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Abstract

Semiconductor nanostructures present a promising path to enhance
current computing technology and develop quantum information tech-
nologies. The electronic structure of these nanostructures has direct
implications on the transport of electrons through them and their po-
tential device applications. This thesis explores the electronic structures
of various semiconducting nanostructures and their dependence on elec-
tromagnetic fields, dopant atoms, spin-orbit coupling and atomistic
features through experiment and modelling. A form of quantum trans-
port, known as single electron charging, is demonstrated through the
electron-bound states of dopant atoms in a silicon nanostructure. A por-
tion of a recently published work is presented which models the response
of valley states in a gate-defined quantum dot within a silicon quantum
well to an interface step and applied electric fields. The main work of
this thesis employs an atomistic tight-binding model to determine the
effective g-factor anisotropy of InAs nanowires under various atomistic
and electromagnetic conditions. The spin-orbit interactions present in
the nanowires are extracted from the effective g-factor anisotropy with
an effective model. The modelling results provide insights for InAs
nanowire applications in fields such as Majorana zero mode research,
spintronic devices and quantum information technology.
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“There are two possible outcomes: if the result confirms the hypothesis, then you’ve made
a measurement. If the result is contrary to the hypothesis, then you’ve made a discovery”

— Enrico Fermi





Chapter 1.

Introduction & Outline

The field of condensed matter physics, particularly the subfields of mesoscopic and
solid-state physics, have inspired the development of modern computing technology.
The field boasts key technological advancements from the first working transistor in
1947 by James Bardeen, Walter Brattain and William Shockley at Bell labs [1, 2] to
the CMOS integrated circuits [3] that power modern day smart phones and computers.
The continual advancement of technology is built upon the principle of increasing the
complexity of circuitry on a limited space and to date has roughly followed Moore’s
law [4]. State-of-the-art CMOS integrated circuit technology is 5 nm node [5, 6, 7] and
soon to reach 3 nm node technology [8]. It is not long before this technology reaches the
atomic limit. As such, condensed matter physicists are constantly searching for new ways
to improve on current integrated circuit technology.

The demand for the miniaturisation of integrated circuits led to the development of
devices built from small semiconductor nanostructures. These semiconducting nanostruc-
tures were found to exhibit interesting quantum properties which inspired the start of
new fields of research such as spintronics and quantum computing. Spintronics aims to
utilise the spin degree of freedom to improve computing performance. This is because
less power is required to control a single carrier spin [9]. Quantum computers describe
information in the form of states that obey quantum principles such as superposition,
entanglement and decoherence. As a result they can solve specific problems that classical
computers cannot and solve other problems more efficiently [10, 11]. The implementation
of a quantum computer involves constructing a robust two level system called a qubit.
Semiconductor nanostructures, particularly in silicon, have become an attractive host
for these qubits because they allow for the quantum control of electron states and are
compatible with commercial semiconductor processing [12, 13]. There is also a significant
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2 Introduction & Outline

research effort focused on constructing topologically protected qubits from semiconductors
in proximity with superconductors [14, 15, 16]. The realisation of these systems will
require the observation of novel electron-hole excitations, which are the condensed matter
analogs of Majorana fermions – particles which are their own anti-particles [17].

This thesis explores properties of various semiconducting nanostructures, particularly
their electronic band structure, quantum transport and spin-orbit coupling which are
important for applications in modern electronics/spintronics and quantum information.
Coulomb blockade and single electron tunnelling through dopant atoms in a silicon
nanostructure is observed. Previous experiments of this kind initiated the development
of dopant in silicon qubits. From our recently published work, the coupling of two
valley states in a gate-defined quantum dot within a silicon quantum well with a step
interface is presented. The coupling is found to be electrically tunable which is ideal
for creating valley qubit gates. The main work of this thesis is modelling the effective
g-factor anisotropy of the conduction band in InAs nanowires to gain insight on the
spin-orbit interactions present in the nanowires for applications in topological qubits
hosting Majorana excitations, spin-orbit qubits and spintronic devices.

1.1. Outline

The structure of this thesis is as follows. Chapter 2 explains the background theory
relevant to this thesis, including quantum confinement, quantised conductance, Coulomb
blockade, spin-orbit interaction and Majorana zero bias peaks. Chapter 3 discusses the
measurement of Coulomb blockade and single electron tunnelling through the electron
bound states of dopants in silicon. Chapter 4 introduces the tight-binding formalism and
the numerical modelling techniques of the three-dimensional Nano-Electronic MOdelling
(NEMO3D) tool. The modelling of the valley state coupling in the gated quantum dot of
a silicon quantum well is presented as an example of NEMO3D’s modelling capabilities.
Chapter 5 discusses a method for modelling the effective g-factor anisotropy and spin-orbit
interactions present in a [100] InAs nanowire with different applied electric fields, surface-
ion terminations and confinement conditions using NEMO3D and an analytic continuum
model. Based on the results of this modelling, possible applications of the nanowires in
spintronics and quantum information technology are suggested. Chapter 6 summarises
the work of this thesis, highlighting significant findings and potential directions for future
research.



Chapter 2.

Background Theory

This chapter outlines the background physics that will be referenced throughout this
thesis. Quantum nanostructures and the field of quantum transport are introduced,
specifically Coulomb blockade and single electron transport, which are fundamental to
modern mesoscopic research. These quantum transport phenomena are employed in this
thesis to determine the bound states of dopants in a silicon channel and can be used
to determine the electronic structure of InAs nanowires modelled in later chapters. In
addition, the spin-orbit interaction is introduced because it has important implications
on the InAs electron spin structure e.g. g-factor anisotropy which in turn influences the
quantum transport properties of nanowires. The last section of this chapter provides a
brief introduction to one of the largest areas of research employing III-V nanowires with
large spin-orbit coupling, the search for Majorana zero modes.

2.1. Quantum confinement and nanostructures

The field of mesoscopic physics – the study of micro- to nano-scale materials – is built
upon the concept of quantum confinement of carriers (typically electrons) in complex
many body materials e.g. semiconductors. Quantum confinement of a bulk semiconductor
to nano-scales creates a semiconductor nanostructure. The semiconductor nanostructure
allows for the control of an electron’s state and energy on a quantum level which leads
to interesting observable phenomena. These nanostructures have vast applications in
modern nano-electronics such as the transistors used in our computers and phones.
Currently, a large portion of mesoscopic research focuses on nanostructures for quantum
computing applications, including quantum dot spin qubits [18], dopant in silicon spin
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qubits [19, 20, 21], spin-orbit qubits [22, 23, 24] and topological qubits [14, 15, 16, 17].
Additionally, nanostructures are employed for spintronics applications, such as the spin
field effect transistor [25], and various quantum optics applications, such as single-photon
sources [26] and detectors [27].

From introductory quantum mechanics, an electron confined to a box, with dimensions
much larger than its wavelength, behaves as a free particle. However, when one confines
an electron in a box with dimensions comparable to or smaller than the de Broglie
wavelength of the electron λB, typically the nanoscale, the properties of the electron
change significantly from that of the free electron i.e. the electron gains quantised energy
modes. This is called quantum confinement. Quantum confinement in one dimension
creates a quantum well, confinement in two dimensions a quantum wire or nanowire
and confining in all three dimension creates a quantum dot. If the thermal energy of
the system is small in comparison to the energy spacing of the quantised energy modes,
often requiring cryogenic temperatures, the transport of the electrons through such a
semiconducting nanostructure is no longer classical but follows the laws of quantum
mechanics. This is known as quantum transport [28, 29]. Quantum transport manifests as
various observable phenomena depending on the system. In quantum point contacts and
nanowires it results in a quantisation of the conductance [30, 31, 32], while in quantum
dots coupled to three-terminals it can result in single electron tunnelling and Coulomb
blockade [33, 34, 35].

In this section, the single electron Hamiltonian is introduced along with the main effect
of quantum confinement on the electronic band structure of a semiconductor. Namely,
that quantum confinement introduces quantised subbands into the band structure of
semiconductor nanostructures. These subbands can facilitate quantum transport.

2.1.1. Preliminaries: The single electron hamiltonian

A semiconductor is made up of the interactions between many ion cores organised in a
crystal lattice and the electrons surrounding these ion cores. Typically, these ion cores
are assumed to consist of the atom nuclei and their inner-shell electrons and only the
valence electrons are considered to be free. The semiconductor system can be described
by a many particle hamiltonian

H = He +Hi +Hei (2.1)
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where He describes the electrons including the electron-electron Coulombic interactions,
Hi describes the ions and the Coulombic interactions between them and Hei describes
the interaction of electrons with the ions. This Hamiltonian will have eigenfunctions and
eigenvalues in the form of many particle wavefunctions and their corresponding energies.

For semiconductor systems it is reasonable to assume that the ion cores are stationary
with respect to the electron’s motion, the Born-Oppenheimer approximation [36]. This
allows one to neglect the dynamics of the ions Hi and focus on the dynamics of the
electrons in the potential of a (stationary) ion core lattice. Typically, the many electron
Hamiltonian, He, is simplified to a single electron Hamiltonian by a mean field approxi-
mation. That is the assumption that every electron experiences the same potential due to
the ion core lattice Vi. Additionally, an effective potential describing the electron-electron
interactions that each electron feels, Vee, can be included. The resulting single electron
Hamiltonian is

H1e =
p2

2m∗
+ Vi + Vee (2.2)

with p = −i~∇ the electron momentum operator and m∗ the effective mass of the
electron in the semiconductor. The energy eigenvalues of this Hamiltonian, En(k) (where
k is the wave vector), make up the semiconductor’s electronic band structure with the
bands indexed by n. The different methods of modelling the dynamics of electrons
in semiconductors, specifically electron-electron interactions, is discussed further in
Chapter 4. However, for the majority of this thesis the focus is on the single electron
Hamiltonian without Vee. The following sections will build upon equation (2.2) to explain
quantum transport, electromagnetic coupling and spin-orbit interactions.

2.1.2. Subbands in nanostructures

From the elementary quantum mechanics problem of the infinite potential well1, the
confinement of an electron to a 1D infinite potential well produces a quantised wavevector
and resonant frequencies for the electron wavefunction. In a semiconductor nanostructure,
where one or more dimensions has been confined on nanoscales comparable to the de
Broglie wavelength, the quantum confinement produces quantised subbands in the
semiconductor band structure.

1Refer to Appendix A.1.
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Following an example from the work of Datta [29], consider electrons in a homogeneous
solid moving freely in three dimensions. The energy levels describing the motion of
electrons are En(kx, ky, kz) where n denotes the different bands. To create a quantum well
confined in z by length Lz one can introduce an infinite potential like equation (A.1) into
the single electron Hamiltonian. This would quantise the wavevector in the z direction
to kz = pπ/Lz and energy bands would become

En,p(kx, ky) ≈ En(kx, ky, kz = pπ/Lz) (2.3)

where p is the subband index and takes integer values. The quantum well has 1D subbands
each with a 2D dispersion relation. However, keep in mind this is only an approximation
because the solid is assumed to be homogeneous and the surface is approximated as an
infinite potential. For this to be classified as a quantum well Lz must be small enough
so that quantum effects are experimentally observable. This occurs when the discrete
energy levels. εp = ~2k2

z/2m = ~2p2π2/2mL2
z, are larger than the thermal energy kBT

[29]. Alternatively, Lz must be on the order of the Fermi wavelength λF [37]. The Fermi
wavelength is the de Broglie wavelength of an electron at the Fermi energy (the highest
occupied electron energy level at absolute zero).

A rough approximation of the energy levels of an electron in a quantum well, can
be made by first assuming a parabolic dispersion relation for the bulk semiconductor,
the effective mass approximation. For an electron in the conduction band of the bulk
semiconductor with electron effective mass m∗ and conduction band minimum Ec, the
energy levels are given by [29]

E(kx, ky, kz) ≈ Ec +
~2(k2

x + k2
y + k2

z)

2m∗
. (2.4)

For a quantum well confined in the z direction by length Lz, just as above, the z-
component of momentum is quantised with subband index p. The dispersion relationship
becomes

Ep(kx, ky) ≈ Ec + p2εz +
~2
(
k2
x + k2

y

)
2m∗

(2.5)

with

εz =
~2π2

2m∗L2
z

=
m0

m∗

(
10 nm

Lz

)2

× 3.8 meV (2.6)
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where m0 is the free electron mass and ~2π2/2m0(10 nm)2 ≈ 3.8 meV [29]. A quantum
well of width 10 nm and conduction band electron effective mass equivalent to the free
electron mass has subband energy splitting of ∼ 4 meV. The smaller the effective mass
of the conduction band, the larger the subband energy splitting and the easier it is to
observe quantum phenomena2. The smaller the confinement length Lz the larger this
subband energy splitting is.

Following a similar procedure one can determine an approximation for the subbands
of a nanowire confined in two dimensions and a quantum dot confined in three dimensions.
The key take away is that the extent of confinement determines the magnitude of the
splitting of the electronic band structure into subbands. These subbands can lead to
important quantum phenomena as will be seen in the following sections.

2.2. Quantised conductance

One example of quantum confinement influencing the transport of electrons through a
semiconducting nanostructure is quantised conductance. It was first observed in 1988
in a GaAs 2 dimensional electron gas (2DEG) [30, 31] and has since been commonly
demonstrated in a structure called a quantum point contact (QPC) [32].

Consider, as in Figure 2.1, a 2DEG in the xy plane with a constriction of width d in
the y direction that restricts the flow of electrons in the x direction. This device is known
as a QPC. Only electrons travelling in the x direction with specific quantised energies are
transmitted through the constriction. All other electrons are reflected. This is analogous
to a quantum wire in which the electron can be considered as travelling plane waves in
the x direction with quantised subbands in the y direction. The dispersion relation of
the QPC is then given by

En(kx) =
~k2

x

2m∗
+ εn (2.7)

where εn are the energy subbands introduced due to confinement in the y direction with
subband index n. Each electron state can be given a transmission coefficient Tn(E)

depending on whether it passes through the constriction at a given energy (T = 1) or is

2Since the effective mass is inversely proportional to the curvature of the conduction bands parabolic
minimum, this is analogous to a steeper curvature of the conduction band minimum giving a larger
energy splitting.
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reflected (T = 0), assuming no scattering. There will only be a finite number of states
that are transmitted through the constriction.

2DEG 2DEG

Figure 2.1. A schematic of a quantum point contact (QPC). A 2DEG between two reservoirs
(light grey) with a gate defined constriction of width d in the middle. Applying
a positive gate to the dark grey region depletes the 2DEG in these regions so
that electrons can only flow through the constriction. A voltage bias V can be
applied to the reservoirs to produce a current I.

If there is no external voltage bias applied the states of positive and negative momen-
tum are equally occupied. Applying a small voltage bias V = (µS − µD)/e, where µS,D
are the chemical potentials of the source and the drain reservoirs, creates an imbalance
around the Fermi level EF and a current begins to flow from source to drain (assuming
µS < µD). The current passing through the constriction can be written as [32]

I = e
∑
n

∫ µS

µD

1

2
ρn(E)vn(E)Tn(E)dE (2.8)

where vn = (dEn/dkx)/~ is the effective electron velocity and ρn = 2
π
(dEn/dkx)

−1 is
the 1D density of states. Using the definition of the voltage bias above and assuming
for small bias (eV � EF ) that Tn(E) is constant, this leads to the expression for the
conductance

G =
I

V
=

2e2

h

∑
n

Tn(E). (2.9)

Every subband below the Fermi level contributes exactly one conductance quantum
G0 = 2e2/h to the overall conductance. The factor of 2 comes from the spin degeneracy
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of the subbands. If the Fermi level in the channel is altered using an external gate, there
is a stepwise increase of the conductance by G0 every time the Fermi level crosses a new
subband. This is an example of discrete subbands, created by quantum confinement,
governing the quantum transport of electrons.

2.3. Single electron tunnelling and Coulomb blockade

Another example of quantum transport through semiconductor nanostructures is single
electron tunnelling through states on a zero dimensional charge island. The single electron
charging theory, including single electron tunnelling and Coulomb blockade, was first
introduced by Van Houten and Beenakker to describe conductance oscillations in silicon
quantum dot systems [33, 34]. Experiments on Coulomb blockade and single electron
transport through Si/SiO2 and Si/SiGe quantum dots dates back to the early 1990s,
shortly after the discovery of Coulomb blockade [38, 39]. In Chapter 3, single electron
tunnelling and Coulomb blockade will be demonstrated with the electron bound states of
dopant atoms in a silicon nanostructure.

2.3.1. Coulomb blockade

From Section 2.1, when a bulk material is confined in all three dimensions, to the order
of the Fermi wavelength λF , a quantum dot is formed. The quantum dot is small enough
in size that a finite number of electrons reside on it. Due to confinement the dot also has
discrete energy states that the electrons can reside in, similar to the electron states of an
atom.

Consider now a quantum dot coupled to two electron reservoirs, referred to as
‘source’ and ‘drain’, via tunnel junctions with capacitances CS and CD, respectively,
and capacitively coupled to a gate VG with capacitance CG, as in Figure 2.2. This
configuration is often called the single electron transistor. The number of electrons on
the quantum dot is discrete, with total charge given by Q = Ne where N is an integer
and e is the charge of the electron. The phenomena of Coulomb blockade is caused by
the Coulomb repulsion between the electrons on the dot blocking any flow of electrons
from the leads to the dot [35]. For an electron to be added to the dot the Coulomb
interaction of the electrons on the dot must be overcome. The charging energy required
for an electron to be added to the dot is given by εC = e2/2C where C = CG + CS + CD
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Source Drain

Tunnel junctions

Figure 2.2. A schematic of the single electron transistor circuit. A quantum dot with a total
isolated charge of Q coupled to two electron reservoirs, ‘source’ and ‘drain’, via
tunnel junctions with capacitance CS and CD, respectively. A voltage gate VG is
also capacitively coupled to the quantum dot with capacitance CG. A voltage
bias is applied across the transistor by applying a voltage VD at the drain and
grounding the source.

is the total capacitance between the dot and the rest of the system [35, 37, 38, 40]. An
electron will only flow from the lead to the dot if the charging energy εC is overcome,
otherwise the system is in Coulomb blockade.

In addition to the charging energy, a semiconducting quantum dot has discrete energy
levels spaced by the energy splitting ∆E. From Section 2.1.2, a dot with length L in all
dimensions has a level splitting of ∆E ∝ ~2

m∗L2 where m∗ is the electron effective mass
of the material. Coulomb blockade adds a distinction between one and two electrons
occupying an energy level [35]. The separation of the energy levels is increased from just
∆E to an addition energy of ∆E + e/C which will be proven in the next section.3

Coulomb blockade can only be observed under specific conditions. The first condition
is that the dot’s coupling to the electrodes must be weak compared to εC . The coupling
Γ is used to define the tunnelling rate Γ/~ and determines the width of the energy
levels on the dot. Hence, to resolve the quantised charge states of the dot the condition
Γ� εC must be satisfied [35]. This condition also ensures that the isolated charge on
the dot has a large enough lifetime to be considered fixed and avoids effects such as
co-tunnelling (virtual tunnelling of electrons through the barriers ) which are detrimental
to the orthodox physics of single-electron charging [35, 37, 41]. The second condition is

3For a metallic dot the splitting of the quantised energy levels ∆E is negligible and only the charging
energy needs to be considered.
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that the temperature must be low, kBT � εC , as temperature also determines the width
of the energy states [35, 37, 42]. The same conditions apply for resolving the discrete
energy levels of the dot but with the energy scale ∆E: Γ� ∆E and kBT � ∆E. If the
coupling to the electrodes, Γ, is too strong or the temperature too high the electrons in
the leads would easily overcome the charging energy and Coulomb blockade would not
be observed. To ensure these conditions are satisfied, εC must be large which requires
the capacitance of the dot C to be small and hence the dot must be small since C ∝ R,
the radius of the dot [35]. The dimensions of the dot must be on the order of 100 nm

for observation of Coulomb blockade at temperatures less than 4 K and 1 nm–5 nm for
observation near room temperature [41, 42].

Constant interaction model

For a clearer understanding of Coulomb blockade and single electron transport it is useful
to think about it in terms of a simple model, the constant interaction model [33, 34, 35, 43].
This model makes two assumptions. The first is that interactions between electrons on
the dot and between electrons on the dot and the leads are parameterised by a single
constant capacitance C, the total capacitance of the system. The second is that the
discrete energy levels are independent of these interactions and hence independent of
the number of electrons on the dot N . In the Coulomb blockade regime, the Coulomb
interaction contributes to the energy of the electrons on the dot. From basic electrostatics
of the single electron transistor setup, Figure 2.2, the charge on the island can be written
as

Q = CVQD − CSVS − CDVD − CGVG (2.10)

where VQD is the potential of the quantum dot and C is the total capacitance. By
rearranging this equation, one can see that the potential of the quantum dot is made up
of a potential from the charge already on the dot and and an external potential from the
leads

VQD =
Q

C
+ Vext (2.11)

where

Vext = (CSVS + CDVD + CGVG)/C. (2.12)
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Now taking the reference energy of the system to be the configuration where the charge
Q and all potentials are zero. The total electrostatic energy required to place N electrons
on the dot is given by

U(N) =
(Ne)2

2C
−NeVext +

N∑
n=1

En (2.13)

where En are the single particle energy levels due to quantum confinement [35]. These
are the states that the electrons on the dot can occupy which are independent of the
number of electrons on the dot. Adding or removing an electron changes the Coulomb
energy which is taken into account by the first term. The second term is the energy
contribution of the external potential from the source, drain and gate.

From statistical mechanics, the transport of electrons is driven by the difference in
chemical potential [35, 43]. Hence, it is useful to determine the chemical potential of
the dot for comparison with that of the source and drain. The chemical potential in the
independent particle picture is identical to the difference between the total energy of a
system with N − 1 particles and one with N particles, the single particle energy. The
chemical potential of the quantum dot with N electrons is [35, 43]

µ(N) = U(N)− U(N − 1) =

(
N − 1

2

)
e2

C
− eVext + EN . (2.14)

The notable feature of this chemical potential is that it can be tuned by the gate voltage
VG, with the source and drain voltage held constant. The gate voltage is related to the
chemical potential by the gate coupling factor α = CG/C. The chemical potentials for
different numbers of electrons on the dot N create a ‘ladder’ of levels separated by an
addition energy

Eadd = µ(N + 1)− µ(N) =
e2

C
+ EN+1 − EN (2.15)

where the last two terms make up the energy level splitting introduced earlier, ∆E =

EN+1 − EN . In semiconductors, this level splitting is not necessarily constant [40]. For
large semiconducting dots this level splitting becomes negligible and the addition energy
is just the first term due to the Coulomb interaction. With this picture of a ladder of
chemical potential levels corresponding to the number of electrons on the quantum dot
the transport of the electrons across the dot can be considered.
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For comparison with the rest of this thesis, it may be helpful to consider the Hamil-
tonian that describes the electrons on the quantum dot. From the second quantisation
formulation and the arguments above the Hamiltonian describing N electrons on the dot
is

Hdot =
N∑
n

Enĉ
†
nĉn +

e2N̂2

2C
− N̂eVext (2.16)

where ĉ†n (ĉn) is the creation (annihilation) operator of an electron and N̂ =
∑

n ĉ
†
nĉn is

the number operator. The Hamiltonian acting on an electron state will reproduce energies
similar to that of equation (2.13). The first term is due to the occupied quantised energy
levels of the dot, similar to that of an atom. Compared to the QPC or nanowire there is
no free dimension so the wave vector is completely quantised. The second term is the
charging energy due to the Coulomb repulsion of electrons on the dot and the last term
is the electrostatic energy due to the combined external potential of the source/drain
electrodes and the gate.

2.3.2. Single electron tunnelling

The transport of electrons through the dot is dependent on the position of the dot’s
chemical potential with respect to the chemical potential of the source µS and the
drain µD. Consider the ladder diagrams in Figure 2.3 of the single electron transistor
setup from Figure 2.2. A bias applied across the source and drain, VSD = (µS − µD)/e,
creates a difference in the source and drain chemical potentials called the bias window.
The chemical potential ladder of the quantum dot can be tuned by the gate voltage
as described above. Electrons travel from higher chemical potential to lower chemical
potential. Hence, the tunnelling of an electron from the source to the dot and then from
the dot to the drain – sequential electron tunnelling – will only occur if one or more of
the chemical potentials of the dot is within the bias window. If there are no chemical
potential levels of the dot between the bias window as in Figure 2.3a, no electrons can
flow to the dot (the charge on the dot remains constant) and current is suppressed. If the
dominant energy scale is the charging energy, εC , this is called Coulomb blockade. The
Coulomb blockade can be lifted by increasing the gate voltage until a chemical potential
level µ(N) is within the bias window as in Figure 2.3b. In this state a current flows and
the charge on the quantum dot fluctuates between N and N − 1.
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Figure 2.3. Single electron transport. (a) Ladder diagram of Coulomb blockade. The current
flow is blocked by the Coulombic repulsion in Eadd and the number of charges on
the dot is constant, N − 1. (b) Ladder diagram of single electron tunnelling. The
gate voltage applied is increased so that a chemical potential level is within the
bias window. This allows a single electron to tunnel from source to the dot and
then from the dot to drain. (c) The Coulomb peaks that form in a current versus
gate voltage plot. The peaks occur due to the tunnelling in (b) and the current
suppression occurs due to the blockade (a). Each suppression corresponds to an
integer number of electrons on the dot.

For a constant small bias, Coulomb blockade can be observed as Coulomb peaks in a
current versus gate voltage plot as in Figure 2.3c. The regions of current suppression
are due to Coulomb blockade, when the chemical potential states are outside the bias
region, and correspond to a finite number of charges on the quantum dot. The Coulomb
peaks occur when a single chemical potential level is within the bias window and the
sequential tunnelling of electrons through the quantum dot creates a current. The spacing
of the Coulomb peaks is proportional to the addition energy such that e∆VG = αEadd.
Note that the spacing between all peaks is approximately the same in the regime where
εC � ∆E, while spacing may vary if ∆E is dominant [35]. This dramatic sensitivity of
the current to changes at the single electron level gives this system its name, the single
electron transistor.
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Now consider varying the bias voltage with the gate voltage held constant. Let the
gate voltage be set such that the system is in Coulomb blockade, Figure 2.3a If the bias
voltage is increased, the bias window increases and eventually a chemical potential level
enters the window and current flows. The sign of the current depends on the sign of the
bias applied4. As the bias window increases further a second chemical potential level
may enter the bias window allowing the charge on the dot to fluctuate between three
integer numbers of electrons (N − 1, N and N + 1) which allows for a double electron
tunnelling current [43].

Plotting the current as a function of the bias voltage and gate voltage produces the
stability diagram depicted in Figure 2.4. The white diamonds are Coulomb blockade
regions corresponding to a constant number of electrons on the dot. These are called
Coulomb diamonds. The height of the Coulomb diamonds measured from zero bias
corresponds to the addition energy, Eadd, because this is the largest voltage bias that can
be applied before one of the dot’s chemical potential levels enters the bias window. The
largest width of the diamonds on the gate voltage axis is the same as for the Coulomb
peaks. The coloured regions of finite current (orange: positive current and blue: negative
current) correspond to the sequential tunnelling of electrons when at least one chemical
potential level is between the source drain bias. The current increases stepwise as more
chemical potential levels of the dot enter the bias window, not shown in this diagram.

The Coulomb peaks from Figure 2.3c appear along the centre of the stability diagram
for almost zero small bias and are often referred to as degenerate points. In the stability
diagram, each degenerate point is the intersection of two straight resonance lines separat-
ing the regions of current suppression and finite current. These lines correspond to the
chemical potential of either the source or drain being aligned with a chemical potential
level of the dot. Assuming the drain is grounded as in Figure 2.2, from the chemical
potential of the dot (2.14), an expression for each of these resonance lines can be derived.
For the dot chemical potential aligned with the source chemical potential [35]

VSD = κ(VG − VC) (2.17)

with κ = CG/(CG +CD) and VC = (N − 1/2)e/CG +CEN/(eCG) the chemical potential
on the dot without the external potential. For the chemical potential aligned with the

4If the bias is negative µD > µS , so the electrons will flow to the left in the ladder diagrams producing
negative current.
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Figure 2.4. The current stability diagram. Current plotted against the bias and gate voltage.
The orange indicates a region of positive current, the blue indicates a region of
negative current and the white a region of zero current or Coulomb diamonds.
At small bias, current only flows in the Coulomb peaks (or degeneracy points) as
in Figure 2.3c. The green (red) dashed resonance line corresponds to when the
source (drain) aligns with the chemical potential level µ(N + 1) on the dot.

drain

VSD = −ζ(VG − VC) (2.18)

with ζ = CG/CS. The slopes of these lines relate to the gate coupling parameter by
1/α = 1/κ+ 1/ζ. Hence, the stability diagram can be used to determine the capacitances
of the system as well as the addition energy as depicted in Figure 2.4. This technique is
used in the analysis of Chapter 3.

The single electron transistor is the fundamental single electron device for demon-
strating Coulomb blockade and single electron tunnelling. Since its discovery, smaller
and more efficient versions of the device have been investigated. One of the popular
designs under investigation is the single atom transistor whose island is made from a
single donor atom in a semiconductor instead of a quantum dot.
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2.3.3. Single atom transistor

The single atom transistor follows the single electron transistor setup but instead of
confining electrons in a quantum dot the electrons are bound to the radial Coulomb
potential of a donor atom in a semiconductor. Single electron tunnelling and Coulomb
blockade through the electron bound states of a donor atom in a silicon nanostructure
was demonstrated in the works [44, 45, 46]. Since then there have been many other
manifestations of the single atom transistor [19, 47, 48].

The most common donors in silicon are phosphorous, P, and arsenic, As. Silicon is a
valence four element and P and As are both valence five elements. When a P or As atom
replaces a Si atom in the silicon lattice there is a left over free electron that is not used
in the covalent bounds to silicon atoms. The single dopant atom creates a steep radially
symmetric electrostatic potential which attracts the free electron. The mean radius of
the orbit that an electron takes around a nucleus atom in its ground state is given by the
effective Bohr radius aB = a0εrm0/m

∗ where εr and m∗ are the static dielectric constant
and effective mass of the material, and a0 = 4πε0~2

m0e2
≈ 0.053 nm is the Bohr radius of a

hydrogen atom in a vacuum. For a phosphorus donor in silicon the effective Bohr radius
is approximately 2.5 nm [49] and for an arsenic donor in silicon it is closer to 3 nm [50].

The dopant atom in bulk silicon has two charge states: the ionised state D+ with no
electrons bound to the donor atom and the neutral state D0 with one electron bound to
the dopant atom. However, the work of [44, 45], observed that an As dopant in a silicon
nanostructure capacitively coupled to source, drain and gate electrodes allows for another
bound state, the negative state D− with two electrons bound to the dopant atom.

In Chapter 3, the low temperature measurement setup described in Appendices B
and C is used to reproduce the Coulomb blockade of these dopant bound states with
similar devices to that used in [44, 45]. This experiment was performed as a preliminary
test of the low temperature measurement setup and also to demonstrate Coulomb
blockade, a fundamental form of quantum transport, in a semiconducting nanostructure.
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2.4. Spin-orbit interaction

In this section, the spin-orbit interaction is introduced. First in the more familiar atomic
physics framework and then in terms of the semiconductor band structure. Chapter 5 of
this thesis models the effective g-factor anisotropy and spin-orbit interactions in InAs
nanowires for various atomistic and electromagnetic conditions. As such, the common
spin-orbit interactions present in III-V semiconductors and their nanostructures will be
introduced. Lastly, some applications of InAs nanowires with large spin-orbit interaction
will be discussed, in particular the search for Majorana zero modes.

2.4.1. Atomic physics origins

The spin-orbit interaction couples the orbital momentum of the electron with the ori-
entation of its intrinsic spin. It originates from relativistic corrections to the electron
energy levels of the hydrogen atom in atomic physics. The spin-orbit interaction can be
thought of as an effective Zeeman splitting due to the apparent magnetic field, felt by an
electron in its rest frame, acting on its spin magnetic dipole moment.

An electron moving in the electric field E produced by an atom’s nucleus with velocity
v, experiences an apparent magnetic field in its rest frame

B = − 1

c2
v × E (2.19)

where c is the speed of light and the non-relativistic limit is assumed, 1√
1−(v/c)2

≈ 1. It is

also well known that an electron in a magnetic field possesses a Zeeman energy −µS ·B
where µS = −1

2
gSµBσ is the spin magnetic dipole moment of the electron, with gS ≈ 2

the electron spin g-factor, µB the Bohr magneton, ~ the reduced Planck’s constant and
σ the vector of Pauli matrices. The apparent magnetic field in the electron’s rest frame
acts on the spin magnetic dipole momentum of the electron which leads to the spin-orbit
interaction term [51]

HSO = − ~
4m2

0c
2
σ · (p×∇V ) (2.20)

where m0 is the rest mass of the electron, p is the electron’s momentum and V is the
Coulomb potential of the nucleus atom acting on the electron such that E = 1

e
∇V

(central potential approximation [52]). The extra factor of 1/2 comes from the Thomas
correction that takes into account the precession of the electron’s spin [53]. This spin-orbit
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interaction term, commonly called the Pauli spin-orbit term, can also be derived by
taking a non-relativistic approximation of Dirac’s equation.

2.4.2. Derivation from Dirac’s equation

This section presents a common derivation of the spin-orbit interaction from Dirac’s
equation which can be found in [51, 52]. The derivation demonstrates that the spin-orbit
interaction is a relativistic correction to the single electron Hamiltonian.

In relativistic quantum mechanics, fermions are described by Dirac’s equation (with
electromagnetic coupling)

γµ (i~∂µ + eAµ)ψ = m0cψ (2.21)

where Aµ = (V/c,A) is the gauge field with electric potential V and vector potential A,
∂µ = (1

c
∂
∂t
,∇) is the covariant four-derivative, ψ is a four-component spinor, e and m0

are the charge and mass of the electron respectively and γµ are the 4× 4 gamma matrices

γ0 =

I2×2 0

0 −I2×2

 , γi =

 0 σi

−σi 0

 (2.22)

with the Pauli matrices σi for i = x, y, z which are given in Appendix A.3.

Assuming that Aµ is time independent, let the time dependence of ψ be

ψ = ψ(x, t = 0)e−iEt/~ (2.23)

where ψ is an eigenfunction of 1
c
∂
∂t

with eigenvalue E. The spatial part of the four
component spinor can be separated into upper and lower two component spinors ψ =ψA
ψB

. The Dirac equation can then be written as two coupled equations for ψA and ψB

(
E + eV −m0c

2
)
ψA = c(σ · π)ψB (2.24)(

E + eV +m0c
2
)
ψB = c(σ · π)ψA (2.25)

where π = p + eA = −i~∇+ eA.
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The lower component ψB can be eliminated by substituting equation (2.25) into
equation (2.24)

(
E + eV −m0c

2
)
ψA = (σ · π)

c2

E + eV +m0c2
(σ · π)ψA. (2.26)

No approximations have been made up until this point. Now in the non-relativistic
limit, assume that E ≈ m0c

2 and eV � m0c
2. Define the non-relativistic energy

E(NR) = E − m0c
2 as the energy difference from the electron rest mass. As a result,

the quantity
(
E(NR) + eV

)
/2m0c

2 ≈ (p + eA)2 /2m0c
2 ≈ (v/c)2 � 1 and the following

power expansion can be performed up to first order in (v/c)2

c2

E + eV +m0c2
=

1

2m0

[
2m0c

2

2m0c2 + E(NR) + eV

]
≈ 1

2m0

[
1− E(NR) + eV

2m0c2
+ ...

]
.

Keeping terms up to first order in (v/c)2 equation (2.26) can be written

E(NR)ψA =

{
(σ · π)

1

2m0

[
1− E(NR) + eV

2m0c2

]
(σ · π)− eV

}
ψA. (2.27)

This expression may look like a form of the Schrödinger equation but this is not the
case for two reasons. Firstly, this is not an eigenvalue problem because E(NR) is present
on both sides of the equation. Secondly, ψA is not normalised to unity because the
normalisation condition of the Dirac equation states that∫

ψ†ψd3x =

∫
(ψ†AψA + ψ†BψB)d3x = 1, (2.28)

and in the non-relativistic limit, from equation (2.25) the lower component ψB is given
by

ψB ≈
(σ · π)

2m0c
ψA. (2.29)

The coefficient of ψA is of the order (v/c) so in the non-relativistic limit the lower spinor
ψB is negligible and the spin components ψA and ψB are called the large and small spinor
components of ψ respectively.
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Using equation (2.29) the normalisation condition equation (2.28) can be written to
first order in (v/c)2 as ∫

ψ†A

(
1 +

p2 + e~σ ·B
4m0c2

)
ψAd

3x ≈ 1 (2.30)

this comes about by using the identity (A.12) and noting that p×A = −i~(∇×A)+A×p
(where p acts on everything to the right and ∇ only acts on A). The π2 is reduced to
p2 by assuming for simplicity that A = 0.

From equation (2.30), it is clear that the normalisation to unity condition can be
satisfied by introducing a new two component spinor

ψ̃ = ΩψA where Ω =

(
1 +

p2 + e~σ ·B
8m2

0c
2

)
(2.31)

so that to first order in (v/c)2

∫
ψ̃†ψ̃d3x ≈

∫
ψ†A

(
1 +

p2 + e~ (σ ·B)

4m2
0c

2

)
ψA d

3x ≈ 1,

making use of the fact that Ω is Hermitian and that (1 + x)2 ≈ 1 + 2x for x � 1.
Substituting this new spinor ψ̃ into equation (2.27) and multiplying from the left by
Ω−1 ≈

(
1− p2+e~σ·B

8m2
0c

2

)
, after some rearranging, to first order in (v/c)2 the equation

becomes [
p2

2m0

− eV +
e~

2m0

(σ ·B)− e~
4m2

0c
2
σ · (p× E) +

e~2

8m2
0c

2
(∇ · E)

− p4

8m3
0c

2
− e~p2

4m3
0c

2
σ ·B− (e~B)2

8m3
0c

2

]
ψ̃ = E(NR)ψ̃ (2.32)

where E = −∇V . This is now a true eigenvalue problem that can be treated as the
Schrödinger equation for the two component spinor ψ̃. Most of the terms fall out after
some simple algebra and using similar steps to that for deriving equation (2.30) [51, 52].
The derivation of the fourth and fifth terms requires writing E(NR)p2 = 1

2
{p2, E(NR)}

and using the identity {A2, B} − 2ABA = [A, [A,B]] where [., .] ({., .}) stands for the
commutator (anti-commutator) [52]. The third term on the left of equation (2.32) is the
Zeeman term. The fourth term is the Pauli spin-orbit term which matches equation (2.20)
by substituting E = 1

e
∇V . The fifth term is the Darwin term and the terms on the

second line are higher order corrections to the kinetic energy and Zeeman term.
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2.4.3. Spin-orbit interaction in semiconductors

Similar to the atomic case, an electron in a semiconductor crystal lattice can also experi-
ence a spin-orbit interaction. In the semiconductor, the potential V in equation (2.20) is
no longer the atomic potential but instead it is a combination of the periodic potential
of the ion-core lattice, any external potentials and disturbances of the periodic potential
produced by defects and phonons.

Consider the energy bands that an electron can occupy in a semiconductor, En,s(k)

where k is the wavevector, n is the band index and s =↓, ↑ is the spin index. Note that s
is an index and not the orientation of the spin up or down because the spin polarisation
can vary as a function of k [51]. When the orbital momentum and spin orientation are
independent and there are no applied magnetic fields, the bands are spin degenerate

En↑(k) = En↓(k). (2.33)

This spin degeneracy is the result of conserved spatial inversion symmetry and time
reversal symmetry [51]. Spatial inversion flips the sign of the wavevector k→ −k while
time reversal flips the sign of the wavevector and the spin

Spatial inversion symmetry : En↑(k) = En↑(−k) (2.34)

Time reversal symmetry : En↑(k) = En↓(−k) (2.35)

The degeneracy present in time reversal symmetric systems is also known as Kramer’s
degeneracy. The combination of these two symmetries gives us the spin degeneracy in
equation (2.33). The spin degeneracy can be lifted by breaking either spatial inversion
symmetry or time reversal symmetry.

Zeeman splitting

The time reversal symmetry can be broken by applying a magnetic field B which
introduces the Zeeman interaction term in the single electron Hamiltonian (2.2)

HZ =
1

2
g∗µBB · σ (2.36)

where g∗ is the material dependent effective g-factor of the electron. This Zeeman term
lifts Kramer’s degeneracy and splits the spin bands by a Zeeman energy EZ = g∗µB |B|.
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The spins in semiconductor structures are not pure spins but rather they are a mixture
of the electron’s intrinsic spin and orbital angular momentums due to the spin-orbit
interaction. As a result, the g-factor in the Zeeman term is no longer that of the pure
electron spin, g0 = 2.0023 but rather an effective g-factor g∗ [54].

Spatial inversion asymmetry and spin-orbit interaction

Analogous to the Zeeman term breaking time reversal symmetry, the spatial inversion
symmetry must be broken by introducing a term into the single electron Hamiltonian.
This term must satisfy time reversal symmetry but break spatial inversion symmetry.
Hence, it should be odd in both k and σ. This term is the spin-orbit interaction and it
takes the form

HSO = BSO(k) · σ (2.37)

where BSO(k) is a function odd in k that acts like an effective magnetic field in the
electron’s rest frame due to the non-zero electric field caused by a spatial inversion
asymmetry [54]. Examples of different spatial inversion asymmetries are described below.

There are various spatial inversion asymmetries that can occur in semiconductors
which induce different spin-orbit interaction terms. The spatial inversion asymmetries of
interest are bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA)
[54]. BIA occurs in bulk zincblende III-V semiconductors due to the lack of an inversion
centre in the crystal structure. SIA occurs due to an electric field, either external or
built-in. Explicit forms of the spin-orbit interaction induced by these asymmetries can
be derived from k · p theory [51].

The spin-orbit interaction that occurs due to BIA is called the Dresselhaus spin-orbit
interaction [55]. If x, y, z are chosen to lie along the [100], [010], [001] crystallographic
axes respectively, the Dresselhaus term for the lowest conduction subband in a bulk III-V
semiconductor is [43, 54]

H3D
D = γD{[kx(k2

y − k2
z)]σx + [ky(k

2
z − k2

x)]σy + [kz(k
2
x − k2

y)]σz} (2.38)

where γD is the Dresselhaus coefficient which is material dependent, k = −i∇ is the
momentum operator and σi for i = x, y, z are the Pauli matrices defined in Appendix A.3.



24 Background Theory

The SIA due to the total electric field E consisting of external gates, built-in electro-
static potentials and asymmetric interfaces induces a Rashba spin-orbit interaction [56].
For the coordinates as above the bulk Rashba term can be written [43, 54]

H3D
R = −α0(E× k) · σ

= −α0 [(Eykz − Ezky)σx + (Ezkx − Exkz)σy + (Exky − Eykx)σz] (2.39)

where α0 is the material dependent Rashba coefficient, E = −∇V where V is the total
electric potential of the SIA. The strength of the Rashba and Dresselhaus constants can
be predicted using tight-binding or k · p theory. Typically, semiconductors with heavier
elements, like InAs and InSb, have a stronger spin-orbit interaction [51].

Effective g-factor anisotropy

The spin-orbit interaction is responsible for electrons in the semiconductor having an
effective g-factor, g∗, different to the free electron g-factor, g0. Spin-orbit interactions
and the confinement in III-V semiconductor nanostructures can result in an anisotropy
of this effective g-factor in i.e. different values of g∗ for different orientations of the
external magnetic field B [51, 54]. This is best understood by considering the spin-orbit
interaction as an effective magnetic field BSO as in equation (2.37). When an external
magnetic field B is applied there are two competing fields, B and BSO, acting on spins
and depending on their orientation with respect to each other and the quantisation of k
due to confinement, the spin splitting and hence the value of g∗ is different. The effective
g-factor anisotropy of InAs nanowires will be explored thoroughly in Chapter 5.

Spin-orbit interaction in a quantum well

In this thesis, the spin-orbit interaction occurring in semiconductor nanostructures is of
particular interest. Naturally, the first nanostructure to consider is the quantum well
which is created by quantum confinement of a semiconductor in one dimension. The
effective spin-orbit interaction terms of a quantum well will be derived from the bulk
spin-orbit interaction terms equations (2.38) and (2.39) using the envelope function
approximation [43, 51, 54]. In Chapter 5, these terms will be modified again to model
the spin-orbit interaction in a 1D nanowire by confining a second dimension.
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The Dresselhaus term depends on the crystallographic axes chosen for x, y, z and the
confinement direction. To obtain the Dresselhaus spin-orbit interaction for a quantum
well confined in the [001] direction, start with the bulk Dresselhaus spin-orbit interaction
equation (2.38) and average over the lowest conduction subband envelope function in
the growth direction [001]. From the infinite potential well problem, assume that the
envelope function of the lowest subband wavefunction, ψ1z, is given by equation (A.5).
As a result, 〈kz〉 = 〈ψ1z|kz|ψ1z〉 = 0 and 〈k2

z〉 ∝ (π/Lz)
2 is a nanostructure dependent

constant. Generally, 〈k2
z〉 � k2

x, k
2
y due to strong confinement in z, so only the linear in

kx and ky terms are kept. The resulting Dresselhaus term for a [001] quantum well is
then [43, 54]

H2D
D = βD(kxσx − kyσy) (2.40)

where βD = −γD 〈k2
z〉. If the axes are along different crystallographic directions a different

bulk Dresselhaus term would be derived for the given axes and the same envelop function
approximation method can be used to derive quantum well terms.

In a quantum well grown along [001], the external electric field due to a gate potential
or the substrate is typically in the z direction. The Rashba term equation (2.39) then
simplifies to [43, 54]

H2D
R = −αR(kxσy − kyσx) (2.41)

where αR = α0 〈Ez〉 and 〈Ez〉 is the electric field averaged over the lowest subband in
the growth direction [001].

2.4.4. Spin-orbit interactions in nanowires

The spin-orbit interaction in III-V semiconducting nanowires has become an increasingly
popular area of research since the turn of the century. The spin-orbit interaction in
nanowires has shown promise for various applications such as spin transistors [25], spin
qubits [23], and – arguably the main driving force – Majorana fermion research for
topological qubits [14, 15, 16, 17].

Majorana fermions, fermions that are their own anti-particle, were first theoretically
predicted to exist in high energy particle physics by Ettore Majorana in 1937 [57]. In
recent years, condensed matter physicists have discovered that these Majorana fermions
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may be realised as charge neutral excitations of electrons and holes at the edges of
a topological superconducting state, known as Majorana Zero Modes (MZMs). A
topological superconducting state is one whose band structure cannot be deformed to
that of an insulator (or more generally the vacuum) without closing the energy band
gap [58]. Interestingly, this topological superconducting state can be formed in a III-
V semiconductor nanowire when it is interfaced with an s-wave superconductor as in
Figure 2.5 [15, 59, 60]. The MZMs are theoretically predicted to occur at the ends of
a semiconductor nanowire in this topological state. If one has a network of nanowires,
with each nanowire hosting MZMs at its ends, it is possible store information non-
locally in the MZMs and exchange the information according to non-abelian statistics
[14, 61]. The non-local nature of MZMs protects the information against corruption
by the external environment, resulting in a topologically protected system [17]. These
topologically protected systems are expected to revolutionise the world of quantum
computing. However, there is still significant controversy surrounding the experimental
observation of MZMs.

One of the key ingredients for creating this topological superconducting state is the
large spin-orbit coupling in the III-V nanowire, typically InAs. When combined with
the application of a magnetic field, the spin-orbit interaction in the nanowire can create
helical states [62, 63] – a pair of states who have both opposite momentum and opposite
spin – which can be paired by the superconducting proximity effect to create a topological
superconducting state [17]. The caveat is that the application of a magnetic field can
suppress the superconductivity of the system. The work around is to ensure that the
semiconductor nanowire has a large g-factor which allows for a large Zeeman splitting
with only a small applied magnetic field [15, 17]. The large spin-orbit interaction and
the large effective g-factor present in InAs nanowires is what makes them an attractive
structure for realising MZMs and manufacturing spin qubits or transistors. The work
presented in Chapter 5, aims to model the band structure of InAs nanowires, namely
the spin splitting of the lowest conduction subband, for different atomistic conditions
and electromagnetic conditions to explore the possible spin-orbit interactions that can
be induced in a III-V nanowire.

The observation of MZMs and control of spin qubits in these nanowires typically
requires quantum transport measurements through the nanowire in a setup similar to
that of the single electron transistors in Figure 2.2, with the nanowire taking the place
of the dot. The Coulomb blockade measurements discussed in Section 2.3.1 can identify
the spectrum of energy states in the nanowire [22, 23] and conductance measurements
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can be performed to transport electrons through these states and measure excitations
such as MZMs [15, 62, 64, 65, 66]. There was intention to perform quantum transport
experiments on InAs nanowires for this thesis, with the low temperature measurement
setup described in Appendix B, and compare results with the modelling of the InAs
nanowire in Chapter 5. However, due to uncontrollable circumstances these experiments
were not completed within candidature.

Rashba and Dresselhaus spin-orbit interaction

The common Rashba and Dresselhaus spin-orbit interaction terms for the nanowire can
be derived from the spin-orbit interaction terms of the quantum well. Starting from
equations (2.40) and (2.41), confine in the y direction to create a nanowire along x and
apply the envelop function approximation. The resulting nanowire Dresselhaus and
Rashba spin-orbit interaction are [54]

H1D
D = βDkxσx, (2.42)

H1D
R = −αRkxσy. (2.43)

In the kx = 0 case, the ky terms of (2.40) and (2.41) become important, however, for
non-zero kx these terms are sufficient. The Rashba spin-orbit interaction is the term used
in the standard derivation of the helical gap and topological superconducting state that
hosts MZMs. These models typically ignore Dresselhaus spin-orbit interaction because
they assume the nanowire growth direction of [111], which is a high-symmetry direction
assumed to have negligible Dresselhaus spin-orbit interaction [51, 67].

SC SM SC

Figure 2.5. The 1D system for creating Majorana zero modes. The semiconductor (SM)
nanowire with a Rashba spin-orbit field, BSO, is sandwiched between two s-
wave superconductors with a magnetic field B applied along the wire axis. The
Majorana zero modes (red stars) occur at the boundary of SM and SC when the
SM is in a topologically superconducting state.
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Majorana zero modes in 1D nanowires

The most studied architecture in Majorana zero mode research is the semiconductor-
superconductor nanowire heterostructure [15, 59, 60]. The system consists of a III-V
semiconductor nanowire with a large spin-orbit field BSO, usually InAs or InSb, in
proximity with s-wave superconducting leads and a magnetic field B applied along the
nanowire, as depicted in Figure 2.5. The typical Hamiltonian that is used to describe this
system if the nanowire is lying along the x axis and the spin-orbit field is perpendicular
to the nanowire axis is [17, 59, 60]

H = HSM +HSC ,

HSM =

∫
dxψ†

(
− ∂2

x

2m∗
− µ+ iαRσy∂x + EZσx

)
ψ,

HSC =

∫
dx∆(ψ↑ψ↓ + h.c.) (2.44)

where ψ†σ creates an electron with effective mass m∗, chemical potential µ and spin σ
in the nanowire. αR is the strength of the Rashba spin-orbit interaction that aligns the
spin in the y-direction due to the breaking of SIA in the z direction and EZ = g∗µBBx is
the Zeeman energy due to the applied magnetic field. HSM describes the semiconductor
nanowire with Rashba spin-orbit interaction in the limit where the confinement of the
nanowire is strong enough that only the lowest transverse subband is relevant. HSC is
the superconducting proximity effect of the superconducting leads on the nanowire with
∆, the proximity induced pairing potential in the nanowire. The nature of the MZMs
requires charge neutral, spinless excitations. The charge neutrality is induced by the
Cooper pairing of electrons and holes in the superconductor and the spinless nature of
the excitation is created by the helical gap.

The Helical Gap
Focusing on HSM first, the corresponding dispersion relation is

E±(k) =
k2

2m∗
− µ±

√
(αRk)2 + E2

Z . (2.45)

with k the wave vector along the nanowire. If αR = 0 and EZ is non-zero the magnetic
field lifts the spin degeneracy of the lowest subband by the Zeeman energy EZ . If EZ = 0

and αR is non-zero, the spin-orbit coupling lifts the spin degeneracy of the lowest subband
by shifting the spin bands in k. This creates two shifted parabolas, one for each spin,
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represented in Figure 2.6a by the red and blue parabolas. If a magnetic field is then
applied so that both αR and EZ are non-zero an anti-crossing forms between the two
shifted parabolas at k = 0 as seen in Figure 2.6b. This is called a helical gap [63, 68].

(a) (b)

(c)

Figure 2.6. Left: The dispersion relation of the lowest subband spin states in the presence of
Rashba spin-orbit field, BSO, and different magnetic field, B, orientations. Right:
The corresponding conductance output. (a) With no external magnetic field
the spins are momentum shifted by kSO = m∗αR/~2 so that opposite spins have
opposite momentum and the states cross at ESO = m∗α2

R/2~2. (b) In the presence
of the non-zero magnetic field B perpendicular to BSO, the spin bands hybridise
and a helical gap of size EZ opens (green). The conductance drops to G0/2 in the
gap. (c) When the magnetic field is orientated at an angle θ to BSO the size of
the helical gap is proportional to the component of B perpendicular to BSO and
a Zeeman energy shift (purple) is introduced due to the component of B parallel
to BSO. Figures were adapted from the work of Kammhuber et al. [62] which is
licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

The origin of the helical gap can be understood physically as follows. Consider the
spin-orbit field, BSO = iαR∂xŷ, polarising the electron spins so that opposite spins have
opposite momentum. Applying a magnetic field, B, causes the spins to precess about
the component of the magnetic field perpendicular to the spin-orbit field. The precession
(spin-mixing) is maximised if B is completely perpendicular to BSO and minimised if
the two are parallel. Similarly, the size of the helical gap is maximised when the applied
magnetic field B is perpendicular to the spin-orbit field BSO and minimised when they
are parallel [62, 63, 68]. The dispersion of the spin states for different orientations of B
with respected to BSO are depicted in Figure 2.6 along with quantised conductance plots



30 Background Theory

for each dispersion. When µ is within the helical gap the electron spin-states are two-fold
degenerate corresponding to half a conductance quantum, G0 = 2e/h. This can be seen
as one ‘spinless’ band due to the helical edge states having opposite spins at opposite k
values. Above and below this gap there is a four-fold degeneracy corresponding to a full
conductance quantum.

Topological criterion
In the spinless regime, ignoring the upper unoccupied band which is allowed if ∆� EZ ,
when superconducting proximity ∆ is introduced weakly, the opposite spin and momentum
carriers are p-wave paired. At this point the wire enters a topological superconducting
state. From equation (2.44) one can derive the topological criterion [17]

EZ >
√

∆2 + µ2. (2.46)

When this condition is satisfied the nanowire is in a topological state. If the system
changes to the point where EZ =

√
∆2 + µ2 the gap closes and a topological phase

transition occurs. When EZ <
√

∆2 + µ2, the gap is dominated by pairing and the
nanowire is in a topological trivial state. If the nanowire is in its topologically non-trivial
phase it naturally creates a boundary with a trivial state, the bulk s-wave superconductor,
at its ends. These boundaries can host a pair of MZMs, one at each end of the nanowire.
The non-local nature of the MZMs means that they are topologically protected from
environmental effects and ideal for creating topological quantum gates [14, 17].

Conditions for experimental realisation of MZMs

Although, there have been various experiments looking for MZMs [64, 66, 69, 70], no
experiment has conclusive evidence of an observed Majorana bound state. This is mainly
due to disorder that is introduced into the device by the current limitations of fabrication
[71, 72]. Disorder can be pair-breaking and destroy the topological gap and any MZMs
along with it [71]. Part of the work of Chapter 5 is to determine if the spin-orbit
interaction of InAs nanowires can be optimised to protect against this disorder.

The topological state’s sensitivity to disorder is dependent on the extent of time-
reversal symmetry breaking in the semiconductor [73]. The BCS theory of supercon-
ductivity [74] requires the pairing of particles which are the time reverse of each other.
The breaking of time reversal symmetry reduces the pairing of the superconductor and
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hence the width of the energy gap. The smaller the energy gap, the more susceptible it
is to disorder in the material. The extent of time-reversal symmetry breaking can be
quantified by the ratio R = EZ/ESO where EZ is the Zeeman splitting as in Section 2.4.3
and ESO = ~2kSO

2m∗
= m∗α2

2~ is the spin-orbit energy [17, 63, 72]. If R is large, time reversal
symmetry breaking is strong and the topological gap is more susceptible to disorder
suppression. On the other hand, if R is small time-reversal symmetry is only weakly
broken and the disorder suppression of the topological gap is reduced. For one to achieve
R < 1, it is ideal to either have control over the strength of spin-orbit coupling real-time
with gating or possess the knowledge to manufacture III-V semiconducting nanowires
with a desired spin-orbit field magnitude and orientation.

A secondary problem results from the fact that the Zeeman field must be large enough
to meet the topological criterion (2.46). Unfortunately, a large magnetic field can also
suppress superconductivity in the bulk superconductor and reduce the superconducting
pairing in the semiconductor. The suppression of superconductivity is typically minimised
by ensuring that the effective g-factor of the semiconducting nanowire is significantly
larger than that of the superconductor [17]. The anisotropic effective g-factor in III-V
nanowires is dependent on the spin-orbit interaction present. As such knowing the
g-factor anisotropy of a nanowire and orienting the magnetic field along the maximum of
this anisotropy is important for minimising superconductivity suppression.

In chapter 5, an atomistic 20 band tight-binding model is used to determine the effec-
tive g-factor anisotropy and spin-orbit interactions present in zincblende InAs nanowire.
The multi-band atomistic model is expected to give a more comprehensive understanding
of the spin-orbit interaction and effective g-factor anisotropy in InAs nanowires. These
simulations will provide insight into how atomistic features such as surface-ion termina-
tion and nanowire cross-section, as well as applied electric fields, influence the g-factor
anisotropy and the spin-orbit interactions in InAs nanowires. In particular, this work
will be useful for designing nanowires with maximised spin-orbit coupling and effective
g-factor for MZMs, as well as spintronic devices and spin-orbit qubits.
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Chapter 3.

Investigating quantum transport
through dopants in silicon

In this chapter, single electron tunnelling and Coulomb blockade is demonstrated through
a few dopants in a silicon nanostructure. The experiment both demonstrates said form
of quantum transport and validates our low temperature measurement setup1. The
original plan was to use this setup to perform quantum transport measurements on
InAs nanowires and compare results with the theoretical work of Chapter 5. However,
due to delays experienced by our collaborators in the fabrication of the nanowires, the
experiments could not be performed during candidature.

Dopant atoms are an important ingredient in current semiconducting technology.
They are typically a passive element implanted in semiconductors, like silicon, to increase
the n or p carrier concentration in regions of the semiconductor. With the reduction in
transistor size it was found that a single dopant atom could act as the Coulomb island
of a single electron transistor, a device now known as the single atom transistor. The
original discovery was made by Sellier et al. in 2006 [44], where a Coulomb blockade
spectrum was observed due to the electron bound states of an isolated As dopant in the
silicon channel of an n-p-n Fin Field Effect Transistor (FinFET). Since then the single
donor in silicon architecture has been employed to build single atom transistors from
intentionally implanted dopants [47, 48] and to design high fidelity donor in silicon qubits
[19, 20, 21]. At low temperatures, the transport of electrons through these bound donor
states can be observed experimentally as Coulomb peaks and Coulomb diamonds. This
Coulomb blockade measurement is a standard technique used to map the spectrum of
states in quantum devices.

1The measurement setup is outlined in Appendices B and C
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The experiment performed in this chapter, aims to reproduce the dopant in silicon
Coulomb blockade measurements performed by Sellier et al. [44] and investigated further
in [45, 75]. Two silicon n-p-n FinFETs similar to those used by Sellier et al. [44, 45, 46, 75],
were cooled to cryogenic temperatures for current-voltage measurements. The results
and subsequent analysis indicate single electron tunnelling and Coulomb blockade in the
devices, due to the electron bound states of arsenic dopants, in agreement with the work
of Sellier et al.

3.1. Preliminaries

This section gives a brief description of the design and conventional operation of the
devices being tested. It also details the preparation of the devices for measurement and
the results of room temperature testing. If the devices operate conventionally at room
temperature, they are good candidates for low temperature measurements.

3.1.1. The devices

The n-p-n FinFETs are transistors whose current flow is dictated by the field effect of
a three-sided gate capacitively coupled to a tall, narrow, semiconducting channel. The
semiconducting channel on top of the substrate resembles a ‘fin,’ giving the device its
name. This architecture was introduced to succeed the planar Metal-Oxide-Silicon Field
Effect Transistor (MOSFET) which experiences undesirable short channel effects when
reduced below 32 nm node technology [76]. Interestingly, these short-channel effects are
what allow us to observe the Coulomb blockade of dopants in the FinFET.

The in-depth fabrication process of these wires is presented in previous works [44, 45].
The FinFET consists of a p-doped channel with an n-doped silicon wire deposited over
the channel to form the gate, see Figure 3.1. The n-doped source and drain are separated
from the gate by nitride spacers as depicted in the bottom panes of Figure 3.1a and
b. The doping configuration is depicted in Figure 3.1b. The height of the channel is
H = 60 nm while its width W and length L can vary: W = 35 nm to 1 µm and L =

50 nm to 1 µm. The dimensions of the channel influence the capacitive coupling to the
electrodes. The shorter the length of the channel the more likely it is to find an isolated
dopant in the channel [75].
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(b)(a)

Figure 3.1. (a) Scanning electron micrographs of the FinFET with a 200 nm scale bar. (b)
Cross-sections of the FinFET showing the n- and p-type regions. The top is a
cut along the gate and the bottom a cut along the silicon fin. Reprinted (a) and
(b) with permission from [44] copyright 2006 by the American Physical Society.

3.1.2. Device preparation

The FinFET devices are distributed on chips each holding approximately 80 devices.
Each chip is glued in the centre of a male 16 pin dual-inline chip holder with gold plates
along the inside edge of the chip holder. The gold plates of the chip holder are then
connected to the source, drain and gate pads of FinFETs on the chip via aluminium
wire bonds. Figure 3.2 is an image of Chip C2 in the chip holder and placed in the
Variable Temperature Insert (VTI) sample area with two devices wire bonded. The center
blow-up is an optical microscope image of the chip holder’s gold plates wire bonded to
the pads of the FinFETs on chip. Two sets of empty FinFET pads are pictured in the
right blow-up. The two devices measured in this cooldown are labelled FinFET1 and
FinFET2. Table 3.1 lists the chip holder pin numbers corresponding to the source, drain
and gate pads of each FinFET on Chip C2. It is ideal to have multiple working devices
on the chip to be cooled. This maximises data collection per cooldown and ensures there
are backup devices to measure if a device or its wire bonds break while the chip is in the
cryostat.

Table 3.1. The pin numbers corresponding to the source, drain and gate pads of Chip C2
devices, FinFET1 and FinFET2.

Device Source Drain Gate
FinFET1 1 2 16
FinFET2 3 4 15
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Figure 3.2. Chip C2 in its 16 pin dual-inline chip holder which is locked into the VTI sample
area. The pin numbers are labelled in red. The center blow-up is an optical
microscope image of the wire bonds between device pads and the gold plates
of the chip holder, refer to Table 3.1. The right blow-up is a zoomed optical
microscope image of two sets of FinFET pads on the chip which have not been
wire bonded. The source, drain and gate are labelled as S, D and G respectively.

3.1.3. FinFET operation

This section will outline the conventional room temperature operation of FinFETs. The
n-p-n FinFET conventionally operates by tuning the channel resistance with the gate,
similar to the MOSFET depicted in Figure 3.3. The difference between the two systems
is that the MOSFET is a planar structure with a metal oxide silicon (MOS) capacitor
for the gate while the FinFET is a three-dimensional structure with a polysilicon oxide
silicon capacitor for its gate. For simplicity, the field effect will be described for the
MOSFET but the same principles can be universally applied to other capacitively gated
devices [77, 78] such as the FinFET and gated nanowires [23, 79] studied in Chapter 5.

When a positive voltage is applied to the gate it creates a build up of charge at the
oxide surface near the channel. The positive potential bends the conduction and valence
bands, EC and EV , of the semiconductor channel near the oxide surface. This causes
holes to populate the valence band near the surface as seen in Figure 3.3a. In the charge
picture, this corresponds to the positive oxide charge repelling the positive carriers in
the p-doped channel just below the oxide. The positive carriers leave behind a layer of
immobile, negative acceptor ions called the depletion region as depicted in Figure 3.3b.
The charge neutrality of the system is conserved by the negative acceptor ions balancing
the positive charge at the oxide surface.
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Figure 3.3. The field effect of a MOS capacitor and the operation of a MOSFET. Left:
The band diagram of the MOS capacitor. Right: The MOSFET diagram of
the carriers. The top diagrams are when the MOSFET is in depletion and the
bottom diagrams are when the MOSFET is in inversion.

Increasing the positive gate voltage bends the bands further which at first increases
the width of the depletion region or the number of holes in the valence band. If a large
enough positive voltage is applied, the conduction band EC is bent close enough to the
Fermi level EF that it is populated with electrons as shown in Figure 3.3c. The region of
the channel near the oxide is populated by a layer of n carriers. This layer is called an
inversion layer because the region of the channel near the oxide changes from p-type to
n-type. Charge neutrality is now conserved by increasing the number of electrons below
the oxide as the gate voltage increases. This inversion layer allows n carriers to travel
from the drain to the source and creates a current as depicted in Figure 3.3d. The gate
voltage at which the inversion of the channel begins is called the threshold voltage. After
this threshold voltage is reached, current will flow in the device.
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3.1.4. Room temperature testing

In this section, the devices are tested and a few important features are extracted
including the threshold voltage, sub-threshold swing and estimates of the FinFETs
channel dimensions. These devices go through many stages of fabrication and preparation
in the lab and as a result there are many points at which the devices may become
defective. Hence, it is imperative to ensure that the devices work correctly at room
temperature before they are cooled.

The basic circuit diagram of the transistor setup is depicted in Figure 3.4 and resembles
the single electron transistor in Figure 2.2. The SRS SIM928 modules output DC voltages
for the gate VG and the source-drain bias VSD. The Femto DLPCA200 current amplifier
takes the drain current ID as an input and outputs a gained DC voltage which is measured
by the Keithley 2000 multimeter. The temperature of the device is measured by sensing
the cryostats’ resistor with the Lakeshore 340 temperature controller as described in
Appendix C. All instruments are controlled on the lab PC using a Python 3 package
called Qcodes [80] and the data is saved in accessible databases. The negative terminals
of the SIM928 modules, the current amplifier ground and the cryostat are all connected
to the control box chassis which acts as the common ground. The gate is capacitively
coupled to the channel with capacitance CG. The source and drain are coupled to the
channel via tunnel junctions with capacitances, CS and CD.

FinFET1 and FinFET2 from Chip C2 where tested at T = 291.3± 0.5 K by measuring
drain current ID against gate voltage VG for various source-drain bias VSD. The results
are given in Figure 3.5. Both devices displayed the gate action of a field effect transistor.
The current is initially zero and turns on after the gate voltage reaches a threshold
voltage. The current continues to increase as the inversion layer increases. The sign and
magnitude of the current in the on state is dependent on the source-drain bias.

The room temperature threshold voltage, VT , for each FinFET can be determined
by extrapolating from the steepest slope of these current traces to zero drain current
[77]. The intercept at zero drain current is the threshold voltage. Figure 3.6a and c are
the current traces of FinFET1 and FinFET2, respectively, with linear extrapolations
to determine values for VT . The threshold voltages extracted from the intercepts are
266± 6 mV and 249± 3 mV for FinFET1 and FinFET2, respectively.
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Figure 3.4. Schematic of the measurement setup for transistors including the FinFET devices
and single electron transistors. The gate voltage is capacitively coupled to the
channel or any donors by a capacitance CG. The source and drain electrodes are
coupled to the channel via tunnel junctions with capacitances CS and CD. A
source-drain bias VSD is applied at the source with the drain grounded and a
drain current ID is measured at the drain.
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Figure 3.5. The gate action of the FinFETs at room temperature. Drain current ID versus
gate voltage VG for 5 mV steps of source drain bias VSD of devices on chip C2.

Another common definition of the threshold voltage is the gate voltage at which the
drain current takes the value [77]

ID = 0.1 µA× W

L
, (3.1)

this is known as the threshold current.
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From equation (3.1), the threshold voltages VT determined above and the correspond-
ing threshold current ID determined from a linear interpolation of the FinFET current
traces, one can estimate the ratio of channel dimensions, rch = W/L, for each device.
For FinFET1 the ratio is rch = 6.6 and for FinFET2 rch = 6.1. These ratios provide
insight into the actual dimensions of the channel. The average of these ratios is r̄ch = 6.4.
A similar batch of FinFET devices used by Sellier et al. [44, 75] have dimensions
L×W = 60 nm× 385 nm, corresponding to rch = 6.4. The agreement between this value
and r̄ch is an indication that the tested devices are good candidates for observing the
Coulomb blockade spectrum of isolated dopant atoms.
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Figure 3.6. Analysis of the FinFETs’ room temperature current traces. The gate was swept at
a source drain bias of 5 mV. (a) and (c) are the extrapolation of the steepest point
in the current trace to zero current (black dashed line) to determine the threshold
voltage (black star) for FinFET1 (green) and FinFET2 (blue) respectively. (b)
and (d) are linear regression fits (red dashed line) to the sub-threshold region
of the current traces for FinFET1 and FinFET2, respectively. The plus symbol
marks the off current, Ioff .

Figure 3.6b and d are the log scale of the drain current against gate voltage for
FinFET1 and FinFET2, respectively. The log scale is useful for analysing the sub-
threshold characteristics and off current, Ioff , of the FinFETs. The sub-threshold current
is the current output when the gate voltage is below the threshold voltage. The off
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current is the current output of the device at zero gate voltage. For both FinFETs the
drain current departs from linear near zero gate voltage and approaches 10−2 µA. This is
due to the floor of the current amplifier output at 106 V/A gain with an offset of 10 mV

as discussed in Appendix D.2.1. When VG < VT , the channel is either in depletion or
weak inversion. The current in this sub-threshold region is dominated by diffusion and
operates similar to a bipolar transistor. The sub-threshold current can be written as
[77, 78]

ID = Ioff exp

(
qVG
ηkBT

)
(3.2)

where the off current is given by

Ioff = 100 nA× W

L
exp

(
− qVT
ηkBT

)
(3.3)

and η = 1 +
Cdep

Cox
with Cdep the depletion region capacitance per unit area2 and Cox the

oxide capacitance per unit area. T is temperature and kB is the Boltzmann constant. A
common parameter used to describe the sub-threshold region is the sub-threshold swing,
SS, which is defined as the gate voltage required to change the drain current by a decade.
It can be written as [78]

SS = ln(10)

(
ηkBT

q

)
. (3.4)

The base 10 logarithm of the sub-threshold current (3.2) can be written in terms of this
sub-threshold swing and the off current

log(ID) = log(Ioff) + VG/SS. (3.5)

The sub-threshold swing of the FinFETs can be determined from the slope of a linear
regression fit to the linear sub-threshold region in Figure 3.6b and d. The sub-threshold
swing for FinFET1 is 118± 1 mV/decade and for FinFET2 117± 2 mV/decade. These
sub-threshold swings can give an estimate of η, 2.05± 0.02 and 2.02± 0.04 , respectively.
From the intercepts of the linear regression fits, the off current for FinFET1 is 3.8± 0.2 nA

and for FinFET2 4.6± 0.4 nA. Typically, η is between 1.1 and 1.8 for MOSFETs and
should be close to 1.1 for FinFETs [77]. That is the depletion region capacitance Cdep is

2The depletion region is the layer of negative acceptor charges left by the repelled p carriers as indicated
in Figure 3.3. In the MOSFET with a depletion layer of width w and permittivity εdep the depletion
capacitance per unit area is Cdep = εdep/w.
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typically smaller than the oxide capacitance Cox. The values of η are larger than expected
as are the values of Ioff . The main reason for this is likely short channel effects. As the
channel length decreases there is a point where the threshold voltage drops significantly
because carriers can easily diffuse across the short channel. From equation (3.3), if the
threshold voltage is too small (VT � ηkBT/q) the off current can be large. A shorter
channel would reach inversion faster to create current flow, leaving a depletion region
of smaller width. If this width is small compared to the width of the oxide (assuming
the oxide and depletion region have a similar permittivity) then Cdep > Cox which would
explain a larger η. Another possibility is that the source-drain bias is too small to
determine an accurate off current and η. Typically, a 50 mV bias is applied to determine
the off current, however, here a small drain bias was applied because our setup was
optimised for smaller current measurements.

From equation (3.3) and the values for the off current and sub-threshold swing
determined above, another estimate of the channel dimension ratio rch can be made.
Assuming the room temperature threshold voltages VT determined earlier, for FinFET1
rch = 6.7± 0.9 and for FinFET2 rch = 6.3± 0.7. These values agree with the previously
determined ratios of the channel dimensions. In conclusion, FinFET1 and 2 have similar
dimensions to the FinFETs tested by Sellier et al. [44, 75] and operate conventionally at
room temperature with observed short channel effects in the form of a large off current.

3.2. FinFET operation at low temperatures

In this section, the evolution of the FinFET operation during cooldown is discussed in
detail. There are clear changes in the threshold voltage of the devices and near cryogenic
temperatures peaks appear due to dopant atoms in the channel and a quantum dot
formed by the channel itself.

After identifying multiple working devices from the same chip (C2) it was time to
cooldown. With chip C2 in the sample area of the VTI and all the box pins grounded, the
cooldown procedure outlined in Appendix C.3.3 was followed to cool the devices. After
the VTI was inserted into the dewar of liquid helium, an infinite loop of gate voltage
sweeps from 0 V to 0.8 V was initiated at a small source drain bias of 3 mV to observe
the evolution of FinFET2’s operation as it cooled. The threshold voltage of the FinFET
increased as the device was cooled. This is due to the suppression of thermal fluctuations
which aid in the transport of electrons through the device at higher temperatures.
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Once FinFET2 reached temperatures less than 15 K, peaks began to appear in the
current trace. Figure 3.7a compares a high temperature trace at 252.1 K to a trace
with clear peaks at 11.1 K. Of particular interest, are the peaks that appear in the
sub-threshold region of the current trace clearly plotted on the log scale in Figure 3.7b.
These peaks are associated with the electron bound states of donors in the silicon channel
[44, 45, 75].
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Figure 3.7. Gate voltage VG sweeps of the drain current ID of FinFET2 at source-drain
bias 1 mV. (a) Compares the sweep at high temperature to the sweep at low
temperatures. (b) A zoom in on a gate voltage sweep where the Coulomb peaks
first appear with the current on a log scale.

From Section 2.3.1, there are two main requirements for the observation of Coulomb
blockade: an isolated island (atom-like quantum dot) with weak capacitive coupling to the
source, drain and gate electrodes, Γ� εC , and temperatures below that of the charging
energy, kBT � εC . The latter condition is easily satisfied since the measurements are
taken at approximately 11 K–12 K corresponding to thermal energy kBT ≈ 1 meV and
the charging energies of the electrons are typically on the order of 30 meV [44]. The first
condition is only satisfied due to two fortunate features of the FinFET architecture.

The first feature is an artefact of the all-round gate geometry of the FinFETs. The
combined potential of the three perpendicular gate faces is strongest at the top corners of
the silicon channel. Hence, when the silicon channel is in a regime of weak inversion, there
is a higher density of n carriers (electrons) at these top corner regions. At sub-threshold
voltages electron transport through the channel is restricted to these corner regions.
This is known as the corner effect [81]. These corner regions are depicted in the centre
blow-up of Figure 3.8a. The cross-sectional area of the corner regions is reported to be
∼ 4 nm2 in these devices [75]. Due to their small size, these corner regions may host a
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finite number of localised As (donor) atoms which have diffused from the highly-doped
source and drain contacts into the channel. Since these donors reside just below the gate
they are well coupled to the gate. The gate voltage bends the conduction band to create
a two dimensional triangular potential in the silicon channel as depicted in the right
blow-up of Figure 3.8a. Lansbergen et al. [45] report that the gate voltage can tune the
hybridisation of a donor bound electron wavefunction between the donor potential and
this triangular potential, red line in Figure 3.8a. The ability to electronically manipulate
the dopant bound electron in a gated silicon channel is a demonstration of quantum
control useful for engineering quantum logic devices.

The second fortunate feature of the FinFET is due to the silicon nitride spacers
either side of the gate, depicted in Figure 3.1. The poorly n-doped regions of silicon
below the spacers form energy barriers EB between the channel and the source/drain
contacts. Figure 3.8b is a diagram of the conduction band energy along the silicon
channel. The highly n-doped source and drain are well below the Fermi level EF due to
the introduction of positive dopants and associated free electrons. In the regions below
the spacers, there is the presence of some doping depicted by small sharp potential wells
but overall these regions are higher in energy than the source and drain and form energy
barriers. When no gate voltage is applied the conduction band edge EC of the p-doped
channel sits above the source, drain and barriers (the black dotted line). The channel is
a barrier between the source and drain.

At high temperatures, this barrier can be overcome by thermionic emission of electrons
to create current. At low temperatures thermally activated transport is suppressed and no
current can flow via thermionic emission. When a gate voltage is applied the conduction
band of the channel is lowered. If a dopant is present in the channel, depicted as a sharp
potential well, it is isolated from the source and drain by the energy barriers and the
rest of the channel. By applying enough gate voltage so that the dopant is at the Fermi
level electrons may tunnel from the source to a bound state of the dopant and then to
the drain. The dopant is isolated from the source and drain by tunnel barriers (weak
coupling) and capacitively coupled to the gate satisfying the conditions for a Coulomb
island. Hence, Coulomb peaks of the two electron bound dopant states D0 and D− can
explain the peaks observed at low temperatures and sub-threshold gate voltages.

The energy barriers and the corner region of the channel also create a quantum dot
that can act as a Coulomb island and form Coulomb peaks. This quantum dot will reach
the Fermi level at higher gate voltages and will have smaller energy barriers. As the gate
voltage increases past the conduction band, the inversion in the FinFET channel will
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(a)

x 

(b)

Figure 3.8. Low temperature FinFET operation and conditions for Coulomb blockade. (a)
The bottom left is a scanning electron micrograph of the FinFET. The centre
blow-up is a diagram of the silicon channel with three sides covered by the gate.
The dark blue regions are the corner regions where the donor atoms of interest
are located. The right blow-up is the potential along z due to the donor and the
gate (black line) and the hybridised electron wavefunction (red line). (b) The
energy band diagram of the FinFET along the silicon channel. The spacers create
energy barriers EB in the conduction band that reduce as the gate voltage is
increased. The dopant bound states sit below the conduction band minimum EC
and reaches the Fermi level EF first. Reprinted (a) from [45] under RightsLink
License 5582420204090. Reprinted (b) with permission from [44] copyright 2006
by the American Physical Society.

increase allowing current to flow like the room temperature case. The electron transport
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is more sensitive to dopants and impurities in the channel at low temperatures which
may explain why there are some fluctuations in the drain current at high gate voltages.

In order to differentiate between peaks formed by the dopants and the quantum dot
formed by the channel, it is useful to estimate the gate voltage at which the conduction
band edge aligns with the Fermi level. From now on this will be referred to as the edge
of the conduction band. The edge of the conduction band for FinFET2 is determined in
Appendix D.1. This was done using an analysis of the thermionic emission of carriers over
the energy barrier EB for various gate voltages as done in [75]. The conduction band edge
was found to be EC = 330± 10 mV from the high temperature data of FinFET2. The
results also gave an estimate for the coupling of the gate to the device, α = 0.42± 0.04,
and the cross-sectional area of current flow, S = 4.5± 0.5 nm2. These results are similar
to that of Sellier et al. [44, 75] and confirm the corner effect.

3.3. Identifying dopant states from Coulomb blockade

The collected low temperature data has signatures of Coulomb blockade and single
electron quantum transport through the FinFETs. In this section, the electron states
causing the Coulomb peaks are identified by comparing binding energies, capacitive
coupling to the leads determined from stability diagrams and the expected Bohr radius
of As dopants in silicon.

3.3.1. Physical interpretation of Coulomb peaks

Due to some mishaps in the cooling procedure and limitations of the low temperature setup
discussed in Appendix D.2.2, the lowest temperatures reached in this run (11 K–12 K)
were above the desired temperature of 4 K. Despite this, the current traces obtained at
these temperatures still produced Coulomb peaks. However, there was also the presence of
a baseline current of the conventional FinFET operation due to the warmer temperatures.
By removing this baseline it was possible to clearly identify the Coulomb peaks and
determine the electron states causing them.

At the lowest temperatures (11 K–12 K), multiple gate voltage sweeps were taken
in the region below the conduction band EC . The current resolution used for these
measurements was 100 pA, with the current amplifier gain set to 107 V/A, refer to
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Appendix D.2.1. Figure 3.9a and c are the average of these gate voltage sweeps for each
FinFET, ten sweeps for FinFET1 and six sweeps for FinFET2. The current traces are
made up of a Coulomb peak spectrum and a baseline current. This baseline current is
the standard FinFET operation after the threshold voltage but at sub-threshold voltages
this is due to a combination of diffusion of electrons from source to drain and thermal
fluctuations. The baseline current, the orange dot-dash line in Figure 3.9a and c, was
determined using an iterative asymmetric least squares smoother developed by P. Eilers
and H. Boelens in 2005 [82] and discussed further in [83]. The baseline was removed
from the current data leaving the Coulomb peak spectrums in Figure 3.9b and d.
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Figure 3.9. The gate voltage sweeps of FinFET1 and FinFET2 with and without the baseline
current. (left) The solid green lines are the average of multiple sweeps for (a)
FinFET1, ten sweeps, and (c) FinFET2, six sweeps, with the current amplifier
gain at 107 V/A. The gate voltage is in steps of 2 mV and 1 mV respectively.
The dot-dash orange line is the baseline of the drain current determined using the
asymmetric least squares smoother (ASLS) with the smoothing parameters λ and
p specified [82]. (right) The Coulomb blockade spectrum without the baseline for
(b) FinFET1 and (d) FinFET2. The peak maximums are indicated by purple
dots. The dotted black line is the conduction band determined in Appendix D.1.

From Section 2.3.1, the Coulomb peaks correspond to degeneracy points where the
total charge on the Coulomb island is increased by a single electron. In this system
the Coulomb island is made up of dopants in the corners of the silicon channel and
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the quantum dot formed by the corner region of the channel. The peaks before the
conduction band, the black-dotted line in Figure 3.9b and d, are due to the degenerate
points between the electron bound states of donors in the channel: the D+ zero electron
state, the neutral D0 one electron state and D− two electron state. The D+ state is
unoccupied by an electron so it does not appear in the Coulomb spectrum. For energies
above the conduction band, larger spectral peaks are observed which are suspected to be
due to quantised charge states in the quantum dot. The quantum dot peaks are larger
because the coupling of the leads to the quantum dot is stronger than that of the donor
atoms in the channel [35]. The conduction band minimum for FinFET1 is assumed from
the data of FinFET2 but may occur at larger gate voltages given that larger peaks do
not occur until well after the black dotted line in Figure 3.9b.

Both FinFETs have a complicated spectrum of more than eight clear peaks below
the determined conduction band. This indicates the presence of multiple donors in the
channel corners each with two electron bound states, similar to the results of [44]. The
donor states are filled in the order of most energetically favourable. For instance, starting
from the lowest gate voltage, the first peak would correspond to the degeneracy point
between the first dopant’s D+ state and D0 state and the blockade following that peak
corresponds to the D0 state. The next peak could be the first degeneracy point for the
next donor and so on until all donors are in the D0 state. The next peaks would then be
the degeneracy points between the dopants’ D0 and D− states in the same order. The
energy required to bind an electron to a dopant is dependent on the dopant’s position in
the channel and capacitive coupling to the source, drain and gate contacts and hence
the filling of the dopant states may not follow this exact order; one dopant may reach
the second bound state before another has reached its first. For simplicity, the model of
filling all the D0 states first and then all the D− states is used in this analysis.

3.3.2. Determining the coupling constant

From Section 2.3.1, the capacitive coupling of the donor states to the source, drain and
gate can be determined from Coulomb blockade stability diagrams. With the drain
grounded as in Figure 3.4, the positive sloped resonance line of the Coulomb blockade state
corresponds to κ = CG/(CG + CD) and the negative sloped resonance line corresponds
to ζ = CG/CS. The gate coupling constant α of a dopant state can be written in terms
of the capacitances to the source, drain and gate contacts, α = CG/(CG + CS + CD).
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The stability diagrams for each device were taken by measuring the drain current
against the source drain bias VSD and the gate voltage VG. The absolute value drain
current stability diagram for FinFET2 measured at current amplifier gain of 106 V/A is
depicted in Figure 3.10. At lower gate voltages one can make out Coulomb diamonds. The
coloured dot-dash lines are rough guides of the resonance lines through three degenerate
points which match the Coulomb peaks of Figure 3.9d. Poorly resolved diamonds can also
be seen at higher gate voltages. Each diamond represents a blockade where an electron
has been bound to a donor in the channel. Figure 3.11 is the absolute value drain current
stability diagram for FinFET1 with the current amplifier gain set to 107 V/A.
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Figure 3.10. Stability diagram for FinFET2 at 12.7 K and current amplifier gain 106 V/A.
The absolute value of the drain current against source drain voltage and gate
voltage. The coloured dot-dash lines are the resonance lines of three degenerate
points that form Coulomb diamonds. The dashed grey line is the conduction
band edge determined in Appendix D.1.

For this analysis, the focus will be on the FinFET2 data since it has fewer Coulomb
peaks and the correct conduction band minimum. The ratios κ and ζ were determined
from the slope of the resonance lines in Figure 3.10 and used to determine the source and
drain capacitances and the gate coupling constant α for the degeneracy points highlighted
in the stability. The capacitance ratios and capacitances for each degeneracy point are
presented in Table 3.2. The similar values of CS and CD for each state indicate that
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Figure 3.11. Stability diagram for FinFET1 at 11.3 K. The absolute value of the drain
current against source drain voltage and gate voltage. The dashed grey line is
the conduction band determined in Appendix D.1.

the dopants of these states are well centred in the channel. The fact that CG > CS,D

indicates that the donor states are more strongly coupled to the gate.

Table 3.2. Capacitance ratios and capacitances for the degeneracy points of the FinFET2
stability diagram Figure 3.10.

Degeneracy point κ ζ CS (CG) CD (CG) α

Blue 0.75 3.8 0.26 0.33 0.63
Red 0.71 3.0 0.33 0.41 0.57
Green 0.60 1.6 0.63 0.67 0.44

The degeneracy points outlined in the stability diagram correspond to three of the
peaks in Figure 3.9d. The peaks around these that are not as prominent in the stability
are likely due to donors that are not centralised between the source and drain. The
non-centralised states will have contrasting CS and CD values and overall weaker coupling
to the leads Γ which would produce a dull peak in the current trace [35]. These states
clutter the stability diagram’s Coulomb diamonds and broaden peaks in the Coulomb
peak traces.
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The coupling constants α in Table 3.2, determined for each degeneracy point are all
larger than that found in the thermionic emission analysis in Appendix D.1, α = 0.42.
For the remainder of this chapter we take the rounded average of these four values as the
gate coupling constant, α = 0.5.

3.3.3. Binding energies of donor states

The electron bound states of dopants in silicon are identifiable by their binding energies.
In this section, the spacing of the Coulomb peaks of FinFET2 and the refined coupling
constant, α = 0.5, are used to identify the donor bound states.

Figure 3.12 is a zoomed plot of FinFET2’s Coulomb peak spectrum below the
conduction band. There are ten clear Coulomb peaks. A likely physical explanation of
these states is that there are five dopants (labelled a to e) each with a D0 (a1 to e1)
and a D+ (a2 to e2) bound state. Each peak represents the transition into the blockade
of the corresponding donor bound state. The binding energies of the dopant states are
determined by the distance of the corresponding Coulomb peak from the conduction band
minimum. The distance of each Coulomb peak from the conduction band, VG −EC , and
the corresponding binding energies of the peaks, calculated using the average conversion
factor α = 0.5, are given in Table 3.3.

The binding energy of an arsenic atom in bulk silicon is 46 meV [84]. The prominent
states in Figure 3.10 the blue dot-dash state (c1) and red dot-dash state (e1) are most
likely D0 states given their binding energies: 48.5 meV and 36 meV respectively. Peaks
a1, b1 and d1 are also likely D0 donor states but may not be as centralised between
source and drain lending to binding energies different to that of bulk donors and less
prominent diamonds in the stability diagram. It is worth noting that a1 and b1 peaks
are at currents of the order of 100 pA and the stability diagram has a resolution floor of
1 nA with the current amplifier gain set to 106 V/A, refer to Appendix D.2.1 for more
detail. Hence, these peaks do not appear clearly in the stability diagram but their small
current peaks suggest a weaker coupling to the leads.

In bulk silicon, the binding energy of the D− state, two electrons bound to the donor,
is only about 2 meV because of the strong Coulomb repulsion between the electrons
[85]. In a FinFET, the D− state is negatively charged and capacitively coupled to the
source, drain and gate electrodes reducing the charging energy to e2/C where C is the
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Figure 3.12. The Coulomb peaks of FinFET2 with 1 mV source drain bias at 12.4 K. The
blue dots and labels identify the peaks and their corresponding dopant state. a
to e are the dopants and 1 and 2 correspond to the D0 and D− state, respectively.
The black dotted line is the conduction band.

Table 3.3. The binding energies and distance from conduction band to peak of the dopant
states of FinFET2, VG − EC , which differ by a factor of the coupling constant
α = 0.5. Peaks are labelled as in Figure 3.12. Note that ∆VG has an error of
about 10 mV based on the determined conduction band minimum.

Peak No. VG − EC (mV) Binding energy (meV)
a1 123 61.5
b1 113 56.5
c1 97 48.5
d1 83 41.5
e1 72 36
a2 54 27
b2 37 18.5
c2 30 15
d2 17 8.5
e2 9 4.5

total capacitance. This reduction of charging energy is of great interest for dopants in
silicon quantum gates, since it could provide longer lifetimes of the two-electron donor
state [44, 46]. The charging energy should be fairly consistent across all dopants and
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a charging energy of 30 meV is common for donors in these devices [45]. The charging
energies between the identified single electron and two electron states of the donors are:
a1 → a2 = 34.5 meV, b1 → b2 = 38.0 meV, c1 → c2 = 33.5 meV, d1 → d2 = 33.5 meV

and e1 → e2 = 31.5 meV. The charging energies are consistently around 30 meV sup-
porting the hypothesis of five donors. The variations in these charging energies e.g.
b1 → b2 and c1 → c2, could be due to the dopants being located in different locations
along the corner of the channel and hence different capacitive coupling to the leads.
Alternatively, some dopants may be located deeper in the channel and less coupled to
the leads.

Another check to confirm that these states are due to dopants is to determine the gate
capacitance of the bound states. The gate capacitance of the dopants can be determined
from the charging energy between D0 and D−. From the capacitance ratios of e1 (the red
dot-dash stability state) and the charging energy of donor e (e2/C), the gate capacitance
is CG = 2.9× 10−18 F which agrees with the value reported in [44]. This capacitance
corresponds to a sphere of radius 2.2 nm in bulk silicon which agrees with the 2.5 nm

Bohr radius of a neutral D0 bound state of an As donor in bulk silicon [50, 86].

FinFET1 also has multiple Coulomb peaks which would correspond to a handful of
dopants in the corners of the silicon channel. The stability diagram Figure 3.11a has
two very clear states between gate voltages 240 mV and 260 mV that would likely be
single electron D0 states of dopants. There is also the traces of a state before these
two corresponding to the small Coulomb peak at around 238 mV in Figure 3.9b. This
could also correspond to a D0 state. The binding energies of these three peaks using
FinFET2’s conversion factor α and conduction band value are: 48 meV, 42 meV and
37 meV respectively. These values are similar to the binding energies of As donors in
bulk silicon. Following the same arguments as above the D− states corresponding to
these donors could be determined.

3.3.4. Difficulties in identifying the dopants

The Coulomb peak spectrums in Figure 3.9 and the stability diagrams Figures 3.10
and 3.11 all have broad and overlapping neighbouring peaks. This makes it difficult
to identify Coulomb peaks and results in poorly resolved Coulomb diamonds. In both
stability diagrams, the extent of the Coulomb blockade regions are much smaller than
that observed in previous works with similar devices [44, 45, 75]. These works boast
Coulomb diamonds extending up to ±30 mV sourced drain bias compared to the diamonds
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presented here extending from ±15 mV for FinFET1 and only ±5 mV for FinFET2. The
broadening of the Coulomb peaks in both the stability and Coulomb spectrums is a result
of two factors.

The first is that the device is too warm, 11 K–12 K. This causes thermal broadening of
the peaks. When kBT is greater than the coupling to the leads, Γ, the width of the peaks
is proportional to temperature, however, for Γ > kBT , the peak widths are independent
of temperature and proportional to Γ [35]. The thermal energy for temperatures of
T = 12.4 K and T = 11.1 K is kBT ≈ 1 meV. Typical values of Γ are 0.1 meV–1 meV

[35] and from similar FinFETs in [44] the width of the peaks is around 0.5 mV at 0.1 K

corresponding to a coupling similar to 0.34 meV. The thermal energy of this experiment is
larger than 0.34 meV which suggests these results are in the Γ < kBT regime. The average
full width half maximum of the peaks below the sub-threshold region in Figure 3.9b and
d are 2.2 mV (1.1 meV) and 5.5 mV (2.75 meV), respectively. These are on the order of
the thermal energy. If temperatures less than 4 K are achieved, kBT < 0.086 meV, the
width of these peaks will be significantly reduced and will approach the lead coupling
Γ. This would resolve the neighbouring peaks and Coulomb diamonds more clearly. A
discussion of the problems encountered that restricted the cryostat from reaching sub
4 K temperatures in this run is found in Appendix D.2.2.

The second is that the spectrum is complicated. There are multiple neighbouring
states that are overlapping so that Coulomb peaks are crowded and the Coulomb diamond
regions are small. For instance, the D0 Coulomb diamond of the dopant c is filled with
transitions to the D0 states of dopants d and e and D− states of dopants a and b, in
Figure 3.10. If it weren’t for these states, there would be a full Coulomb diamond
extending to the source-drain bias of approximately ±30 mV. This problem is amplified
when combined with the thermal broadening. For a more accurate analysis of the
Coulomb spectrum in the FinFETs it is ideal to find a device with only a single dopant
in the corners of the channel. Then there would be only two clear donor bound states
to analyse. However, finding these single dopant devices is a time consuming game of
chance. Lansbergen et al. [45] reports a one in seven probability of finding a working
FinFET with two resonances from a single dopant, the D0 and D− states. The devices
measured here are similar to the devices tested by Lansbergen et al. and the sample area
allows for only two or three devices to be cooled down at a time. Hence, testing at least
seven working devices to find a FinFET with a single dopant would require cooling down
at least three different sets of working devices. Due to time constraints and a limited
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helium supply it was not possible for us to conduct multiple cool downs and search for
such a device.

3.4. Summary

In this chapter, Coulomb blockade spectrums and stability diagrams corresponding to
transitions between the one- and two-electron bound states of dopants in the silicon
channels of two FinFETs were observed. The sub-threshold Coulomb peaks for FinFET2
were identified to be the D0 and D− states of five dopants. A similar spectrum of Coulomb
peaks due to multiple dopants was observed in FinFET1. Quantum dot states due to
the confinement of the corner effect and the energy barriers were observed above the
conduction band. Coulomb diamonds corresponding to the Coulomb blockade between
D0 and D− dopant states were observed in the stability diagrams of FinFET1 and
FinFET2. The size of the Coulomb diamonds and resolution of Coulomb peaks was
limited due to the presence of thermal fluctuations and multiple dopants. These are not
novel results but a good example of quantum transport due to the sequential tunnelling
of single electrons. This experiment doubled as a validation of the low temperature
measurement setup, although there are still improvements to be made. An accurate
analysis of the D0 and D− states (including excited states) of a dopant in silicon could
be performed if a device with a single dopant in the channel is found and cooled below
4 K.
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Chapter 4.

Atomistic tight-binding modelling tool
- NEMO3D

In recent years, there has been an overwhelming interest in novel nanoscale semiconduc-
tor devices which are expected to revolutionise computing and quantum information
technologies. The charge carriers in these nanoscale devices are governed by quantum
mechanics which determines their electronic band structure and ultimately the properties
and operation of the device. Understandably, there is an increasing need for tools which
can accurately model the electronic band structures of nanoscale systems built with
various geometries, materials, dopants and applied electromagnetic fields. One such
tool developed for this purpose is the three dimensional Nanoelectronic Modelling tool
(NEMO3D) developed by Klimeck et al. [87, 88]. NEMO3D uses an atomistic nearest
neighbour tight-binding sp3d5s∗ model to compute the electronic structure of up to
approximately 64 million atoms, corresponding to a volume of (110 nm)3. The tool has
been optimised to scale from a single computer processing unit to a large number of
processors in a supercomputer cluster.

The NEMO3D tool is different to continuum methods of calculating band-structure
e.g. effective mass and k · p theory in that it accounts for crystal symmetry on an
atomic resolution. The tight-binding model also has the advantage over the common
pseudopotentials method as far as it is less expensive on storage and processing power [89].
The main criticism of the tight-binding method is that it is semi-empirical i.e. it requires
input from experiment to obtain the material parameters for a given semiconductor.
Regardless, the tool has successful modelled various nanoelectronic structures including
but not limited to self-assembled quantum dots [90], gated donors in silicon [91, 92],
Si/SiGe quantum wells [93] and SiGe nanowires [94].
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NEMO3D will be used for the remainder of this thesis to model the electronic band
structure of InAs nanowires. In particular, to investigate how different internal and
external properties of the nanowire influence its effective g-factor anisotropy and spin-
orbit interactions. In this chapter, the atomistic tight-binding method underpinning
NEMO3D is introduced, with specific emphasis placed on how the model incorporates
electromagnetic coupling and the spin-orbit interaction. The InAs and Si bulk band
structures produced by NEMO3D are compared to experimental data. An example of
NEMO3D’s ability to model electronic spectra is given by modelling the valley splitting
of a quantum dot in a Si/SiGe quantum well with an interface step. These valley splitting
results were incorporated in a recent publication [95].

4.1. Nanoelectronic modelling

In this section, the various nanoelectronic modelling techniques are briefly introduced
and compared to the approach of NEMO3D. The modelling of nanoscale semiconductor
devices is generally approached from the quantum mechanical level. The focus is typically
on a few periodic unit cells of a crystal structure containing a few thousand atoms. The
main goal of the modelling is to determine the electronic structure e.g. eigenenergies
and eigenfunctions of the electrons in a semiconductor. From first principles, one would
typically start from the time-independent Schrödinger equation with a many body
Hamiltonian containing interactions between the ion cores of the crystal lattice, the ion
cores and electrons and between the electrons themselves, see equation (2.1). However,
due to the complexity of the interactions between a large number of atoms and electrons
all models make approximations to simplify calculations. These approximations reduce
the computational cost of the model at the expense of the model’s realism.

4.1.1. Common assumptions

The first assumption typically made for semiconductors is to consider only the electrons
in the outer-most shell of the atoms in the crystal lattice, the valence electrons. The core
shell electrons bound to each atom in the lattice can be lumped together as ion cores.
The next approximation made by most models is that the ion cores of the crystal are
effectively stationary as seen by the free electrons. This is called the Born-Oppenheimer
approximation [36]. This essentially means that the electron and ion core wavefunctions
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may be treated separately. The problem can then be simplified to a Hamiltonian
considering the motion of electrons through a potential of stationary ion cores. The ion
motion is negligible and typically ignored but can be used to derive the electron-phonon
interactions.

The Born-Oppenheimer approximation greatly simplifies the many particle model,
however, there are still complex electron-electron interactions present that are difficult
to solve. There are computationally expensive approaches that can solve full electron
models by explicitly including electron-electron interactions such as quantum Monte
Carlo [96]. However, typically the problem is reduced to a single electron Schrödinger
equation by making a mean field approximation: that every electron experiences the
same crystal potential [97]. The electron-electron interactions are then introduced by
including an appropriate local or non-local potential in this single electron Schrödinger
equation. Sophisticated ab initio methods using this approach include the Hartree-Fock
approximation [98, 99] and density functional theory [100, 101]. At a high level these
methods solve the all-electron problem by including all the electrons on the atoms in a self
consistent solution. These ab initio methods can be accurate but they are computationally
intense and time consuming. Typically, further assumptions are made to determine the
electronic structure of semiconducting nanostructures.

4.1.2. Simplified models

One simplified model assumes that the valence electron’s are mostly free and do not
feel the full potential of the semiconductor nuclei due to the screening of the core
electrons. The true potential felt by the valence electrons is approximated by including
a repulsive potential in the crystal potential which represents the screening interaction
between core electrons and valence electrons. The resulting effective potential is called
a pseudopotential [97]. Pseudopotential methods can be empirical or derived from first
principles. Typically, pseudopotential methods are restricted to small systems and are
computationally expensive because they require full matrix manipulations to transform
between real and momentum space [87, 89].

The simplest and least computationally intensive models are non-atomistic models
which approximate the atoms as a continuum rather than modelling them individually.
The most common model is the effective mass approximation which retains only the
information of the effective masses and band edges from the electronic band structure
[51, 97]. Another common model is k · p theory [51], which is an extension to this
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approximation by including the coupling of multiple bands. The parameters for these
continuum models are determined from experimental data of semiconductors e.g. band
gaps. These non-atomistic approximations are computationally inexpensive compared
to ab initio methods and have found great agreement with multiple experiments [97].
However, these models do not contain information on the atomic level which is crucial
for the modelling of nanoscale features such as growth direction, interfaces, and disorder
which depend on the geometric constraints induced by the crystal lattice symmetry.

An intermediate model that is not extremely computationally expensive and also
considers the atomistic resolution and crystal symmetry is the atomistic nearest-neighbour
tight-binding approach. This is the approach used by the Nanoelectronic Modelling tool
(NEMO3D) [89]. The atomic information is included by considering the atomic orbital
wavefunctions (s, p and d) as a basis for the valence electron wavefunctions. The orbital
wavefunctions on the nearest neighbouring atoms overlap and build up the electronic
band structure of the semiconductor [97].

4.1.3. NEMO3D

The semi-empirical nearest-neighbour tight-binding method used in NEMO3D was
introduced by Slater and Koster in 1954 [102] using an sp3s∗ atomic basis. The atomic
basis was then extended to include all five d orbitals, sp3d5s∗, by Jancu et al. in 1998
[103]. The method selects a basis of orbitals for each atom in the crystal and builds
a single electron Hamiltonian representing the electronic properties of the material.
The interactions between same-atom orbitals and nearest neighbour atom orbitals are
treated as empirical fitting parameters. These parameters are determined from a genetic
algorithm that fits a large parameter space to the bulk band structure of the desired
semiconducting material [89]. Once these parameters are determined the tight-binding
model is transferable to any nanostructure of the semiconductor. For this work, the
sp3d5s∗ with spin basis of 20 atomic orbital states is used.

The tight-binding method stores information in sparse matrices making it less compu-
tationally expensive compared to pseudopotential calculations. The computational cost
of this method scales linearly with the number of atoms in the system and can easily be
performed on supercomputing clusters [89]. . There is some controversy over the validity
of the atomistic tight-binding method given its empirical nature [87]. However, there
is now an extensive catalogue of tight-binding parameters and results that have found
agreement with experiments for various nanoelectronic devices [87, 89, 91, 92, 93].
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4.2. Atomistic tight-binding

This section discusses in detail the atomistic nearest-neighbour tight-binding method
including the implementation of electromagnetic coupling and spin-orbit interactions.

4.2.1. Construction of the tight-binding Hamiltonian

Consider a semiconductor nanostructure consisting of N primitive unit cells each located
at Bravais lattice points

Rn1,n2,n3 = n1a1 + n2a2 + n3a3 (4.1)

where ai for i = 1, 2, 3 are the primitive direct lattice vectors and ni are integers. For
simplicity, denote the location of the jth unit cell or Bravais lattice point as Rj where j
captures the nature of the integers ni. In the case of zincblende and diamond lattices
the primitive cell contains two atoms. Let the atoms be located at equilibrium atom
positions Rνj = vν + Rj where vν is the offset of the νth atom of the unit cell from the
unit cell location. For each atom in the primitive cell let there be a basis of orthogonal
localised atomic-like orbitals |µ, ν,Rj,µ〉, called Löwden orbitals [104], where µ is the
index over the orbitals including spin. To simplify notation ν is absorbed into µ so that
the basis of the whole primitive unit cell is |µ,Rµj〉 with µ the index over the atomic
orbitals on both atoms of the unit cell and the lattice vectors Rµj = Rνj.

From these localised atomic orbitals a basis of Bloch states can be created by summing
over all unit cells in the crystal structure

|µ,k〉 =
1√
N

N∑
j

exp(ik ·Rµj) |µ,Rj〉 (4.2)

where k is the three dimensional wave vector restricted to the first Brillouin zone. The
wavefunctions that diagonalise the tight-binding Hamiltonian and make up the bands of
the semiconductor can be expressed as linear combinations of these atomic orbital Bloch
states

|Ψn,k〉 =
∑
µ

Cn,µ(k) |µ,k〉 (4.3)
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where Cn,µ(k) are the expansion coefficients and n is the band index. These wavefunctions
are eigenfunctions of a single electron tight-binding Hamiltonian H with eigenvalues
En(k)

H |Ψn,k〉 = En(k) |Ψn,k〉 . (4.4)

From equations (4.3) and (4.4), the tight-binding Hamiltonian can be represented
as a matrix whose order is the total number of atomic orbitals in the unit cell. For
the zincblende primitive cell with a 20 orbital basis this would be a 40× 40 matrix.
Assuming the Hamiltonian conserves translational symmetry due to a periodic crystal
potential, the matrix elements of the Hamiltonian take the form [102, 105]

Hµ′,µ(k) = 〈µ′,k|H |µ,k〉 =
1

N

∑
j′,j

exp(ik · (Rµj −Rµ′j′)) 〈µ′,Rµ′j′|H |µ,Rµj〉

=
∑
j

exp(ik · (Rµj −Rµ′)) 〈µ′,Rµ′|H |µ,Rµj〉
(4.5)

where Rµ′ = Rµ′0. In the last step, the summation over all of the unit cells indexed by j′

is removed which corresponds to multiplying the expression by N and the value for Rµ′j′

is set to the constant Rµ′ [102]. The distance (Rµj −Rµ′) corresponds to the distance
between atoms in unit cell j and the atoms in the 0th unit cell. Typically, in nearest-
neighbour tight-binding j is restricted to the sum over the nearest neighbour in the
current unit cell and the three nearest-neighbours in adjacent unit cells. The elements of
the Hamiltonian matrix are dependent on k by the plane waves due to the displacement
between the four nearest-neighbouring atoms. The integrals 〈µ′,Rµ′ |H |µ,Rµj〉 are
determined from fitting to the experimentally determined bulk band structure.

In NEMO3D, a geometry can be modelled with periodic boundary conditions or
closed boundary conditions. These two conditions can be explained simply by considering
a one-dimensional chain of n atoms along x with positions xi for i = 1, ..., n. Periodic
boundary conditions are the requirement that xn+1 = x1 so that the one-dimensional
chain can be thought of as a ring or an infinite chain. Closed boundary conditions
requires that the chain is finite, with x1 and xn the atoms at the end of the chain. The
typical form of the electron wavefunction for periodic and closed boundary conditions
are derived in Appendices A.1 and A.2.

The atomic basis of NEMO3D takes the Bloch form (4.5) only if the nanostructure has
periodic boundary conditions. If the crystal geometry is chosen to have closed boundary
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conditions there is no longer translational symmetry and k = 0. The eigenfunctions of
the Hamiltonian are then a linear combination of all the atomic orbitals localised on each
of the N atoms in the lattice with positions RI . The basis for this linear combination
will be denoted |µ, I〉, where µ runs over the atomic orbitals of an atom and I runs
over all the atom positions in the crystal lattice. The Hamiltonian can then be written
as a NM ×NM matrix where M is the number of atomic orbitals on each atom with
elements 〈µ′, I ′|H |µ, I〉.

Regardless of whether the Hamiltonian elements are constructed from the basis of
Bloch states {|µ,k〉} or the basis of all atomic orbitals in the crystal lattice {|µ, I〉}, the
tight-binding Hamiltonian has the same general form. First consider a 1D chain of N
atoms each with a single atomic orbital, the Hamiltonian can be expressed as an N ×N
matrix that acts on a column vector Ψ of length N ,

[H]nnΨm = [εnδn,m − tδn,m+1 − tδn,m−1]Ψm. (4.6)

where n is the row index of the Hamiltonian matrix, and m is the column index of the
matrix and the index of the column vector. The diagonal terms of the matrix εn are the
on-site energies for the atomic orbital on the nth atom and the non-zero off-diagonal
terms t are the overlap/interactions between the nearest-neighbour atomic orbitals, which
are assumed to be the same for each atom here.

When multiple orbitals are localised at each atom, say M orbitals, the Hamiltonian
matrix becomes an NM ×NM matrix. The restriction to only nearest-neighbour atom
interactions means that the majority of the off-diagonal terms in this matrix are zero
and the Hamiltonian is a sparse block tridiagonal matrix. This matrix can be written as

H =



h1 t12 0 . . . 0 tbc

t21 h2 t23 0
. . . 0

0 t32 h3 t34
. . . ...

... . . . . . . . . . . . . 0

0
. . . 0 tN−1,N−2 hN−1 tN−1,N

tbc 0 . . . 0 tN,N−1 hN


. (4.7)

. The matrix consists of M ×M diagonal blocks hn for each atom n ∈ [1, N ], whose
diagonals are the on-site orbital energies, similar to εn above, and whose off-diagonals
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are the intra-atomic orbital interactions between orbitals on the nth atom. The off-
diagonal blocks tn,n±1 are made up of the inter-atomic orbital interactions between
orbitals on nearest neighbour atoms. The top corners of the matrix tbc are set depending
on the desired boundary conditions; zero for closed boundary conditions and tN1 or t1N
for periodic boundary conditions. These sparse matrices simplify the computation of
eigenvalues which is one of the great advantages of the tight-binding method.

The general tight-binding Hamiltonian used in NEMO3D for three dimensional crystal
structures can be written in terms of the three different interactions mentioned above
[87, 106]

H =
N∑
i

∑
µ,υ

(εµ,iδµυ + ∆µυ,i)c
†
µicυi +

N∑
i

4nn∑
j 6=i

∑
µ,υ

tµi,υjc
†
µicυj (4.8)

where i is the index over the atoms of the lattice, N is the total number of atoms, 4nn
denotes that the sum is over the four nearest-neighbouring atoms, and µ and υ index
the atomic orbitals with spin degree of freedom. c†µi (cµi) is the creation (annihilation)
operator of an electron on the orbital µ localised on atom i. The first term εµ,i is
the on-site energies of atomic orbitals on each atom and the second term ∆µυ,i is the
intra-atomic orbital interactions. The last term is the interaction between the orbital µ
on the ith atom with the atomic orbital υ on the four the nearest-neighbouring atoms
indexed by j. The on-site energies, εµ,i, the intra-atomic interactions, ∆µυ,I , and the
inter-atomic interactions, tµi,υj , in equation (4.8) correspond to the Hamiltonian integrals
introduced earlier which are all empirical fitting parameters. In the atomic orbital basis
notation, |µ, I〉, the Hamiltonian matrix elements can be written as [105]

〈µ, I|H |µ, I〉 = εµ,I (4.9)

〈µ′, I|H |µ, I〉 = ∆µ′µ,I for µ′ 6= µ (4.10)

〈µ′, I ′|H |µ, I〉 = tµ′I′,µI for I ′ 6= I. (4.11)

Similar results could also be obtained for the Hamiltonian written in terms of the Bloch
states |µ,k〉. These integrals are determined by fitting to the band structure of a bulk
semiconductor with the genetic algorithm described in [89].
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4.2.2. The spin-orbit interaction

The spin-orbit interaction of an electron bound to an atom is given in equation (2.20)

HSO = − ~
4m2

0c
2
σ · (p×∇V ) (4.12)

where V is the total potential felt by an electron on the atom and σ is the vector of
Pauli matrices.

In NEMO3D, the potential V is split into the intrinsic potential of the atom and an
external potential applied to electrons on the atom. The spin-orbit interaction of the
external potential is calculated by symmetrising it and using the electromagnetic coupling
methods discussed in the next section. For the intrinsic atom potential, the result of the
spin-orbit interaction is the coupling of the electron’s orbital angular momentum l and
the electron’s intrinsic spin momentum s. The Hamiltonian interaction term could be
written HSO = λl · s with λ the spin-orbit coupling constant. The spin-orbit interaction
couples p orbitals on the same atom [97, 107]. The atomic orbitals are eigenstates of
the total angular momentum j = l + s. For the p orbital, l = 1 and s = 1/2. The total
angular momentum of a p orbital can take two values j = l + s = 3/2 or j = l − s = 1/2.
The result of the spin-orbit interaction is to split the j = 3/2 and j = 1/2, p orbital states
by a spin-orbit splitting, ∆0 = 3

2
λ. There are four j = 3/2 states and two j = 1/2 states.

At the Γ point (k = (0, 0, 0)) of a III-V semiconductor’s valence band, the spin-orbit
interaction creates a four-fold degeneracy of two heavy-hole and two light-hole bands
and a double degenerate split-off band separated by ∆0 since these three valence bands
(heavy-hole, light-hole and split-off) are mostly composed of p-orbitals. The s orbitals
are not influenced by the spin-orbit coupling.

The spin-orbit coupling enters the NEMO3D Hamiltonian through the intra-atomic
orbital constants ∆µυ,i in equation (4.8). In NEMO3D, only the coupling of the p orbitals
is considered following the work of Chadi [107]. The coupling of the p orbitals can either
be determined from first principles or experimental data of the valence band splitting,
∆0, at the Γ point of a bulk semiconductor. For a III-V zincblende semiconductor, the
atomic spin-orbit splitting of the anion and cation, ∆a and ∆c, is required. Typically the
atomic spin-orbit splitting is renormalised to obtain the correct spin-orbit splitting of
the valence bands in the semiconductor [107].
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4.2.3. Electromagnetic coupling

Time-dependent electromagnetic fields are included in the tight-binding model by a
form of minimal coupling described in [105, 108, 109]. This method maintains gauge
invariance, conservation of charge and does not introduce any extra free parameters.

In the presence of an applied vector potential, A(r, t), and scalar potential, Φ(r, t),
extra terms are introduced into the single electron Hamiltonian. The momentum operator
becomes p→ p + eA and the scalar potential is added. By substituting this momentum
operator and scalar potential into the non-relativistic limit of Dirac’s equation, see
Section 2.4.2, the Pauli spin-orbit term and a Zeeman splitting are introduced into
the single electron Hamiltonian. The spin-orbit term is accounted for as described in
Section 4.2.2. The Zeeman splitting, µBσ ·B, is added to the diagonal on-site elements
of the matrix depending on the spin of the orbitals. The scalar potential is also added
to the diagonal on-site elements of the matrix in the form eΦ and will influence the
spin-orbit interaction by changing the total potential of the system.

The inclusion of these terms to the on-site elements of the tight-binding Hamiltonian
may have introduced the electric field and magnetic field but the Hamiltonian is not
yet gauge invariant. To enforce gauge invariance a phase factor must be introduced
to the interactions of nearest-neighbouring atoms. This is the phase that an electron
gains when hopping between nearest neighbours in the presence of a vector potential.
The Hamiltonian with electromagnetic coupling, ignoring the spin-orbit and Zeeman
interactions for now, is

HEM =
1

2m
(−i~∇+ eA)2 + V (4.13)

where V contains the atom potential and any external potentials. According to [52] the
solution to this Schrödinger equation is

Ψ(r, t) = Ψ(0)(r, t) exp

(
−ie

~

∫ r

A(r′, t) · dr′
)

(4.14)

where Ψ(0) is the solution to the Schrödinger equation with A = 0, the corresponding
Hamiltonian will be denoted H0. It follows that HEM and H0 can be related by the
unitary transformation

HEM = exp

(
−ie

~

∫ r

A(r′, t) · dr′
)
H0 exp

(
ie

~

∫ r

A(r′, t) · dr′
)
. (4.15)
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If H0 now includes the spin-orbit term, equation (4.12), the electromagnetic Hamiltonian
HEM can still be written in this form and satisfies gauge invariance as described in [108].

Letting H0 = H1e + HSO, the matrix elements of the tight-binding Hamiltonian in
the presence of a non-zero vector potential can be written

〈µ′, I ′|HEM |µ, I〉 (4.16)

= exp

(
−ie

~

∫ RI′

0

A(l, t) · dl
)
〈µ′, I ′|H0 |µ, I〉 exp

(
ie

~

∫ RI

0

A(l, t) · dl
)

(4.17)

= exp

(
−ie

~

∫ RI′

RI

A(l, t) · dl
)
〈µ′, I ′|H0 |µ, I〉 (4.18)

where the integral in the last line is the straight line connecting two nearest-neighbours.
The vector potential is incorporated into the off-diagonal elements of the Hamiltonian
by introducing a phase which is the contour integral of the vector potential along the
line between nearest-neighbouring atoms. The introduction of this phase is known as the
Peierls substitution [110]. The phase factor influences interactions between orbitals on
different atoms, I ′ 6= I, the off-diagonal elements and has no influence on the intra-atomic
orbital interactions, the block diagonal elements.

In summary, the introduction of the electromagnetic scalar and vector potentials
changes the elements of the NEMO3D tight-binding Hamiltonian equation (4.8) to

εµ,I = ε0
µ,I − eΦ(RI , t) (4.19)

tµ′I′,µI = t0µ′I′,µI exp

(
−ie

~

∫ RI′

RI

A(l, t) · dl
)

for I ′ 6= I (4.20)

where ε0
µ,I and t0µ′I′,µI are the zero field matrix elements.

The scalar potential Φ is added to the on-site elements of the matrix, while the vector
potential introduces a phase to the off-diagonal elements of the tight-binding Hamiltonian.
If the spin degree of freedom is considered the corresponding Zeeman energy is included
on the diagonal spin elements of the tight-binding Hamiltonian.

4.2.4. Solving the Hamiltonian

In order to solve the Hamiltonian, first the desired geometry and electromagnetic condi-
tions of a semiconducting nanostructure are given as an input to NEMO3D. Then the
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tight-binding Hamiltonian is constructed from the input values and the parameters of
the semiconductor’s bulk band structure. The desired eigenvectors and eigenvalues of
the tight-binding Hamiltonian are solved for by running a parallel Lanczos algorithm
on a supercomputing cluster [89]. Typically, in a closed structure only the first few
conduction bands or valence bands are required and not the whole band structure. If
the full Hamiltonian for 1 million atoms is constructed with the sp3d5s∗ atomic basis
(20 orbitals), then the order of the Hamiltonian would be 20 million which is unrealistic
to solve completely. Instead, algorithms such as the Lanczos algorithm approximate
the solution on a small subspace that is gradually increased until a certain tolerance
is achieved. This is a computationally feasible method for solving the tight-binding
Hamiltonian because it requires only a few eigenvectors to be held in memory. The
ability to solve the tight-binding sparse matrices with parallel algorithms is the reason
for NEMO3D’s superior computational efficiency when compared to other modelling
methods.

4.3. Example of bulk band structures: Si and InAs

Before one begins modelling nanostructures in NEMO3D, it is important to check that the
empirical tight-binding parameters for the semiconductor of interest reproduce the bulk
band structure. Once the bulk tight-binding parameters are correct they are transferable
to any nanostructure of the semiconductor. In this section, the bulk band structures of
two semiconducting materials are produced, namely Si and InAs.

4.3.1. Silicon bulk band structure

Silicon (Si) is a group IV element that forms a diamond lattice, the same structure as
zincblende lattice except all atoms are the same element. The empirical tight-binding
parameters for bulk silicon are detailed in [111]. Figure 4.1a is the bulk band structure of
silicon from NEMO3D. NEMO3D uses an eight atom unit cell rather than the diamond
(or zincblende) primitive cell of two atoms. This results in Brillouin zone folding, where
the true primitive cell band structure is folded due to the use of a larger supercell
comprising multiple primitive cells [112]. The NEMO3D unit cell is made up of four
primitive cells which correspond to a cube with the side length of two primitive cells in
each of the three dimensions. If we consider the band structure in one dimension, the
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NEMO3D Bloch state is summed over half as many unit cells as in the primitive cell
case. As a result, the Brillouin zone in this dimension is half the size of the primitive
Brillouin zone and each band is folded in half. For clarity, the high symmetry points of
the NEMO3D Brillioun zone will be denoted L′, Γ′ and X ′ to differentiate them from
those of the primitive cell Brillouin zone, L, Γ and X. Similarly, Γ′ → X ′ corresponds to
the [100] direction or ∆′ and Γ′ → L′ corresponds to the [111] direction or Λ′.

L′ Λ′ Γ′ ∆′ X ′

k

−6

−4

−2

0

2

4

6

En
er

gy
(e

V
)

(a)

0.0 0.5 1.0
kx (π/a0)

−6

−4

−2

0

2

4

6

En
er

gy
(e

V
)

Γ X(b)

Figure 4.1. The bulk band structure of silicon from NEMO3D. (a) the zone folded band
structure from L′ → Γ′ → X ′ in the NEMO3D Brillouin zone. (b) The unfolded
band structure in the standard primitive cell Brillouin zone. The solid red lines
are the unfolded band structure and the blue dots are the NEMO3D eigenvalues.

An example of unfolding the NEMO3D band structure along the [100] direction is
shown by the solid red lines in Figure 4.1b. There are some folded bands (blue dots)
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Figure 4.2. The bulk silicon band structure determined from experimental data. Figure
adapted from [113].

which are not accounted for in the unfolded bands (red lines). This is because we have
only considered the unfolding of bands in one dimension. The zone folding of the full three
dimensional band structure can lead to bands running in other directions being projected
onto the [100] direction. The unfolding of the full three dimensional band structure
requires extensive algorithms [112] which are outside the scope of this thesis. Silicon is
an indirect band gap semiconductor, meaning that the conduction band minimum is not
directly above the valence band maximum. The conduction band minimum occurs at
around kx = 0.85π/a0 with an energy of 1 meV. The valence band maximum occurs at
the Γ point with an energy of around 0 meV. These features can be seen more clearly
in the unfolded band structure. The shape of the band structure agrees with the band
structure formed from experimental results in Figure 4.2 and the band structure from
[111]. The band gap of silicon from NEMO3D is Eg = 1.13 eV in good agreement with
the experimental value of Eg = 1.12 eV [113].

4.3.2. Indium arsenide bulk band structure

Indium Arsenide (InAs) is a III-V semiconductor that forms either a zincblende or
wurtzite lattice. In this thesis, InAs will be considered as a zincblende crystal structure.
The empirical tight-binding parameters for the bulk InAs band structure are taken from
[89]. Figure 4.3a is the bulk band structure of InAs from NEMO3D. Notice again the

LIBRARY NOTE:
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presence of zone folding and the use of the prime notation to distinguish the symmetry
points of the NEMO3D Brillouin zone from the standard Brillouin zone. The bands
could be unfolded as done for silicon, however this is a time consuming process and the
main features of the InAs band structure can be seen in the zone folded band structure.

The valence band maximum at the Γ′ point is clearly shown near 0 eV with a
degeneracy of the light-hole and heavy-hole bands. The light- and heavy-hole bands
split as k moves away from Γ′ as expected and there is a clear split-off band below these.
Unlike silicon, InAs is a direct band semiconductor so the conduction band minimum
is located directly above the valence band maximum at around 0.8 eV. The NEMO3D
band structure of InAs agrees with the experimental data band structure Figure 4.3b.
The NEMO3D data finds a band gap of Eg = 0.37 eV and spin splitting ∆0 = 0.39 eV in
agreement with the experimental values of Eg = 0.35 eV and ∆0 = 0.38 eV from [113].

(b)(a)

Figure 4.3. (a) The bulk band structure of indium arsenide from NEMO3D. (b) The bulk
InAs band structure from experimental data [113].

The tight-binding parameters for silicon and indium arsenide accurately reproduce
their respective bulk band structures. These parameters can now be applied to various
nanostructure geometries. The next section is a brief demonstration of NEMO3D’s ability
to model the band structure of semiconductor nanostructures. The silicon tight-binding
parameters are employed to determine the valley splitting of a quantum dot potential
in a Si/SiGe quantum well under various electrical conditions. In Chapter 5, there is
a more extensive analysis of the effective g-factor and spin-orbit coupling in an InAs
nanowire using the InAs tight-binding parameters.

LIBRARY NOTE:

These figures have been removed to comply with copyright.
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4.4. Valley splitting of quantum dot in Si/SiGe

quantum well

The results of this section were included in a recent publication [95].

This section concludes the chapter and provides an example of modelling the electronic
states of a semiconductor nanostructure with NEMO3D. Boross et al. [114] found that
the two lowest valley states of an electron trapped in a Si/SiGe quantum well by a gate
defined quantum dot experience an anti-crossing in the presence of a single-atomic layer
step at the interface. The valley states of the electron were modelled by a hybrid model;
an envelope-function approximation for the plane of the quantum well and a two band
tight-binding model along the quantum well axis. Boykin et al. [115] verified the two
band tight-binding model for the modelling of valley splitting in a silicon quantum well
by comparing to NEMO3D simulations. The work of Gardin et al. [95], published during
the author’s candidature, found that the magnitude of this anti-crossing due to the
interface step could be tuned by an out-of-plane electric field. The ability to control the
anti-crossing between a two level system is an important criteria for building quantum
logic gates [114]. The NEMO3D sp3d5s∗ nearest-neighbour tight-binding model was used
to verify this novel result of the simpler two band model.

Unstrained silicon has sixfold degenerate valley states corresponding to the conduction
band minima of the three p orbitals. These are known as valleys. The sixfold valley
degeneracy can be lifted to a four-fold valley degeneracy and two-fold valley degeneracy
by the strain in a Si/SiGe quantum well. In a quantum well, confined along the [001]
direction the two lowest valleys are the z valleys. The two-fold valley degeneracy can be
lifted by applying an electric field perpendicular to the plane of the quantum well. The
splitting of these two valleys creates a two level system or valley qubit [36].

Figure 4.4 shows the Si/SiGe quantum well geometry. The width of the quantum
well is Nz atomic layers before the step (green circle) and after the step the width of the
quantum well is reduced by an atomic layer, Nz − 1. This step geometry is assumed to
extend along the y direction, hence the geometry does not change in the y direction and
it can be neglected. The quantum dot is defined by two top gates which can manipulate
the electrons position in x. An electric field is applied along z confining the electron to
the top interface where the step is located.

The hybrid model uncovered two features of this system. First, upon varying the
position of the quantum dot with respect to the interface step an anti-crossing in the
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 atoms  atoms

Figure 4.4. Geometry of the two-dimensional Si/SiGe heterostructure model with the y axis
neglected. A gate controlled harmonic quantum dot potential VQD is applied in
x, and an electric field in z. The quantum well in the z axis, originating from the
Si/SiGe interfaces, has a width of Nz atoms and decreases by one atomic layer
at the step (green circle). Reprinted figure with permission from [95] copyright
2022 by the American Physical Society.

two lowest valley states can appear before or after the step due to valley orbit coupling.
This was discovered and explained by Boross et al. [114]. Second, the magnitude of
the anti-crossing between these valley states can be tuned by an electric field. An
interesting aside is that the electric field dependence of the anti-crossing gap seems to
change depending on the width of the quantum well, however, the reason for this is not
completely understood. Neither of these features had been verified by a more realistic
model like the sp3d5s∗ tight-binding model of NEMO3D. Hence, a key aspect of the work
by Gardin et al. [95] was to reproduce these phenomena with NEMO3D.

The geometry modelled in NEMO3D was essentially the same as the hybrid model
except it was three dimensional; constructed by extending the 2D geometry of Figure 4.4
along y. The hybrid model used hard wall boundary conditions for the quantum well
interface, which corresponds to an infinite barrier height. This was modelled in NEMO3D
by using a SiO2 interface, which has a large barrier height of 3 eV. To reduce simulation
time, a tighter confinement was adopted for the quantum dot. The curvature of the
quantum dot for NEMO3D simulations was set to 10−1 meV/nm2 corresponding to an
orbital level spacing of 9 meV while the hybrid model uses a parabola with an orbital
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level spacing of 2 meV. The approach taken to validate the hybrid model follows that
used by Boykin et al. [115]. Boykin et al. found the two-band tight-binding model
to produce results in qualitative agreement with NEMO3D simulations of the valley
splitting as a function of quantum well width. The valley splitting was of the correct
order of magnitude but differed from the NEMO3D calculations. Similarly, in this work
differences between the hybrid model and NEMO3D were expected, especially given the
slight discrepancies between the models mentioned above. The focus of the validation
was to find trends of NEMO3D data that agreed with the hybrid model and supported
the conclusions about the anti-crossing and the control of the energy gap.

Figure 4.5 is the evolution of the two lowest valley states with respect to the quantum
dot’s distance from the step. The solid lines are the hybrid model and the filled circles
are from NEMO3D with dashed lines as guides to the eye. The energy levels are labelled
ε0,v where 0 denotes the lowest orbital and the valley states are indexed by v = ±. The
spectrum shows that the step influences one valley state more than the other. Boross
et al. [114] attributed this to the spatial oscillations that occur in the wavefunctions
of the two valley states. The lower valley state has a maxima at the Nzth atomic layer
of the quantum well while the higher valley state has a minima. Hence, when the dot
is moved passed the step the lower valley state ‘feels’ the step and increases in energy
while the other valley state does not ‘feel’ the step. When the two states meet near the
step, an anti-crossing opens due to valley-orbital coupling induced by the step potential.
The NEMO3D and hybrid model both demonstrate an anti-crossing between the valley
states which can occur before the step, in the quantum well of width Nz, Figure 4.5b or
after the interface step, in the region of width Nz − 1, Figure 4.5a. As expected there
are slight differences between the models. In Figure 4.5a, the quantum well width is 16.5
monolayers for the hybrid model and 18 monolayers for NEMO3D, where a monolayer is
two atomic layers or half a unit cell. In Figure 4.5b, the width is 21 monolayers for the
hybrid model and 20 monolayers for NEMO3D.

Figure 4.6 is the anti-crossing gap plotted as a function of the out-of-plane electric
field for the hybrid model (blue) and NEMO3D (red). The NEMO3D and hybrid model
show similar trends. Both models find a minimum in the anti-crossing gap which varies
with the width of the quantum well. The minimum for (a) is at around 7 mV/nm and
(b) at 2.5 mV/nm. This agreement suggests that the anti-crossing gap can indeed be
tuned by an out-of-plane electric field and the hybrid model is correct.

In conclusion, NEMO3D supports the results of the hybrid model. The valley states
of a gate defined quantum dot in a Si/SiGe quantum well can be coupled when passing
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Figure 4.5. Evolution of the spectrum with the location of the quantum dot relative to the
step at 0 nm. The anti-crossing can occur either after (a) or before (b) the step;
a fact captured in both the hybrid model (solid lines) and NEMO3D’s 20 band
sp3d5s∗ model with spin (filled circles). The dashed lines are guides for the eye.
The applied electric field is Ez = 10 mV/nm for all curves in the figure. Reprinted
figure with permission from [95] copyright 2022 by the American Physical Society.

through an interface step, producing an electrically tunable anti-crossing between the
valley states. The control of the interaction between valley states is an important step
towards making quantum gates from valley qubits. This work also demonstrates that the
atomistic tight-binding NEMO3D can model the valley states in silicon quantum wells
and validate simplified models.
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Figure 4.6. Evolution of the anti-crossing energy gap with applied electric field in the step
model (solid-dotted blue) and NEMO3D simulations (dashed-circled red). The
magnitude and location of the minimum of the gap can change depending on
the quantum well width. (a) The hybrid model quantum well width was 16.5
monolayers, while the width for NEMO3D was 19 monolayers. (b) The hybrid
model width was 19 monolayers while that of NEMO3D was 20 monolayers.
Reprinted figure with permission from [95] copyright 2022 by the American
Physical Society.



Chapter 5.

Effective g-factor anisotropy of indium
arsenide nanowires

In this chapter, the atomistic nearest neighbour tight-binding model of NEMO3D is
employed to model the effective g-factor anisotropy of an indium arsenide (InAs) nanowire
(with a zincblende crystal structure) under various atomistic and electromagnetic con-
ditions. From this g-factor anisotropy data it is possible to determine the spin-orbit
interactions of the nanowire by fitting a one band effective model, which incorporates the
well established Rashba and Dresselhaus spin-orbit interactions. This modelling approach
provides insight for designing InAs nanowire devices with a desired spin-orbit interaction
and effective g-factor anisotropy. The chapter begins by selecting a nanowire geometry
and modelling the band structure of the nanowire to confirm the presence of subbands
and the spin-orbit interaction. The majority of the chapter focuses on modelling the
effective g-factor anisotropy and corresponding spin-orbit interaction of the nanowire’s
lowest conduction subband for different applied electric fields, surface ion terminations
and nanowire confinement geometries. The chapter closes with a discussion of potential
applications for these nanowires in the fields of spintronics and quantum information
including spin-transistors, spin-orbit qubits and topologically protected qubits with
Majorana zero modes.

77
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5.1. Indium arsenide nanowire in NEMO3D

InAs is a III-V semiconductor typically of the zincblende crystal structure with a lattice
constant a0 = 0.605 83 nm. The electron effective mass of InAs is m∗ = 0.023m0 where
m0 is the free electron mass. Other notable properties of InAs are its high carrier mobility
(2–3×104 cm2/Vs for electrons), narrow band gap of 0.35 eV, large effective g-factor
of −15.3 and large spin-orbit coupling [113]. The electronic band structure of InAs
nanostructures can be calculated with the NEMO3D sp3d5s∗ tight-binding model with
the InAs empirical parameters from [89]. These empirical parameters were validated in
Section 4.3 by reproducing the InAs bulk band structure as determined by experiments.
In this section, two geometries of the InAs nanowire are introduced for modelling: periodic
and closed boundary condition rectangular nanowires. Then an important atomistic
feature of the III-V nanowires, surface ion termination, is introduced which will be helpful
for interpreting the modelling results. The electronic band structure of the nanowire
is then modelled with NEMO3D to check that the band structure produces quantised
subbands and to identify the conduction subband of interest for this chapter.

5.1.1. Nanowire growth direction

InAs nanowires with a zincblende crystal structure are typically grown vertically from
a substrate via molecular beam epitaxy or molecular organic crystal vapour epitaxy
[116, 117]. The most common growth direction is the [111] crystal direction which
naturally forms nanowires with a hexagonal cross-section. The hexagonal [111] nanowires
often form a zincblende crystal structure with stacking faults; layers of the wurtzite crystal
structure, which are undesirable for most applications [116]. III-V nanowires can also be
grown along the [100] direction with a square/rectangular cross section [117], although
this is less common because it requires a less energetically favourable lateral growth. The
least common growth direction is the [110] direction with a rhombus/diamond shaped
cross-section [118, 119].

For this work only nanowires grown along the [100] crystal growth direction are
considered because it is the simplest crystal construction to model in NEMO3D. The
[100] nanowire may also be advantageous over the [111] nanowire which is susceptible to
stacking faults. It is of interest and left to future work to model the effective g-factor
anisotropy and spin-orbit interactions present in the [110] and [111] nanowire.
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5.1.2. Nanowire geometry

The [100] nanowires will be modelled as rectangular prisms with a square or rectangular
cross-section, as shown in Figure 5.1, to match the shape of real [100] grown nanowires.
The main geometry modelled will be a square cross-section nanowire of side length
Ly = Lz = L. This L can be thought of as an effective diameter for comparison with
the diameters of hexagonal cross-section [111] nanowires that are typically measured in
experiments. Of course, this is an approximation and hence one cannot expect exact
agreement unless a [111] hexagonal nanowire is modelled. The nanowire will also be
modelled with a rectangular cross-section, Ly > Lz, to consider how the change in the
shape of confinement influences the g-factor anisotropy. The nanowire can be modelled
with periodic boundary conditions to determine the band structure of the nanowire, or
closed boundary conditions to calculate the eigenstates of the system at the Γ point
(k = 0) as discussed in Section 4.2.

The periodic nanowire is created from a rectangular prism of InAs with a yz cross-
section of dimensions Ly nm by Lz nm and the length of a unit cell, a0, in x. The boundary
conditions are closed in the y and z dimensions and the surface atoms are passivated
with hydrogen atoms to avoid any surface effects. The periodic boundary conditions are
applied in the x direction so that the box of unit cell length and cross-section Ly×Lz nm2

is repeated along x to create a nanowire which is effectively infinite in the x direction.
The periodic nanowire geometry is depicted in Figure 5.1a. This nanowire geometry
can be solved efficiently due to the small number of atoms. However, it does encounter
problems when applying magnetic fields perpendicular to the nanowire’s periodic axis. A
magnetic field perpendicular to the nanowire axis creates a vector potential component
along the nanowire but, due to the periodic boundary conditions, the phase gained by
the electrons from this vector potential is discontinuous.

The closed nanowire is a rectangular prism with the same cross-section as the periodic
nanowire but with a length of 100 nm in the x direction. The boundary conditions are
closed in all dimensions with the surface atoms passivated by hydrogen. The closed
nanowire geometry is depicted in Figure 5.1b. For this work Lz ≤ Ly ≤ 100 nm. The
nanowire length of 100 nm was chosen because it was one of the smallest lengths that
captures the bulk properties of InAs along the nanowire, see Section 5.2. The length
of the nanowire cannot be extended to realistic nanowire lengths, on the order of 1 µm,
without the NEMO3D simulations becoming too computationally intensive to complete.
However, a nanowire with a finite length of 100 nm can be solved within a day assuming
Ly and Lz are not too large.
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100 nm

(a)

(b)

Figure 5.1. The geometry of the nanowire in NEMO3D simulations (not to scale) for (a)
periodic boundary conditions in x and (b) closed boundary conditions x. The y
and z boundary conditions are closed. Ly and Lz (in nm) are the dimensions in
the y and z direction. a0 is the lattice constant, the length of one unit cell. The
nanowire unit cell is repeated along x in the periodic case.

Both the periodic and closed boundary condition nanowire geometries will be modelled
in this chapter. The periodic nanowire is used to calculate the band structure of the
nanowire and the closed nanowire is used for determining the effective g-factor anisotropy
of the lowest conduction subband.

Surface Ion termination

By default, NEMO3D creates the nanowire from an eight atom unit cell of the zincblende
lattice, four anions and four cations, as shown by the solid atoms in Figure 5.2. The
opposing faces of this unit cell are made up of different ions, one side is the cation (In)
and the other is the anion (As). For this reason, the default unit cell created by NEMO3D
will be referred to as mixed-ion terminating. The standard zincblende crystal lattice with
tetrahedral point group symmetry Td is actually same-ion terminating ; all surfaces are
one element (either In or As) [106]. An example of same-ion termination is given by the
addition of opaque atoms to the outer faces of the NEMO3D unit cell in Figure 5.2.
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A mixed-ion terminating lattice has lower symmetry than the same-ion terminating
lattice due to the differing potentials of the ions making up the opposing faces [106].
This is a spatial inversion asymmetry which can induce a spin-orbit interaction in
the nanowire. Nanowire devices typically rest on substrates which induce spin-orbit
interactions in a similar fashion to the mixed-ion termination. In attempts to gain a
complete understanding of the spin-orbit interactions in the nanowire it is ideal to begin
with the highest symmetry structure possible, the same-ion terminating nanowire with
no substrate so that no spin-orbit interaction is induced from surface effects. Mixed-ion
termination will be included later to simulate how a substrate influences the nanowire.

NEMO3D can create same-ion terminating nanowires by including an extra atomic
layer of As atoms on the two outer faces of the nanowire in the confinement directions
as depicted in Figure 5.2. Currently NEMO3D can only add atomic layers to two
axes simultaneously, that is y and z can be same-ion terminating but not the x axis.
Fortunately, this should not effect results because same-ion termination added along the
axis of the nanowire x was found to have negligible influence on the effective g-factor
anisotropy. For this chapter, it is assumed that same-ion termination is used in the
confinement directions unless otherwise specified.

Figure 5.2. The structure of the NEMO3D unit cell looking down the x axis. The axes are
in units of the lattice constant a0. The white numbers on each atom denote
the position in x. The cations (In) are in blue and the anions (As) in red. The
solid atoms are the default mixed-ion terminating unit cell. The opaque atoms
represent the process of adding anions to the outer surfaces to make it same-ion
terminating.
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5.1.3. Nanowire band structure

Figure 5.3 is the band structure resulting from the NEMO3D simulation of the periodic
boundary condition InAs nanowire from Figure 5.2a with diameter, Ly = Lz = L = 10 nm.
The tight-binding Hamiltonian was solved for 20 eigenvalues (10 conduction and 10 valence
band) at 40 k-space points along the periodic axis of the wire, [100], to give the nanowire
band structure.

The confinement of an electron quantises the components of the wavevector k in
the confinement directions and creates subbands in the band structure, as discussed in
Section 2.1.2. Comparing the nanowire band structure to the bulk InAs band structure
Figure 4.3, the nanowire confinement has lifted the conduction band minimum from
0.5942 eV in bulk InAs to 0.7264 eV and also lifted the valence band maximum in hole
energy from 0.2243 eV to 0.1866 eV. The subbands present all appear to be from the
first band of the conduction band and valence band given their similar shape. The other
bands would be located higher in energy.

The inset of Figure 5.3 zooms in on the two lowest conduction subbands, E1 and E2

near kx = 0. E1 appears to be spin degenerate while the spin degeneracy of E2 has been
lifted to form two spin states E2↑,2↓ where ↑, ↓ denotes the up or down spin state. Recall
from Section 2.4.3 that the spin degeneracy can be lifted by the breaking of time-reversal
symmetry or spatial inversion symmetry. Since there is no applied magnetic field this
lifting of spin degeneracy must be the result of spin-orbit interactions breaking spatial
inversion symmetry. From these results, one can conclude that the NEMO3D simulation
is successfully capturing the physics of quantum confinement (subbands) and spin-orbit
interaction (lifting of spin-degeneracy). However, it is hard to determine the magnitude
of the spin-orbit interactions present from these band structure plots. A more effective
method of determining the spin-orbit interactions present is by looking at the anisotropy
in the nanowire’s effective g-factor with magnetic field orientation. This method will be
explored in the following sections.

The focus of this chapter will be modelling the effective g-factor anisotropy and
spin-orbit interactions of the lowest conduction subband, E1 (at kx = 0), because it is
the main subband of interest for nanowire devices used in Majorana zero mode research
and spin-orbit qubits [22, 23, 15, 120]. The E1 subband is typically studied because it
is easy to access experimentally with doping or external gates. Additionally, for small
confinement lengths L, the subband splitting is large and the higher subbands e.g. E2

can be ignored. This is known as the lowest subband limit.



Effective g-factor anisotropy of indium arsenide nanowires 83

0.0 0.2 0.4 0.6 0.8 1.0
kx||[100] (π/2a0)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

En
er

gy
(m

eV
)

Conduction
subbands

Valence
subbands

0.7

0.8

0.9

E1

E2↓

E2↑

Figure 5.3. The NEMO3D band structure of the periodic InAs nanowire, Figure 5.2, with
L = 10 nm when solving for 20 bands at 40 wavevector points, kx, along [100].
The band structure shows quantised subbands due to the confinement of the
nanowire. E1 is the lowest conduction subband and E2↑ and E2↓ are the spin
states of the second conduction subband.

5.2. Effective g-factor dependence on nanowire

confinement

In this section, the lowest conduction subband, E1, effective g-factor is modelled for the
closed [100] InAs nanowire (see Figure 5.1b) with various square cross-section side lengths
or ‘diameters’, L = Ly = Lz. The results show that the confinement of the nanowire
influences the magnitude and sign of the effective g-factor, in agreement with previous
works [106, 121] and the bulk g-factor of InAs, -15.3 [113]. They also confirm that the
nanowire length of 100 nm is a good estimate of bulk InAs.

A magnetic field, B = 2 T, is applied along the nanowire and the two spin states
of the lowest conduction subband, E1↑,1↓, are determined from NEMO3D for different
nanowire diameters, L. The splitting of these states ∆E1 = E1↑−E1↓ is used to calculate
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the effective g-factor

g∗ =
∆E1

µBB
. (5.1)

Figure 5.4 is the lowest conduction subband g-factor, g∗, as a function of the nanowire
diameter L. For unit cell sized diameters, the nanowire g-factor approaches the electron
spin g-factor, g0 ≈ 2.002. As the nanowire diameter increases, g∗ decreases and flips sign
at around 4.5 nm before approaching the bulk InAs g-factor for large L. At L =100 nm the
absolute effective g-factor is approximately -14.8 in good agreement with the magnitude of
the bulk g-factor. This result confirms that the length of 100 nm is a good approximation
for the bulk direction of the closed nanowire.
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Figure 5.4. The effective g-factor for the lowest conduction subband E1 in the closed [100]
InAs nanowire as a function of nanowire diameter, L. The dashed line is the
effective g-factor of bulk InAs, gInAs.

NEMO3D outputs the eigenvalues in order of energy and not spin state. This means
the difference of the two lowest conduction band eigenvalues is actually the absolute
value of the spin splitting |∆E1| and hence the absolute value of the g-factor |g∗|. The
sign of the effective g-factor was determined by checking the polarisations of the lowest
conduction subband spin states. The expectation values of the components of the spin
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operator, S = ~
2
σ, averaged over all atoms in the nanowire are given by

〈Si〉 = 〈Ψn|Si |Ψn〉 =
N∑
j,l

〈Ψn|rj〉 〈rj|Si |rl〉 〈rl|Ψn〉

=
~
2

N∑
j,l

20∑
µ,υ

Ψ∗nµ(rj)(σi)µυΨnυ(rl) (5.2)

where Si = ~
2
σi and σi are the Pauli matrices for i = x, y, z. |Ψn〉 is the nth eigenvector

where n runs over the spin states of the subbands, j and l denote each of the N atomic
sites and µ and υ index the atomic orbitals of which there are 20 for the sp3d5s∗ tight
binding model with spin.

The average spin expectation values for the lowest subband spin states as functions
of nanowire diameter are shown in Figure 5.5. The spins are mainly polarised in the x
direction for small and large diameters as expected for a magnetic field applied along x.
The spin polarisations in the x direction flip at around L = 4.5 nm and at this same point
the expectation values 〈Sy〉 and 〈Sz〉 reach a peak, although the y polarisation is much
smaller. The magnitude of 〈Sz〉 is close to ~/2 suggesting the spins flip through the z
axis with a small y component. The energy splitting of the lowest conduction subband is
defined as ∆E1 = E1↑ − E1↓. From equation (5.1), g∗ is positive for nanowire diameters
less than 4.5 nm and negative for diameters larger than this. Hence, the effective g-factor
from NEMO3D matches the electron g-factor g0 for small nanowire diameters and agrees
with the bulk InAs value −15.3 at large nanowire diameters, L = 100 nm.

These results agree with the works of [106, 121, 122]. Pryor et al. attribute the
suppression of the g-factor magnitude with increased confinement to quenching of the
orbital angular momentum of the electron [121]. This can be explained as follows. The
spin-orbit interaction in the semiconductor couples the electron orbitals (or subbands)
which creates an enhanced g-factor. The closer the orbitals are together the stronger
the coupling and the larger the g-factor. For small confinement diameters, the energy
splitting between the subbands (orbitals) becomes much larger than the Zeeman splitting
of the spins resulting in less orbital coupling and a smaller g∗. In the limit of no orbital
coupling, the g-factor is that of the electron’s spin g0. The effective g-factor of InAs
nanowires has been observed experimentally to be larger then −15.3. However, this is
mainly due to the nanowire chemical potential being large enough for electrons to occupy
higher subbands which have stronger spin-orbit interactions and thus a larger g-factor
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Figure 5.5. The spin expectation values (in units of ~) of the lowest conduction subband
against the nanowire diameter L for a nanowire of length 100 nm with Bx = 2 T.
The spin states flip at around L = 4.5 nm through the z axis shown by a sharp
peak in 〈Sz〉.

[122]. For this work, the focus will be on the lowest conduction subband of the nanowire
which should not have a g-factor larger than −15.3.

5.3. Effective model of the nanowire g-factor

anisotropy

The effective g-factor anisotropy of the nanowire is a result of the spin-orbit interactions
present in the InAs semiconductor. The g-factor anisotropy of the nanowire’s lowest
conduction subband, E1, can be determined from NEMO3D. However, in order to
understand the anisotropy and quantify the spin-orbit interactions present in the nanowire
it is useful to have a model of the g-factor in terms of the well established semiconductor
spin-orbit interactions, namely Rashba and Dresselhaus. This effective model can be fit
to the NEMO3D results with the strength of spin-orbit interactions as free parameters.
In this section, an effective model is derived for the lowest conduction subband g-factor
of a [100] nanowire, based on the work of Sakr [123]. The model includes the Rashba
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spin-orbit interaction due to applied electric fields and/or surface-ion termination and an
intrinsic Dresselhaus term due to the zincblende crystal lattice. The same principle can
be used to derive effective models for [110] and [111] nanowires. The only difference is
the form of the Dresselhaus term due to the different orientation of the crystal lattice.

5.3.1. The nanowire geometry for g-factor anisotropy

The InAs nanowire geometry considered for the g-factor anisotropy is shown in Figure 5.6.
The magnetic field orientation is varied in the plane of the nanowire (xy-plane) with
the magnetic field angle, θ, measured from the nanowire axis. The shape of the g-factor
anisotropy for the nanowire in this magnetic field plane is only influenced by the spin-orbit
fields in said plane. Spin-orbit fields perpendicular to the magnetic field plane should only
manifest as an offset to the anisotropy because they are perpendicular to the magnetic
field for all θ. According to equation (2.39), an electric field induces a Rashba spin-orbit
field in the Ê× k̂ direction. The nanowire has k = kxx̂ as the dominant wavevector, so
any electric fields E (or mixed-ion termination) are applied perpendicular to the plane of
the magnetic field to induce spin-orbit fields in said plane.

5.3.2. The effective Hamiltonian

The effective Hamiltonian of the nanowire is constructed by first considering a two
dimensional Hamiltonian for a quantum well confined in the z||[001] direction with
Zeeman and spin-orbit interactions. The one-dimensional nanowire is then created by
confining in the y direction with an infinite potential well to create the closed (or hard
wall) boundary conditions. The resulting Hamiltonian is

H =
~2(k2

x + k2
y)

2m∗
+HZ +H2D

D +H2D
R + V (y), (5.3)

with

V (y) =

0 0 < y < Ly,

∞ otherwise.
(5.4)

Here (kx, ky) = −i(∂x, ∂y). The vector potential is assumed to be negligible in the weak
field limit where the confinement of the nanowire is smaller than the magnetic field length



88 Effective g-factor anisotropy of indium arsenide nanowires

100 nm

Figure 5.6. The [100] nanowire geometry for determining the g-factor anisotropy . A closed
boundary condition wire with a square/rectangular cross-section of side length Ly
and Lz. The magnetic field is applied in the xy-plane with angle θ measured from
the nanowire axis. The electric field is applied perpendicular to the magnetic
field plane and the unconfined wavevector of the nanowire, kx.

(lB =
√

~
eB

) and the phase gained due to the vector potential is small [63]. Instead the
magnetic field is introduced through the Zeeman term HZ , (2.36), with g the quantum
well g-factor, σ = (σx, σy) and the magnetic field B = Bn̂ with n̂ = cos θx̂ + sin θŷ.
The Dresselhaus and Rashba spin-orbit terms, H2D

D and H2D
R , are that of the quantum

well derived earlier, equations (2.40) and (2.41) respectively. For simplicity, kz and the
confinement potential in z are ignored by assuming the system is in the lowest quantum
well subband which is valid if Lz is small.

The model starts from the quantum well system because: (1) the magnetic field is
varying in the quantum well plane and only in-plane spin-orbit fields influence the shape
of the g-factor anisotropy. (2) The linear in k quantum well spin-orbit terms are simpler
than the bulk spin-orbit interactions, equations (2.38) and (2.39). Out-of-plane spin-orbit
fields may influence the magnitude of the quantum well g-factor g but not the shape
of the anisotropy. Additionally, for the kx = 0 case, as in the NEMO3D results of the
closed nanowire, the transverse ky terms of spin-orbit interactions actually dictate the
anisotropy.
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5.3.3. Deriving the effective g-factor expression

An expression for the effective g-factor can be determined by first solving for the dispersion
relation of the Hamiltonian, determining the lowest subband splitting and then dividing
out by the Zeeman energy, as in equation (5.1). The Hamiltonian (5.3), can be solved
by assuming that the spin-orbit terms are weak, so that they can be treated as a
perturbation to the rest of the Hamiltonian. Following time-independent perturbation
theory (Appendix A.5), the Hamiltonian is rewritten as an unperturbed Hamiltonian
plus a spin-orbit perturbation

H = H0 +H ′ (5.5)

with

H0 =
~2(k2

x + k2
y)

2m∗
+
gµBB

2
(cos θσx + sin θσy) + V (y) (5.6)

and the perturbation H ′ = H2D
R + H2D

D . The eigenfunctions of H0 take the separable
form

〈
r
∣∣n, η, k(0)

〉
= eikxφn(y) |η〉 (5.7)

with k the wavevector in the x direction, φn(y) = 〈y|n〉 the nth transverse subband envelop
function (or eigenfunction of the infinite potential well) and |η〉 the spin eigenfunctions
along the direction of the magnetic field with spin index η = ±. The transverse and spin
eigenfunctions are complete sets and satisfy the orthogonality conditions: 〈m|n〉 = δmn

and 〈η′|η〉 = δη′η. The corresponding unperturbed eigenvalues take the form

E(0)
nη (k) =

~2k2

2m∗
+ εn +

gµBB

2
η, (5.8)

where εn = ~2n2π2/2m∗L2
y are the energies of the transverse infinite potential well

subbands in y.

When determining the eigenvalue expression (5.8) and the eigenvalue corrections
below it is useful to apply a unitary transformation, U = e−iθ/2σz , to H as shown in
Appendix A.4.2. This transformation corresponds to a counter-clockwise rotation of the
spin basis by θ about the z axis such that cos θσx + sin θσy → σx. In this new basis,
σx polarises spins along the direction of the magnetic field n̂, with eigenvalues η and
eigenfunctions |η〉. The unitary transform, introduces a θ dependence to the spin-orbit
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term H ′ which can be written as

H̃ ′ = U †H ′U = −αR(kx(sσx + cσy)− ky(cσx − sσy)) + βD(kx(cσx − sσy)− ky(sσx + cσy))

(5.9)

where the notation c = cos θ and s = sin θ has been introduced and the following
transformations eiθ/2σzσxe−iθ/2σz = cσx − sσy and eiθ/2σzσye

−iθ/2σz = sσx + cσy from
Appendix A.4.2 were used. In this new spin basis, the spin states are polarised along σx
and the Pauli matrices act on the spin states as follows

σx |η〉 = η |η〉 ,
σy |η〉 = −iη |−η〉 .

(5.10)

Now the first order correction of the eigenvalues in time-independent perturbation theory
is given by

E(1)
nη (k) =

〈
n, η, k(0)

∣∣H̃ ′∣∣n, η, k(0)
〉
. (5.11)

From the operation of Pauli matrices on the spin states |η〉, equation (5.10), only the
σx terms of equation (5.9) survive in this expectation value. The transverse subband
eigenstates are acted on by the ky operator which results in 〈n|ky|n〉 = 〈ky〉nn = 0, from
the definition of the infinite potential well eigenstates, equation (A.5). The remaining
terms are linear in k, resulting in the first order correction

E(1)
nη (k) = (−αR sin θ + βD cos θ) ηk. (5.12)

This linear in k correction could also be derived from the typical nanowire spin-orbit terms
that are used in literature, equations (2.42) and (2.43). However, since NEMO3D solves
for eigenvalues at k = 0 this correction vanishes. In the k = 0 case, the anisotropy of the
spin splitting and hence the effective g-factor comes from the second order correction to
the eigenvalues.

The second order correction of the eigenvalues in time-independent perturbation
theory is given by

E(2)
nη (k) =

∑
m6=n

∑
η′

∣∣∣〈m, η′, k(0)
∣∣ H̃ ′ ∣∣n, η, k(0)

〉∣∣∣2
E

(0)
nη − E(0)

mη′

. (5.13)
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For the k = 0 case, only the ky terms of equation (5.9) contribute to the second
order correction. There are two types of matrix elements of the perturbation H ′ which
contribute to the second order correction. These matrix elements depend on whether the
spin indexes η and η′ are equivalent or not. If they are equivalent, η′ = η only the σx
terms of H̃ ′ survive

〈m, η| H̃ ′ |n, η〉 = 〈ky〉mn η(αRc− βDs). (5.14)

If the spins are opposite, η′ = −η, only the σy terms survive because they flip the spin of
|η〉

〈m,−η| H̃ ′ |n, η〉 = 〈ky〉mn (iη) (αRs+ βDc). (5.15)

The k terms have been neglected because they vanish for k = 0. The 〈m| ky |n〉 = 〈ky〉mn
term is non-zero for certain subbands m and n which will be discussed below. The second
order correction is then given by

E(2)
nη (k = 0) =

∑
m 6=n

[∣∣〈ky〉mn∣∣2
εn − εm

(αRc− βDs)2 +

∣∣〈ky〉mn∣∣2
εn − εm + ηEZ

(αRs+ βDc)
2

]
(5.16)

where EZ = gµBB and η2 = 1. Only the second term of this correction has η dependence
and hence only this type of term contributes to the spin splitting. The expectation value
〈ky〉mn couples the current subband n to another subband m. For the infinite potential
well eigenstates (A.5) this expectation value is given by

〈ky〉mn =

0, if m and n have same parity,

− 4imn
Ly(m2−n2)

, if m and n have opposite parity.
(5.17)

The largest coupling for the lowest subband n = 1 is 〈ky〉21 since the higher subbands
n = 4, 6, ... are further away in energy. The dispersion relations can be determined to
good approximation by considering this coupling, 〈ky〉21, only because the coupling to
higher subbands is negligible in comparison.
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From (5.8) and (5.16), the effective g-factor of the lowest conduction subband up to
second order in the spin-orbit coupling perturbation is

g∗ = g

{
1 +

2
∣∣〈ky〉21

∣∣2
E2
Z − (ε1 − ε2)2

(α2
R + β2

D) sin2(θ + φ)

}
(5.18)

where the phase offset φ has been introduced such that tanφ = βD
αR

. To second order, the
ratio of spin-orbit interaction strengths affects the anisotropy by introducing a phase
shift and the strength of the spin-orbit interactions determines the anisotropy amplitude.

Consider the plot of the effective g-factor expression (5.18) for three different φ in
Figure 5.7. If φ = 0, only Rashba present, the second term of the g-factor takes a sin2 θ

shape and if φ = π/2, only Dresselhaus present, the second term has a cos2 θ shape. If
both Rashba and Dresselhaus are present at equal strength the amplitude is doubled
and the phase shift is φ = π/4. It is also worth noting that if the subband splitting is
larger than the Zeeman splitting, |ε1 − ε2| > EZ , as it is for all simulations in this work,
the second term is negative and g is the maximum value of the anisotropy. The resulting
anisotropy for the Rashba only case is effectively a ‘1− sin2 θ = cos2 θ’ shape and for the
Dresselhaus only case is actually a ‘1− cos2 θ = sin2 θ’ shape.

The derivation of this effective model demonstrates that the g-factor anisotropy at
k = 0 is created by the coupling between the transverse subbands. This coupling is due
to the confined wavevector ky terms in the spin-orbit interactions. If k 6= 0, the standard
first order kx terms of Rashba and Dresselhaus would dominate the anisotropy.

Comparison to experiment

A common experimental method for determining the orientation of spin-orbit fields in a
nanowire, used by Wang et al. [24] and Nadj-Perge et al. [23], is to find the minimum of
the magnetic field anisotropy of an anti-crossing between singlet and triplet states of an
InAs or InSb nanowire double quantum dot. The shape of these anisotropies is analogous
to that of the g-factor anisotropy. The groups made their measurements on [211] and
[111] grown nanowires, respectively. Both papers make use of the result from two band
models of the two electron system, which state that the orientation of the spin-orbit field
in the nanowire – whether that be Rashba, Dresselhaus or a combination – corresponds
to the magnetic field direction when the anti-crossing between singlet and triplet states is
a minimum [120, 124]. This is similar to the theory of the helical states in Section 2.4.4.
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Figure 5.7. The effective model g-factor anisotropy normalised by g with Ly = 10 nm and
B = 1 T for three different cases: φ = 0, Rashba only with αR = 0.1 eVnm;
φ = π/4, equal Rashba and Dresselhaus αR = βD = 0.1 eVnm; and φ = π/2,
Dresselhaus only with βD = 0.1 eVnm. The cartoons indicate the direction of
the magnetic field with respect to the nanowire from Figure 5.6 at different θ.

When the magnetic field and spin-orbit field are perpendicular, the anti-crossing between
the k split spin-states is the largest and when they are parallel, it is a minimum. Wang et
al. attribute the minima to a Rashba SO field due to the substrate beneath the nanowire
and a possible out-of-plane Dresselhaus component due to the [211] nanowire crystal
structure [24]. Nadj-Perge et al. finds a minimum in the g-factor anisotropy when the
magnetic field is oriented almost perpendicular to the nanowire and they conclude this is
due to a spin-orbit field. Given the nanowire is zincblende and grown along the [111]
direction they conclude that there is no presence of Dresselhaus and that the spin-orbit
is due purely to a Rashba interaction induced by the substrate [23].

The effective model derived here agrees with this intuition that the g-factor is at
a minimum when the magnetic field is parallel with the spin-orbit field. The Rashba
dominated shape in Figure 5.7 has a minimum at θ = π/2 perpendicular to the nanowire
as expected for the Rashba spin-orbit interaction, equation (2.43). The Dresselhaus
dominated shape on the other hand has a minimum along the nanowire, θ = 0 or π,
which agrees with the orientation of the Dresselhaus spin-orbit interaction for a nanowire
along [100], equation (2.42).
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5.4. Effective g-factor anisotropy of square

cross-section nanowires

In this section, the effective g-factor anisotropy of the square cross-section [100] InAs
nanowire’s lowest conduction subband, E1, is calculated with NEMO3D for various applied
electric fields, surface ion terminations and confinement lengths. The effective model
expression for the g-factor, equation (5.18), is fit to the NEMO3D g-factor anisotropies
with g, αR and βD as free parameters. The effective model fit will determine the spin-orbit
composition of the nanowire and assist in the interpretation of the NEMO3D results.

5.4.1. Electric field dependence

A same-ion terminating [100] InAs nanowire with no substrate is expected to have
Dresselhaus spin-orbit interaction due to the bulk semiconductor crystal along the
nanowire but no Rashba spin-orbit interaction. One way to induce Rashba in such a
nanowire is to apply an external electric field. If the electric field is applied perpendicular
to the magnetic field plane (in the z direction), from equation (2.39) the induced Rashba
should be in the plane of the applied magnetic field and influence the g-factor anisotropy.
From equation (2.41), the strength of Rashba should have a linear dependence on the
applied electric field, αR = α0 〈E〉. According to equation (2.40), Dresselhaus should be
independent of the applied electric field.

These hypotheses were tested by performing NEMO3D simulations of the g-factor
anisotropy for a square cross-section, L = Ly = Lz = 10 nm, same-ion terminating InAs
nanowire with an applied magnetic field of magnitude, B = 5 T, and various applied
electric fields E in the configuration of Figure 5.6. The nanowire cross-section side length
of 10 nm was chosen over more realistic lengths of 50 nm to 80 nm because the smaller
number of atoms allows for efficient computation times, typically less than an hour.
The large magnetic field of 5 T was chosen so that spin states of the lowest subband
were easily resolved by NEMO3Ds Lanczos algorithm. For large subband splitting, the
g-factor anisotropy should be independent of the magnitude of the magnetic field as in
equation (5.18) which was confirmed for the 10 nm nanowire in Appendix E.1.

Figure 5.8 is the effective g-factor anisotropy of the nanowire’s lowest conduction
subband, E1, for various applied electric fields, E. The filled circles are data from the
tight-binding model and the solid lines are the effective model fit to the data with the fit
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parameters g, αR and βD specified in the plots. The inset of each plot is a y slice of the
probability density of the lowest subband spin state, |ψ1↓|2, at the centre of the nanowire.
The shape of the anisotropy for the E = 0 case has a φ = π/2 phase shift, resembling
the Dresselhaus shape of the effective model in Figure 5.7. The fit parameters indicate
that Rashba is negligible, αR = 0 eVnm, and Dresselhaus is present, βD = 0.2 eVnm.
This is as expected for the same-ion terminating nanowire with no structural inversion
asymmetry from a substrate, mixed-ion termination or an applied electric field.

Figure 5.9 is the spin-orbit constants, αR and βD, from the effective model fits in
Figure 5.8 as functions of electric field E. For non-zero electric fields Rashba is induced,
however, it is only approximately linear with electric field for small applied electric fields
(E < 10 mV/nm). After about 20 mV/nm, αR begins to decrease with electric field. This
is observed in the g-factor anisotropy plots of Figure 5.8 as the phase shift φ decreasing
for E < 10 mV/nm and then increasing towards φ = π/2 again after E = 20 mV/nm. A
linear regression fit (purple dot-dashed line) to the values of αR for the first three electric
fields gives an estimate of the value of α0, 12.08 enm2. This value is almost exactly an
order of magnitude larger than the value predicted by k · p theory for an InAs quantum
well, α0 = 1.171 enm2 [51] and a few orders of magnitude larger than that of experimental
works [125]. The relation α = α0 〈E〉, is an approximation for a quantum well system,
so the disagreement in the values of α0 is likely due to the contribution of the extra
confining potential present for a nanowire.

Counter to the original hypothesis, the Dresselhaus constant increases almost linearly
with electric field and experiences more than a three fold increase over 50 mV/nm. This
can be seen in Figure 5.8, by the φ = π/2 g-factor anisotropy increasing in amplitude for
large electric fields. A linear regression fit (black dotted line) to the Dresselhaus constant
in Figure 5.9 found a linear Stark coefficient (slope) of 10.6 enm2 similar to that of the
Rashba constant in the small electric field region.

These results can be understood by observing the behaviour of the probability
densities of E1↓ with electric field in Figure 5.8. As the applied electric field increases, the
electron wavefunction is confined toward the bottom surface of the nanowire. Recall from
equation (2.40), that the Dresselhaus constant is βD ∝ 〈k2

z〉 and for infinite potential well
envelop functions 〈k2

z〉 ∼ (π/Lz)
2. Hence, increasing the confinement of the wavefunction

in the z direction, which corresponds to reducing Lz, results in an increase in the
Dresselhaus constant, βD. The decrease in the Rashba constant, αR, with electric field
after around 20 mV/nm can be explained by the electron wavefunction being pushed
away from the top surface of the nanowire. It seems that if the wavefunction probability
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Figure 5.8. The normalised g-factor anisotropy of E1 for the same-ion terminating, square
cross-section L = Ly = Lz = 10 nm InAs nanowire for different electric field
strengths E. The red filled circles are the data points from the tight-binding
sp3d5s∗ model and the orange solid lines are the effective model fits to the data.
The fit parameters of the effective model, g, αR and βD are displayed in red. The
top left inset of each plot is a y-slice of the probability density of the electron’s
E1↓ state in the nanowire with dimensions x and z from Figure 5.6.

is not centred between the nanowire surfaces it no longer feels the asymmetry due to the
external electric field. Additionally, Moroz and Barnes [126] showed that a confinement
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Figure 5.9. The Rashba and Dresselhaus spin-orbit strength for the same-ion terminating
nanowire as a function of electric field E. The fit parameters, αR and βD, from
Figure 5.8 are plotted against electric field. The linear and quadratic regressions
for the data are displayed as dashed and dotted lines.

potential can produce an electric field, Econ = −∇Vcon(z) ∝ z, which can induce a
spin-orbit interaction in addition to that produced by the external electric field. Since
the position of the electron wavefunction changes in z with external electric field the
strength of this confinement electric field will also change which could be a reason for the
lack of linearity in αR’s external electric field dependence. A quadratic fit (grey dashed
line) to αR as a function of electric field after the wavefunction begins to shift, gives the
quadratic and linear Stark coefficients −62.7 enm3/V and 2.47 enm2.

The results presented here seem to agree with the experimental works of Liang et
al. [79, 127]. They observed that applying an electric field to a gated nanowire did not
increase Rashba but rather decreased it. The solution to this was to employ a double gate
setup, a potential applied between a top and bottom gate, which ensured that an electric
field could be applied without altering the electron density. The Rashba was tuned from
0.5× 10−11 eVm to 3× 10−11 eVm with an applied electric field on the order of 106 V/cm

or 102 mV/nm [127]. One could implement a double gate potential in NEMO3D by first
solving the applied potential across a double gate setup self consistently for a given
nanowire geometry and then applying this potential to the NEMO3D tight-binding
Hamiltonian. This modelling could validate the experimental results of Liang et al. and
allow for further electrical tuning of Rashba.
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5.4.2. Mixed-ion termination

The previous section revealed that an external electric field can induce a Rashba spin-orbit
interaction provided the electron wavefunction is not shifted too far from the nanowire
surface. Rashba can also be induced by an electric field due to asymmetric confinement
i.e. a difference between the intrinsic potentials of the surface/interface at opposite faces
of the nanowire. One way to create this asymmetric confinement is to construct the
nanowire with mixed-ion termination (see Section 5.1.2) on at least one set of opposite
surfaces. The ions on opposite faces of the nanowire have different surface potentials
creating a structural inversion asymmetry which can induce Rashba . In this section,
the square cross-section L = 10 nm nanowire is modelled as in Section 5.4.1 but with
mixed-ion termination on opposing nanowire faces normal to the z axis. This will be
referred to as mixed-ion termination along z. The atom positions in the cross-section
of the nanowire for the same-ion termination and mixed-ion termination in z cases are
shown in Figure 5.10.
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Figure 5.10. The atom positions of two neighbouring x slices (333rd and 334th atom) of the
square cross-section L = 10 nm nanowire plotted on the same axes for: (left)
the same-ion termination case and (right) the mixed-ion termination in z case.

The effective g-factor anisotropy for E1 of the mixed-ion terminating L = 10 nm

nanowire is simulated in NEMO3D for various applied electric fields E and the effective
model is fit to the results. Figure 5.11 shows the results in the same format as in
Figure 5.8 with the NEMO3D data as filled circles, the effective model fit as solid lines
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and |ψ1↓|2 in the insets. For the E = 0, case the anisotropy has a phase shift of φ ≈ π/4

representing the presence of both Rashba and Dresselhaus. The Rashba constant, αR,
is more than double the maximum αR achieved with an external electric field in the
same-ion terminating nanowire. The Dresselhaus strength, βD, is almost double that of
the same-ion case. From this result one can conclude that the mixed-ion termination
induces a Rashba perpendicular to the nanowire (x) and the mixed-ion termination (z),
along the y direction. The fact that the mixed-ion termination increases the Dresselhaus
spin-orbit interaction present in the nanowire suggests that the mixed-ion termination
could be an interface inversion asymmetry as discussed in [128].

Figure 5.12 is the spin-orbit constants from the effective model fits of Figure 5.11 as
functions of the applied electric field. The Dresselhaus constant increases with electric
field, as it did in the same-ion terminating case, due to the confinement of the electron
wavefunction towards one surface. The Rashba constant decreases with electric field
as before. Unlike the same-ion termination case, there is no increase in Rashba for
small electric fields. This is because the mixed-ion termination Rashba constant at
E = 0 is larger than the electric field Rashba constant and likely more sensitive to
the electron wavefunction position between mixed-ion terminating surfaces. Higher
electric fields were applied for the mixed-ion terminating nanowire. As E approaches
100 mV/nm, Rashba approaches zero while Dresselhaus reaches 1 eVnm. The linear Stark
coefficient for the Dresselhaus constant, βD, is 7.53 enm2 which is smaller than in the
same-ion nanowire. For the Rashba constant a quadratic regression revealed a quadratic
Stark coefficient of 24.1 enm3/V and a linear Stark coefficient of −6.40 enm2. The sign
of the stark coefficients have changed from the same-ion terminating nanowire to the
mixed-ion termination nanowire. The Rashba constant in the mixed-ion termination
case experiences more of a linear decrease. At higher electric fields the effective g-factor
anisotropies in Figure 5.11 begin to deviate from the effective model. This is likely due
to higher order effects and/or the violation of the weak spin-orbit interaction assumption
of the effective model, since βD = 1 eVnm is large. Hence, the effective model may be
limited to modelling spin-orbit interaction fields less than 1 eVnm.

Adding a substrate

The introduction of mixed-ion termination is one way of inducing an asymmetric confine-
ment potential in the z direction. Another option is to add a substrate. The effective
g-factor anisotropy of the nanowire’s E1 was also modelled with a SiO2 substrate on one
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Figure 5.11. The normalised effective g-factor anisotropy of E1 for the mixed-ion termination
along z, L = 10 nm nanowire with different external electric field strengths
E. The red filled circles are the data points from the tight-binding sp3d5s∗

model and the orange solid lines are the effective model fit to the data. The fit
parameters of the effective model, g, αR and βD are displayed in red. The top
left inset is a y-slice of the probability density of the electron’s E1↓ state in the
nanowire.
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Figure 5.12. The Rashba and Dresselhaus spin-orbit strength as a function of electric field
E for the mixed-ion terminating L = 10 nm nanowire. The spin-orbit fit
parameters, αR and βD, from Figure 5.11 are plotted against electric field.

of the faces normal to the z direction. This was achieved in NEMO3D by printing out a
geometry of atom positions which is longer in the z direction and redefining the excess
atoms in the z direction as SiO2 atoms. For this simulation strain was not considered. A
5 nm substrate of SiO2 was added on top of both a same-ion terminating nanowire and
a nanowire with mixed-ion termination in z. The atom positions of two neighbouring
x slices through the centre of each of these nanowires is shown in Figure 5.13. SiO2 is
made up of Si and O atoms but for simplicity NEMO3D approximates the species as a
single atom lattice with empirical parameters that fit to the bulk material [111].

The resulting g-factor anisotropies of the two nanowires are compared with that of the
same-ion terminating nanowire with no substrate in Figure 5.14. Similar to introducing
mixed-ion termination to the nanowire with no substrate, adding a substrate introduces
Rashba and increases Dresselhaus. The addition of the substrate to the mixed-ion
nanowire introduces a larger Rashba constant and smaller Dresselhaus constant than the
substrate added to the same-ion nanowire. Interestingly, the amplitude of the anisotropy
is much larger in the substrate and same-ion terminating case. These results confirm that
the substrate has a similar influence on the g-factor anisotropy to mixed-ion termination.
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Figure 5.13. The atom positions of two neighbouring x slices of the L = 10 nm nanowire with
a 5 nm substrate of SiO2 on top, plotted on the same axes for: (left) same-ion
termination and the (right) mixed-ion termination.

This is also a good example of how NEMO3D could be employed to model real nanowire
devices on substrates.

5.4.3. Larger square cross-section nanowires

The magnitude of the spin-orbit constants for the 10 nm square cross-section nanowire
is on the order of 10−10 eVm. This is about an order of magnitude larger than that
typically observed in experiments on gated InAs nanowires: 10−11 eVm [125, 127, 129,
130, 131, 132]. However, the nanowires tested in these experiments have larger diameters
(50 nm to 100 nm) than the effective 10 nm diameter nanowire modelled here. The tighter
confinement of the 10 nm nanowire is expected to increase the spin-orbit interaction
compared to less confined, larger nanowires.

This section uses NEMO3D to model the effective g-factor anisotropy of a nanowire’s E1

with different diameters (or square cross-section side lengths L). The results demonstrate
that a smaller nanowire diameter yields a smaller g-factor and larger spin-orbit constants.
The larger nanowires have spin-orbit strengths comparable to experimental results which
verifies NEMO3D and the effective model results. It also demonstrates that NEMO3D
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Figure 5.14. The effective g-factor anisotropy for square cross-section L = 10 nm nanowires
with a SiO2 substrate on the top z face compared with the no substrate same-ion
terminating case. The magnetic field applied is B = 5 T. The filled circles are
the NEMO3D data and the solid lines are the effective model fit to the data
with the fit parameters indicated in the plot.

can model the g-factor anisotropies of larger diameter nanowires with longer, but still
reasonable, computation times.

Effective g-factor anisotropy as a function of nanowire diameter

The effective g-factor anisotropy of E1 was determined from NEMO3D for square cross-
section, mixed-ion in z, InAs nanowires with different L. The effective model was fit
to these g-factor anisotropies to determine the spin-orbit constants, αR and βD. The
anisotropies and the effective model fits are shown in Figure 5.15. The maximum value of
the effective nanowire g-factor (or the quantum well g-factor), g, increases with increasing
nanowire diameter while the amplitude of the g-factor anisotropy decreases. The value
of g increases with larger diameters due to the larger confinement lengths, which agrees
with the results of Figure 5.4. The reduction in the anisotropy amplitude is due to
the reduced strength of the spin-orbit interactions in the nanowire and weaker coupling
between the subbands 〈ky〉21. The Dresselhaus interaction is reduced because there is
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less confinement, L gets larger, and hence βD = γ 〈kz〉 ∼
(
π
L

)2 decreases. The Rashba
interaction decreases because the majority of the electron wavefunction gets further from
the mixed-ion surfaces as the nanowire’s size increases.
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Figure 5.15. The normalised effective g-factor anisotropy of the lowest conduction subband E1

for various diameters L of square cross-section, mixed-ion in z, InAs nanowires.
The red filled circles are the NEMO3D data and the solid orange lines are the
effective model. The fit parameters of the model are displayed in red.

Figure 5.16 is the spin-orbit constants as a function of L along with various ex-
perimentally observed values of the Rashba constant in InAs nanowires of different
sizes. The magnitude of the spin-orbit interaction constants at larger diameters are
comparable to the experimental results of Rashba in 50 nm to 100 nm diameter nanowires
[125, 127, 129, 130, 131, 132]. The experimental results have larger Rashba than the
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NEMO3D nanowires but this should not be too much of a concern considering the
measured nanowires would also experience spin-orbit interaction from strain and struc-
tural inversion asymmetry of the substrates. In addition, the nanowires measured in
experiments were not grown along the [100] direction which was modelled in NEMO3D.
Other nanowire growth directions may experience larger Rashba. Overall, one can say
that the NEMO3D results have qualitative agreement with the experimentally observed
Rashba constants in InAs nanowires.
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Figure 5.16. Spin-orbit constants as a function of square cross-section nanowire diameter
(cross-section side-length). The values of αR and βD are from the effective
model fits in Figure 5.15. Observed Rashba constants from various experiments
on InAs nanowires [125, 127, 129, 130, 131, 132] are shown by ‘×’s.

One may wonder whether it is worth considering the anisotropy given the minimal
change in the g-factor at the larger diameters typically used in experiments. However,
note that here the k = 0 case is considered which has the smallest anisotropy. The
anisotropy is expected to be larger for k 6= 0 due to the first order and second order
terms in k. When performing conductance measurements the non-zero wavevectors can
contribute to the transport of electrons depending on the chemical potential of the system
and hence these non-zero k contributions could result in larger g-factor anisotropies than
seen here.
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Computational resources for larger nanowires

The nanowires used in real devices are typically larger than the L = 10 diameter nanowire
used throughout this chapter. For comparison to experiment and informing device design
it is important to be able to model larger nanowires and do so efficiently. A summary of
the computational resources required for the NEMO3D simulations of different diameter
nanowires is given in Table 5.1. NEMO3D searches a user specified energy range for
a given number of eigenvalues. The less eigenvalues being solved for the faster the
simulation and the less resources required. The eigenvalue’s corresponding eigenvectors
and probability densities can also be solved for if desired. Typically, solving for either the
eigenvectors or probability densities along with the eigenvalues doubles the simulation
time compared to only solving for the eigenvalues. For this work the eigenvectors were
generally not needed however some probability densities were required. The table lists
the computational requirements for different nanowire diameters, number of eigenvalues
solved for and whether the probability densities were calculated.

Table 5.1. A table of the computer resources required for the NEMO3D simulations of different
sized nanowires.

L (nm) No. eigenvalues Probability density No. CPUs Memory (GB) Time (min)
10 2 No 16 6 10-20
10 2 Yes 16 6 30-40
10 6 Yes 16 7 30-40
15 2 No 16 8 30-40
20 2 No 32 16 40
30 2 No 32 25 80-90
40 2 No 48 44 120
50 2 No 48 60 170
75 2 No 96 150 300
75 2 Yes 96 200 500
100 2 Yes 144 380 780

For the 10 nm nanowires the simulations are very efficient, typically completed within
the hour, but for larger nanowires the simulation time approaches the order of hours.
It is possible to simulate a L = 100 nm nanowire (at which point the geometry is a
cube rather than a wire) in less than a day for only two eigenvalues. These are rough
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guides on computation times, the block Lanczos solver can take a longer amount of
time depending on the requested energy range within which the algorithm searches for
eigenvalues. One must also keep in mind that one NEMO3D simulation of two eigenvalues
only corresponds to a single data point of the g-factor anisotropy. In order to create an
anisotropy, 10 to 20 of these NEMO3D simulations are required. This is not a problem for
a supercomputer with many nodes where multiple NEMO3D simulations of this size can
be run simultaneously. However, it could be a time consuming process if the computing
resources only allowed for one NEMO3D simulation to run at a time.

In summary, if enough supercomputing resources are available to the user it is possible
to determine the g-factor anisotropy of nanowires with diameters up to L = 100 nm in
NEMO3D within a day. It is likely that nanowires of length greater than 100 nm (with
small L) could also be simulated within the time frame of a few days. In comparison
to other first principles calculations performed on supercomputing clusters this is a
considerably low computational time. As such, employing NEMO3D to motivate and
check nanowire device design is a feasible option if the computational resources are readily
available.

5.5. Rectangular cross-section nanowires

The nanowires modelled in this chapter so far have a square cross-section with equal
confinement in both y and z directions, L = Ly = Lz. The [100] nanowires do not always
have a square cross-section but can be grown with rectangular cross-sections [117]. In
order to understand the influence of the nanowire cross-section shape on the g-factor
and spin-orbit interactions it is worth modelling the effective g-factor anisotropy of a
rectangular cross-section [100] nanowire. The rectangular cross-section geometry was
constructed by starting with the geometry in Figure 5.6 and increasing the length of
confinement in the y direction, Ly, while maintaining z confinement at Lz = 10 nm.
The effective g-factor anisotropy of E1 was then determined from NEMO3D as before.
Originally, the only expected difference between the square and rectangular cross-section
nanowires was a difference in Dresselhaus strength βD due to the reduced confinement
in y. However, this expectation was incorrect, and rather the rectangular cross-section
nanowire was found to have a Rashba dominant anisotropy with an amplitude dependent
on the confinement in y.
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5.5.1. Effective g-factor anisotropy

Figure 5.17 is the effective g-factor anisotropy of E1 for a same-ion terminating nanowire
with a rectangular cross-section of dimensions Ly × Lz = 20 nm × 10 nm and that
of the previously modelled same-ion terminating square cross-section nanowire with
Ly = Lz = 10 nm. The anisotropy is shown for the magnetic field varying in the xy-plane
with a magnitude of B = 5 T. The effective model expression (5.18) is fit to the g-factor
anisotropies and the fit parameters displayed in the figure.

The anisotropy of the rectangular cross-section nanowire has a larger g than the
square cross-section nanowire due to the larger confinement length in the y direction.
The larger confinement length in y has also led to a Rashba dominant anisotropy with
no phase shift φ = 0. There is no presence of Dresselhaus compared to the square
cross-section nanowire which had βD = 0.20 eVnm and no Rashba interaction. This is
odd considering there is no structural inversion asymmetry from mixed-ion termination
or an applied electric field to induce the Rashba contribution.
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Figure 5.17. Effective g-factor anisotropy for E1 of a rectangular cross-section
(20 nm× 10 nm) nanowire and the square cross-section (10 nm× 10 nm)
nanowire both same-ion terminating. The filled circles are the NEMO3D
data and the solid lines are the effective model fit to the data with the fit
parameters indicated in the plot.

In attempts to understand the origin of the Rashba spin-orbit interaction, the lowest
conduction subband probability density |ψ1↓|2 is plotted for the different nanowire cross-
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sections lengths Ly. Figure 5.18 is an x slice of |ψ1↓|2 in the centre of the nanowire for
different nanowire cross-sections. All nanowires are same-ion terminating in y and z.
The square cross-section nanowire’s wavefunction is not spherical but deformed at the
edges of the nanowire. For the rectangular cross-section nanowires, the wavefunction is
less deformed in the y direction and there is a lower probability density at the surfaces
normal to the y axis than in the square cross-section nanowire. The fact that there is a
higher density of the electron wavefunction at the z surfaces than the y surfaces may be
the cause for this Rashba spin-orbit interaction in the rectangular cross-section nanowires.
Additionally, Moroz and Barnes [126] state that a confinement potential, Vz, creates an
electric field, E = −∇Vz, that can induce a Rashba spin-orbit interaction perpendicular
to the nanowire. Although this is a smaller spin-orbit interaction than that from external
electric fields it can be dominant in the absence of electric fields. Since Vz is a smaller
confinement region than Vy it should result in a larger confining electric field which will
produce a larger Rashba spin-orbit interaction. However, this does not explain how αR

is larger than βD ∝ (π/Lz)
2. One possible explanation is that the confinement in the y

direction contributes to the Dresselhaus interaction along the nanowire. By increasing
Ly a component of the Dresselhaus constant βDy ∝ 1

L2
y
decreases and as a result the total

βD = βDy + βDz decreases and αR becomes dominant.
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Figure 5.18. The lowest spin state of the first conduction subband electron probability density
in the cross-section of the various nanowires.

An alternative explanation was that the wavefunction in the rectangular cross-section
nanowire may be slightly off-centre which could give the wavefunction different values
at opposite interfaces and create a strong structural inversion asymmetry. However,
examination of y slices taken at the centre of each probability density in Figure 5.18
and plotted in Figure 5.19, reveal that the centre of the wavefunction does not move
significantly in the z direction when going from square to rectangular cross-section. The
shape of the wavefunction at the edges of the nanowire does bend more significantly for
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larger Ly but the total wavefunction is symmetric about the centre of the nanowire. This
should not produce inversion asymmetry and is unlikely to be the cause of the Rashba
spin-orbit coupling.
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Figure 5.19. A y slice of the lowest spin state of the first conduction subband electron
probability density |ψ1↓|2 taken at the centre of the different nanowire cross-
sections Figure 5.18. The diamond identifies the maximum of the probability
density.

To further understand how the confinement in the y direction influences the anisotropy,
the y dimension of the rectangular cross-section nanowire is varied from 10 nm to 100 nm.
Figure 5.20 is the effective g-factor anisotropies of same-ion terminating rectangular
cross-section nanowires for the different Ly and Lz = 10 nm. Again the magnitude of the
offset of the effective g-factor increases as Ly increases, as expected from previous results.
The square cross-section nanowire has the Dresselhaus dominant (φ = π/2) g-factor
anisotropy but as Ly increases and reaches 11 nm the g-factor anisotropy becomes Rashba
dominant (φ = 0). As Ly increases, αR increases until some point after Ly = 15 nm

where αR begins to decrease with increasing Ly until there is no spin-orbit interaction
present at Ly = 100 nm resulting in no g-factor anisotropy. The Ly = 100 nm case is
essentially a quantum well given that the dimensions in x and y are equivalent at the
approximated bulk length of 100 nm. From the effective model, an isotropic g-factor
is expected at k = 0 for a quantum well with no confinement in y direction. Without
confinement in y, there is no quantisation of the ky terms in equation (5.3) so the ky
terms in the spin-orbit interaction are zero and there is no effective g-factor anisotropy.
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Note that the Ly = 100 nm case had to be calculated with an applied magnetic field
of B = 2 T because larger magnetic fields would cause a spin splitting larger than the
subband splitting and make it difficult to identify the lowest subband spin states. This
weaker magnetic field should not change the results as discussed in Appendix E.1.
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Figure 5.20. The effective g-factor anisotropy of the rectangular cross-section nanowire for
various Ly and Lz = 10 nm. All the anisotropies were calculated with a magnetic
field of B = 5 T except for the Ly = 100 nm case which was calculated with
B = 2 T.

The significance of the point where the Rashba spin-orbit interaction becomes domi-
nant over the Dresselhaus is not fully understood. However, it seems that this is just
the point where the confinement in the z direction is stronger than that in the y direc-
tion. As the confinement in the y direction increases further the coupling between the
transverse subbands decreases until the g-factor anisotropy disappears as expected from
equation (5.18).

5.5.2. Mixed-ion termination and applied electric fields

The rectangular cross-section nanowire can induce a Rashba spin-orbit interaction when
the y confinement is larger than the z confinement. Since this Rashba dominant anisotropy
occurs in a same-ion terminating nanowire it is worth testing how the introduction of
mixed-ion termination and electric fields influences this g-factor anisotropy. Figure 5.21
is the effective g-factor anisotropies of E1 for the 20 nm× 10 nm cross-section nanowire
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with same-ion termination, mixed-ion termination and an applied electric field of Ez =

10 mV/nm for the same-ion termination nanowire.
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Figure 5.21. The effective g-factor anisotropy for a 20 nm × 10 nm rectangular cross-section
nanowire with different ion termination and applied electric fields in z direction.
The filled circles are the NEMO3D data and the solid lines are the effective
model fit to the data with the fit parameters indicated in the plot.

Introducing an electric field in the z direction to the rectangular cross-section nanowire
alters the anisotropy as expected from Section 5.4.1. The confinement from the electric
field increases the Dresselhaus constant and decreases the Rashba constant because the
wavefunction is confined towards one surface. Introducing mixed-ion termination in the
z direction increases the anisotropy dramatically. It increases the Rashba strength and
introduces Dresselhaus both stronger than the electric field case as one would expect
from the results of Section 5.4.2.

The dependence of the spin-orbit constants of the rectangular cross-section nanowire
on electric field is determined from g-factor anisotropy plots as was done for the square
cross-section nanowire. Figure 5.22 is the g-factor anisotropies with the effective model fits
and the y slice of the probability density |ψ1↓|2 as insets. Figure 5.23 is the electric field
dependence of the spin-orbit constants, αR and βD. Similar to the mixed-ion square cross-
section nanowire case, the Dresselhaus strength increases almost linearly with electric field
due to the increasing confinement of the wavefunction. The Rashba strength decreases
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with electric field in a linear fashion as the electron wavefunction is pushed towards one
surface and unlike the square cross-section nanowires the Rashba actually passes through
zero and changes sign. The linear Stark coefficient for Dresselhaus is 6.35 enm2 which is
less than the square cross-section nanowire likely due to less confinement in y. The linear
Stark coefficient for the Rashba is −2.31 enm2. This coefficient is smaller than that of
the square cross-section nanowires. Notable features of Figure 5.23 are that there are
applied electric fields for which there is only one type of spin-orbit interaction present, as
well as a point where αR and βD have the same magnitude. If the spin-orbit interactions
could somehow be anti-aligned as is predicted to occur in [110] InAs nanowires one
could created a cancellation of the spin-orbit interactions at the electric field where
αR = βD [54]. From these results, one can conclude that the mixed-ion termination and
applied electric fields influence the g-factor anisotropy and spin-orbit interaction of the
rectangular cross-section nanowire in a similar manner to that of the square cross-section
nanowire.

5.6. Discussion of results and applications

The results of this chapter have demonstrated NEMO3D’s ability to determine the
influence of atomic level alterations to the nanowire geometry on the lowest conduction
subband effective g-factor anisotropy and spin-orbit interactions. The key features
discovered were that the [100] grown nanowire’s Dresselhaus spin-orbit interaction can be
strengthened by applying electric fields and altering the surface structure with mixed-ion
termination or substrates. The Rashba spin-orbit interaction can be tuned by weak
electric fields but is influenced mainly by surface ion termination and the addition of
substrates. The g-factor anisotropy and spin-orbit composition can also be controlled
by varying the in-plane width of the rectangular cross-section of a nanowire. The [100]
nanowire is the only growth direction of the nanowire modelled here. In the future, it
will be worth modelling other nanowire growth directions i.e. [110] and [111] as they are
predicted to have interesting properties due to the Dresselhaus interactions induced by
the different crystal lattice orientations [122, 133, 134].

The results of the NEMO3D modelling have been verified by comparing to g-factor
anisotropies and spin-orbit constants observed in experimental works. The simulations
could be further verified by performing low temperature conductance measurements on
InAs nanowires and varying the direction of an applied magnetic field. The experiment
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Figure 5.22. The normalised g-factor anisotropy of E1 for the same-ion terminating 20 nm×
10 nm cross-section nanowire for different electric field strengths E. The fit
parameters of the effective model, g, αR and βD are displayed in red. The top
left inset of each plot is a y-slice of the probability density of the electron’s E1↓
state in the nanowire.
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Figure 5.23. The Rashba and Dresselhaus spin-orbit strength as a function of electric field
E for the same-ion terminating 20 nm × 10 nm cross-section nanowire. The
spin-orbit fit parameters, αR and βD, from Figure 5.22 are plotted against
electric field.

would produce conductance versus gate voltage plots similar to that of [62, 68, 126] or
Figure 2.6. The width of the dip in the conductance due to the spin gap should decrease
and increase depending on the angle of the applied magnetic field which corresponds
to the effective g-factor anisotropy modelled by NEMO3D. This would mean that for
nanowires with different surface-ion terminations the conductance dip would be maximised
at different magnetic field angles. However, if the nanowire had varying surface-ion
terminations along its length the conductance measurements of the nanowire would only
reveal the smallest spin gap of the different surface-ion termination regions and not the
true spin gap in each region. Hence, another experimental method may be required to
distinguish between regions of differing surface-ion termination and determine the true
spin gap. For example, it may be possible to measure the spin splitting of gate defined
quantum dots in each region.

The knowledge gained from the NEMO3D simulations of the effective g-factor
anisotropy could inform the design of a wide array of nanoscale devices. For instance,
spin-orbit qubits that are typically constructed from gate defined double quantum dots
in III-V nanowires [22, 23]. The spin-orbit dependent anti-crossing occurring between
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singlet and triplet states defines the Pauli blockade of the system which is the basis for
qubit operation. The [100] nanowire’s g-factor anisotropy with Rashba and Dresselhaus
spin-orbit interactions could allow for more control or at least another option for control
of the qubit along with the standard Rashba spin-orbit interaction anisotropy seen in
the commonly used [111] nanowires.

Another area of interest are spintronic devices, such as the spin transistor proposed
by Datta to improve on current electronic integrated circuits [25]. This device operates
by electrically controlling the spin current travelling through a nanowire between two
ferromagnetic electrodes. If there is a spin-orbit interaction in the nanowire it can cause
spin precession. With the correct spin-orbit interaction in the nanowire the spins ejected
from the source electrode can experience an exact π-flip by the time they reach the
drain electrode creating an on-state. If the spin is not completely flipped by π, the
transistor would be in the off-state. From the simulations above it may be possible for
one to construct a spin transistor from the [100] nanowire. For example, a rectangular
cross-section nanowire with a Rashba dominant g-factor anisotropy, corresponding to
a spin-orbit field perpendicular to the nanowire, could be electrically tuned between
Rashba and Dresselhaus dominant states of the nanowire to switch the transistor between
the on- and off-state. It would also be of interest to model the spin-orbit interactions in
the [110] nanowire. The [110] growth direction is predicted to allow for a cancellation of
Rashba and Dresselhaus at the correct electrical tuning which could be another method
of setting the transistor to its off-state.

A well-established application of these nanowires is the semiconductor-superconductor
heterostructure which can form a topological superconducting state and host Majorana
zero modes. The main requirements for the nanowire to form this state is: (1) a large
g-factor in the direction of the applied magnetic field to ensure minimal suppression of
the superconductivity in the bulk superconductor and (2) a large spin-orbit interaction
to create a stable topological superconducting state. The topological state’s sensitivity
to disorder is said to be minimised when EZ/ESO < 1 is satisfied [72], as discussed in
Section 2.4.4.

The typical Zeeman splitting required to satisfy the topological criterion (2.46) and
achieve a topological phase is EZ = 1 K (≈ 0.086 meV) according to [17, 72]. For
the 50 nm nanowire with a g-factor of 14 this would require applying a magnetic field
of 0.1 T. The largest Rashba constant αR observed in this modelling is of the order
of 0.1 eVnm corresponding to an ESO =

m∗α2
R

2~2 ≈ 1.5 meV which satisfies the stability
condition, EZ/ESO < 1. However, these values are for small nanowire diameters less than
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L = 20 nm which are not as feasible to grow and reported to have poor conductivity
[132]. From the results of a larger diameter nanowire typically used in experiments, the
50 nm nanowire in Figure 5.15, the Rashba constant is αR = 0.01 eVnm corresponding
to ESO ≈ 0.015 meV which does not satisfy the condition EZ/ESO < 1. However, the
combined magnitude of αR and βD of 0.04 eVnm from Figure 5.15 gives ESO ≈ 0.24 meV

which would satisfy the stability condition. The problem is that Dresselhaus is not acting
perpendicular to the nanowire which is a requirement to create the topological gap.

One way to potentially induce a larger Rashba would be to tune with a top and
bottom gate structure as done by [127]. An alternative solution would be to use [110]
grown nanowires. In this nanowire orientation the Rashba and Dresselhaus are predicted
to align along the same direction, perpendicular to the nanowire [54, 128]. Based on
the calculation above the combined spin-orbit interaction perpendicular to the nanowire
would meet the criteria for protection against disorder. Many researchers have also
recently begun researching the g-factor anisotropy of holes in III-V semiconductors
because the larger spin-orbit interactions of holes may create more stable topological
states [135, 136, 137].

According to [23], the superconductivity of the heterostructure is suppressed least when
the magnetic field is in the plane of the substrate. Typically, the magnetic field is applied
along the nanowire [17, 15, 16]. From the results of this chapter, the best [100] nanowire
to use would be the rectangular cross-section nanowire because the g-factor is maximised
along the nanowire. With a substrate below the nanowire the g-factor anisotropy and
the Rashba would be increased, however, this would also induce a Dresselhaus spin-orbit
coupling along the nanowire which shifts the g-factor maximum away from the [100]
direction. It is for this reason that [111] nanowires are typically employed because they
possess inversion symmetry and have no Dresselhaus [23, 62, 67, 122]. Hence, it would
be useful to model the [111] nanowire and the [110] nanowire in NEMO3D to see if a
stronger spin-orbit interaction can be achieved perpendicular to the nanowire which
satisfies the condition EZ/ESO < 1 and maximises the g-factor along the nanowire.
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5.7. Summary

The effective g-factor anisotropy of the lowest conduction subband for a [100] nanowire
has been successfully modelled using NEMO3D. The spin-orbit interactions, Rashba
and Dresselhaus, were extracted from the g-factor anisotropies using an effective model
constructed from the quantum well Rashba and Dresselhaus interaction terms. The
influence of applied electric fields, surface-ion termination and the nanowire cross-section
on the effective g-factor anisotropy and spin-orbit interactions were studied. The applied
electric field induced a Rashba spin-orbit interaction for small electric fields but for
larger electric fields it increased the Dresselhaus interaction and maximised the g-factor
perpendicular to the nanowire. The introduction of mixed-ion termination perpendicular
to the magnetic field induces a Rashba spin-orbit interaction and increases the Dresselhaus
interaction present in the nanowire. The mixed-ion termination induces a stronger Rashba
spin-orbit interaction than the applied electric fields and is analogous to adding a substrate
to the nanowire. The square cross-section nanowire has a Dresselhaus dominant spin-orbit
interaction with the g-factor maximised perpendicular to the nanowire but if the nanowire
has a rectangular cross-section the g-factor anisotropy can change to maximised along
the nanowire with a Rashba dominant spin-orbit interaction.

The atomistic detail of the surface ion termination, substrate interface and the shape
of the nanowire cross-section can only be modelled in an atomistic model like NEMO3D.
This atomistic method of modelling can provide device engineers with the information
required to design various nanowire devices with specific g-factor anisotropies and/or spin-
orbit interactions. This includes but is not limited to, spin-orbit qubits, spin transistors
or topologically protected qubits which can host Majorana zero modes.

The possible directions for future research is vast. There are a plethora of variables
that could be considered in NEMO3D such as strain, different material interfaces, the
other nanowire growth directions ([110] and [111]) and the g-factor anisotropy of holes.
The most beneficial area to research first would be the g-factor anisotropy for the [110]
and [111] nanowires because this could provide insight into the optimal nanowire growth
direction for devices. There are also multiple improvements that could be made to current
modelling methods. In order to increase the electric control of the Rashba spin-orbit
interaction, it would be useful to employ a top and bottom gate model so that the electron
wavefunction density is not confined to one surface. The modelling of NEMO3D could
also be improved by adding functionality for three dimensional same-ion termination and
constructing hexagonal cross-section [111] nanowires.



Chapter 6.

Conclusion

This thesis has explored features of various semiconductor nanostructures with applica-
tions in spintronics and quantum information technology. A form of quantum transport,
single electron charging, was demonstrated through dopants in the silicon channel of a
FinFET using a low temperature measurement setup. The Coulomb blockade spectrum
identified two bound states, D0 and D−, for a handful of dopants in the corners of the
silicon channel. This Coulomb blockade measurement validated the low temperature
measurement setup to temperatures as low as 11 K. In the future, temperatures of 4 K

and below should be achievable by making some improvements to the measurement setup
and cooling procedure. Lower temperatures will allow for better resolution of Coulomb
spectrums and quantum transport through the quantised subbands of semiconducting
nanostructures.

The field of nano-electronic modelling was then introduced. In particular, the semi-
empirical tight-binding modelling tool NEMO3D was described, including the tight-
binding formalism, the inclusion of electromagnetic and spin-orbit coupling and the
advantages of NEMO3D’s atomistic approach over ab initio and continuum models.
An example of NEMO3D’s ability to model the electronic states of nanostructures was
presented, showcasing the results from a recently published work that modelled the
electrical dependence of valley state coupling in a gate-defined quantum dot within a
silicon quantum well.

The core work of this thesis was modelling the magnetic field anisotropy of the lowest
conduction subband effective g-factor in a [100] InAs nanowire. A modelling method was
presented for determining the g-factor anisotropy of the nanowire under different external
electric field strengths, surface-ion terminations and confinement conditions, and then for
extracting the corresponding spin-orbit interactions of the nanowire from this anisotropy.
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The g-factor anisotropy was modelled using the NEMO3D sp3d5s∗ 20 band tight-binding
model. The spin-orbit constants for the common Rashba and Dresselhaus spin-orbit
interaction, αR and βD, were determined by fitting the g-factor expression of a one band
effective model to the NEMO3D results. NEMO3D captures the atomic resolution of
the system and crystal asymmetries caused by different surface-ion terminations. The
effective model interprets how these atomic details and crystal symmetries influence the
g-factor anisotropy and the spin-orbit interactions present in the nanowire.

The key results are as follows. An external electric field can induce and tune the
Rashba spin-orbit interaction but it also increases the Dresselhaus spin-orbit interaction
by enforcing additional confinement on the electron wavefunction. A nanowire with
mixed-ion termination, or a substrate, has reduced crystal symmetry which induces a
strong Rashba (larger than that of external electric fields) and also increases the strength
of Dresselhaus. The g-factor anisotropy and spin-orbit interaction are influenced by the
extent of confinement and similarly the geometry of the cross-section. The nanowires
with a smaller effective diameter have larger spin-orbit interaction constants but a smaller
effective g-factor than those with a large effective diameter. The spin-orbit interaction
constants and effective g-factors of the large diameter nanowires were similar to that
reported in experiments. Elongating the nanowire cross-section from square to rectangular
was found to change the maximum of the g-factor anisotropy from perpendicular to
the nanowire axis to along the nanowire axis and resulted in the spin-orbit interaction
transitioning from Dresselhaus to Rashba dominant.

The insights gained from this work and the modelling method can inform the design
and fabrication of nanowires for a variety of spintronic and quantum computing applica-
tions, such as spin-orbit qubits, spin transistors and Majorana zero modes in topological
qubits. However, this work has far from considered all the parameters that influence a
III-V nanowire’s effective g-factor anisotropy and as such there are many avenues for
further research. The most prominent is applying the modelling method to [110] and
[111] grown nanowires due to their interesting Dresselhaus spin-orbit interactions which
are distinct from the [100] nanowire and may be advantageous for certain applications. It
is also of interest to model the applied electric fields in a top-bottom gate fashion so that
Rashba can be tuned over a larger range of electric fields without the electron wavefunc-
tion being confined to a surface. Finally, one crucial task for validating these g-factor
anisotropy results is to perform conductance measurements on InAs nanowires in the
presence of different magnetic field orientations using the low temperature measurement
setup and a vectorial magnet.
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Appendix A.

Useful Derivations

A.1. A review: The 1D infinite potential well

This derivation can be found in most undergraduate quantum mechanics textbooks. Here
the derivation follows closely to that of [29]. Consider an electron free to move in one
dimension, the x axis, and confined by an infinite potential well of length L

V (x) =

0 0 < x < L

∞ x < 0 and x > L.
(A.1)

The 1D Schrödinger equation describing this electron is

i~
∂

∂t
ψ(x, t) = − ~2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t), (A.2)

where m is the mass of the electron, ~ is Planck’s reduced constant and ψ(x, t) is the
electron wavefunction.

Since V (x) is time independent the Schrödinger equation can be separated into two
equations, one for the spatial dependent part of the electron wavefunction φ(x) and the
other for the time dependent part of the wavefunction χ(t), where ψ(x, t) = φ(x)χ(t).
Assuming the equations have energies eigenvalues E = ~ω, these equations are written

i~
∂

∂t
χ(t) = Eχ(t), (A.3)

− ~2

2m

∂2

∂x2
φ(x) + V (x)φ(x) = Eφ(x). (A.4)
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The time dependent equation (A.3) has eigenfunctions of the form χ(t) = e−iE/~t = e−iωt

with E = ~ω the corresponding energy eigenvalue of i~ ∂
∂t
. For the spatial dependent

equation (A.4), also known as the time independent Schrödinger equation, φ(x) = 0

unless 0 < x < L because of the infinite potential well V (x). Inside the well the
eigenfunctions of the second order spatial derivative are determined by enforcing continuity
of the wavefunction and its first derivative at the boundaries, φ(0) = φ(L) = 0. The
second derivative can be discontinuous as the potential is discontinuous. The resulting
eigenfunction of ∂2

∂x2
is φn(x) = A sin(kx) with the wave vector k =

√
2mE
~ = nπ

L
for

n = 1, 2, 3, ....

Combining theses two solutions, the full solution to the electron in a 1D infinite
potential well problem is

ψn(x, t) =


√

2
L

sin (knx)eiωnt 0 < x < L

0 otherwise
(A.5)

with kn = nπ/L and En = ~ωn = n2~2π2/2mL2. The value of the constant A was deter-
mined using the normalisation condition of the electron wavefunction

∫∞
−∞ |ψn(x)|2 dx = 1.

This is the requirement that the norm square of the wavefunction can be interpreted as
a probability density distribution. The single electron must be somewhere in space.

To summarise, confining an electron in one dimension, x, quantises the wavevector k
and the resonant frequency ω = E/~ in the x direction. The electron has discrete energy
levels or eigenenergies that it can reside in.

A.2. An infinite box: Periodic boundary conditions

The infinite potential well above is an example of ‘closed’ boundary conditions, where
the electron wavefunction must be zero at the boundaries. Another common choice of
boundary conditions is periodic boundary conditions where x = L is equivalent to x = 0.
This one dimensional system could be thought of as a ring or a box of infinite length.
This boundary condition is appropriate when one is only interested in the properties of
the interior of the box and the ends of the box do not matter e.g. a bulk semiconductor.
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For periodic boundary conditions the eigenfunctions take the form [29]

ψn(x, t) = ψ0e
i(knx−ωnt),

ψn(x, t) = ψ0e
−i(knx+ωnt),

with kn =
2nπ

L
, En = ~ωn =

2~2π2n2

mL2
(A.6)

and ψ0 is the normalisation constant. There are now half as many allowed k values but
two eigenfunctions for each eigenvalue. The first +kn state is considered as the state
travelling in the positive x direction and the second −kn state is considered as the state
travelling in the negative x direction. In nanostructures, such as quantum wells and
nanowires the electrons can often be considered as plane waves modulated by a periodic
(Bloch) function travelling in positive or negative k directions of the nanostructure.

A.3. The Pauli matrices and identities

The Pauli matrices are defined as [138]

σx =

0 1

1 0

 , σy =

0 −i
i 0

 , σz =

1 0

0 −1

 (A.7)

and the corresponding Pauli vector is defined as

σ = σxx̂+ σyŷ + σz ẑ. (A.8)

The Pauli matrices obey some basic identities as defined in [138]. The multiplication
of two Pauli matrices is given by

σjσk = δjkI + iεjklσl (A.9)

where j, k = x, y, z, I is the identity of order 2, δjk is the Kronecker delta and εijk is the
Levi-Cevita symbol.
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This leads to the following commutator and anti-commutator relations

[σj, σk] = 2iεjklσl, (A.10)

{σj, σk} = 2δjkI, (A.11)

and the relation of the Pauli vector to the dot product and cross product

(a · σ)(b · σ) = (a · b)I + i(a× b) · σ. (A.12)

where a and b are three vectors.

The general eigenspinors for a spin orientation defined in spherical coordinates by θ
and φ are [138]

χ+ =

 cos(θ/2)

eiφ sin θ/2

 (A.13)

χ− =

 cos(θ/2)

−eiφ sin θ/2

 . (A.14)

A.4. Unitary transformations

This section describes the steps and identities used to apply the unitary transformation
in Section 5.3.3 when deriving the one-band effective model. The process requires the
Pauli matrix identities from Appendix A.3 and the Baker-Campbell-Hausdorff formula.

A.4.1. The Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff formula [139] states that a unitary transformation of e−X

on Y is given by

eXY e−X =
∞∑
n=0

[(X)n, Y ]

n!
(A.15)
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where the iterative commutator is defined as [(X)n, Y ] = [X, · · · [X, [X, Y ]] · · · ] with
[(X)0, Y ] ≡ Y . This can alternatively be written as

eXY e−X = Y + [X, Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]] + · · · . (A.16)

A.4.2. Rotation of the spin basis

When performing perturbation theory on equation (5.3) it is useful to align the spin
axis x along the magnetic field direction n̂ = cos θx̂ + sin θŷ. This can be achieved by
applying the unitary transform U = e−i/2θσz , a rotation of θ about the z axis. The unitary
transformation only influences the Pauli matrices. Applying this unitary transformation
to σx and using the Baker-Campbell-Hausdorff formula (A.16) one obtains

U †σxU = ei/2θσzσxe
−i/2θσz = σx +

iθ

2
[σz, σx] +

1

2!

(
iθ

2

)2

[σz, [σz, σx]]

+
1

3!

(
iθ

2

)3

[σz, [σz, [σz, σx]]] + · · ·
(A.17)

From the Pauli matrix commutator relation (A.10), the commutators are

[σz, σx] = 2iσy,

[σz, [σz, σx]] = 2i[σz, σy] = −(2i)2σx = 4σx,

[σz, [σz, [σz, σx]]] = 4[σz, σx] = 8iσy.

Substituting these commutator expressions back into (A.17) and rearranging gives

U †σxU = σx

[
1− θ2

2!
+ · · ·

]
− σy

[
θ − θ3

3!
+ · · ·

]
= σx cos θ − σy sin θ

(A.18)

where the last equality is true from the Taylor expansion of cos θ and sin θ about θ = 0.
Similarly, it can be shown that the unitary transform U applied to σy gives

U †σyU = σx sin θ + σy cos θ. (A.19)
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Applying the transformation to the Zeeman term of equation (5.3) with B = Bn̂ gives

U †HZU =
gµBB

2

{
cos θU †σxU + sin θU †σyU

}
=
gµBB

2
{cos θ(σx cos θ − σy sin θ) + sin θ(σx sin θ + σy cos θ)}

=
gµBB

2

{
σx(cos2 θ + sin2 θ) + σy(− cos θ sin θ + sin θ cos θ)

}
=
gµBB

2
σx

(A.20)

where the identity cos2 θ + sin2 θ = 1 was used to produce the last equality. This proves
that the unitary transformation U = e−i/2θσz can be used to align the x spin matrix
with the magnetic field direction n̂. The rest of the Hamiltonian can be transformed by
applying the unitary transformation, U †HU , and using equations (A.18) and (A.19).

A.5. Time-independent perturbation theory

The time-independent perturbation theory [138] is used to derive the effective model
expression of the effective g-factor for the lowest subband of a nanowire. Time-independent
perturbation theory starts with an unperturbed time-independent Hamiltonian, H0, with
known eigenvalues E(0)

n and eigenfunctions
∣∣n(0)

〉
with n = 1, 2, 3, · · · . Additionally the

energy spectrum is assumed to be non-degenerate. A weak perturbation H ′ is then
introduced to the Hamiltonian with a dimensionless parameter λ ranging continuously
between 0 to 1 with λ = 0 corresponding to no perturbation and λ = 1 the full
perturbation. The perturbed Hamiltonian can be written

H = H0 + λH ′. (A.21)

The eigenvalues and eigenfunctions of this perturbed Hamiltonian satisfy the time-
independent Schrödinger equation

H |n〉 = En |n〉 . (A.22)

The goal of perturbation theory is to determine the eigenfunctions |n〉 and eigenvalues
En in terms of the unperturbed eigenfunctions

∣∣n(0)
〉
and eigenvalues E(0)

n . This can be
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achieved for a weak perturbation by writing them as a power series expansion in λ

|n〉 =
∣∣n(0)

〉
+ λ

∣∣n(1)
〉

+ λ2
∣∣n(2)

〉
+ · · ·

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · ·

(A.23)

These expansions can be substituted back into the time independent Schrödinger equation
(A.22). By matching the coefficients of each power of λ an infinite series of simultaneous
equations is created.

The zeroth order equation is simply the unperturbed time independent Schrödinger
equation

H0

∣∣n(0)
〉

= E(0)
n

∣∣n(0)
〉
. (A.24)

The first order equation can be used to derive the first order correction to energy

E(1)
n =

〈
n(0)
∣∣H ′∣∣n(0)

〉
, (A.25)

and the first order correction to the eigenfunctions

∣∣n(1)
〉

=
∑
k 6=n

〈
k(0)
∣∣H ′ ∣∣n(0)

〉
E

(0)
n − E(0)

k

∣∣k(0)
〉
. (A.26)

The second order equation can be used to derive the second order correction to the energy

E(2)
n =

∑
k 6=n

∣∣〈k(0)
∣∣H ′ ∣∣n(0)

〉∣∣2
E

(0)
n − E(0)

k

. (A.27)

Higher order corrections can be derived but the calculations become tedious. Typically,
only the second order energy corrections is needed which is the case for the effective
model in Section 5.3.3.
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Appendix B.

Measurement techniques

The original intention of this thesis was to perform quantum transport measurements on
InAs nanowires like those modelled in Chapter 5. However, due to delays experienced
by our collaborators in preparing the InAs nanowires these measurements could not be
performed within the MPhil candidature. The results of the InAs nanowire modelling
became the focus of the thesis. This section and Appendix C are included to describe the
low temperature measurement setup that was prepared during candidature to perform
single electron charging through dopants in silicon Chapter 3, and was intended for
quantum transport measurements of the InAs nanowires.

The low temperature experimental setup can be split into two main parts: the
measurement setup and the cooling system. The measurement setup consists of:

• a cryostat sample area where a chip of devices can be placed,

• a home-made control box connecting the sample area to the outputs/inputs of
instruments,

• instruments interfaced to a computer for remote control,

• code that instructs the instruments to output and/or measure.

The cooling system consists of:

• a cryostat with a sample area inside a vacuum chamber,

• a pump to create the vacuum and draw liquid helium through the cryostat flow line,

• a dewar full of liquid helium that the cryostat can be inserted into,
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Cryostat Control BoxComputer

SIM928 Isolated
Voltage Source

Current Amplifier

Voltage Amplifier

DAQ or Keithley

Figure B.1. The measurement setup summarised as a diagram.

• a temperature controller which senses the cryostat’s temperature and can control
the cryostat’s internal resistor to heat the sample.

This appendix will focus on the preparation and room temperature testing of the
measurement setup for a single gate transistor used in Chapter 3. Appendix C will
outline the preparation and operation of the cooling setup.

B.1. Measurement setup

The measurement setup can be summarised by Figure B.1. This section will describe
the different components of the diagram and discuss the measurement philosophy of the
setup.

B.1.1. Computer

Beginning from the left side of Figure B.1, the lab computer is a desktop set up with
CentOS Linux 8. The computer is connected to the instruments e.g. voltage sources and
Keithley via a GPIB card installed in the back. An open-source Python 3 package Qcodes
is used to interfacing with the drivers that control the instruments easily. Qcodes is
developed by the Copenhagen/Delft/Sydney/Microsoft quantum computing consortium
and is widely used in the field of quantum materials [80]. This package was chosen
because of its simple measurement functions, neat database saving and the fact that
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most of the instruments already have virtual instrument wrappers written by the Qcodes
community.

B.1.2. Instruments

The different instruments are connected to the computer via GPIB or inserted directly
into the computer. Above the computer in the diagram is the Standford Research System
Small Instrument Module 928 (SRS SIM928) isolated voltage source used to output
DC voltage to a device in the sample area. Below the computer is an instrument used
to measure voltages from the amplifiers; either a National Instruments PCI 6221 data
acquisition card (DAQ) with a BNC 2090A accessory or the Keithley 2000 Multimeter.
The Femto DLPCA-200 current amplifier before the DAQ/Keithley measures current
from the circuit in the sample area and outputs it as an amplified voltage. In a similar
way a voltage amplifier could be used to amplify voltage from the device to the Keithley
or the DAQ. The voltage sources, DAQ and Keithley 2000 are all controlled by the
computer while the current amplifier is set manually in the lab. Each instrument is
described briefly below.

SRS SIM928 Isolated Voltage Source

The SIM928 voltage sources are modules that slot into a SRS SIM900 Mainframe. The
SIM900 provides power, computer interfacing via GPIB and clock synchronisation to
up to eight modules. The SIM900 is powered from the grid and provides power to the
control circuitry of the SIM928 modules. However, the output stage of each module is
powered by its own internal battery so that voltage output is isolated from grid noise.
The SIM928 has a resolution of 1 mV, maximum output voltage of ±20 V, typical noise
of 10 µVrms (1 kHz bandwidth) and maximum output current of ±10 mA. The SIM900 is
shown in Figure B.2 with four SIM928 modules and a SIM911 Preamp module that was
not used here.

Keithley 2000 Multimeter

The Keithley 2000 is a multimeter that can be used to measure DC/AC voltages, DC/AC
current and resistance. In this measurement setup it is only used to measure output
DC voltages from the current or voltage amplifier. The Keithley 2000 can make DC
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Figure B.2. The SIM900 with four SIM928 modules and a SIM911 module installed. Two of
the SIM928 modules are outputting voltage via coaxial cables.

voltage measurements from 0.1 µV to 1 kV with the minimum resolution of 0.1 µV. The
multimeter is connected to the computer via GPIB and measures DC voltage via banana
plugs as seen in Figure B.3.

Figure B.3. Keithley 2000 multimeter setup to measure DC voltage across two banana plugs.

PCI 6221 DAQ card with BNC2090A accessory

The PCI 6221 DAQ card is installed into the computer and connected to the external
rack accessory BNC2090A via a 68 pin connector. The BNC2090A has 2 BNC analog
outputs (AO) and 16 BNC analog inputs (AI). For this project we use only the AIs for
measuring voltages. The AOs will not be used because the SIM928 will see less grid noise
than the DAQ which is powered by the grid.
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Femto DLPCA-200 Variable Gain Low Noise Current Amplifier

The Femto DLPCA-200 is a current amplifier with a variable gain from 103 V/A to
1011 V/A and bandwidth from 1 Hz to 500 kHz. The voltage output can be AC or DC
coupled and the bandwidth can be switched to 10 Hz for low noise DC measurements.
The current amplifier also has an adjustable bias voltage. The connected current amplifier
is shown in Figure B.4.

Figure B.4. The Femto DLPCA-200 variable gain low noise current amplifier receiving current
input via a coaxial cable (left) and outputting voltage via a coaxial cable (right).
The input has no voltage bias, the gain is set to 103 V/A and the output is full
bandwidth with DC coupling. The connection on the bottom right is the power
cable.

B.1.3. Control Box

The home-made control box has 16 male BNC connector inputs for instruments to connect
to and a 24 pin cable that runs out of the box to the sample area of the fridge. Each of
the 16 BNC connectors are wired to a switch immediately above it that can be grounded,
floating or connected through the 24 pin cable to a pin in the cryostat sample area. Each
of the wires from the BNC connector to the pin on the cryostat sample area have a
resistance of 105 Ω. The control box is also used as the place where the experimentalist
may ground themselves with an electrostatic discharge (ESD) grounding bracelet when
transferring devices in and out of the cryostat sampling area or handling the cryostat.
The control box setup is shown in Figure B.5.
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Figure B.5. The home-made control box with the 16 BNC connectors that run to the cryostat
sampling area labelled. On the left is the 24 pin cable that runs to the cryostat
and the blue cable connected to the casing of the cryostat cable runs to an
electrostatic grounding bracelet. Note that connectors 7, 8 and 9 are connected
to instruments via coaxial cables. Switch 7 and 9 are in the connected position,
8 is in the floating position and all other switches are off.

B.1.4. Cryostat

The last part of the measurement setup, is the cryostat. In this thesis an Oxford
Instruments Compact Variable Temperature Insert (VTI) - Sample in vacuum cryostat
is inserted into a large storage dewar of liquid helium to cool it down to 4 K. The
sample area of the VTI is inside an Inner Vacuum Chamber (IVC) that must be pumped
to vacuum prior to cooling. The sample area has a 16 pin female dual inline holder
where male chip holders carrying device chips may be placed. The 16 pins connect to
the inner pin of the BNC connectors on the control box so that one can apply and
measure potentials of the device in the sample area. The VTI has a heat exchanger for
heating the sample once cryogenic temperatures are reached and a Cernox 1050 calibrated
thermometer for sensing the temperature of the heat exchanger. The heat exchanger and
thermometer can be controlled by a temperature controller via the connection of a 6 pin



Measurement techniques 137

cable that was built in the lab. The VTI has Radio Frequency (RF) lines and a fibre
optic that run to the sample area. The VTI also has a heat exchanger flow line that can
be activated using an external pump to draw liquid helium through a coil above the IVC
to cool the sample close to 1 K temperatures. The pressure of the helium flow can be
controlled by releasing the needle valve. Figure B.6 is an annotated picture of the VTI.

IVC cover
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shield

Coil 
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He flow line

Neck
adapter

Slide
clamp
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optic
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flow line

Valve to
IVC 

Bladder of
He gas

Needle
valve

 Cable to
control box

 Cable to
temperature
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Figure B.6. The Oxford Instruments Compact Variable Temperature Insert (VTI) with the
key components labelled.

B.1.5. Measurement philosophy

First, one must have a chip of devices in a chip holder with devices bonded to certain
pins of the chip holder. This chip holder is placed in the sample area of the VTI. The
chip holder pins are now connected (through the grounding switches) to the control box
where the voltage sources and amplifiers can be connected to supply voltage or measure
currents and voltages. The current or voltage amplifier output is connected to either the
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DAQ card or the Keithley which will measure the output voltage of the amplifier. The
voltage sources, DAQ card and Keithley are all connected to the computer and controlled
by Python code.

To make a measurement of one of the devices on the chip, one must first ensure
that the voltage sources and the current amplifier are connected to the correct pins,
turn the switches to these pins from ground to on and run the prepared Python code
for the measurement. The voltage sources will supply voltage to the devices and the
current amplifier will send the current output as a voltage to be measured by the DAQ
or Keithley. The results will then be saved on the computer using the database features
of Qcodes for post experiment analysis.

B.2. Testing the measurement setup

This section outlines a room temperature test performed on the measurement setup to
prepare it for measurements at cryogenic temperatures. The main setup used in this
thesis is a simple single gate transistor setup for measuring IV curves.

Device

Gate

DS

Supplies:  
Gate voltage

Control
box

Current
amplifier

Keithley +
-

SIM 928 +
-

SIM 928 -
+

Supplies:
Source voltage

Measures:  
Drain current

Figure B.7. The single gate transistor setup.



Measurement techniques 139

B.2.1. Transistor IV curve setup

The setup used for the measurement of single gate transistors is shown in the circuit
diagram of Figure B.7. The SIM 928 isolated voltage sources supply the gate voltage
and source voltage from their positive terminals. The current amplifier takes the drain
current as an input and outputs a gained voltage measured by the positive terminal
of the Keithley. The negative terminal of the SIM 928 voltage sources, the Keithley
and the current amplifier are all connected to the control box as a common ground.
The measurement setup was tested for a number of devices including resistors, Zener
diodes and bipolar junction transistors. For brevity the resistor is discussed and not the
transistor and Zener diode test.

The first basic test performed was producing the characteristic I-V curve of a 100 kΩ

resistor. The resistor was placed directly in the sample area and the instruments connected
to the corresponding control box pins to form the single gate transistor circuit without
the gate. The current was measured for a voltage sweep from 100 mV to 120 mV with
a current amplifier gain of 106 V/A. The result of the sweep is the IV curve shown
in Figure B.8. The slope of the line corresponds to 102.3 kΩ which is within the 5%
tolerance of the resistor. The wires from the control box to the cryostat each have a
resistance of about 100 Ω, but this is less than 1% of the resistors value. The offset of
the 0.01 µA was later discovered to be from the offset of the current amplifier.
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Figure B.8. The IV curve of the resistor in the VTI sample area measured by the current
amplifier to the Keithley for different SIM928 voltages. The blue filled circles
are the data and the green dashed line is the linear fit.
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The single gate transistor setup was successful in measuring resistors, Zener diodes
and transistors according to their manufacturers specifications. Hence, the setup was
ready for the cryogenic measurements performed in Chapter 3.



Appendix C.

Cryogenic cooling

Quantum mechanical phenomena are more easily observed in a low temperature system
where only the lowest energy states of a material are occupied and any changes to the
system cannot be due to thermal excitations. The types of phenomena that are observable
depend on the amount of thermal energy available to the system. For the measurements
in this thesis, temperatures close to absolute zero are required. The conventional method
for achieving these temperatures is by thermal contact with cryogenic liquids such as
nitrogen and helium which have boiling points much lower than room temperature, 77 K

and 4 K respectively. By bringing a sample in contact with these cryogenic liquids the
sample can reach temperatures close to the boiling point of the liquid. By pumping
helium through a flow line adjacent to the sample, temperatures of 1 K can be reached
and by using more complex systems such as a dilution fridge temperatures on the order
of 1 mK can be achieved. This chapter will discuss cooling with liquid helium, how one
would cool a sample to 1 K, thermometry and an in depth description of the cooldown
procedure used during the experiments of this thesis.

C.1. Cooling with liquid helium

From the second law of thermodynamics, when two isolated systems each at thermal
equilibrium are brought into thermal contact, after a given period of time the systems will
reach thermal equilibrium i.e. share the same temperature. This is the basis of cryogenic
cooling with liquid helium. In the following experiments, the sample is cooled to 4 K by
attaching it to the cold finger of the VTI and inserting it into an open neck dewar of
liquid helium. The sample on the cold finger is inside a rough vacuum chamber made of
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copper that is flushed with helium gas to provide thermal contact between the sample
and the liquid cryogen. After a period of time the sample will cool to the temperature of
liquid helium (4 K), that is thermal equilibrium will be reached.

C.1.1. Cooling to 1K

To reach temperatures below that of liquid helium’s boiling point the cryostat has a
flow line that can be pumped to create a continuous flow of liquid helium and cold
gas through the cryostat’s heat exchanger. The flow line takes in liquid helium from
a small capillary tube at the bottom of the VTI and runs up the cryostat through a
heater exchanger which wraps around the top of the finger in a coil and out to the pump.
Refer to Figure B.6. The flow of cold gas through the heat exchanger cools the vacuum
chamber and the sample space. The pressure of the cold gas running through the flow
line can be controlled by the needle valve which in turn controls the temperature [140].

The heat exchanger is installed with a resistor thermometer, Cernox 1050, and
a heating resistor that are connected to the temperature controller. Once the base
temperature of approximately 1 K is reached the temperature controller can be used to
increase the temperature of the heat exchanger and in turn warm the sample to desired
temperatures. The sample is not in direct thermal contact with the helium reservoir so
the heating of the sample should not create excess evaporation of the liquid helium which
would occur otherwise [141].

C.2. Thermometry

Changes in a body’s temperature can lead to changes in the physical properties of the
body e.g. phase, dimensions, vapour pressure, electrical resistance. These changing
properties can be utilised as a means for measuring temperature or temperature change.

For temperatures above T ≈ 50 mK one of the most useful measuring systems is the
resistance thermometer. The electrical resistance in a resistor varies as the temperature
changes. By determining the resistance of the resistor one can determine the temperature.
The resistance thermometer used in this setup uses a direct determination measurement
of the resistances but there are other methods such as Wheatstone bridge techniques
[142] which can offer greater resolution with the risk of complicating the setup.
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The direct determination measurement uses a potentiometric setup in which a current
is passed through the resistor and the voltage across it is measured. The VTI resistor
uses a four wire setup in which the two outer leads supply the current and the two inner
leads measure voltage, see Figure C.1. The benefit of the four wire setup over a two
wire setup is two-fold; the lead resistance is not included in the measurement and the
high output impedance of the current source guarantees a fixed current independent of
the lead resistance [142]. The high input impedance of the voltmeter ensures that little
current will flow into the voltage leads thus avoiding any significant potential drop in the
leads when a measurement is made.

V

Cryogenic environment

Figure C.1. The four wire setup used to measure the resistance thermometer RT without
being affected by the lead resistance RL. Based on Figure 3.6b in [142].

The VTI resistor is a Cernox 1050 which is a thin-film ‘ceramic’ thermometer based on
zirconium oxynitride. These are widely used because they are not as sensitive to magnetic
fields as the metallic resistance thermometers. The thermometers have a negative dR

dT

being around 105 Ω at 1 K, 102 Ω at 100 K and 50 Ω at room temperature (300 K) [142].
The Cernox 1050 resistance thermometer is made for temperature sensing from 1 K to
400 K which is suitable for the cryogenic experiments performed in our laboratory. The
temperature controller must be calibrated with a calibration curve of the thermometer’s
resistance against temperature in order to accurately sense the temperature.

C.3. The cooling procedure

The following cooling procedure was used in the cryogenic measurements of Chapter 3.
The primary objective of the cooling procedure is to efficiently and safely cool devices
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below 4 K for a long enough period of time that measurements can be performed. This
section will outline and describe the required equipment, safety considerations and the
step by step procedure of cooling the devices.

C.3.1. Required equipment

Similar to the measurement setup there are many essential components to a the cryogenic
cooling setup. A list of required components is given below. A brief description of the
main components; the cryostat, the pump setup and the temperature controller are also
given.

1. Oxford Variable Temperature Insert (VTI) - Sample in vacuum

2. Vacuum pump setup (minimum pump speed of 8 m3h−1)

3. Temperature Controller

4. 100 L storage dewar full of liquid helium with neck adapter to fit the VTI

5. Silicon Grease

6. Helium gas

7. Safety equipment

a) Cryogenic Gloves

b) Closed shoes

c) Lab Coat

d) Face shield or goggles, NOT safety glasses

e) Oxygen Sensor (if the lab is too small to contain all the helium if it were to
evaporate)

Cryostat

As introduced in the appendix B.1.4, the cryostat used for cooling to cryogenic tempera-
tures in this work is the Oxford Instruments Compact Variable Temperature Insert (VTI)
- Sample in vacuum. The devices are stored in a vacuum chamber and reach cryogenic
temperatures by insertion of the VTI into a dewar of liquid helium.
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By thermal contact with the liquid helium alone devices in the VTI can reach
temperatures of 4 K. By pumping the flow line of the VTI which draws helium through
the coil of the VTI, temperatures close to 1 K may be reached. There was not much
preparation required for the VTI other than checking that the lines to the sample area
pins are connected and the flow line is clear.

Vacuum Pump Setup

The pump station consists of a turbo molecular pump, the Agilent TwissTorr 74 FS,
backed by a scroll pump, the Agilent IDP-7 dry scroll pump and two gauges; a Convectron
gauge and a pirani gauge. The pump station is connected to the lines on the head of
the VTI which lead to the helium flow line and IVC. A detailed schematic of the setup
is given in Figure C.2. The scroll pump is used to back the turbo molecular pump and
draw helium through the VTI flow line. The turbo molecular pump is used to pump the
IVC to a rough vacuum < 0.5 mbar. It is possible to reach a rough vacuum of 10−2 mbar

using the scroll pump, however, the turbo molecular pump can speed up the process
and achieve a vacuum pressure as low as 10−10 mbar. The 275 Mini-Convectron gauge
before the scroll pump can measure atmospheric pressure to 10−4 mbar while the Agilent
FRG-700 full range pirani gauge can measure from just below atmospheric pressure to
10−9 mbar. The bladder of helium gas is used to flush the vacuum chamber and to release
a small amount of helium gas into the IVC for thermal conductance. All the valves
used are manually operated screw valves for maximum control of the pump lines. The
operation of the vacuum pump setup will be described in appendix C.3.3.

The vacuum pump station was ordered in parts and built in the laboratory on a
mobile trolley. Figure C.3 is an annotated image of the setup. All pumps and gauges
were calibrated by the manufacturers. The offset of the Convectron gauge had to be
tuned to atmospheric pressure using the offset screw.

Temperature Controller

The Lakeshore model 340 temperature controller is used to measure and control the
temperature of the VTI. The temperature controller has a sensor that can measure the
temperature of the VTI’s resistor thermometer and a current source for sending current
to the resistive heater in the VTI.
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Figure C.2. A schematic of the vacuum pump setup. The bottom is the setup on the mobile
pump station and the top is the connections on the head of the VTI leading to
the helium flow line and inner vacuum chamber (IVC). The ×’s correspond to
manual valves and the flange of inputs/outputs is labelled.

The 6 pin cable to connect the sensor and heater to the VTI was built in the lab.
There are four pins for the sensor (I+, I−, V +, V −) and two for the heater (+,−). The
manual recommends that the heater and the sensor connections be split into separate
wires to reduce noise, however, for simplicity and neater cabling they were both put in a
single cable 10 wire cable with twisted pairs and shielding. The temperature controller
was calibrated for sensing the VTI’s Cernox resistor using a temperature response curve
from the Lakeshore disc. The response curve converts the sensor readings from sensor
units to temperature units, Kelvin or Celsius.

C.3.2. Safety

Standard plastic gloves were worn whenever handling the VTI components or device chips
so that no impurities or grease are present when being cooled in the liquid helium. This
reduces the risk of damaging devices and dangerous explosions due to trapped oxygen
freezing. Personal protective equipment was also worn when inserting and removing the
VTI from the dewar of liquid helium.

One of the biggest dangers when working with liquid helium is asphyxiation, the lack
of oxygen in the air due to its reaction with helium gas. The lab in which the experiment
was performed is large enough that asphyxiation is not a danger but if it were performed
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Figure C.3. An annotated image of the pump station. The red arrows identify the different
components and the blue arrows indicate which parts of the VTI the pump lines
connect to via bellows. Compare to the schematic Figure C.2.

in a smaller lab where the volume of evaporated helium from a full dewar is larger than
the volume of oxygen in the room an oxygen sensor would be required.

C.3.3. The cool down procedure

Prior to beginning the cooling procedure the following checks were made:

• All instruments and the computer were on

• The instruments and computer were connected properly

• The control box was connected to the VTI
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• The temperature cable was connected to VTI (and temperature controller read
room temperature)

• All control box switches were grounded

After these checks the device chip was inserted into the sample area. The instruments
were then connected to the control box pins based on the desired measurement circuit and
the configuration of the devices on chip. It is good practice to test the devices at room
temperature before cooling. For troubleshooting reasons one should also test the devices
at each step of the cooling procedure e.g. after attaching the IVC cover, after pumping
and after inserting VTI into the dewar. Then if the device breaks the experimentalist
knows at which step the device stopped working and can easily determine the reason for
device failure.

Once the measurement setup was ready and the device chip to be measured was
secured in the VTI’s sample area, the following cooling procedure was performed:

1. Prepare the IVC of the VTI

2. Insert the VTI into the dewar of liquid helium

3. Cool down measurement sweeps

4. Pump liquid helium through the VTI flow line

5. Take measurements above the base temperature

The following sections describe in detail these steps.

Preparing the IVC

In this step, the IVC cover was sealed in place over the VTI sample area by creating
a rough vacuum. With the device chip in the sample area of the VTI and all its pins
grounded the radiation shield was carefully slid on and screwed into place. The slide
clamp for lowering the VTI into the dewar and the neck adapter for the dewar were
carefully slid over the sample area to just above the coil of the VTI. A small amount
of silicon vacuum grease was applied to the IVC collar of the VTI and the inside of the
IVC cover. The IVC cover was then carefully slid over the end of the VTI sample area
ensuring that the capillary tube of the flow line remains outside of the cover. White
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plumbing tape was wrapped around the flow line and the IVC to keep the capillary tube
in place. The IVC cover was pushed firmly in place.

Before connecting the pump to the IVC pump line, the bladder depicted in Figure B.6
was completely filled with helium gas, clamped off and attached to the nozzle on the IVC
line. This helium must be used later to flush the IVC, hence, it is important the bladder
is clamped so that the helium gas is not lost. With the pump station disconnected
from the VTI lines and both valves before the scroll pump closed; the scroll pump, the
turbo pump controller and gauges were turned on. Refer to Figure C.2 and Figure C.3.
The setup was disconnected from the VTI so that the devices would not experience any
sudden potential changes produced from turning on the pump setup. With the turbo
pump off and the valve of the IVC closed the input line of the turbo pump was connected
to the IVC. With the valve to the bladder of helium gas and the valve before the turbo
closed, the valve after the turbo pump was opened. The valve before the turbo pump
was then opened and the scroll pump used to pump the IVC.

Once the Convectron gauge read approximately 100 mTorr or 0.1 mbar on the Pirani
gauge, the IVC valve was closed and the system flushed with some helium gas by slightly
opening the valve to the helium gas bladder and closing it immediately after. The turbo
pump was then turned on to achieve a vacuum of about 10−2 mbar as read on the Pirani
gauge. Once the rough vacuum was achieved the valve before the turbo was closed and a
small amount of gas helium was let into the IVC by slightly opening the valve to the
bladder. The gas helium provides thermal contact with the liquid helium outside the
IVC when the VTI is placed in liquid helium.

The rough vacuum firmly sealed the IVC cover onto the VTI. The turbo pump was
spun down and then the valve after the turbo pump closed so that the pump setup could
be disconnected at the valve of the IVC line. Once disconnected, the other components
of the pump setup were turned off.

Insert the VTI into dewar

All the valves leading to the head of the VTI were sealed. The slide clamp and the neck
adapter were placed just above the coil. The 100 L dewar of liquid helium was brought
near the VTI so that the VTI may be inserted. The clamp holding the dewar lid on
was opened and the dewar lid carefully removed and placed on an empty clean bench.
The VTI was then slowly and carefully lowered into the dewar. Once the neck adaptor
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rested on the dewar’s neck it was clamped in place. The VTI was sticking out of the
dewar as pictured in Figure C.4. The VTI was left in this position until the temperature
controller reached a steady temperature.

Neck
adapter

Slide
Clamp

Dewar

VTI

Figure C.4. The VTI after initial insertion into the dewar of liquid helium.

The liquid helium will evaporate on contact with anything warmer than 4.2 K, so the
VTI had to be inserted slowly to reduce the amount of evaporation. Once, the VTI and
helium reached equilibrium the VTI could be lowered further into the dewar in small
increments. Ideally, the gas out of the liquid helium dewar goes to a helium liquefier to
be recovered but the laboratory was not yet setup for this.

Initial cool down measurement

Once the VTI was inserted the device immediately started cooling. At this point
an infinite sweep measurement of the device was initiated to ensure the device was
still functioning and to observe the evolution of its operation as it approached lower
temperatures. If the device did fail at some point during cool down, this would provide a
good record of what happened in the lead up to the breaking of the device.



Cryogenic cooling 151

As mentioned above, to fully immerse the VTI in liquid helium the VTI was gradually
lowered in increments to reduce excessive evaporation of liquid helium. One must follow
a process of opening the clamp, further inserting the VTI by a small amount, closing the
clamp, waiting for the temperature of the VTI and gas helium pressure from evaporation
to settle before repeating the same steps. This was repeated until the VTI was fully
immersed.

Pump the flow line

Once the VTI is fully inserted into the dewar of liquid helium the device should be 4 K

because of thermal contact with the liquid helium. In order to cool the device further to
1 K the VTI flow line must be utilised. The scroll pump and the Convectron gauge were
turned on while disconnected from the VTI. The scroll pump line was connected to the
VTI flow line and the valves to the flow line opened. The needle valve was then opened
slightly to draw helium through the flow line and the coil above the IVC. The needle
valve was adjusted until the desired temperature was reached. The further the needle
valve is opened the more helium is released.

Measurements at higher temperatures

From the base temperature reached, measurements can be made in successive, positive
increments of temperature. This could be done either by heating the VTI’s resistor with
the temperature controller using a feedback loop or by gradually lifting the VTI out of
the helium dewar and letting it equilibrate at higher temperatures. The latter method
is much simpler to perform but causes a larger quantity of liquid helium to evaporate
and cannot accurately select a temperature for the system. The temperature controller
method requires more setup and calibration of the feedback loop but it gives more
accurate results. For these experiments the latter method was employed for simplicity.

C.3.4. The warm-up procedure

The VTI was taken back to room temperature by performing the cool down procedure
in reverse. The VTI was incrementally lifted from the lowest clamp position to the top
ensuring minimal liquid helium evaporation. Once the VTI reached thermal equilibrium
at the top of the dewar it was carefully removed. The VTI was left to warm up for a few
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hours before the IVC vaccum was released. If the vacuum is released when the IVC is
too cold, the air entering the vacuum would expand rapidly in the IVC and could break
the wires of the device. After letting the VTI warm to room temperature the IVC valve
was opened slowly to release the vacuum. The IVC cover was then carefully removed as
to not damage devices. The devices were then removed from the sample area and stored
in the lab.



Appendix D.

Quantum transport through dopants in
silicon supplementary

D.1. Determining the energy barrier and conduction

band minimum

The Coulomb peaks occurring in the current-voltage trace of Figure 3.7b at sub-threshold
voltages can be due to the bound states of donors or the quantum dot formed by the
energy barriers and the corners of the silicon channel. In this section, the location of
the conduction band minimum is determined to differentiate between the donor and
quantum dot states. At higher temperatures the current through the corner regions of
the FinFET is dominated by thermionic emission of the carriers over the channel and
the energy barriers EB in Figure 3.8b. The thermionic emission model can be used to
determine the height of the energy barrier and the cross-sectional area of the current
flow. From the energy barrier height as a function of gate voltage, the conduction band
minimum can be determined.

Thermionic emission is a conduction mechanism associated with a potential barrier.
The electrons are transported over the barrier by thermal excitation. The thermionic-
emission current density produced from thermally excited electrons can be determined
by integrating the number of carriers above the barrier with energy EB. The resulting
current density is [78]

J = A∗T 2 exp

(
− EB
kBT

)
(D.1)
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where kB is the Boltzmann constant and A∗ is the effective Richardson’s constant.
For electrons in silicon the effective Richardson constant is A∗ = 2.1A with A =

120 Acm−2K−2 the Richardson constant [78]. The thermionic-emission current is then
the current density equation (D.1) multiplied by the cross-sectional area of current flow
S

I = SJ = SA∗T 2 exp

(
− EB
kBT

)
. (D.2)

The natural log of equation (D.2), after rearranging, gives log (I/T 2) as a linear function
of 1/T

log
(
I/T 2

)
= −EB

kB

1

T
+ log (SA∗). (D.3)

Linear regression fits were performed for FinFET2’s drain current data, log(ID/T
2)

against 1/T . Figure D.1 is the drain current of FinFET2 as a function of 1/T for different
gate voltages. The solid lines are created using the results of the linear regression fits and
rearranging equation (D.3). The slope and intercept of these fits was used to determine
the barrier energy EB and the cross-sectional area of current flow S, respectively. The
FinFET current is dominated by thermal emission above approximately 220 K.

The barrier height as a function of gate voltage is plotted in Figure D.2. The barrier
energy decreases linearly with increased gate voltage. Oddly, at higher gate voltages the
energy barrier is negative. From the works of Sellier et al. [44, 75], one would expect
the energy barrier to decrease linearly with voltage while the conduction band of the
channel is above the energy barriers. However, once the conduction band edge was below
the energy barriers expected the barrier height to approach a plateau so that a small
barrier height remains. The spacer regions in this FinFET may have a higher number of
dopants and as a result have lower energy barriers that decrease with the conduction
band below the Fermi level. However, given the small number of data points and smaller
R2 values in some of the thermionic emission fits, it is likely that more drain current
data at higher temperatures is required.

The linear fit to the barrier height as a function of gate voltage in Figure D.2 has a
R2 = 0.999. The slope of the fit determines the coupling between the barrier and the
gate, α = (1/e)(dEB/dVG) = 0.42± 0.04. The work of Sellier et al. [44, 75] with similar
devices reports a coupling α = 0.68. The weaker coupling in our devices could be due to
a gate of different dimensions or old wire bonds. The y-intercept of the fit gives a barrier
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Figure D.1. Thermionic emission of the FinFETs. The diamonds are the FinFET2 drain
current data for gate voltages steps of 50 mV. The solid lines represent the
thermionic emission fit, equation (D.2), with the corresponding barrier energy
EB, cross-section S and R2 value.
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Figure D.2. The energy of the barrier as a function of gate voltage. The triangles are the
values extracted from the thermionic emission fits and the dashed line is a fit to
these values. The red star is the x intercept of the fit VG = 330± 10 mV. The
slope of line is −α = dEB/edVG.
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height of 140± 10 mV at zero gate voltage, less than the 220 mV reported for similar
devices [75]. The x-intercept of this fit, 330± 10 mV, corresponds to the point where the
conduction band minimum matches the Fermi level EC = EF . Referring to Figure 3.8
and assuming the conduction band edge and barriers decrease together, the Fermi level
and conduction band edge would align when the energy barriers are zero. Above gate
voltages of 330 mV the low temperature current will rise due to the conduction band
states and below 330 mV is the region where dopants states should occur.

The cross-sectional area of current flow S has an average value of 4.5± 0.5 nm2 across
the five fits. This agrees with the work of Sellier [75] which found similar devices to have
a cross section of 4 nm2. This also confirms the corner effect since the cross-section of
current flow is much smaller than the silicon fins cross-sectional area of at least 2000 nm2.

D.2. Limits of the measurement setup

The results of this experiment are limited by two main factors. Firstly, the current
measurements are limited by the resolution and range of the current amplifier. Secondly,
the devices were only cooled to a temperature of 11 K and ideally temperatures of 4 K

and below should be reached to measure clear Coulomb peaks.

D.2.1. Current amplifier gain and offset

The current amplifier measures the drain current and outputs it as a gained voltage
which in this setup is measured by the Keithley 2000 multimeter. The current amplifier
can output a maximum DC voltage of ±10 V and has a switchable gain from 103 V/A to
1011 V/A. At the 10 V range, the Keithley multimeter has a resolution of 10 µV. This
should give six orders of magnitude for current measurements at any current amplifier
gain (10 µV to 10 V). However, due to the current amplifier’s offset and the fixed output
voltage range, the range of currents that can be read in a single stability diagram is
limited.

During initial gate voltage sweeps in this low temperature run the output voltage of
the current amplifier approached ∼ 10 mV at zero gate voltage. This occurred for all
sweeps irrespective of the current amplifier gain, see Figure D.3a. Upon investigation,
this offset was due to the imbalance of the transistors in the current amplifier and could
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be reduced by turning a small ‘offset’ screw on the current amplifier itself. Since this
discovery was mid-cool down, the offset screw of the current amplifier was adjusted to
minimise the output voltage without a reference current. The minimum offset that could
be achieved mid-cool down was 1 mV improving the resolution of the current by one
order of magnitude as in Figure D.3b. Ideally, this offset would be calibrated to a known
constant DC current source with an accurate multimeter prior to the experiment.
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Figure D.3. Current amplifier troubleshooting. Gate voltage sweeps of FinFET2 with 1 mV
source drain bias at ∼ 12 K. (a) The output of the current amplifier for different
gains all approaching 10 mV at zero gate voltage. (b) The current amplifier
output for the different offsets. (c) Drain current traces for various current
amplifier gains. (d) Drain current traces of current measured with the current
amplifier versus directly with the Keithley.

The range of the current amplifier voltage output limits the range of the currents that
can be measured. The current resolution increases with the gain of the amplifier as seen
in Figure D.3c. However, increasing the gain also reduces the maximum current output
because the current amplifier can only output a maximum of 10 V. At 105 V/A gain
the resolution is 10 nA and the maximum output is 100 µA while at 107 V/A gain the
resolution is 100 pA and the maximum output is 1 µA. The Coulomb diamonds for these
devices at 4 K and below typically span ±30 mV source drain voltage [44, 45, 46, 75].
The current at source drain voltages of 30 mV and gate voltages of 300 mV–400 mV is
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the order of 10 µA. A stability with full Coulomb diamonds would require a current
amplifier gain of 105 V/A so that these voltages do not overload the current amplifier.
Unfortunately, this amplifier gain would not resolve Coulomb peaks of interest on the
order of 100 pA (or 100 nS for conductance), see Figure 3.9 and [44, 45, 46]. The only
way to resolve these peaks is to set the current amplifier gain to 107 V/A (or lower) which
gives a resolution of 100 pA. However, then the current amplifier overloads at 1 µA and
one has to settle for a small stability diagram like Figure 3.11 with ±10 mV source drain
range. For a full stability diagram a current output from at least 10 pA to 10 µA, a range
of 106, would be required. Two orders of magnitude larger than the current amplifier’s
output range in this experiment.

In attempts to solve this output range problem, the current amplifier was bypassed
and the drain current was measured by the Keithley multimeter directly. The Keithley
is sensitive to a larger range of current and is documented with a resolution of 1 nA.
However, the minimum resolution of the Keithley’s DC current measurement was found
to be closer to 100 nA, see Figure D.3d. The current amplifier outputting voltage into
the Keithley has a lower noise floor than measuring current with the Keithley directly.

Only the FinFET2 results were measured with the reduced current amplifier offset.
The FinFET2 and FinFET1 stability diagram were taken at gains of 106 V/A and
107 V/A, respectively, and the Coulomb peak traces at 107 V/A. Ideally, a 107 V/A gain
stability diagram would have been taken for FinFET2 to resolve the 10 pA peaks, however,
the liquid helium in the storage dewar evaporated before this measurement and FinFET1
measurements could be reproduced with the reduced offset. Before future experiments
it would be important to improve the range of drain current that can be measured in
a single sweep. It may be possible to achieve this by interfacing the current amplifier
with the computer and calibrating the offset with a reference current. Otherwise, a more
accurate current amplifier or ammeter should be employed.

D.2.2. Problems encountered with cooling

The lowest temperature reached in these measurements was 11 K, with the VTI completely
lowered into the dewar of liquid helium, which was less than half full (∼ 40 L), and
allowed to equilibrate for a day. The cryostat system should be able to reach temperatures
below 4 K. There are three factors that may have contributed to this high temperature:
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1. The VTI flow line valve was mistakenly not replaced after the previous cool down.
As a result the flow line was open to warm air while the VTI was in the dewar
which could raise the temperature of the devices and increased helium evaporation.

2. The remaining liquid helium in the dewar was not enough to cover the VTI and
cool the devices to the boiling point of helium.

3. The Lakeshore was reading the incorrect temperature, whether that be due to poor
calibration or problems with cabling, and the devices did actually reach 4 K.

Point 1 is likely the largest contribution to this higher temperature as it was determined
prior to experiment that the valve was in fact left open during measurement. Considering
that there is evidence of thermal fluctuations in the measurement results, namely a
baseline current, broad Coulomb peaks and small Coulomb diamonds, it is unlikely to be
the Lakeshore’s calibration. The half full dewar is also likely to contribute to the high
temperature but this is much harder to determine. Ideally, all these problems should be
addressed before future experiments. The experimentalist should have a storage dewar of
liquid helium close to full, the Lakeshore temperature controller should be recalibrated
and cabling tested and all valves on the VTI should be fitted and sealed prior to cool
down.
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Appendix E.

Effective g-factor anisotropy of InAs
nanowires supplementary

E.1. Magnetic field dependence of the effective

g-factor anisotropy

The magnetic field applied in the simulations of Chapter 5 is quite large (5 T). The
reason for this large applied magnetic field is so that the lowest subband spin states
experience a large spin splitting and can be easily resolved by NEMO3D’s Lanczos
algorithm. Spin states that are too close together typically take longer to find or require
a more intensive version of the Lanczos algorithm. Although this is a large magnetic field
which is difficult to apply in practice, it should capture the same g-factor anisotropy as
for smaller magnetic fields. This is because the subband splitting is the dominant energy
scale in the confined systems explored in this work and therefore the influence of the
magnetic field is negligible according to equation (5.18). To verify that applying a large
magnetic field does not change the g-factor anisotropy, the effective g-factor of the lowest
conduction subband was calculated for the L = 10 nm mixed-ion terminating nanowire
with different magnetic field magnitudes. The results are shown in Figure E.1. These
results clearly illustrate that the magnitude of the magnetic field applied has negligible
effect on the g-factor anisotropy for three different magnetic fields ranging from 1 T to
9 T. Hence, applying a magnetic field of 5 T for the sake of simplifying computations
should not produce unphysical results.
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Figure E.1. The effective g-factor anisotropy of the lowest conduction subband of the L =
10 nm mixed-ion termination nanowire for different applied magnetic fields B.
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