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Abstract

Background: Basal cell carcinoma (BCC) of the skin is the most common form of human cancer, with more than
90% of tumours presenting with clear genetic activation of the Hedgehog pathway. However, polygenic risk factors
affecting mechanisms such as DNA repair and cell cycle checkpoints or which modulate the tumour
microenvironment or host immune system play significant roles in determining whether genetic mutations
culminate in BCC development. We set out to define background genetic factors that play a role in influencing BCC
susceptibility via promoting or suppressing the effects of oncogenic drivers of BCC.

Methods: We performed genome-wide association studies (GWAS) on 17,416 cases and 375,455 controls. We
subsequently performed statistical analysis by integrating data from population-based genetic studies of multi-
omics data, including blood- and skin-specific expression quantitative trait loci and methylation quantitative trait
loci, thereby defining a list of functionally relevant candidate BCC susceptibility genes from our GWAS loci. We also
constructed a local GWAS functional interaction network (consisting of GWAS nearest genes) and another
functional interaction network, consisting specifically of candidate BCC susceptibility genes.

Results: A total of 71 GWAS loci and 46 functional candidate BCC susceptibility genes were identified. Increased
risk of BCC was associated with the decreased expression of 26 susceptibility genes and increased expression of 20
susceptibility genes. Pathway analysis of the functional candidate gene regulatory network revealed strong
enrichment for cell cycle, cell death, and immune regulation processes, with a global enrichment of genes and
proteins linked to TReg cell biology.

Conclusions: Our genome-wide association analyses and functional interaction network analysis reveal an
enrichment of risk variants that function in an immunosuppressive regulatory network, likely hindering cancer
immune surveillance and effective antitumour immunity.
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Background
Basal cell carcinoma (BCC) is the most common form of
human cancer, with more than 90% of tumours present-
ing with genetic activation of the Hedgehog (HH) path-
way [1]. The current model of BCC development is that
cumulative sun exposure induces characteristic ultravio-
let (UV) signature mutations, resulting in DNA damage
within basal cells of the skin [2]. Individuals at highest
risk of developing BCC are those with fair skin, blonde
hair, red hair, and pale coloured eyes [3, 4], predomin-
antly due to decreased photoprotection (the absorption
of UV photons and reactive oxygen species provided by
melanin pigment) [5]. Greater than 99% of BCC cases
arise sporadically, without a clear inheritable disease-
causing mutation, highlighting the impact that both en-
vironmental factors and the sum of an individuals’ gen-
etic variation play in determining whether driver
mutations, such as the presence of HH pathway activat-
ing mutations, culminate in BCC development. This is
most clearly evidenced in the many “BCC-prone” indi-
viduals who have no evidence of a monogenic germline
predisposition.
Genome-wide association studies (GWAS) have

played a key role in identifying the polygenic effects
that confer susceptibility to BCC. Loci have been attrib-
uted to a wide variety of biological processes including
photoprotection, cellular trafficking, cytoskeletal organ-
isation, cell motility/migration, skin biology, ectoderm/
mesoderm differentiation, cell death, telomere biology,
immune, tumour progression, DNA repair, and cell
cycle regulation [6–12]. Although GWAS provide a
framework for identifying putative susceptibility loci,
they rarely identify causal genes, predominantly due to
the complicated linkage disequilibrium (LD) structure
of the genome, in addition to the fact that genetic vari-
ants can affect phenotype via distant regulation of gene
expression. To circumvent this problem, several statis-
tical methods have been developed to prioritise func-
tionally relevant genes from GWAS loci [13–17],
including the Summary-data-based Mendelian Ran-
domisation (SMR) and HEterogeneity In Dependent In-
struments (HEIDI) tests. The SMR and HEIDI
methodology [16] combines summary-level GWAS data
and expression quantitative trait locus (eQTL) studies
to identify whether a transcript and phenotype are asso-
ciated because of a single and/or set of shared causal
variant(s), thereby identifying functionally relevant can-
didate genes. An emerging area expanding on current
methods of GWAS data analyses involves production of
network annotations that represent functional interac-
tions among genes and their products. Network-
assisted analysis allows advanced analyses of the associ-
ated loci and/or candidate genes by assessing the com-
bined effects of multiple genes participating in a

network, thereby providing a global view of the genetics
underlying a particular human disease or trait.
Here, we describe an integrative analysis of summary

statistics from GWAS, eQTL, and methylation quantita-
tive trait locus (mQTL) studies culminating in the con-
struction of two functional interaction (FI) networks
underlying BCC susceptibility. We have been able to
identify previously reported GWAS hits as functional
candidate genes by demonstrating a direct correlation
between GWAS SNP association and changes in gene
expression. Subsequent network analysis revealed a
strong enrichment of immune regulatory genes, reveal-
ing genetic susceptibility to BCC is profoundly influ-
enced by inherited background immune traits.

Methods
Genome-wide association study
Initial quality control (QC) and imputation of the geno-
type data on Haplotype Reference Consortium (HRC)
[18] panel were carried out by the UK Biobank [19]. We
performed further QC (excluding SNPs with minor allele
count < 5, Hardy-Weinberg equilibrium test P value <
1 × 10−6, missing genotype rate > 5%, or imputation info
score < 0.3) using PLINK2 [20]. BCC cases consisted of
(1) BCC (UK Biobank data field ID: 1061) from self-
reported cancers (UK Biobank data field ID: 20001) and
(2) BCC defined by the histology of cancer tumour (UK
Biobank data field ID: 40011) within cancer registry re-
cords (field ID: 40006). Controls were individuals with-
out any self-reported cancer or cancer registry record.
Detailed gender and age demographics of the 17,416
cases and 375,455 controls are represented in Add-
itional file 1: Figure S1. GWAS analysis was performed
using BOLT-LMM [21] with fitting gender, age, and first
ten principal components (PCs) as the covariates. We
included ~ 700,000 SNPs obtained by LD pruning
(r2 < 0.9) from HapMap3 SNPs as “model SNPs” in
the BOLT-LMM analysis to adjust for relatedness,
population structure, and polygenicity. The beta esti-
mates from BOLT-LMM were transformed on the
binary phenotype to the odds ratio (OR) scale by
LMOR [22]. The index SNPs are clumped based on
P < 5 × 10−8, a 1-Mb window, and a LD r2 threshold
of 0.01. The SNP-based heritability was estimated by
LD score regression (LDSC) [23]. When estimating
the heritability in liability scale, the sample prevalence
and population prevalence were both set as 4.43%.
Conditional and joint association analysis (COJO) [24]
was conducted based on a stepwise selection model
to identify a set of jointly associated (and near-
independent) SNPs. Loci were classified as novel if lo-
cated outside a 1-Mb window of previously reported
GWAS hits (GWAS Catalog database [25]).
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Summary-data-based Mendelian Randomisation analysis
SMR and HEIDI analyses were conducted as previ-
ous l y de sc r i bed [16 ] (SMR so f twa re : h t tp : / /
cnsgenomics.com/software/smr/). In brief, the SMR
method selects the top eQTL SNP as an instrumental
variable to estimate the effect of the gene expression
on the trait of interest (in the Mendelian randomisa-
tion framework). Selection criteria include cis-eQTL
SNPs located within a 2-Mb window of the target
gene probe with PeQTL < 5 × 10−8. The HEIDI filtering
test adopts multiple SNPs in a cis-eQTL region to re-
ject the significant SMR associations due to LD be-
tween disease-associated SNPs and eQTL SNPs. The
eQTL summary statistics were obtained from the
eQTLGen Consortium (n = 31,684 blood samples) and
GTEx dataset (GTEx Portal: https://gtexportal.org/
home/index.html; n = 369 whole blood sample, n = 605
sun exposed lower leg, n = 517 sun not exposed
suprapubic). The gene expression levels were mea-
sured using Illumina gene expression arrays, and the
genotype was imputed to 1KGP [26]. The mQTL
summary data were generated from a genetic analysis
of DNA methylation measured on Illumina Human-
Methylation450 arrays (n = 1980 in peripheral blood)
[27]. The statistical power of SMR analysis has been
demonstrated by simulation in a previous study [28]
implementing the SMR workflow used in this study.

Functional interaction networks
Functional interaction networks were constructed using
the ReactomeFIViz App (ReactomeFIViz app and Reac-
tome FI Network, Wu and Haw 2017 PMID: 28150241)
in Cytoscape (v3.6.1) [29]. GWAS-FI network was con-
structed using nearest genes to each of the 71 GWAS
loci. SMR FI network was constructed using the 46
eQTLGen derived SMR genes. Pathway-enrichment ana-
lysis was performed within the ReactomeFIViz app.
ReactomeFIViz utilises a comprehensive protein
functional interaction network construed from the inte-
gration of multiple external data resources including
protein-protein interaction networks of several organ-
isms (including human and mouse) in addition to bio-
logical pathway databases such as KEGG and Reactome
[30]. The information gathered from these resources is
served as training data for a Naïve Bayes Classifier,
which is ultimately used to predict and annotate func-
tional interaction network for a given gene set [31].

Results
GWAS identifies 3 previously undescribed BCC
susceptibility loci
We performed GWAS on 7,288,4213 autosomal SNPs
with minor allele frequency (MAF) ≥ 0.01 in 17,416 BCC
cases and 375,455 controls from the UK Biobank (UKB)
(Fig. 1). The estimated SNP-based heritability is 0.170

Fig. 1 Manhattan plot of basal cell carcinoma GWAS analysis from the UK Biobank. The x-axis denotes the chromosome number and position of
each variant. The y-axis denotes the –log10(P value). The 71 independent loci are annotated and highlighted in green (for top SNP in each locus).
Those SNPs with P > 1 × 10–3 have been omitted. The red line denotes the genome-wide significant threshold of P < 5 × 10–8
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(s.e. = 0.018) on the liability scale, as estimated by LDSC.
A total of 71 near-independent SNPs, culminating in 65
loci, significantly associated with BCC (P < 5 × 10−8)
(Additional file 2: Table S1), including 3 new loci not yet
described, PIK3R1, RHOBTB2, and MYO15A (Additional
file 2: Table S1, bold). In order to identify any potential
SNPs masked in GWAS due to LD, we performed condi-
tional and joint association analysis (COJO) and identi-
fied a total of 73 jointly significant signals, including 9
additional SNPs which did not reach genome-wide sig-
nificance in the original GWAS analysis (Additional
file 2: Table S2). In particular, 6 COJO signals are lo-
cated between 89.7~90.1Mb in chromosome 16 (MC1R
locus), indicating multiple genetic variants underlying
this genomic region (Additional file 1: Figure S2).

Gene expression analyses reveal 46 functional candidate
genes for BCC
In order to identify background genetic factors with the
ability to influence or modify the effects of epidermal ac-
quired BCC driver mutations, we chose to interrogate
eQTL data from the eQTLGen consortium (n = 31,684
blood samples). Biologically, use of a non-epidermal
sample source provides optimal opportunity to detect
background genetic (and potentially germline) traits and
factors that increase susceptibility to BCC. Statistically,
we have previously shown that analysing eQTLGen
blood eQTL data is more powerful at identifying func-
tional genes than using tissue-specific eQTL data [28],
partly due to the significant boost in power that the
large eQTL data sample size provides. However, in order
to validate that analysis of blood tissue would not affect
the validity of the data, we set out to identify the correl-
ation of eQTL effects (r̂ ) [32]. The r̂b between two inde-
pendent blood cohorts (eQTLGen and GTEx V7 whole
blood) is 0.8344 (s.e. = 0.0051) (Additional file 2: Table
S3). Similarly, the r̂b between blood and two GTEx V7
skin samples (skin non-sun exposed and skin sun ex-
posed) are very high, thereby revealing a positive correl-
ation between blood eQTL data and skin tissue.
SMR analysis using our GWAS summary data and

eQTL blood data revealed a total of 46 SMR candidate
genes whose expression levels were significantly associ-
ated with BCC risk (PSMR < 3.19 × 10−6, i.e. 0.05/mSMR,
with mSMR = 15,628 being the total number of SMR tests
in eQTLGen dataset) (Table 1). Positive bSMR estimates
were obtained for 20 SMR genes (Table 1) and negative
bSMR estimates for 26 SMR genes (Table 1, bold text),
linking BCC risk with increased gene expression and de-
creased gene expression, respectively. HEIDI analysis
was performed to filter out the SMR associations (with
PHEIDI < 0.01) due to LD between the BCC-associated
SNPs and the eQTL SNPs, culminating in a refined set

of 13 putative causal genes (referred to as SMR-HEIDI
genes) (Table 1, asterisk).

DNA methylation analyses define 5 loci that exhibit both
genetic and methylation regulatory mechanisms linked to
BCC susceptibility
In order to identify epigenetic regulatory signals associ-
ated with BCC susceptibility, we focused on methylation
QTL (mQTL) data in blood sample (referred to as
mSMR analysis) and identified 54 DNA methylation
(DNAm) probes (located in 18 independent loci) that
were significantly associated with BCC (PSMR < 5.40 ×
10−7 [mSMR = 92,557] and PHEIDI ≥ 0.01) (Additional file 2:
Table S4). By performing an SMR analysis that genetic-
ally links DNAm to gene expression (m2eSMR analysis),
we identified 41 DNAm sites associated with gene ex-
pression. Twenty-seven of the DNAm sites, all located
within chromosome 16, were found to associate with
seven functionally relevant genes (Additional file 2:
Table S5). However, only SPATA2L and RP11-104N10.1
passed the eSMR HEIDI test (PHEIDI ≥ 0.01) (Table 1).
These data, in addition to the COJO analysis findings
(Additional file 2: Table S2), indicate that multiple causal
variants reside in this region of the genome. A total of 5
loci (BACH2, VDR, STRADB, SPG7, and HLA-DRB1/
DQA2) were identified to exhibit genome-wide signifi-
cance in both eQTL and DNAm analyses and significant
association between DNAm and eQTL (PDNAm->eQTL <
1 × 10−5, Additional file 2: Table S5), indicating genetic
and methylation regulatory mechanisms driving BCC
susceptibility. The combined GWAS, eQTL, and mQTL
locus plots of the BACH2 and VDR loci (Fig. 2) and as-
sembly of all the omics level estimates for both genes
(Fig. 3, Table 1, Additional file 2: Table S4-S5) are all
congruent, revealing the strength of our methodology. In
particular, one DNAm site (cg25204543) located in the
promoter region of BACH2 (Fig. 2) passed the most
stringent thresholds in SMR and HEIDI, indicating a po-
tential regulatory mechanism driving BCC risk. The A
allele of variant rs72928038 showed decreasing effect on
the expression level of BACH2 via upregulating the
methylation level of cg25204543 (located in the pro-
moter region of BACH2), and the increased expression
of BACH2 was associated with higher BCC risk.

Protein interaction networks of BCC susceptibility
associations reveal a highly connected system
Local FI networks were constructed by inputting each of
the 71 GWAS hits (using nearest genes) and the 46
SMR candidate genes into the Reactome database. The
resulting FI networks represent a global overview of the
protein-protein interactions, representing biological
functions such as binding, activation, translocation, deg-
radation, classical biochemical events, and catalyst
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Table 1 BCC susceptibility functional candidate genes identified via SMR analysis
probeID Chr Gene topSNP topSNP_bp A1 A2 Freq bGWAS PGWAS beQTL PeQTL bSMR PSMR PHEIDI

ENSG00000256049 1 PADI6 rs6678121 17719986 G T 0.344 − 0.097 9.60E−17 0.464 0.00E+00 − 0.208 1.80E−16 9.76E−22

ENSG00000179051 1 RCC2 rs12035179 17793114 C T 0.393 0.080 3.60E−13 0.207 1.19E−148 0.389 2.54E−12 8.16E−16

ENSG00000003400 2 CASP10 rs13005094 202092561 T C 0.474 0.059 6.50E−08 − 0.118 7.77E−50 − 0.500 3.82E−07 1.31E−11

ENSG00000064012 2 CASP8 rs7560328 202164837 A C 0.362 0.130 3.00E−31 − 0.207 7.38E−152 − 0.627 2.12E−26 1.90E−09

ENSG00000155749 2 ALS2CR12 rs2110690 202185132 G A 0.502 − 0.121 1.40E−28 − 0.157 7.92E−88 0.771 3.57E−22 2.89E−08

ENSG00000213090 2 AC007256.5 rs2540430 202368514 T A 0.302 0.105 2.20E−19 − 0.072 3.21E−17 − 1.456 7.41E−10 4.43E−05

ENSG00000082146 2 STRADB rs7575721 202256778 C T 0.321 0.094 2.60E−16 − 0.084 3.73E−26 − 1.120 9.39E−11 1.77E−08

ENSG00000163599 2 CTLA4 rs13030124 204694263 A G 0.430 0.085 1.00E−14 0.147 2.30E−70 0.576 1.35E−12 1.11E−07

ENSG00000049656 5 CLPTM1L rs13170453 1317481 G A 0.228 − 0.146 3.50E−27 0.090 5.61E−15 − 1.617 2.45E−10 1.37E−05

ENSG00000137265 6 IRF4 rs12526822 428486 A G 0.321 − 0.098 2.30E−16 − 0.070 1.81E−14 1.396 2.13E−08 3.22E−08

ENSG00000196126 6 HLA-DRB1 rs9271520 32589771 G A 0.350 − 0.092 2.20E−15 − 0.483 0.00E+00 0.190 3.97E−15 1.98E−14

ENSG00000237541 6 HLA-DQA2 rs9271520 32589771 G A 0.350 − 0.092 2.20E−15 0.613 0.00E+00 − 0.150 3.09E−15 1.22E−09

ENSG00000204267 6 TAP2 rs4148876 32796793 A G 0.071 − 0.114 2.90E−07 − 0.524 6.40E−274 0.218 3.82E−07 3.88E−04

ENSG00000112182 6 BACH2* rs72928038 90976768 A G 0.178 − 0.124 3.30E−17 − 0.290 9.04E−97 0.426 5.29E−15 3.10E−01

ENSG00000071242 6 RPS6KA2 rs2757050 167377165 T G 0.469 0.056 2.50E−07 0.316 0.00E+00 0.177 3.12E−07 1.14E−07

ENSG00000026297 6 RNASET2 rs393727 167398632 T A 0.469 0.056 2.20E−07 0.858 0.00E+00 0.065 2.22E−07 9.81E−06

ENSG00000197146 6 AL133458.1 rs408087 167398952 C T 0.469 0.056 2.10E−07 0.715 0.00E+00 0.079 2.15E−07 6.13E−07

ENSG00000227598 6 RP1-167A14.2 rs415987 167395375 G A 0.469 0.056 2.70E−07 0.304 0.00E+00 0.184 3.38E−07 3.31E−07

ENSG00000112486 6 CCR6 rs3093025 167532731 A G 0.438 − 0.065 3.90E−09 0.208 4.98E−148 − 0.311 9.30E−09 3.16E−04

ENSG00000245025 8 RP11-875O11.1 rs2241261 22876739 C T 0.476 − 0.056 4.00E−07 0.143 4.56E−73 − 0.390 1.05E−06 7.68E−05

ENSG00000173068 9 BNC2 rs12350739 16885017 G A 0.385 − 0.078 9.60E−12 − 0.255 1.01E−184 0.304 3.33E−11 1.72E−03

ENSG00000147883 9 CDKN2B rs2069422 22008026 G T 0.100 0.111 1.60E−10 − 0.659 0.00E+00 − 0.169 2.34E−10 2.71E−05

ENSG00000136824 9 SMC2* rs2122576 106870187 C A 0.395 0.064 8.30E−09 0.212 1.04E−138 0.299 1.97E−08 3.69E−02

ENSG00000236935 11 AP003774.1* rs479777 64107477 C T 0.344 0.068 2.50E−09 0.617 0.00E+00 0.110 2.85E−09 1.55E−01

ENSG00000111424 12 VDR* rs7975232 48238837 C A 0.480 − 0.063 9.00E−09 0.124 6.51E−56 − 0.503 6.65E−08 2.52E−01

ENSG00000261253 16 AC137932.6 rs1078578 89386934 G A 0.353 0.075 2.90E−11 − 0.119 9.58E−47 − 0.630 1.59E−09 5.89E−05

ENSG00000261118 16 RP11-104N10.1* rs4785687 89588896 A G 0.384 0.097 2.20E−18 − 0.060 1.11E−13 − 1.605 1.50E−08 4.58E−02

ENSG00000197912 16 SPG7 rs4785686 89587871 C A 0.417 − 0.083 5.60E−14 0.189 4.96E−128 − 0.441 7.25E−13 1.21E−06

ENSG00000167523 16 C16orf55 rs164749 89708224 G T 0.432 − 0.061 2.50E−08 0.114 2.28E−47 − 0.538 1.96E−07 1.82E−06

ENSG00000185324 16 CDK10 rs77651727 89708267 T C 0.076 0.096 1.50E−06 − 1.419 0.00E+00 − 0.067 1.68E−06 2.09E−04

ENSG00000158792 16 SPATA2L* rs396742 89768056 G C 0.422 − 0.065 1.00E−08 − 0.369 0.00E+00 0.175 1.39E−08 1.30E−02

ENSG00000158805 16 ZNF276 rs3743859 89846050 T C 0.412 0.052 2.30E−06 0.244 6.29E−198 0.213 3.07E−06 1.34E−23

ENSG00000204991 16 SPIRE2 rs2376879 89884822 G C 0.292 − 0.075 5.40E−10 0.360 0.00E+00 − 0.209 7.55E−10 1.43E−42

ENSG00000141013 16 GAS8 rs45583731 90106364 A C 0.428 0.068 4.40E−10 − 0.192 6.97E−91 − 0.355 2.50E−09 1.96E−10

ENSG00000141510 17 TP53* rs35850753 7578671 T C 0.018 0.282 7.00E−15 − 0.365 4.04E−21 − 0.772 1.93E−09 2.60E−01

ENSG00000091542 17 ALKBH5* rs2925138 18092509 A G 0.426 0.060 3.80E−08 0.157 1.63E−68 0.383 1.55E−07 3.76E−02

ENSG00000127666 19 TICAM1* rs10405449 4821949 T C 0.372 − 0.062 4.40E−08 0.217 5.05E−139 − 0.286 8.79E−08 5.72E−02

ENSG00000125780 20 TGM3 rs214787 2283667 C T 0.181 0.214 3.30E−58 − 0.357 0.00E+00 − 0.599 7.31E−50 1.55E−08

ENSG00000101421 20 CHMP4B* rs2626562 32409142 G A 0.530 0.053 1.50E−06 0.370 0.00E+00 0.142 1.74E−06 7.17E−01

ENSG00000125977 20 EIF2S2 rs6142101 32697845 G A 0.410 0.052 2.00E−06 − 0.243 7.51E−211 − 0.215 2.66E−06 2.07E−17

ENSG00000101460 20 MAP1LC3A rs6059919 33151545 G T 0.177 0.132 3.90E−22 − 0.642 0.00E+00 − 0.206 1.51E−21 7.05E−04

ENSG00000078804 20 TP53INP2* rs1884432 33342439 T C 0.182 0.127 5.70E−21 − 0.203 1.31E−72 − 0.626 8.03E−17 8.15E−02

ENSG00000198646 20 NCOA6* rs6058112 33322006 G C 0.179 0.131 4.70E−22 0.208 1.55E−77 0.632 1.01E−17 7.10E−02

ENSG00000131067 20 GGT7 rs4911164 33479488 G C 0.377 − 0.053 2.00E−06 0.201 1.44E−139 − 0.266 3.07E−06 4.36E−14

ENSG00000100991 20 TRPC4AP rs6058166 33656710 C G 0.394 0.054 9.00E−07 0.589 0.00E+00 0.093 9.40E−07 4.32E−11

ENSG00000100029 22 PES1* rs737953 30987861 G C 0.399 − 0.053 1.60E−06 0.174 1.57E−108 − 0.307 2.67E−06 2.08E−01

Genes formatted in bold: decreased gene expression linked to increased risk of BCC. Genes not in bold: increased gene expression linked to increased risk of BCC.
Genes denoted by asterisk (*): genes that passed the HEIDI test. Columns: Probe ID; Probe chromosome; Gene, gene name; Probe_bp, probe position; topSNP, SNP ID;
topSNP_bp, top eQTL position; A1, effect allele; A2, alternative allele; Freq, frequency; bGWAS, GWAS effect; PGWAS, GWAS P value; beQTL, eQTL effect; PeQTL, eQTL P value;
bSMR, SMR effect; PSMR, SMR P value; PHEIDI, HEIDI P value
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Fig. 2 (See legend on next page.)
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reactions. The generated GWAS-FI network consists of
42 GWAS nearest gene (proteins) and 29 protein inter-
actors (Additional file 1: Figure S3). Remarkably, it pre-
sents as one large interconnected protein network with
UBC and P1K3R1 acting as the most highly connected
nodes within the network (Additional file 1: Figure S3,
red hubs). Pathway analysis of the GWAS-FI network re-
vealed cell cycle and cell death processes, with particu-
larly strong enrichment of immune regulation processes,
with 11 of the top 20 pathways (Additional file 2: Table

S6) and 4 of the top 10 GO-Biological processes (Add-
itional file 2: Table S7) linked to immune system
function.
The SMR-FI network also formed an interconnected

multidimensional network, consisting of 32 SMR genes
and 20 protein interactors (Fig. 4). Similarly, pathway
analysis of the SMR-FI network revealed cell cycle and
cell death processes, with particularly strong enrichment
of immune regulation processes, with 9 of the top 20
pathways (Additional file 2: Table S8) and 14 of the top
50 GO-Biological processes linked to immune system
activity (Additional file 2: Table S9). These data indicate
strong enrichment for immune regulation genes within
both the GWAS and SMR-FI networks. We subse-
quently queried PubMed databases for each of the 46
SMR candidate genes used to create the FI network and
confirmed enrichment of three predominant biological
processes: cell cycle regulation, cell death, and immune
regulation (Additional file 2: Table S10). Interestingly,
11/46 of the SMR and 5/13 SMR-HEIDI genes are asso-
ciated with regulatory T cell (TReg) activity (Additional
file 2: Table S10).

Blood and skin gene expression analyses reveal common
functional candidate genes
Although blood remains the most accessible source for
large-scale transcript profiling, thus ensuring adequate
power to detect eQTL, it is equally important to investi-
gate the potential of tissue-specific changes in gene ex-
pression. We therefore explored the degree of tissue-
specific eQTL overlap between blood and skin samples.
We performed SMR analysis using our GWAS summary
data and eQTL data from sun exposed skin (sun exposed
lower leg, n = 605), non-sun exposed skin (sun not ex-
posed suprapubic, n = 517), and a smaller cohort of
whole blood (n = 369) from the GTEx V7 dataset. A total
of 25 significant SMR hits ( PSMR< 7.63 × 10−6, i.e. 0.05/
6557) were identified in sun exposed skin and 21 signifi-
cant SMR hits (PSMR < 9.52 × 10−6, i.e. 0.05/5252) in
non-sun exposed skin (Table 2 and Additional file 2:
Table S11) culminating in a total of 12 unique skin-
specific SMR genes (Table 2). Whole blood revealed 20

(See figure on previous page.)
Fig. 2 Integration of GWAS, eQTL, and mQTL data for VDR and BACH2 genes. a –log10(P value) of SNPs from BCC GWAS analysis. Gene
expression and methylation probes are annotated by red diamonds and blue circles, respectively. Solid diamonds and circles denote probes that
passed the HEIDI filtering test (PHEIDI > 0.01). Yellow star highlights the top cis-eQTL SNP (rs7975232). b –log10(P value) of SNP association with
gene expression (probe ENSG00000111424 tagging VDR). c –log10(P value) of SNP association with methylation (DNAm probe cg14854850). d The
upper panel shows 25 chromatin state annotations under the genomic region (e.g. promoters and enhancers, annotated by colours on the right
bar) from the Roadmap Epigenomics Mapping Consortium. Each row denotes one of the 127 samples with different tissue and cell types (each
type annotated by colours on the left bar). The lower panel shows the genes underlying this region and their genomic positions. e –log10(P
value) of SNPs from BCC GWAS analysis, as described in a. Yellow star highlights the top cis-eQTL SNP (rs7298038). f –log10(P value) of SNP
association with gene expression (probe ENSG00000112182 tagging BACH2). g –log10(P value) of the SNP association with methylation (DNAm
probe cg25204543). h The upper panel shows 25 chromatin state annotations as described in d. The lower panel shows the genes underlying
this region and their genomic positions

Fig. 3 Diagrammatic summary of all genome-wide estimates for
VDR and BACH2 genes. Congruent estimates for bGWAS, beQTL, bmQTL,
and bSMR, revealing strength and power of the methodology used in
this study. bGWAS denotes the effect of variant-phenotype
association. beQTL denotes the effect of variant-expression
association. bmQTL denotes the effect of the variant on the
methylation level. bSMR denotes the effect of gene expression on the
disease risk in the SMR analysis
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significant SMR hits (PSMR < 1.12 × 10−5, i.e. 0.05/4459),
15 of which overlapped with the eQTLGen results
(Table 2 and Additional file 2: Table S11). Although the
sample size of blood tissue in GTEx dataset (n = 369) is
much smaller than that of eQTLGen dataset (n = 31,
684), the bSMR estimates for the 15 overlapping SMR hits
show very high consistency (Pearson’s correlation r is

0.92, s.e. = 0.05) (Additional file 2: Table S12), indicating
the bSMR estimates are robust for the same tissue from
different datasets. Only 7 SMR genes are common
among the four datasets analysed (Table 2). This is likely
attributable to sample size (SMR only selects probes
with a PeQTL < 5 × 10−8), the different number of probes
used for SMR analysis across the datasets (eQTLGen =

SPATA2L
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CLPTM1L

PHB2

TMEM173

CYLD

TP53INP2

CHMP4B

CTLA4

MAP1LC3A

PTPN11

CDC42

CASP10

SPIRE2

RAD21

UBC

SMC2

CASP8

RCC2

TICAM1

MYC
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VDR

ZEB1CDKN2B

CDK10

IRF4

TGM3

TAP2

HLA-DRB1
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KRT8
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Fig. 4 Functional interaction network of the protein-coding genes identified via SMR analysis. Genes listed in black indicate SMR proteins. Genes
listed in red indicate protein interactors. In this network, "→" indicates activating/catalysing, “-|” inhibition, “---” predicted FIs, and “-” FIs extracted
from complexes or inputs
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15,652, GTEx = 4459~6557) and sampling variations. For
example, of the 46 genes significant in eQTLGen SMR,
only 22 of them had a PeQTL < 5 × 10−8 in the GTEx
dataset. The seven common SMR genes span the three
predominant biological processes identified in the
eQTLGen-SMR gene list: immune regulation, cell cycle
regulation, and cell death (Additional file 2: Table S10).
The identification of 24 SMR genes unique to the eQTL-
Gen dataset analysis highlights the statistical power
gained by performing SMR analyses on tissues with very
large sample size and is consistent with our previous
studies [28, 32].

Discussion
GWAS have provided a powerful approach to the dissec-
tion of the genetic components of complex traits. How-
ever, the complicated linkage disequilibrium structure of
the human genome and the observation that genetic var-
iants can affect phenotype via distant regulation of gene
expression recue the power of GWAS alone to identify
the specific genes that underlie these complex traits.
Here, we used the power of the UK Biobank to perform
a GWAS of genetic susceptibility to BCC as the plat-
form, upon which we built an integrated approach of
SMR analysis focused on both eQTL and mQTL,

Table 2 Overview of blood and skin SMR analyses detailing tissue-specific and common BCC susceptibility genes

Tissue Number of SMR genes Sample
size

Number of probes
tested

P value threshold of multiple
correction

Blood (eQTLGen) 46 31,684 15,652 3.19E−06

Skin_Sun_Exposed (GTEx) 25 243 6557 7.63E−06

Skin_Not_Sun_Exposed (GTEx) 21 216 5252 9.52E−06

Whole_Blood (GTEx) 20 360 4459 1.12E−05

Overall number of unique
elements

63 / / /

Tissue Number of overlapping
genes

Gene name

Blood (eQTLGen)
Skin_Not_Sun_Exposed (GTEx)
Skin_Sun_Exposed (GTEx)
Whole_Blood (GTEx)

7 SPIRE2, CDK10, HLA-DRB1, HLA-DQA2, AL133458.1, RNASET2, CASP8

Blood (eQTLGen)
Skin_Not_Sun_Exposed (GTEx)
Skin_Sun_Exposed (GTEx)

1 ALS2CR12

Blood (eQTLGen)
Skin_Sun_Exposed (GTEx)
Whole_Blood (GTEx)

1 SPATA2L

Skin_Not_Sun_Exposed (GTEx)
Skin_Sun_Exposed (GTEx)
Whole_Blood (GTEx)

2 HLA-DOB, HLA-DRB6

Blood (eQTLGen)
Skin_Sun_Exposed (GTEx)

3 CLPTM1L, RP11-104N10.1, ALKBH5

Blood (eQTLGen)
Skin_Not_Sun_Exposed (GTEx)

3 SMC2, TGM3, NCOA6

Blood (eQTLGen)
Whole_Blood (GTEx)

7 RCC2, SPG7, PADI6, SPATA33, MAP1LC3A, CDKN2B, AP003774.1

Skin_Not_Sun_Exposed (GTEx)
Skin_Sun_Exposed (GTEx)

7 DBNDD1, TCF19, ASIP, PSORS1C3, HLA-DQA1, KRT6C, POU5F1

Tissue Number of unique genes Gene name

Blood (eQTLGen) 24 VDR, RP1-167A14.2, GGT7, IRF4, EIF2S2, TAP2, TRPC4AP, BNC2, AC007256.5, RP11-
875O11.1, GAS8, RPS6KA2, ZNF276, CCR6, PES1, BACH2, CASP10, TP53, TP53INP2,
CTLA4, AC137932.6, CHMP4B, STRADB, TICAM1

Skin_Sun_Exposed (GTEx) 4 FANCA, SEMA6C, CTSS, URAHP

Skin_Not_Sun_Exposed (GTEx) 1 FGFR1OP

Whole_Blood (GTEx) 3 CHMP1A, HLA-DRB9, SPAG1

Table revealing the number of SMR genes, sample size, number of probes tested, and multiple correction threshold in each tissue and the SMR genes unique to
each tissue-gene dataset and list of SMR genes common among datasets. In the eQTLGen dataset, the gene name SPATA33 is aliased as C16orf55. To ease gene
comparison analyses, C16orf55 was changed to SPATA33 in the eQTLGen results
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followed by protein functional interaction (FI) network
analysis. Consequently, we not only defined a number of
new BCC susceptibility loci but more significantly iden-
tified three dominant processes underlying that suscepti-
bility—cell death (25/46 SMR genes), cell cycle (23/46
SMR genes), and immune regulation (20/46 SMR genes).
Given that control of cell cycle and cell death is well
characterised in the biology of BCC formation, we inter-
rogated our SMR functional susceptibility gene list and
FI networks to dissect how genetic susceptibility to BCC
is influenced by inherited background immune traits.
Reduced expression of HLA is one key mechanism by
which tumours escape host immune surveillance [33], and
our SMR analyses identified decreased expression of HLA-
DQA2 is linked to increased BCC risk. TAP2, another
SMR gene, localises to the MHC class II region and plays
a pivotal role in immune surveillance, with polymor-
phisms linked to the susceptibility of various autoimmune
disorders [34–36] and various neoplasms [37–39].
Of particular interest, our integrative approach re-

vealed a strong enrichment of BCC susceptibility genes
(24% of SMR and 38% of SMR-HEIDI candidate genes)
involved in regulatory T cell (TReg) activity. These in-
clude previously identified GWAS loci including CTLA4
[10], IRF4 [12], VDR [8], and SMC2 [10]. TRegs are es-
sential for maintaining immune homeostasis by limiting
effector T cell activity against foreign antigens. A par-
ticularly interesting TReg-BCC susceptibility gene identi-
fied here as a GWAS locus and an SMR-HEIDI eQTL
and mQTL gene is BACH2. BACH2 has been linked to
B cell lymphoma, CML, and stomach cancer [40–42]
and has also been shown to be required for efficient for-
mation of TRegs [43]. Consequently, Bach2-deficient mice
exhibit markedly impaired tumour growth due to in-
creased effector T cell activation and a reduction in
TRegs [44]. Our discovery that increased BACH2 expres-
sion correlates with increased risk of BCC (+bSMR),
alongside identification of a BCC-associated methylation
site in the promoter of BACH2 which increases gene ex-
pression, suggests a molecular mechanism whereby
elevated levels of BACH2 promote tumour immunosup-
pression by attenuating effector T cells. In support of
this, BACH2 was recently shown to specifically restrain
TCR-driven TReg activation and actively drive TReg qui-
escence [45], thereby indicating BACH2 functions to
promote tumour immunosuppression by both upholding
a durable TReg precursor pool and also maintaining TRegs

functionally quiescent. Similarly, interrogation of our
GWAS and SMR FI networks also revealed strong en-
richment of protein hubs linked to TRegs. Conditional
deletion of EP300, a highly connected protein interactor
in both the GWAS-FI (exhibiting 16 interactions) and
SMR-FI network (exhibiting 9 interactions), results in
impaired TReg suppressive function and reduced tumour

growth [46]. PTPN11 acts as a protein hub within the
SMR-FI network, exhibiting a total of 7 neighbouring
nodes, 4 of which are TReg-associated SMR genes. Myc,
another protein hub in the SMR-FI network whose role
in cancer has been the focus of intense study over many
years, is directly connected to 2 of the 9 TReg genes rep-
resented on the network and can be connected to a total
of 8 TReg genes via one linker protein. Taken together,
these data reveal that background genetic factors regu-
lating TRegs immune function act to predispose an indi-
vidual to BCC.
The mechanism by which BCC susceptibility genes in-

volved in TReg activity likely function to predispose an
individual to BCC is via regulating the tumour micro-
environment (TME). The TME is a complex system con-
sisting of tumour cells, endothelial/vascular cells,
stroma, and immune cells, and evidence indicates that
the interplay between immune cells and other compo-
nents of the TME largely determines tumour cell sur-
vival and disease progression [47]. Recent studies have
shown consistency in the TME of immune cells across
BCC patients [48], whereas other studies have reported a
high proportion of BCCs (82%) present with expression
of immune checkpoint proteins on the tumour-
infiltrating lymphocytes located in the TME [49]. All
these data support how changes in gene expression, as
defined by innate genetic predisposition, that produce an
immune evasive TME can contribute to the susceptibil-
ity of an individual to BCC tumour formation.
Another principle finding of our analyses is the identi-

fication of functional candidate genes that were pre-
viously reported GWAS hits. Using SMR and HEIDI
analysis [16], we demonstrated a direct correlation be-
tween GWAS SNP association and changes in gene ex-
pression. Importantly, the directions of gene expression
change (whereby positive bSMR estimates represent in-
creased gene expression linked increased risk of disease
and negative bSMR values represent decreased gene ex-
pression linked increased risk of disease) are all consist-
ent with their biological function as reported in the
literature. Interrogation of our GWAS-FI and SMR-FI
network revealed a host of previously described pro-
cesses linked to BCC susceptibility including “cellular re-
sponse to UV”, “apoptotic process”, and “DNA damage
response, signal transduction by p53”. Skin-specific pro-
cesses, however, such as “melanin biosynthetic process”,
“keratinisation”, “positive regulation of hair cycle”, and
“hair follicle placode formation” were only present in the
GWAS-FI network. Given we have shown a high degree
of correlation r̂b between blood and skin eQTL effects, it
is unlikely that the GWAS loci contributing to these
skin-specific processes failed to progress to SMR genes
as a direct consequence of interrogating blood eQTLGen
data. We did, however, identify both blood-specific and
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skin-specific SMR genes when analysing the degree of
tissue-specific eQTL overlap using smaller eQTL co-
horts. Hence, it remains to be determined whether skin-
specific GWAS loci could be identified as functional
candidate SMR genes upon access to a large-scale tran-
script profiling skin dataset, providing adequate power
to detect eQTL.

Conclusions
Our data provide important insights into the relation-
ship between disease and host genotype in the most
common form of human cancer. Additionally, given the
high prevalence of HH pathway activity in BCC, the dis-
covery of genes contributing significantly to polygenic
risk illustrates a conceptual framework whereby host
genotype is critical for the development of cancer even
in the presence of clear somatic oncogenic drivers. Clin-
ically, our data suggest that maintenance of strong cuta-
neous immunity be incorporated into current BCC
prevention strategies/guidelines, thereby strengthening
the likelihood of mounting an immune response to
tumour antigens in the early stages of cancer formation.
Taken together, our association and candidate gene
studies have unearthed risk variants that function in a
highly interconnected regulatory network and identify
potential avenues for intervention.
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