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Abstract

The asymptotic distributions of the recursive out-of-sample forecast accuracy

test statistics depend on stochastic integrals of Brownian motion when the

models under comparison are nested. This often complicates their implemen-

tation in practice because the computation of their asymptotic critical values is

burdensome. Hansen and Timmermann (2015, Econometrica) propose a Wald

approximation of the commonly used recursive F-statistic and provide a simple

characterization of the exact density of its asymptotic distribution. However,

this characterization holds only when the larger model has one extra predictor

or the forecast errors are homoscedastic. No such closed-form characterization

is readily available when the nesting involves more than one predictor and het-

eroscedasticity or serial correlation is present. We first show through Monte

Carlo experiments that both the recursive F-test and its Wald approximation

have poor finite-sample properties, especially when the forecast horizon is

greater than one and forecast errors exhibit serial correlation. We then propose

a hybrid bootstrap method consisting of a moving block bootstrap and a

residual-based bootstrap for both statistics and establish its validity. Simula-

tions show that the hybrid bootstrap has good finite-sample performance, even

in multi-step ahead forecasts with more than one predictor, and with hetero-

scedastic or autocorrelated forecast errors. The bootstrap method is illustrated

on forecasting core inflation and GDP growth.
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1 | INTRODUCTION

Out-of-sample tests of predictive accuracy have received
considerable attention in the literature.1 Such testing pro-
cedures often involve comparing the out-of-sample mean
squared forecast error (MSFE) of alternative models to
select the one that minimizes this criterion. The case of

nested models is particularly interesting because the test
statistics often used—such as the recursively generated
F-statistic [McCracken (2007) and Clark and McCracken
(2001, 2005)]—have nonstandard asymptotic distribu-
tions that depend on stochastic integrals of Brownian
motion; see Clark and McCracken (2012, 2014, 2015),
and Hansen and Timmermann (2015). Many studies have
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developed methods for approximating the quantiles of
the limiting distributions of these statistics, mainly by
using simulation methods; see Rossi and Inoue (2012)
and Hansen and Timmermann (2012). However, these
simulation methods can be computationally burdensome,
especially in the multivariate setting, because it requires
a discretization of both the underlying (multivariate)
Brownian motion and the support of the nuisance param-
eters (such as the relative size of the initial estimation
sample versus the out-of-sample evaluation period).

Recently, Hansen and Timmermann (2015) show that
the recursively generated F-statistic of McCracken (2007)
can be approximated by a Wald-type statistic whose
asymptotic distribution is a convolution of dependent
χ2ð1Þ-distributed random variables, thus simplifying the
computation of test critical values. When the underlying
data generating process (DGP) is homoscedastic, their
characterization yields a closed-form expression of the
exact density of the limiting distribution of the F-statistic,
even when the number of extra predictors in the larger
model is greater than one; see Hansen and Timmermann
((2015), Theorem 5). However, no closed-form characteri-
zation of the density of the limiting distribution of this
statistic is available in the multivariate setting (i.e., when
there are more than one extra predictors in the larger
model) if the underlying DGP is heteroscedastic or seri-
ally correlated.

This paper contributes to this research area in two
main ways. First, we show through Monte Carlo simula-
tions that even for moderate sample sizes, both the recur-
sively generated F-test of McCracken (2007) and its Wald
approximation of Hansen and Timmermann (2015) are
often oversized, especially when the forecast errors exhibit
heteroscedasticity or serial correlation. The size distortions
of both tests increase with the forecast horizon. For exam-
ple, in a simple framework where there is only one extra
predictor in the larger model, our simulations show that
under serially correlated forecast errors the rejection fre-
quencies under the null hypothesis of the F-test (at the 5%
nominal level) can jump from 10.6% when T¼ 50, 7.5%
when T¼ 100, and 6.2% when T¼ 200 for 1-step ahead
forecasts to 27.6% when T¼ 50, 17.4% when T¼ 100, and
13.9% when T¼ 200 for 4-step ahead forecasts.

Second, we propose a hybrid bootstrap method con-
sisting of a moving block bootstrap (henceforth MBB,
which is nonparametric) and a residual-based bootstrap
(which is parametric) for both the recursively generated
F-test and its equivalent Wald statistic.2 Our bootstrap
method builds on earlier work by Corradi and Swanson
(2007), but it differs from theirs in two important aspects.
First, whereas (Corradi & Swanson, 2007) (henceforth
CS) bootstrap is purely nonparametric in the sense that

level data are re-sampled (pairs bootstrap), ours is semi-
parametric and is based on resampling the residuals of
the unrestricted regression that includes the extra predic-
tors. Re-sampling the residuals is paramount to recover-
ing an eventual pattern of serial correlation in the
regression errors, which is not always the case with the
pairs bootstrap. Second, CS establish the conditions on
the block length under which their MBB is consistent,
but there is no practical guidance on the choice of this
block length in their study. Their Monte Carlo experi-
ments [see Tables 2-3 in Corradi and Swanson (2007)]
provide a clear evidence on the importance of choosing
the block length that fits the data better, as the perfor-
mance of the bootstrap CS test varies largely across alter-
native choices of block lengths. In this paper, we suggest
a data-dependent approach to select the block length.
Specifically, we propose setting it equal to the optimal lag
length of the Newey and West's (1987) HAC estimator
used in the expressions of the statistics. As the choice of
the block length aims to capture the dependence struc-
ture of the data, we believe matching it to the optimal lag
length of the HAC estimator is reasonable. However, we
do not claim optimality of this choice, for example, in the
sense of maximizing test power. Rather, we follow
Andrews and Monahan (1992) and the recommendations
of Newey and West (1994) to select the kernel bandwidth
of the HAC estimator and then use it as the block length
in our bootstrap DGP. This choice satisfies the conditions
under which our bootstrap consistency is established,
thus guaranteeing that type I error is controlled for. From
this perspective, our bootstrap method can be viewed as
complementary to Corradi and Swanson (2007).

We show that our proposed bootstrap is consistent
under both the null hypothesis of equal forecast accuracy
and the alternative hypothesis, irrespective of the forecast
horizon and the underlying DGP exhibiting heteroscedas-
ticity or serial correlation. The proof of our bootstrap is
innovative and different from the one in CS. Indeed, due
to nesting, the standard Gaussian approximation used in
CS no longer holds, so one has to resort to the functional
central limit theorem; see Davidson (1994). We present
simulation evidence indicating that the bootstrap approx-
imation performs well in small samples, even with het-
eroscedastic or serially correlated errors. These results are
qualitatively the same across forecast horizons, confirm-
ing our theoretical findings. We illustrate our theoretical
results with empirical applications which look at fore-
casting core inflation and GDP growth.

Important contributions on residual MBB are Efron
((1982), pp.35–36) and Fitzenberger (1998). However,
their bootstrap schemes assume that the regressors are
strictly exogenous, and are therefore kept fixed (not

2 DOKO TCHATOKA and HAQUE

 1099131x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/for.2987 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [22/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



re-sampled) in the bootstrap algorithm. For weakly
dependent time series with lagged dependent variables,
as is the case in most applications of out-of-sample tests
of equal forecast accuracy, this type of MBB will not have
the desired size property. Recent contributions on boot-
strapping out-of-sample tests of equal forecast accuracy
include Clark and McCracken (2012, 2014, 2015), who
suggest using the “fixed regressor wild bootstrap
(FRWB).” This bootstrap algorithm maintains the usual
assumption that forecast errors exhibit an MAðτ�1Þ
structure for forecast horizons τ>1.

Throughout this paper, convergence almost surely is
symbolized by “ a:s.,” “!p ” stands for convergence in
probability, whereas “!d ” means convergence in distribu-
tion. The usual stochastic orders of magnitude are
denoted by Opð�Þ and opð�Þ. P denotes the relevant proba-
bility measure and E is the expectation operator under P.
The “∗ ” on all these symbols and other variables (for
example P ∗ ) indicates the bootstrap world. op ∗ ð1Þ-P
denotes a term converging to zero in P ∗ -probability, con-
ditional on the sample, and for all samples except a sub-
set with probability measure approaching zero, and
Op ∗ ð1Þ-P is for a term that is bounded in P ∗ -probability,
conditional on the sample, and for all samples except a
subset with probability measure approaching zero. Simi-
larly, oa:s ∗ ð1Þ and Oa:s ∗ ð1Þ denote the terms that
approach zero almost surely and the terms that are
almost surely bounded, according to the probability law
P ∗ and conditional on the sample. The notation Iq stands
for the identity matrix of order q and kUk denotes the
usual Euclidean or Frobenius norm for a matrix U.
Finally, sup

ω � Ω
jf ðωÞj is the supremum norm on the space of

bounded continuous real functions with topological
space Ω.

The remainder of the paper is organized as follows.
Section 2 presents the setup, formulates the null hypothe-
sis as well as the assumptions used, and summarizes
briefly the asymptotic properties of the tests studied.
Section 3 presents our proposed bootstrap method and
proves the validity of the bootstrap. Section 4 presents
Monte Carlo results on the finite-sample performance of
our proposed bootstrap as well as the asymptotic tests
and the FRWB of Clark and McCracken
(2012, 2014, 2015). Section 5 applies our bootstrap test to
forecasts of core inflation and real GDP growth for US
data. Finally, Section 6 concludes.

2 | FRAMEWORK

We first introduce the setup and the testing problem of
interest as well as their asymptotic properties.

2.1 | Setup

Let Yt : 1≤ t≤Tf g be a stochastic process defined on
Ω,B,Fð Þ, where B is a σ-algebra on Ω,F is the class of
distributions under consideration, and Yt has support on
a compact subset of ℝp for some positive integer p. Con-
sider the partition Yt :¼ðyt,X 0

2tÞ
0, where yt : 1�1 and X2t :

k�1 (k¼ p�1) may contains lags of yt. By convention,
we assume that a vector (or a matrix) does not appear in
the model if its number of columns or rows is zero. For
example, X2t does not appear in the above partition of Yt

if p¼ 1. Let s¼ maxfq,τgþ1, where q denotes the maxi-
mum lag length of the variables in X2t and τ≥ 1 is the
forecast horizon of interest.

Consider the predictive regression model (see Hansen &
Timmermann, 2015)

yt ¼X 0
2,t�τβ2þ ε2t

¼X 0
1,t�τβ21þ ~X

0
2,t�τβ22þ ε2t, t¼ s,…,T,

ð2:1Þ

where X2t ¼ðX 0
1,t, ~X

0
2,tÞ

0
: X1,t �ℝk1 and ~X2,t �ℝk2

(k¼ k1þk2); β2 ¼ðβ021,β022Þ
0 �ℝk: β21 �ℝk1 and β22 �ℝk2

are unknown, and ε2t is an error term. We are interested
in testing whether ~X2t has predictive power in forecasting
yt τ-periods ahead.

Several studies3 show that this testing problem can be
formulated as the comparison of mean squared error
(MSE) of the forecast of ytþτ generated using the unrest-
ricted model (2.1) to the one resulting from the restricted
regression

yt ¼X 0
1,t�τβ1þ ε1t, t¼ s,…,T: ð2:2Þ

In this setting, the null hypothesis of equal predictive
performance takes the form

H0 : EF ½ðyt�X 0
2,t�τβ

0
2Þ

2�ðyt�X 0
1,t�τβ

0
1Þ

2� ¼ 0 ð2:3Þ

for some F �F , where β0j ¼ argmin
βj

EF ½ðyt�X 0
j,t�τβjÞ

2�

denote the unknown true values of βj (j¼ 1,2) in (2.1)–
(2.2).

Common to most studies in this literature is the
assumption that the resulting forecast errors exhibit an
MAðτ�1Þ structure for τ>1 (see, e.g., Clark &
McCracken, 2012, 2015). In this paper, we emphasize the
possibility that the τ-period-ahead forecast errors may be
autocorrelated and the order of the autocorrelation is
unknown. For example, in empirical applications using
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vector autoregression (VAR) framework, the true data
generating process (DGP) in (2.1)–(2.2) may include a
certain number of lags of the dependent variable yt as
predictors but a researcher may only use a smaller num-
ber of lags than the true one, thus leading to autocorre-
lated errors εjt . Allowing for autocorrelated forecast
errors helps to reduce bias in the estimates that results
from this lag misspecification.

The form of H0 in (2.3) suggests building test statistics
based on the MSE loss differential
EF ½ðyt�X 0

2,t�τβ2Þ
2�ðyt�X 0

1,t�τβ1Þ
2�. This is usually done

out-of-sample using a recursive estimation of the model
parameters; see, for example, Diebold and Mariano
(1995); West (1996); Clark and McCracken (2001). In this
framework, the test statistics often suggested have limit-
ing distributions that depend on stochastic integrals of
Brownian motions, which makes the computation of
their critical values cumbersome.

In this study, we focus particularly on the recursively
generated F-test of Clark and McCracken (2001), whose
critical values are easier to compute in some cases due to
its equivalence to a Wald-type statistic (Hansen &
Timmermann, 2015). In particular, when the DGP is
homoscedastic, Hansen and Timmermann (2015) provide
closed-form expressions of the exact density of the limit-
ing distributions of this F-statistic, even when the unrest-
ricted model (2.1) contains more than one extra
predictors. However, in addition to its large-sample
approximation nature, there is no such closed-form char-
acterization when the underlying DGP is heteroscedastic
and (2.1) includes multiple extra predictors. This setting
is of great relevance in empirical work, thus providing a
valid statistical procedure that accounts for it is arguably
of interest to applied researchers.

To introduce the recursively generated F-statistic,
suppose that PT out-of-sample predictions are available,
where the first is based on a parameter vector estimated
using data from s to RT , the second on a parameter vector
estimated using data from s to RT þ1, and so on, and the
last is based on a parameter vector estimated using data
from s to RT þPT � τ�T� τ. Let ŷtjt�τðβ̂2,t�τÞ :¼ ŷtjt�τ ¼
X 0

2t�τβ̂2t�τ denote the τ-step ahead forecast generated
from model (2.1) and ~ytjt�τðβ̂1,t�τÞ :¼ ~ytjt�τ ¼X 0

1,t�τβ̂1,t�τ be
the one that results from model (2.2), where β̂j,t (j¼ 1,2)
are the recursive OLS estimators of βj from (2.1)–(2.2),
that is,

β̂ j, t ¼ arg min
βj

1
t

Xt
n¼s

yn�X
0

j,n�τβj

� �2
,

RT ≤ t≤T� τ; j¼ 1;2: ð2:4Þ

The recursively generated F-statistic for H0 (see
Hansen & Timmermann, 2015) takes the form

T T ¼
1

σ̂2ε

XT

t¼RTþ1
yt�X 0

2,t�τ β̂2,t�τð Þ2� yt�X 0
1,t�τ β̂1,t�τð Þ2

� �
,

ð2:5Þ

where σ̂2ε is a consistent estimator of the variance of the
unrestricted error in (2.1).4

Let H2 ¼ p lim
T!∞

1
T

PT
t¼s

X2,t�τX 0
2,t�τ

� �
(assuming that the

limit exists and also X2 includes a column vector of ones)
be partitioned as

H2 ¼
H1 H 0

21

H21 ~H2

" #
; H1 : k1�k1,

H21 : k2�k1, ~H2 : k2�k2,

and define Ȟ2 ¼ ~H2�H21H�1
1 H 0

21, Zt�τ ¼ ~X2,t�τ�H21H�1
1 X1,t�τ.

Also, let Γ̌n denote the n-th autocovariance (suppose for
now that it exists) of the stochastic process fZt�τε2tg, that is,

Γ̌n ¼ p lim
T!∞

1
T

XT
t¼s

Zt�τε2tε
0
2,t�nZ

0
t�τ�n,

and define Ω̌¼
Pτ�1

n¼�τþ1Γ̌n. Let ZT,t�τ denote the residual
from the multivariate regression of ~X2,t�τ on X1,t�τ, that
is,

ZT, t�τ ¼ ˜X 2, t�τ�
XT
t¼s

˜X 2, t�τX
0

1, t�τ

XT
t¼s

X1, t�τX
0

1, t�τ

 !�1

X1, t�τ:

The Wald statistic for the null hypothesis β22 ¼ 0 in (2.1)
is given by

ŜT ¼Tβ̂
0
22�T

V̂
�1
T β̂

22�T , ð2:6Þ

where β̂22�T ¼
PT

t¼sZT,t�τZ0
T,t�τ

� ��1PT
t¼sZT,t�τyt and

V̂T � V̂Tðβ̂22�T Þ is a consistent estimator of the variance of

lim
T!∞

var
ffiffiffiffi
T

p
β̂

22�T

	 

. Under homoscedastic errors, we can

express V̂T ¼ σ̂2ε
PT

t¼sZT,t�τZ0
T,t�τ

� ��1
and ŜT in (2.6) as

ŜT ¼ ~ST=σ̂
2
εðTÞ, where ~ST � ~SðTÞ

¼
PT

t¼sytZ
0
T,t�τ

PT
t¼sZT,t�τZ0

T,t�τ

� ��1PT
t¼sZT,t�τyt,

ð2:7Þ

where σ̂2εðTÞ is a consistent estimator of σ2ε ¼ varðε2,tÞ
based on the full sample. Similarly, let ŜRT denote the
Wald statistic for β22 ¼ 0, computed using the first RT

observations in the sample. Hansen and Timmermann
(2015) show that T T in (2.5) is asymptotically equivalent

4 DOKO TCHATOKA and HAQUE
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to the difference between two Wald-type statistics, that is,
T T ¼WT þopð1Þ, where

WT ¼ ŜT � ŜRT þσ�2
ε κ̌logðρÞ, ð2:8Þ

with κ̌¼ tr½Ȟ�1
2 Ω̌� under H0, Ȟ2 and Ω̌ are defined above.

It is clear from (2.8) that WT is related to the homosce-
dastic Wald statistics of the null hypothesis β22 ¼ 0, even
when the underlying true data generating process is het-
eroscedastic. This means that the recursive F-statistic T T

is not robust to heteroscedasticity, as WT is not robust to
heteroscedasticity and both are equivalent under H0.
However, the Wald formulation (2.8) is more interesting
than the F-type one (2.5) because it allows to accommo-
date heteroscedasticity or serial correlation, for example,
by using a HAC estimator of the covariance matrix of the
estimator of β22 with the full and reduced samples. But,
even if such a correction was implemented, computing
asymptotic critical values of the resulting statistic will
still involve discretization of the underlying multivariate
Brownian motions when (2.1) includes multiple extra
predictors (Hansen & Timmermann, 2015), thus making
it cumbersome to compute test critical values. This pro-
vides a strong motivation for our bootstrap method that
not only alleviates the limitations of the F-statistic T T

but also makes its implementation easier.
It is worth noting that in this paper, we consider the

recursively generated F-test of McCracken (2007) and
Clark and McCracken (2001, 2005) that Hansen and Tim-
mermann (2015) showed is equivalent to a Wald-type sta-
tistic. However, Clark and West (2007) suggest that for
nested models the appropriate test statistic to use is the
“MSPE-adjusted” test statistic. This statistic is the differ-
ence between MSPE of the parsimonious model and the
larger model plus an adjustment term. They show that
the adjustment term is needed as the MSPE from the par-
simonious model is expected to be smaller than that of
the larger model, in turn because the larger model intro-
duces noise into its forecasts by estimating parameters
whose population values are zero. Clark and West (2007)
show that standard normal inference for the raw unad-
justed difference in MSPEs—what they call “MSPE-nor-
mal”—performs abysmally. Moreover, they show that the
MSPE-adjusted test statistic is not asymptotically normal
but rather has a non-standard distribution. However,
using the standard normal critical values leads to a con-
servative test asymptotically (i.e., the actual size less than
the nominal size as the sample increases); see Clark and
McCracken (2001, 2005). They also show that simulation
methods, such as bootstrap, work well for both MSPE-

adjusted and MSPE-normal test statistics. Clark and
McCracken (2005) also compare the MSE-F statistic to
the MSPE-adjusted statistic (what they call “ENC-F”)
based on both asymptotic critical values from non-
standard limiting distribution and bootstrap method.
They find that the MSE-F test has better size property
than the ENC-F test, with both the asymptotic and boot-
strap critical values. More generally, the simulations indi-
cate the ENC-F test is more over-sized than the
MSE-F test.

2.2 | Notations and assumptions

Throughout the study, the following notations are used.
For any j� f1,2g, let

sjtðβjÞ ¼Xj, t�τðyt�X
0
j, t�τβjÞ� sj,pðtÞ

	 

1≤ p≤ kj

,

hjt ¼Xj, tX
0
j, t � hj,plðtÞ

� �
1≤ p, l≤ kj

, Hjt ¼
1
t

Xt
n¼s

hj,n�τ,

where sj,pðtÞ
	 


1≤ p≤ kj
is a kj-dimensional vector with ele-

ments sj,pðtÞ and hj,plðtÞ
� �

1≤ p,l≤ kj
is a kj�kj matrix with

entries hj,plðtÞ.
Define β2 ¼ðβ01,00Þ

0 and consider the selection matrix

J ¼ Ik1�k1
..
.
0k1�k2

� �0
such that J 0s2tðβ2Þ¼ s1tðβ1Þ and

J 0h2tJ ¼ h1t. Also, let

~s2tðβ2Þ ¼ σ�1
ε

~AH
�1=2

2 s2tðβ2Þ,
~A �ℝk2�k : ~A

0 ~A¼H1=2
2 �JH�1

1 J 0 þH�1
2

	 

H1=2

2 ,

ð2:9Þ

where σ2ε ¼ varðε2,tÞ and Hj ¼EF ½hjt� for all j� f1,2g.
Define BðrÞ¼ B1ðrÞ,…,Bk2ðrÞ½ �0 �ℝk2 ; the standard Brow-
nian motion on Dk2

½0,1�,D
k2
½0,1� is the space of Cadlag map-

pings from ½0,1� to ℝk2 . For any positive definite real
matrix Σ : q�q,BðΣÞ stands for a q-dimensional
Brownian motion with covariance matrix Σ (see,
e.g., Davidson, 1994, Section 27.7). We now make the follow-
ing assumptions on the model variables and parameters.

Assumption 1.

ðiÞ Ujt ¼ sjtðβjÞ0,vec hjt�Hj
	 
0h i0

is covariance sta-
tionary such that EFðUjtÞ¼ 0 and Hj �
EFðhjtÞ is positive definite for all t and j;

ðiiÞ Ujt is 3ð2þ1=ψÞ-dominated5 uniformly in βj

DOKO TCHATOKA and HAQUE 5
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for some ψ >0 and all t, j;
ðiiiÞ Ujt is L2þδ-NED

6 on some sequence fVjtg
uniformly in βj of size �2ð1þψÞ, where
fVjtg is α-mixing of size �2ð2þδÞð1þ
2ψÞ for t, j and some δ>0, ψ >0.

Assumption 2. There is a kernel function
Kð�Þ with bandwidth qT þ1 satisfying:

ðiÞ Kð�Þ :ℝ!½�1,1�, Kð0Þ¼ 0,KðxÞ¼
Kð�xÞ8 x �ℝ,Z þ∞

�∞
KðxÞ2dx<∞,

Z þ∞

�∞
jKðxÞjdx<∞,

Kð�Þ is continuous at 0 and at all but a
number of other points in
ℝ, supx ≥ 0jKðxÞj<∞;

ðiiÞ as T!∞, qT !∞ and qT=
ffiffiffiffi
Tq

p
! 0 for some

q� ½0,∞Þ such that

kf ðqÞk� ½0,∞Þ where f ðqÞ

¼ 1
2π

X∞
j¼�∞

jjjqEF ½X2, t�jX
0

2, t�;

ðiiiÞ
Rþ∞
0 KðxÞdx <∞ where

KðxÞ¼ supy≥ xjKðyÞj.

Assumption 3.

ðiÞ T¼RT þPT and RT ¼bρTc for some ρ� ð0,1Þ;
ðiiÞ PT=RT ! π¼ð1�ρÞ=ρ as T!∞.

Remarks. 1. The covariance stationary con-
dition of both the score vector
sjtðβjÞ and the Hessian matrix hjt
in Assumption 1-(i) is standard
in the literature (see,
e.g., Clark & McCracken, 2012).
Assumption 1-(ii) requires the
existence of at least the first six
moments for both sjtðβjÞ and hjt .
In addition, the NED and strong
α-mixing conditions in Assump-
tion 1-(iii) ensures that the pro-
cess fyt,X 0

2tg is ergodic in both
the mean and covariance,
whereby the central limit theo-
rem can be applied. Unlike pre-
vious studies,7 Assumption 1
allows for correlation of order
more than τ�1. The usual

assumption from previous stud-
ies that sjtðβjÞ and sj,t�hðβjÞ are
uncorrelated for order more
than τ�1 is mainly justified by
the fact that the τ-period-ahead
forecast errors exhibit an
MAðτ�1Þ structure. Therefore,
the correlation between sjtðβjÞ
and sj,t�hðβjÞ vanishes for h≥ τ.
However, as we emphasize on
cases where the τ-period-ahead
forecast errors may be autocor-
related, the usual assumption
cannot be sustained.

2. Conditions (i) and (ii) of Assumption 2
ensure the consistency of the HAC
estimator with a rate derived in
Andrews (1991). Under these condi-
tions, the bandwidth parameter qT
satisfies

limsup
T!∞

sup
0< ν< νu

ðqT þ1Þ�1
XT�1

n¼1

K
n

νðqT þ1Þ

� �








<∞ ð2:10Þ

for any 0< νu <∞ (see, e.g., Jansson, 2002,
Lemma 1). Note that (2.10) holds for all
the kernels in class K3 of Andrews (1991,
eq. (7.1)) and those satisfying Assump-
tions 1 and 3 in Newey and West (1994).

3. Assumption 3 is frequently used in the
literature of tests of predictive accuracy. It
implies that 0< π<∞, that is, RT and PT

grow at the same rate as T increases. It
can be extended to π¼ 0, that is, PT

grows at a lower rate than RT . Inference
in this case is straightforward as it yields
pivotal statistics (see McCracken, 2007,
Theorem 3.2-(b)), meaning that our boot-
strap method will yield a higher-order
refinement in that case.

2.3 | Asymptotic distributions

Under Assumptions 1–3, Hansen and Timmermann
(2015) provide a characterization of the asymptotic distri-
bution of T T under the null hypothesis β22 ¼ 0 and local
alternatives of the form β22 ¼ cT�1=2b for some constant
scalar c and vector b. More precisely, they show that

ðaÞ if β22 ¼ 0, then

6 DOKO TCHATOKA and HAQUE
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T T !
d Xk2

l¼1

λl 2
Z 1

ρ
r�1BlðrÞdBlðrÞ�

Z 1

ρ
r�2B2

l ðrÞdðrÞ
� �

ð2:11Þ

�d
Xk2
l¼1

λl B
2
l ð1Þ�ρ�1B2

l ðρÞþ logðρÞ
� �

; ð2:12Þ

ðbÞ and if β22 ¼ cT�1=2b for some c and b (b is such that
b0Σ̌b¼ σ2εκ), then

T T�!d Xk2
l¼1

λl 2
Z 1

ρ
r�1BlðrÞdBlðrÞ

�

�
Z 1

ρ
r�2B2

l ðrÞdðrÞþð1�ρÞc2þ2cal½Bpð1Þ�BlðρÞ�
�

�d
Xk2
l¼1

λl B
2
l ð1Þ�ρ�1B2

l ðρÞþ logðρÞþð1�ρÞc2
�

þ2cal½Blð1Þ�BlðρÞ��; ð2:13Þ

where a¼ b0Ȟ2Ω̌
�1=2
∞ Q0 � alð Þ1≤ l≤ k2 ,Q is an orthogonal

matrix such that Q0Q¼ Ik2 and Q0ΛQ¼ σ�2
ε Ω̌1=2

∞ Ȟ
�1
2 Ω̌1=2

∞ ,
Λ¼ diagðλ1,…,λk2Þ, and Ω̌∞ is the asymptotic variance of
the stochastic process fZt�τε2tg where Zt�τ ¼
~X2,t�τ�H21H�1

1 X1,t�τ.

Remarks. Several observations are of order.

1. The expression of the limiting distribu-
tion of T T in (2.11) is well known in the
literature (see, e.g., McCracken, 2007) and
the difficulties in computing test critical
values using this formula are well-docu-
mented. Hansen and Timmermann (2015)
show that this integral of stochastic Brow-
nian motions can be expressed as a convo-
lution of dependent χ2ð1Þ variables, as
shown in (2.12).

2. In (2.12), the eigenvalues λl (l¼ 1,…k2)
measure the degree of heteroscedasticity in
the model (Hansen & Timmermann, 2015).
Under homoscedasticity, λl ¼ 1 for all l,
and (2.11) reduces to the earlier result in
McCracken (2007). However, under het-
eroscedasticity λl ≠ 1 for some l¼ 1,…,k2.
Clearly, (2.12) illustrates that T T (thus
WT) is not robust to heteroscedasticity.

3. If BðrÞ is a univariate standard Brownian
motion (i.e., if (2.1) contains only one extra
predictor), the limiting distribution
in (2.12) is identical to that of the random

variable
ffiffiffiffiffiffiffiffiffiffi
1�ρ

p
ðZ2

1�Z2
2Þþ logðρÞ, where

Zj �i:i:d:Nð0,1Þ, j¼ 1,2 (Hansen &
Timmermann, 2015, Theorem 4). Hence,
test critical values can be simulated easily
given ρ. This case is somewhat restrictive
as it implies that ~X2 in (2.1) contains only
one regressor (i.e., k2 ¼ 1). Similarly, if
BðrÞ is a multivariate standard Brownian
motion (i.e., if ~X2 contains more than one
regressor) and the DGP is homoscedastic
(i.e., λ1 ¼…¼ λk2 ¼ 1), a closed-form
expression of the pdf of the exact density
of the asymptotic limit variable in (2.12) is
provided in Hansen and Timmermann
((2015), theorem 5). As such, the asymp-
totic critical values of T T can be simulated
under H0 using this pdf formula. However,
we are not aware of a closed-form charac-
terization of the pdf of the limit variable
in (2.12) under heteroscedasticity or serial
correlation in the multivariate nested set-
ting (i.e., k2 > 1). Moreover, the equiva-
lence between T T and WT is asymptotic
in nature, and as such the finite-sample
behavior of both statistics may differ even
in the case where the DGP is homoskedas-
tic, thus leading to size distortions in small
samples when the simulated critical values
from (2.12) are used. Our bootstrap proce-
dure not only simplifies the computational
burdens of simulating critical values of T T

and WT , especially when k2 > 1 and the
DGP is heteroskedastic, but also provides a
framework to improve the finite-sample
performance of the tests.

3 | BOOTSTRAP TEST

In the multistep-ahead forecasting framework (i.e., τ>1),
bootstrap methods often fail to control the size even for a
well-specified homoscedastic model due to lack of
accounting for the serial correlation structure of the
resulting forecast errors. Building on earlier work by
Corradi and Swanson (2007), we propose a bootstrap
method that performs quite well for both T T and WT

irrespective of the forecast horizon τ.

3.1 | Bootstrap DGP

Let ε̂2,t denote the residuals from the OLS of (2.1), and
define fWt ¼ðX†

2,t, ε̂2,tÞ : t¼ s,…,Tg where X†
2,t contains

DOKO TCHATOKA and HAQUE 7

 1099131x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/for.2987 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [22/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the variables in X2,t other than the lags of the dependent
variable yt . Let ℓT �ℕ be a block length (1≤ℓT ≤T� s),
Bt,ℓT ¼fWt,Wtþ1,…,WtþℓT�1g be the block of ℓT consec-
utive observations starting at Wt for t¼ s,…,T. Assume
that T� s¼ bTℓT so that the moving block bootstrap
(MBB) procedure consists of drawing bT ¼ðT� sÞ=ℓT

blocks, fB ∗
1,ℓT ,B

∗
2,ℓT

,…,B ∗
bT ,ℓT

g, randomly with replace-
ment from the set of overlapping blocks
fBs,ℓT ,…,BT�ℓTþ1,ℓTg. The first ℓT observations in the
pseudo-time series are the sequence of ℓT values in B ∗

s,ℓT
,

the next ℓT observations in the pseudo-time series are the
ℓT values in B ∗

sþ1,ℓT , and so on, that is,
W ∗ � W ∗ 0

s ,W ∗ 0

sþ1,…,W ∗ 0

T

	 
0 ¼ B ∗ 0

1,ℓT
,B ∗ 0

2,ℓT
,…,B ∗ 0

bT ,ℓT

� �0
,

where W ∗ 0

t :¼ X† ∗ 0

2,t ,ε
∗
2,t

h i
for all t¼ s,…T. Let I1,…,IbT be

i.i.d. random variables distributed uniformly on
fs�1,s,…,T�ℓT þ1g. The resulting bootstrap sample
can be defined as fW ∗

t :¼W τt , t¼ s,…,Tg where τt is a
random array, that is, fτtg :¼fI1þ1,…,I1þℓT ,…,IbT þ1,…,IbT þℓTg.
To construct the bootstrap dependent variable y ∗

t , we
proceed as follows.

1. If X2,t does not contain any lag of yt, then set X† ∗ 0

2,t :¼
X ∗ 0

2,t ¼ X ∗ 0

1,t , ~X
∗ 0

2,t

h i
and generate y ∗

t as:

y ∗
t ¼X ∗ 0

1,t�τβ̂1,T�τþ ε ∗
2,t, t¼ s,sþ1,…,T: ð3:1Þ

2. If X2,t contains lags of yt, then proceed as follows.
First, set y ∗

t ¼ yt for all t¼ 1,…,s�1 (initial values)
and form y ∗

t�τ for t¼ s,…,sþ τ�1,8 and partition the
bootstrap draws X† ∗ 0

2,t appropriately to form X ∗ 0

1,t . Then,
compute y ∗

t for t¼ sþ τ,…,T as:

y ∗
t ¼X ∗ 0

1,t�τβ̂1,T�τþ ε ∗
2,t, t¼ sþ τ,…,T: ð3:2Þ

Remarks. 1. The above bootstrap scheme is a
hybrid of moving block boot-
strap and residual-based boot-
strap. As such, it differs from
the previous literature on the
topic in a number of ways. In
particular, it differs from
Corradi and Swanson (2007) in
three important aspects. -
First, whereas the bootstrap of
Corradi and Swanson (2007) is
non-parametric in the sense that
level data are re-sampled (pairs
bootstrap) in their DGP, ours is

semi-parametric in the sense
that it is based on resampling
the residuals. Resampling the
residuals is important for recov-
ering the serial correlation pat-
tern of regression errors. For
example, the Monte Carlo
experiment in Corradi and
Swanson (2007) illustrates that
the pairs bootstrap does not
always mimic well, not only the
serial correlation pattern in
regression errors but also the
persistence of the data, thus
leading to valid but conservative
bootstrap tests. Looking at
Corradi and Swanson ((2007),
tables 2 and 3)], we see that with
moderate autocorrelation of the
errors in their DGP (a3 ¼ 0:3)
and mild persistence in the data
(a2 ¼ 0:6), the size2 results indi-
cate a conservative moving
block bootstrap procedure at the
10% nominal level for 1-step-
ahead forecasts. The under-
rejections of this moving block
bootstrap worsens as the persis-
tence in the data increases (see
Corradi & Swanson, 2007, tables
2 and 3, panel C). Second, to
ensure that our bootstrap pro-
vides asymptotically valid esti-
mates of the appropriate critical
values regardless of whether the
null hypothesis holds, we gener-
ate the bootstrap samples using
the residuals from the unrest-
ricted model (similar to Clark &
McCracken, 2012), and then
form the bootstrap DGP as
y ∗
t ¼X ∗ 0

1,t�τβ̂1,T�τþ ε ∗
2,t . Third,

Corradi and Swanson (2007)
establish the conditions on the
block length ℓT under which
the MBB is consistent. We
establish similar conditions but
also suggest a data-dependent
method to select the bootstrap
block length. As the choice of
the block length should capture
the structure of dependence in
the data, we believe equalizing

8 DOKO TCHATOKA and HAQUE
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it to the optimal lag length of
the HAC estimator for the vari-
ance of the errors is a reason-
able choice. We are not aware of
any study on this topic that
simultaneously addresses the
problem of autocorrelation and
the selection choice of the boot-
strap block length in a data-
dependent manner. For exam-
ple, Corradi and Swanson (2007,
tables 2 and 3) show clear evi-
dence that the choice of the
bootstrap block length influ-
ences the performance of the
bootstrap CS test. Tables S4 and
S5 and the discussion therein
highlight the impact of the
block length choice on the boot-
strap test properties. In particu-
lar, the bootstrap test can be
under-sized for a choice of the
block length that exceeds the
true one, and over-sized for a
choice of the block length that
is shorter than the true one.
From this perspective, our boot-
strap method is an important
contribution to the literature.

2. An important contribution on residual
MBB is Efron (1982, pp. 35–36), but its
scheme considers the regressors to be
strictly exogenous, thus those regressors
are not re-sampled in the bootstrap algo-
rithm. This type of MBB is not appropriate
for weakly dependent time series with
lagged dependent variables. Fitzenberger
(1998) proposes a MBB where the regres-
sors are re-sampled, but as in Corradi and
Swanson (2007), the choice of block
length is not addressed. Recent contribu-
tions on bootstrapping out-of-sample tests
of predictive accuracy include Clark and
McCracken (2012, 2014, 2015). Their
bootstrap algorithm relies on a variant of
the wild bootstrap that maintains the
MAðτ�1Þ structure of the forecast
errors.

3. Although our framework does not
directly address the multiple hypothesis
testing problems analyzed in Clark and
McCracken (2012), our bootstrap method
can be generalized to this framework. We
leave this extension for future research.

Let β̂
∗
j,t be the recursive bootstrap estimator similar to

β̂j,t in (2.4), that is,

β̂
∗
j, t ¼ arg min

βj

1
t

Xt
n¼s

ðy ∗
n �X ∗ 0

j,n�τβjÞ
2

, RT ≤ t≤T� τ;j¼ 1;2:

ð3:3Þ

Lemma A.3 in Appendix A establishes that

EF ∗
1ffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

ðβ̂ ∗
j, t� β̂ j, tÞ

#
¼Op ∗ ð1Þ pr�P for all j¼ 1;2:

"

That is, the limiting distribution of 1ffiffiffiffi
PT

p
PT�τ

t¼RT
ðβ̂ ∗

j,t � β̂j,tÞ is
not centered at zero but is rather characterized by a loca-

tion bias. This means that a bootstrap test based on β̂
∗
j,t

may not have desirable size properties and some adjust-
ments are required. Several studies, including Politis and
Romano (1994) and Corradi and Swanson (2007), have
proposed methods to eliminate this location bias from

β̂
∗
j,t . Due to its simplicity, we adapt the approach of Cor-

radi and Swanson (2007).

Define the adjusted recursive estimator

~β
∗
j,t ¼ argmin

βj

1
t

Xt
n¼s

y ∗
n �X ∗ 0

j,n�τβj

� �2
þ2β0j μT

XT�τ

n¼s

sj,nðβ̂j,tÞ
 !" #

,

RT ≤ t≤T� τ, ð3:4Þ

where μT ¼ 1=ðT� τ� sþ1Þ and sj,nðβ̂j,tÞ¼Xj,n�τðyn�
X 0

j,n�τβ̂j,tÞ for all j¼ 1,2. We can solve (3.4) explicitly for

~β
∗
j,t to get

~β
∗
j,t ¼ 1

t

Pt
n¼sh

∗
j,n�τ

� ��1

� 1
t

Xt

n¼s
X ∗

j,n�τy
∗
n �μT

XT�τ

n¼s
sj,nðβ̂j,tÞ

h i� �
,

RT ≤ t≤T� τ,

ð3:5Þ

where h ∗
j,n�τ ¼X ∗

j,n�τX
∗ 0

j,n�τ is the bootstrap analog of
hj,n�τ ¼Xj,n�τX 0

j,n�τ.
Before moving on to the bootstrap tests, we first state

the following result on the asymptotic behavior of ~β
∗
j,t

in (3.5)

Theorem 3.1. Suppose Assumptions 1–3 are
satisfied and ℓT ¼ o T

1
4

� �
. Then

lim
T!∞

P ω : sup
vj � ℝkj

P ∗ 1ffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

ð˜β ∗
j, t� β̂ j, tÞ≤ vjÞ�P 1ffiffiffiffiffiffi

PT
p

XT�τ

t¼RT

ðβ̂ j, t�β0j Þ≤ vjÞ
 




> ζ

 #
¼ 0







2
4

for any ζ>0.

DOKO TCHATOKA and HAQUE 9
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Remark 4. Theorem 3.1 establishes the con-
sistency of the limiting distribution of
1ffiffiffiffi
PT

p
PT�τ

t¼RT
ð~β ∗

j,t � β̂j,tÞ to that of 1ffiffiffiffi
PT

p
PT�τ

t¼RT
ðβ̂j,t�

β0j Þ for all j¼ 1,2. It is similar to Corradi and

Swanson ((2007), theorem 1); however, its
proof differs from theirs mainly because the

asymptotic distribution of 1ffiffiffiffi
PT

p
PT�τ

t¼RT
ðβ̂j,t�β0j Þ

is a mixture of Brownian motions (see Lemma
A.2(b) in Appendix A), rather than a standard
Gaussian process as in Corradi and Swanson
(2007). Under the conditions of Theorem 3.1,
the Mann and Wald's (1943) theorem implies
that any bootstrap statistic that is a continu-

ous function of 1ffiffiffiffi
PT

p
PT�τ

t¼RT
ð~β ∗

j,t � β̂j,tÞ should

control test size. This result is important
because it implies that our proposed hybrid
bootstrap statistics in Section 3.2 provide a good
approximation of the limiting distribution of
the standard test statistics T T and WT without
the usual re-centering as in Corradi and
Swanson (2007).

Section 3.2 presents our bootstrap statis-
tics and characterizes their asymptotic behav-
ior under both the null hypothesis (size) and
the alternative hypothesis (power).

3.2 | Bootstrap statistics

We suggest the following recursive bootstrap F-statistic
and its equivalent Wald formulation:

T ∗
T ¼ 1

σ̂ ∗ 2

ε

XT
t¼RTþ1

ðy ∗
t �X ∗ 0

2,t�τ
~β
∗
2,t�τÞ

2�ðy ∗
t �X ∗ 0

1,t�τ
~β
∗
1,t�τÞ

2
h i

ð3:6Þ

W ∗
T ¼ Ŝ

∗
T � Ŝ

∗
RT
þ σ̂ ∗ �2

ε κ̌ ∗ logðρÞ, ð3:7Þ

where ~β
∗
j,t is given in (3.5), Ŝ

∗
m ¼ ~S

∗
m=σ̂

∗ 2

ε is the bootstrap

counterpart of Ŝm for m� fT,RTg with
~S
∗
m � ~S

∗ ðmÞ¼
Pm

t¼sy
∗
t Z

∗ 0

m,t�τ

Pm
t¼sZ

∗
m,t�τZ

∗ 0

m,t�τ

	 
�1Pm
t¼sZ

∗
m,t�τy

∗
t ,

and σ̂ ∗ 2

ε and κ̌ ∗ are the bootstrap counterparts of σ̂2ε and
κ̌, respectively.9 We implement the bootstrap test using
the following algorithm:

1. Given the observed data, construct an estimate of the
test statistics T T and WT defined in (2.5)-(2.8).

2. Construct j¼ 1,…,N bootstrap pseudo-samples inde-
pendently as described in Section 3.1, and compute
the bootstrap statistics T ∗

T and W ∗
T as in (3.6)–(3.7).

3. Reject the null hypothesis at the α% level if the test
statistic (T T or WT) is greater than the ð100�αÞ per-
centile of the empirical distribution of the N simu-
lated test statistics.

We can now state the following theorem on the valid-
ity of the bootstrap:

Theorem 3.2. Suppose Assumptions 1–3 are
satisfied and ℓT ¼ o T

1
4

� �
. Then:

lim
T!∞

P ω : sup
vj � ℝkj

jP ∗ ðT ∗
T ≤ vjÞ�PðT T ≤ vjÞj> ζ

2
4

3
5¼ 0,

lim
T!∞

P ω : sup
vj � ℝkj

jP ∗ ðW ∗
T ≤ vjÞ�PðWT ≤ vjÞj> η

2
4

3
5¼ 0

for any ζ>0 and η>0.

Remark 5. Theorem 3.2 holds irrespective of
whether the null hypothesis H0 is satisfied or
not. Moreover, our bootstrap approximates
well the limiting distribution of the standard
test statistics T T and WT even if the data gen-
erating process is heteroscedastic or weakly
dependent. This contrasts with the fixed regres-
sor bootstrap for which only the MAðτ�1Þ
structure of forecast errors are accounted for
(see Clark & McCracken, 2012, 2015). In par-
ticular, Theorem 3.2 allows for a more general
ARMA structure for the forecast errors, which
as discussed previously, can of be great impor-
tance in applied work when τ>1.

Now, let c ∗
T
ðαÞ and c ∗

W
ðαÞ denote the ð1�

αÞ quantiles under H0 of the bootstrap statis-
tics T ∗

T and W ∗
T respectively for some

α� ð0,1Þ. Theorem 3.3 characterizes the
behavior of the statistics T T and WT under
the alternative hypothesis H1 : β22 ≠ 0 when
the bootstrap critical values c ∗

T
ðαÞ and c ∗

W
ðαÞ

are utilized.

Theorem 3.3. Suppose Assumptions 1–3 are

satisfied, ℓT ¼ o T
1
4

� �
and β22 ≠ 0 is fixed.

Then:

P T T > c ∗
T
ðαÞ

h i
! 1, P WT > c ∗

W
ðαÞ

h i
! 1 as T!∞:

10 DOKO TCHATOKA and HAQUE
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Note that although Theorem 3.3 only focuses on fixed
alternative hypotheses, there is no impediment to extend-
ing it to local alternative hypotheses of the form given
in (2.13).

Next, we investigate the finite-sample performance of
both the asymptotic and proposed bootstrap through
Monte Carlo experiments in Section 4.

4 | FINITE-SAMPLE
PERFORMANCE OF THE TESTS

We consider the following DGP described by a bi-variate
vector autoregression (VAR) (similar to Hansen &
Timmermann, 2015):

yt ¼ 0:3yt�τþβ22xt�τþuyt, ð4:1Þ

xt ¼ 0:5xt�τþuxt, ð4:2Þ

where uyt, uxt are the error terms and τ is the forecast
horizon. To simplify the presentation, the experiments
are run with τ� f1,4g, but the results are qualitatively
the same for alternative forecast horizons. In all experi-
ments, the null forecast model is of “no-influence” of xt�τ

in (4.1), and the alternative (unrestricted) forecast model
takes the form of (4.1)–(4.2) with β22 ≠ 0. Therefore, the
testing problem of interest can be formulated equiva-
lently as

H0 : β22 ¼ 0 vs: H1 : β22 ≠ 0: ð4:3Þ

We consider four DGPs for the error vector ðuyt,uxtÞ0
as follows.

DGP 1 (Homoscedasticity): ðuyt,uxtÞ0 �i:i:d:Nð0, I2Þ;
DGP 2 (Heteroscedasticity alone): ujt �Nð0,hjtÞ for

j� fx,yg, where hjt ¼ α0þα1u2jt�1þα2hjt�1 and
α1 ¼ 0:1, α2 ¼ 0:8;

DGP 3 (Autocorrelation only): ujt ¼ 0:5uj,t�1þ εjt for
j� fx,yg, where ðεyt,εxtÞ0 �i:i:d:Nð0, I2Þ when τ¼ 1,
whereas

ujt ¼ 0:5uj,t�1þ εjtþ0:95εjt�1þ0:90εjt�2

þ0:80εjt�3,

where ðεyt,εxtÞ0 �i:i:d:Nð0, I2Þ when τ¼ 410;
DGP 4 (Heteroscedasticity and autocorrelation): DGP

2 + DGP 3.

The simulations are run with N ¼ 10,000 simulated
samples and B¼ 199 bootstrap pseudo samples of sizes
T � f50,100,200g. For both the asymptotic and bootstrap

tests, the nominal level α is set at 5%.11 The sample split
points, π¼ð1�ρÞ=ρ, varies in f0:2,0:8,1:4,2:0g. For
example, if π¼ 0:2, then ρ¼ 5

6 that is, 5T
6

� �
observations

are used in the initial estimation. This allows us to com-
pare our results with previous studies (see, e.g., Clark &
McCracken, 2001, 2005; McCracken, 2007).

4.1 | Size results

Table 1 shows the rejection frequencies for the standard
asymptotic test and our proposed moving block bootstrap
test for 1-step-ahead (τ¼ 1) and 4-step-ahead (τ¼ 4) fore-
casts for sample sizes T � f50,200g at nominal 5% level.12

The first column of the table presents the fraction π of
the sample used in the initial estimation period. The
other columns present, for each DGP, the rejection fre-
quencies of the tests under H0 at the nominal 5% level.

Consider first the rejections of the standard tests with
usual asymptotic critical values (see parts of Table 1
labelled “Asymptotic”). We see that when τ¼ 1 both tests
are oversized for small sample sizes. In particular, when
T¼ 50, the over-rejections under DGP 3 (autocorrelation
alone) and DGP 4 (heteroscedasticity and autocorrela-
tion) are large. For example, the maximal rejection fre-
quencies under DGP 4 for the F-test can be as high as
twice the nominal level (i.e., 10.3%), whereas that of the
Wald test is even worse (13.7%). More precisely, the rejec-
tion frequencies of the recursive F-test in DGP 4 range
from 7.5% to 10.3% and that of the Wald test range from
12.1% to 13.7%. Similar results are observed in DGP
3 (autocorrelation alone). As shown in Appendix S1, the
size distortions persist for both tests in DGP 3 and DGP
4 for T¼ 100. However, the tests show better size when
τ¼ 1 and T¼ 200. Looking at the case when τ¼ 4, we
observe that both tests over-reject the null hypothesis
substantially, and their size distortions persist in DGP
3 and DGP 4 even when T¼ 200. In particular, the
empirical rejection frequency of T T can be as large as
27.6% when T¼ 50, 17.6% when T¼ 100, and 13.9%
when T¼ 200. Similar results are seen for WT as well but
its rejection frequencies under DGP 3 and DGP 4 are
slightly less than that of T T .

Consider next the bootstrap tests' rejections (parts of
Table 1 labelled “Moving Block Bootstrap”). To enable
comparison with recent bootstrap methods, we also
report the fixed regressor wild bootstrap MSE-F test
results (Clark & McCracken, 2012; 2015). To shorten the
presentation, the rejection frequencies for the fixed
regressor MSE-F test are reported in Table S2. We can see
that the moving block bootstrap performs well for both
T T and WT , whereas the fixed regressor MSE-F bootstrap
tends to over-reject, especially in DGPs 3 and 4.13

DOKO TCHATOKA and HAQUE 11
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Specifically, looking first at DGP 1 and DGP 2, the empir-
ical size of our moving block bootstrap is mostly around
the 5% nominal level irrespective of the forecast horizon,
the sample size (including when T¼ 50), and the cut-off
point π. Although the fixed regressor MSE-F bootstrap
shows some over-rejections in small samples, it is largely
comparable with our MBB bootstrap. We expect the fixed
regressor bootstrap to work relatively well in DGP 1 and
DGP 2 because the assumptions underlying the fixed
regressor bootstrap are not violated. However, looking at
DGP 3 and DGP 4, it is obvious that the over-rejections of
the fixed regressor MSE-F bootstrap are very large, espe-
cially for 4-step-ahead forecasts (τ¼ 4) and sample sizes
T � f50,100g. For example, its maximal rejection fre-
quency in DGP 4 when τ¼ 4 is 20.9% for T¼ 50 and
12.2% for T¼ 100. In most cases considered, our moving
block bootstrap with both T T and WT outperforms the
fixed regressor MSE-F bootstrap.

Comparing the relative size performance between
moving block bootstrap with T T and that with WT , both

perform relatively well for all forecast horizons and cut-
off points π considered, even when T � f50,100g.

In Table 1, the DGPs include only one extra predictor
(k2 ¼ 1) in the larger model. One of the advantages of our
bootstrap procedure is that it simplifies the computa-
tional burdens of the asymptotic critical values of the sta-
tistics T T and WT , especially when the DGP is not
homoscedastic. As such, limiting the Monte Carlo experi-
ment to the case where k2 ¼ 1 (as seen in Table 1) is not
necessary for our purpose. Accordingly, we have also run
the Monte Carlo experiment with larger model contain-
ing two extra predictors (k2 ¼ 2). More specifically, we
use the following DGP when k2 ¼ 2:

yt ¼ 0:3yt�τþβ22x1,t�τþβ23x2,t�τþuyt, ð4:4Þ

xj,t ¼ 0:5xj,t�τþuxjt, j¼ 1,2 ð4:5Þ

where the same four DGPs for the error vector (uyt,uxjt)
are covered. In this setting, the null forecast model is of

TABLE 1 Rejection frequencies with sample sizes T¼ 50 and 200, α¼ 5%.

τ¼ 1 τ¼ 4

DGP 1 DGP 2 DGP 3 DGP 4 DGP1 DGP 2 DGP 3 DGP 4

π T T Wald T T Wald T T Wald T T Wald T T Wald T T Wald T T Wald T T Wald

T¼ 50

Asymptotic

0.2 7.9 8.6 7.1 7.9 10.6 12.0 10.3 12.7 10.8 12.1 10.5 11.7 21.5 21.0 21.8 21.1

0.8 8.0 8.7 7.4 8.8 9.7 13.2 10.0 13.7 10.0 12.0 9.4 11.6 25.2 19.6 25.5 19.8

1.4 6.8 8.8 6.7 8.0 8.7 12.1 8.9 12.1 8.7 11.0 9.0 11.5 25.3 17.0 26.0 17.4

2.0 7.0 8.6 6.5 8.5 7.9 11.5 7.5 12.2 8.5 10.4 7.5 10.4 27.6 15.6 27.1 15.2

Moving Block Bootstrap

0.2 4.5 4.4 4.7 4.1 5.7 5.3 4.9 5.0 4.6 4.0 3.8 3.4 6.9 6.5 8.2 7.3

0.8 4.7 3.7 4.5 3.8 5.2 5.6 5.9 5.0 5.1 3.4 4.3 3.1 7.6 7.6 9.0 8.0

1.4 5.3 4.0 5.4 4.9 6.0 5.5 4.6 5.5 5.3 3.8 3.6 3.6 9.9 7.2 9.1 7.8

2.0 4.7 4.5 4.1 3.8 5.6 5.1 5.1 5.4 3.9 4.0 4.2 3.9 10.8 7.0 10.2 6.8

T¼ 200

Asymptotic

0.2 5.8 5.9 5.3 5.6 6.0 6.6 5.9 6.4 6.4 6.8 6.3 6.9 10.2 9.4 10.5 9.9

0.8 5.6 5.4 5.5 5.5 6.0 6.5 6.0 6.7 5.9 6.3 6.0 6.4 12.2 9.6 12.1 9.6

1.4 5.6 5.7 5.6 5.6 6.2 7.0 6.1 7.2 6.6 7.1 5.3 5.9 13.9 9.8 13.1 9.5

2.0 5.5 5.5 5.4 5.1 6.1 7.2 5.7 6.6 5.8 6.5 6.1 7.0 13.8 9.1 13.9 9.5

Moving Block Bootstrap

0.2 4.2 4.8 4.2 4.5 5.0 4.9 5.1 5.3 5.3 5.0 4.5 4.4 4.4 5.1 6.2 6.0

0.8 5.4 4.9 4.2 4.7 4.8 5.8 5.3 5.7 4.0 5.0 4.3 4.9 4.2 5.9 5.3 5.4

1.4 5.6 4.9 5.3 5.0 5.2 6.0 5.4 4.8 4.5 5.1 5.5 5.1 4.8 4.9 7.1 5.3

2.0 5.6 5.2 5.5 5.0 5.1 5.0 5.4 5.0 4.3 4.7 4.6 4.8 6.6 4.8 5.0 5.3

12 DOKO TCHATOKA and HAQUE
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“no influence” of the predictors xj,t�τðj¼ 1,2Þ in (4.4),
whereas the alternative (unrestricted) forecast model
takes the form of (4.4)–(4.5) with the parameters β22 and
β23 being nonzero. Table 2 reports the results for the
bootstrap tests. We only focus on the bootstrap tests in
this table because the asymptotic critical values of the
standard tests are difficult to compute in DGP 3 and DGP
4 despite a relatively small number of extra predictors in
the larger model (k2 ¼ 2). As seen in Table 2, the rejection
frequencies of the moving block bootstrap tests are in line
with the results in Table 1. Specifically, our proposed
moving block bootstrap has an overall good finite-sample
performance and it outperforms the fixed regressor
MSE-F bootstrap, especially in DGPs 3 and 4.14

4.2 | Power results

We now examine the power properties of the proposed
moving block bootstrap T T and WT tests. To enable com-
parison, we also include the power analysis of the coun-
terpart asymptotic tests, even though the latter are size
distorted in most DGPs as shown in the size analysis
section above. To simplify the presentation, we restrict
the focus to T � f50,200g and cut-off point π¼ 0:8.

Figure 1 shows the plots of the empirical rejection fre-
quencies (vertical axis) for 4-step-ahead forecasts for
ðaÞT¼ 50 (top four subfigures) and ðbÞT¼ 200 (bottom
four subfigures) for values of β22 � ½�1,1� (horizontal
axis). Appendix S1 contains the power curves for 1-step-
ahead forecasts; see Figure A1. In these plots, 0 in the
horizontal axis corresponds to the null hypothesis
H0 : β22 ¼ 0, that is, the rejection frequencies for this

value of 0 are test empirical size. For β22 ≠ 0, the rejec-
tion frequencies represent test empirical power. Each fig-
ure shows the empirical power of the asymptotic and the
MBB tests for both the recursive-F T T and the Wald WT

test statistics.
Several results stand out from these figures. First, the

bootstrap empirical power is close to 1 even for moderate
deviations from the null hypothesis when T¼ 200, thus
supporting the bootstrap consistency result in Theorem
3.3. The convergence of the bootstrap test is faster for
both test statistics in DGPs 1-2 compared with DGPs 3-4.
Also, the convergence seems to be faster in 1-step-ahead
forecasts as seen in Figure A1 in Appendix A. Second,
the bootstrap test has good power when T¼ 50, irrespec-
tive of the forecast horizon, and this is the case even for
small deviations from the null hypothesis. Third, in all
cases considered (DGPs, sample sizes and forecast hori-
zons), the MBB test with T T has an edge in terms of
power over that with WT . Finally, the empirical power
curves of the standard T T and WT tests with asymptotic
critical values are way above the 5% nominal level line,
thus underscoring the lack of controlling size with these
tests. As such, their power advantage shown in Figure 1
is attributable to their asymptotic size distortions and
therefore must be ignored.

A important contribution of Hansen and Timmer-
mann's (2015) Wald approximation is that it facilitates
the computation of the asymptotic critical values. Seeing
the lack of size control of their proposed Wald-type test
for moderate sample sizes (e.g., T¼ 200), our hybrid
bootstrap method is more appealing than the Wald
approximation. In addition, even when the sample size is
large, the asymptotic critical values of the Wald statistic

TABLE 2 Moving block bootstrap rejection frequencies with k2 ¼ 2,α¼ 5%.

τ¼ 1 τ¼ 4

DGP 1 DGP 2 DGP 3 DGP 4 DGP1 DGP 2 DGP 3 DGP 4

π T T Wald T T Wald T T Wald T T Wald T T Wald T T Wald T T Wald T T Wald

T¼ 50

0.2 3.7 3.1 5.2 4.0 5.7 5.9 6.5 5.6 3.4 2.7 3.9 3.0 10.0 8.1 9.3 8.2

0.8 4.4 3.7 3.8 3.3 5.5 5.5 4.5 5.6 5.0 2.6 4.3 3.2 12.4 7.9 13.1 7.7

1.4 4.7 3.7 5.6 3.7 5.1 4.8 6.0 5.3 4.1 2.9 5.2 3.0 13.2 7.2 12.5 7.5

2.0 6.1 3.9 4.6 4.6 4.8 5.9 5.5 5.1 4.5 2.9 5.1 3.0 16.2 7.6 14.1 7.3

T¼ 200

0.2 4.5 4.5 4.7 4.9 4.9 5.1 5.3 5.7 4.6 5.0 4.6 4.2 5.5 5.8 5.0 4.8

0.8 4.7 4.8 5.0 4.9 4.5 5.4 4.9 5.7 4.5 5.3 4.2 5.5 5.6 5.5 5.7 5.0

1.4 4.9 4.5 4.6 5.2 4.6 5.6 6.3 5.9 4.8 4.7 5.2 4.8 5.6 5.6 5.6 5.5

2.0 5.2 4.9 5.2 5.1 4.7 5.0 4.6 5.6 4.8 5.1 5.0 4.8 5.2 5.0 4.8 5.2

DOKO TCHATOKA and HAQUE 13
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can only be simulated easily in specific cases
(as discussed above in Section 2.3), whereas our bootstrap
method applies in more general settings, including when
the larger model has more than one extra predictor and
the DGP is heteroscedastic or weakly dependent. Finally,
the bootstrap tests do not suffer much from power loss
compared with the asymptotic tests, and they provide
better size control.

5 | EMPIRICAL APPLICATIONS

We illustrate our theoretical results through two applica-
tions. The first application examines the predictive ability
of Chicago Fed National Activity Index (CFNAI) and
other inflation measures for forecasting core PCE infla-
tion (similar to Clark & McCracken, 2015). The second is
drawn from Stock and Watson (2003) and Clark and

FIGURE 1 Power of the MBB tests at level 5%, four-step ahead forecasts: τ¼ 4.

14 DOKO TCHATOKA and HAQUE
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McCracken (2012) and looks at forecasting quarterly US
GDP growth using a range of potential indicators.

5.1 | Forecasting core inflation

In this application, we compare 1-quarter and 4-quarter
ahead forecasts of inflation from two models. In the
1-quarter ahead forecasting exercise, the baseline
(restricted) model relates the change in inflation at tþ1
to current and one lagged value of inflation change, that
is,

ytþ1 ¼ b0þb1ytþb2yt�1þuy,tþ1, ð5:1Þ

where yt ¼Δπt, πt ¼ 400ln Pt
Pt�1

� �
and Pt is the aggregate

price index at t. The alternative (unrestricted) model
includes CFNAI, PCE food price inflation less core infla-
tion, and import price inflation less core inflation, that is,

ytþ1 ¼ b0þb1ytþb2yt�1þx0tb3þux,tþ1, ð5:2Þ

where xt contains period t values of CFNAI, PCE food
price inflation less core inflation, and import price infla-
tion less core inflation. In the 4-quarter ahead forecasting
case, the baseline (restricted) model relates yð4Þtþ4� yð4Þt to a
constant and yð4Þt � yð4Þt�4, y

ð4Þ
t ¼ 100ln Pt

Pt�4

� �
. The alternative

(unrestricted) model adds the period t values of CFNAI,
relative food price inflation, and relative import price
inflation to the baseline model.15 In both cases, the data
sample spans 1983 :Q3 through 2008 :Q2 (T¼ 100) and
we use the cut-off point π¼ 1:4 for the initial estimation.
Thus, out-of-sample forecasts from 1994 :Q2þ τ�1
through 2008 :Q2 (τ� f1,4g) are obtained and the corre-
sponding statistics computed. The bootstrap critical
values are obtained with 9999 replications. The results
are presented in Table 3. The first column of the table
shows the variables included in the alternative model,
whereas the other columns show for each forecast hori-
zon the p-values of the proposed bootstrap test along with
the fixed regressor wild bootstrap (FRWB) MSE-F test of
Clark and McCracken (2015).

The main findings from this table can be summarized
as follows. First, including CFNAI, PCE food price infla-
tion and import price inflation do not improve forecast
accuracy of core inflation at 1-quarter ahead horizon,
whereas it does for 4-quarter ahead forecasts. Second, the
p-value of the FRWB is 0.000 for 4-quarter ahead fore-
casting, whereas those of the MBB F- and Wald-statistics
stand at 0.066 and 0.041, respectively. This means that
using the FRWB leads to rejecting the baseline model at
1% nominal level, whereas the MBB T and W tests fail to

reject the baseline model at 1% nominal level. In particu-
lar, the MBB T test, which has higher power than the
MBB W test for small to moderately large sample sizes
(see the power analysis in Section 4.2), even fails to reject
the baseline model at the usual 5% nominal level. The
findings are also consistent with our size analysis in
Section 4.1 where we show that the fixed regressor
MSE-F bootstrap tends to over-reject even with a moder-
ately large sample size, especially in multi-step ahead
forecasts and in the presence of autocorrelation in the
errors. Therefore, this application demonstrates that the
choice of the bootstrap is important as it can lead to dif-
ferent conclusions.

5.2 | Forecasting real GDP growth

In this application, we examine the performance of
13 alternative models with respect to the baseline model
in forecasting real GDP growth. As in the previous appli-
cation, the comparison is done for τ-period ahead fore-
casts with τ� f1,4g. The baseline model includes a
constant and one lag of real GDP growth, where GDP
growth between t and t� τ is measured as
yt ¼ð400=τÞlnðGDPt=GDPt�τÞ, that is,

yt ¼ β0þβ1yt�τþuyt, ð5:3Þ

whereas each of the 13 alternative models adds a poten-
tial leading indicator xt to (5.3), that is,

yt ¼ β0þβ1yt�τþβ2xt�τþuxt, ð5:4Þ

where uxt and uyt are error terms. The set of leading indi-
cators used are shown in Table 4. It includes the change
in consumption's share in GDP (measured with nominal
data), weekly hours worked in manufacturing, building
permits, purchasing manager indexes for supplier deliv-
ery times and orders, new claims for unemployment
insurance, growth in real stock prices, change in
3-month Treasury bill rate, change in 1-year Treasury
bond yield, change in 10-year Treasury bond yield,

TABLE 3 Test of equal accuracy for core inflation.

MBB
Fixed regressor

Restricted variables T T WT MSE-F

One-quarter ahead: τ¼ 1

CFNAI, food, imports 0.186 0.957 0.314

Four-quarter ahead: τ¼ 4

CFNAI, food, imports 0.066 0.041 0.000

DOKO TCHATOKA and HAQUE 15
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3-month to 10-year yield spread, 1-year to 10-year yield
spread, and spread between Aaa and Baa corporate bond
yields from Moody's. The data span the period 1961 :Q2
through 2009 :Q4 (T¼ 195) and out-of-sample forecasts
from 1981 :Q4þ τ�1 through 2009 :Q4 (τ� f1,4g) are
obtained and the corresponding statistics computed.

The results are reported in Table 4.16 The first column
of the table shows the extra predictor added to the base-
line model (thus determining alternative (or unrestricted)
model), whereas the other columns show each test's
p-value from the pairwise forecast comparisons. The top
half of the table reports results for one-quarter ahead
forecasts, whereas the bottom half shows results for four-
quarter ahead forecasts.

Considering first one-quarter ahead forecasts, we see
that tests based on our MBB suggest that five models—
those including change in consumption share, growth in
building permits, growth in stock prices, Baa-Aaa interest
rate spread and PMI new orders - improve the accuracy
of forecasts relative to the benchmark AR(1) model. In
addition to the above five models, the FRWB test finds
that the alternative model that adds change in the
3-month Treasury bill rate to the baseline model also
improves slightly the one-quarter ahead forecasts of GDP
growth (p-value of 2.6%), whereas our MBB fails to reject
the baseline in that case at 10% nominal level (p-values of
19.2% and 47.0% for the MBB F and Wald tests,
respectively).

Next, looking at the four-quarter ahead forecasts, our
MBB suggests that two models - those including growth

in building permits and growth in stock prices - forecast
better than the benchmark AR(1) model at 5% nominal
level.17 On the other hand, the FRWB also adds the
models with change in consumption share and PMI
orders to the above models in terms of their forecast per-
formance in comparison to the baseline model. Accord-
ing to our MBB, the higher predictive power of the
change in consumption share and PMI orders seem to
disappear in the four-quarter ahead forecasts even at 10%
nominal level. Meanwhile, the FRWB fails to pick this up
suggesting that the test over-rejects in some cases, which
is in line with the Monte Carlo evidence reported earlier.

6 | CONCLUSION

In this paper, we examine the finite-sample performance
(size and power) of the recursively generated F-test of
out-of-sample predictive accuracy (McCracken, 2007) and
its equivalent Wald approximation (Hansen &
Timmermann, 2015). We show through Monte Carlo
experiments that even for moderate sample sizes, both
tests can be oversized, especially when the forecast errors
exhibit serial correlation. We then propose a bootstrap
method for both statistics and establish its consistency
even when the forecast errors are autocorrelated, irrespec-
tive of the forecast horizon. Our bootstrap method is valid
and easy to implement in cases where the larger model
contains many extra predictors and the data generating
process is heteroscedastic or weakly dependent, situations

TABLE 4 Test of equal accuracy for GDP.

One-quarter ahead: τ¼ 1 Four-quarter ahead: τ¼ 4

MBB
Fixed regressor

MBB
Fixed regressor

Restricted variables T T WT MSE-F T T WT MSE-F

Δ (C/Y) 0.000 0.000 0.000 0.201 0.271 0.059

Δ ln Permits 0.001 0.000 0.000 0.000 0.000 0.000

Δ ln S&P500 0.002 0.000 0.000 0.197 0.019 0.000

Spread, Baa-Aaa 0.066 0.092 0.072 0.374 0.608 0.841

PMI Orders 0.092 0.007 0.000 0.298 0.119 0.011

Unemployment claims 0.183 0.373 0.217 0.338 0.393 0.307

Δ 3-month treasury 0.192 0.470 0.026 0.507 0.551 0.997

Δ 1-year treasury 0.232 0.280 0.451 0.656 0.560 0.906

Hours 0.344 0.535 0.420 0.157 0.140 0.189

PMI deliveries 0.333 0.644 0.905 0.741 0.187 0.999

Δ 10-year treasury 0.425 0.371 0.530 0.932 0.860 0.889

Spread, 10 years - 3 months 0.999 0.995 0.995 1.000 0.999 0.999

Spread, 10 years - 1 year 1.000 1.000 0.997 1.000 1.000 0.998
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under which the asymptotic critical values of the standard
recursive F or Wald statistics are difficult to simulate.

The proposed bootstrap is a hybrid of a moving block
bootstrap (which is nonparametric) and a residual-based
bootstrap (which is parametric). We suggest a practical
means of choosing the block length in a data-dependent
way. In particular, we argue that in order to capture the
autocorrelation structure of regression residuals practi-
tioners should choose the block length that mimics the
optimal lag length of the Newey and West's (1987) HAC
estimator. Monte Carlo simulations show that the pro-
posed bootstrap test has overall good finite-sample perfor-
mance. The method is also illustrated with applications on
forecasting core inflation and real GDP growth.
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ENDNOTES
1 See Diebold and Mariano (1995), West (1996), White (2000),
Stock and Watson (2003), Giacomini and White (2006), Corradi
and Swanson (2007), McCracken (2007), Clark and McCracken
(2001, 2005, 2012, 2014, 2015), Rossi and Inoue (2012), Hansen
and Timmermann (2012), among others.

2 See Kunsch (1989).
3 See, for example, Clark and McCracken (2005); Giacomini and
White (2006); Clark and West (2007); Clark and McCracken
((2012), (2015)); Hansen and Timmermann (2015).

4 The HAC estimator with the Bartlett kernel is utilized in the sim-
ulations and empirical applications, but any kernel in class ℋ3

of Andrews ((1991), eq.(7.1)) could be employed. The block
length of the kernel bandwidth is selected following the recom-
mendations of Andrews and Monahan (1992) and Newey and
West (1994).

5 That is, there exists �Ujt such that jUj,pðtÞj< �Ujt and
EF j �Ujtj3ð2þ1=ψÞ
h i

<∞, for all t, j and p, where
Ujt :¼ Uj,pðtÞ

	 

1≤ p≤ k .

6 Let fVtg be a stochastic process and ℱtþn
t�n :¼ σðVt�n,…,VtþnÞ

denote the σ-field generated by Vt�n,…,Vtþn. We define a process
fWtg to be NED (Near Epoch Dependent) on a mixing process
fVtg if EF ½kWtk2�<∞ and vn :¼ suptkWt �Etþn

t�nðWtÞk2 ! 0 as
n!∞, where k � kp is the Lp norm and Etþn

t�nð�Þ�EF ½�jℱtþn
t�n�.

fWtg is NED on fVtg of size �a if vn ¼Oðn�a�δÞ for some δ>0.
We say that fVtg is strong mixing with coefficients αn �
sup

m
sup

A � ℱm
�∞ ,B � ℱ∞

mþn
jPðA\BÞ�PðAÞPðBÞj if αn ! 0 as n!∞

suitably fast.
7 See, for example, Clark and McCracken (2001, 2012, 2014, 2015);
McCracken (2007), and Hansen and Timmermann (2015),
among others.

8 Note that by definition, s¼ maxfq,τgþ1, with q being the maxi-
mum lag length of yt included in X2,t .

9 Note that the HAC estimator σ2ε is computed using the full boot-
strap sample.

10 Note that in addition to the ARð1Þ property, the forecast errors
also exhibit the usual MAðτ�1Þ form when τ¼ 4. The form of
the MAðτ�1Þ is identical to the one in Clark and McCracken
(2012) but the AR(1) part is new.

11 We also run the experiments with α� 1%,10%f g and the main
findings remain qualitatively unchanged.

12 Table S1 contains the results for T¼ 100.
13 Note that DGP 3 and 4 violate the assumptions of the fixed

regressor MSE-F bootstrap, which only allows for an MA(τ�1)
structure.

14 The rejection frequencies for the fixed regressor MSE-F tests are
reported in Table S3.

15 To simplify the lag structure, the relative food and import price
inflation variables are computed as two-period averages of quar-
terly (relative) inflation rates, similar to Clark and McCracken
(2015).

16 9999 replications were used to approximate the bootstrap critical
values.

17 In case of growth in stock prices, test based on recursive F statis-
tics fails to reject the baseline at 10% nominal level, therefore
providing mixed evidence regarding this variable.
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APPENDIX A

In this appendix, we present the proofs of the main
results. Additional lemmas and simulation results are
contained in Appendix S1.

A.1 | Proof of main results

Proof of Theorem 3.1. From (1.12) in the proof
of Lemma 1.4, we have

1ffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

ð˜β ∗
j, t� β̂ j, tÞ¼

H�1
jffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

� 1
t

Xt
n¼s

s ∗j,nðβ̂ j, tÞ�μT
XT�τ

n¼s

sj,nðβ̂ j, tÞ�
" !

þop ∗ ð1Þ pr-P:
 

ðA1Þ

We can express s ∗j,nðβ̂j,tÞ and sj,nðβ̂j,tÞ as

s ∗j,nðβ̂j,tÞ¼X ∗
j,n�τ½y ∗

n �X ∗ 0

j,n�τðβ̂j,t�β0j Þ�
¼ s ∗j,nðβ0j Þ�h ∗

j,n�τðβ̂j,t�β0j Þ

sj,nðβ̂j,tÞ¼Xj,n�τ½yn�X 0
j,n�τðβ̂j,t�β0j Þ�

¼ sj,nðβ0j Þ�hj,n�τðβ̂j,t�β0j Þ
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so that (A1) can be written as

1ffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

ð˜β ∗
j, t� β̂ j, tÞ¼

H�1
jffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

1
t

Xt
n¼s

s ∗j,nðβ0j Þ�μT
XT�τ

n¼s

sj,nðβ0j Þ
" # !

�
H�1

jffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

1
t

Xt
n¼s

h ∗
j,n�τ�μT

XT�τ

n¼s

hj,n�τ

 !
β̂ j, t�β0j Þ
� � 

þop ∗ ð1Þ pr-P: ðA2Þ

From Lemma 1.5, the second term of the
RHS of (A2) is op ∗ ð1Þ pr-P. Therefore, we
have

1ffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

ð˜β ∗
j, t� β̂ j, tÞ¼

H�1
jffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

1
t

Xt
n¼s

s ∗j,nðβ0j Þ�μT
XT�τ

n¼s

sj,nðβ0j Þ
" # !

þop ∗ ð1Þ pr-P:

ðA3Þ

Now, from Fitzenberger (1998, lemma 1),
we have

1
t

Xt
n¼s

EF ∗ ½s ∗j,nðβ0j Þ� ¼ μT
XT�τ

n¼s

sj,nðβ0j ÞþOp ℓTT
�1

	 

,

thus we can express (A3) as

1ffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

ð˜β ∗
j, t� β̂ j, tÞ¼

H�1
jffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

1
t

Xt
n¼s

s ∗j,nðβ0j Þ�EF ∗ ½s ∗j,nðβ0j Þ�
� �

þop ∗ ð1Þ pr-P: ðA4Þ

By following the same steps as in Lemma
1.2, we can write the RHS of (A4) as

H�1
jffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

1ffiffiffiffi
T

p ðT=tÞffiffiffiffi
T

p
Xt
n¼s

s ∗j,nðβ0j Þ�EF ∗ ½s ∗j,nðβ0j Þ�
� �

þop ∗ ð1Þ pr-P

¼
ffiffiffiffiffiffiffiffiffiffi
1�ρ

p
H�1

j
ðT=tÞffiffiffiffi

T
p

Xt
n¼s

s ∗j,nðβ0j Þ�EF ∗ ½s ∗j,nðβ0j Þ�
� �

þop ∗ ð1Þ pr-P:

We deal with j¼ 2 and j¼ 1 separately. First,
note as in the proof of Lemma 1.2-(b) that for

j¼ 2, Lemma 1.2-(a) along with the bootstrap
sampling implies that

ffiffiffiffiffiffiffiffiffiffi
1�ρ

p
H�1

2
ðT=tÞffiffiffiffi

T
p

Xt
n¼s

s ∗2,nðβ02Þ�EF ∗ ½s ∗2,nðβ02Þ�
	 


)
ffiffiffiffiffiffiffiffiffiffi
1�ρ

p
r�1H�1

2 Υ�1H�1=2
2

~A
0
B ∗ ðrÞ

þoas ∗ ð1Þ a:s�P,

where B ∗ ðrÞ is a k2 dimensional vector of
standard Brownian motion.

As var
ffiffiffiffiffiffiffiffiffiffi
1�ρ

p
r�1H�1

2 Υ�1H�1=2
2

~A
0
B ∗ ðrÞ

h i
¼ r�3ð1�ρÞH�1

2 Υ�1H�1
2 ,

it is clear that

1ffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

ð~β ∗
2,t� β̂2,tÞ)B r�3ð1�ρÞH�1

2 Υ�1H�1
2

� �
a:s�P,

ðA5Þ

which is the distribution of 1ffiffiffiffi
PT

p
PT�τ

t¼RT
ðβ̂2,t�

β02Þ given in Lemma 1.2. Similarly, for j¼ 2,
we find

1ffiffiffiffiffiffi
PT

p
XT�τ

t¼RT

ð~β ∗
1,t� β̂1,tÞ)B r�3ð1�ρÞH�1

1 J 0Υ�1JH�1
1

� �
a:s�P,

ðA6Þ

which also is the distribution of
1ffiffiffiffi
PT

p
PT�τ

t¼RT
ðβ̂1,t�β01Þ given in Lemma 1.2.

Overall, this results show that
1ffiffiffiffi
PT

p
PT�τ

t¼RT
ð~β ∗

j,t � β̂j,tÞ converges almost surely
to the asymptotic distribution of
1ffiffiffiffi
PT

p
PT�τ

t¼RT
ðβ̂j,t�β0j Þ for all j¼ 1,2, thus estab-

lishing Theorem 3.1. ▪

Proof of Theorem 3.2. T T and WT are asymp-
totically equivalent, it suffices to establish the
result for WT . Also, as the MSE loss differen-
tial in the numerator of T T is related to the
homoskedastic Wald statistics (see Hansen &
Timmermann, 2015, Corollary 1) regardless of
whether the underlying process is homoskedas-
tic and regardless of whether the null hypothe-
sis holds or not, we consider WT ¼ ŜT � ŜRTþ
σ�2
ε κ̌logðρÞ where σ̂2εðŜT � ŜRT Þ is equal to

~ST � ~SRT ¼ Ǔ
0
T,T
Ȟ

�1
2 ǓT,T �

T
RT

Ǔ
0
T,RT

Ȟ
�1
2 ǓT,RT

þopð1Þ

þβ022
PT

t¼RTþ1
Zt�τZ0

t�τβ22þ2
ffiffiffiffi
T

p
β022ðǓT,T � ǓT,RT

Þ,

ðA7Þ
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~ST given in (2.7), ǓT,T ¼ 1ffiffiffi
T

p
PT

t¼sZt�τε2t,
~SRT , ǓT,RT

are the corresponding of both
respectively in the sub-sample with RT

observations.
Suppose first that β22 ¼ 0. From the proof

of Theorem 3 in Hansen and Timmermann
(2015, p. 2503),

~ST � ~SRT !
d
Bð1Þ0Ω̌1=2

∞ Ȟ
�1
2 Ω̌1=2

∞ Bð1Þ
�ρ�1BðρÞ0Ω̌1=2

∞ Ȟ
�1
2 Ω̌1=2

∞ BðρÞ ðA8Þ

where Ω̌∞ is the log-run variance of the pro-
cess fZt�τε2tg and BðrÞ�Dk2

½0,1�. Because
σ̂2ε ¼ σ2ε þopð1Þ, then WT is distributed as σ�2

ε

times the limit distribution of ~ST � ~SRT

in (A8). To establish the validity of the boot-
strap for WT when β22 ¼ 0, it suffices to estab-
lish that W ∗

T converges to σ�2
ε times the limit

distribution in (A8) a.s.-P.
First, note that

W ∗
T ¼ Ŝ

∗
T � Ŝ

∗
RT
þ σ̂ ∗ �2

ε κ̌ ∗ logðρÞ, and under H0

along with the results of Lemmas 1.1-1.5, we
can express σ̂ ∗ 2

ε ðŜ ∗
T � Ŝ

∗
RT
Þ as:

~S
∗
T � ~S

∗
RT

¼ Ǔ
∗ 0

T,T
Ȟ

�1
2 Ǔ

∗
T,T

� T
RT

Ǔ
∗ 0

T,RT
Ȟ

�1
2 Ǔ

∗
T,RT

þβ022
PT

t¼RTþ1
Z ∗
t�τZ

∗ 0

t�τβ22þ2
ffiffiffiffi
T

p
β022 Ǔ

∗
T,T

� Ǔ
∗
T,RT

� �
þop ∗ ð1Þ pr�P,

ðA9Þ

where the various quantities in stars are the
analogues to the ones in (A7) in the bootstrap
sample. It is easy to see from the model
assumptions, along with the results of
Lemmas 1.1–1.5, that

~S
∗
T � ~S

∗
RT

!d
∗

B ∗ ð1Þ0Ω̌1=2
∞ Ȟ

�1
2 Ω̌1=2

∞ B ∗ ð1Þ

�ρ�1B ∗ ðρÞ0Ω̌1=2
∞ Ȟ

�1
2 Ω̌1=2

∞ B ∗ ðρÞ, a:s�P ∗
ðA10Þ

under H0, where B ∗ ðrÞ�Dk2
½0,1�. Because B

∗ ðrÞ
in (A10) and BðrÞ in (A8) have the same dis-
tribution, it is the case that (A10) holds a.s.-P
with B ∗ ðrÞ replaced by BðrÞ, that is,

~S
∗
T � ~S

∗
RT

!d Bð1Þ0Ω̌1=2
∞ Ȟ

�1
2 Ω̌1=2

∞ Bð1Þ

�ρ�1BðρÞ0Ω̌1=2
∞ Ȟ

�1
2 Ω̌1=2

∞ BðρÞ, a:s�P:
ðA11Þ

Therefore, W ∗
T has the same asymptotic

distribution as WT a.s-P under H0.
Suppose now that β22 ≠ 0. If β22 ¼ cT�1=2b

(local-to-zero alternative) for some c and b as
in (2.13), then we can show as in the case
under H0 that ~S

∗
T � ~S

∗
RT

converge almost
surely to the asymptotic distribution of
~ST � ~SRT . If β22 ≠ 0 is fixed, it easy to see
from (A7) and the model assumptions that
~ST � ~SRT )∞ because the first two terms in
the RHS of (A7) are Opð1Þ, whereas the last
two terms diverge. As such, we also have ~ST �
~SRT !

d ∞ because weak convergence implies
convergence in distribution. Because σ̂2ε ¼
σ2ε þopð1Þ irrespective of the value of β22, it
follows that the above result implies that

WT !
d ∞ if β22 ≠ 0: ðA12Þ

Similarly, we have that both ~S
∗
T � ~S

∗
RT

!d ∞
a.s- P so that W ∗

T !d ∞ a.s- P. Because W ∗
T

and WT also diverge when β22 ≠ 0 is fixed, it
is clear that Theorem 3.2 holds in that case.
▪

Proof of Theorem 3.3. Let c∞
0�T
ðαÞ and c∞

0�W
ðαÞ

denote the ð1�αÞth quantiles under H0 of the
asymptotic distributions of T T and WT

respectively. We know from (2.11)–(2.12) that
c∞
0�T
ðαÞ<∞ and c∞

0�W
ðαÞ<∞. From Theorem

3.2, we have

c ∗
T
ðαÞ!p c∞

0�T
ðαÞ<∞, c ∗

W
ðαÞ!p c∞

0�W
ðαÞ<∞ as T!∞:

ðA13Þ

We know from the above proof of Theo-
rem 3.2 that WT )∞ if β22 ≠ 0 is fixed. Then,
Theorem 3.3 follows by combining this con-
vergence result with (A13). ▪
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