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Efficient implementation of Deep Nets for video processing to preserve marine ecosystem services

by Miguel MARTÍN ABADAL

Marine ecosystems provide multiple services to humans, including provisioning services, such as seafood
or fossil energy; regulating services, like coastal protection or water purification; cultural services, as
tourism or spiritual benefits; and supporting services, like nutrient cycling or habitat provision.

The provided services are endangered by negative impacts that marine ecosystems are suffering due
to multiple causes, some examples of which could be overfishing, habitat destruction, or plastic pollution.
Therefore, there exists an urgency to develop new protective measures. One highlighted initiative is to
develop scientifically and statistically robust monitoring methodologies and tools to control potential risks
or assess the effectiveness of protective and recovery initiatives.

Ocean research and management is facing a new era, led by the technological developments in data
collection, allowing the collection of vast amounts of data; and deep learning techniques, capable of pro-
cessing the data and reducing its processing workload while increasing the spatial and temporal scope of
conducted analysis. The marine science community is ready and willing to implement these new tools to a
wide range of proposals towards the sustainability of marine ecosystems and its services.

The objective of this thesis is to study the applicability of deep learning solutions, along with com-
puter vision, to develop new tools to preserve marine ecosystems and the offered services. Tools have
been developed for three different tasks: Posidonia oceanica monitoring, jellyfish quantification and pipeline
characterisation. In their development, diverse deep convolutional network model types and architectures
have been trained and tested with data gathered from a variety of sources and under different environmen-
tal conditions. Additionally, the developed tools have been deployed into diverse platforms and adapted
to its features and limitations.

These implementations cover a wide spectrum of scenarios where deep convolutional networks have
been applied with good results, automating the data analysis process, expanding the temporal and spa-
tial scope of the analysis or surveys, and improving the repeatability of experiments to detect evolution
trends. Thus, validating the proposed methodology to implement deep convolutional networks for video
processing to preserve marine ecosystem services.
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Efficient implementation of Deep Nets for video processing to preserve marine ecosystem services

por Miguel MARTÍN ABADAL

Los ecosistemas marinos ofrecen múltiples servicios a los seres humanos, incluyendo servicios de apro-
visionamiento como la producción de comida o energía fósil, servicios de regulación como la protección
costera o la depuración de aguas, servicios culturales como el turismo o beneficios espirituales y servicios
de apoyo como la circulación de nutrientes o la provisión de hábitat.

Estos servicios se ven amenazados por los impactos negativos que están sufriendo los ecosistemas mari-
nos debido a múltiples causas. Algunos ejemplos podrían ser la sobrepesca, la destrucción del hábitat o la
contaminación por plásticos. Por lo tanto, existe la urgencia de desarrollar nuevas medidas de protección.
Una iniciativa destacada es el desarrollo de metodologías y herramientas de monitoreo científica y estadís-
ticamente sólidas para controlar los potenciales riesgos o evaluar la efectividad de iniciativas de protección
y recuperación.

La investigación y gestión de los océanos se enfrenta a una nueva era, liderada por los avances tec-
nológicos en la obtención de datos, que permiten la recopilación de grandes cantidades de datos; y técnicas
de aprendizaje profundo, capaces de procesar los datos y reducir el tiempo de procesamiento a la vez
que aumentan el alcance espacial y temporal de los análisis realizados. La comunidad científica marina
está lista y dispuesta a implementar estas nuevas herramientas en una amplia gama de propuestas para la
sostenibilidad de los ecosistemas marinos y sus servicios.

El objetivo de esta tesis es estudiar la aplicabilidad de soluciones de aprendizaje profundo junto con
visión artificial para desarrollar nuevas herramientas con el fin de preservar los ecosistemas marinos y
los servicios ofrecidos. Se han desarrollado herramientas para tres tareas diferentes: la monitorización de
Posidonia oceanica, la cuantificación de medusas y la caracterización de sistemas de tuberías. Durante su
desarrollo, se han entrenado y probado diversos tipos de modelos y arquitecturas de redes convolucionales
profundas con datos recopilados de una variedad de fuentes y en diferentes condiciones ambientales. Adi-
cionalmente, las herramientas desarrolladas han sido desplegadas en diversas plataformas y adaptadas a
sus características y limitaciones.

Estas implementaciones cubren un amplio espectro de escenarios en los que se han aplicado redes con-
volucionales profundas con buenos resultados, automatizando el proceso de análisis de datos, ampliando
el alcance temporal y espacial de los análisis o inspecciones, y mejorando la repetibilidad de los experimen-
tos para detectar tendencias de evolución. Por lo tanto, se ha validado la metodología propuesta para la
implementación de redes convolucionales profundas para el análisis de datos en entornos marinos para la
preservación de sus ecosistemas y servicios.
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Efficient implementation of Deep Nets for video processing to preserve marine ecosystem services

per Miguel MARTÍN ABADAL

Els ecosistemes marins ofereixen múltiples serveis als humans, incloent serveis d’aprovisionament com
la producció de menjar o energia fòssil, serveis de regulació com la protecció costanera o la depuració
d’aigües, serveis culturals com el turisme o beneficis espirituals, i serveis de suport com la circulació de
nutrients o la provisió d’hàbitat.

Aquests serveis es veuen amenaçats pels impactes negatius que estan patint els ecosistemes marins
degut a múltiples causes, alguns exemples podrien ser la sobrepesca, la destrucció de l’hàbitat o la contam-
inació per plàstics. Així doncs, hi ha la urgència de desenvolupar noves mesures de protecció. Una inicia-
tiva destacada és el desenvolupament de metodologies i eines de monitorització científica i estadísticament
sòlides per controlar els riscos potencials o avaluar l’efectivitat d’iniciatives de protecció i recuperació.

La investigació i la gestió dels oceans s’enfronta a una nova era, liderada pels avenços tecnològics en
l’obtenció de dades, permetent la recopilació de grans quantitats de dades; i tècniques d’aprenentatge pro-
fund, capaces de processar les dades i reduir el temps de processament alhora que augmenten l’abast espa-
cial i temporal dels anàlisis realitzats. La comunitat científica marina està llesta i disposada a implementar
aquestes noves eines en una àmplia gamma de propostes per a la sostenibilitat dels ecosistemes marins i
els seus serveis.

L´objectiu d´aquesta tesi és estudiar l´aplicabilitat de solucions d´aprenentatge profund juntament
amb visió artificial per desenvolupar noves eines per tal de preservar els ecosistemes marins i els serveis
oferts. S’han desenvolupat eines per a tres tasques diferents: la monitorització de Posidonia oceanica, quan-
tificació de meduses i caracterització de sistemes de canonades. Durant el desenvolupament s’han entrenat i
provat diversos tipus de models i arquitectures de xarxes convolucionals profundes amb dades recopilades
d’una varietat de fonts i en diferents condicions ambientals. Addicionalment, les eines desenvolupades han
estat desplegades en diverses plataformes i adaptades a les seves característiques i limitacions.

Aquestes implementacions cobreixen un ampli espectre d’escenaris on s’han aplicat xarxes convolu-
cionals profundes amb bons resultats, automatitzant el procés d’anàlisi de dades, ampliant l’abast temporal
i espacial de les anàlisis o inspeccions i millorant la repetibilitat dels experiments per detectar tendències
devolució. Per tant, s’ha validat la metodologia proposta per a la implementació de xarxes convolucionals
profundes per a l’anàlisi de dades en entorns marins per preservar els seus ecosistemes i serveis.
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Chapter 1

Introduction

This chapter first introduces the motivation and context behind this thesis. Next, its main objectives are
presented. Finally, it summarises the remaining document structure.

1.1 Context

1.1.1 Ecosystem services

Ecosystem services are the direct and indirect contributions of the natural environment and ecosystems
to human well-being. Understanding the interactions between ecological and social systems is a funda-
mental domain of ecology and is crucial for mapping and managing ecosystem services. This requires
an understanding of how ecosystems contribute to human welfare. However, quantifying the management
consequences on ecosystem functions and the resulting changes in the value of goods and services depends
on the complex interactions between social-ecological systems (Norgaard, 2010).

The "Millennium Ecosystem Assessment" (Hassan et al., 2005) distinguishes between four types of
ecosystem services:

• Provisioning services: These are material or energy outputs from ecosystems, including food, water,
raw materials, and other resources.

• Regulating services: These are services that ecosystems provide by acting as regulators, such as
regulating the quality of air and soil or controlling floods and diseases.

• Cultural services: These are non-material benefits obtained from being in contact with ecosystems,
including aesthetic, spiritual, and psychological benefits.

• Supporting services: Closely related to regulating services, these services allow the ecosystems to
continue providing the other services. They include nutrient cycling, primary production, soil forma-
tion, and habitat provision.

As previously mentioned, understanding ecosystem services is a complex task that requires a strong
foundation in ecology, including an understanding of the principles and interactions of organisms and the
environment Maurer, 2009. The scales at which these entities interact can vary widely, from microbes to
landscapes and from milliseconds to millions of years. Furthermore, an ecosystem can provide multiple
types of services; for example, the same forest may provide a habitat for organisms, or recreation opportu-
nities and wood for humans. There also exist complex relationships and exchanges of energy and materials
between different ecosystems (Bennett, Peterson, and Gordon, 2009).

A suggested research agenda (Kremen, 2005) for the study of ecosystem services includes the following
steps:

• Identification of Ecosystem Service Providers (ESPs): species or populations that provide specific
ecosystem services and the characterization of their functional roles and relationships.

• Determination of community structure aspects that influence how ESPs function in their natural land-
scape, such as compensatory responses that stabilize function and non-random extinction sequences
that can erode it.

• Assessment of key environmental factors that influence the provision of services.

• Measurement of the spatial and temporal scales on which ESPs and their services operate.
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Marine ecosystem services

Marine ecosystems are aquatic environments with high levels of dissolved salt, including deep-sea oceans,
estuaries, and coastal marine ecosystems, each of which has unique physical and biological characteristics.

Marine ecosystems are defined by their unique biotic and abiotic components, which support each other
for survival. Biotic factors include plants, animals, and microbes; important abiotic factors include the
amount of sunlight in the ecosystem, the amount of oxygen, salt, and nutrients dissolved in the water,
proximity to land, depth, and temperature.

Marine ecosystem services result from a wide variety of resources that marine ecosystems provide and
that are consumed, used, or enjoyed by people (Buonocore et al., 2020; Barbier, 2017; Häyhä and Franzese,
2014). Marine ecosystems provide services of all the previously mentioned types. For example, they pro-
vide energy, food, coastal protection, carbon sequestration, and recreational opportunities. Table 1.1 show-
cases a wide variety of marine ecosystem services.

Provisioning · Seafood from plants and animals · Renewable and fossil energy
· Raw materials · Genetic material · Water

Regulating · Coastal protection · Carbon sequestration · Climate regulation
· Waste treatment · Water purification

Cultural · Entertainment · Tourism · Aesthetic · Spiritual benefits
· Habitat and species value · Cultural heritage

Supporting · Nutrient cycling · Habitat provision for plants and animals
· Gene pool protection

TABLE 1.1: Marine ecosystems services.

These services highly rely on the interplay between biotic and abiotic factors, depending on the physical,
chemical, and biological processes that support marine ecosystems. Ecosystem processes include biomass
production, organic matter transformation, nutrient cycling, and physical structuring (Strong et al., 2015).

During the last few decades, marine ecosystems have undergone drastic changes at different scales
due to multiple anthropogenic causes, including overfishing, eutrophication, invasive alien species, habitat
destruction, plastic pollution, and climate change (Ani and Robson, 2021; González-Ortegón and Moreno-
Andrés, 2021; Antao et al., 2020; Küpper and Kamenos, 2018). These changes affect the previously men-
tioned ecosystem processes and thus the biotic and abiotic factors and provided services, affecting human
well-being.

There is an urgent need to expand the range of protection for marine ecosystems. Some of the main
agencies in the matter, such as the European Environmental Agency (EEA, 2020) or the International Seabed
Authority (ISA, 2020), propose diverse measures for the preservation of water and marine environments:

• Progressively develop, implement, and review an adaptive, practical, and technically feasible regula-
tory framework, based on the best environmental practices, to protect marine ecosystems.

• Conduct assessments to support the implementation and development of regulatory measures.

• Ensure public access to environmental information and facilitate networking for better communica-
tion, coordination, and cooperation in terms of data reporting, management, and information sharing.

• Develop scientifically and statistically robust monitoring programs and methodologies to prevent, re-
duce, or control the potential risk of harmful activities and to assess the effectiveness of any protective
or recovery initiatives.

1.1.2 Deep learning

Machine learning is a branch of artificial intelligence and computer science that focuses on the use of data
and algorithms to imitate the way humans learn, gradually improving accuracy.

Machine learning powers many aspects of modern society, from web searches and content filtering on
social networks to recommendations on e-commerce websites. It is also increasingly present in consumer
products, such as televisions or smartphones.

Machine learning systems require the design of a feature extractor that transforms raw input data into
an internal representation or feature vector from which a neural network can detect or classify patterns.
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Deep learning is a sub-field of machine learning that differs primarily in the fact that deep-learning
systems automatically extract features to perform tasks without human intervention from labelled or unla-
belled raw data.

Deep learning and neural networks are accelerating progress in areas such as computer vision (Chai et
al., 2021), natural language processing (Otter, Medina, and Kalita, 2021), speech recognition (Nassif et al.,
2019) or robotics (Morales et al., 2021), among many others.

When it comes to machine or deep learning, there exist diverse categories of models depending on how
the learning process is performed:

• Supervised learning: For the training procedure, the input is a known training data set with its
corresponding labels. The model compares its output with the ground truth label and calculates the
difference using a predefined loss function to modify the weights of the neural network. Applications
of supervised learning include classification or regression problems.

• Unsupervised learning: The models can infer a function to describe previously unknown patterns or
hidden structures from unlabeled data, clustering it based on the discovered features. Applications
of unsupervised learning include clustering or association problems.

• Semi-supervised learning: The models combine a small amount of labelled data with a large amount
of unlabeled data, performing weak supervision during training where labelled data acts as sanity
checks. These models are able to produce better results than unsupervised learning models without
the need of spending resources on labelling the entire dataset.

• Reinforcement learning: The models use raw unlabeled data to interact with the environment and
are trained on a reward and punishment mechanism, rewarding correct moves and punishing wrong
ones. The correctness of an output depends on previous states and outputs, allowing the determi-
nation of an ideal behaviour within a specific context to maximize the desired performance. The
main applications for reinforcement learning are within complex and variant environments, such as
self-driving cars or trading and finances.

Focusing on deep learning, there exists a variety of algorithms that are distinguished by the type of in-
put data, network structure or data processing methods. Although there is no categorical correspondence
between tasks to perform and algorithms to use, some algorithms are better suited to perform specific tasks
due to their characteristics. Some of the most common deep learning algorithms include Multilayer Per-
ceptrons, Convolutional Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks,
Restricted Boltzmann Machines or Autoencoders.

This thesis will focus on the use of Convolutional Neural Networks (CNNs), which are specifically de-
signed for computer vision applications such as classifying images or identifying areas or objects of inter-
est. CNNs applications are numerous and include medical image processing, scene recognition, document
analysis, and face or emotion recognition.

CNNs consist of architectures with multiple layers of convolutions that use mask matrices to extract
key features from the input data. CNN architectures can be divided into two parts. The first one consists
of an encoder, built using multiple convolutional layers along with pooling layers to reduce the input
dimensionality. In this section of the architecture, the initial layers produce feature maps containing low-
level information such as edges, as the network deepens, it extracts higher-level concepts such as whole
objects.

The second part of the network varies depending on the application. For image classification, where no
spatial information is needed, the resulting feature maps from the encoder are mapped into a fixed-length
vector using fully connected layers, proposing a confidence percentage for each possible class.

On the other hand, for tasks that use spatial information, like the identification of areas or objects of
interest, a decoder is built using convolutional and upsampling layers. The low-resolution high-level in-
formation of the encoder is transformed into a high-resolution low-level information output. Additionally,
skip connections are added, permitting the decoder to access the low-level information from the encoder in
order to prevent information loss. Figure 1.1 showcases both CNN types of structures.

There is a wide variety of CNN architectures that can extract different types of information from an
image. Following, the most common types of deep CNN architectures, their structures, and their uses are
presented.s:
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FIGURE 1.1: CNN types of structures. Top: fully connected structure. Bottom: Encoder-
Decoder structure.

Image classification CNN architecture

Image classification is the task of categorising images into one or multiple predefined classes. Image classi-
fication CNN architectures use a fully connected structure (Figure 1.1) in which spatial information is lost,
and a single label is assigned to an entire image. In these architectures, images can be processed quickly
and often achieve results that surpass human-level accuracy (He et al., 2015). They are commonly used
for simple classification tasks in medical imaging, satellite image processing, traffic control systems, and
machine vision.

Object detection CNN architectures

Object detection is the task of identifying the presence of objects in an image and indicating their class
and location with a bounding box. Object detection CNN architectures use an encoder-decoder structure
(Figure 1.1), maintaining the spatial information needed to detect diverse objects and their position.

Deep learning object detection architectures can be divided into two types, depending on whether they
use two-stage or one-stage algorithms (Lohia et al., 2021). Two-stage algorithms use a CNN network to
extract image features, then, find possible candidate regions from the feature map using a region proposal
network, and finally, perform sliding window operations on candidate regions to determine the object
class and position (Girshick, 2015; Ren et al., 2015). One-stage algorithms use a single CNN that performs
feature extraction, target classification, and position regression to directly predict the class and position
of different targets. One-stage algorithms tend to have lower accuracy than two-stage algorithms but can
process images much faster (Redmon et al., 2016; Liu et al., 2016). Object detection applications include
autonomous driving, animal detection, medical feature detection, and surveillance.

Semantic segmentation CNN architectures

Semantic segmentation is the task of assigning a label to every pixel in an image, clustering the regions
that belong to the same class. Semantic segmentation CNN architectures use an encoder-decoder structure
(Figure 1.1) since spatial information is needed.

Deep learning semantic segmentation architectures can also be divided into two groups. Those with
region-based algorithms, which use the same methodology of two-stage algorithms described in the Ob-
ject detection architectures; and those with fully convolutional algorithms, using only a CNN to perform
the segmentation task, equivalent to one-stage algorithms. Additionally, a combination of features from
object detection and semantic segmentation architectures can be used to perform what is called instance
segmentation, where every individual object in an image is detected, classified, and segmented (He et al.,
2017; Zhang et al., 2020). Some applications for semantic and instance segmentation include autonomous
driving, medical imaging, and document analysis.

Figure 1.2 illustrates the output differences when applying different CNNs architecture types to the
same image.
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FIGURE 1.2: Output obtained when applying image classification (a), object detection (b),
semantic segmentation (c) and instance segmentation (d) over the same image.

1.1.3 Deep learning implementation in marine ecosystems

As previously stated, marine ecosystems are diverse and provide multiple resources to the human popula-
tion. However, anthropogenic factors are negatively impacting these ecosystems, endangering their balance
and the services they provide. The scientific community aims to develop new techniques and mechanisms
to provide reliable, up-to-date information on the state of marine ecosystems so that management decisions
are well-informed.

In recent decades, technological developments in observation and data collection methods have been
able to provide lots of information to ecologists. These developments include advances in visual cameras,
echosounders, hydrophones, and environmental sensors such as temperature, current or salinity sensors.
Concurrently, developments have taken place in the fields of data collection platforms, like underwater
stationary observatories, floating buoys or marine vehicles such as Remotely Operated Vehicles (ROV),
Autonomous Surface Vehicles (ASV) or Autonomous Underwater Vehicles (AUV). Figure 1.3 showcases
different underwater data collection modalities.

ASV
Remote

buoy

FIGURE 1.3: Examples of underwater data collection modalities.

The combination of these two factors has resulted in exponential growth of gathered information in
both temporal and spatial terms, allowing researchers to better study underwater ecosystems and their
biotic and abiotic factors (Bacheler et al., 2017). However, the curation and analysis of such vast amounts
of data present some drawbacks if manual processing is needed, becoming a tedious and time-consuming
task. The implementation of deep learning techniques allows to automate the data processing and reduce
the time it takes, enabling the study of long temporal series or large areas and offering extra information to
biologists.

Nonetheless, the application of deep learning implementations in marine ecosystems presents diverse
challenges. Marine ecosystems are one of the less known ecosystems due to being hard to reach and operate
on (Borja, 2014; St. John et al., 2016). Reasons for this include: insufficient oxygen, making it hard to perform
manual labour as all procedures must be conducted by divers; high depth-increasing pressure, enforcing
that all used data-gathering devices, exploration systems or any other equipment, must be able to function
under these conditions; light transmission artefacts related to aquatic mediums that affect the quality of
visual data such as light absorption, scattering or flickering; and the uncontrollable and rapid-changing
nature of its environment, like variations in water turbidity or currents.
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Therefore, despite the previously mentioned advances in data collection methods and platforms, the
amount of data available from marine environments is much lower than others. There exist fewer public
datasets, meaning that, in most cases, new datasets need to be generated, along with their ground truths.
This implies that the size of datasets used to train and test the deep learning networks is usually relatively
small, which is a factor to take into account when selecting a network architecture and designing its train-
ing.

An important aspect of any implementation is the ability to be executed in real-time, enabling the use
of the generated information as input for other systems to make decisions on data collection processes,
perform path replanning for exploration tasks, or take immediate action for protection tasks.

Additionally, as communication methods like cable or WiFi are typically unavailable in underwater
scenarios, implementations benefit from being deployable and executable directly from the data collection
platform without the need for information exchange. Implementations should be efficient and have low
computational costs, considering the limited computational power and battery life of these platforms due
to the constraints of working in underwater environments.

Monitoring biodiversity

Being able to process large temporal and spatial data is crucial for marine biodiversity monitoring. It allows
to better study animal behaviours and early detect growing or declining trends in their numbers, as well as
in algae coverage areas or any other important information that can be extracted through CNNs.

A great variety of CNN object detection architectures have been applied to count, measure or log the
presence of multiple marine species such as fish and corals on underwater imagery (Li et al., 2015; Villon
et al., 2016; Li and Du, 2022; Coro and Bjerregaard Walsh, 2021), whale echolocation clicks on spectrograms
(Bermant et al., 2019); or plankton (Dai et al., 2016; Py, Hong, and Zhongzhi, 2016; Li et al., 2021) and algae
(Park et al., 2022) on microscopic imagery, among others.

Semantic segmentation architectures are mainly used for extracting information of biodiversity from the
benthic zone. In (Alonso et al., 2019) Alonso et al. make use of a semantic architecture along with sparsely
labelled data to perform coral segmentation. Mohamed et al. in (Mohamed, Nadaoka, and Nakamura,
2022) use underwater imagery from a towed camera for automated segmentation of benthic habitats using
unsupervised algorithms. Other works make use of CNNs to perform a patch-based classification of images
containing seagrass meadows and generate a semantic segmentation after merging all patches (Gonzalez-
Cid et al., 2017; Burguera, 2020). Finally, some applications make use of satellite imagery, for example, in
(Gao et al., 2022), Gao et al. use a modified U-Net architecture to segment floating green algae from optical
and SAR images.

Exploration and inspection

The development of ROVs and AUVs into the marine ecosystem has allowed access to deeper ocean re-
gions, to examine larger areas and to operate on more complex underwater scenarios than what was pos-
sible with scuba divers. This, along with the usage of CNN to process the obtained information, offers a
wide variety of possible implementations for exploration and inspection tasks.

Sonar imagery is widely used when performing exploration tasks, as it can quickly cover large areas
while providing good enough resolution. Object detection architectures can be used to detect rather large
objects like human bodies (Nguyen, Lee, and Lee, 2020) or warfare mines (Denos et al., 2017), or applied to
fields such as archaeology, helping to identify shipwrecks of archaeological sites of interest (Nayak et al.,
2021; Character et al., 2021). Semantic segmentation architectures can also be applied to sonar imagery,
performing seafloor habitat mapping of a surveyed area and distinguishing the seafloor substratum (Bur-
guera and Bonin-Font, 2020), or to discover new resource areas in deep-sea mineral exploration (Juliani and
Juliani, 2021).

For inspection and manipulation tasks, the primary sensing modalities used are vision and laser, which
can provide detailed information at short ranges. CNNs can also be applied to the information provided by
these sensing modalities to perform underwater inspection and manipulation tasks in different scenarios
like offshore oil and gas pipeline networks (Bharti, Lane, and Wang, 2020), metallic surfaces (Chen and
Jahanshahi, 2018), or submarine communications cables (Thum et al., 2020).

Environment protection and surveillance

Satellite imagery, along with CNNs, can offer solutions for surveillance purposes such as boat detection to
control illegal fishing, ballast water discharge, or anchoring (Kartal and Duman, 2019; Tang et al., 2020).
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Segmentation networks can also be applied to satellite images to identify and segment oil spills (Huang
et al., 2022; Yang, Singha, and Mayerle, 2022). In underwater imagery, object detection architectures can
be used for ghost fishing gear recognition (Politikos et al., 2021) or underwater gas pipeline leak detection
(Ahmad et al., 2022).

Additional information on the state of the art of the specific applications later presented in this docu-
ment can be found in the publications included in their corresponding chapter.

1.2 Objectives

The main objective of this thesis is to develop deep learning-based tools using CNNs for image and video
processing and efficiently implement them in real-world scenarios for the preservation of marine ecosystem
services. It aims at improving current methods of gathering information by allowing the processing of
data for longer periods of time, easing manual labour through the introduction of automatic systems, and
increasing the accuracy of detection, annotation, and measuring tasks.

Specifically, this thesis aims to develop and implement tools for three tasks, listed below along with a
description of the applications of the tool and specific objectives for each task.

1. Posidonia oceanica monitoring

Posidonia oceanica is an endemic plant of the Mediterranean sea that plays an important role in the marine
and coastal ecosystems (Diaz-Almela and Duarte, 2008). Recent studies have shown a declining trend in its
meadows extension (Marba and Duarte, 2010; Telesca et al., 2015). An important part of Posidonia oceanica
control and recovery comes through monitoring and mapping its meadows, allowing for the early detection
of decline trends or assessment of the effectiveness of recovery measures. The specific objectives for this
application are:

– Develop a tool able to automatically perform high-precision semantic segmentation of Posidonia ocean-
ica meadows and their habitat in sea-floor images, to generate maps and monitor their status.

– Online implementation into Robot Operating System (ROS) middleware (Quigley et al., 2009) to be
deployed on AUVs or ASVs to serve as an input to a decision-time adaptive replanning algorithm to
dynamically adapt the vehicle exploration path.

2. Pipeline Characterisation

There is an increasing need in performing underwater tasks like inspection and intervention on offshore
oil and gas rigs or underwater pipeline networks (Yu et al., 2017; Jacobi and Karimanzira, 2013). This has
motivated the development of AUVs equipped with sensors and manipulators, allowing to reach deeper
and more complex underwater scenarios while reducing the associated risks of such tasks (Ridao et al.,
2015; Heshmati-Alamdari et al., 2018). The specific objectives for this application are:

– Design a system able to automatically identify and gather information from valves, pipes, and struc-
tural elements on underwater pipeline networks and position them in a 3D space.

– Online implementation into ROS middleware to be deployed on AUVs or ASVs providing real-time
information for inspection and manipulation tasks.

3. Jellyfish detection and quantification

Jellyfish have been recognised as an important part of marine ecosystems, providing multiple benefits to
them (Hays, Doyle, and Houghton, 2018; Lamb et al., 2019). Recently, an increase in their numbers has been
linked to global change and anthropomorphic causes (Richardson et al., 2009; Brotz et al., 2012), impacting
human well-being (Lee et al., 2006; Purcell, Baxter, and Fuentes, 2013; Fenner, Lippmann, and Gershwin,
2010). Jellyfish monitoring efforts are often limited in terms of spatial and temporal coverage, resulting in
uncertainty over the species population growth (Pitt et al., 2018). The specific objectives for this application
are:

– Develop a tool capable of automatically detecting different species of jellyfish and quantifying their
presence over long periods of time.
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– Implement the system online to deploy it into a network of buoys to generate real-time logs of jellyfish
presence in a studied area.

Another goal of this thesis is to design, test, and validate a methodology for the development and
efficient implementation of the previously mentioned tools. The proposed methodology is as follows:

1. Communicate with marine biologists and experts to better understand the problem and discuss pos-
sible solutions.

2. Study solutions from a technical viewpoint, accounting for the type of CNN, execution time, accuracy
constraints, deployment platforms, etc.

3. Design efficient data collection experiments, marine environments are hard to reach and images can
be affected by light transmission artefacts or environmental factors.

4. Collect rich and diverse data to train and test the CNNs on a wide variety of scenarios and environ-
mental conditions.

5. Train and test the selected CNN, fine-tuning its hyperparameters taking into account the study stated
in step 2.

6. Develop any post-processing code or algorithms needed to process the network output into useful
information.

7. Efficiently implement the developed tool into deploying platforms, taking into account important
factors such as computational power, heat dissipation, storage space, and communication networks.

8. Perform tests in real-world scenarios to ensure the tool’s applicability and functionality.

9. Provide the necessary software and training to marine biologists and experts so that they can under-
stand and use the developed tools.

1.3 Document Overview

The remainder of this dissertation is organised as follows:
Chapter 2 presents, through the journal article "Deep Semantic Segmentation in an AUV for Online Posi-

donia oceanica Meadows Identification" and conference article "A deep learning solution for Posidonia oceanica
seafloor habitat multiclass recognition", the work carried out on Posidonia oceanica monitoring, showcasing a
deep learning based approach to automatically perform a high-precision semantic segmentation of Posido-
nia oceanica meadows and their habitat.

Chapter 3 covers, through the journal articles "Underwater Pipe and Valve 3D Recognition Using Deep
Learning Segmentation" and "Real-time Pipe and Valve Characterisation and Mapping for Autonomous Underwater
Intervention Tasks", the work carried out on pipe and valve recognition and characterisation, detailing a
system based on deep learning that automatically identifies and gathers 3D information from underwater
pipeline networks for inspection and manipulation tasks.

Chapter 4 presents, though the journal article "Jellytoring: Real-Time Jellyfish Monitoring Based on Deep
Learning Object Detection", the work carried out on jellyfish detection and quantification, showcasing a
deep learning tool to automatically log the presence of different species of jellyfish over a video feed.

Chapter 5 highlights the main contributions and discusses the relevance of the research. Finally, pro-
poses diverse possible future lines of research.
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Chapter 2

Posidonia oceanica monitoring

This chapter presents the work carried out on Posidonia oceanica monitoring.
Posidonia oceanica is an endemic plant of the Mediterranean sea which offers multiple benefits to the ma-

rine and coastal ecosystems (Diaz-Almela and Duarte, 2008). Recent studies evidence a significant decline
of its meadows on a global scale (Marba and Duarte, 2010; Telesca et al., 2015). An important part of Posido-
nia oceanica control and recovery comes through monitoring and mapping of its meadows and the seafloor
habitat where it develops, allowing for early detection of decline trends or assessment of the effectiveness
of recovery measures. Currently, these monitoring tasks are mostly carried out by divers (Pizarro et al.,
2017), making them slow and costly (Caughlan, 2001; Del Vecchio et al., 2018).

The objective of this work is to automatically perform a high-precision semantic segmentation of Posi-
donia oceanica meadows and their habitat in sea-floor images using deep learning techniques.

The first step was to collect the data to train and test the deep learning architecture. To do so, sev-
eral hundred images of the seafloor containing Posidonia oceanica meadows under different conditions and
sediments were collected using an AUV equipped with cameras. Next, a CNN semantic segmentation
architecture was implemented and trained several times to obtain the best performing hyperparameters,
distinguishing between Posidonia oceanica and background. Later, the selected CNN architecture was mod-
ified to perform multi-class segmentation, allowing the differentiation of other seafloor substrates such as
sand, rocks, Posidonia oceanica matte or dead shoots.

The work carried out in this thesis regarding Posidonia oceanica habitat recognition is described in detail
in two publications. The first one is a journal article explaining the data collection and dataset generation,
the semantic segmentation network selection, hyperparameter tuning, validation, and online implementa-
tion. The second one is a conference article that presents the multi-class segmentation and validation.

Title: Deep Semantic Segmentation in an AUV for Online Posidonia oceanica Meadows Identification
Authors: M. Martin-Abadal, E. Guerrero-Font, F. Bonin-Font and Y. Gonzalez-Cid
Journal: IEEE Access
Published: 11 October 2018
Quality index: JCR2018 Computer science, information systems, IF 4.098, Q1 (23/155)

Title: A deep learning solution for Posidonia oceanica seafloor habitat multiclass recognition
Authors: M. Martin-Abadal, I. Riutort-Ozcariz, G. Oliver-Codina and Y. Gonzalez-Cid
Congress: IEEE Oceans
Date: 17-20 June 2019
Quality index: GGS Conference rating - B
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Chapter 3

Pipeline characterisation

This chapter presents the work carried out on underwater pipe and valve recognition and characterisation.
Over the last few decades, underwater intervention has experienced an uprise due to the increasing

need to perform inspection and intervention tasks on industrial infrastructures, such as offshore oil and
gas rigs or underwater pipeline networks (Yu et al., 2017; Jacobi and Karimanzira, 2013).

Recently, the usage of Autonomous Underwater Vehicles and manipulators has eased the workload
and risks of such interventions, automating these tasks by gathering information from their surroundings,
interpreting it and making decisions based on it (Ridao et al., 2015; Heshmati-Alamdari et al., 2018).

The objective of this work is to design an automated system that can identify and gather information
on valves, pipes, and structural elements of underwater pipeline networks. Later, the different elements
should be positioned in a 3D space to provide information during manipulation tasks and build information
maps to accurately depict the layout of a pipeline network.

The first step was to collect point cloud data to train and test a 3D deep learning segmentation archi-
tecture. Several hundred point clouds, containing different layouts of underwater pipes and valves, were
generated using stereoscopic vision from a pair of cameras mounted on diverse marine vehicles. Following,
two deep learning architectures were implemented and tested to find the best performing hyperparameters
for pipe and valve segmentation. Finally, algorithms were developed to extract manipulation information
from the detected instances, such as pipe vectors, gripping points, the position of structural elements like el-
bows or connections, and valve type and orientation. Additionally, if point clouds are spatially referenced,
an information map of an inspected area can be created.

All work is described in detail in two published journal papers. The first one details the data gathering
process and the network selection, training, and evaluation, as well as hyperparameter study in terms of
segmentation performance and computational time. The second article presents an upgrade of the used
segmentation network and introduces new training and testing data. Additionally, the information ex-
traction and unification algorithms are described and validated. Finally, the article describes the online
implementation and execution of the network and algorithms on an AUV, providing real-time information
for inspection and manipulation tasks.

Title: Underwater Pipe and Valve 3D Recognition Using Deep Learning Segmentation
Authors: M. Martin-Abadal, M. Piñar-Molina, A. Martorell-Torres, G. Oliver-Codina and Y. Gonzalez-Cid
Journal: Journal of Marine Science and Engineering
Published: 23 December 2020
Quality index: JCR2021 Engineering, marine, IF 2.744, Q1 (4/16)

Title: Real-time Pipe and Valve Characterisation and Mapping for Autonomous Underwater Intervention
Tasks
Authors: M. Martin-Abadal, G. Oliver-Codina and Y. Gonzalez-Cid
Journal: Sensors
Published: 24 October 2022
Quality index: JCR2021 Engineering, electrical & electronic, IF 3.847, Q2 (95/276)
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Chapter 4

Jellyfish detection and quantification

This chapter presents the work carried out on jellyfish control.
Jellyfish have been recognised as an important part of marine ecosystems, providing multiple benefits

(Hays, Doyle, and Houghton, 2018; Lamb et al., 2019). Recently, an increase in its numbers has been linked
to global change scenarios such as high fishing pressure (Richardson et al., 2009) and global warming (Brotz
et al., 2012). This increase can create a multitude of impacts on human wellbeing, such as clogging seawater
intake systems in water desalination and power plants (Lee et al., 2006), killing farmed fish in pens (Pur-
cell, Baxter, and Fuentes, 2013) or creating negative impacts on coastal tourism (Fenner, Lippmann, and
Gershwin, 2010).

Jellyfish monitoring efforts using underwater video observations tend to have limited spatial and tem-
poral coverage due to human-based data logging approaches ranging from quantitative to presence/absence
and relative abundance indices (Condon et al., 2013). The scarcity of consistent long-term temporal and
spatial data on jellyfish is such that there is uncertainty about its population growth (Pitt et al., 2018).

The objective of this work is to develop a tool that can automatically detect and quantify different species
of jellyfish based on a deep object detection neural network, recording jellyfish presence over long periods.

The first step was to collect the required data. Hundreds of images containing three species of jellyfish
were gathered from publicly available videos on diverse social media sites. Next, an object detection CNN
architecture was trained, and the best hyperparameters were selected. Then, a quantification algorithm was
developed to track jellyfish occurrence on video recordings. Finally, the neural network and quantification
algorithms were adapted to be executed online on stationary marine buoys, being able to log the presence
of jellyfish in real-time.

This work is presented in detail in a journal article describing the data collection, network and hyper-
parameter selection and validation, quantification algorithms, and online implementation.

Title: Jellytoring: Real-Time Jellyfish Monitoring Based on Deep Learning Object Detection
Authors: M. Martin-Abadal, A. Ruiz-Frau, H. Hinz and Y. Gonzalez-Cid
Journal: Sensors
Published: 19 March 2020
Quality index: JCR2020 Engineering, electrical & electronic, IF 3.735, Q2 (82/273)
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Chapter 5

Conclusions

This chapter summarises the contributions of this thesis and analyses the research relevance, main findings,
and drawn conclusions. Finally, it presents some areas of improvement and possible future lines of research.

5.1 Contributions and discussion

The main objective of this thesis was to develop deep learning-based tools using CNNs for image and
video processing and to implement them in real-world scenarios for marine ecosystem services preserva-
tion tasks. It also aimed to design, test, and validate a methodology for the development and efficient
implementation of these tools.

This thesis presents three different tools, each tackling a specific task with varying requirements. Di-
verse types of deep CNNs were used, and their applicability was tested across a wide range of scenarios.

Following, the main objectives and contributions for each task are presented. Specific scenarios where
CNNs have been implemented are also detailed, discussing the selected CNNs architecture types, data
gathering methods, and deployment platforms.

1. Posidonia oceanica monitoring

The objective was to develop a tool to automatically perform high-precision semantic segmentation
of Posidonia oceanica meadows and their habitat in sea-floor images using deep learning techniques. The
following work was carried out:

– Dataset generation: 483 images containing Posidonia oceanica meadows and their habitat were gath-
ered from six immersions conducted on different Mediterranean sea locations at depths ranging from
2-20 meters. The images were taken using multiple cameras mounted on an AUV and under diverse
environmental conditions such as sunlight or water turbidity, ensuring robust network training. Ad-
ditionally, semantic segmentation ground truths were generated.

– CNN implementation: Considering that Posidonia oceanica grows in dense meadows of irregular
shapes and, equally, sea-floor substrates do not have a defined shape, CNN semantic segmentation
architectures were selected as the most adequate approach. These architectures are able to perform
pixel-wise classification, distinguishing multiple areas in an image without shape restrictions. The
selected network was the VGG16-FCN8 (Simonyan and Zisserman, 2014) and, after selecting the best-
performing hyperparameters, it achieved AUC values of 97.7% when performing a binary classifica-
tion between Posidonia oceanica and background, and of 96.8% when distinguishing between Posidonia
oceanica, rock and sand substratum.

– Deployment: The output layer of the CNN was adapted to reduce the inference time, allowing online
execution. Additionally, integration into AUV and ASV platforms was performed using the ROS
middleware.

This work was developed under the "DEvelopment of new TEChnologies for the automatic and periodic
assessment of changes in POSidonia meadows due to anthropogenic causes" (DETECPOS) project (SRV,
2020) and has been used to generate offline Posidonia oceanica semantic maps of large areas for its control
and monitoring (Gonzalez-Cid et al., 2021). Additionally, it has been deployed in an AUV, performing
online image segmentation, serving as an input source to a generation of online semantic coverage maps
(Guerrero-Font et al., 2021b) and to a decision-time adaptive replanning algorithm to dynamically adapt the
robot exploration using the visual information gathered online (Guerrero, Bonin-Font, and Oliver, 2021).
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The generated dataset, trained models, and additional code are provided to the scientific community in
(Martin-Abadal, Miguel, 2018).

2. Pipeline Characterisation

The objective was to design a system able to automatically identify and characterise valves, pipes, and
structural elements on underwater pipeline networks and position them in a 3D space to provide informa-
tion during inspection and manipulation tasks. The following work was carried out:

– Dataset generation: 606 point clouds showcasing a wide variety of pipe structures and valve con-
nections over different backgrounds were gathered. The point clouds were generated from pairs of
images provided by different stereo camera rigs mounted on an AUV and an ASV. The images were
taken under diverse environmental conditions to ensure robust training. Additionally, 3D semantic
segmentation ground truths were generated.

– CNN implementation: Underwater pipeline structures range from simpler ones, like pipelines laid on
the seabed covering large distances, to more complex ones, such as the pipe and valve layouts found
in oil rigs. In all cases, it is important to analyze and extract 3D information from unknown-shaped
objects and calculate sizes, gripping points, lengths, etc. Thus, 3D CNN semantic segmentation ar-
chitectures were selected as the most adequate approach. These architectures are able to perform
pixel-wise classification, distinguishing multiple areas in a point cloud without shape restrictions.
The selected network was the Dynamic Graph Convolutional Neural Network (DGCNN) (Wang et
al., 2019) and, after selecting the best-performing hyperparameters, it reached a pixel-wise segmenta-
tion F1-score of 87.2%.

– Information processing: Generation of an information extraction algorithm that clusters the pixel-
wise information to an instance level, raising the instance-level segmentation F1-score to 95.4%. This
algorithm also draws information from the detected pipes and valves, providing lengths, centre and
gripping points, and detecting pipe elbows and connections, with very little positioning error.

– Information processing: Generation of an information unification algorithm that merges the informa-
tion of diverse point clouds provided by the information extraction algorithm and generates informa-
tion maps of an inspected area.

– Deployment: Adapt the neural network and information algorithms for online execution and integra-
tion into AUV and ASV platforms using ROS middleware, for surveying and manipulation tasks.

This work was framed on the "TWIN roBOTs for cooperative underwater intervention missions" (TWIN-
BOT) project (SRV, 2018), which aimed to achieve a step forward beyond the current underwater interven-
tion state of the art and the development of a new kind of I-AUVs, able to work autonomously, alone or in
a cooperative way. Currently, the "COOPErative Resident robots for Autonomous ManipulatiOn Subsea"
(COOPERAMOS) project (SRV, 2021) has taken its place and aims to use at least three I-AUVs, cooperating
to enable complex underwater intervention tasks, such as bulky load transport and cooperative complex
structure assembly, in a priori unknown area, including obstacles, with high autonomy. The generated
dataset, trained models and additional code are provided to the scientific community in (Martin-Abadal,
Miguel et al., 2021a; Martin-Abadal, Miguel, Oliver-Codina, and Gonzalez-Cid, 2022a).

3. Jellyfish detection and quantification

The objective was to develop a tool able to automatically detect and quantify different species of jellyfish
and log their presence during long periods of time. The following work was carried out:

– Dataset generation: 842 images containing instances of three different species of jellyfish were gath-
ered. The images were extracted from publicly available videos on diverse social media sites. Addi-
tionally, object detection ground truths were generated.

– CNN implementation: Monitoring jellyfish populations and trends requires an effective system ca-
pable of identifying the number and species of jellyfish present in an area, enabling temporal quan-
tification. To do so, CNN object detection architectures were selected as the most suitable approach.
These architectures can localise and classify different object instances in an image. The selected net-
work was the Inception ResNet v2 (Szegedy, Ioffe, and Vanhoucke, 2016) and, after selecting the
best-performing hyperparameters, it reached an F1-score of 95.2% in the jellyfish detection task.
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– Information processing: Generation of a quantification algorithm based on windowing techniques to
log the presence of jellyfish over video sequences.

– Deployment: Adapt the neural network and quantification algorithm for an online execution, ready
for integration into stationary marine buoys equipped with cameras.

This work has generated great interest among biologists. A second implementation of this tool has
been developed (Ruiz-Frau et al., 2022), including a larger number of jellyfish species and a division be-
tween different oceanic regions, with specifically trained models, considering determined jellyfish species.
Furthermore, a web page that will allow uploading images for online jellyfish detection and quantifica-
tion, while providing extra data to enrich the dataset, is under development (Bustos, 2022). The generated
dataset, trained models, and additional code are provided to the scientific community in (Martin-Abadal,
Miguel, 2020).

These implementations cover a wide spectrum of scenarios where deep CNN have been applied with
good results, obtaining high accuracy metrics and even surpassing humans in certain applications. They
automate the data analysis process, allowing for temporal and spatial extension of the scope of analysis or
surveys, and improve the repeatability of experiments to detect evolution trends. Additionally, all imple-
mentations have been, or are ready to be, deployed and executed in real-time on diverse platforms. Finally,
they have proved their usefulness, as biologists have used them to obtain information during exploration
campaigns, and have been integrated into other scientific works as a source of information. Thus, vali-
dating the methodology presented in Section 1.2 and proving the feasibility of implementing deep CNNs
in challenging environments like marine environments, where data is often scarce and affected by light
transmission artefacts or other environmental factors.

5.2 Future Work

Besides the specific future research lines identified for each presented tool, which are described in the
"Conclusion" or "Future Work" sections of their corresponding publications, this thesis has identified sev-
eral potential lines of future work and points for improvement in the design and implementation of deep
learning tools for environmental applications.

• Improve data storage and accessibility with enriched metadata and ground truth annotations. Deep
learning architectures need to be trained with lots of data, which sometimes can be scarce or inaccessi-
ble. It is important that the community moves towards open-source approaches, facilitating progress
in the field.

• Study techniques to increase contact between biologists or environment experts and developers. It is
crucial that both parties provide continuous feedback in order to assure a good understanding of the
problem and the required system characteristics and features.

• Explore the implementation of semi-supervised or unsupervised deep learning approaches. Data
curation and ground truth generation can be a time-consuming and tedious task due to the high vol-
ume of required data. These approaches could improve the obtained results and ease the workload,
focusing the research on the exploration of new applications or solutions.

• Study the implementation of 3D information in deep learning environmental applications. During
the work carried out for pipeline characterisation, the usefulness of working with 3D information was
featured. Most CNN applications in the fields of biology and conservation use 2D information, albeit
the many benefits 3D information can provide. In object detection and classification, 3D information
could be used to identify new features on the studied species or objects, to size them, or to detect their
pose. On broader analysis, using semantic segmentation, like seafloor inspection and identification,
3D information could provide the dimensions of a covered area, or even allow to calculate the volume
of areas of interest, such as seagrass meadows.

17





Bibliography

Ahmad, Sajjad, Zahoor Ahmad, Cheol-Hong Kim, and Jong-Myon Kim (2022). “A Method for Pipeline
Leak Detection Based on Acoustic Imaging and Deep Learning”. In: Sensors 22.4. ISSN: 1424-8220. DOI:
10.3390/s22041562. URL: https://www.mdpi.com/1424-8220/22/4/1562.

Alonso, Iñigo, Matan Yuval, Gal Eyal, Tali Treibitz, and Ana C. Murillo (2019). “CoralSeg: Learning coral
segmentation from sparse annotations”. In: Journal of Field Robotics 36.8, pp. 1456–1477. DOI: https:
//doi.org/10.1002/rob.21915. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.
21915. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21915.

Ani, Chinenye J. and Barbara Robson (2021). “Responses of marine ecosystems to climate change impacts
and their treatment in biogeochemical ecosystem models”. In: Marine Pollution Bulletin 166, p. 112223.
ISSN: 0025-326X. DOI: https://doi.org/10.1016/j.marpolbul.2021.112223. URL: https://www.
sciencedirect.com/science/article/pii/S0025326X21002575.

Antao, Laura, Amanda Bates, Shane Blowes, Conor Waldock, Sarah Supp, Anne Magurran, Maria Dornelas,
and Aafke Schipper (July 2020). “Temperature-related biodiversity change across temperate marine and
terrestrial systems”. In: Nature Ecology & Evolution 4, 927–933. DOI: 10.1038/s41559-020-1185-7.

Bacheler, Nathan M., Nathan R. Geraldi, Michael Ladd Burton, Roldan C Muñoz, and G. Todd Kellison
(2017). “Comparing relative abundance, lengths, and habitat of temperate reef fishes using simultaneous
underwater visual census, video, and trap sampling”. In: Marine Ecology Progress Series 574, pp. 141–155.

Barbier, Edward B. (2017). “Marine ecosystem services”. In: Current Biology 27.11, R507–R510. ISSN: 0960-
9822. DOI: https://doi.org/10.1016/j.cub.2017.03.020. URL: https://www.sciencedirect.com/
science/article/pii/S0960982217302890.

Bennett, Elena M., Garry D. Peterson, and Line J. Gordon (2009). “Understanding relationships among
multiple ecosystem services”. In: Ecology Letters 12.12, pp. 1394–1404. DOI: https://doi.org/10.1111/
j.1461-0248.2009.01387.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-
0248.2009.01387.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.
2009.01387.x.

Bermant, Peter, Michael Bronstein, Robert Wood, Shane Gero, and David Gruber (Aug. 2019). “Deep Ma-
chine Learning Techniques for the Detection and Classification of Sperm Whale Bioacoustics”. In: Scien-
tific Reports 9, pp. 1–10. DOI: 10.1038/s41598-019-48909-4.

Bharti, Vibhav, David Lane, and Sen Wang (2020). “Learning to Detect Subsea Pipelines with Deep Segmen-
tation Network and Self-Supervision”. In: Global Oceans 2020: Singapore – U.S. Gulf Coast, pp. 1–7. DOI:
10.1109/IEEECONF38699.2020.9389226.

Borja, Angel (2014). “Grand challenges in marine ecosystems ecology”. In: Frontiers in Marine Science 1.
ISSN: 2296-7745. DOI: 10.3389/fmars.2014.00001. URL: https://www.frontiersin.org/articles/
10.3389/fmars.2014.00001.

Brotz, Lucas, William W L Cheung, Kristin Kleisner, Evgeny Pakhomov, and Daniel Pauly (2012). “Increas-
ing jellyfish populations: trends in Large Marine Ecosystems”. In: Hydrobiologia 690 (1). PT: J; TC: 9,
pp. 3–20. DOI: 10.1007/s10750-012-1039-7.

Buonocore, Elvira, Luigia Donnarumma, Luca Appolloni, Antonino Miccio, Giovanni F. Russo, and Pier
Paolo Franzese (2020). “Marine natural capital and ecosystem services: An environmental accounting
model”. In: Ecological Modelling 424, p. 109029. ISSN: 0304-3800. DOI: https://doi.org/10.1016/
j . ecolmodel . 2020 . 109029. URL: https : / / www . sciencedirect . com / science / article / pii /
S0304380020301010.

Burguera, Antoni (2020). “Segmentation through patch classification: A neural network approach to detect
Posidonia oceanica in underwater images”. In: Ecological Informatics 56, p. 101053. ISSN: 1574-9541. DOI:
https://doi.org/10.1016/j.ecoinf.2020.101053. URL: https://www.sciencedirect.com/
science/article/pii/S1574954120300030.

Burguera, Antoni and Francisco Bonin-Font (2020). “On-Line Multi-Class Segmentation of Side-Scan Sonar
Imagery Using an Autonomous Underwater Vehicle”. In: Journal of Marine Science and Engineering 8.8.
ISSN: 2077-1312. DOI: 10.3390/jmse8080557. URL: https://www.mdpi.com/2077-1312/8/8/557.

19

https://doi.org/10.3390/s22041562
https://www.mdpi.com/1424-8220/22/4/1562
https://doi.org/https://doi.org/10.1002/rob.21915
https://doi.org/https://doi.org/10.1002/rob.21915
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21915
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21915
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21915
https://doi.org/https://doi.org/10.1016/j.marpolbul.2021.112223
https://www.sciencedirect.com/science/article/pii/S0025326X21002575
https://www.sciencedirect.com/science/article/pii/S0025326X21002575
https://doi.org/10.1038/s41559-020-1185-7
https://doi.org/https://doi.org/10.1016/j.cub.2017.03.020
https://www.sciencedirect.com/science/article/pii/S0960982217302890
https://www.sciencedirect.com/science/article/pii/S0960982217302890
https://doi.org/https://doi.org/10.1111/j.1461-0248.2009.01387.x
https://doi.org/https://doi.org/10.1111/j.1461-0248.2009.01387.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2009.01387.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2009.01387.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2009.01387.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2009.01387.x
https://doi.org/10.1038/s41598-019-48909-4
https://doi.org/10.1109/IEEECONF38699.2020.9389226
https://doi.org/10.3389/fmars.2014.00001
https://www.frontiersin.org/articles/10.3389/fmars.2014.00001
https://www.frontiersin.org/articles/10.3389/fmars.2014.00001
https://doi.org/10.1007/s10750-012-1039-7
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2020.109029
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2020.109029
https://www.sciencedirect.com/science/article/pii/S0304380020301010
https://www.sciencedirect.com/science/article/pii/S0304380020301010
https://doi.org/https://doi.org/10.1016/j.ecoinf.2020.101053
https://www.sciencedirect.com/science/article/pii/S1574954120300030
https://www.sciencedirect.com/science/article/pii/S1574954120300030
https://doi.org/10.3390/jmse8080557
https://www.mdpi.com/2077-1312/8/8/557


Bustos, Rubén (2022). Jellyfish Object Detection. https://jellytoring.uib.es/.
Caughlan, L (2001). “Cost considerations for long-term ecological monitoring”. In: Ecological Indicators 1.2,

pp. 123–134.
Chai, Junyi, Hao Zeng, Anming Li, and Eric W.T. Ngai (2021). “Deep learning in computer vision: A crit-

ical review of emerging techniques and application scenarios”. In: Machine Learning with Applications
6, p. 100134. ISSN: 2666-8270. DOI: https://doi.org/10.1016/j.mlwa.2021.100134. URL: https:
//www.sciencedirect.com/science/article/pii/S2666827021000670.

Character, Leila, Agustin Ortiz JR, Tim Beach, and Sheryl Luzzadder-Beach (2021). “Archaeologic Machine
Learning for Shipwreck Detection Using Lidar and Sonar”. In: Remote Sensing 13.9. ISSN: 2072-4292. DOI:
10.3390/rs13091759. URL: https://www.mdpi.com/2072-4292/13/9/1759.

Chen, Fu-Chen and Mohammad R. Jahanshahi (2018). “NB-CNN: Deep Learning-Based Crack Detection
Using Convolutional Neural Network and Naïve Bayes Data Fusion”. In: IEEE Transactions on Industrial
Electronics 65.5, pp. 4392–4400. DOI: 10.1109/TIE.2017.2764844.

Condon, Robert H, Carlos M Duarte, Kylie A Pitt, Kelly L Robinson, Cathy H Lucas, Kelly R Sutherland,
Hermes W Mianzan, Molly Bogeberg, Jennifer E Purcell, Mary Beth Decker, Shin-ichi Uye, Laurence P
Madin, Richard D Brodeur, Steven H D Haddock, Alenka Malej, Gregory D Parry, Elena Eriksen, Javier
Quinones, Marcelo Acha, Michel Harvey, James M Arthur, and William M Graham (2013). “Recurrent
jellyfish blooms are a consequence of global oscillations”. In: Proceedings of the National Academy of Sci-
ences of the United States of America 110.3, pp. 1000–1005.

Coro, Gianpaolo and Matthew Bjerregaard Walsh (2021). “An intelligent and cost-effective remote under-
water video device for fish size monitoring”. In: Ecological Informatics 63, p. 101311. ISSN: 1574-9541.
DOI: https://doi.org/10.1016/j.ecoinf.2021.101311. URL: https://www.sciencedirect.com/
science/article/pii/S1574954121001023.

Dai, Jialun, Ruchen Wang, Haiyong Zheng, Guangrong Ji, and Xiaoyan Qiao (2016). “ZooplanktoNet: Deep
convolutional network for zooplankton classification”. In: OCEANS 2016 - Shanghai, pp. 1–6. DOI: 10.
1109/OCEANSAP.2016.7485680.

Del Vecchio, Silvia, Edy Fantinato, Giulia Silan, and Gabriella Buffa (2018). “Trade-offs between sampling
effort and data quality in habitat monitoring”. In: Biodiversity and Conservation 28.1, pp. 55–73.

Denos, Killian, Mathieu Ravaut, Antoine Fagette, and Hock-Siong Lim (2017). “Deep learning applied to
underwater mine warfare”. In: OCEANS 2017 - Aberdeen, pp. 1–7. DOI: 10.1109/OCEANSE.2017.8084910.

Diaz-Almela, E. and C. Duarte (2008). Management of Natura 2000 Habitats 1120, (Posidonia Oceanicae). Tech.
rep. European Commission.

EEA (Nov. 2020). Europe’s seas and coasts. https://www.eea.europa.eu/themes/water/europes-seas-
and-coasts. Accessed: Sept. 2022.

Fenner, Peter J., John Lippmann, and Lisa-Ann Gershwin (Mar. 2010). “Fatal and Nonfatal Severe Jellyfish
Stings in Thai Waters”. In: Journal of Travel Medicine 17.2, pp. 133–138. ISSN: 1195-1982. URL: https:
//academic.oup.com/jtm/article-lookup/doi/10.1111/j.1708-8305.2009.00390.x.

Gao, Le, Xiaofeng Li, Fanzhou Kong, Rencheng Yu, Yuan Guo, and Yibin Ren (2022). “AlgaeNet: A Deep-
Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery”. In: IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 15, pp. 2782–2796. DOI: 10.1109/JSTARS.
2022.3162387.

Girshick, Ross (2015). “Fast R-CNN”. In: 2015 IEEE International Conference on Computer Vision (ICCV),
pp. 1440–1448. DOI: 10.1109/ICCV.2015.169.

Gonzalez-Cid, Yolanda, Francisco Bonin-Font, Eric Guerrrero Font, Antoni Martorell Torres, Miguel Mar-
tin Abadal, Gabriel Oliver Codina, Hilmar Hinz, Laura Pereda Briones, and Fiona Tomas (2021). “Au-
tonomous Marine Vehicles and CNN: Tech Tools for Posidonia Meadows Monitoring”. In: OCEANS
2021: San Diego – Porto, pp. 1–8. DOI: 10.23919/OCEANS44145.2021.9705792.

Gonzalez-Cid, Yolanda, Antoni Burguera, Francisco Bonin-Font, and Alejandro Matamoros (2017). “Ma-
chine learning and deep learning strategies to identify Posidonia meadows in underwater images”. In:
OCEANS 2017 - Aberdeen, pp. 1–5. DOI: 10.1109/OCEANSE.2017.8084991.

González-Ortegón, Enrique and Javier Moreno-Andrés (2021). “Anthropogenic Modifications to Estuar-
ies Facilitate the Invasion of Non-Native Species”. In: Processes 9.5. ISSN: 2227-9717. DOI: 10.3390/
pr9050740. URL: https://www.mdpi.com/2227-9717/9/5/740.

Guerrero, Eric, Francisco Bonin-Font, and Gabriel Oliver (2021). “Adaptive Visual Information Gathering
for Autonomous Exploration of Underwater Environments”. In: IEEE Access 9, pp. 136487–136506. DOI:
10.1109/ACCESS.2021.3117343.

20

https://jellytoring.uib.es/
https://doi.org/https://doi.org/10.1016/j.mlwa.2021.100134
https://www.sciencedirect.com/science/article/pii/S2666827021000670
https://www.sciencedirect.com/science/article/pii/S2666827021000670
https://doi.org/10.3390/rs13091759
https://www.mdpi.com/2072-4292/13/9/1759
https://doi.org/10.1109/TIE.2017.2764844
https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.101311
https://www.sciencedirect.com/science/article/pii/S1574954121001023
https://www.sciencedirect.com/science/article/pii/S1574954121001023
https://doi.org/10.1109/OCEANSAP.2016.7485680
https://doi.org/10.1109/OCEANSAP.2016.7485680
https://doi.org/10.1109/OCEANSE.2017.8084910
https://www.eea.europa.eu/themes/water/europes-seas-and-coasts
https://www.eea.europa.eu/themes/water/europes-seas-and-coasts
https://academic.oup.com/jtm/article-lookup/doi/10.1111/j.1708-8305.2009.00390.x
https://academic.oup.com/jtm/article-lookup/doi/10.1111/j.1708-8305.2009.00390.x
https://doi.org/10.1109/JSTARS.2022.3162387
https://doi.org/10.1109/JSTARS.2022.3162387
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.23919/OCEANS44145.2021.9705792
https://doi.org/10.1109/OCEANSE.2017.8084991
https://doi.org/10.3390/pr9050740
https://doi.org/10.3390/pr9050740
https://www.mdpi.com/2227-9717/9/5/740
https://doi.org/10.1109/ACCESS.2021.3117343


Guerrero-Font, Eric, Francisco Bonin-Font, Miguel Martin-Abadal, Yolanda Gonzalez-Cid, and Gabriel
Oliver-Codina (2021b). “Sparse Gaussian process for online seagrass semantic mapping”. In: Expert Sys-
tems with Applications 170, p. 114478. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2020.
114478. URL: https://www.sciencedirect.com/science/article/pii/S095741742031126X.

Hassan, Rashid, Robert Scholes, Neville Ash, Millennium Condition, and Trends Group (Jan. 2005). Ecosys-
tems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group
(Millennium Ecosystem Assessment Series). Island Press.

Hays, Graeme C., Thomas K. Doyle, and Jonathan D.R. Houghton (2018). “A Paradigm Shift in the Trophic
Importance of Jellyfish?” In: Trends in Ecology and Evolution 33 (11), pp. 874–884. ISSN: 01695347. DOI:
10.1016/j.tree.2018.09.001.

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick (2017). “Mask R-CNN”. In: 2017 IEEE In-
ternational Conference on Computer Vision (ICCV), pp. 2980–2988. DOI: 10.1109/ICCV.2017.322.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving Deep into Rectifiers: Surpass-
ing Human-Level Performance on ImageNet Classification”. In: 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034. DOI: 10.1109/ICCV.2015.123.

Heshmati-Alamdari, Shahab, Charalampos P. Bechlioulis, George C. Karras, Alexandros Nikou, Dimos V.
Dimarogonas, and Kostas J. Kyriakopoulos (2018). “A robust interaction control approach for underwa-
ter vehicle manipulator systems”. In: Annual Reviews in Control 46, pp. 315 –325. ISSN: 1367-5788. DOI:
https://doi.org/10.1016/j.arcontrol.2018.10.003.

Huang, Xudong, Biao Zhang, William Perrie, Yingcheng Lu, and Chen Wang (2022). “A novel deep learn-
ing method for marine oil spill detection from satellite synthetic aperture radar imagery”. In: Marine
Pollution Bulletin 179, p. 113666. ISSN: 0025-326X. DOI: https://doi.org/10.1016/j.marpolbul.2022.
113666. URL: https://www.sciencedirect.com/science/article/pii/S0025326X22003484.

Häyhä, Tiina and Pier Paolo Franzese (2014). “Ecosystem services assessment: A review under an ecological-
economic and systems perspective”. In: Ecological Modelling 289, pp. 124–132. ISSN: 0304-3800. DOI:
https://doi.org/10.1016/j.ecolmodel.2014.07.002. URL: https://www.sciencedirect.
com/science/article/pii/S0304380014003299.

ISA (2020). Protection of the Marine Environment. https://isa.org.jm/our-work/protection-marine-
environment. Accessed: Sept. 2022.

Jacobi, M. and D. Karimanzira (2013). “Underwater pipeline and cable inspection using autonomous un-
derwater vehicles”. In: 2013 MTS/IEEE OCEANS - Bergen, pp. 1–6. DOI: 10.1109/OCEANS-Bergen.2013.
6608089.

Juliani, Cyril and Eric Juliani (2021). “Deep learning of terrain morphology and pattern discovery via
network-based representational similarity analysis for deep-sea mineral exploration”. In: Ore Geology
Reviews 129, p. 103936. ISSN: 0169-1368. DOI: https://doi.org/10.1016/j.oregeorev.2020.103936.
URL: https://www.sciencedirect.com/science/article/pii/S0169136820311215.

Kartal, Mesut and Osman Duman (2019). “Ship Detection from Optical Satellite Images with Deep Learn-
ing”. In: 2019 9th International Conference on Recent Advances in Space Technologies (RAST), pp. 479–484.
DOI: 10.1109/RAST.2019.8767844.

Kremen, Claire (2005). “Managing ecosystem services: what do we need to know about their ecology?”
In: Ecology Letters 8.5, pp. 468–479. DOI: https://doi.org/10.1111/j.1461-0248.2005.00751.x.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2005.00751.x. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2005.00751.x.

Küpper, Frithjof C. and Nicholas A. Kamenos (2018). “The future of marine biodiversity and marine ecosys-
tem functioning in UK coastal and territorial waters (including UK Overseas Territories) – with an em-
phasis on marine macrophyte communities”. In: Botanica Marina 61.6, pp. 521–535. DOI: doi:10.1515/
bot-2018-0076. URL: https://doi.org/10.1515/bot-2018-0076.

Lamb, Philip D., Ewan Hunter, John K. Pinnegar, Thomas K. Doyle, Simon Creer, Martin I. Taylor, and
Marta Coll (Dec. 2019). “Inclusion of jellyfish in 30+ years of Ecopath with Ecosim models”. In: ICES
Journal of Marine Science 76 (7), pp. 1941–1950. ISSN: 10959289. DOI: 10.1093/icesjms/fsz165.

Lee, JH, Choi HW, J Chae, DS Kim, and SB Lee (2006). “Performance analysis of intake screens in power
plants on mass impingement of marine organisms”. In: Ocean and polar research 28, pp. 385–393.

Li, Daoliang and Ling Du (June 2022). “Recent advances of deep learning algorithms for aquacultural ma-
chine vision systems with emphasis on fish”. In: Artificial Intelligence Review 55. DOI: 10.1007/s10462-
021-10102-3.

Li, Xiu, Min Shang, Hongwei Qin, and Liansheng Chen (2015). “Fast accurate fish detection and recognition
of underwater images with Fast R-CNN”. In: OCEANS 2015 - MTS/IEEE Washington, pp. 1–5. DOI: 10.
23919/OCEANS.2015.7404464.

21

https://doi.org/https://doi.org/10.1016/j.eswa.2020.114478
https://doi.org/https://doi.org/10.1016/j.eswa.2020.114478
https://www.sciencedirect.com/science/article/pii/S095741742031126X
https://doi.org/10.1016/j.tree.2018.09.001
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/https://doi.org/10.1016/j.arcontrol.2018.10.003
https://doi.org/https://doi.org/10.1016/j.marpolbul.2022.113666
https://doi.org/https://doi.org/10.1016/j.marpolbul.2022.113666
https://www.sciencedirect.com/science/article/pii/S0025326X22003484
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2014.07.002
https://www.sciencedirect.com/science/article/pii/S0304380014003299
https://www.sciencedirect.com/science/article/pii/S0304380014003299
https://isa.org.jm/our-work/protection-marine-environment
https://isa.org.jm/our-work/protection-marine-environment
https://doi.org/10.1109/OCEANS-Bergen.2013.6608089
https://doi.org/10.1109/OCEANS-Bergen.2013.6608089
https://doi.org/https://doi.org/10.1016/j.oregeorev.2020.103936
https://www.sciencedirect.com/science/article/pii/S0169136820311215
https://doi.org/10.1109/RAST.2019.8767844
https://doi.org/https://doi.org/10.1111/j.1461-0248.2005.00751.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2005.00751.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2005.00751.x
https://doi.org/doi:10.1515/bot-2018-0076
https://doi.org/doi:10.1515/bot-2018-0076
https://doi.org/10.1515/bot-2018-0076
https://doi.org/10.1093/icesjms/fsz165
https://doi.org/10.1007/s10462-021-10102-3
https://doi.org/10.1007/s10462-021-10102-3
https://doi.org/10.23919/OCEANS.2015.7404464
https://doi.org/10.23919/OCEANS.2015.7404464


Li, Yan, Jiahong Guo, Xiaomin Guo, Zhiqiang Hu, and Yu Tian (2021). “Plankton Detection with Adversarial
Learning and a Densely Connected Deep Learning Model for Class Imbalanced Distribution”. In: Journal
of Marine Science and Engineering 9.6. ISSN: 2077-1312. DOI: 10.3390/jmse9060636. URL: https://www.
mdpi.com/2077-1312/9/6/636.

Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexan-
der C. Berg (2016). “SSD: Single Shot MultiBox Detector”. In: Computer Vision – ECCV 2016. Ed. by Bas-
tian Leibe, Jiri Matas, Nicu Sebe, and Max Welling. Cham: Springer International Publishing, pp. 21–37.
ISBN: 978-3-319-46448-0.

Lohia, Aditya, Kalyani Kadam, Rahul Joshi, and Dr Bongale (2021). “Bibliometric Analysis of One-stage
and Two-stage Object Detection”. In: Library Philosophy and Practice. URL: https://digitalcommons.
unl.edu/libphilprac/4910/. (Accessed: Sept. 2022).

Marba, Nuria and Carlos Duarte (2010). “Mediterranean warming triggers seagrass (Posidonia oceanica)
shoot mortality”. English. In: Global Change Biology 16.8, pp. 2366–2375. ISSN: 1354-1013.

Maurer, Brian A. (2009). “Ecological complexity”. In: Encyclopedia of Complexity and Systems Science. Ed. by
Robert A. Meyers. New York, NY: Springer New York, pp. 2697–2711. ISBN: 978-0-387-30440-3. DOI:
10.1007/978-0-387-30440-3_162. URL: https://doi.org/10.1007/978-0-387-30440-3_162.

Mohamed, Hassan, Kazuo Nadaoka, and Takashi Nakamura (2022). “Automatic Semantic Segmentation of
Benthic Habitats Using Images from Towed Underwater Camera in a Complex Shallow Water Environ-
ment”. In: Remote Sensing 14.8. ISSN: 2072-4292. DOI: 10.3390/rs14081818. URL: https://www.mdpi.
com/2072-4292/14/8/1818.

Morales, Eduardo, Rafael Murrieta-Cid, Israel Becerra, and Marco Esquivel Basaldua (Nov. 2021). “A sur-
vey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement
learning”. In: Intelligent Service Robotics 14. DOI: 10.1007/s11370-021-00398-z.

Nassif, Ali Bou, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled Shaalan (2019). “Speech
Recognition Using Deep Neural Networks: A Systematic Review”. In: IEEE Access 7, pp. 19143–19165.
DOI: 10.1109/ACCESS.2019.2896880.

Nayak, Nandeeka, Makoto Nara, Timmy Gambin, Zoë Wood, and Christopher M. Clark (2021). “Machine
Learning Techniques for AUV Side-Scan Sonar Data Feature Extraction as Applied to Intelligent Search
for Underwater Archaeological Sites”. In: Field and Service Robotics. Ed. by Genya Ishigami and Kazuya
Yoshida. Singapore: Springer Singapore, pp. 219–233. ISBN: 978-981-15-9460-1.

Nguyen, Huu-Thu, Eon-Ho Lee, and Sejin Lee (2020). “Study on the Classification Performance of Under-
water Sonar Image Classification Based on Convolutional Neural Networks for Detecting a Submerged
Human Body”. In: Sensors 20.1. ISSN: 1424-8220. DOI: 10.3390/s20010094. URL: https://www.mdpi.
com/1424-8220/20/1/94.

Norgaard, Richard B. (2010). “Ecosystem services: From eye-opening metaphor to complexity blinder”. In:
Ecological Economics 69.6. Special Section - Payments for Environmental Services: Reconciling Theory
and Practice, pp. 1219–1227. ISSN: 0921-8009. DOI: https://doi.org/10.1016/j.ecolecon.2009.11.
009. URL: https://www.sciencedirect.com/science/article/pii/S0921800909004583.

Otter, Daniel W., Julian R. Medina, and Jugal K. Kalita (2021). “A Survey of the Usages of Deep Learning
for Natural Language Processing”. In: IEEE Transactions on Neural Networks and Learning Systems 32.2,
pp. 604–624. DOI: 10.1109/TNNLS.2020.2979670.

Park, Jungsu, Jiwon Baek, Jongrack Kim, Kwangtae You, and Keugtae Kim (2022). “Deep Learning-Based
Algal Detection Model Development Considering Field Application”. In: Water 14.8. ISSN: 2073-4441.
DOI: 10.3390/w14081275. URL: https://www.mdpi.com/2073-4441/14/8/1275.

Pitt, Kylie A., Cathy H. Lucas, Robert H. Condon, Carlos M. Duarte, and Ben Stewart-Koster (Nov. 2018).
“Claims That Anthropogenic Stressors Facilitate Jellyfish Blooms Have Been Amplified Beyond the
Available Evidence: A Systematic Review”. In: Frontiers in Marine Science 5. ISSN: 22967745. DOI: 10.
3389/fmars.2018.00451.

Pizarro, Oscar, Ariell Friedman, Mitch Bryson, Stefan B. Williams, and Joshua Madin (2017). “A simple,
fast, and repeatable survey method for underwater visual 3D benthic mapping and monitoring”. In:
Ecology and Evolution 7.6, pp. 1770–1782. DOI: https://doi.org/10.1002/ece3.2701. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.2701. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/ece3.2701.

Politikos, D., Elias Fakiris, Athanasios Davvetas, Iraklis Klampanos, and George Papatheodorou (Mar.
2021). “Automatic detection of seafloor marine litter using towed camera images and deep learning”.
In: Marine Pollution Bulletin 164, p. 111974. DOI: 10.1016/j.marpolbul.2021.111974.

22

https://doi.org/10.3390/jmse9060636
https://www.mdpi.com/2077-1312/9/6/636
https://www.mdpi.com/2077-1312/9/6/636
https://digitalcommons.unl.edu/libphilprac/4910/
https://digitalcommons.unl.edu/libphilprac/4910/
https://doi.org/10.1007/978-0-387-30440-3_162
https://doi.org/10.1007/978-0-387-30440-3_162
https://doi.org/10.3390/rs14081818
https://www.mdpi.com/2072-4292/14/8/1818
https://www.mdpi.com/2072-4292/14/8/1818
https://doi.org/10.1007/s11370-021-00398-z
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.3390/s20010094
https://www.mdpi.com/1424-8220/20/1/94
https://www.mdpi.com/1424-8220/20/1/94
https://doi.org/https://doi.org/10.1016/j.ecolecon.2009.11.009
https://doi.org/https://doi.org/10.1016/j.ecolecon.2009.11.009
https://www.sciencedirect.com/science/article/pii/S0921800909004583
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.3390/w14081275
https://www.mdpi.com/2073-4441/14/8/1275
https://doi.org/10.3389/fmars.2018.00451
https://doi.org/10.3389/fmars.2018.00451
https://doi.org/https://doi.org/10.1002/ece3.2701
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.2701
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.2701
https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.2701
https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.2701
https://doi.org/10.1016/j.marpolbul.2021.111974


Purcell, J. E., E. J. Baxter, and V. L. Fuentes (2013). “Jellyfish as products and problems of aquaculture”. In:
Advances in Aquaculture Hatchery Technology, pp. 404–430. ISSN: 0966-0461. URL: https://linkinghub.
elsevier.com/retrieve/pii/B9780857091192500139.

Py, Ouyang, Hu Hong, and Shi Zhongzhi (2016). “Plankton classification with deep convolutional neural
networks”. In: 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference,
pp. 132–136. DOI: 10.1109/ITNEC.2016.7560334.

Quigley, Morgan, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and An-
drew Ng (Jan. 2009). “ROS: an open-source Robot Operating System”. In: ICRA Workshop on Open Source
Software. Vol. 3.

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi (2016). “You Only Look Once: Unified,
Real-Time Object Detection”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 779–788. DOI: 10.1109/CVPR.2016.91.

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun (2015). Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. DOI: 10.48550/ARXIV.1506.01497. URL: https://arxiv.org/
abs/1506.01497.

Richardson, Anthony J, Andrew Bakun, Graeme C Hays, and Mark J Gibbons (2009). “The jellyfish joyride:
causes, consequences and management responses to a more gelatinous future”. In: Trends in Ecology &
Evolution 24.6, pp. 312–322.

Ridao, Pere, Marc Carreras, David Ribas, Pedro J. Sanz, and Gabriel Oliver (Nov. 2015). “Intervention AUVs:
The Next Challenge”. In: Annual Reviews in Control 40, pp. 227–241. DOI: 10.1016/j.arcontrol.2015.
09.015.

Ruiz-Frau, Ana, Martin-Abadal, Miguel, Charlotte L. Jennings, Yolanda Gonzalez-Cid, and Hilmar Hinz
(2022). “The potential of Jellytoring 2.0 smart tool as a global jellyfish monitoring platform”. In: Ecology
and Evolution 12.11. e9472 ECE-2022-04-00522.R2, e9472. DOI: https://doi.org/10.1002/ece3.9472.

Simonyan, Karen and Andrew Zisserman (Sept. 2014). “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: arXiv 1409.1556.

SRV (2018). Project webpage for "Real-time Pipe and Valve Characterisation and Mapping for Autonomous Under-
water Intervention Tasks". http://srv.uib.es/twinbot-twin-robots-for-cooperative-underwater-
intervention-missions/. Accessed: Sept. 2022.

— (2020). Project webpage for "Real-time Pipe and Valve Characterisation and Mapping for Autonomous Under-
water Intervention Tasks". http://srv.uib.es/detecpos/. Accessed: Sept. 2022.

— (2021). Project webpage for "Real-time Pipe and Valve Characterisation and Mapping for Autonomous Underwa-
ter Intervention Tasks". http://srv.uib.es/project-cooperamos-subproject-vi-smart/. Accessed:
Sept. 2022.

St. John, Michael A., Angel Borja, Guillem Chust, Michael Heath, Ivo Grigorov, Patrizio Mariani, Adrian P.
Martin, and Ricardo S. Santos (2016). “A Dark Hole in Our Understanding of Marine Ecosystems and
Their Services: Perspectives from the Mesopelagic Community”. In: Frontiers in Marine Science 3. ISSN:
2296-7745. DOI: 10.3389/fmars.2016.00031. URL: https://www.frontiersin.org/articles/10.
3389/fmars.2016.00031.

Strong, James Asa, Eider Andonegi, Kemal Can Bizsel, Roberto Danovaro, Mike Elliott, Anita Franco, Es-
ther Garces, Sally Little, Krysia Mazik, Snejana Moncheva, Nadia Papadopoulou, Joana Patrício, Ana M.
Queirós, Chris Smith, Kremena Stefanova, and Oihana Solaun (2015). “Marine biodiversity and ecosys-
tem function relationships: The potential for practical monitoring applications”. In: Estuarine, Coastal
and Shelf Science 161, pp. 46–64. ISSN: 0272-7714. DOI: https://doi.org/10.1016/j.ecss.2015.04.008.
URL: https://www.sciencedirect.com/science/article/pii/S0272771415001389.

Szegedy, Christian, Sergey Ioffe, and Vincent Vanhoucke (Feb. 2016). “Inception-v4, Inception-ResNet and
the Impact of Residual Connections on Learning”. In: AAAI Conference on Artificial Intelligence.

Tang, Gang, Shibo Liu, Iwao Fujino, Christophe Claramunt, Yide Wang, and Shaoyang Men (2020). “H-
YOLO: A Single-Shot Ship Detection Approach Based on Region of Interest Preselected Network”. In:
Remote Sensing 12.24. ISSN: 2072-4292. DOI: 10.3390/rs12244192. URL: https://www.mdpi.com/2072-
4292/12/24/4192.

Telesca, Luca, Andrea Belluscio, Alessandro Criscoli, Giandomenico Ardizzone, Eugenia T. Apostolaki,
Simonetta Fraschetti, Michele Gristina, Leyla Knittweis, Corinne S. Martin, Gérard Pergent, Adriana
Alagna, Fabio Badalamenti, Germana Garofalo, Vasilis Gerakaris, Marie Louise Pace, Christine Pergent-
Martini, and Maria Salomidi (2015). “Seagrass meadows (Posidonia oceanica) distribution and trajecto-
ries of change”. In: Scientific reports.

Martin-Abadal, Miguel (2018). Posidonia oceanica Segmentation. https://github.com/srv/Posidonia-
semantic-segmentation.

23

https://linkinghub.elsevier.com/retrieve/pii/B9780857091192500139
https://linkinghub.elsevier.com/retrieve/pii/B9780857091192500139
https://doi.org/10.1109/ITNEC.2016.7560334
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/ARXIV.1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://doi.org/10.1016/j.arcontrol.2015.09.015
https://doi.org/10.1016/j.arcontrol.2015.09.015
https://doi.org/https://doi.org/10.1002/ece3.9472
http://srv.uib.es/twinbot-twin-robots-for-cooperative-underwater-intervention-missions/
http://srv.uib.es/twinbot-twin-robots-for-cooperative-underwater-intervention-missions/
http://srv.uib.es/detecpos/
http://srv.uib.es/project-cooperamos-subproject-vi-smart/
https://doi.org/10.3389/fmars.2016.00031
https://www.frontiersin.org/articles/10.3389/fmars.2016.00031
https://www.frontiersin.org/articles/10.3389/fmars.2016.00031
https://doi.org/https://doi.org/10.1016/j.ecss.2015.04.008
https://www.sciencedirect.com/science/article/pii/S0272771415001389
https://doi.org/10.3390/rs12244192
https://www.mdpi.com/2072-4292/12/24/4192
https://www.mdpi.com/2072-4292/12/24/4192
https://github.com/srv/Posidonia-semantic-segmentation
https://github.com/srv/Posidonia-semantic-segmentation


Martin-Abadal, Miguel (2020). Jellyfish Object Detection. https://github.com/srv/jf_object_detection.
Martin-Abadal, Miguel, Gabriel Oliver-Codina, and Yolanda Gonzalez-Cid (2022a). Project webpage for

"Real-time Pipe and Valve Characterisation and Mapping for Autonomous Underwater Intervention Tasks".
http://srv.uib.es/3d-pipes-2/. Accessed: Sept. 2022.

— (2022b). “Real-Time Pipe and Valve Characterisation and Mapping for Autonomous Underwater Inter-
vention Tasks”. In: Sensors 22.21. ISSN: 1424-8220. DOI: 10.3390/s22218141.

Martin-Abadal, Miguel, Manuel Piñar-Molina, Antoni Martorell-Torres, Gabriel Oliver-Codina, and Yolanda
Gonzalez-Cid (2021a). Project webpage for "Underwater Pipe and Valve 3D Recognition Using Deep Learning
Segmentation". http://srv.uib.es/3d-pipes-1/. Accessed: Sept. 2022.

Thum, Guan Wei, Sai Hong Tang, Siti Azfanizam Ahmad, and Moath Alrifaey (2020). “Toward a Highly
Accurate Classification of Underwater Cable Images via Deep Convolutional Neural Network”. In: Jour-
nal of Marine Science and Engineering 8.11. ISSN: 2077-1312. DOI: 10.3390/jmse8110924. URL: https:
//www.mdpi.com/2077-1312/8/11/924.

Villon, Sébastien, Marc Chaumont, Gérard Subsol, Sébastien Villéger, Thomas Claverie, and David Mouil-
lot (2016). “Coral Reef Fish Detection and Recognition in Underwater Videos by Supervised Machine
Learning: Comparison Between Deep Learning and HOG+SVM Methods”. In: Advanced Concepts for In-
telligent Vision Systems. Ed. by Jacques Blanc-Talon, Cosimo Distante, Wilfried Philips, Dan Popescu, and
Paul Scheunders. Cham: Springer International Publishing, pp. 160–171. ISBN: 978-3-319-48680-2.

Wang, Yue, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon (Oct.
2019). “Dynamic Graph CNN for Learning on Point Clouds”. In: ACM Trans. Graph. 38.5. ISSN: 0730-
0301. DOI: 10.1145/3326362.

Yang, Yi-Jie, Suman Singha, and Roberto Mayerle (2022). “A deep learning based oil spill detector using
Sentinel-1 SAR imagery”. In: International Journal of Remote Sensing 43.11, pp. 4287–4314. DOI: 10.1080/
01431161.2022.2109445. eprint: https://doi.org/10.1080/01431161.2022.2109445. URL: https:
//doi.org/10.1080/01431161.2022.2109445.

Yu, Mengxi, Joshiba Ariamuthu Venkidasalapathy, Yueqi Shen, Noor Quddus, and M. Sam Mannan (Jan.
2017). “Bow-tie Analysis of Underwater Robots in Offshore Oil and Gas Operations”. In: Offshore Tech-
nology Conference. DOI: 10.4043/27818-MS.

Zhang, Hui, Yonglin Tian, Kunfeng Wang, Wensheng Zhang, and Fei-Yue Wang (2020). “Mask SSD: An
Effective Single-Stage Approach to Object Instance Segmentation”. In: IEEE Transactions on Image Pro-
cessing 29, pp. 2078–2093. DOI: 10.1109/TIP.2019.2947806.

24

https://github.com/srv/jf_object_detection
http://srv.uib.es/3d-pipes-2/
https://doi.org/10.3390/s22218141
http://srv.uib.es/3d-pipes-1/
https://doi.org/10.3390/jmse8110924
https://www.mdpi.com/2077-1312/8/11/924
https://www.mdpi.com/2077-1312/8/11/924
https://doi.org/10.1145/3326362
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.4043/27818-MS
https://doi.org/10.1109/TIP.2019.2947806

	List of Acronyms
	Introduction
	Context
	Ecosystem services
	Deep learning
	Deep learning implementation in marine ecosystems

	Objectives
	Document Overview

	Posidonia oceanica monitoring
	Pipeline characterisation
	Jellyfish detection and quantification
	Conclusions
	Contributions and discussion
	Future Work

	Bibliography

