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REVIEW

Bevacizumab-Induced Hypertension in 
Glioblastoma Patients and Its Potential as a 
Modulator of Treatment Response
Kaitlin G. Scheer , Lisa M. Ebert, Michael S. Samuel , Claudine S. Bonder , Guillermo A. Gomez

ABSTRACT: Glioblastoma invasion is the primary mechanism responsible for its dismal prognosis and is the direct result 
of interactions between glioblastoma cells and the tumor vasculature. The dysregulated microvasculature in glioblastoma 
tumors and vessels co-opted from surrounding brain tissue support rapid tumor growth and are utilized as pathways for 
invasive cancer cells. Attempts to target the glioblastoma vasculature with antiangiogenic agents (eg, bevacizumab) have 
nonetheless shown limited and inconsistent efficacy, and the underlying causes of such heterogeneous responses remain 
unknown. Several studies have identified that patients with glioblastoma who develop hypertension following treatment with 
bevacizumab show significant improvement in overall survival compared with normotensive nonresponders. Here we review 
these findings and discuss the potential of hypertension as a biomarker for glioblastoma treatment response in individual 
patients and the role of hypertension as a modulator of interactions between tumor cells and cells in the perivascular niche. 
We suggest that a better understanding of the actions of bevacizumab and hypertension at the cellular level will contribute 
to developing more effective personalized therapies that address glioblastoma tumor cell invasion.
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Glioblastoma is the most common and aggressive 
form of brain cancer, with <5% of patients achiev-
ing 5-year survival.1,2 Despite concerted research 

efforts over the past 3 decades, overall survival (OS) for 
glioblastoma has increased by only 3 months, extending 
median survival from 12 to 15 months following intro-
duction of the Stupp protocol in 2005.3,4 This protocol 
remains the standard of care for patients with glioblas-
toma and combines maximal surgical resection of the 
primary tumor and postoperative radiotherapy with con-
current Temozolomide administration.4 Unfortunately, 
patients treated with the Stupp protocol invariably expe-
rience therapy resistant tumor recurrence.5

Interactions between cancer cells and the microen-
vironment, particularly those cells comprising the ves-
sels within the tumor, contribute to therapy resistance.6 

Glioblastoma vascularization is a prognostic marker 
predictive of patient survival, with increased tumor 
microvessel density correlating with poorer OS.7–9 
Angiogenesis in glioblastoma is predominantly attrib-
uted to the upregulation of VEGFA (vascular endo-
thelial growth factor A), which stimulates endothelial 
cell (EC) survival, proliferation, and migration as well 
as EC progenitor differentiation.10–12 Of note, the exist-
ing brain vasculature is insufficient to sustain rapidly 
growing glioblastoma, which inevitably results in the 
generation of hypoxic gradients within the tumour.13 
Hypoxia-induced VEGFA expression subsequently 
stimulates the formation of new blood vessels13,14 
(Figure 1A), which are tortuous, leaky, and poorly 
structured in comparison to vessels in the healthy 
brain.15 Thus, although glioblastoma tumors are highly 
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vascularized, the poorly formed neovessels that origi-
nate within the tumors do not alleviate hypoxia. As a 
result, cancer cells in hypoxic regions of the tumor 
often switch from a proliferative to a more migratory 
and invasive mesenchymal phenotype.16,17 These cells 
then not only escape and migrate away from hypoxic 
regions by invading the surrounding healthy tissue but 
also undergo transcriptional changes that additionally 
increase their resistance to therapy.18

Blockade of specific vascular development pathways 
with bevacizumab, a VEGFA inhibitor, was anticipated 
to be an effective treatment for glioblastoma.19 How-
ever, while bevacizumab showed promise in early clinical 
trials, it has not consistently yielded an OS benefit for 
patients.20 Indeed, treatment with bevacizumab is asso-
ciated with increased tumor invasion.21–23 Intriguingly, a 
subset (≈40%) of patients who develop hypertension fol-
lowing bevacizumab treatment exhibit significant survival 
benefits compared with normotensive patients.24–27

Despite the limited success and its association with an 
invasive phenotype, bevacizumab is being broadly adopted 
to treat recurrent glioblastoma. This reliance on beva-
cizumab emphasizes the importance of unravelling the 
mechanisms contributing to disparate patient responses 
to this agent. In particular, understanding the role of tumor-
vessel interactions and the development of hypertension 
is likely to be critical for identifying glioblastoma patients 
who benefit the most from receiving bevacizumab.

HYPERTENSION AS A BIOMARKER 
OF RESPONSE TO BEVACIZUMAB 
TREATMENT IN GLIOBLASTOMA
Antiangiogenic agents were tested with the goals of nor-
malizing aberrant vasculature (and thus reducing edema), 
disrupting the glioblastoma perivascular niche, and improv-
ing access of other chemotherapeutics to the tumor.28 A 
large majority of antiangiogenic compounds tested for 
efficacy against glioblastoma target VEGFA signaling. This 
is through inhibition of VEGFA ligand, its principal recep-
tor VEGFR2/KDR, or downstream signaling molecules.20 
For a detailed review of antiangiogenic drugs trialed for 
glioblastoma, see Anthony et al.20 The most extensively 

studied drug, bevacizumab, is a recombinant humanized 
monoclonal antibody that binds VEGFA, preventing recep-
tor interaction and blocking VEGFA-mediated proangio-
genic signaling.29 In 2009, the United States Food and 
Drug Administration approved bevacizumab treatment for 
recurrent glioblastoma based on the promising results in 2 
phase II clinical trials.30 Elsewhere, applications for bevaci-
zumab treatment of glioblastoma met with resistance due 
to insufficient evidence of efficacy.31,32 Approval was even-
tually granted in some countries33,34 and it is used off-label 
in others,35 despite limited evidence of consistent or sub-
stantial efficacy.32,34 The improvement in progression-free 
survival commonly reported over the preceding 10 years 
of clinical trials is now referred to as a pseudoresponse.36 
This is because bevacizumab stabilizes the vasculature 
by inhibiting VEGFA-induced vessel permeabilization,37 
and thereby restores blood-brain barrier integrity, leading 
to skewed magnetic resonance imaging readouts due to 
marked decreases of hyperperfusion, edema, and contrast 
enhancement.36

The most reported adverse event following admin-
istration of bevacizumab is hypertension (grade 2–3), 
which affects ≈40% of treated patients24–27,38,39 (Fig-
ure 1B). Interestingly, with the exception of 1 small pro-
spective study,38 patients who developed hypertension 
following bevacizumab treatment demonstrated pro-
longed progression-free survival and OS, with statistically 
significant increases in OS ranging from 5 to 9 months 
compared with normotensive patients.24–27 Furthermore, 
bevacizumab-induced hypertension was shown by mul-
tivariate analysis to independently predict improved 
OS.24–27,39 It is, therefore, possible that the inconsisten-
cies of reported bevacizumab efficacy across different 
clinical trials may be a result of the large proportion of 
nonresponders statistically masking the benefit experi-
enced by the smaller cohort of responders. Given these 
findings, it is now urgent to identify which patients will 
derive the most benefit from bevacizumab.

BEVACIZUMAB AND HYPERTENSION 
CAUSE MICROVASCULAR DEFECTS
It is thought that the vascular changes induced by 
bevacizumab confer the survival benefit in responsive 
patients, with these changes causing hypertension in 
many patients.40 As bevacizumab causes a reduction in 
both vascular density (rarefaction) and production of the 
vasodilator nitric oxide (NO) production,41 these are sus-
pected to be causal factors in hypertension pathogen-
esis following treatment.42,43 Microvascular rarefaction is 
also common early in the development of hypertension44; 
however, it is unclear to what extent this contributes to 
the onset of increased blood pressure. Similarly, EC dys-
function and vascular constriction due to reduced avail-
ability of NO, an essential vasodilator, can be both cause 

Nonstandard Abbreviations and Acronyms

EC endothelial cell
eNOS endothelial NO synthase
NO nitric oxide
NOX1 NADPH oxidase 1
OS overall survival
ROS reactive oxygen species
VEGFA vascular endothelial growth factor A
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and effect of hypertension.45–47 Under normal conditions, 
VEGFA stimulates activation and upregulation of eNOS 
(endothelial NO synthase), subsequently inducing or 
increasing NO release42,48 (Figure 2). Conversely, upregu-
lation of angiotensin-II in hypertension causes increased 
production of reactive oxygen species (ROS) such as 
superoxide via NOX1 (NADPH oxidase 1), which then 
combines with NO to form peroxynitrite (ONOO−).45,47,49 
Besides this reducing available NO, peroxynitrite destabi-
lizes eNOS, inducing further superoxide production rather 
than NO in a feed-forward loop, which drives a reduction 
in the bioavailability of vasodilators alongside an increase 

in constricting factors, a state known as endothelial dys-
function.45,47,49 Therefore, while bevacizumab reduces NO 
release through VEGFA inhibition, hypertension likely 
perturbs several alternate NO regulating pathways along-
side increased ROS production,45 thus likely increasing 
EC dysfunction and impairing the tumor vasculature.

It is, therefore, possible that hypertension contrib-
utes further to microvascular rarefaction independently 
of bevacizumab. Furthermore, development of hyper-
tension may indicate sensitivity to endothelial dysfunc-
tion, whereas in other patients inhibition of VEGFA is 
insufficient to cause dysfunction-induced hypertension. 

Figure 1. Glioblastoma microvasculature and the correlation between the development of hypertension and survival for 
glioblastoma patients treated with bevacizumab.
A, Glioblastomas commonly feature regions of hypoxia and necrosis. Tumor cells in the hypoxic areas express VEGFA (vascular endothelial 
growth factor A), inducing the formation of numerous new poorly formed and leaky blood vessels. The blood-brain barrier is often disrupted in 
the central tumor, causing edema and hemorrhage, while on the tumor periphery, this barrier variably remains intact. B, Roughly 4 of every 10 
patients treated with bevacizumab will develop hypertension following treatment. Patients who develop hypertension have improved overall 
survival. This figure was created using BioRender.com.
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Indeed, certain eNOS polymorphisms have been linked 
with significantly elongated progression-free survival for 
patients with metastatic colorectal cancer treated with 
bevacizumab, with a trend between polymorphisms asso-
ciated with improved outcome and patients who experi-
enced higher grades of hypertension.50 However, little is 
known about whether hypertension itself could influence 
glioblastoma progression. Two studies showed no differ-
ence in survival between normotensive and hypertensive 
patients,51,52 which contrasts with a recent unbiased mor-
tality study that showed a decreased risk of any cancer 
death in hypertensive participants.53 Letourneur and col-
leagues54 investigated the effects of chronic hyperten-
sion on glioma growth in a spontaneously hypertensive 
rat model. Intriguingly, tumors progressed slower and 
were significantly smaller at the experiment end point 
in spontaneously hypertensive rat compared with con-
trol Wistar-Kyoto rats.54 This was similar to the reduction 
in tumor size observed in rodents treated with antian-
giogenic agents.55,56 The authors postulated that slower 
glioma growth in spontaneously hypertensive rat may be 
due to the known effects of hypertension on the vascular 
system, such as inhibition of angiogenesis.54,57 Microflu-
idic in vitro models of angiogenesis have demonstrated 
that neovessel growth is stimulated by increased inter-
stitial flow on the basal side of EC monolayers.58–60 In 
contrast, flow in the direction of sprouting (apical/lumi-
nal side) was conversely shown to inhibit angiogenesis 
and even cause vessel regression.59 More recently, inter-
stitial flow was confirmed to induce angiogenesis by 

mechanotransduction independent of VEGFA, although 
physiologically normal network formation required a 
balance between the 2.58 Taken together, these results 
suggest that increased hydrostatic pressure against the 
lumen of blood vessels can modulate angiogenesis inde-
pendently of VEGFA blockade by bevacizumab.

INTRATUMOR HETEROGENEITY 
DRIVEN BY CHANGES IN TUMOR CELL 
TRANSCRIPTIONAL STATES IS RELIANT 
ON A DELICATE BALANCE OF NO AND ROS
While control of rampant blood vessel growth reduces 
the availability of nutrients to the rapidly growing tumor, 
interactions between tumor and vascular cells within 
perivascular niches will remain, and these are of criti-
cal importance in other aspects of glioblastoma biology. 
Glioblastoma cells exhibiting stem-like properties have 
commonly been shown to reside in close contact with 
brain vasculature within a perivascular niche.20,61,62 Much 
like neural stem cell niches,63 these are spatially distinct 
microcompartments, where heterotypic interactions of 
stem-like glioblastoma cells with the surrounding micro-
environment and nontumor cells can induce stem cell 
maintenance or differentiation and clonal selection.18,64 
ECs provide cues to maintain stemness and self-renewal 
of tumor cells in the perivascular space, in addition to 
facilitating protection from radiation.62,65–68 Indeed, a 
high degree of cancer cell plasticity has been reported 

Figure 2. Modulators of vascular tone and endothelial dysfunction in the perivascular niche.
Vascular tone is maintained by a careful balance of vasodilators and vasoconstrictors. VEGFA (vascular endothelial growth factor A) induces 
upregulation and activation of eNOS (endothelial nitric oxide synthase), which generates the key vasodilator NO. Inhibition of VEGFA signaling 
by bevacizumab reduces NO production. Under conditions of hypertension, angiotensin-II (Ang-II) signaling induces production of superoxide 
by NOX1 (NADPH oxidase 1), which combines with available NO to form peroxynitrite. This reactive oxygen species (ROS) then destabilizes 
eNOS by reducing the cofactor tetrahydrobiopterin (BH4), causing eNOS to switch to production of superoxide, driving endothelial dysfunction 
through the loss of NO. This figure was created using BioRender.com.
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to be a feature of glioblastoma, with cancer cells shift-
ing between different transcriptional states depending 
on the local tumor microenvironment.18,64 Reference to 
glioblastoma cells in this review should thus be consid-
ered to encompass various subsets of tumor cell includ-
ing those typically referred to as glioblastoma stem cells.

The vascular niches occupied by glioblastoma cells 
are suggested to be predominantly arteriolar,69 in a rela-
tively hypoxic microenvironment with low levels of ROS, 
conditions known to maintain cancer cell stemness and 
self-renewal.70 These conditions have been likened to 
those in adult stem cell niches69,71 and a delicate balance 
of hypoxia/ROS is indeed critical for stem cell mainte-
nance. Quiescent or self-renewing stem cells display low 
levels of ROS, intermediate levels of ROS induce stem 
cell differentiation, and high ROS levels cause senes-
cence and cell death.72 In the case of glioblastoma cancer 
cells, induction of intracellular ROS reduces tumorigenic-
ity, decreases capacity for self-renewal, and induces dif-
ferentiation.73 NO is also an important regulator shown 
to variably maintain cancer cell stemness, enhance 
invasiveness, or induce apoptosis under different condi-
tions.66,74,75 In patient biopsies, eNOS is upregulated in 
ECs adjacent to perivascular glioblastoma cells express-
ing nestin, a stem cell marker.66 PDGF-induced gliomas 
in mice with reduced NO due to eNOS knockdown had 
delayed tumor growth and improved survival.66 Since this 
early study, a large volume of research has consolidated 

NO synthases in glioblastoma as potential therapeutic 
targets.75 As previously mentioned, hypertension causes 
downregulation of NO with concomitant increases in 
ROS production, eNOS destabilization, and EC dysfunc-
tion (Figure 3).45–47,49 Whether hypertension may disrupt 
the perivascular glioblastoma cell niche by perturbing the 
balance of ROS and NO remains to be elucidated.

CONCLUSIONS
The prevailing wisdom is that hypertension may be a 
useful marker of patient responsiveness to bevacizumab 
to determine whether therapy is worth continuing. Here, 
we have reviewed the literature on the relationship 
between glioblastoma cancer-related outcomes and 
the development of hypertension after VEGFA inhibi-
tion using bevacizumab. So far, multiple reports sug-
gest a positive correlation between the development of 
hypertension and a favorable tumor response to bevaci-
zumab treatment. However, the causality of this relation-
ship needs to be confirmed as, to date, no study has 
demonstrated whether effects mediated by hyperten-
sion increase the efficacy of these drugs or ameliorate 
adverse effects. This is an important distinction, because 
if hypertension improves treatment outcome, this may 
alter how hypertension is managed in patients treated 
with bevacizumab, particularly given the evidence for 
increased microvascular density and heightened risk of 

Figure 3. VEGFA (vascular endothelial growth factor A) inhibition by bevacizumab normalizes vascular tone by reducing 
endothelial nitric oxide synthase (eNOS) production of NO.
Certain patients experience such a change in peripheral resistance due to capillary rarefaction and increase in vascular tone that they 
develop hypertension following treatment. These patients may experience further endothelial dysfunction due to the compounding effects of 
hypertension on NO availability. This figure was created using BioRender.com.
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(any) cancer-related death following effective control of 
hypertension with antihypertensives.76,77 Furthermore, 
discovery of how hypertension affects survival may 
identify patients who will most benefit from bevacizumab 
treatment, or pathways that could be targeted in combi-
nation with bevacizumab.

No significant investigative effort has yet been made 
into the role of hypertension in glioblastoma, and extrapo-
lation from currently available data is difficult due to con-
tinuing controversy in the literature. However, evidence 
gleaned from studies of hypertension demonstrate its 
potential impact on glioblastoma invasion—as discussed 
in the Supplemental Text21–23,55,56,78–106—and stem cell 
maintenance, which could enhance patient response to 
bevacizumab. In this regard, the recent development of 
spatial omics approaches (spatial transcriptomics107 and 
proteomics)108 applied to patient tumor tissue (resected 
or postmortem) could help to elucidate the relationships 
between the onset of hypertension and response, includ-
ing the potential influence of the immune system in 
hypertension development. Furthermore, it may be pos-
sible to identify new biomarkers that can in the future be 
used for the stratification of patients likely to respond to 
bevacizumab treatment, at the time of diagnosis.
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