POINTER CONTENTS ARE TESTED EY FERFORMING A ‘PUSH R’

SPyQO00H
As OO
BiA

H

H

A

LY

329.

IS15-11 £080/8085 MACRD ASSEMBLER» V3.0 HODULE PAGE 9
8085 Self-test Frogren VB
LOC 0BJ LINE SOURCE STATEMENT
8044 04 186 INR B
8065 C2SEZ0 187 JNZ LY
188 &
189 5 ALU TEST
9 000 mmeemee-
191 j
192 i THE ALU IS TESTED RY EXECUTING EACH FOSSIBELE ALU OPERATION WITH ALL
193 § PDSSIBLE VALUES OF THE THO INFUT OPERANDS (ANDIs UHERE RELEVANTy OF CY).
194 ; THE EFFECT OF EACH OPERATION ON A AMND THE FLAGS IS EXAMINED BY EXECUTING
195 § A ‘PUSH PSW‘,
196 3 .
8048 37 197 STC FCHECK CARRY CAN BE SET.
8069 F5 198 PUSH PSW i
BO6A IF 199 CHE iCHECK CARRY CAN BE RESET.
806B F3 200 PUSH PSH i
201
B0O4C IEOO 202 HV1 A1 00H § INITYALISE FIRST OPERAMND,
BOGE 47 203 HOV BsA # INITIALISE SECOND OPERAND.
BOGF 4AF 204 L103 MOY LA 1SAVE THE FIRST OFERAKD IN C.
8070 7% 205 L10AY MOV ArC
8071 80 206 ADD B
8072 F3 207 PUSH PSY
8073 CA7780 208 JZ Li0B JTHESE INSTRUCTIONS ARE INCLUDED HERE TO TEST
8075 ©0 209 NOP # THAT WHEN THE ALU SETS FLAGS, THEY ARE
8077 DA7ERO 210 Li0R: JC L10C # CORRECTLY TESTED BY COMDITIONAL JUHP
8074 00 211 NOP i INSTRUCTIONS,
BO7E FA7FB0 212 L1006y M L10D i
807E 00 213 NOP i
807F EAB3R0 214 L1007 JPE L1QE P
8082 00 215 NOP i
8083 79 216 LI0EY HOV e
8084 90 217 SuB R
8083 F3 218 FUSH PSU
8086 79 219 MOV Al
8087 A0 220 ANA B
8088 F3 221 PUSH PSH
2089 79 222 Hoy e
8084 A8 223 XRA B
808B 5 224 PUSH PSU
808C 79 225 Hov ArC
808D RO 226 ORA B
L 227 PUSH PSH
808F 79 228 KoV ArC
8090 K8 . 229 CHp B
8091 F3 230 PUSH PSH
8092 37 23 STC
8093 79 232 NOV ArC
8094 86 233 ADC B
8095 FS 234 FUSH PSH
8096 17 235 §7C
8097 2F 235 CHe
8098 79 237 Ho CYIN
8099 88 238 ADC B
BO%A F3 239 FUSH PSH

8098 37 240 §TC

1516-11 8080/8085 MACRD ASSEMBLER) V3.0
8085 Self-test Program VB

Lot oBJ

809C 79
8090 98
809E F3
809F 37
80A0 3F
8041 79
BOA2 98
80A F3
80A4 04
80AS £27080

80AB 37
8049 79
80AA 17
80AB FD
80AC 37
BOAD 3F
BOAE 79
8OAF 17
80BO FS
80B1 37
80B2 79
BORI IF
80B4 F5
8085 37
804 IF
80B7 79
B0B3 1F
80BY FS
80B4 37
B0RB 79
B0BC 07
BOBD F5
BORE 37
BOBF 3F
80CO 79
BoC1 07
80C2 F5
80C3 37
80C4 79
BOCS OF
80C6 F3
80C7 37
80C8 3F
BOCY 79
80CA OF
80CR F3
8oce 79
80CD 2F
8OCE F5
80CF 79
80D0 3D
80D1 F3
8002 79

LINE

241
242
243
244
245
244
247
248
249
230
251
202
253
204
235
256
257

st

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

SOURCE STATEMENT

HOV
SED
PUSH
51C
CHC
HOV
5BB
FUSH
IR
JHZ

STC

Hov
RAL
PUSH
S1C
CHC
KoV
RAL
PUSH
S1C
1oy
R&R
FUSH
§1C
CHC
Hov
RAR
PUSH
51C
Hov
RLC
FUSH
51c
CHC
HOV
RLC
PUSH
s1c
KoV
RRC
PUSH
5TC
CHC
HOV
RRC
PUSH
KoV
CHA
PUSH
Hov
DCR
PUSH
Hov

AsC
B

Py
MC
PSW

L10A

asC

PSH

ArC

FSH

AsC

PSH

ArC

PSH

asC

PS

ArC

PSy

:FIN

PSW

ArC

PSH
4sC

PSW
#sC

PSH
ArC

330.

HODULE PAGE 6

FINCREHERT OPERAND #2,
iREPEAT 2 OPERAND OPERATIONS FOR ALL 206
i VALUES OF 0P, #2,

1SINGLE CFERAMD IHSTRUCTIONS.

331.

ISIS~II 8080/8085 HACRO ASSEMBLER, V3.0 MODULE PAGE 7
8085 Self-test Prodram V8

LOC 0BJ LINE SOURCE STATEHENT

8003 3C 294 INR A

8004 F3 297 PUSH PSH

g0L5 C26F80 298 JNZ L10
299 i
J00 3 DAA TEST
Wi - e
302 i
302 1 THE DAA INSTRUCTION IS EXECUTED' WITH ALL POSSIBLE VALUES CF A»CY AND AC.
304 + THE ALU TEST WILL HAVE VERIFIED THAT CY AND AC ARE CORRECTLY SET AS THE
J0% § RESULT OF OTHER ALU OPERATIONS,
306 i

8008 OLOF 307 HVI CsOFH iDATA TO ENABLE AC SET.

8004 JEO0 308 M~ AsO0H

80LC 47 J0g L1l HOV BrA

g0DD B7 310 ORA A iCY=0y AC=0

BOLE 27 311 DAA

BODF FS 32 PUSH PSW

80EQ R7 ,313 ORA A 1AC=0

80E1 37 314 STC iCY=1

80E2 78 315 Koy AR

BOEJ 27 316 DAA

80E4 £S5 117 PUSH Psuy

B0ES B7 318 ORA A iCY=0

BOCé 79 319 MoV fC

80E7 3C 320 INR f iAC=1

BOES 78 N Hov B

BOES 27 322 DaA

B0CA F3 323 PUSH FSH

80ER 79 324 MoV ArC

80EC 3C 325 INR A iAC=1

80ED 37 324 S1C iCY=1

BOEE 78 327 Hov AsR

BOEF 27 328 DAA

BOFO FS 329 FUSH PSH

80F1 78 330 oy ArB

80F2 3C - 331 INR f

80F3 C2DC80 332 JNZ L1l
333 i
134 _ WZ REGISTER TEST
33 g s
336§
337 + A WALKING BIT TEST IS EXECUTED TO VERIFY THAT REGISTERS W & Z HAY
338 5 BE LOADED FROM THE DATA BUS. EIGHT ‘QUT’ INSTRUCTIONS ARE ALED EYECUTED
339 # TO CHECK THAY ¥ & Z ARE CORRECTLY LDADED IH PARALLEL WITH THE SAME DATA.
340 5 NOTE THAT THE “LHLD’ INSTRUCTIONS REFERENCE ROW LOCATIONS (IN A1S) ONLY»
341 3 S0 THE DATA READ IN IS PREDICTABLE.
342)

BOF& 240100 343 LHLD C001H

80F9 240200 344 LHLD 0002H

80FC 240400 345 LHLD 00048

BOFF 260800 344 LHLL 0008H

8102 241000 347 LHLI 0010H

8105 242000 348 LHLD 0020H

8108 244000 349 LHLD 0040H

8108 2AL000 300 LHLD 0C30H

332.

I1S18-11 8080/8085 MACRO ASSEMELER, V3.0 HODULE PAGE 8
g085 Self-test Frodram VB
LOC 08J LINE SOURCE STATEHENT
810F 220001 51 SHLD 01004
B111 220002 352 SHLD 0200H
8114 220004 353 SHLD 0400H
8117 220003 354 SHLD 0BOOH
8114 220010 355 SHLD 1000H
8110 220020 356 SHLD 2000
8120 220040 357 SHLD 4000H
8123 220080 358 SHLD BOOOH
8124 1301 359 ouT 01H
8128 1302 360 ouT 0
8124 1304 361 ouT 04H
B12C 1308 362 out 08H
B12E D310 363 ouT ~ 10H
8130 0320 364 ouT 20H
8132 D340 365 ouT 404
8134 1380 366 ouT 80H
367 §
368 7 INCREHENTER/DECREMENTER NO-OPERATION TEST
369§ - -
370 §
371 i THE ABILITY OF THE INCREMEMTER/DECREMENTER TO FASS DATA UMHODIFIED
372 i FROM THE ADDRESS LATCH TO THE REGISTER ARRAY IS TESTED BY EXECUTING
373 § €5536 ‘SPHL’ INSTRUCTIONS.
374 i
B134 3E00 375 KVI A1 00H
8138 47 374 NOV BrA
B139 F9 177 L127 SPHL iHL -> AL -> 5P,
8134 23 378 INX H
813B £5 379 PUSH H jDRSERVE SP.
813C 3C 180 INR A
813D C22981 381 Nz Li2
8140 04 182 INR B
B141 23981 183 Nz L12
384
385 7 BC AND DE ACCESS FROM INCREMENTER/DECREMENTER
396 i
87 4
388 5 THE ABILITY OF THE INCREMENTER/DECRENENTER TO CORRECTLY STORE DATA
389 § IN BC AND DE IS TESTED BY EXECUTING 5534 ‘INX B’y ‘STAX B’ AND
390 § ‘DCX D’y ‘STAX D’ OPERATIONS.
914
B144 010000 192 LXI By 0000H i INITIALISE BC.
8147 110000 393 LXI I 0000H i INITIALISE DE.
B14A 300 194 hit A1 O0H s COUNTER,
814C 2400 395 M1 Hy O0H P
814E 03 396 L1240 INX B $URITE T0 BC FROM INC./LEC,
814F 1B 197 LCX D fURITE TO DE FROH INC,/DEC,
8150 02 178 STAX B iPLACE (BC) Oil ALDKESS BUS.
8151 12 399 STAX D iPLACE (DE) ON ADDRESS BUS.
8152 D 400 ICR A REFEAT 45536 TIMES.
8153 C24E81 401 JNZ L124 i
8156 25 402 DCR H i
8157 C24E81 403 INZ L124 ;
404 ;

405 3 READING SP THROUGH MUX

1515-11 8080/8085 MACRO ASSEMELER: V3.0
2085 Self-test Prodram VB

LoC OBJ

8154 JE0D
815C 47
B1GD 210000
8160 39
Bist 77
8162 3B
8143 3C
8164 €23D81
8167 04
8168 C23D81

B16B 310100
B14E ES
B16F 310200
8172 E5
8173 310400
8176 ES
8177 310800
8174 ES
817k 311000
817t ES
817F 312000
. 8182 ES
8183 314000
8186 ES
8187 318000
818f EJ
8188 310001
818E £
B18F 310002
8192 E5
8193 310004
8196 ES
8197 310008
8194 E3
8198 310010
B19E ES
819F 310020
8142 ES
81A3 210040
81h6 ES
B1A7 310080

LINE

406
407
408
409
410
411
412
413
A4
415
A4
417
418
419
420
421
422
423

424

425
426
427
428
429
430
431
432
A33
434
435
434
437
438
439
440
441
442
443
A4
445
446
447
448
449

450

431
432
433
454
433
456
437
438
439
460

e

HODULE PAGE 9

SOURCE STATEMENT
; o
)
i THE ABILITY OF THE SP TO BE READ ONTO THE INTERMAL DATA BUS IS
5 TESTED BY THE EXECUTION OF 45536 ‘DAD SP’ INSTRUCTIOHSs THE RESULTS
i OF WHICH ARE EXAMINED BY WRITING HL OMTO THE ADDRESS EUS (“HOV HsA’),
12
WI AsO0H
WOV BiA
L13: LXI Hy0000H
BAD SF
WY HA
Y SP
IR A
M L3
IR B
M L3
1
i WRITING SP THROUGH HUX
;)
;
i THE ABILITY OF THE SP TO BE LOADED FROM THE DATA RUS IS TESTED BY
5 A VALKING BIT TEST. THE SP CONTENTS ARE EXAMINED BY EXECUTION OF A
i "PUSH’ INSTRUCTION.
y
LXI SPi0COIH
PUSH H
LXI SPs0002H
PUSH H
LXI SF)0004H
FUSH H
LXI SPs0008H
PUSH M
LXI SFi0010H
PUSH H
LXI SPs0020H
PUSH H
LXI SPy0040H
PUSH M
LXI SPy00BOH
PUSH W
LXI SP)0100M
PUSH H
LXI SPy0200H
PUSH M
LXI SFs0400H
PUSH W
LXI SP»0800H
PUSH M
LXI SPs1000H
PUSH H
LXI SPy2000H
PUSH M
LXI SPy4000H
FUSH M
LXI SP»8000H

334.

ISIS-II 8080/8085 MACRD ASSEMELER, V3.0 HODULE PAGE 10
B0BS Self-test Frodram VB

Loc 0BJ LINE SOURCE STATEMENT

B1AA ES 461 FUSH H
462 §
463 14 FLAG/JUNP/CALL/RETURN TEST
44y § mommemeemrmeemmmeemmesee
463 §
464 4 THE FLAGS AND FLAG TESTING MECHANISM ARE TESTED BY LOADING THE FLAG
467 5 REGISTER FROM A TABLE (WALKING 178) AND TESTING THE RESPONSE OF ALL
468 § AVAILARLE JUHPy CALL AND RETURN INSTRUCTIONS, AS INDICATED BY THE
449 7 SEQUENCE OF INSTRUCTION FETCH ADDRESSES PLACED ON THE ADDRESS RUS,
470 4 '

B1AB 217883. a1 LXI HsFLGTAR s TABLE OF FSU’S 70 POP.

B14E 0405 472 "I By (TAREND-FLGTAR) /2 iNO. OF TESTS.

81k0 F9 473 L14d SPHL tRESET SP TO NEXT TABLE ENTRY,

8181 23 474 INX H jUPDATE TABLE FOINTER.

8182 23 475 INX H t

81BR3 F1 476 Fop FSH 1LOAD THE FLAGS.

8104 FS 477 PUSH PSW sCHECK THAT DATA IS READ' BACK FEDH TH

» 478 i FLAGS CORRECTLY.

81B5 CAR981 479 Jz L15

81k8 00 480 NOP

81k? C2BDB1 481 L15¢ JH L16

g1EC 00 482 NOP

81ED DAC1BI 483 L1646} JC L17

81C0 00 484 NOP

B1C1 D2CSB1 485 L17¢ JNC Li8

81C4 00 484 NOP

81CS FACY8Y 437 L18% JK Li9

B1C8 00 438 NOF

81C9 F2CD81 489 L19} JF L20

81CC 00 490 NOF

81CD EADIRY 491 120! JPE 121

8100 00 492 NOP

21D1 E2D381 493 L2118 JRO L22

81n4 00 494 NOF

B1US Cc3ngsl 495 L22% JHP L23

8108 00 494 NOP

B1D9 310000 497 L23) LXI SPyGOOOH

81nC CCEOBL 498 €l L24

81DF 00 499 NOP

81EQ CAE4B1 900 L2418 CHZ L28

81E3 00 501 NOP

81E4 DCEBSL 902 L23¢ cC 126

giE7 00 503 NOP

81E8 [4ECB! - 004 L2483 CNC L27

BIER 00 905 NOP

81EC FCF081 506 L27% CH L28

81EF 00 507 NOP

81F0 F4F431 508 L28} cp L29

B1F3 00 509 NOP

81F4 ECFB81 510 L29¢ CFE L30

81F7 €0 o1l NOP

81FD E4FCB1 512 L30% CPO L3

81FB 00 513 NOP

81FC CDO0B2 o4 L3 CALL L32

BIFF 00 513 NOP

335.

ISIS-11 8080/8085 MACRO ASSEMBLERs V3.0 MOMULE PAGE 11
8089 Seif-test Frogram V8

Loc 08J LIRE SOURCE STATEHENT

8200 J18A83 316 L32¢ LXI SPyRETTAB

8203 CB 317 RZ

8204 33 518 THX SP

8205 33 519 INX sp

8204 CO 520 L333 RMZ

8207 33 521 THX sp

8208 33 522 THX sp

8209 DO 923 L34 RC

8204 33 5924 THX Sp

8208 33 a2 THY SF

820C M0 926 L35% RNC

820D 33 927 INX Sp

B20E 33 928 INX SP

820F F8 529 L36¢ RM

8210 23 330 THX gp

8211 33 331 INX gp

8212 FO 932 1374 RP

8213 33 933 INX Sp

6214 33 . 934 THX Sp

8215 E8 533 L38¢ RPE

8216 33 936 THX Sp

8217 33 237 INX Sp

8218 EO 538 L39% RPO

8219 33 339 THX sk

8214 33 540 INX Sp

8218 C9 541 L40¢ RET

821C 33 542 INX Sp

8210 33 943 THX sp

821E 05 544 LAl IICR B

821F C2B081 345 JNZ L14
544 §
547 3 HOV TEST THAT THE FLAGSs YHEN URITTEN FRON THE DATA BUS (POP FSW)» ARE
549 3 CORRECTLY READ EY THE ALU (DAA). .CY AND AC ARE THE OHLY FLAGS CONCERNED,
549 5 AND WHEN THE DAA INSTRUCTION IS EXECUTED THE ACCUMULATOR WILL BE SET T0
550 5 00y 06y 60 OR 46y DEPENDING CN THE VALUES OF CY AND 4C,
39 i

8222 115283 952 LXI SPyFLGTER2 1ADDRESS OF DATA TAELE.

8223 04604 993 HVI Rs (TB2END-FLGTE2) /2 iN0, DF DATA BYTE PAIRS.

8227 Fi 504 L41AD POP PSU {GET NEXT FLAG DATA FROM TABLE.

8228 27 999 DAA $READ CY AND AC.

8229 FS o395 PUSH PSY JEXAHINE THE RESULT.

8224 33 997 THX SP {SP POINTS TO MEXT FAIR OF BYTES IN T

8228 33 558 INX Sk i DATA TABLE.

822C €5 999 ICR B iTEST FOR END OF TARLE,

8220 (22782 960 Nz L41A]
561 4
562 3 INTERRUFT HASK AND EMARLE FLAG TEST
R T
564
545 3 THE INTERRUPT CONTROL CIRCUITS ARE TESTED AS FOLLOWS:
964§ -ALL 8 POSSIBLE IMTERRUFT MASKS ARE WRITTEM (WITH THE URITE ENABLE BIT
G967 i SET)Y AND READ BACKS
248 1§ -AH ATTEMPT IS HALE TO WRITE TO THE MASK REGISTER WITHOUT THE ENABLE BI
249 § SET AND A CHECX IS MADE YO SEE THAT IT IS QT NODIFIEL:
570 3 ~THE INTERRUFT EMABLE BIT IS TESTED TO SEE THAT IT CAM BE SET» RESET AN

15I8-11 8080/8085 MACRO ASSEMBLER V3.0
B0BS Self-test Prodram V8

LOC OBJ

8230 F3
8231 3t08
8233 30
8234 iC
8235 47
8236 20
8237 1309
823% 78
823A FE10
§23C C£23382
B23F AF
8240 30
8241 20
8242 D200
8244 FB
8245 20
82464 D300
B248 F3

8249 319083
824C F1
824D L1
824E D1
824F E1
B250 80
8251 81
8252 82
8253 83
8254 84
8255 85
8256 87
8257 86
8258 F5
8259 AF
8254 88
825B 89

SOURCE STATEMENT

CORRECTLY READ,

HODULE PAGE 12

336.

INTERRUPT PROCESSING IS NOT TESTED HERE AS IT REQUIRES THE USE OF EXTERNA
(STILL UNTESTED) HARDWARE.

Ay 0BH

A
BrA

O0H
AsB
104
L42
A

00H

00H

JCHECK 1E AND HASKS

iGET NEXT MASK,
iCHECK FOR LAST.

iCLEAR £,
JATTENPT MASK CLEAR.

iCHECK NO EFFECT - ALL HASKS SHOULD BE SET.

iSET IE.

INSTRUCION DECODER TEST

ALL INSTRUCTIONS WHICH RAVE MOT BEEN EXECUTED ALREADY

(A) - ARITHNETIC IHSTRUCTIONS.

T0 TEST THE OFERATION OF THE ARITHMETIC INSTRUCTICNS, THE REGISTERS
ARE LOADED (FROM A TABLE) WITH DATA VHICH IS MEANIMGFUL FOR THE PARTICULAR
OPERATION EEING TESTED (E.G. NOME OF THE REGISTERS IS LOAGED WITH FFH FOR

SPHLATAL

Psy
i

s

LINE

571

572 i

573 }

574

575 i

574 DI
577 Kyl
578 L42¢ SIN
579 INK
580 HOV
581 RIM
582 ouT
583 MOV
584 CPI
585 Nz
584 XRA
587 S1K
588 RIN
589 ouT
590 £]
591 RIN
592 ouT
593 Bl
594 5

595 §

596 }

597 3

598

599 ARE NOW EXECUTED.
800

801

802 i

803

404

405 §

406 i

807 i THE ‘DR’ TEST),
408 §

£09 LXI
610 POP
611 POP
412 POP
613 POF
414 ADD
415 ADD
614 ADD
817 ADD
418 ADD
819 ADD
620 ADD
821 ALD
422 PUSH
423 XRA
624 ALC
425 ALC

D
H
B
C
D
E
H
L
A
H
F
A
B
¢

ISIS-II BOBO/B0ES MACRD ASSEMBLER, V3.0
8085 Self-test Prodrsa VB

L0C ORJ

825C BA
825D BB
825E 8C
825F 8D
8260 oF
8261 8E
8262 FS
8263 IEFF
8245 A0
8266 A1~
8267 A2
8248 43
8269 A4
826A 43
8243 Ab
B24C A7
826D F5
* B24E AF
824F AR
8270 49
8271 AA
8272 AB
8273 AC
8274 AD
8275 AE
8276 F5
8277 31A483
274 C1
8278 D1
827C E1
827D 97
B27E 90
827F 91
8280 92
8281 93
8282 94 -
8283 95
B284 94
8285 F5
8286 9F
8287 98
B288 99
8289 9A
8284 9B
B28B 9C
828C 9D
828D 9E
828E F5
826F AF
8290 RO
8291 Bt
8292 B?
8293 B3
8294 B4
8295 b5

LINE

426
827
628
629
830
831
432
433
634
635
536
637
638
619
840
841
642
643
644
845
446
447
448
449
£50
651
652
453
454
455
856
657
458
459
840
861
662
443
844
463
846
467
448

- 649

670
LY
672
673
674
673
§76
677
678
679
680

ADC
ALC
ALC
ALC
ADC
ADC
PUSH
HVI
ANA
ANA
ANA
AKA
ANA
ANA
ANA
ANA
PUSH
XR&
XRA
XRA
XRA
XRA
XRA
XRA
XRA
PUSH
LXI
FoP
POP
FOP
SUB
SUB
SUB
SUB
SUR
SUB
SUB
SuB
PUSH
SEB
SR
SHB
SEB
ShB
ShR
5B
SBB
PUSH
XRA
ORA
ORA
ORA
ORA
ORA
ORA

SOURCE STATEMENT

> xmoD>

-
Ul
=

Ar OFFH

(==

XMrFrTMoO >0 XM Mmoo

FSW
SPiDATA2
B

{

=

i = S = = o g B — B o L~ = e =

[1p}
=

T Mo O DIEMF D MO OO DD

HODULE

PAGE

13

SO1P.

888k

1S15-11 80B0/8085 MACRO ASSEMBLER: V3.0 MODULE PAGE 14
8085 Self-test Progran VB
LOC ORJ LINE SOURCE STATEMENT
8296 B 481 ORA N
8297 w7 682 ORA A
8298 F3 483 FUSH P&H
484
8279 78 485 Hov AR
8294 BF 686 CHF A
8298 F3 487 PUSH PSH
829C 79 488 HOV Mg
829D B 689 Cip B
829E FS 690 PUSH PSW
B29F 7A 691 Hov ArD
8240 B9 692 CHP €
8241 F3 693 PUSH PSH
B242 7B 594 MOV ArE
B2AJ BA §95 CHP i
82A4 F3 496 PUSH PSH
8245 7C £97 Hov ArH
B2A6 BB 498 CHp E
8247 F3 ’ 699 FUSH FSH
8248 7D 700 HOY AsL
B2A9 RC 701 ChP H
B20A F3 702 PUSH PSH
824B 7E 703 Hov ArH
824C BD 704 CHP L
82AD F9 703 FUSH PSHW
B2AE 7F 706 HOY Arid
824F BE 707 CHP ¥
B2BO FO 708 PUSH PSH
: 709 &
710 3 (B) - INHEDIATE INSTRUCTIGONS.
711§
712 i THE OPPORTUNITY IS TAKEN HERE TO USE DATA WHICH HAS OTHERUWISE HOT
713 § BEEN KEAD IN FROM THE DATA BUS (UNUSED OPCOLES).
714
8281 IE08 715 VI A108H
B2K3 (610 716 AD] 10H
8283 D428 717 SuI 28H
8287 CE38 718 ACI 384
8209 FoCB 719 ORI OCEH
B2kB LE1B 720 SBI 18H
825D EEDY 721 XR1 OnoH
82BF ESED 722 ANI OEIH
82C1 FEID 723 CPlI OTDH
8203 F5 724 FUSH pSu
725 %
726 4 (C) - HOVE INSTRUCTIONS.
727 i
B2C4 JAARST 728 LDA DATAFD 1THIS DATA IS ROT READ ELSEWHERE,
§2C7 3D 729 ICR A
B2CQ 47 730 MoV B:A
82¢% 3D 731 DCR A
B2CA 4F 732 HOV Cra
82CB 3D 733 OCR A
B2CcC 37 734 HOV A

82CD 3D 735 ICR A

339.

1515-11 BOB0/B08S MACRO ASSEMBLER» V3.0 HODULE PAGE 15
8085 Self~test Prodrem VU8
Loc oBJ LINE SOURCE STATEMENT
B2CE SF 734 MOV EsA
82CF 30 737 DCR fi
8200 &7 738 Hov Heh
8201 2D 739 DCR A
8202 &F 740 KoV LrA
8203 1D 741 DCR A
8204 77 742 MOV Hrfh
825 F3 743 FUSH PGl
82D C3 744 PUSH B
8207 15 745 PUSH D
8208 E5 746 PUSH H
747
8209 21AAB3 748 LX1 HsDATA74 iTHIS DATA IS NOT READ ELSEWHERE (HLT QFCOLE)
B2DC 14 749 INR H §THESE 2 INSTRUCTICNS ARE NOT EXECUTED ELSERH
820D 35 750 DCR H i AND ARE COMVEMIENTLY TESTED HERE.
82DE 4é 731 MOV BrH
820F 05 752 DCR B
8260 48 L7133 HOV CsR
B2E1 0D 754 DCR I8
82E2 51 755 HOV DsC
82E3 15 754 DCR D
82E4 54 757 HOV E,D
82£5 1D 758 DCR t
82E6 63 759 KoV HyE
8287 23 760 DCR H
82e8 4C 741 Hov LsH
82£9 2D 742 DCR L
B2ER 73 763 Hov Hsl
82EB C5 744 PUSH B
82EC DS 745 FUSH D
82ED ES 744 PUSH H
767
§2EE 210AB3 748 LX1 HsDATA76
82F1 4E 769 MOV CH
B2F2 0D 770 DCR C
82F3 59 P! Hov EsC
82F4 1D 772 DCR £
82F5 6B 773 HOV LsE
82F6 2D 774 DCR L
82F7 45 775 MOV BsL
B2FB 09 776 DCR B
B2F9 S0 177 HOV)Y
82FA 15 778 I'CR D
82FB 62 . 779 Kov HrD
82FC 25 780 DCR H
82FD 74 731 HoV Ml
82FE C5 782 PUSH B
82FF D5 783 PUSH D
8300 ES 784 PUSH H
7835
8301 21AAB3 786 LXI H1DATAZ6
8304 54 787 Hov DM
8305 15 788 IICR [\
8306 b4 789 HOY LeD

8207 20 790 DCR L

1SIS-II 8080/8085 HACRD ASSEMBLERy V3,0
B085 Self-test Program V8

LoC 084

8308 4D
8309 0D
830A 61
B30B 25
BI0C 44
g30p 03
BI0E 58
830F 1D
8310 73
8311 €3
8312 D5
8313 ES

8314 21AAB3
8317 S5E
8318 1D
8319 43
BI1A 05
831k 60
831C 25
8310 AC
B31E QD
BIIF &9
8320 20
8321 55
8322 15
8323 72
8324 C5
8325 DS
8326 £5

8227 21AA83
832A &6
8328 25
B32C 54
832D 15 -
BI2E 42
832F 05
8330 68
8331 2D
8332 3D
8333 1D
BI34 4B
8335 0D
8336 71
8337 €3
RRIT I
8339 ES

BI3A 21AAB3
833D 4t
BI3E 2D
833F 63
B340 25
841 5C

LINE

9
792
793
794
795
796
97
798
799
800
801
802
803
804
803
804
807
808

‘809

810
811
812
813
814
813
816
817
818
819
820
821
B22
823
824
825
826
827
g28
829
830
831
812
833
834
835
B34
837
838
839
849
841
842
843
844
843

FODULE PAGE 16

SOURCE STATEMENT

KoV
ICR
HOV
DCR
Hov
[IER
HOV
DCR
HOV
FUSH
PUSH
PUSH

LXI
Hov
DCR
KoV
ICR
MoV
DER
Hov
DCR
Hov
DCR
MOV
DER
Kov
FUSH
PUSH
PUSH

LXI
HOV
BCR
Hev
ICR
HOV
ICR
hov
[ICR
Hov
DCR
Hov
ICR
Hov
FUSH
PUSH
PUSH

LXI
Hov
DCR
HOV
ICR
Hov

CsL
C
HiC
H
BsH
B
EvB
E
HsE
B
n
H

HiDATA74
EvH
£
hE
B
HyR
H
CiH
C
L:C
L
DsL
i}
HsD
B

b

R

Hy DATA7S
HsM
H
DsH
\
ByD
B
LB
L
EsL
E
CyE
c
HiC
B

i

H

HyDATAZS
Lol

L

Hel

H

EsH

340.

1515-11 80S0/80BS MACRO ASSEHBLERy V3.0

8085 Self-test Prodram V8

Lot oBJ

8342 1D
8343 53
8344 13
8343 4A
8344 0D
8347 41
8348 05
8349 70
8344 Co
834B D5
834C ES

834D 40
BI4E 49
B34F 52
B350 SB
8351 44
8352 4D
8353 €3
8334 DS
8335 E3

8356 019C83
8139 0A
835A (B
8338 02
B3SC 114483
BI3F 1A
8360 13
8341 12
8362 320000
8365 217400
8348 EB -
8149 29
B36A 09
83468 29
836C 19
8140 318A83
8370 E3
8371 £5

8372 217783
8375 E9
8376 00
8377 FF

LINE

846
847
848
849
830
831
852
853
854
855
836
857
838
B39
860
861
862

863

864
863
846
847
858
869
870 i
871
§72
873
874
875
876
877
878
879
880
881
082
883
884
883
884
987
888

(m

- ar \me

. 889

890

891

ge2

893 L43:
894

893 $EJECT

MODULE PAGE 17

SOURCE STATEMENT

ICR E

HoV DyE

DCR D

MOV CrD

ICR C

LY ByC
DCR B

HOY HyB
PUSH B

PUSH D

PUSH H

KOV BB

HOV CrC

HoV DsI

MOV EvE
HoV HeH

HOV Ll
PUSH B

PUSH D

PUSH H

- MISCELLANEQOUS.
LXI By DATAL
LDAX B

Iex B

STAX B

LXI Dy DATAZ
LhAx I

THX i

STaX b

STA 0000H
LXI HrQ076H
XCHG

DAD H

DAD B

DAD H

[AD I\

LXI SPIRETTAR
XTHL

PUSH H

LXI HiLA3
PCHL

NOP

RST

7 iBACK TO START VIA RESTARTS.

341.

1SIS-11 8080/8085 MACRO ASSEMBLER» V3.0 MOOULE
8083 Self-test Prodram V8
LoC 0BJ LINE SOURCE STATEMENT
894 i
897 i DATA TABLES
By 20 e
899 i
8378 01 900 FLGTABY DB 01Hs00H
8379 00
8374 04 901 DB 04K 00H
8378 00
837C 10 902 DB 10H: 00K
837D 00
837E 40 903 DB 404,004
837F 00
8380 80 904 j1):] B0Hs 00
8381 00
905 TABENDS
904
8382 00 907 FLGTB2) DB 00H, 004
8383 00 ’
B384 01 908 DB 01H,00H
8385 00
8386 10 909 IB 10H00H
8387 00
8388 11 910 DB 11H:Q0H
8389 00
911 TB2END:
912
13
8384 0482 914 RETTAB} W L33
838C 0982 913 DR L34
838E (C82 916 e L33
8390 0F82 917 W L34
8392 1282 918 D L37
8394 1582 ?19)] 138
83%46 1882 920 DY L39
8398 1B82 921 W L40
8394 1EB2 922 DR L41
923
924
BI9C 0000 925 DATALY DK 0000H
83%E FIF7 926 DR OF7F3H
83A0 FOF1 927 LW OF1FOH
83A2 FF83 928 DU 8IFFH
929
930
931
8344 2010 932 DATA2Y DM 10208
8346 0804 933 DW 0408H
8348 0180 934 DU 8001H
935
B3AA 76 934 DATA76 DB 764
83AB FD 937 DATAFDY DB OFDH
938
83FF 939 ORG 83FFH
83FF EO 940 I'B 0EOH
941

342.

PAGE- 18

iDATA FOR FLAG TEST: CY=1,
iP=1,
iAC=1.
iZ=1,

i8=1,

iCY=01AC=0,
1CY=11AC=0,
iCY=0sAC=1,

iCY=1,AC=1,

FRETURN ADDRESSES FOR COMDITIONAL RETURN TEST

iDATA FOR ARITHMETIC INSTRUCTIOHS TEST - FSH.
iBC.

sLE,

jHL - HL IS SET TO AN ADDRESS IN THIS ROM SO
i THAT & FIYED VALUE CAN BE LOADED FRON

i THE ‘M REGISTER'.

iECs
iDE.
iHL - SEE NOTE ABQVE.

iDATA HOT USED ELSEWHERE.

!

iDATA FOR ARITHHETIC INSTRUCTIONS
i TEST,

I5IS-1T 8080/8085 MACRD ASSEHBLERs V3.0 HODULE

8085 Self~test Program VB

LoC 0BJ LINE SOURCE STATEMENT
942
943
944 END

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

USER SYMEOLS

£S6 A 0030 CS? A 0038 DATAL 4 B839C

FLGTAR A 8378 FLGTB2 A 8382 Li A BOOC L10
L10C A BO7B L1OD A BO7F L10E A 8083 L1l
L13 A 8IS L14 A 81RO LI5S A 8IBY Lig
L1¢ A BICY L2 A 8020 L20 A BICD L2
24 ABIE0 L28 ABIE4 L26 A BIEE L27
L3 A 8028 L3I0 A BIFB 131 ABIFC 132
L35 AB20C 136 ABWNF LI7 AB22 LIS
L40 A 821 LA1 A BE L4lA A 8227 L42
L& f B8040 L7 h 8048 L8 A 8032 L9

START A 0600 TAREND A 8382 TER2END A 838A

ASSEKMBLY COMFLETEs NO ERRCRS

PAGE 19

DATAZ & 83A4

i BO4F
A 80DC
A 81BD
A 8101
A E1EC
A 8200
A 8215
A 8233
A 80SE

DATA76 A BIAA

L104 A 8070
Li2 A 8139
L7 4810
L22 A 81L5
128 A BIFO
L33 & 8206
L3? 4 8218
L43 A 8377

RETTAR A B3BA

343.

DATAFD A 8IAB

L10B 4 8077
L124 A Bi4E
L18 A 8ICS
L23 © A 8119
L29 A BiF4
L34 A 8209
L4 A 8030
L3 A 8033

SLFTST A 8002

344,

APPENDIX H

SIGNATURE SET FOR THE 8085A FUNCTIONAL TEST

345,

Signature Set for 8085A Functional Test Program (SLFTST.V8)

Stage IA
(1) 1Insert the GREEN plug into the address selction socket.

Apply power to the system and press RESET.

(2) Verify the following signature sets:

A: With CLOCK () = RD/ (A11-32)

START (&) = 10CS6 (Refer to Fig. 5.3)
STOP (f) = 10CS7 (Refer to Fig. 5.3)
Pin Signal Name Signature

A11-40 Vee 5933
A11-12 ADO 47CA
A11-13 AD1 803F
All-14 AD2 3463
All-15 AD3 1314
All-16 AD4 39UC
Al11-17 AD5 HPA4
A11-18 AD6 AALC
A11-19 AD7 5644

B: With CLOCK (f) = WR/ (A11-31)

START (3}.) = I0CS6
STOP () = 10CS7
Pin Signal Name Signature

Al11-40 Vcce 71AC
Al11-12 ADO pPg2u
Al1-13 AD1 A200
Al1-14 AD2 U1UF
A11-15 AD3 HAFS
All1-16 AD4 6216
Al11-17 AD5 Uicu
Al1-18 AD6 5459
Al11-19 AD7 752H

C:

With CLOCK (7}.) = ALE (A11-30)
START (%) = I0CS6
STOP (4) = 10CS7
Pin Signal Name Signature

Al11-40 Vcc 151H
All-12 ADO 8PU3
Al1-13 AD1 P78F
All-14 AD2 H8AC
Al1-15 AD3 F7PC
Al11-16 AD4 2FU4
Al1-17 AD5 ccsC
A11-18 AD6 A390
Al1-19 AD7 AOH7
Al1-21 A8 A3F0
Al1-22 A9 869A
Al1-23 Al10 25AF
Al1-24 All F882
A11-25 Al2 406C
Al1-26 Al3 FHAF
Al1-27 Al4 H320
A11-28 Al5 5FHF

346.

347.

APPENDIX 1

LISTING OF THE 8279 FUNCTIONAL TEST PROGRAM
(KDCTST.V9)

35mB0 f1ikdetst.v9 rod8S macrofile padewidth(iio) 348.

18IS-1T B080/8085 MACRO ASSEHBLERs V3.0 MODULE PAGE 1

Loc oOeJ LINE SOURCE STATEHENT
PR B ST A0S o000 300 340000000883 40000ReRtedtistetettivtocisdstossotscaossassdt
29
3¢ TITLE (‘8279 Functional Test Program V97)
4
IEE 2220080080868 803¢8¢vsootatseatsstorsetoescoboctuvobisediotottsssssttivbatedsd
6
7
B 8279 TEST PROGRAM
93 z=s=====-==osoo=ss
10 3}
113 COPYRIGHT (C) 1980
12 §
13} M+ Jo LIEBELT
14} ELECTRICAL ENGINEERING LEPT.
15 4 UNIVERSITY OF ADELAIDE
16 i 30/6/80
S VA
18 7 THIS PROGRAN IS A FUMCTICONAL TEST FOR THE 8279 KEYBOARD-DISFLAY
19 CONTROLLER ON THE SDK~85 BOARD, THE PROGRAM IS IWTENLED TO RUN AT THE
20 § BEGINNING OF STAGE III OF THE SDK-B85 SIGNATURE ANALYSIS FRGCEDURE,
21
223
IR 3Esheonttonsooteotionsoretetretosdipssestobioeteitvtssotistitontifottietstt
241
2319 EXTERNAL SYNBOL DEFINITIONS (AS DEFINED IM SIKB5S,V34)
. 26 i
1300 27 KDCD £au 1B00H 18279 DATA REGISTER.
1900 28 KICC EQU 19008 18279 CONTROL REGISTER.
2002 29 RSTFLG EQU 2002H 1 RSTY THTEKRUFT FLAG ADLDRESS.
0728 30 CHRTAR EQU 0728H sDISFLAY CHARACYER TARLE ADDRESS,
0098 31 TESTZ EGU 0078H #RE-ENTRY POIHT TO SDKB3S.V34,
0640 J2 DELAY EQU 0440H i1 MILLISECOND LELAY ROUTINE.
064D 33 DLYD0O EGU 044TH 1900 ' ! b
Q4EF 34 RIKED EQU 06EFH iKEYEDARD FIFO READ ROUTINE.
Q64FF 35 CLRKED EQU O4FFH iFIF0 CLEAR ROUTIME.
" 06D8 34 CLRISP EQU 0AIIBH iDISFLAY CLEAR ROUTINE.
04E2 37 CONURT EQU Q&E2H $KEY HUMBER TO DISPLAY CODE CONVERSION ROUTIM
069F 38 ERRDSP EQU 049FH JERROR HESSAGE DISFLAY ROUTINE.
0091 39 KEXT Equ 91K $'NEXT’ KEY CODE (RETURMED BY RIKED).
40
41
- 42
8000 43 ORG 8000H JEXTERNAL 1K ROH,
4 .
8000 F3 45 TESTOV DI
8001 210019 44 LXI HyKBCC #8279 COWTROL REG., ADRS
£004 0601 47 MVI ByO1H §INITIAL ERROR NUMBER.
48 §
4%
90 i INITIALISE THE B279.
2% i
8004 T63F 52 MVI Hs3FH 1CLOCK PRESCALER = 31,
8008 3408 93 K1 H» 0BH 116 CHAR. LEFT ENTRY, ENCOLED SCAMN:

94 # THO KEY LOCKOUT,

349,

1SIS-11 8080/8085 HACRD ASSEMBLERs V3.0 HODULE PAGE 2
8279 Functional Test Frosram V9
LOC 0BJ LINE SOURCE STATEHENT
BOOA 3640 K] HVI Hy40H iREAD FIFO.
96 1
57 i DISPLAY TESY
BBy 020909090 s
VA
800C JaCH 50 HV1 Hr0C1H {CLEAR FIFQ AND DISPLAY RAM (T0 0'5).
800F CD3FB3 b1 CALL CLRILY FWAIT 160us.
8011 7E &2 Hov A fREAD STATUS ANTI CHECK THAT DISPLAY
B012 B7 43 ORA A i UHAVAILARLE IS NOT SET.
8013 Fa1783 b4 Ji ERRO {ERROR $01 IF IT IS,
8016 04 63 INR B i(k) = 2,
8017 E&OF b6 ANI OFH iCHECK THAT FIFO IS EHPTY.
8019 C21783 67 JNZ © ERRO {ERROR 202 IF NOT.
801C 04 68 THR B i(R) = 3,
801D 1EQD 69 KVl E+00H i (E) = & OF CHARS, IN FIFO.
801F 2A0018 70 LDA Koco JATTEHPT TO READ A CHAR. AND' CHECK
8022 7t 71 MoV ArM i FOR UNLDERRUN,
8023 E610 72 ANI 10K iHASK UNDERRUN FLAG,
8025 CA1783 " 73 JZ ERRO fERROR $03 IF NOT SET.
8028 04 74 INR B i(B) = 4,
8029 £D3283 79 CALL UTFRCH sWAIT FOR KEY ENTRY TO COHFIRM THAT
76 i ALL DISPLAY SEGHENTS ARE ON,
77
802C 3608 78 KVl MrODSH iCLEAR DISPLAY RAM (TD 20H).
BO2E CD3IFB3 79 CALL CLROLY 1WAIT 160us FOR CLEAR.
8031 7¢ B0 MoV Al JREAR SYAUS AND CHECK D,U. AGAIN.
B032 B7 81 ORA A '
8033 FA1983 82 Ji ERROR 1ERROR 404 IF InU, STILL SET.
8034 04 g3 INR B i(R) = S,
8037 E&OF 84 ANI OFH $CHECK THAT ND. OF CHARS. IN THE FIFD
8019 PR 83 CHp 3 # 1S STILL 1 (I.E, FIFD WAS ROT AFFECTED).
803A C21783 B4 JHL ERRO FERROR 405 IF HOT.
803D 04 g7 INR B i(B) = &6,
803E C€D3283 8 CALL WTFRCH $HAIT FOR KEY ENTRY TO COHFIRM THAT THE
89 i DISPLAY IS CORRECT.
%0
8041 34IC 91 MV N1 ODCH iCLEAR DISPLAY TD FFS.
8043 CDIF83 92 CALL CLROLY fHAIT 160us,
8044 7E 23 KOV At 1READ STATUS AND CHECK Dull,
8047 k7 94 ORA A '
B048 FA1983 99 JH ERROR iERROR €04 IF STILL SET,
804B 04 96 INR B i(B) = 7.
804C E&OF 97 AN OFH sCHECK NO, OF CHARS, IN THE FIFO HAS
804E BB 98 CHP E i NOT CHANGED,
804F C21783 99 Jiz ERRO YERROR #07 IF IT HAS.
8052 04 100 INR B itB) = 9,
8053 CD2283 101 CALL WTFRCH iHATT FOR KEY EHTRY TO CONFIRM THAT THE
102 i DISPLAY IS BLANK,
103
104
105 4 DISPLAY RAH TEST
106 §
107 i THE DISPLAY RAM IS TESTED' BY FIRST URITING UNIQUE DATA INTO EACH OF THE

103 i 16 LOCATIONS AMD READING THE DATA BACK (USING THE AUTO-INCREHENT ADDRESS
109 i KECHANISH, AMD THEN BY WRITING (AND READING BACK) OFFH TO QOH IN EACH

350.

1SI5-11 8080/8085 HACRO ASSEMELERy V3.0 HODULE PAGE 3
8279 Functional Test Frogram V%

LOC ORJ LINE SOURCE STATEHENT
110 3 LOCATION. AT THE END OF THE TEST ALL DISPLAY SEGMENTS SHOULD' BE OH.
111 5

8056 3670 112 MVI My 70H $READ DISPLAY RA¥y LOCATION O, AUTO-INC.

80598 3490 113 KU1 "y 20H fWRITE TO DISPLAY RAM LOC. 0s AUTO-INC.

BOSA 25 114 DCR H i (HL) = KICD

BOSE OE10 115 [H{PA Cr10H #HD. OF ReM LOCATIONS,

805D 3E01 116 HVI Ay 01H i INITIAL DATA.

805F 57 117 MoV DsA iSAVE IT IN D.

8040 77 118 LIRTI? MOV MiA #WRITE DATA T0O KIDCD.

8041 3C 119 IHR A sUFDATE THE DATA.

8062 QD 120 DCR C s TEST FOR LAST LOCATION,

80463 C246080 121 JNZ o IRTL

8044 QELD 122 HVI Cr10H fRESET THE COUHTER AMD READ' BACK THE DATA,

8048 74 123 MOV Al #RESTORE THE INITIAL DATA - NOTE THAT THE
124 i AUTO-THC, HECHANISH WILL WRAP AROUND SO
125 i THE FIRST READ WILL BE FROH LOC. 0.

B06? 36 126 TRT2: MOV Dl §READ FROM RDCDL

8064 BA , 127 CHP oo, 1COMPARE WITH EXPECTED DATA (IN A).

BOSR C21783 128 JHZ ERRO sERROR $08 IF NOT THE SAME.

804k 3C 129 INR A 1UPDATE EXPECTED DATA.

804F 0D 130 ICR £ §TEST FOR LAST LOCATION,

8070 €246980 131 JNZ IRT2 i

8073 04 132 THR B (B = 9
133 §

8074 24 134 THR H i (HLY = KDCC,

8075 OEBF 135 KU1 C,8FH iCOMHAND TO WRITE DISP, RAMy LOCATION 15
134 i HO THCREMENT,

8077 71 137 IRTZ: MOV M€ {WRITE THE COMMAND TO KDCC.

8078 25 128 DCR H #(HL) = KDCD,

8079 16FF 139 HVI DyOFFH fINITIAL DATA FOR EACH LOCATICN.

8078 72 140 DRT4F MOV sl yURITE THE DATA TO KIDCDL

807C 7t 141 HOV Al iREAD IT RACK.

807D BA 142 CHP D FCHECK THAT IT IS WHAT WAS WRITTEN.

807€ C21783 143 JNZ ERRO fERROR $09 IF NOT.

2081 15 144 DCR i JUFDATE THE LDATA,

8082 74 145 NOV AsD i

8083 FEFF 146 CrI = iDOM*T GO FAST OOH IN EACH LOCATION.

8085 C27B80 147 N2 DRT4 [

8088 24 148 INR H i (ML) = KDBCC,

8089 0D 149 DCR ¢ FUFDATE THE URITE COMMAMD FOR THE HEXT

80BA 79 150 Hov fC i LOUER LOCATIOHs BUT DON'T GO BELOY

BOBE FE7F 151 CPI 7FH i LOCATIOR 0.

808D C27780 152 JHZ DRT3 i

8090 04 153 INR B i(B) = A,
194 i
155 #+ THE OPERATION OF THE BLAMKING AND WRITE IMHIBIT CONTROLS IS HOU TESTED.
156 § NOTE THAT THE DISPLAY RAM SHOULD BE FILLED WITH 00°Sy SO ALL DISPLAY
157 7 SEGHENTS SHOULD HOU BE ON.
158 §

8091 36A1 159 HV1 H+QALH sBRLANK BITS BO-B3 (SEGMENTS erfrcrdird),

8093 Cn3283 160 CALL UTFRCH iWAIT FOR KEY ENTRY TO CONFIRM THAT THE
161 s DISPLAY IS CORRECT. ,

8096 J&A2 162 HVI Hy0AZH iNOY BLANK AC-A3 (SEGMENTS a-d).

8099 CD3283 163 CALL WTFRCH tWAIT FOR KEY ENTRY,

164

351.

1S1S-11 808078085 HACRO ASSEMELER, V3.0 KODULE PAGE]
8279 Functionzl Test Program V9
LOC 0BJ LINE SOUSCE STATEMENT
BO?B 3648 163 MV My QABH $ISABLE BLANKINGs BUT INHIBIT WRITE TO
164 1 AO-AZ,
809D 3690 167 "Vl H190H fURITE DISPLAY RAM LOC. Oy AUTO-THNC,
809F OLFF 148 HVI CrOFFH {DATA TO FE WRITTEN TO EACH LOCATION.
80A1 CD4883 169 CaLL WRDRAN sHRITE DATA T0 EACH LOCATICHN» BUT ONLY
170 3 THE BOTTOH 4 BITS SHOULD BE AFFECTED.
80A4 OE10 171 MVI Cy10H yREAD THE DISPLAY RAM COHTENTS TO CHECK (WE A
BOAS 340018 172 WITIY LDA KUCD # STILL READING FROM DISPLAY RAMs AUTO-INC,)
80A9 FEQF 173 CPI OFH 1CHECK AO-A3=0y BO-B3=1. ’
80AB 21783 174 N ERRC sERROR #0A- IF NOT,
804E 0D 73 DR C [
80AF C24480 176 JHZ HIT1 i
80B2 04 177 INR B ik = B
178
BORI J4A0 179 KV1 HyCACH sDISABLE WRITE INHIBITS AND REFILL THE RAH
8083 0E0O 180 HVI CyOOH # UITH 0’S 70 TURN ON ALL SEGHENTS,
BOE? CDi4833 181 CALL WRDRAK V
80BA J6A4 , 182 HVI Hy0A4H 7 INHIRIT MRITE TO BO-E3s S0 ONLY THE TOP 4 BI
80BC OLFF 183 HVI CrOFFH 7 SHOULD BE SET 710 1,
80RE Ch4883 184 CALL HRDRAN ’
BOCL QE10 185 HVI Cy10H yREAD THE DISPLAY RaAM COMTENTS TO CHECK.
BOCI ZA0018 1846 WIT2Y LDA KRCD i
80C4 FEFO 187 CFlI OFOH sCHECK A0-A3=1, BO-B3=0,
§0Ce C217e3 188 JNZ ERRO 1ERROR $0B IF NOT.
80CB OD 189 ICK C 7
80CC C€2C380 190 JNZ WIT2 i
BOCF 04 i1 INR B 1{B) = C\
' 192
193 3§
194 3 THE KEYRORD FIFO SHOULD NOW COMTAIN 5 CHARACTERS. THE FIFD CLEAR
195 7 COMMAND IS TESTED TO SEE THAT ITM
196 3 -CLEARS THE FIFO CHARACTER COUNTER» G/R AND U/R FLAGS)
197 3§ -DOES NOT AFFECT THE LISFLAY RAM.
198 §
8010 34C2 199 KVI My 0C2H iCLEAR FIFO COMHAND,
8002 7E 200 KoV Arl IREAD STATUS AND CHECK THAT ALL IS
8003 EA3F 201 AT 3FH i CLEAR,
8on5 €21783 202 JHE ERRO fERROR €0C IF NOT,
8008 04 203 INR B i(B) =D
8019 1EQO 204 NVI EsO0H 1N0, OF CHARS. IN FIFO.
205
B0O0B OE10 204 HVI Cs10H yREAD DISPLAY RAN TO SEE THAT IT IS UiCHANGED
800D JA0018 207 KCTL1Y LD KICD i
80ED FEFO . 208 CP1 OFOH i
80E2 21783 209 JHZ ERRO {ERROR $0D IF ANY CHANGE.
B0ES 0D 210 ICR C i
B0ES C2D030 211 JNZ KCT1 i
80E? 04 212 INR B i{R) = E,
213§

215 § THE 8 SEGHENT DUTPUT LINES. THIS IS DONE BY SHIFTING A O ACROSS EACH

216 5 DISPLAY LOCATION. AT THE END' OF THE TEST ONLY SEGHENT d OF EACH DIGIT
217 § WILL BE ON,
218

80EA 38R0 29 W1 H1 QAQH iTURN OFF WRITE INHIBIT,

1)

214 § THE DISFLAY BUFFER OUTPUT LINES ARE NOM TESTED RBY WALKING A 0 ACROSS
!
I

ISIS-11 8080/8085 MACRO ASSEMBLER, V3.0

8279 Functional Test Frodram

LoC OBJ

BOEC CDIBO6
80EF 3JEFE
80F1 OE10

80F3 320018

80F¢4 0D
80F7 C2F380
BOFA F5
B0FE CDADO&
80FE F1
BOFF 07
8100 DAF180
B103 CD32B3

8106 CODBOS
8109 D9
Bi0A 112307
810D 0£10
B10F 1A
8110 320018
8113 CI4D04
8116 13
8117 (D
8118 C20F81

B11E D1
811C C03283

B11F CD2583
8122 3600

8124 112807
8127 OEL0
8129 1A
8124 320018
812D CR4D0s
8130 13
2131 0D
81312 C22981
8133 1E00
8137 CD3283

B13A Cn2563

LIKE

NORT1S
IOET2:

[5 I SR I N B o |

PRI MR R PP R PR PO
rro roro
A OO N O N b L D e O

o D

r3 ra IO
el ead O
F3 e O

Ve

HODULE

SOURCE STATEKMENT

CALL
HYI
HV1
STA

ICR
JNZ
PUSH
CALL
pop
RLC
Je

CALL

CLRDSP
AsOFEH
Cy10H

KOCT

C
[IOBT2
PSH
ILYS00
PSH

DORT1
HTFRCH

352,

PAGE O

iCLEAR THE DISPLAY.

i INITIAL DATA.

iLOCATIDH COUNTER,

URITE DATA TO KDCD (NOTE THAT WE‘RE STILL
i URITING TO DISFLAY RAHy AUTO-INCREMENT),
ALL 16 LOCATIDNS,

i

iSAVE THE DATA IN A,

$HAIT 1/2 SECOND.

iRETRIEVE THE DATA.

iSHIFY THE 0.

jUPDATE DISPLAY RAM IF NOT DONE 8 TIKES.
iWALT FOR APPROVAL.

THE DIFFERENT DISPLAY HODES OF THE CONTROLLER ARE NOW TESTED IN THE

16 CHARACTER LEFT ENTRY (THE CURRENT HODE)S

B CHARACTER LEFT ENTRYS

8 CHARACTER RIGHT ENTRY:
16 CHARACTER RIGHT ENTRY.

CLRISP

U

D CHRTAB
Cr10H

U

KICD
BLYS00

U

C

[IHT1

D
WTFRCH

CLRALL
Hi0OH

D) CHRTAR
Cr1CH

D

KDCD
DLY300

I}

L

DHT2
E+O0H
WTFRCH

'
214
235 i FOLLOWING ORDER®
236 i
237 5
238 j
239 i
240 i
241 3
242 5
243 j SUFERINFOSED,
244 ;
245 CALL
244 PUSH
247 LXI
248 hiB
249 DHTLY LDAX
250 §TA
231 CALL
232 INX
233 DCR
254 JNZ
253
256 FOP
257 CALL
258
259
260 CALL
261 KNI
262
263 LxI
264 M1
265 DHT2: LDAX
266 5TA
267 CALL
268 I
269 IeR
270 JNZ
271 KT
272 CaLL
273
274 CALL

CLRALL

NOTE THAT ONLY & DIGITS ARE AVAILAELE AND THAT THE HARDUARE 1S S0
ARRANGED THAT IN 16 CHARACTER KODESs DRIGITS 0-7 AND 8-15 WILL RE

iCLEAR THE DISFLAY.

1SAVE E (FIFO CHAR. COUNT).

JADDRESS OF DISFLAY CHAR. TAELE

iN0. OF CHARS. YO BE DISPLAYED,

iGET CHAR. FROI TARLE.

YRITE OUT TO KDCD.

PWRIT 1/2 SEC. BEFORE DISPLAYIMG NEXT CHAR.
iNEXT CHAR. IN TABLE,

$TEST FOR 16 CHARS. BRITTENM.

JFINAL DISFLAY? 0123 45 SUPERIMPOSED ON
j 894b Cd

iRESTBRE FIFO CHAR. COUNT TO E,

tHAIT FOR KEY ENTRY TO CONFIRM THAT THE
3 DISPLAY IS CORRECT.

iCLEAR DISPLAY AND FIFO.

FCHANGE DISPLAY HMODE TO 8 CHAR. LEFT ENTRY

3 (THIS CLEARS THE FIFD).

iADDRESS OF DISPLAY CHAR. TAELE.

D, OF CHARS, TD BE LRITTEN TO DISPLAY RAM.
iGET CHAR, FRON TABLE,

fURITE OUT 70 KKED,

fUATT 1/2 SECOND DEFORE DISPLAYING NEXT CHAR.
iPOINT TO NEXT CHAR. IN TABLE.

FTEST FOR 146 CHARS. DONE.

!

SET FEFO CHAR. COUNT TO 0.

iUAIT FOR CONFIRHATION OF CORRECT DISPLAY.

iCLEAR DISPLAY AND FIFO.

JSIS-II 50S0/8085 HACRO ASSEMBLER, V3.0

B279 Functional Test Prosram V9

L0C oBJ

8130 1610
BI13F 3493
8141 QE10

8143 112607
8144 1A
B147 320018
814A CD4DOS
814D 13
814 0D
B14F C24481
8152 1£00
8154 C03283

8157 CD2583
8134 3418
819C 3494
813E 0E10
8160 112807
8163 1A
B164 320018
8167 CL4D04
Bleh 13
8168 0D
B14C €26381

BISF 1EQD
8171 03283

8174 3619
8174 1404
8178 CD4D04

8178 15
817C €27381

817F 3600
8181 1540

8183 010101

SOURCE STATEMENT

THE DECODED SCAM MODE OF OPERATION IS NOW TESTEL.
---C.b

Ny10H
Hs93H
Cs10H

N CHRTAB
]

KICD
DLYS00

D

C

IMT3

E; 00K
WTFRCH

CLRALL
Hs 18H
Mr96H
Cs10H
[ty CHRTAB
D

KLCDh
ALYS00
D

C

DNT4

E+OCH
WTFRCH

HODULE

353.

PAGE &

18 CHAR.». RIGHT ENTRY.

fURITE TO DISPLAY RAM FROM LOC. 3

i0. OF CHARS, WRITTEN TD RAM (ONLY 8 ARE
i DISFLAYED),

iDISPLAY TABLE ADDRESS.

- e e A e

iFINAL DISPLAY SHOULD BES dEFB 94
iSET FIFD CHAR. COUNT TO 0.

yWAIT FOR CONFIRHATION OF CORRECT DISPLAY.

iCLEAR DISPLAY AHD FIFD,

116 CHAR. RIGHT ENTRY.

iSTART FRON RIGHTHOST DIGIT (LOC. &),

iNOTE THAT AFTER ‘7' APPEARSs ALL FOLLOWING
7 CHARACTERS WILL RE SUPERIHFOSED ON Q-7.

s e A e R

FINAL DISPLAY! ADCH EF SUPERIMPOSED ON
i 2345 &7
iSET FIFO CHAR, COUNT TO €.

iHAIT FOR CONFIMATION OF CORKRECT DISFLAY,

THE DISPLAY SHOULD SHO
UHERE _ KEPRESEHTS A DLANK

IT IS MOT POSSIBLE TO TEST THE KEYBOARD OFERATION IN DECCLED SCAN MOLE
RECAUSE THE HARDJARE ARRANGEMENT IS SUCH THAT NONE OF THE 3 ROVS OF KEYS
ON THE SDK-B5 HOULD BE SELECTED BY ANY OF TRE 4 SCAN LIMES GOING LOU.

Hr19H

0y 10D
DLYS00
D

DSt

+SELECT DECODED SCAM HOLE.
iHAIT FOR S SECONDS.
i

L]
.
y

KEYROARD CONTROLLER TEST

H1O0H
tr40H

iBACK T0 8 CHAR, LEFT EMTRY
iSELECT READ FIFO.

THE KEYBOARD TEST STARTS WITH A CLEAR AND A CHECK THAT (a) THE FIFO
IS EMPTY AND (b) THERE IS MD INTERRUPT PENDING FROM THE 8279,

LIRE

273 ¥VI
274 HVI
277 HVI
278

277 LXI
280 THYZY LDAX
281 STA
282 CALL
283 INX
284 DCR
283 JHZ
284 HVI
287 CALL
288

289 CALL
290 HVI
2% HVI
, 292 KVI
293 LXI
294 IMTAL LDAX
295 STA
296 CALL
297 INX
298 DCR
299 JINZ
300

I HVI
302 CaLL
303 3

304 3

305 4

306 3

307 3

308 §

309 i

310 i

i HVI
12 KVI
313 DSTiD CALL
114 ICR
313 JHZ
36

317

318

319 i

320 3

321 i

224

323 HYI
324 W1
325 i

326 §

327 i

328 3

329 LXI

Bs0101H

FINITIAL ERROR COLE (11D,

354.

1G1S-I1 80B0/B0OBS MACRD ASSEMBLER: V3.0 HODULE PAGE 7
8279 Functional Test Frodrae V9

LoC 0BJ LINE SOURCE STATEMENT

B84 CD25R3 330 CALL CLRALL iCLEAR FIFO (AND DISPLAY),

818y 7€ 331 KOV Arl fREAD STATUS.

BiBA E&QF 332 AN OFH iCHECK FIFO IS EMPTY.

818C C21983 333 JNZ ERROR {ERROR $10 IF NOT

816F 04 334 THR B i(B) = 1,

8190 20 335 RIH iREAD IHTERRUPT STATUS.

8191 E&10 334 AN 10H fCHECK THAT RST 5.5 IS HOT SET,

8193 £21983 337 JNZ ERROR 1ERROR #11 IF IT IS,

8124 04 338 INR B 1(B) = 2,
339 3
340 5 MOW WAIT UNTIL A CHARACTER IS ENTERED, A CHECK IS MADE TO SEE THAT ONLY
J41 1 ONE CHARACTER IS IN THE FIFO AND THAT AN INTERRUPT IS NOW PENDING. THE
342 i INTERRUFT IS ALLOWED AND A CHECK IS HADE TO SEE THAT IT LOES, IN FACT, HAVE
343 § THE EXPECTED RESULT (THIS ALSO CHECKS THE 8085 RST 5.5 MECHANISH). THE FIF
344 § IS READ! AMD THE RST 5.5 INTERRUPT INPUT AND THE FIFO ARE CHECKED TQ SEE
J43 § THAT THEY ARE BOTH CLEAR,
346 §

8197 7¢ 347 KIT1V MOV A iREAD STATUS,

8198 E4OF " 349 ANI OFH sHAIT UNTIL A CHAR. IS EMTERED,

819A CA9781 349 JZ KIT1 i

819D FEOL 399 CPI 01H jCHECK THAT ONLY 1 CHAR. WAS ENTERED.

819F €21983 2ol INZ ERROR SERROR %12 IF NOT.

8102 04 3152 THR B i(R) = 3,

8143 20 353 RINX iRST 5.5 SHOULD HCW BE SET.

8144 E610 394 ANT 10H 1

81A6 CA1982 339 Jz ERROR 1ERROR 13 IF NOT.

81A9 AF 136 XRA A *CLEAR THE RST INTERRUPT FLAG.

1AA 320220 357 STA RSTFLG i

B1AD JEOE 358 HVI ArOEH iCLEAR THE RST 5.5 MASK.

B1AF 30 399 SIH [

81B0 FB 350 El 1ALLOY THE IHTERRUPT TO OCCUR,

BiB1 00 341 NOP i

8182 00 362 NOP i

B1BI F3 363 1) i

81B4 3LOF 364 HVI ArOFH iSET ALL BASKS AGAIN.

§1B4 30 - 343 SIH §

B1B7 3m022 386 LDA RSTFLG +SEE IF THE INTERRUPT UAS SUCCESSFUL.

BikA B7 367 ORA A i

81BB CA1983 368 JZ ERROR 1ERROR #14 IF FLAG NOT SET.

81BE 04 369 INR B i{B) = 5.

B81BF 2A0018 370 LDA KICD . JREAD TRE FIFD.

81C2 20 n RIH §THIS SHOULD HAVE CLEARED THE INTERRUPTY

81C3 E410 372 ANT 10 . i (ONLY 1 CHAR UAS PRESENT).

81C5 €21983 373 JNZ ERROR JERRCR $15 IF NOT CLEARED.

81C8 04 374 INR B i(p) = 6,

81C? 7t 375 KOV Al JREAD FIFD STATUS AND CHECK THAT IT

81CA E&OF 376 ANl OFH i IS ENPTY.

81CC 21983 377 JNZ ERROR 1ERROR %16 IF NOT,

81CF 04 378 INR B i(B) = 7,4
379 i
380 5 THE FIFO OVERRUN FLAG 1S TESTED BY ALLOWING THE FIFD TC FILL UP AND
381 1 VERIFYIHG THAT THE FLAG IS SET HHEN A NINTH CHARACTFR IS ENTERED.
382 i

BiDO 7E 383 MOV Al {READ STATUS AND CHECK THAT 0/R IS CLEAR.
8101 E420 384 ANI 20H i

151511 B0B0/B0BG MACRD ASSEMELERs V3.0

B279 Functional Test Prodram V9

LoC DBJ

8il3 C21983
8106 04
8107 1E00
8109 3E0B
81DB C03283
81DE BB
g1DF C20Be1
BiE2 7E
BIEJ E620
B1ET C2£281

81£8 CD2383
BIEE 3683
B1ED 3EQQ
B1EF 57
81F0 CDE204
B1F3 320018
81F6 CDEFQ4
81F9 B7
BiFA CAF&81
BIFD E&3F
BIFF EA
8200 C2Fé81
B203 14
8204 74
8205 FE14
8207 C2F031

B20A 3604
£20C CD2:583
B20F 36350
8211 3485
8213 CD4DO0S

8216 1640
B218 346E0
8214 3E14
821C CDA00S
g21F 20

SOURCE STATEHENT

ERROR
B
EsO0H
A»OBH
WTFRCH
E

ORT1
ArH
20K
ORT2

HODBULE

355.

PAGE 8

iERROR $17 IF HOT.

i(R} = B,

iNO+ OF CHARS. IN FIFO,

#H0. OF CHARS, WAHTED,

PWAIT FOR ENTRY,

i8 CHARS, YET 7

iG0 BACK IF NOT.

iNOW HAIT UNTIL OVERRUN 15 SET (AFTER NEXT
i KEY IS PRESSED}). :

THE KEYROARD IS TESTED WITH THE 8279 IN ENCODED SCAN - KEYBOARD, 2 KEY
A CHAR. IS DISFLAYED IN THE RIGHT-MOST DIGIT OF THE DISFLAY

[ISFLAY TO PROKPT THE ENTRY OF EACH CHARACTER FROH THE KEYROARI,

SENSGR HATRIX HOLE IS NOY TESTED,

CLRALL
125K
Ay QOH
bsA
CONVRY
Koco
RDKED
A
KBOT2
IFH

D
KBDT2
D

AsD
22D

KBDTA

ALL 22 KE

iCLEAR THE FIFD.

PWRITE TO DISPLAY LOCATION 3.
1FIRST KEY HUMBER.

iSAVE IT IN D

iCOHVERT 10 DISPLAY COLE,
iDISPLAY THE CHARACTER.

iWAIT FOR INPUT FROM KEYROARD.

~“r s

HASK OUT ‘CHAR. PRESENT’ FLAG.
1S IT THE RIGHT KEY ?

TIGNORE 1T TIF HOT,

iNEXT CHARACTER CODE.

fPUT IT IN A,

122 DONE 7

iREFEAT IF NOT.

AFTER PROGRAMMING THE 8279 T0

SENSOR MATRIX HODE “ERD INTERRUPT’ COHMANDS ARE SENT UNTIL NONE ARE
PEMDING (THE 8279 HAY GENERATE HULTIFLE INTERRUPTS ON RESET). &
CHARACTER IS THEM READ IN AND INTERRUPY OPERATION TESTED WITH THE

8279 PROGRAMHED TO READ' THE SENSOR RAH» AUTO-INCREMENT.

THE MOLE IS

THEN CHANGED TO READ SENSOR RAMs MO INCREMENTs AND ANOTHER KEY IS READ

It ARD INTERRUFT TESTED.

FINALLY, THE MODE IS CHANGED BACK TO AUTO-

INCREMENT AND THE REMAINING 20 KEYS ARE READ INs AFTER A PRONPT ON THE

LIHE
385 NZ
336 IHR
387 I
188 HYT
389 ORT1Y CALL
390 CHP
391 N2
392 ORT2) MOV
393 AN
194 3z
393 3
9
397 § LOCKCUT HMODE,
398
399 § GRE TESTEL,
400
401 CALL
402 M1
403 MY
404 KOV
405 KEDTL! CALL
404 STA
407 KEDT2S CALL
408 ORA
409 J
410 ANT
411 CHP
412 N2
413 IHR
414 4OV
415 CPI
114 INZ
A7 5
418
419
420 i
21
422
23
24 5
425
426 § LISPLAY,
427 5

428 Hy
129 CALL
430 HVT
431 M1
12 CALL
133
434
435 K1
434 CLRINT! HVI
437 M1
438 CALL
439 RIN

ifs04H
CLRALL
H150H
183
DLYS00

Dy £4D
H1 OEOH
Ar20D
DELAY

iSELECT SENSOR HATRIX HOLE.

jCLEAR DISPLAY (AND FIFO),

PREAD SENSOR RAM AUTO-IHCREMENT,

iWRITE DISPLAY RAM LOC. S» HO AUTO-INC,
iWAIT 1/2 SEC, - 70 ENSURE THAT THE LAST KEY
i 1S RELEASED AND TO ALLOW INITIALISATION OF
THE SENSOR RAM,

iHAX. NO, OF IRITIAL INTERRUPTS ALLOWED.
iSEND A ‘CLEAR INTERRUPT COMMAND’,

iHAIT 20ms TO ALLOW RESCAN OF THE KEYRDARD.

iSEE IF INTERRUPT FENDING.

1S1S-11 8080/8085 MACKD ASSEMBLERs V3.0
8279 Functional Test Prodram V9

LOC 0B LINE
8220 E410 440 ANI
8222 CA2CB2 441 J
8225 15 442 DCR
8224 C21882 443 Mz
8229 C31983 444 JHP

445
B22C 04 246 SHT1! INR
8220 1408 147 10
822F 340018 448 SHT2: LDA
8232 FEOO 449 CPI
8234 £21983 450 7
8237 15 451 ICR
8238 C22FB2 452 M
8238 04 453 INR

454
B23C 7E 455 Hov
823D E640 156 ANI
823F £21983 457 Nz
8242 04 458 INR

459
8243 3640 440 MVI
8245 3J£0C 461 Kv1
8247 320018 462 5TA
824A CD5783 463 SHT3: CALL
824D 20 444 RIH
824E E610 465 ANI
8250 CA1983 464 3
8253 04 447 IHR
B254 340 468 HVI
8256 20 469 RIN
8257 E610 470 ANI
B259 £21983 47 N2
B25C 04 472 INR
8250 340018 473 LDA
8260 57 474 Hov
8241 CD4183 475 CALL
8264 36E0 474 M1
8266 7A 477 Hov
8267 FEO1 478 CPl
8249 C24482 479 M

480 §

81

482 § RAM.

483 5 COMHAND,
B24C JESF 404 MU
B26E 320018 495 ST4
8271 CI5783 484 SHTS! CALL
8274 20 487 RIN
B275 E610 488 ANI
8277 CA1983 489 52
827 04 490 IR
8278 340018 491 LDA
827E 57 492 KoY
827F 20 493 RIH
8280 E610 494 ANI

SOURCE STATEMENT

10H
ShTL

[
CLRINY
ERROR

B

Iy 08H
KiCh
00H
ERROR
It
SHT2
B

ArH
40H
ERROR

B

My 40H
Ay OCH
KOCD

SCSET

10H
ERROR
B
HrOECH

10H
ERROR
B

KICD
LA
SCCLR
HyOEQH
Myl
01H
SHT3

Ar9FH
KbCh
SCEET

10H
EKROR
B
KDCD
DA

10H

HOLULE

356.

PAGE 9

§

$PROCETE WITH TEST IF NONE.

i DECREHENT COUMTER,

$TRY AGAIN IF NOT DONE 64 TIMES.
fERROR #18 IF DONE 64 TIMES,

i(R) =9,
iHOW CHECK THAT ALL SENSOR RAM LOCATIONS
i ARE SET TO 00H (NO KEYS PRESSEI.

iERROR €19 IF NOT.

y
s
1]
.
§

(B) = A,

iRCAD STATUS AND TEST THAT THE ‘SENSOR
i CLOSURE’ FLAG 1S NOT SET.
FERROR #1A IF IT IS,

i(h) = B

iREAD SENSOR RAM LDC. 0r HO AUTO-INC.
iDISPLAY ‘0’ TO PROWPT ENTRY OF KEY ‘0,

?

fWAIT FOR A KEY CLOSURE.

iTEST INTERRUPT STATUS.

!

fiERROR 1B IF INTERRUPT NOT PEHDING.
i(#) = C,

1EMD INTERRUPT COMMAND.

iTEST INT. STATUS AGAIN.

jERROR §1C IF IT‘S STILL THERE,

i(B? = Dy

iREAD ROW O OF SENSOR RAH.

iSAVE THE DATA.

iWAIT UMTIL XEY IS RELEASED.

iCLEAR THE ‘KEY RELEASE’ INTERRUPT.
iRETRIEVE ROW O DATA,

§TEST FOR KEY O,

GO BACK FOR AMOTHER KEY ENTRY IF HOT.

THE TEST 1S MOW REPEATED, WITH NOM AUTD-INCREMENT OH READING THE SEMSOR
INTERRUPTS ARE NOW CLEARED BY READING THE RAMy NOT EY ‘END INTERRUPT’

sDISPLAY 1/,

j

FUAIT FOR KEY CLOSURE.

iTEST INTERRUPT STATUS.

i

ERROR #1D IF NONE PEMDING.

i{B) = E,

FREAD FIRST ROW (THIS SHOULD CLEAR INT.)
y5AVE THE DIATA IH D.

§CHECK INTERRUFT IS NOW CLEAR.

357.

ISIS-IT 80B0/B08S HACKO ASSEMBLER V3.0
8279 Functional Test Prodram V9

HODULE PAGE 10

LoC OmJ LINE SOURCE STATEMEMT

8282 £21983 495 JNZ ERROR $ERROR #1E TF STILL SET.

8285 04 494 INR B i(R) =F,

8286 CD6183 497 CALL SCCLR JWATT UNTIL KEY RELEASED.

8289 3A0018 498 LDA KDCD iCLEAR THE ‘KEY RELEASE’ INTERRUPT.

828C 74 499 MoV Al fRETRIEVE THE ROY 0 DATA.

828D FEO2 200 CFI 02H FTEST FOR KEY ‘17,

B28F C27182 301 Jiz SHTS 160 BACK FOR ANOTHER KEY IF NOT
302 3
503 # NOW RETURN TO AUTO-IMCREHENT HODE AND FROMPT AND READ IN THE 20
304 § REMAIKING KEYS.

8292 IE02 305 HVI Ay O2H iNEXT CHAR. TO RE DISPLAYED,

8294 57 306 SKT7¢ WOV D.A iSAVE CHARRCTER IN D.

8295 CDE206 907 CALL CONVRT iCONVERT 70 DISPLAY CODE AND

8278 320018 208 STA KDCD i DISFLAY IT,

B29R 3630 309 SHTBI HVI LENI FREAD SENSOR RAM» LOC. 0s AUTO-INC.

829D CDS783 210 CALL SCSET PWAIT FOR KEY ERTRY.

8260 34EQ o1l HVI M1 OEOH iCLEAR THE INTERRUPT.

8242 1E08 , 912 HVI Es08H iLOAD ROW COUNT INTO E.

8244 3A0018 513 SHT9: LDA Koch iREAD HEXT ROW OF SENSOR RAH.

8247 FEOO 314 CP1 00H TEST FOR A CLOSURE IN THIS ROW,

B2A% C2RSE2 913 JilZ FOUND iJUKP OUT IF S0,

824C 1D 516 DCR £ iDECRENENT ROW COUNTER,

82D C2A482 517 JNZ SHT? iLOOK AT NEXT ROW IF NOT O YET.

8280 OEO1 018 HVI £s01H FPUT TEST NO. IN C

8282 £31993 219 JHP ERROR fERROR #1F IF MO CLOSURE IN ANY ROY.
920

8285 (EQ7 521 FOUNDY MVI CrO7H iSHIFT COUNTER,

8287 07 922 SHTL0? RLC 1SHIFT NEXT BIT TO CY.

8288 DALFB2 323 JC SHT11 1JUNP OUT IF FOUND,

BZER 0D 92 ICR C 1 DECREMENT COLUMN COUHTER.

B2kC C3B782 525 JHP SHT10 jLOOK AT HEXT EIT.

§2hF 3E08 926 SHTI1Y HVI ArOBH iCALCULATE KOW MO, FRON E

82C1 93 527 SUB 3 i

82C2 87 528 ALID A fHULTIPLY IT BY 8.

8203 87 529 AD A i

82C4 €7 930 ADD A i

82C5 81 531 ADD C SADD THE COLUMN NUMBER TO GIVE THE CHAR, NO.

8205 4F 332 HoV CiA iSAVE IT IN C.

B2C7 CN6183 533 SHT12¢ CALL S5CCLR WAIT UNTIL KEY RELEASED.

£2CA J5E0 334 HVI tis OEOH iCLEAR THE 'KEY RELEASE’ INTERRUPT.

B2CC 74 335 KoV ArD FRETRIEVE NO. OF THE DISPLAYED CHAR.

82CD BY 536 CHP C iCOMPARE WITH THE INPUT CHAR,

82Ct C29B82 537 JHZ SHT8 16D BACK FOR ANOTHER CHAR. IF NOT THE SANE.

g2n1 3C 338 INR A fNEXT CHARACTER.

82n2 FE16 939 CFl 22D iSEE IF ALL 22 DONE.

8204 C29482 940 JNZ SHT? iREPEAT FOR NEXT CHAR. IF HOT.

541§
542 i

FINALLY THE N KEY ROLLOVER AND 2-KEY LOCKOUT MODES ARE TESTED.

THE

i
!
943 § 8279 IS FIRST PROGRANHED FOR N KEY KOLLOVER MODE, AND THEN ANY CHARACTER
244 § ENTERED INTO THE FIFO IS DISFLAYED, THE ROLLOVER CAN THUS BE VERIFIED
T43 1 MANUALLY. UHEN 'NEXT’ 1S ENTERED THE 8279 IS SET 10 2 KEY LOCKOUT HODE
J46 5 AND ANY CHARACTERS ENTERED INTO THE FIFO ARE AGAIN DISPLAYED, WHEN

547 ¢ JNEXT’ 15 ENTERED THE TEST 1S FINISHED AND TEST 2 (OF SDKESS.V34) IS

343 7 STARTED.

049 i

358.

ISIS-IT 80B0/8085 HACRD ASSEMBLER: 93,0
8279 Functicnal Test Prodraa V9

MODULE PAGE 11

LOC 0BJ LINE SOURCE STATEMENY
8207 3402 350 HVI Hr02H yENCODED -SCAN» N KEY ROLLOVER, 8 CHAR,
351 i LEFT ENTRY.
8209 CD2383 332 CALL CLRALL iCLEAR DISPLAY AND FIFO,
82DC 3440 333 MWI H140H READ FIFO.
B20E 3683 334 HVI M1 &3 iWRITE 70 DISPLAY RAM LOC. 5
82E0 CLEFO4 939 MKRTi¢ CALL RIKED iWAIT FOR KEY ENTRY.
82E3 B7 354 ORA A i
B2E4 CAE0B? 337 JZ NKRT1 i
B2E7 FESI 358 CPl NEXT JTEST FOR “HEXT’,
B2ES CAF782 959 JZ TKLT1 160 TO NEXT STAGE IF 50.
82EC E63F 360 ANI 3FH iHASK OUT ‘CHAR. PRESENT’ FLAG.
B2EE CDE204 961 CALL ~ CONVRT iCONVERT TO DISPLAY CODE.
B2F1 320018 962 5TA KICh i oo AND DISPLAY IT,
82f4 C3E082 363 JHF NKRT1 60 BACK FOR NEXT CHAR.
264
82F7 3400 363 TKLT1: HVI is OOH iSELECT TWO KEY LOCKOUT,
82F9 CD2383 364 CaLL CLRALL iCLEAR DISPLAY AND FIFO.
82FC 3640 , 567 HVI H140H iREAD FIFO,
B2rE 3685 348 HVI 1 85H iNRITE TO DISPLAY RAM LOC. S,
8300 CDEFO4 369 TKLT2: CALL RDKED JWAIT FOR KEY ENMTRY.
8303 R7 370 ORA A i
B304 CAQ0BI 971 Jz TKLT2 i
8307 FES1 372 Crl NEXT iSEE IF 'NEXT’,
8309 CA7B00 373 J2 TEST2 iG0 TO NEXT TEST IF SO.
B30C E&IF 574 AL JFH PELSE BASK OFF 'CHAR FRESENT’ FLAG.
BI0E CDE204 975 CALL CONVRT +CONVERT TO DISPLAY COLE,
8311 320018 576 5TA KDCD iDISFLAY IT,
8314 C30083 377 JHP TKLT2 G0 BACK FOR ANOTHER CHAR.
978
979
980
981
8317 0E0Q 562 ERROY MVI CrO0H #SET TEST NO. FOR TEST 0.
8119 CD9FO6 983 ERRORY CALL ERRDSP iDISPLAY THE ERROR CODE IN BC,
831C 76 364 HLT i9TOP: 8279 ERRORS ARE FATAL.
283

386 $EJECT

359,

1815-11 B0B0/80YS HACRD ASSEMELER, V3.0 MODULE PAGE 12
8279 Functional Test Frodran V9
LOC 0BJ LINE SOURCE STATEMENY
LY ARR 4609008330490 0088000 0043¢000080 90080008009t dhobbisstttssisovesssisstssos
088 §
989 i
990 § SUBROUTINES FOR TESTS ¢ § 1
391§ e
092 i
393 4
994 100 MILLISECOND DELAY ROUTINE
993 1§
596 3 DLY100 CREATES A DELAY OF 100msy USING THE fms DELAY ROUTINE, TO ALLDYW
997 § TIHE FOR KEY DEROUNCE YHER THE 8279 IS OPERATIHG IN SENSOR MATRIX MOLE,
998 i
831D F3 399 DLY100¢ FUSH PSU iSAVE A,
BI1E JES4 600 HVI Ar 1000 i
8320 CD4004 501 CALL DELAY ilms DELAY.
8323 Fi 602 POP PSW i
8324 C9 403 RET i
, 604
809 i
406 § DISFLAY AND FIFO/SENSOR RAM CLEAR ROUTINE
807 i
608 § CLRALL SEMDS A ‘CLEAR ALL‘ COMMAND TO THE 8279y THEMN WAITS lms FOR
609 # THE DISPLAY TO BE CLEARED,
610 j
B323 FS 411 CLRALLY PUSH PSY iSAVE A,
8326 3JECD 412 M1 AsOCDH iCLEAR ALL COMMAND,
8328 320019 513 STA KIce 1SEND TO 8279,
8328 JE01 614 I ArOiH sWAIT 1ms REFORE RETURNING.
832D CDA00S 613 CALL DELAY '
8330 Fi1 414 POF PSH 1
8331 C9 817 RET i
418)
819
420 j WAIT FOR FIFO EMTRY ROUTINE
621 j
622 7 WTFRCH MONITORS THE FIFO STATUS UNTIL ANDTHER CHARACTER IS ENTERED.
423 i E IS ASSUMED TO CONTAIN THE NUKBER OF CHARACTERS IN THE FIFO ON ENTRY.
624 5 OH EXIT IT CONTAINS THE NEW NO. OF CHARS. IN THE FIFO (1 MORE).
425 i
626
8332 F5 527 WTFRCH: PUSH PSW i
8333 1C 428 IKR E # INCRERENT CHARACTER COUNTER.
8334 JA0019 629 WFC1t LDA KDCC JREAD FIFQ STATUS,
8337 E4&OF 830 ANT OFH iHASK NO. OF CHARS. IN FIFO.
8339 BB 631 cup E 1EQUAL TO (E) YET 7
833A €23483 432 JNZ WFC1 §60 BACX AND WAIT IF NOT.
832D Fi 433 FoP P54 i
833k C9 634 RET]
635 3
636 §
637 i DISPLAY CLEAR DELAY ROUTIME
638 i
839 5 CLRDLY IS A 176us (160us + 10%) DELAY ROUTINE USED TO WAIT
440 7 UNTIL A DISPLAY CLEAR OPERATION IS COMPLETED.
]

641

151S-11 8080/8085 HACRD ASSEMBLERs V3.0

8279 Functionsl Test Progrza V9

LOC 0BJ

BI3F FS
8340 3E26
8342 3D
8343 C24283
8346 F1
8347 C9

8348 ES
8349 I3
834A 210018
834D 1410
834F 71
8350 15
8331 C24F83
8354 M
8355 E1

8356 C9

8357 7E
8358 E&40
835A CAS783
8330 CDhIDg3
8360 C9

8361 7€
8362 E640
864 C26183
8367 CD1D8I
844 C?

LINE
442 CLRDLY: PUSH
643 HVI
644 CD1: LR
$45 Jnz
646 POP
647 RET
648 §

849 i
650 i
651
652 i
653 i
654
635 i
656
857 URDRAN! FUSH
659 PUSH

459 LXI
860 MU
661 WIRLY KOV
862 DCR
463 nz
864 POP
65 POP
684 RET
667 3
868 i
669 i
670 §

671 5

672 i

§73 § LEBOUNCE) .
674 i

475 SCSET: KOV
674 AN
677 J
§78 CALL
679 RET
680 i

681 i

682 ;

483 i

884 §

685 i

686 § DEEOUNCE),
687 i

488 SCCLR! MOV
689 AN
690 N2
691 CALL
892 RET
693

694

495

696

SOURCE STATEHENT

PSW

A 38D
A

coi
PSY

360.

PAGE 13

- e MR W e s

DISPLAY REM WRITE ROUTINE

HRORAK WRITES (L) TO THE DISPLAY RAM 14 TIMNES.

IT ASSUHES THAT

THE DISPLAY KAN IS CURRENTLY SELECTED FOR URITINGs AUTO-INCREMENT
50 THAT ON EXIT ALL 16 DISFLAY RAH LOCATIONS WILL BE SET TD (C)y
UHLESS ANY WRITE INHIBIT BITS ARE CURRENTLY SET,

H
U

HyKICD
Dy 10H
MiC

D

WOR1

i

H

15AVE HL.

iSAVE D,

!

sLOCATION COUNTER.

fWRITE DATA TO DISPLAY RAHM.
JECREMENT COUHNTER.

tREPEAT 16 TIHES,

SENSOR CLOSURE SET ROUTIHE

SCSET HOMITORS THE ‘SENSOR CLOSURE’ FLAG IN THE STATUS WORDy» WAITING
FOR A KEY CLOSURE.

Al
40H
SCSET

ILY100

HHEN SC GOES HIGH A 100ms DELAY IS CALLED (FOR

FREAD STATUS,

iHASK 8C.

FWAIT UNTIL SET.

fEROUNCE BEFORE RETURMING TO CLEAR
i THE INTERRUPT,

SENSOR CLOSURE CLEAR ROUTINE

SCCLR MONITCRS THE ‘SENSOR CLOSURE’ FLAG IN THE STATUS WORDy WAITING

UNTIL A KEY IS RELEASEI.

ArH
40H
SCCLR
DLY100

WHEN SC GOES LOW A 100ms DELAY IS CALLED (FOR

#READ STATUS.

iMASK SC.

iWAIT UNTIL CLEAR.

1DEBOUNCE BEFORE RETURMING TO CLEAR
i THE INTERRUPT,

I51S-11 80BO/B085 MACRO ASSEMBLER, V3.0
8279 Functional Test Prodram V9

HOLULE PAGE

L0C DBJ LINE SOURCE STATEMENY

697

END

PUBLIC SYMBOLS

EXTERNAL SYHBOLS

USER SYHROLS

CDl A 8342 CHRTAR A 0728 CLRALL A 8323 CLRILY A B33F
CLRKBD A 0SFF CONVRT A Q6E2 LELAY A 0440 DLY100 A 831D
DMT2 A B129 DHTZ A 8146 DHT4 A 8143 [ORT1 A BOF1
DRT2 A B04? DRT3 A BO77 LRT4 A B07B DSTI A 8178
ERROR A 8319 FOUND A 82BS KBRDTL A BIFQ KBDT2 A 81Fé
KDCD A 1800 KITL A 8197 NEXT A 0051 NKRTI A B2EQ
RDKBD # QSEF RSTFLG A 2002 SCCLR A 8341 SCSET A 8357
SHT11 A B2BF SHTI2 A 8207 SHT2 A B22 SHYZ A B24A
SNTB A 829B SMT? A B2A4 TESTO A 8000 TEST2 A 0098
WORT A B34F HFC1 A 8334 HITL A 80A6 WIT2 A 80C3

ASSEMBLY COMPLETE» NO ERRORS

14

CLRDSP & 0408
DLY300 A 064D
DOET2 A 80F3
ERRO A 8317
KCT1 A 80ID
ORT1 A BLI3
SHTY A B22

SHTS A 8271
TRLTE A B2F7
WRDRAN A 8348

361.

CLRINT 4 8218
DMNT1 A BLOF
DRT1 A 8040
ERRDSP A 069F
KICC A 1900
0R7T2 & 81E2
SHT10 A B82B7
EHT? A B294
TKLT2 A 8300
WTFRCH A 8332

362.

APPENDIX J

8279 FUNCTIONAL TEST ROUTINE OPERATING INSTRUCTIONS

363.

8279 FUNCTIONAL TEST ROUTINE

The 8279 self (or "functional") test routine is intended to be run

as part of Stage III of the SDK-85 signature analysis procedure.

To run the test, the 8279 self test program (KDCTST.V9, listed in
Appendix I) must be stored in the external 1K ROM, located at address
8000H. The Stage III test program (Appendix E) must be patched to jump
to 8000H immediately after initialisation. The 8279 test will then re-
place tests 0 and 1 of Stage III, and the following operating instruc-
tions will replace steps (2) to (4) inclusive of the Stage III operating

instructions (Appgndix F).

(2) A. Apply power to the system and press RESET.

Display Procedure
8.8.8.8. 8.8. Go to B.
Err 01 Replace Al3
Err 02
Err 03
Any other display

B. Press any key (except RESET or VECT INTR)

Display Procedure
6.6.6.6. 6.6. Go to C.
Err 04 Replace Al3
Err 05
Any other display

364.

C. Press any key.

Display Procedure
Blank Go to D.
Err 06 Replace Al3
Err 07
Any other display

D. Press any key.

This should produce some brief_activity on the displays,
with all digits finally showing]

If display shows Err 08, 09 or any other display
then replace Al3.
E. Press any key.
A1l digits should show .
If any other display results then replace Al3.
F. Press any key.

The segments of each display digit will be 1it for % second

in the sequence shown: 5
2 3]s
1| |7
—

and the bottom segment will be left on.

If display shows Err OA, Err Ob, Err OC, Err 0d, any other
display or if the display sequence is not correct

then replace Al3.

G. Press any key.
The characters 0, 1, 2, 3, 4 and 5 appear from left to right
across the display, and are then superimposed on characters
8, 9, A, b, C and d.

The display should finally be:

If the display sequence is not correct then replace Al3.

365.

Press any key.

The characters 0, 1, 2, 3, 4 and 5 appear from left to right
across the display, and are then replaced by characters 8, 9,
A, b, C, and d.

If the display sequence is incorrect then replace Al3.

Press any key.

The display will go blank and the characters will be shifted

from right to left across the display, starting at the third
digit from the left as follows:

X k() Kk Kk %
x (0] * % %
012 * * *
123 % % %
2 34 * * %
345 **9Q
456 *01
567012
678123

dEF89A (final display)
where * represents a blank digit.
If the display sequence is incorrect then replace Al3.
Press any key.
The display will go blank, and the characters 0 ... 7 will be
shifted from right to left (starting at the rightmost digit)
across the display. Then a series of superimposed characters
will be shifted across the display (it is not important to
verify these characters).
If the display sequence is incorrect then replace Al3.
Press any key.
The display will show

***C*b
(where * represents a blank digit)

for five seconds.

If the display is incorrect then replace Al3.

366.

The display should go blank.

Display Procedure
Blank Go to M.
Ery 10 Replace Al3
Err 11 Examine pin Al13-4 with a logic probe.

If A13-4 is high then replace A13*

else
examine pin Al11-9 with a Togic probe.
If A11-9 is low then replace All
else the connection from Al3-4 to All-9
is faulty.
Press any key.
Display Procedure
Blank Go to N.
Err 12 Replace Al3.
Err 15
Err 16
Err 17
Err 13 Examine pin Al13-4 with a logic probe.
If A13-4 is Tow then replace Al3*
else
examine pin Al1-9 with a logic probe.
If Al1-9 is high then replace All
else the connection from Al3-4 to All-9
is faulty.
Err 14 Replace All.

367.

Press any key eight times.

After the eighth key entry, the character '0' should be dis-
played in the rightmost display digit.

If the display is incorrect then replace Al3.
Press the '0' key and the display should be updated to show
=,

A sequence of 22 characters will be displayed in this manner.
As each character is displayed, the corresponding key should
be pressed, and the display will be updated to the next
character. An out-of-sequence key entry will be ignored.

Character| O
Key 0 1 2 3 4 56 7 89 A b Cd&EF

Character H C P U r t

Key ~|EXEC NEXT GO SUBST MEM EXAM REG ~ S_aCCE

When the last key is pressed, the display will go blank briefly.
If any error is observed then replace Al3.

The display will show one of the following:

Display Procedure
0 Go to Q
Err 18 Replace Al3
Err 19
Err 1A
Any other display

Press the '0' key.

Display Procedure
1 Go to R
Err 1b Replace Al3
Err 1C
Any other display

368.

R. Press the 'l' key.

Display Procedure
2 Go to S
Err 1d Replace Al3
Err 1E
Any other display

S. Proceed as in step 0., pressing the key corresponding to each
character displayed. After the last key is pressed, the dis-
play will go blank.

1f any error is observed, or the display shows "Eyr 1F'
then replace Al3.

T. Press any key except 'NEXT' and its corresponding character
will be displayed in the rightmost display digit. Verify that,
if any key (except 'NEXT') is pressed and held down, the dis-
play is updated when a second key is pressed.

If this does not happen then replace Al3.

U. Press 'NEXT' and the display should go blank.

Verify that if any key (except 'NEXT') is pressed, its corres-
ponding code is displayed, but if a second key is pressed while
the first is held down, the display is not updated until the
first key is released.

If this does not happen then replace Al3.

V. Go to step (5) of Stage III (Appendix F).

369.

REFERENCES

R.G. Bennetts, "The Philosophy of Testing Digital Systems - A Pragmatic
Approach", Electronics and Power, Vol. 27, No. 2, Feb. 1981, pp 162-165.

P.G. Nutburn, "Economic Considerations of Testing Integrated Circuits",

Electronic Engineering, Vol. 51, No. 631, Nov. 1979, pp 143-144,

J. Hotchkiss, "The Roles of In-Circuit and Functional Board Test",

Electronic Engineering, Vol. 51, No. 625, July 1979, pp 63-71.

D. Izumi, "The Challenge of Microprocessor Chip Testing", 1975 WESCON

Technical Papers, Session 27.

D. Moralee, "Economics of Using A.T.E.", Electronics and Power, Vol.

26, No. 2, Feb. 1980, pp 176-182.

G. Moore, "VLSI: Some Fundamental Challenges", IEEE Spectrum, Vol. 16,

No. 4, Apr. 1979, pp 30-37.

M.A. Breuer and A.D. Friedman, Diagnosis and Reliable Design of

Digital Systems, Pitman, London, 1977.

S.B. Akers, "Test Generation Techniques", Computer, Vol. 13, No. 3,

Mar. 1980, pp 9-15.

E.I. Muehldorf and A.D. Savkar, "LSI Logic Testing - An Overview",

IEEE Trans. Comput., Vol. C-30, No. 1, Jan. 1981, pp 1-17.

108

11.

12.

13.

14.

15.

16.

17.

18.

19.

370.

T.W. Williams and K.P. Parker, "Testing Logic Networks and Designing

for Testability", Computer, Vol. 12, No. 10, Oct. 1979, pp 9-21.

R.G. Bennetts and R.V. Scott, "Recent Developments in the Theory and
Practice of Testable Logic Design", Computer, Vol. 9, No. 6, June

1976, pp 47-63.

A. Bluestone, "Logical Environment Comparison Testing Handles Complex

LSI Devices", Computer Design, Vol. 18, No. 4, Apr. 1979, pp 95-102.

D. Tose, "Digital Logic Board Design with Test Needs in Mind",

Electronic Engineering, Vol. 49, No. 587, Jan., 1977, pp 46,49.

M. Thurman, "Cutting Production Costs with In-Circuit Test Systems",

Solid State Technology, Vol. 21, No. 10, Oct. 1978, pp 77-79.

F.R. Boswell, "Designing Testability into Complex Logic Boards",

Electronics, Vol. 45, No. 17, August 14, 1972, pp 116-119.

D. Tose, "Digital Logic Board Design with Test Needs in Mind",

Electronic Engineering, Vol. 48, No. 586, Dec. 1976, pp 73-75.

D. Tose, "Design Circuits for Testability to Save Time and Cut Bottle-
necks", EDN, Vol. 22, No. 10, May 20, 1977, pp 95-98.

D. Schneider, “"Designing Logic Boards for Automatic Testing"”,

Electronies, Vol. 47, No. 15, July 25, 1974, pp 100-104.

J.H. Jhu, "Design for Fault Isolation", Electronic Design, Vol. 23,

No. 23, Nov. 8, 1975, pp 86-90.

20.

21.

22.

23.

24.

2o,

26.

27.

371.

C. Gaskell, "Designing in Testability", Electronics Industry, Vol. 6,

No. 8, Aug. 1980, pp 21-23.

M.E. Granieri and W.J. Schmitt, "An Overview of Contemporary 'Portable’
Digital A.T.E. System Architectures", The Radio and Electronic Engineer,

Vol. 50, No. 9, Sept. 1980, pp 459-466.

S.P. Morse, B.W. Ravenel, S. Mazor and W.B. Pohlman, "Intel Micro-
processors - 8008 to 8086", Computer, Vol. 13, No. 10, Oct. 1980, pp
42-60.

P.M. Russo, "VLSI Impact on Microprocessor Evolution, Usage, and System
Design", IEEE J. Solid-State Circuits, Vol. SC-15, No. 4, Aug. 1980,

pp 397-406.

D. Moralee, "Microprocessor Architectures: Ten Years of Development",

Electronics and Power, Vol. 27, No. 3, Mar. 1981, pp 214-221.

J.C. Leininger, "On-Chip Testing Enhancement of a Single-Chip Micro-

processor", IBM Tech. Disc. Bull., Vol. 21, No. 1, June 1978, pp 5-6.

N. Purkis, "Testing Intelligent L.S.I.", New Electronics, Vol. 11,

No. 22, Nov. 14, 1978, pp 134-138.

L.H. Goldstein, "Controllability/Observability Analysis of Digital
Circuits", IEEE Trans. Circuits and Systems, Vol. CAS-26, No. 9, Sept.

1979, pp 685-693.

28.

29.

30.

gl

32,

33.

34.

355

36.

372.

E.R. Hnatek, "Microprocessor Device Reliability", Microelectronics

and Reliability, Vol. 17, No. 3, 1978, pp 379-385.

D. Hackmeister and A.C.L. Chiang, "Microprocessor Test Technique
Reveals Instruction Pattern Sensitivity", Computer Design, Vol. 14,

No. 12, Dec. 1975, pp 81-85.

K.P. Tashioglou, "Current Aspects of LSI Board-Level Testing",

Electronic Engineering, Vol. 51, No. 620, Apr. 1979, pp 109-119.

J.P. Hayes and E.J. McCluskey, "Testability Considerations in Micro-

processor-Based Design", Computer, Vol. 13, No. 3, Mar. 1980, pp 17-26.

J. Lyman, "LSI Boards Give Testers Fits", Electroniecs, Vol. 51, No.

24, Nov. 23, 1978, pp 91-92.

M.A. Breuer and A.D. Friedman, "Functional Level Primitives in Test
Generation", IEEE Trans. Comput., Vol. C-29, No. 3, Mar. 1980, pp

223-235.

A.R. Wilkinson, "Designing a Test Programme", Electron, No. 175, May

1979, p 13.

J.M. Bilton, "A Survey of Self-Test and BITE Program Generation",

Buromicro J., Vol. 6, No. 3, May 1980, pp 168-174.

S.M. Thatte and J.A. Abraham, "Test Generation for Microprocessors",

IEEE Trans. Comput., Vol. C-29, No. 6, June 1980, pp 429-441.

37,

38.

39.

40.

4].

42.

43.

44.

45.

373.

R.G. Bennetts, "Testing Digital Circuits: Guidelines for Research",
IEE J. Computers and Digital Techniques, Vol. 2, No. 5, Oct. 1979,

pp 185-186.

K. Jefferies, "Microprocessor Testing Techniques", Electronic Engineer-

ing, Vol. 50, No. 601, Jan. 1978, pp 61-62.

J.R. Armstrong and G.W. Woodruff, "Chip-Level Simulation of Micro-

processors", Computer, Vol. 13, No. 1, Jan. 1980, pp 94-100.

A. Santoni, "Automatic Testers Can Characterize as well as Inspect”,

Electronic Design, Vol. 26, No. 24, Nov. 22, 1978, pp 84-88.

K. Ripley, "Testing Microprocessor-Based Circuits", Electronic Engineer-

ing, Vol. 49, No. 597, Oct. 1977, pp 65-68.

A.C.L. Chiang and R. McCaskill, "Two New Approaches Simplify Testing
of Microprocessors", Electronics, Vol. 49, No. 2, Jan. 22, 1976,

pp 100-105.

T.S. Bush, "Unique Problems Encountered in Testing Microprocessor

Controlled PCBs", WESCON-77 Conference Record, Session 9.

S.E. Scrupski, "Why and How Users Test Microprocessors", Electronics,

Vol. 51, No. 5, March 2, 1978, pp 97-104.

T.C. Chen, H.J. Gray, J.D. Wellin and B.Y. Woo, "A General Procedure
for Designing Tests for LSI Digital Circuits", Microelectronics J.,

Vol. 9, No. 4, March/April 1979, pp 4-12.

46.

47.

48.

49,

50.

51.

52,

53.

54.

374.

R.C. Goldblatt, "How Computers Can Test Their Own Memories", Computer

Design, Vol. 15, No. 7, July 1976, pp 69-73.

W. Barraclough, A.C.L. Chiang and W. Sohl, "Techniques for Testing
the Microcomputer Family", Proc. IEEE, Vol. 64, No. 6, June 1976,

pp 943-950.

J. Knaizuk and C.R.P. Hartmann, "An Algorithm for Testing Random Access

Memories", IEEE Trans. Comput., Vol. C-26, No. 4, Apr. 1977, pp 414-416.

A.J. Borer, "Total Memory Test", Microprocessors and Microsystems,

Vol. 4, No. 4, May 1980, pp 141-144.

K. Jessen, "In-Circuit Tester Answers uP Board Challenge", Electronic

Design, Vol. 28, No. 23, Nov. 8, 1980, pp 97-101.

S.R. Purks, "Experiences with ATE Providing Testability of Micropro-
cessor Boards", IEEE Trans. Instrumentation and Measurement, Vol. IM-27,

No. 2, June 1978, pp 178-181.

S. Runyon, "Testing LSI-Based Boards: Many Issues, Many Answers",

Electronic Design, Vol. 27, No. 6, March 15, 1979, pp 58-66.

M. Neil and R. Goodner, "Designing a Serviceman's Needs into Micro-
processor-Based Systems", Electronics, Vol. 52, No. 5, March 1, 1979,

pp 122-128.

G. Gordon and H. Nadig, "Hexadecimal Signatures Identify Troubiespots
in Microprocessor Systems", Electronics, Vol. 50, No. 5, March 3,

1977, pp 89-96.

5%

56.

57.

58.

59.

60.

61.

62.

63.

375.

H. Davis, "Testing uP-Boards Can be Easier - If you Design Your Own

Tester", Electronic Design, Vol. 27, No. 5, March 1, 1979, pp 196-198.

E.B. Foley and A.H. Firman, "Testing Microcomputer Boards Automatically",

Computer Design, Vol. 15, No. 12, Dec. 1976, pp 92-94.

E. Steinberg and R. Lecog, "A Blackbox Approach to Testing and Fault
Isolating an 8080 Chip Set on Existing A.T.E.", WESCON-77 Conference

Record, Session 9.

J. McLeod, "High-Level Language Models ATE LSI", Electronic Design,
Vol. 28, No. 22, Oct. 25, 1980, pp 32-33.

K.P. Wacks, P. de Bruyn Kops, F.J. Hill and M. Masud, "Model LSI
Devices from Manufacturer's Data", Electronic Design, Vol. 28, No. 23,

Nov. 8, 1980, pp 103-108.

J. Galiay, Y. Crouzet and M. Vergniault, "Physical Versus Logical
Fault Models MOS LSI Circuits: Impact on Their Testability", IEEE

Trans. Comput., Vol. C-29, No. 6, June 1980, pp 527-531.

C. Robach, G. Saucier and C. Aléonard, "Microprocessor Systems Testing -
A Review and Future Prospects", Euromicro J., Vol. 5, No. 1, Jan 1979,

pp 31-37.

R.L. Wadsack, "Fault Coverage in Digital Integrated Circuits", Bell

Sys. Tech. J., Vol. 57, No. 5, May-June 1978, pp 1475-1488.

J. McLeod, "Boards Become Self-Testing: Fast Test Systems Gain on

Complex LSI", Electronic Design, Vol. 27, No. 24, Nov. 22, 1979, pp 28,30.

64.

65.

66.

67.

68.

69.

70.

71.

72.

7L

376.
G. Crichton, "Testing Microprocessors", IEEE J. Solid-State Circuits,

Vol. SC-14, No. 3, dJune 1979, pp 609-613.

S. Bisset, "LSI Tester Gets Microprocessors to Generate Their Own

Test Patterns", Electronics, Vol. 51, No. 11, May 25, 1978, pp 141-145.

J. McLeod, "1981 Technology Forecast: Instruments", Electronic

Design, Vol. 29, No. 1, Jan. 8, 1981, pp 210-232.

R. Shinn, "Automatic Test Systems Grow With Components and Boards",

Electronic Design, Vol. 28, No. 21, Oct. 11, 1980, pp 125-133.

J. Shifman, "Programmable Sequencer Tests LSI In-Circuit", Electronic

Design, Vol. 28, No. 23, Nov. 8, 1980, pp 115-118.

C. Pynn, "In-Circuit Tester Using Signature Analysis Adds Digital LSI
to its Range", Electronics, Vol. 52, No. 11, May 24, 1979, pp 153-157.

J.D. Hutcheson, "Semiconductor Testing Requirements in the 1980's",

Solid State Technology, Vol. 23, No. 8, Aug. 1980, pp 133-137.

G. Heftman, "IC Testers Turn Complex Semis to Good Account", Electronic

Design, Vol. 28, No. 21, Oct. 11, 1980, pp 95-104.

E.J. Lerner, "Instrumentation: Laboratory/Bench Units", IEEE

Spectrum, Vol. 18, No. 1, Jan. 1981, pp 67-68.

A.F. Shackil, "Tesging Debate Enters New Phase", Electronies, Vol. 52,

No. 4, Feb. 15, 1979, pp 88-90.

74.

75.

76.

77.

78.

79.

80.

81.

82,

377.

R.W. Comerford, "Smaller Boards Mean Bigger Problems", Electronics,

Vol. 52, No. 20, Sept. 27, 1979, pp 89-90.

D. Siewiorek and D. Rennels, "Workshop Report : Fault-Tolerant VLSI
Design", Computer, Vol. 13, No. 12, Dec. 1980, pp 51-53.

T.J. Frechette and F. Tanner, "Support Processor Analyzes Errors
Caught by Latches", Electronics, Vol. 52, No. 23, Nov. 8, 1979,
pp 116-118.

N.C. Berglund, "Level-Sensitive Scan Design Tests Chips, Boards,

System", Electronies, Vol. 52, No. 6, Mar. 15, 1979, pp 108-110.

B. Koneman, J. Mucha and G. Zwiehoff, "Built-In Test for Complex
Digital Integrated Circuits", IEEE J. Solid-State Circuits, Vol. SC-15,

No. 3, June 1980, pp 315-318.

B. Nicholson, "Troubleshooting uP-Based Equipment", Electronics Industry,

Vol. 6, No. 7, July 1980, pp 15-19.

B. Nicholson, "Developments in Logic Analysers - Essential Digital
Debugging Tools", Electronics Industry, Vol. 6, No. 9, Sept. 1980,
pp 38-49.

J. Marshall, "Now Choosing the Right Logic Analyzer Requires a Logical

Approach", Electronic Design, Vol. 26, No. 24, Nov. 22, 1978, pp 108-113.

E.J. Lerner, "Instrumentation: Field Service", IEEE Spectrum, Vol. 18,

No. 1, Jan. 1981, p 66.

83.

84.

85.

86.

87.

88.

89.

90.

91.

378,

I.H. Spector, "Logic~-State and Signature Analysis Combine for Fast,

Easy Testing", Electronics, Vol. 51, No. 12, June 8, 1978, pp 141-145.

W.W. Moyer, "Designing a uC Test Unit", Digital Design, Vol. 8, No.

5, May 1978, pp 112-120.

"Field Servicing Microprocessor-Based Systems", Digital Design, Vol. 7,

No. 10, Sept. 1977, pp 78-82.

uScope 820 Operator's Handbook, Intel Corporation, Santa Clara,

California,]1977.

A. Santoni, "Self-Testing Terminals Ease System Troubleshooting",

Electronic Design, Vol. 26, No. 24, Nov. 22, 1978, p 40.

M.D. Lippman and E.S. Donn, "Design Forethought Promotes Easier Testing
of Microcomputer Boards", Electronics, Vol. 52, No. 2, Jan. 18, 1979,

pp 113-119.

L. Lowe, "Designing for Testability", Microprocessors and Microsystems,

Vol. 3, No. 1, Jan.-Feb. 1979, pp 3-6.

L. Yencharis, "uP-Based Instruments Last Longer When Test Help Comes
From Within", Electronic Design, Vol. 27, No. 8, April 12, 1979,
pp60-61.

V.P. Srini, "Fault Diagnosis of Microprocessor Systems", Computer,

Vol. 10, No. 1, Jan. 1977, pp 60-65.

379.

92. D. Sharrit, "Team Up a uP With Signature Analysis and Ease Trouble-
shooting in the Field", Electronic Design, Vol. 27, No. 1, Jan 4,

1979, pp 138-143.

93. D.R. Ballard, "Designing Fail-Safe Microprocessor Systems", Electronics,

Vol. 52, No. 1, Jan. 4, 1979, pp 139-143.

94. H.J. Nadig, "Field Testing Microprocessor Products With Signature

Analysis", 1978 WESCON Technical Papers, Session 29.

95. Application Note 222: A Designer's Guide to Signature Analysis,

Hewlett-Packard Company, Palo Alto, California, Apr. 1977.

96. R.A. Frohwerk, "Signature Analysis: A New Digital Field Service
Method", Hewlett Packard J., Vol. 28, No. 9, May 1977, pp 2-8.

97. Application Note 222-4: Guidelines for Signature Analysis, Under-
standing the Signature Measurement, Hewlett-Packard Company, Palo

Alto, California, Jan. 1981.

98. L.C. Badagliacca, "A Test and Service Approach as Unique as the Micro-

processor Itself", 1978 WESCON Technical Papers, Session 29.

99. dpplication Note 222-3: A Mamager's Guide to Signature Analysis,

Hewlett-Packard Company, Palo Alto, California, Oct. 1980.

100. J. Stephen, "Signature Analysis - A Reasonable Alternative", Electronic

Design, Vol. 27, No. 5, Mar. 1, 1979, p.15.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

380.

A. Stefanski, "Free-Running Signature Analysis Simplifies Trouble-

shooting", EDN, Vol. 24, No. 3, Feb. 5, 1979, pp 103-105.

M. Marshall, "Conferees Look at Logic Analysis Techniques", Electronics,

Vol. 53, No. 3, Jan. 31, 1980, p 39.

‘M. Marshall, “"Signature Analysis Wins New Acclaim", Electronics, Vol.

53, No. 4, Feb. 14, 1980, pp 102, 104.

Application Note 222-2: Application Articles on Signature Analystis,

Hewlett-Packard Company, Palo Alto, California, May 1979.

dpplication Note 228-1: Implementing Signature Analysis for Production

Testing, Hewlett-Packard Company, Palo Alto, California.

A. Natrasevschi, "SA Attacks Board Faults Without Extra Hardware",

Electronic Design, Vol. 28, No. 21, Oct. 11, 1980, pp 191-195.

M. Riezenman, "European Instruments Tailor LSI to the Task", Electronic

Design, Vol. 28, No. 21, Oct. 11, 1980. pp 81-90.

H. Bodt, "Instrumentation Industry Steers New Course", Electronic

Design, Vol. 27, No. 17, Aug. 16, 1979, pp 149-151.

J. McLeod, "Field-Service Testers Sharpen On-Site Skills", Electronic

Design, Vol. 28, No. 21, Oct. 11, 1980, pp 109-118.

D.G. West and H. Gillette, "Analyzer + Emulation = Faster Board
Testing". Electronic Design, Vol. 28, No. 21, Oct. 11, 1980, pp 177-182.

111.

112.

i1 18%

114.

115.

116.

117.

118.

119.

381.

M. Marshall, "Stimulus Unit Simplifies Failure Analysis", Electronics,

Vol. 53, No. 14, June 19, 1980, pp 171-172.

R. Rhodes-Burke, "Applying Signature Analysis to Existing Processor-

Based Products", Electronics, Vol. 54, No. 4, Feb. 24, 1981, pp 127-133.

M. Marshall, "Signature Analysis Tackles Mixed Logic", Electronics,

Vol. 53, No. 25, Nov. 20, 1980, pp 44-46.

Application Note 222-10: A Signature Analysis Case Study of a Z80-
Based Personal Computer, Hewlett-Packard Company, Palo Alto, California,

Oct. 1980.

Application Note 222-11: A Signature Analysis Case Study of a 6800~
Based Display Terminal, Hewlett-Packard Company, Palo Alto, California,

Apr. 1981.

Intel Component Data Catalog 1980, Intel Corporation, Santa Clara,

California, 1980.

SDK-85 System Design Kit User's Mamual, Intel Corporation, Santa Clara,

California, 1978.

D. Bursky, “Support Circuits - The 'Power' Behind Powerful Processors",

Electronic Design, Vol. 28, No. 24, Nov. 22, 1980, pp 123-140.

J.G. Posa, "Peripheral Chips Shift Microprocessor Systems Into High
Gear", Electronics, Vol. 52, No. 17, Aug. 16, 1979, pp 93-106.

120.

121.

122.

123.

124.

125.

126.

127.

382.

MCS-85 User's Manual, Intel Corporation, Santa Clara, California,

1977.

M. Karpovsky and S.Y.H. Su, "Detection and Location of Input and
Feedback Bridging Faults Among Input and Output Lines", IEEE Trans.

Comput., Vol. C-29, No. 6, June 1980, pp 523-527.

Model 1640A Serial Data Analyzer Data Sheet, Hewlett-Packard

Company, Palo Alto, California, 1978.

J. Rattner and W.W. Lattin, "Ada Determines Architecture of 32-Bit
Microprocessor", Electronics, Vol. 54, No. 4, Feb. 24, 1981,

pp 119-126.

D.H. Smith, "Exercising the Functional Structure Gives Micropro-
cessors a Real Workout", Electronics, Vol. 50, No. 4, Feb. 17,

1977, pp 109-112.

C. Robach and J.M. Gobbi, "Microprocessor Systems Testing", in
Buromicro Symposium, 4, Large Scale Integration, H.W. Lawson, H.
Berndt and G. Hermanson, Eds., North-Holland, Amsterdam, 1979,

pp 66-73.

C. Gobach and G. Saucier, "Dynamic Testing of Control Units", IEEE

Trans. Comput., Vol. C-27, No. 7, July 1978, pp 617-623.

Intel 8080 Microcomputer Systems User's Manual, Intel Corporation,

Santa Clara, California, 1975.

128.

129.

130.

131.

132.

138

134.

383.

B. Nicholson, "LSI Design Support Essential", Electronics Industry,

Vol. 6, No. 12, Dec. 1980, p 3.

D.A. Patterson and C.H. Séquin, "Design Considerations for Single-
Chip Computers of the Future", IEEE Trans. Comput., Vol. C-29, No.

2, Feb. 1980, pp 108-116.

J. Heering, "The Intel 8086, the Zilog Z8000, and the Motorola
MC68000 Microprocessors", Euromicro J., Vol. 6, No. 3, May 1980,

pp 135-143.

MC68000 Microprocessor User's Manual, Second Edition, Motorola

Inc., Austin, Texas, 1980.

MCS-86 User's Manual, Intel Corporation, Santa Clara, California,

1979.

AmZ8000 Family Data Book, Advanced Micro Devices Inc., Sunnyvale,

Caiifornia, 1980.

J. Boney and E. Rupp, "Let Your Next Microprocessor Check Itself
and Cut Down Your Testing Overhead", Electronic Design, Vol. 27,

No. 18, Sept. 1, 1979, pp 100-105.

AC
ACC
ACT
ALE
ALU
APG
ATE

C
CLK
CPU
CRO
Cso/ - CS7/
CY

Du
DUt
EPROM

FIFO
FU
GPIB

HLDA
ICE
INTA/
INTR
1/0
10/M
IRQ

LIST OF ABBREVIATIONS

8085 Auxiliary Carry flag.
Accumulator (8085 functional unit).
Accumulator latch (8085 functional unit).

Address Latch Enable (8085 strobe output).

Arithmetic Logic Unit (8085 functional unit).

Algorithmic Pattern Generation. .
Automatic Test Equipment.

A measure of instruction complexity.
Clock (8085 output).

Central Processing Unit; microprocessor.

Cathode Ray Oscilloscope.

Chip Select outputs of the 8205 address decoder.

8085 Carry flag.

Display unavailable (8279 status flag).
Device Under Test.

Erasable Programmable Read Only Memory.

A measure of instruction complexity.

First-In First-Out buffer (8279 functional unit).

Functional Unit.

General Purpose Interface Bus.

Suffix to denote hexadecimal numbers.
Hold Acknowledge (8085 status output).

In Circuit Emulation/Emulator.

Interrupt Acknowledge (8085 output).
Interrupt (8085 input).

Input/Output.

Input-Output/Memory (8085 status output).
Interrupt Request (8279 output).

Multiplier of 1024.

384.

LSI
LSSD
MSI
MUX
NOP
PROM
RAM
RD/
RLO-RL7
ROM
RTL
SO
S1
S-a
SA
SC
SID
SLO-SL3
SOD
SS1
TMP
TTL
uuT
VLSI
WR/

Large Scale Integration.

Level Sehsitive Scan Design.
Medium Scale Integration.

Register multiplexer (8085 functional unit).
No-operation instruction mnemonic.
Programmable Read Only Memory.
Random Access (read/write) Memory.
Read (8085 strobe output).

Return Line inputs of the 8279.
Read Only Memory.
Register-Transfer Level.

8085 status output.

8085 Status output.

Stuck-at.

Signature Analysis.

Sensor Closure (8279 status flag).
Serial Input Data (8085 input).
Scan Line outputs of the 8279.
Serial Qutput Data (8085 output).
Small Scale Integration.

Temporary register (8085 functional unit).
Transistor-Transistor Logic.

Unit Under Test.

Very Large Scale Integration.

Write (8085 strobe output).

385.

