
“output” — 2023/2/27 — 8:55 — page i — #1

Towards Stigmergic Heterogenous
Symbiotic Robot Teams

Enhancing RFID-based Stigmergic Robots for
Mapless Environments

Author: Abdussalam A.Alajami

TESI DOCTORAL UPF / Year of the thesis: 2023

THESIS SUPERVISOR
Dr. Rafael Pous
Department of Information and Communication Technologies

“output” — 2023/2/27 — 8:55 — page ii — #2

“output” — 2023/2/27 — 8:55 — page iii — #3

The best way to imagine a better future for humans, is to invent it.

iii

“output” — 2023/2/27 — 8:55 — page iv — #4

“output” — 2023/2/27 — 8:55 — page v — #5

Acknowledgements
First and foremost, I am extremely grateful to my supervisor, Prof. Rafael

Pous for his invaluable advice, continuous support, strong belief in my abilities,
and patience during my Ph.D. study. His immense knowledge and plentiful ex-
perience have encouraged me in all the time of my academic research and daily
life. I would also like to extend my thanks to the company Keonn-Technologies
for allowing me to use some of its facilities for conducting experiments.

I’d like to acknowledge the assistance and help of all the members of the Ubi-
CA Lab research group throughout my study process. Furthermore, I would like to
express my gratitude to my parents. Without their tremendous understanding and
encouragement over the past few years, it would be impossible for me to complete
my study.

Finally, my warmest regards to all my friends and close ones to my heart
especially, it is their kind help and support that have made my study and life in
Spain, Catalonia a wonderful time.

v

“output” — 2023/2/27 — 8:55 — page vi — #6

“output” — 2023/2/27 — 8:55 — page vii — #7

Abstract
The study in this thesis presents new solutions for increasing the performance of
RFID-based inventory robots.

The first novel solution is the design of an RFID-based inventory aerial robot
for the problem of stock-counting in large warehouses with very high shelves,
thus, reducing the risks of human injury that accompany performing such tasks,
costs, and time of operation. This robot design uses a stigmergic-based navigation
algorithm to enable full autonomy in mapless environments.

The second solution presented in this thesis is the development of a simula-
tion tool that enables the robotic community to utilize RFID sensors with robots in
simulation, for the goal of reducing time and costs, especially in the case of using
operational-cost expensive aerial robots. The simulation tool is based on a simpli-
fied probabilistic model that considers statistical, geometrical, and some antenna-
related parameters. The proposed tool is validated using various experiments in
the laboratory. These validation experiments test and validate the robustness of
the simulation tool with different environment layouts, the number of RFID tags
in the environment, and different robot types.

The third solution presented in this thesis is a localization model that is de-
signed for distributed heterogeneous multi-robots to extend their collaboration, for
solving the problem of increasing the performance of task-oriented team robots in
map-less environments, this is done by exploiting the heterogeneity feature in the
team. The proposed model was tested in both laboratory environments and in sim-
ulation. The simulation experiments expose the use of this model to increase the
performance of a heterogeneous team of robots performing an inventory task.

Finally, this thesis presents new innovative hybrid robot structure designs, that
aim to amplify the abilities and features of an individual robot. The main proposed
design adapts in hardware and software, the functionality of aerial and ground
robots in one system, for the purpose of exploiting the beneficial characteristics
that associate both robot types, at the same time mitigating the drawbacks of op-
erating these robots individually.

vii

“output” — 2023/2/27 — 8:55 — page viii — #8

“output” — 2023/2/27 — 8:55 — page ix — #9

Contents

List of figures xvi

List of tables xviii

1 CONTEXTUALIZATION 1
1.1 Motivation and Contribution . 1
1.2 Contribution . 2
1.3 RFID Technology . 5

1.3.1 Overview . 5
1.3.2 Using RFID for Inventory Management 6

1.4 Robotics General Overview . 8
1.4.1 ROS . 8
1.4.2 Simulation . 10

1.5 Robot Types . 14
1.5.1 Ground Robots (UGR) 14
1.5.2 Unmanned Aerial Vehicles (UAVs) 16
1.5.3 Other Types of Robots 17

1.6 Previous Work on Retail Robots 18
1.6.1 SLAM navigation-based Inventory Robots 19
1.6.2 Stigmergic Navigation-based Inventory Robot (Robin 50) 23
1.6.3 Conclusions and lessons learned 24

2 UAV DESIGN 27
2.1 UAV V1 . 27

2.1.1 Design Structure . 27
2.1.2 Operating Mechanism of the UAV v1 31
2.1.3 Conclusions . 31

2.2 UAV v2 . 32
2.2.1 Design Structure . 32
2.2.2 Operating Mechanism of UAV v2 35
2.2.3 Conclusions . 36

ix

“output” — 2023/2/27 — 8:55 — page x — #10

2.3 UAV v3 . 37
2.3.1 Design Structure . 37
2.3.2 Operating Mechanism of UAV v3 38
2.3.3 Conclusions . 38

3 DESIGN OF A UAV FOR AUTONOMOUS RFID BASED INVEN-
TORIES USING STIGMERGY 39
3.1 Abstract . 39
3.2 Introduction . 40
3.3 Related Work . 41
3.4 Hardware Design and Functionality 43

3.4.1 Main Flight System, B1 43
3.4.2 Sensors and Processing Units, B2 44
3.4.3 RFID-Payload, B3 . 44

3.5 RFID-SOAN Workflow . 44
3.5.1 Part 1: Passive OA System: 45
3.5.2 Part 2: The RFID Stigmergic Navigation Algorithm 46

3.6 Experiments . 49
3.6.1 Scenario 1: One Side, One Aisle, 330 RFID Tags 50
3.6.2 Scenario 2: Two Sides, One Aisle, 330 Tags 53
3.6.3 Scenario 3: Two Sides, One Aisle, 660 RFID Tags 56
3.6.4 Scenario 4: Fixtures Forming Two Aisles with a T Shape,

Varying Number of Tags 59
3.7 Scenario 5: Simulation . 62

3.7.1 Experiment 5A: T-Shaped Map Layout 62
3.7.2 Experiment 5B: Square Shape Map Layout 64

3.8 Conclusions . 66
3.9 Future Work . 68
3.10 Overall Conclusion and Future Work 73

4 A DESIGN PLATFORM TO SIMULATE RFID SYSTEMS FOR
ROBOTS 75
4.1 Abstract . 75
4.2 Introduction . 76
4.3 Related work . 77
4.4 The proposed RFID system model 79

4.4.1 Model Overview . 79
4.4.2 Model Definition . 80

4.5 RFID System Plugin Architecture 82
4.5.1 RFID Tag plugin . 82
4.5.2 RFID Antenna Plugin 83

x

“output” — 2023/2/27 — 8:55 — page xi — #11

4.6 Environment Layouts and Robots Used IN The Experiments . . . 84
4.6.1 Robots used in the experiments 84
4.6.2 Laboratory and Simulated Environments Layouts 87

4.7 Comparison of Simulated and Experimental Results 91
4.8 An Example of the Use of the Plugin in Robotics Research: Stig-

mergic Navigation of a UAV . 109
4.9 Conclusions . 111
4.10 Future Work . 112
4.11 Overall Conclusion and Future Work 116

5 A ROS-BASED DISTRIBUTED MULTI-ROBOT LOCALIZATION
AND ORIENTATION STRATEGY FOR HETEROGENEOUS ROBOTS119
5.1 Abstract . 119
5.2 Introduction . 120
5.3 Similar Work . 121
5.4 System Overview . 123
5.5 DMLS Framework . 125

5.5.1 First Part: Detecting and reducing the region of search
(RoS) using CNN . 125

5.5.2 Second Part: Camera frame and cost-maps calibration and
locating . 126

5.5.3 Third Part: Handshake 129
5.5.4 Fourth Part: Processing and Localizing 130

5.6 Comparison with QR-code pose estimation method 132
5.6.1 Scenario 1: Pose estimation at d = 1.00m 132
5.6.2 Scenario 2: Pose estimation at d = 1.40m 134
5.6.3 Scenario 3: Pose estimation in case of different robots in

range . 136
5.6.4 Scenario 4: continued pose detection in 360◦ 140

5.7 Applications . 143
5.7.1 Laboratory Experiment 143
5.7.2 Simulation Experiments 144

5.8 Conclusions . 153
5.9 Future Work . 154
5.10 Overall Conclusion and Future Work 159

6 UNMANNED HYBRID AERIAL-GROUND VEHICLE DESIGNS 161
6.1 UHAGV v4 . 161
6.2 Abstract . 161
6.3 Introduction . 162
6.4 Previous Work . 163

xi

“output” — 2023/2/27 — 8:55 — page xii — #12

6.5 UHAGV Model . 163
6.5.1 Hardware Structure . 163
6.5.2 UHAGV Notations . 165

6.6 Navigation . 166
6.6.1 Aerial Navigation: . 167
6.6.2 Ground Navigation: . 168
6.6.3 Hybrid Navigation: . 171

6.7 Experiments . 171
6.8 Conclusions . 174
6.9 Future Work . 174
6.10 UHAGV v5 . 177

7 CONCLUSIONS 181

8 LIST OF PUBLICATIONS 185
8.1 International journal articles . 185
8.2 Conference proceeding . 186

xii

“output” — 2023/2/27 — 8:55 — page xiii — #13

List of Figures

1.2 Examples of frames and transforms in ROS. 10
1.3 Classification of the UAV system. 17
1.4 Bossa Nova inventory 2020 robot. 20
1.5 Stockbot inventory robot. 21
1.6 Robin200 inventory robot. 22
1.7 Robin 50 autonomous inventory robot. 24

2.1 Illustration of the hardware configuration of UAV v1. 28
2.2 Illustration of the Hardware configuration of UAV v2. 32
2.3 An illustration of INTEL tracking camera. 34
2.4 An illustration of the construction of the costmaps and paths cre-

ated by the UAV. 36
2.5 Illustration of the Hardware configuration of UAV v3. 37

3.1 Hardware block diagram of the UAV. 43
3.2 An illustration of the OA system parameters. 46
3.3 RFID-SOAN navigation algorithm workflow and block diagram. . 48
3.4 Lab setup of Scenario 1. 50
3.5 Scenario 1, Experiment 1A: total RFID tag readings vs. time from

a static position equal to the starting point. 51
3.6 Scenario 1, Experiment 1B: path shown on Rviz and total RFID

tag readings vs. time when the UAV uses dead reckoning naviga-
tion. (a) UAV path in Rviz. (b) Unique RFID tags read vs. time. . 52

3.7 Scenario 1, Experiment 1C: path shown on Rviz and total RFID
tag readings vs. time when the UAV uses RFID-SOAN naviga-
tion. (a) UAV path in Rviz. (b) Unique RFID tags read vs. time. . 53

3.8 Lab setup of Scenario 2. 54
3.9 Scenario 2, Experiment 2A: total RFID tag readings vs. time from

a static position equal to the starting point. 54

xiii

“output” — 2023/2/27 — 8:55 — page xiv — #14

3.10 Scenario 2, Experiment 2B: path shown on Rviz and total RFID
tag readings vs. time when the UAV uses Dead Reckoning nav-
igation. (a) UAV path in Rviz. (b) Unique RFID tags read vs.
time. 55

3.11 Scenario 2, Experiment 2C: path shown on Rviz and total RFID
tag readings vs. time when the UAV uses RFID-SOAN naviga-
tion. (a) UAV path in Rviz. (b) Unique RFID tags read vs. time. . 56

3.12 Lab setup of Scenario 3. 57
3.13 Scenario 3, Experiment 3A: total RFID tag readings vs. time from

a static position equal to the starting point. 57
3.14 Scenario 3, Experiment 3B: total RFID tag readings vs. time when

the UAV uses dead reckoning navigation. 58
3.15 Scenario 3, Experiment 3C: total RFID tag readings vs. time when

the UAV uses RFID-SOAN navigation. 59
3.16 Laboratory Chapter Strigmergy of Scenario 4. 60
3.17 Scenario 4, Experiment 4A: path shown in Rviz and tags read vs.

time, with the UAV using RFID-SOAN navigation in a T-shaped
environment in which 300 RFID tags were placed. (a) UAV path
in Rviz. (b) Unique RFID tag readings. 61

3.19 Scenario 4, Experiment 4C: tags read vs. time, with the UAV us-
ing RFID-SOAN navigation in a T-shaped environment in which
960 RFID tags were placed. 61

3.18 Scenario 4, Experiment 4B: tags read vs. time, with the UAV us-
ing RFID-SOAN navigation in a T-shaped environment in which
480 RFID tags were placed. 62

3.20 Scenario S1: T-shaped layout and path followed by the UAV. (a)
Top view of the simulation layout. (b) UAV chosen path in Rviz. 63

3.21 Scenario S1: tags read vs. time, with the UAV using RFID-SOAN
navigation in a T-shaped environment in which 300 RFID tags
were placed. 64

3.22 Experiment 5B: A gazebo illustration showing the height of a fix-
ture shelve in the square shape map layout. 65

3.23 Experiment 5A: T-shaped layout and path followed by the UAV.
(a) UAV chosen path in Rviz. (b) Side view of the simulation layout. 66

3.24 Experiment 5B: tags read vs. time, with the UAV using RFID-
SOAN navigation in a square-shaped environment in which 1700
RFID tags were placed. 67

4.1 PD for various parameter sets. 82
4.2 Frame tree from RQT-ROS. 83
4.3 Example scenario shown in Gazebo and Rviz. 84

xiv

“output” — 2023/2/27 — 8:55 — page xv — #15

4.4 Hardware block diagram of the UGV. 85
4.5 Hardware block diagram of the UAV. 87
4.6 Laboratory and simulation setups of Scenario 1 with the UGV. . . 88
4.7 Laboratory and simulation setups of Scenario 1 with the UAV. . . 89
4.8 Laboratory and simulation setups of Scenario 2 with the UAV. . . 90
4.9 Laboratory and simulation setups of Scenario 3 with the UGV. . . 91
4.10 Experiment 1: Scenario 1 with UAV placed at different distances

from the fixture with RFID tags. 92
4.11 Experiment 1: Simulation and laboratory results. 93
4.12 Experiment 1: Simulation vs. laboratory unique RFID tag readings. 94
4.13 Experiment 2: Simulation and laboratory results. 95
4.14 Experiment 2: Simulation vs. laboratory unique RFID tag readings. 96
4.15 Experiment 3: Simulation vs. laboratory unique RFID tag readings. 98
4.16 Experiment 4: Simulation vs. laboratory unique RFID tag readings. 100
4.17 Experiment 5: Position of the detected RFID tags in simulation

and in the laboratory. 102
4.18 Experiment 5: Simulation vs. laboratory unique RFID tag readings. 104
4.19 Comparing laboratory vs. simulation UAV paths 105
4.20 Experiment 6: Position of the detected RFID tags in simulation

and in the laboratory. 107
4.21 Experiment 6: Simulation vs. laboratory unique RFID tag readings. 109
4.22 A simulation of a UAV using a Stigmergic based navigation in a

T-Shaped Map Layout. 111

5.1 Hardware block diagram of the Detector. 124
5.2 Hardware block diagram of the Pawn. 125
5.3 Pixel to Cost map RoS translation. 127
5.4 The Detector and the Pawn frame-transformation relation. 131
5.5 DMLS method Workflow and Block diagram. 132
5.6 Scenario 1, Experiment 1A. Pawn positioned at r⃗P = (1.00m, 0.65m),

ϕ = 180◦ from Detector. 133
5.7 Scenario 1, Experiment 1B. Pawn positioned at r⃗P = (1.00m, 0.25m),

ϕ = 180◦ from Detector. 134
5.8 Scenario 3.1, Experiment 3.1A and 3.1B. The Pawn and Adver-

sary Robot placed at each side of the Detector’s FOV. 138
5.9 Scenario 3.2, Experiment 3.2A and 3.2B. The Pawn and Adver-

sary Robot are placed at one side of the Detector’s FOV while the
Pawn is closer to the Detector. 140

5.10 Scenario 3.3, Experiment 4A and 4B. The Pawn and Adversary
Robot are placed at one side of the Detector’s FOV while the Pawn
is hidden from the Detector. 141

xv

“output” — 2023/2/27 — 8:55 — page xvi — #16

5.11 Laboratory illustration of the Application scenario having Multi-
robots collaboration using DMLS. 144

5.12 Simulation Scenario 1: The Detector localizing and sharing the
positions with all robots. 146

5.13 Simulation Scenario 1: An illustration from the Detector’s frame
showing local costmaps from all robots. 147

5.14 Simulation Scenario 1: Localizing and sharing the docking station
position with all robots. 148

5.15 Simulation Scenario 1: Localizing and sharing the position of the
stairs with all robots. 149

5.16 Simulation Scenario 2: The Detector localizing the Pawn. 150
5.17 Simulation Scenario 2: Gazebo illustration of the RFID tag detec-

tion located on the left shelves (2). 151
5.18 Simulation Scenario 2: Gazebo illustration of the RFID tag detec-

tion located on the right shelves (1). 152
5.19 Simulation Scenario 2: The Detector Moving towards the new

explored zone of RFID tags, sent by the Pawn. 153

6.1 Illustration of the Hardware configuration of the UHAGV. 164
6.2 A visual illustration of the axis, forces, and angles of the UHAGVs

frame to the world’s frame. 166
6.3 A block diagram of the navigation skeleton that governs the loco-

motion behavior of the UHAGV. 167
6.4 A visual illustration of the navigation strategy of the UHAGV con-

troller. 169
6.5 An Illustration of the UHAGV switching between ground and

aerial navigation. 171
6.6 Images that articulate the Experiment Scenario. 173
6.7 An illustration of the axes and direction of movement of all wheels

and motors of the UHAGV when moving in the linear forward
direction. 177

6.8 An illustration of the axes and direction of movement of all wheels
and motors of the UHAGV when moving in the linear reverse
direction. 178

6.9 An illustration of the axes and direction of movement of all wheels
and motors of the UHAGV when rotating in a counter-clockwise
direction. 179

6.10 An illustration of the axes and direction of movement of all wheels
and motors of the UHAGV when rotating in a clockwise direction. 179

xvi

“output” — 2023/2/27 — 8:55 — page xvii — #17

List of Tables

1.1 First comparison of different Simulation capabilities between dif-
ferent UGV Simulators. 11

1.2 Further comparison of different Simulation capabilities between
different UGV Simulators. 11

1.3 First comparison of different Simulation capabilities between dif-
ferent UAV Simulators. 12

1.4 Second comparison of different Simulation capabilities between
different UAV Simulators. 12

2.1 The Hardware description of the UAV v1. 28
2.2 The Hardware description of the UAV v2. 33
2.3 The Hardware description of the UAV v3. 38

3.1 Orientation vector and weight of each RFID antenna. 48
3.2 Illustrates the results of all the experiments conducted with the

UAV using the RFID-SOAN algorithm. 65

4.1 A Comparison Table between UGVs and UAVs illustrating differ-
ences in different aspects. 116

5.1 Results of the experiments in Scenario 1 using the DMLS and
QR-pose estimation methods. 135

5.2 Results of the experiments in Scenario 2 using the DMLS and
QR-pose estimation methods. 136

5.3 Relative position of the Detector, Pawn, and Adversary robots in
Scenarios 3.1, 3.2, and 3.3 with respect to the Detector. 137

5.4 Provides the results of Experiments in scenario 3.1 and 3.2 using
the DMLS and QR-code pose estimation method. 139

5.5 Relative position of each robot in Scenario 4 to the Detector map-
frame. 141

5.6 Provides the results of Experiments in Scenario 4 using the DMLS
and QR-pose estimation method. 142

xvii

“output” — 2023/2/27 — 8:55 — page xviii — #18

5.7 Shows fault tolerance comparison between both methods in dif-
ferent situations. 143

6.1 The advantages and drawbacks of different types of robots 162
6.2 The Hardware description of the proposed UHAGV robot design. . 165

xviii

“output” — 2023/2/27 — 8:55 — page 1 — #19

Chapter 1

CONTEXTUALIZATION

1.1 Motivation and Contribution

The general motivation for this study was the use of robots to amplify human
potential, increase productivity and accuracy, and moving from simple reasoning
towards having superior cognitive abilities. The ability to design different forms
of robots that can automate the manual process of human inventory in large re-
tail stores and warehouses, with the goal of reducing the risks and labor costs of
operating such tasks, is indeed a major focus and motivation of the study in this
thesis. Industry 4.0 has paved the way for a world where smart factories will auto-
mate and upgrade many processes through the use of some of the latest emerging
technologies. The two important technologies that are discussed are UAVs and
RFID. The study is considered a continuity of several years of research done by
my research team Ubica Lab, where they utilized and designed different models
of Unmanned Ground Vehicles (UGVs) equipped with Radio Frequency Identifi-
cation (RFID) technology to solve the problem of substituting humans perform-
ing an inventory task. The primary goal was to utilize these powerful machines
to contribute to Industry 4.0, thus, exploiting robots to automatize the inventory
management of a retail shop or a big warehouse, doing this accurately and con-
tinuously without getting tired or the need for changing shifts, which increases
the overall performance, reduces the overall costs, and secures the quality of ser-
vice (QoS), which means an accurate inventory at all time. However, as all newly
explored technologies, some benefits and limitations are associated. A part of
the study in this thesis discusses using robots with different abilities to tackle
the problem of performing a full successful inventory of large warehouses, where
products associated with RFID tags exist on low and very high shelves up-to 6-10
meters. Humans performing manual inventories at large warehouses and read-
ing products at very high shelves are prone to injuries aside from the incremental

1

“output” — 2023/2/27 — 8:55 — page 2 — #20

costs of performing risky tasks. UAVs and RFID technology, are becoming very
popular in the era of Industry 4.0, especially for retail, logistics, and warehouse
management. However, autonomous UAVs navigating in indoor map-less envi-
ronments while performing an inventory mission is, to this day, an open issue for
researchers. Therefore, the focus of this study began with leveraging the technol-
ogy of Unmanned Aired Vehicles UAVs for automatizing the inventory of large
retail stores and warehouses with products placed on very high shelves. Exploit-
ing UAVs adds various and diverse benefits to the inventory process compared to
UGVs. A few examples of these benefits are: the agility of these machines en-
ables them to navigate in hard-to-reach areas for humans or UGVs, they do not
depend on the characteristics of the ground surface, they can read products lo-
cated at heights that are considered risky for humans and impossible to reach for
UGVs and many more. However, the process of designing these aerial machines
to operate in GPS-denied environments and to perform an inventory mission is
costly and accompanied by high risks of possible crashes that could cause human
injuries. This, however, leads to a strong motive to find a solution for reducing
these risks and costs that accompanies the design and testing of such machines
for such tasks. The midsection of this study discussed the design of a simulator
that enables the simulation of RFID technology with robotics. The goal of this
simulator is to enable the wide community of robotics to simulate environments
with robots and RFID sensors before the real deployment process, which reduces
a lot of time and cost and is risk-free.

1.2 Contribution
This thesis presents not just one but, multiple contributions in leveraging robots
toward Industry 4.0. The first contribution is the design of an RFID-based in-
ventory UAV that uses a custom-designed exploration navigation method to take
inventory of any space without the need for any prior knowledge or the use of a
pre-constructed map of the environment. The designed robot and method only
rely on the existing items to be inventoried to be tagged with RFID labels.

During this thesis, the design of the autonomous UAV took several iterations
to reach the goal of an autonomous independent navigation and inventory task-
enabled UAV that is able to operate in indoor, unexplored spaces, and without a
pre-installed map as a reference.

The second contribution that this thesis presents is the design of a simulator
tool that enables the use of RFID technology with robots. The designed simulator
tool not only contributes to the robotics community for research purposes but can
also be used by retail companies to test inventory robots in environments where
large quantities of RFID tags exist. Moreover, the thesis presents the adaptability

2

“output” — 2023/2/27 — 8:55 — page 3 — #21

of the simulator tool to operate on different forms of robots, multi-robots, and
with different quantities of RFID tags installed in the environment.

The third contribution that this thesis presents is the development of a multi-
robot localization method for the goal of increasing the performance of a group
of heterogeneous robots performing a task. The thesis presents how by using the
designed method, a group of heterogeneous robots are able to increase their cog-
nitive abilities in the environment. This method aims to exploit the heterogene-
ity feature of robots in a group. Various scenarios of inventory-based aerial and
ground robots are shown, which collaborate together to increase the performance
towards the completion of an inventory mission.

The fourth and final contribution that this thesis presents is the complete de-
sign of a self-heterogeneous hybrid aerial and ground robot. The goal of this de-
sign is to serve the hypothesis of aggregating the beneficial properties of an aerial
and ground robot in one machine, for the purpose of increasing the performance
of an inventory robot in future work. Various designs were presented articulating
the development steps it took to reach the final structure design and functionality
of the robot.

The chapters of this thesis are organized as the following, section 1.2 intro-
duces the technologies of RFID and Robotics, which are considered the main
pillars that the research on which this thesis is based, it also introduces previ-
ous work on retail robots where a joint contribution published article1 is briefly
covered. Chapter 2, illustrates the design evolution of the robot used in the ex-
periments conducted for this research. In chapter 3, the first contribution study is
introduced, which reproduces a published article2 under the title of "Design of a
UAV for Autonomous RFID based inventories using Stigmergy". In chapter 4,
the second contribution study is introduced, which reproduces a published article
and a conference paper 3’4 under the title of "A Design Platform To Simulate
RFID Systems For Robots", which also explains the design of an open source
simulation tool that is already published in the official website for ROS5. In chap-
ter 5, the third contribution study is introduced, which reproduces a published

1Alajami, A.A.; Santa-Cruz, L.; Pous, R. A Design of an Energy-efficient Self-Heterogeneous
Aerial-Ground Vehicle. 9th International Conference on Automation, Robotics and Applications
(ICARA 2023), Abudhabi, 2023

2Alajami, Abdussalam A., Guillem Moreno, and Rafael Pous. 2022. "Design of a UAV for Au-
tonomous RFID-Based Dynamic Inventories Using Stigmergy for Mapless Indoor Environments"
Drones 6, no. 8: 208. https://doi.org/10.3390/drones6080208

3A. A. Alajami, G. Moreno and R. Pous, "A ROS Gazebo Plugin Design to Simulate RFID Sys-
tems," in IEEE Access, vol. 10, pp. 93921-93932, 2022, doi: 10.1109/ACCESS.2022.3204122.

4A. A. Alajami, R. Pous and G. Moreno, "Simulation of RFID Systems in ROS-Gazebo," 2022
IEEE 12th International Conference on RFID Technology and Applications (RFID-TA), Cagliari,
Italy, 2022, pp. 113-116, doi: 10.1109/RFID-TA54958.2022.9924062.

5http://wiki.ros.org/RFIDsensor_Gazebo_plugin

3

“output” — 2023/2/27 — 8:55 — page 4 — #22

article under the title of "A ROS-based Distributed Multi-robot localization
and orientation Strategy for Heterogeneous Robots" 6. In chapter 6, the fourth
contribution is introduced, which reproduces a published conference paper with
some minor dents under the title of "Unmanned Hybrid Aerial-Ground Vehicle
Designs",7 and other hybrid robot designs are introduced. Finally, the conclusions
and list of publications are introduced in chapter 7 and 8.

6Alajami, A.A.; Palau, N.; Lopez, S; Pous, R. A ROS-based Distributed Multi-robot localiza-
tion and orientation Strategy for Heterogeneous Robots. Intelligent Service Robotics, 2023

7Alajami, A.A.; Santa-Cruz, L.; Pous, R. A Design of an Energy-efficient Self-Heterogeneous
Aerial-Ground Vehicle. ICARA-2023 Conference, Abu Dhabi, 2023

4

“output” — 2023/2/27 — 8:55 — page 5 — #23

Introduction

1.3 RFID Technology

1.3.1 Overview

Radio Frequency Identification (RFID) refers to a wireless system that is usually
composed of three components, RFID tags, RFID readers, and adequate antennas.
RFID belongs to a group of technologies referred to as Automatic Identification
and Data Capture (AIDC). AIDC methods automatically identify objects, gather
related data, and input the data directly into computer systems with almost non-
human intervention. RFID methods utilize radio waves to accomplish this. An
RFID tag is composed of an integrated circuit and an antenna, which are used to
receive the radio wave signal from the reader, and use the received radio wave
signal to transmit the data stored in the tag to the RFID reader (also called an
interrogator). The reader then decodes the radio waves into a more usable form
of data. Information collected from the tags is then transferred through a com-
munications interface to a host computer system, where the data can be stored in
a database and analyzed at a later time. Passive RFID tags are powered by the
reader and do not have a battery. Active RFID tags are powered by batteries. In
this study, we only use passive RFID tags in our experiments.

RFID tags can store a range of information from one serial number to several
pages of data. Readers can be mobile so that they can be carried by hand, or they
can be mounted on a post or on mobile robots as we introduce in this study. Reader
systems can also be built into the architecture of a cabinet, room, or building.

RFID technology is employed in many industries to perform such tasks as:

(i) Inventory management.

(ii) Asset tracking.

(iii) Personnel tracking.

(iv) Controlling access to restricted areas.

5

“output” — 2023/2/27 — 8:55 — page 6 — #24

(v) ID Badging.

(vi) Supply chain management.

Ultra high frequency (UHF-RFID) technology has substantially a lot more benefits
than using barcode identification methods. The fact that this technology does not
require direct visual contact to be able to extract the data from the subject. It
can also subcutaneously read or identify a very long number of codes known as
Electronic Product Code (EPC) due to the 96 bits code-length, whereas barcodes
only encode the Stock Keeping Unit (SKU), which represents a set of unique
items. An example in retail can be given, a T-shirt is usually encoded as 13 digits
using bar codes, whereas all T-shirts for a given model, color, and size would
share the same SKU code. The RFID protocol used in this study is GEN2 defined
by GS8. This protocol uses Ultra High Frequency (UHF) at around 900MHz. This
standard allows the use of three sessions (S0, S1, and S2) that define the protocol
communication between the reader and RFID tags. The specifications of these
sessions are as the following:

1. Session S0: The RFID tags in this session, will constantly keep responding
to the readers’ requests as long as they receive one from the reader. This
session is used when the objective is to read as many tags as possible in a
continuous manner.

2. Session S1: In this session, the RFID tags sleep for a few seconds to up to
1 minute after detection.

3. Session S2: Session S2 is usually used in dense environments when it comes
to stock counting. It is known to have the best results in these environments.
This is because it sleeps the read RFID tags, giving a higher opportunity to
read hard-to-read tags by lowering the interference between RF waves.

All the RFID systems in this study are Commercial Off the Shelf (COTS)
systems that are commercialized by Keonn9. The RFID reader used in this study
is of model AdvanReader- 16010.

1.3.2 Using RFID for Inventory Management
Using UHF-RFID technology offers several benefits for inventory management,
such as:

8https://www.gs1.org/epc-rfid
9https://keonn.com

10https://www.keonn.com/rfid-components/readers/advanreader-160.html

6

“output” — 2023/2/27 — 8:55 — page 7 — #25

1. Improved visibility and faster scanning. Since using RFID technology for
reading an RFID tag does not require a “line-of-sight” scan like bar-codes,
this makes it possible to detect and scan the RFID tags from a considerable
distance. This, therefore, leads to faster inventory missions. RFID tags
can also be detected and scanned in any orientation and still give improved
visibility into your inventory with the potential for more frequent updates
and scanning locations.

2. Reduced labor costs. Labor costs in taking an inventory are considered as
much as 50-80% of distribution center costs, RFID offers potential benefits
and reduction of labor costs. Inventory missions and product counting can
be done much faster and automatically with just a small number of scans, it
also does not require a huge workforce to process this data. Although the
RFID labor compared to bar-code is low, the improvement of this feature
will be a key goal of this study, thus replacing the human worker with an
autonomous robot.

While there are some benefits of using RFID tags for inventory management,
the technology also comes with several disadvantages that hinder usability and
introduce other concerns such as:

1. Security concerns. RFID technology as any wireless communication tech-
nique tends to face security vulnerabilities. RFID tags can be scanned by a
compatible wireless device and copy data from the tags. This could later be
used to create a cloned tag or copy the information to another tag, a risk of
particular concern in the retail industry.

2. Demanding infrastructure needs. Setup for these systems requires the in-
tegration of the inventory management system, network, hanging antennas,
or special shelves with lifts for workers to reach the heights where products
are stored which can take a significant amount of time and resources to set
up. This drawback is also further focused on in this study. Having ground
and aerial robots performing an inventory mission requires less or almost
non-environment change or special infrastructures.

While the use of UHF-RFID technology in inventory management offers some
compelling and tangible benefits, there is still room for improving RFID inventory
management and mitigating its drawbacks. One of the focuses of this study is to
improve autonomous inventory management. This is done by developing robots
to perform inventory missions while doing that with the least human involvement
possible.

7

“output” — 2023/2/27 — 8:55 — page 8 — #26

1.4 Robotics General Overview

1.4.1 ROS
The Robot Operating System known as (ROS) is not an actual operating system,
but an open-source framework and set of tools that provide the functionality of
an operating system on a heterogeneous computer cluster. Its usefulness is not
limited to robots, as we will see in this study. ROS could be used with different
technologies alone or in combination. However, the majority of tools provided are
focused on working with peripheral hardware.

The key feature of ROS is that it allows the design of complex software with-
out knowing how certain hardware works. ROS provides a communication net-
work between different software that represents different hardware. It connects a
network of processes (nodes) with a central hub as for ROS version 1. However,
in ROS 2 the framework is decentralized, nodes can be run on multiple devices,
and they connect to that hub in various ways.

The main ways that ROS allows these created nodes to communicate are by
providing requestable services, or defining publisher/subscriber connections with
other nodes as shown in Fig. 1.1a. Both methods communicate via specified
message types. Some messages are provided by the core packages and others are
user-defined depending on the desired purpose, but message types can be defined
by individual packages.

(a) ROS nodes and topics.

As we will see in further sections, we use ROS to assemble a complex sys-
tem by connecting existing solutions for small problems. The way the system is
implemented allows us to:

1. Replace in real-time components with similar interfaces, removing the need
of stopping the system for various changes. This helps a lot in debugging,
especially when in the process of designing a new robot as in our case for
designing an unmanned aerial vehicle.

8

“output” — 2023/2/27 — 8:55 — page 9 — #27

2. Connecting nodes using programming languages such as C++ and python.
This is done by just implementing the appropriate messaging system. This
made it easy for us to reuse pre-created nodes and connect them to ours.

3. Multiplexing outputs of multiple nodes or software into one input for an-
other, allows parallel solving of various problems.

4. Using ROS enabled us to not just connect nodes representing components of
a single robot, but it enabled the connection between all nodes of all robots
that are connected over a wireless network

5. The fact that ROS runs on a LINUX operating system allowed us to use and
integrate software or deep learning models that are able to run on LINUX
to be integrated to the ROS framework.

6. The use of transforms and frames, in robotics, the positions and orientations
of objects (e.g., robots, sensors, and obstacles), are often expressed as trans-
formations of one coordinate frame into another. As time advances, these
transformations change (e.g., if the robot moves). ROS provides an API for
tracking these frames as they evolve in time using quaternion transforma-
tions basics. Quaternions are four-dimensional numbers (x, y, z, w). A ro-
tation by an angle θ about the axis (a, b, c) is represented by the quaternion
(a· sin θ

2
, b· sin θ

2
, c· sin θ

2
, cos θ

2
). ROS allows the attachment of hundreds

if not thousands of frames with each other while maintaining the relative
positions and information of each frame. An illustrative example of how
multiple frames and transforms are connected from a project within this
study thesis is shown in Figs. 1.2a and 1.2b.

(a) An illustration example of how frames are connected for a simple
ground robot with a sensor.

9

“output” — 2023/2/27 — 8:55 — page 10 — #28

(b) An illustration example of multiple frames connected in ROS.

Figure 1.2: Examples of frames and transforms in ROS.

1.4.2 Simulation
Simulators aid robotics research in a multitude of ways. The benefits include a
reduction in cost, better management of time, and an added level of safety when
dealing with complex environments. The use of simulators in robotics research is
widespread, underpinning the majority of recent advances in the field [T1].

Autonomous UGVs research – including legged, wheeled, and tracked robots
are one of the largest studied domains in robotics. There are many fields that are
incorporated into this sub-domain, including navigation, locomotion, cognition,
control, perception, Simultaneous Localization and Mapping (SLAM), and many
others. Various simulators that are specialized to simulate UGVs exist, such as
Airsim11, CARLA12, CoppeliaSim13, Gazebo14, MujoCo15, PyBullet16, SOFA17,
UWSim18, Chrono19, and webots20.

A comparison between the capabilities of the discussed robotics simulators
in areas that are identified to be critical to the domain of mobile ground robots

11https://microsoft.github.io/AirSim/
12https://carla.org/
13https://www.coppeliarobotics.com/
14https://gazebosim.org/home
15https://mujoco.org/
16https://pybullet.org/wordpress/
17https://www.sofa-framework.org/
18http://www.irs.uji.es/uwsim/
19https://projectchrono.org/
20https://cyberbotics.com/

10

“output” — 2023/2/27 — 8:55 — page 11 — #29

is shown in Tables 1.1 and 1.2. Critical features identified include the ability to
model sensors commonly used in the field, as well as common forms of locomo-
tion, the ability to import various environments, and inbuilt support for ROS.

Simulator
Point-
clouds

Force
sensor Actuators

Multi-Body
Import

Soft-Body
Contacts

DEM
Simulation

Airsim ✓ ✗ ✗ ✗ ✗ ✗

CARLA ✓ ✗ ✗ ✗ ✗ ✗

CoppeliaSim ✓ ✓ Linear ✓ ✗ ✓

Gazebo ✓ ✓ Linear ✓ ✗ Fluidix21

MujoCo ✓ ✓ ✓ ✓ ✓ ✓

PyBullet ✓ ✓ Linear ✓ ✓ ✓

SOFA ✗ ✗ ✓ ✓ ✓ ✓

UWSIM RGBD ✓ ✗ ✓ ✗ ✗

Chrono ✓ ✓ ✓ ✗ ✓ ✓

Webots ✓ ✓ Linear ✓ ✗ ✗

Table 1.1: First comparison of different Simulation capabilities between different
UGV Simulators.

Simulator
Fluid

Mechanics
ROS

support HITL22 Teleportation
Realistic
rendering

Inverse
kinematics

Airsim ✗ ✓ ✓ ✓ ✓ ✗

CARLA ✗ ✓ ✗ ✓ ✓ ✗

CoppeliaSim ✗ ✓ ✓ ✓ ✗ ✓

Gazebo Fluidix ✓ ✓ ✓ ✗ ✓

MujoCo Limited ✗ HAPTIX23 HAPTIX ✗ ✗

PyBullet ✗ ✗ ✗ ✓ ✗ ✓

SOFA ✓ ✓ ✓ ✓ ✓ ✗

UWSIM ✗ ✓ ✓ ✓ ✓ ✗

Chrono ✓ ✗ ✗ ✓ ✓ ✓

Webots Limited ✓ ✗ ✓ ✗ ✗

Table 1.2: Further comparison of different Simulation capabilities between differ-
ent UGV Simulators.

17https://classic.gazebosim.org/tutorials?tut=fluids&cat=physics
18https://en.wikipedia.org/wiki/Human-in-the-loop
19https://doi: 10.1109/HUMANOIDS.2015.7363441

11

“output” — 2023/2/27 — 8:55 — page 12 — #30

Modern UAV simulators allow researchers to replicate complex real-world en-
vironments by modeling turbulence, air density, wind shear, clouds, precipitation,
and other fluid mechanics constraints. They also support various sensors such
as Lidars, GPS, cameras, etc. Digital elevation models, or height maps, are also
used to simulate the terrain underneath the UAV. Simulators that are able to sim-
ulate aerial robots are fewer compared to UGV simulators. The most important
UAV simulators are Gazebo, AirSim, Flightmare, jMAVSim, and Webots. Tables
1.3 and 1.4 shows a comparison of important features required for aerial robotic
research.

Simulator
Realistic
rendering GPS Barometer Sonar Radar PX424

Airsim ✓ ✓ ✓ ✗ ✗ ✓

Flightmare ✓ ✗ ✗ ✗ ✗ ✗

Gazebo ✗ ✓ ✓ ✓ ✓ ✓

Webots ✗ ✓ ✗ ✓ ✓ ✓

Table 1.3: First comparison of different Simulation capabilities between different
UAV Simulators.

Simulator ArduPilot25 HITL
Point-
Clouds

ROS
support

VR
Support

Airsim ✓ ✓ ✓ ✓ ✓

Flightmare ✗ ✗ RGBD only ✓ ✓

Gazebo ✗ ✓ ✓ ✓ ✓

Webots ✗ ✓ ✗ ✓ ✓

Table 1.4: Second comparison of different Simulation capabilities between differ-
ent UAV Simulators.

Microsoft’s AirSim, is based on Unreal-Engine26, and supports IMU, magne-
tometer, GPS, barometer, and camera sensors. AirSim, provides a built-in con-
troller called simple_flight, and also supports open-source controllers such as
PX4. AirSim, is resource-intensive and hence requires large computing power

20https://px4.io/
21https://ardupilot.org/
26https://www.unrealengine.com/en-US

12

“output” — 2023/2/27 — 8:55 — page 13 — #31

to run when compared with other simulators. It has been used in drone racing,
wildlife conservation, and depth perception from visual images.

Flightmare27 combines a flexible physics engine with the Unity rendering en-
gine into a powerful simulator. Flightmare simulates high-fidelity environments
including warehouses and forests. Sensor models are available for IMU and RGB
cameras with ground-truth depth and semantic segmentation. The simulator is
well suited for applications in deep/reinforcement learning.

jMAVSim28 is another widely used simulator, mainly due to its tight cou-
pling with the open-source PX4 controller owing to the initial goal of testing PX4
firmware and devices. jMavSim supports basic sensing and rendering.

Webots is an open-source simulator with an extensive set of supported sensors,
including cameras, Lidars, GPS, etc. It allows the addition of custom physics to
simulate things such as wind and integrate data from OpenStreetMap to create
more realistic environments. Integration with the Ardupilot flight controller is
supported. Webots have been used in multi-agent simulations, mitigation of bird
strikes, and landing applications.

Gazebo is a popular simulator for both indoor and outdoor applications not
only for UAVs, but also for UGVs. The ROS interface provided by Gazebo con-
tributes to the simulator’s popularity and simplifies the process of testing control
software in simulation and transferring it onto the physical system. Gazebo pro-
vides the capability to import environments from digital elevation models, SDF
meshes, and OpenStreetMap. It is also possible to import robot models from their
Universal Robot Description Format (URDF) files. Being a rigid body simulator,
the simulator runs quickly and can simulate multiple robots in real-time. Although
Gazebo itself doesn’t provide motion planning functionality, its tight integration
with ROS allows ROS path planners to be used. Gazebo relies on the LiftDrag
Plugin to simulate aerodynamic properties and supports many common sensors
such as stereo-cameras and Lidar. Gazebo uses a Hector plugin, which adds UAV-
specific sensors such as barometers, GPS receivers, and sonar rangers. Gazebo
supports a comprehensive list of UAV models, and open-source hardware con-
trollers such as Ardupilot and PX4 which can be integrated for hardware-in-the-
loop simulations. Gazebo, however, features limited rendering capability com-
pared to Unity and Unreal Engine. Gazebo has found applications in, e.g., au-
tonomous navigation, landing on moving platforms, multi-UAV simulation, and
visual servoing. The fine comprehension of simulating capabilities for UAVs and
UGVs makes Gazebo the simulator used in all parts of the studies within this
thesis.

27https://uzh-rpg.github.io/flightmare/
28https://dev.px4.io/v1.10_noredirect/en/simulation/jmavsim.html

13

“output” — 2023/2/27 — 8:55 — page 14 — #32

1.5 Robot Types
Robots in general can be designed in different forms, sizes, and types. Each corre-
sponds to the required application it is required to perform. The six most common
types of robots are autonomous mobile robots (AMRs), automated guided/ground
vehicles (AGVs), articulated robots, humanoids, Cobots, and hybrids. Robots are
used to drive efficiency, expedite processes, improve safety, and enhance expe-
riences across many industries. In this study, we will briefly explain the types
and forms of robots that were used in the conduction of the experiments that are
illustrated in this thesis.

1.5.1 Ground Robots (UGR)

Unmanned Ground Vehicles (UGV) or Unmanned Ground Robots (UGR), are
referred to as robots that keep close proximity to the ground. From quadrupeds to
rovers, and even humanoids, ground robots are being designed for different tasks
in harsh, dangerous, and remote environments. The major task of these mobile
robots is to replace humans in performing tasks with great risks. In recent years,
the evolution in power efficient single board computers (SBC), also known as
companion computers (CC) that carry powerful central processing units enabled
the use of automation algorithms to function on ground robots. This increased
the performance of these robots, therefore their applications as well. The most
general form of ground conventional robots is wheeled robots. This thesis will
cover in detail the ground robot used in the construction of some experiments
in the following chapters. A UGV’s hardware structure normally consists of 3
hardware blocks, each containing different hardware components and having a
specific use. These blocks are:

1. The main drive block. This block consists of the hardware parts required
to able the robot to move on a given surface. This block also includes the
chassis or body frame that the hardware parts are attached to. The hardware
components of this block are:

(a) Wheels/motors Odometry source: motors and wheels are essential
hardware for the movement of the UGV. They do not only provide
the force, momentum, or torque required for the UGV body to move,
but also can supply localization information to the central processing
unit with relative coordinates to the map. In other words, they are used
to translate the exact linear and rotary movements of the UGV to able
it to sense its position in the environment. Wheel localization is done
by hall sensors that exist within the structure of the wheels. These

14

“output” — 2023/2/27 — 8:55 — page 15 — #33

sensors sense the number of revolutions the wheel spins with respect
to time, which is used for distance calculations.

(b) Power source: for mobile UGVs, some sort of power storage system
is needed to be carried on board such as lithium-ion batteries (Li-Ion),
lithium polymer batteries (Li-Poly), or nickel–metal hydride batter-
ies (NiMH). For the UGV used in these experiments, a 29v (dual
2200mAh Li-Poly 14.4v batteries connected in parallel) is used to
power all 2 blocks in the UGV.

(c) Power converters: DC-DC step-down power converters or known as
Buck converters29, are mounted and used on the UGV. The main pur-
pose of these devices is to supply adequate power to the peripherals
and sensors from the battery, each according to their functional input
allowed voltage.

2. The Sensor block. The Sensor block consists of sensor hardware that defines
the UGV’s capabilities. Sensors on this block allow the UGV to obtain a
model of the environment. The UGV can be equipped with one to multiple
types of sensors depending on the application and navigation requirements.
Proximity sensors are considered one of the important type of sensors that
can be used to sense obstacles in the environment or build maps. Localiza-
tion sensors are another group of sensors that are essential for a UGV. For
example, GPS is a localization sensor that uses satellites to provide coor-
dinates to the UGV. Other sensors such as hall sensors in wheels, tracking
cameras, or triangulation-based sensors can be used for localization. Vi-
sual sensors like cameras that are able to relay imagery information back
to the user are also commonly used for controlling or influencing the nav-
igation behavior of the UGV. The data extracted by a camera mounted on
a UGV can be used as data to be processed or is processed in real-time by
using models based on Artificial neural networks30. For the case of the spe-
cific UGV used for conducting the experiments in this thesis, the UGV is
equipped with two proximity sensors, which are a 2D/3D Lidar sensor and
a bumper sensor. The onboard sensors will be used to help construct a local
costmap31, for the purpose of detecting and avoiding obstacles in the en-
vironment. Furthermore, this block also contains a central processing unit
usually in the form of a programmable CC. This CC will be responsible
for analyzing, processing, and outputting necessary data that governs the
behavior of the robot.

29https://en.wikipedia.org/wiki/Buck_converter
30https://en.wikipedia.org/wiki/Artificial_neural_network
31http://wiki.ros.org/costmap_2d

15

“output” — 2023/2/27 — 8:55 — page 16 — #34

3. The Payload block. This third and final block contains the hardware com-
ponents that define the application of the UGV. The capability of the UGV
to carry additional hardware for application purposes is somehow limited in
form, size, and motor power. For the UGV used for conducting the exper-
iments in this thesis, the payload consists of 4 RFID antennas and a reader
for RFID inventory and RFID-based navigation, which will be further ex-
plained in the next following chapters.

The used UGV in this thesis, the so-called "Robin 50" shown in Fig. 1.7,
was designed and developed by Keonn technology cooperating with the
Ubica Lab team from Pompeu Fabra University.

1.5.2 Unmanned Aerial Vehicles (UAVs)

The second important type of robots are aerial robots, in other words (robots that
can fly). A UAV is defined as a powered, aerial vehicle that does not carry a human
operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously or
be piloted remotely, can be expendable or recoverable, and can carry a payload.
UAVs, are used more and more in many applications because of their rapid and
cost-effective deployment.

UAVs, can be used in many scenarios and have formed various types. As
shown in Fig. 1.3, there are many classification criteria. A typical classification
criterion is to categorize UAVs into fixed-wings, rotary-wings, flapping-wings,
which are based on the wing type. Another classification would be based on the
weight of a UAV, miniature UAVs (between 1 & 25 kg), and heavier UAVs (more
than 25 kg) [T2]. Arjomandi et al. in [T3] summarized some other classification
methods: According to the flight endurance/range, they can be classified into short
(less than 5 h, less than 100 km), medium (between 5 & 24 h, between 100 & 400
km), and long/range (more than 24 h, more than 1500 km). Also, they can be
classified in terms of the maximum flying height of the UAV, as low altitude (less
than 1 km), medium altitude (between 1 & 10 km), or high altitude UAVs (more
than 10 km).

The overlap of these classification criteria will produce different effects. For
example, the widely used miniature short-range quad-rotor UAVs can be used to
complete aerial photography tasks. However, some UAVs in multiple categories
are difficult to design and implement, such as high-altitude long-endurance UAVs
designed for performing some patrol tasks, and small long-range drones for re-
connaissance. One of the drawbacks of these kinds of UAVs is the contradiction
between their payload and energy/power supply weight. These factors, however,
will be discussed more in detail in different chapters in this thesis.

The UAV used in this study has been designed to operate in indoor areas. This

16

“output” — 2023/2/27 — 8:55 — page 17 — #35

increases the complexity of the designed UAV in hardware, safety, and control.
More depth of the design structure and hardware/software used for the UAV uti-
lized to conduct experiments in the thesis will be further explained in Chapter
2.

Figure 1.3: Classification of the UAV system.

1.5.3 Other Types of Robots

As mentioned before, 6 types of robots exist. Besides the already mentioned
UGVs and UAVs, articulated robots, humanoids, Cobots, and hybrids are focused
on by robotics researchers to exploit these diverse machines for different purposes
and applications.

Articulated robots also known as robotic arms, are meant to emulate the func-
tions of a human arm. The functionality of this robot highly depends on the de-
gree of freedom DOF or joints the robot has. These can feature anywhere from
two to 10 rotary joints. Each additional joint or axis allows for a greater degree
of motion which can be ideal for various applications such as welding, material
handling, machine tending, grasping, and packaging.

The other type of robots are called humanoids. While many mobile humanoid
robots may technically fall under the domain of an AMR, the term is used to
identify robots that perform human-oriented functions and often take human-like
forms. Humanoids, use many of the same technology components as AMRs to
sense their environment, plan their trajectory, and react as they carry out tasks,

17

“output” — 2023/2/27 — 8:55 — page 18 — #36

such as providing customer help in hotels or airports or offering concierge ser-
vices.

Cobots or so known as collaborative robots are designed to function alongside
or directly with humans. While most other types of robots perform their tasks
independently, or in strictly isolated work areas, Cobots, are designed to share
spaces with workers in order to help them accomplish more. Cobots, are often
used to eliminate manual, dangerous, or strenuous tasks from a daily based work-
flow. Furthermore, Cobots can operate by responding to and learning from human
movements.

Finally, different type of robots, called Hybrid robots, are usually composed
of a mixture of the different types of robots previously mentioned. These robots
normally are designed for the purpose of sharing the features of different types of
robots in one machine. An example design of this type of robot will be presented
in chapter 6. The various types of robots are often combined to create hybrid
solutions that are capable of more complex tasks. For example, an AMR might
be combined with a robotic arm to create a robot for handling packages inside
a warehouse. As more functionality is combined into single solutions, compute
capabilities are also consolidated.

1.6 Previous Work on Retail Robots
There are many challenges faced by large retail chains today [T4]. Some of these
challenges include frequent out-of-stock, product misplacement, organized retail
crime (OCR) including theft, and lower profit margins due to stiff competition,
especially in online retails. High manpower costs make it difficult to deploy more
people required for efficiently managing the stores. This has prompted researchers
to look for technologies that can be utilized to improve the current store manage-
ment practices. The use of RFID-based smart shelves [T5], is one such example.
Using mobile robots for retail monitoring is a new concept that has been exploited
recently by researchers. Nowadays, inventory robots differ from each other by the
different technologies used for the stock count. Some inventory robots are RFID-
based, some are vision-based, and some are a combination of both technologies.

RFID-based inventory robots generally rely on a map with a preset set of way-
points. The goal is to navigate through all the areas in the given map, hence
covering all possible areas that contain stocks. These types of robots aim to read
all RFID labels for a full inventory of store products.

Vision-based robots, however, will navigate through the aisles of a store, look-
ing for missing products, and empty spaces and checking the prices of the prod-
ucts. Both types of technologies have advantages and drawbacks.

Vision-based inventory robots have more perspective of their environment,

18

“output” — 2023/2/27 — 8:55 — page 19 — #37

they can achieve more by analyzing the characteristics and content of the vision
frame, however, they are considered highly complex machines that require high
power consumption to operate the computationally expensive processes on their
processing unit, in which to process all the data from the visual sensors or cameras.
The drawbacks of using vision as a primary technology for retail make it very hard
to adapt to power-limited robots such as UAVs. RFID technology, however, does
not require powerful onboard computers or expensive processing units to process
the data from these sensors, making it adaptable for power-limited robots such as
UAVs, which opens up a much wider angle of properties and advantages in retail.

The autonomy of retail robots is another important dimension that has been
always a focus and challenge for researchers and retail companies using these
robots. Retail robots, based on their navigation autonomy, can be categorized as
the following.

1.6.1 SLAM navigation-based Inventory Robots

Most of the reliable robots used in the market nowadays navigate based on a semi-
autonomous system called Simultaneous Localization and Mapping (SLAM). The
objective of SLAM is to concurrently build a map of an environment and allow
the robot to localize itself within that environment. Although SLAM is not only
devoted to mobile robots, it was first thought of as a tool for mobile robot au-
tonomous navigation. Since its early beginnings, the SLAM scheme has been
developed and optimized in different ways. Autonomous navigation in SLAM
requires that the robot is able to decide on its own the destination within the envi-
ronment being mapped. For retail robots, the mobile robot has some knowledge
about its state but it cannot take any action according to that. An implementation
of a semi-autonomous navigation strategy in SLAM is required to navigate in the
environment.

Sensors on the mobile robot play an important role in the quality of localiza-
tion and mapping in SLAM. Different manufacturers of inventory robots designed
their robots with different combinations of sensors, all aiming to increase the per-
formance of these robots by having robust localization of themselves within a map
with dynamic objects.

Some examples of the leading robots in the field are:

1. Bossa Nova Robots32: Bossa Nova’s inventory robot is a vision-based in-
ventory robot, that is currently deployed in more than 50 stores across the
United States and in Europe, making it the largest deployment of this kind of
technology in any retailer. Bossa Nova creates service robots for the global

32https://www.bossanova.com/solutions/#retail

19

“output” — 2023/2/27 — 8:55 — page 20 — #38

retail industry. The robot’s mission is to make large-scale stores run effi-
ciently by automating the collection and analysis of on-shelf inventory data
by collecting terabytes of data that retailers use to increase on-shelf avail-
ability. Bossa Nova’s robot navigates autonomously through aisles using
preset waypoints, navigating safely among customers and store associates.
Bossa Nova’s robot automates the collection of on-shelf product data, ex-
tracts actionable information in real-time, and delivers prioritized tasks to
team members. Retailers can also leverage this data to inform the supply
chain and build mobile experiences like Walmart’s Smart Assistant. The
robot’s navigation system relies on a 2D front view Lidar mounted on the
base and 2 depth cameras in the front and rear bottom of the robot as shown
in Fig. 1.4.

Figure 1.4: Bossa Nova inventory 2020 robot.

2. Stockbot33 from PAL Robotics: Stockbot inventory robot is an RFID-based
robot. Its main objective is to take a full inventory of a retail store and pro-
vide the location of the products while navigating using a semi-autonomous
technique with SLAM. This robot now is running in Decathlon Singapore
Labs Store, it has also been tested in MediaMarkt in the past. The naviga-
tion system of this robot relies on 2 depth cameras mounted on the top side
and a 2D Lidar on the bottom as shown in Fig. 1.5.

33https://pal-robotics.com/robots/stockbot/

20

“output” — 2023/2/27 — 8:55 — page 21 — #39

Figure 1.5: Stockbot inventory robot.

3. Robin20034 from Keonn: This inventory robot was originally designed with
significant contributions by previous members of our research group. The
first commercial design was Robin200 [T6], whose first prototype was pre-
sented in 2013. Robin200 was granted the first patent for RFID autonomous
robots in 2018 [T7], describing the architecture and algorithms on which the
robot is based, which are also presented in this work. A more detailed de-
scription of this robot is in [T6]. The research involved in the design of
this robot can be considered a starting point for the research of our research
group. This thesis is considered a continuation of that first step in the mile-
stone.

The key feature of Robin200 is its capacity of linking SLAM-based navi-
gation with RFID detections. The navigation strategy of Robin200 is com-
posed of two thresholds that governed the behavior of the robot. The robot
will tend to stop the navigation process when it is able to detect a number
of RFID tags higher than the set threshold in a set period of time. The robot
will then rotate around its verticle axis a pre-set number of times, this ori-
enting the RFID antennas mounted onboard for maximizing the detection of
RFID tags. The robot will continue on its path until it reads a higher number
of tags than the threshold which will trigger the whole process again.

34https://keonn.com/systems-product/robin-200/

21

“output” — 2023/2/27 — 8:55 — page 22 — #40

The operative procedure of this robot is divided into two phases, the map-
ping phase, and the inventory phase.

The mapping phase consists of manually navigating the robot in the envi-
ronment in order to create a map of the area to inventory and define the path
that the robot should follow during the process.

The inventory phase is the phase that is consecutive to the mapping phase.
This phase relies on the mapping phase as the robot would not be able to
perform an inventory mission in areas that are not mapped. In the inventory
phase, the robot tries to navigate following the path created in the mapping
phase, doing so autonomously and avoiding dynamic obstacles on the path.
The navigation system of Robin200 relies on 2 depth cameras, both placed
on the bottom of the robot facing the front and rear of the robot. The latest
version of this robot is also equipped with a 3D Lidar Fig. 1.6 shows an
illustration of Robin200.

Figure 1.6: Robin200 inventory robot.

Nevertheless, the current design of RFID-based inventory robots is not completely
autonomous. The reason is that they require the manual creation of a map of the

22

“output” — 2023/2/27 — 8:55 — page 23 — #41

store before they can operate in it. Moreover, when the layout of the environment
suffers significant changes, these robots require that the map of the store is done
again. In very large stores these robots suffer from scalability issues due to the
size of the map. For full autonomy, while performing inventory missions, robots
need to navigate autonomously in an environment without the need for human
intervention. Therefore, robots would need to explore their environment and make
optimum decisions on navigation toward completing a full inventory mission of a
retail store.

1.6.2 Stigmergic Navigation-based Inventory Robot (Robin 50)

Towards the goal of a completely autonomous inventory-based mobile robot plat-
form, research that was accomplished by my former research group members,
which proposes a novel navigation strategy composed of a stigmergic-based algo-
rithm for multi-robot systems, to solve the problem of autonomous stock counting
in stores using RFID technology.
The proposed solution is completely autonomous since it does not require a map,
is scalable to any environment size, requires less computational resources, and
significantly reduces the cost since the solution can be implemented in simpler
and cheaper robots. This improvement is achieved by a paradigm shift in the way
that the robot completes the stock counting task. The robot, instead of navigating
based on previously recorded inventory goals, uses live RFID identifications from
the RFID labels present in the store as a reference, in order to complete the stock
counting.
Moreover, several robots can collaborate by means of detecting RFID labels and
completing the task of navigating in the same store. Hence, we can conclude that
robots use environmental information as a communication channel and to store
information. This behavior is called stigmergy.
This type of algorithm is also very well suited for robotics due to its intrinsic
ability to simplify the robot’s hardware and software and to scale to multi-robot
systems.
The robot hardware design is focused to be simple and cost-effective. Its naviga-
tion system relied on having one 2D Lidar and a low-resolution depth camera, the
navigation also depended on the RFID payload system. The RFID payload con-
sists of a Keonn AdvanReader 160 [T8] RFID reader having four RF ports, each
port connected to a Keonn Advantenna SP11 [T9] RFID antenna placed each in
a different orientation as shown in Fig. 1.7. More insight into this autonomous
model can be seen in [T10].

23

“output” — 2023/2/27 — 8:55 — page 24 — #42

Figure 1.7: Robin 50 autonomous inventory robot.

1.6.3 Conclusions and lessons learned

UGVs have proven by practice to be useful in terms of automatizing inventory of
retail stores or small-sized warehouses, due to many characteristics that incorpo-
rate the body form. UGVs have proven to be secure in the presence of humans,
as they are programmed to operate with slow velocities. The fact that they oper-
ate in a 2D plane (on a solid surface), makes them less prone to drift caused by
wind or other physical properties. Their body form, allows them to carry large
energy storage batteries, high computational power processing units, and more
power-hungry sensors. This gives these robots the ability to operate for a longer
time, making them very good to operate in larger retail stores. However, the nat-
ural form of inventory UGVs brings also drawbacks. Large warehouses usually
contain products at heights that reach up-to 10 meters or more. Due to the fact
that UGVs only operate in the 2D plane, products at high heights are not reach-
able for detection for the inventory UGVs. Another limitation is that UGVs are
not able to navigate on any given surface, the inventory mission is prone to fail
if the robot mistakenly falls in a small hole, steps over thick matrices, its wheels
get tangled with cables, etc. UGVs would not be able to maneuver over small
obstacles or in narrow spaces. Analyzing the drawbacks that faced the designed
robots from previous studies done by the research team, has oriented the course
of this study to investigate the exploitation of miniature-sized UAVs for large in-
ventory warehouses. Since UAVs suffer from weight and power constraints due
to their physical characteristics, we have decided to design a UAV following the
navigation paradigm of Robin 50.
The UAV designed for this thesis would be intended to operate fully autonomously
in map-less environments, it is also designed to operate indoors for performing in-
ventory missions. The next chapter 2, discusses in detail the design evolution of

24

“output” — 2023/2/27 — 8:55 — page 25 — #43

the RFID-based inventory UAV during the thesis.

25

“output” — 2023/2/27 — 8:55 — page 26 — #44

“output” — 2023/2/27 — 8:55 — page 27 — #45

Chapter 2

UAV DESIGN

Throughout the research presented in this thesis, the design of an autonomous
UAV for the task of autonomous inventory in mapless environments went through
several stages and design versions. The UAV underwent major improvements
in hardware and software as the research progressed. The goal was to design a
model with stable indoor flights capabilities, able to carry a payload (around 4kg
in weight and 25cm3 in size), able to carry an energy source that can supply all
the sensors and electronics onboard with sufficient power, able to process all the
data for obtaining a stable fight with accurate navigation and to run all the custom
designed algorithms for detecting and avoiding obstacles alongside with the RFID
related algorithms for navigation and inventory as described in further sections of
this thesis. No UAV models that could fulfill these requirements existed in the
market at the time of writing this thesis.

2.1 UAV V1

2.1.1 Design Structure

The initial version of the designed UAV started with adequately choosing and
integrating the essential parts of a UAV that enables the robot to have a steady
and stable flight with open-source features. The main hardware components of
this version are shown in Table 2.1. The hardware used to design the first version
of the UAV in this study will be explained using 2 parts or, as we call, blocks as
shown in Fig. 2.1:

27

“output” — 2023/2/27 — 8:55 — page 28 — #46

Figure 2.1: Illustration of the hardware configuration of UAV v1.

Hardware Component Type Quantity

Autopilot or Flight controller (FC) Pixhawk 2.4.8 1

Electronic Speed Controllers (ESC) 60A SimonK 6

Motors Brushless T-motors 780kv 6

Companion Computer (CC) Asus jetson nano 1

Proximity Sensor 2D Lidar + Laser Pointer (Lidar lite v3) 2

Energy Source 4cell 6,000mAh Lipo battery 1

Position Hold Sensor Optical Flow (PX4FLOW) 1

Table 2.1: The Hardware description of the UAV v1.

1. The flight system block: this block consists of the essential hardware needed
for the UAV to fly or hover with some degree of stability and programmatic
control.

(a) Flight controller (FC): the flight controller, or so-called autopilot, con-
trols the flight and motion of the UAV. The UAV can rotate its body

28

“output” — 2023/2/27 — 8:55 — page 29 — #47

and accelerate by creating speed differences between each of its mo-
tors. The FC uses the data gathered by the internal and external sensors
to calculate the desired speed for each of the motors. The FC sends
this desired speed to the Electronic Speed Controllers (ESCs), which
translate this desired speed into a signal that the motors can under-
stand.
Calculations for having precise movements, fusing and filtering sen-
sory information, and estimating the safety and durability of a flight
are all done by an algorithm installed onboard. The autopilot uses
the most commonly used flight control algorithm called PID control
which stands for Proportional, Integral, and Derivative control. This
algorithm reads out and reacts to incoming information from the sen-
sors at a fast rate, therefore making the drone flight more stable.

(b) Frame and motors: the number of motors and the design of the frame
has a significant impact on the characteristics of a UAV. They have
a direct impact on stability, flight time, speed, payload weight, and
almost every other aspect of a UAV. In this study, corresponding to
the desired payload weight needed for this UAV to carry and the im-
portance of stability as it will fly indoors, a hexacopter (a UAV with 6
motors and propellers) will be used. The selection of kv1 ratings of the
motors was carefully considered in order to achieve a stable reliable
flight.

(c) Electronic speed controllers (ESCs): the electronic speed controller’s
main job is to follow a speed reference signal received from the FC and
vary the switching rate of a network of field effect transistors (FETs).
By adjusting the duty cycle, or switching frequency of the transistors,
the speed of the motor is changed. The rapid switching of the cur-
rent flowing through the motor is what causes the motor itself to emit
its characteristic high-pitched whine, especially noticeable at lower
speeds.

(d) Power source: there are various types of batteries (depending on their
chemical structure) that can be used for UAVs. However, a lithium-ion
polymer (LiPo) battery will be used for the designed robots explained
in this thesis. A LiPo battery (also known as Li-poly, lithium-poly,
PLiON, and other names) is a rechargeable Li-ion battery with a poly-
mer electrolyte in the liquid electrolyte used in conventional Li-ion
batteries. There are a variety of LiPo chemistries available. The rea-
son we chose a LiPo battery in the design of the UAV used to conduct

1https://www.rotordronepro.com/understanding-kv-ratings/

29

“output” — 2023/2/27 — 8:55 — page 30 — #48

experiments in this study is the weight versus power characteristics
and trade-off. Lipo batteries can store a high capacity of energy con-
sidering their size and weight. A 4-cell (each 4.2V) 15.8V, 6,000 mAh
LiPo battery is used for the designed UAV. This battery has a high
discharge rate of 70c2 ratings, which is the rate at which a battery is
discharged relative to its maximum capacity (approx. 6A/h).

(e) Power converter: as the main power source has a high voltage output
rating, DC to DC down voltage converters are necessary to be used.
This is for supplying the electronic components and sensors onboard
with adequate power rating input. For this UAV design, 2 DC to DC
power converters were used: one to down transform 25V to 5V at 4A
output capacity, which will supply the CC onboard and the other will
transform 25V to 5v 2A for the sensors on board.

2. The sensor block: the UAV carries the necessary sensors onboard, defined
by the requirements of its application. However, unlike a ground robot,
the weight, computation cost, and power consumption must be considered
in choosing these sensors for the UAV, as these parameters directly impact
the characteristics of the UAV in terms of flight time, payload weight, and
stability. These reasons among many, make designing a UAV more complex
compared to UGV. For the UAV used in this study, the sensor hardware
block diagram contains:

(a) 2D Lidar Sensor: light Detection and Ranging (Lidar), is a remote
sensing method that uses light in the form of a pulsed laser to measure
distance. The Lidar sensor used provides proximity sensing of the
environment and is used for navigation purposes.

(b) Laser sensors (Lidar light v3): this device measures distance by cal-
culating the time delay between the transmission of a Near-Infrared
laser signal and its reception after reflecting off of a target, which
then is translated into distance. Proprietary signal processing tech-
niques are used to achieve high sensitivity, speed, and accuracy in a
small, low-power, and low-cost system. This sensor could not directly
be connected to the CC, therefore a low-power programmable board
(ARDUINO) was needed to act as a mediator between the main CC
and the sensor, the connection of the sensor. The laser has a detection
range of 0-40m and an accuracy of +/- 2.5cm at distances greater than
1m.3

2http://mit.edu/evt/summary_battery_specifications.pdf
3https://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf

30

“output” — 2023/2/27 — 8:55 — page 31 — #49

(c) Optical flow sensor: the optical flow sensor used is a vision sensor
capable of measuring optical flow or visual motion and outputting a
motion measurement based on optical flow. Its configuration consists
of an image sensor chip connected to a processor programmed to run
an optical flow algorithm. It operates by using the ground texture and
visible features to determine the UAV’s ground velocity. The setup re-
quired this sensor to be faced downwards to the ground, plus a distance
sensor which is the laser pointer previously mentioned. The sensor is
connected via the I2C communication protocol directly to the autopi-
lot.

2.1.2 Operating Mechanism of the UAV v1
The flight and navigation of the first designed version of the UAV relied mainly
on the IMU sensors that existed inside the autopilot and partially on the proximity
sensors that were connected to the CC. The IMU contains a gyroscope to measure
and maintain the orientation and angular velocity of the UAV, it also contains an
accelerometer for measuring linear velocity and finally, a barometer that measures
altitude by sensing the air pressure. Although the output data of these sensors are
used to control and stabilize the UAV, however, gyroscopes are more advanced
than accelerometers, as they can measure the tilt and lateral orientation of the
object whereas accelerometers can only measure linear motion.

The designed flight algorithm for this version relied mainly on the output of
the gyroscope to constantly try to maintain the UAV at a fixed horizontal level to
maintain a stable flight in the air. The algorithm tries to mitigate the drift of the
UAV which is detected by measuring the linear acceleration with the accelerome-
ter. The barometer, however, is prawn to have noisy altitude measurements due to
its high sensitivity to temperature changes and to different environmental condi-
tions. Therefore, the designed algorithm will not be fully dependent on the barom-
eter for sensing and adjusting the height of the UAV, however, it will mainly rely
on the precise laser sensor for measuring its height from the ground.

The algorithm uses the horizontal motion measurements from the optical flow
sensor to try to counter any drift forces and stabilize the UAV in a fixed position
while hovering.

2.1.3 Conclusions
The first version of the UAV relied on low-level sensors for flight and navigation.
This led it to not require the high processing power of the data, which resulted in
lower power consumption and higher flight time of up to 25min. However, this
version of the designed UAV did not achieve the main goal of having a stable

31

“output” — 2023/2/27 — 8:55 — page 32 — #50

and robust flight. The UAV suffered from small linear drifts that were not always
detectable by the motion sensors. This was due to the fact that the ground in some
cases lacked different features or characteristics which made it hard to detect the
motion by the optical flow sensor. The UAV lacked a precise positioning system
and a source of self-localization data or positioning system, which made it hard to
precisely navigate the UAV to a fixed position.

2.2 UAV v2

2.2.1 Design Structure

The second version of the UAV design called UAV v2, is an improved version of
the first model UAV v1. The hardware used to design UAV v2 is explained in 3
blocks as illustrated in Fig. 2.2 and in Table 2.2:

Figure 2.2: Illustration of the Hardware configuration of UAV v2.

32

“output” — 2023/2/27 — 8:55 — page 33 — #51

Hardware Component Type Number

Autopilot or Flight controller (FC) Pixhawk 2.4.8 1

Electronic Speed Controllers (ESC) 60A SimonK 6

Motors Brushless T-Motors 780kv 6
Companion Computer (CC) Asus jetson nano 1

Proximity Sensor 2D+3D Lidar 1

Energy Source 6cell 6,000mAh LIPO battery 1

Position Hold Sensor VSLAM Camera 1

Table 2.2: The Hardware description of the UAV v2.

1. The flight system block: the same flight system block used in UAV v1 is
used in UAV v2 of the UAV design.

2. The Sensor block: the UAV v2 model was designed to increase the preci-
sion of the stability of the UAV from version 1. This implies adding a sensor
that is able to provide self-localization sensing in GPS-denied environments
while maintaining its autonomy. In order to keep the UAV autonomous and
scalable to work in any indoor environment no modification of the environ-
ment could be done to help guide the UAV or increase its stability in the air
while hovering. Therefore, a high-level visual sensor (Tracking Camera)
was added to achieve this goal. The sensor hardware block of the designed
UAV v2 model contains:

(i) Visual Simultaneous Localization and Mapping VSLAM camera: in
recent years, SLAM using cameras only has been actively discussed
because the sensor configuration is simple but the technical difficulties
are higher than others. Since the input of such SLAM is visual infor-
mation only, the technique is specifically referred to as visual SLAM
(VSLAM).
VSLAM algorithms have been proposed in the field of computer vi-
sion, robotics, and Augmented Reality (AR) [T11]. Using CMOS sen-
sors to act as eyes to see the surrounding environment, an IMU that
acts as the inner ear to sense balance and orientation, and a computer
to act as the brain that fuses the information into instantaneous loca-
tion and mapping. One major potential goal for VSLAM systems is to
replace GPS tracking and navigation in certain applications.
GPS systems are not usable indoors in many cases, or in big cities
where the view of the sky is obstructed, and sometimes in bad weather

33

“output” — 2023/2/27 — 8:55 — page 34 — #52

conditions they are low in accuracy. VSLAM systems solve each of
these problems as they’re not dependent on satellite information and
they are taking accurate measurements of the physical world around
them. For the UAV used in this study, a Realsense intel 365 VSLAM
stereo tracking camera will be used, shown in Fig. 2.3a.

The algorithm in this camera will extract features from the surround-
ing environment and represent them as nodes for each frame as shown
in Fig. 2.3b, it will therefore connect these nodes with the consecutive
frames. Translating the displacements of these nodes from the consec-
utive frames to relative motion and pose messages is done by infusing
the IMU information.

(a) The Intel RealSense Tracking Camera
T265 is a complete embedded SLAM so-
lution that uses Visual Inertial Odometry
(VIO) to track its own orientation and loca-
tion (6DoF) in 3D space.

(b) Example of “Harris Corner Features” de-
tected in an image.

Figure 2.3: An illustration of INTEL tracking camera.

34

“output” — 2023/2/27 — 8:55 — page 35 — #53

(ii) 2D/3D Lidar: this sensor provided the UAV with proximity sensing of
the environment in the 2D plane with an 8m distance, and in the 3D
plane with a 2m distance, by using light and imagery sensing.

3. The RFID payload block: the UAV will carry the same payload as the UGV
of Robin 50 which was introduced in section 1.2, but on the bottom of
its structure rather than on top. It is composed of a lightweight structure
skeleton embedding the RFID reader, the power converter/distributor cir-
cuit board, the RFID reader, and the 4 RFID antennas. Each antenna will be
facing a different direction. This block provides all the RFID-related data
to other blocks when needed.

2.2.2 Operating Mechanism of UAV v2

The flight and navigation of UAV v2 use the VSLAM localization camera as an
indoor positioning system. Having an indoor odometry source enabled precise
navigation and a stable flight. Unlike UAV v1, the designed flight algorithm uses
the output data of the VSLAM sensor for 3D localization, therefore, replacing the
laser and the optical flow sensors that were used in UAV v1.

As mentioned in the hardware configuration, UAV v2 uses a 3D depth camera
for proximity sensing of the environment.

The UAV utilizes the mentioned proximity and localization sensors, to con-
struct a local costmap using a ROS-based mapping software called Move_base
[T12].
The ROS Move_base node creates a cost map that is based on an occupancy grid.
The created cost map, is a grid in which every cell has an assigned value (cell-
cost). The cell-cost refers to the probability of that cell having an obstacle. With
the use of the costmap, trajectories passing cells with the lowest cost are gener-
ated.
The Move_base node uses two cost maps, local for determining current motion
and global for a trajectory with a longer range. The UAV uses a path plan-
ning algorithm that uses the Trajectory Rollout and Dynamic Window approaches
(DWA) to local robot navigation on a plane. Given a plan to follow and a costmap
as shown in Figs. 2.4a and 2.4b, the controller produces velocity commands to
send to a mobile base. The algorithm uses a holonomic4 based control system to
move the UAV towards the path to the goal.

4https://www.mecharithm.com/holonomic-nonholonomic-constraints-robots/

35

“output” — 2023/2/27 — 8:55 — page 36 — #54

(a) An illustration of the DWA Path planner functionality.

(b) An illustration of a constructed costmap of the UAV.

Figure 2.4: An illustration of the construction of the costmaps and paths created
by the UAV.

2.2.3 Conclusions
The UAV v2 model, used 2 high-level visual sensors, the "VSLAM camera" and
the "2D/3D Lidar" in order to be able to construct a costmap. However, having
2 high-level sensors demands high processing power and capacity from the CC.
Supplying power to a capable CC and the sensors on board consumes a lot of
power which drastically reduces the flight time.
The flight time of this version of the UAV was around 45s, which made the UAV

36

“output” — 2023/2/27 — 8:55 — page 37 — #55

unfit for inventory tasks as more time is required. The flight time was not the
only issue that faced this design, the computation power required by the path
planning algorithm onboard required, varied corresponding to the complexity of
the environment. In environments where a lot of obstacles were present, the UAV
faced down throttling due to the high computation power required to process all
the data and generate a path towards the goal while avoiding obstacles.
All of the conclusions above led to the third design of the UAV which will be
explained in the following section.

2.3 UAV v3

2.3.1 Design Structure

The UAV v3 design utilizes the same hardware blocks as UAV v2, but with the
replacement of the 2D/3D Lidar with an RGBD 3D point cloud depth camera.

The hardware used to design the third version of the UAV in this study is
illustrated in Fig. 2.5 and in Table 2.3:

Figure 2.5: Illustration of the Hardware configuration of UAV v3.

37

“output” — 2023/2/27 — 8:55 — page 38 — #56

Hardware Component Type Number

Autopilot or Flight controller(FC) Pixhawk 2.4.8 1
Electronic Speed Controllers (ESC) 60A SimonK 6

Motors Brushless T-Motors 780kv 6
Companion Computer (CC) Asus jetson nano 1

Proximity Sensor RGBD Camera 1

Energy Source 6cell 6,000mAh LIPO battery 1

Position Hold Sensor VSLAM Camera Flow 1

Table 2.3: The Hardware description of the UAV v3.

2.3.2 Operating Mechanism of UAV v3
The UAV v3 model was designed to maintain a degree of automation and the sta-
bility of the UAV from the previous designs while reducing power consumption
and obtaining a task-sufficient flight time. This implies reducing the high com-
putation demand from the path planning and mapping algorithms. Therefore, a
custom-designed navigation algorithm was designed for autonomous stigmergic
navigation and obstacle avoidance. A detailed explanation of this algorithm will
be shown in chapter 3.

2.3.3 Conclusions
This final version of the UAV design in this study was able to reach both goals,
which consist of achieving precise positioning flight navigation and having task-
sufficient flight time while carrying the same heavy payload in previous designs.
However, this came at the cost of deducting the ability to create a costmap of the
observed surrounding environment and planning more complex paths and routes
around objects indoors.

38

“output” — 2023/2/27 — 8:55 — page 39 — #57

Chapter 3

DESIGN OF A UAV FOR
AUTONOMOUS RFID BASED
INVENTORIES USING
STIGMERGY

3.1 Abstract

Unmanned aerial vehicles (UAVs) and radio frequency identification (RFID) tech-
nology are becoming very popular in the era of Industry 4.0, especially for retail,
logistics, and warehouse management. However, the autonomous navigation for
UAVs in indoor map-less environments while performing an inventory mission
is, to this day, an open issue for researchers. This article examines the method
of leveraging RFID technology with UAVs for the problem of the design of a
fully autonomous UAV used for inventory in indoor spaces. This work also pro-
poses a solution for increasing the performance of the autonomous exploration
of inventory zones using a UAV in unexplored warehouse spaces. The main idea
is to design an indoor UAV equipped with an onboard autonomous navigation
system called RFID-based stigmergic and obstacle avoidance navigation system
(RFID-SOAN). RFID-SOAN is composed of a computationally low cost obstacle
avoidance (OA) algorithm and a stigmergy-based path planning and navigation
algorithm. It uses the same RFID tags that retailers add to their products in a
warehouse for navigation purposes by using them as digital pheromones or envi-
ronmental clues. Using RFID-SOAN, the UAV computes its new path and direc-
tion of movement based on an RFID density-oriented attraction function, which
estimates the optimal path through sensing the density of previously unread RFID
tags in various directions relative to the pose of the UAV. We present the results

39

“output” — 2023/2/27 — 8:55 — page 40 — #58

of the tests of the proposed RFID-SOAN system in various scenarios. In these
scenarios, we replicate different typical warehouse layouts with different tag den-
sities, and we illustrate the performance of the RFID-SOAN by comparing it with
a dead reckoning navigation technique while taking inventory. We prove by the
experiments results that the proposed UAV manages to adequately estimate the
amount of time it needs to read up-to 99.33% of the RFID tags on its path while
exploring and navigating toward new zones of high populations of tags. We also
illustrate how the UAV manages to cover only the areas where RFID tags exist,
not the whole map, making it very efficient, compared to the traditional map/way-
points-based navigation.

Keywords: robotics; stigmergy; ROS; UAV; digital pheromones; navigation;
exploration; autonomous; inventory; warehouses; aerial navigation

3.2 Introduction

Industry 4.0 has paved the way for a world where smart factories will automate
and upgrade many processes through the use of some of the latest emerging tech-
nologies [A1]. Two of these important technologies are UAVs and RFID. UAVs
have evolved a great deal in the last several years in terms of technology (e.g., au-
topilots, sensors, power efficient motors, battery capacities, and sizes) [A2, A3],
and have reduced significantly in their cost. UAVs can help the automobile in-
dustry and in performing tedious tasks [A4, A5]. One of the important tasks is
performing inventory missions in warehouses. Another is exploring new inven-
tory zones in dynamic stock warehouses, which is an important factor for dynamic
inventory management (DIM). DIM allows the detection of the risk of stock-outs
and overstocks and therefore, respond to it by adjusting targets and sales projec-
tions [A6]. DIM helps reduce unnecessary shortages, improve sales, margins, and
inventory turns. Manual inventory needs the mobility of a lot of resources, espe-
cially in big warehouses belonging to big supply chains, where shelves can easily
reach heights of 10 m. This causes delays in inventory management due to the
time consumption of the task. Workers are also prone to injuries when performing
inventory management where products represented as RFID tags are located at
great heights. Furthermore, high costs are associated with manual inventory due
to the costs of the inventory workers and blocking warehouse activities during the
process. Many efforts have been made for automating the inventory process. We
will focus in this paper on a solution that exploits the mobility and the ability of
a UAV to carry RFID sensors. This enables the UAV to be a great candidate to
replace humans for the tasks of dynamic inventory in warehouses. Moreover, they
represent a great economic solution for the task, as well as the diminution of the

40

“output” — 2023/2/27 — 8:55 — page 41 — #59

time consumption and injury risks of the task. This paper also aims to mitigate the
human intervention that associates most conventional map-based inventory robots
which is needed to help create a reference map of the warehouse environment,
this is achieved by increasing the autonomy and ability of the UAV to navigate
in map-less indoor environments, exploring new inventory zones, and performing
an inventory mission. The study in this paper addresses the design of a UAV that
uses a navigation strategy based on strigmergy.

The basic idea of stigmergy is that traces left within an environment trigger
an action that stimulates the performance of a future action [A7, A8]. Robots
can benefit from using the concept of stigmergy. The conventional computational
paradigm of robotics typically involves sensing the surrounding environment, ana-
lyzing features, building or modifying the world model/map, processing this infor-
mation to find some sequence of actions that might lead to the success of a given
mission, then executing that action sequence one step at a time while updating the
world model/map and re-planning, if necessary, at any stage. The fit between stig-
mergy and behavior-based [A9] robots is excellent. It is the essence of stigmergy
that the consequences of behavior affect subsequent behavior. Behavior-based
robots cope well with unstructured dynamic environments and are inexpensive
[A10]. UAVs, if designed as behavior-based robots, can benefit tremendously
from stigmergy. In this paper, we introduce a UAV design that uses an RFID-
oriented stigmergy algorithm for navigation, which provides a solution for full
autonomy toward completing an inventory mission, doing so in unknown and un-
explored areas. The ability of the UAV to decide and plan its consecutive path
simply by following evidence and signs from the environment enables the UAV
to be more autonomous throughout the whole inventory mission. The proposed
RFID-SOAN only uses the existing RFID tags in a warehouse as input for navi-
gating and path planning. This paper is structured as follows. Section 3.3 presents
the state of the art. Section 3.4 is dedicated to the hardware design architecture.
Section 3.5 presents the RFID-SOAN algorithm. The results of the experiments
and simulations are described in Sections 3.6 and 3.7. Section 3.8 summarizes the
conclusions of this work, and Section 3.9 presents the future work.

3.3 Related Work
In the past, there has been a variety of research studying the exploitation of UGVs
with RFID technology for performing stock counting missions and taking a full
inventory of retail shops [A11, A12]. However, the fact that these inventory
robots are ground surface robots, means that they would perform poorly in big
warehouses where products are placed on very high shelves. For this reason, the
method of combining both technologies, RFID and UAVs, is gaining interest in

41

“output” — 2023/2/27 — 8:55 — page 42 — #60

logistics, retail, and other sectors. Research in [A13, A14], shows different appli-
cations on UAVs carrying RFID systems. Recently, research has shown a rising
interest in inventory task-oriented UAVs. This is due to the possibility of exploit-
ing the 3D plane and the UAVs 6 degrees of freedom. However, this technology is
still at its early stage, although some companies advertise solutions for the prob-
lem of an aerial inventory [A15, A16, A17]. A related study in [A18], discusses
the application of UAVs for the purpose of product scanning in inventory and
stock management using RFID in warehouses. Researchers from Samsung elec-
tronics [A19] have tried to solve the problems of robust navigation, stability, and
robust aerial inventory for warehouses. In [A20], researchers from GyeongSang
National University used UAVs on an inventory checking system based on RFID
technology in open storage yard. These platforms either still lack the autonomy
of the UAV in an indoor environment, or lack the ability to operate in unknown or
dynamic environments, where the UAV navigates without a reference map of the
environment.

Some research has been applied toward using stigmergy for increasing the au-
tonomy of a robot; this is explored in [A21, A22, A23]. In Ref. [A24], the authors
propose a solution for efficient supply chain management (SCM) by maintaining
an accurate and close to real-time inventory of items using an unmanned ground
vehicle (UGV). Their proposed algorithm uses the same RFID tags that retailers
add to their products, so they can guide the robot to navigate through a complete
stock counting task in the case of a dynamic inventory mission. This increases the
autonomy of the UGV using stigmergy. This study is used as a starting point for
our proposed navigation technique. Although inventory UGVs perform well in re-
tail shops with uniformed ground surfaces or operating in small sized warehouses,
these robots have constraints when it comes to operating in big warehouses where
shelves are too high to be read from the ground or in non-uniformed ground sur-
face warehouses. This is where we exploit the superiority of UAVs in such cases.
The proposed solution in this paper addresses big warehouses and environments
with tall shelves, where continuous inventory in dynamic environments is needed
and no prior map is given to the UAV for navigation. Integrating the algorithm
and the navigation system that is used in [A24] is too computationally expensive
for UAVs, due to the limited computational capacity of these small machines.
However, the design we propose can be considered an extension of the RFID
stigmergic navigation paradigm, but more specialized for small-scale UAVs or
behavioral-based robots.

42

“output” — 2023/2/27 — 8:55 — page 43 — #61

3.4 Hardware Design and Functionality
The UAV is expected to operate in indoor (GNSS-denied) environments, where
no prior information about the environment nor a map is provided to the UAV.
Therefore, the design of a UAV that can self-localize indoors without the help of a
reference map nor external sensors was a primary goal. The UAV is also expected
to carry a relatively big and heavy payload while being able to fly for a task suf-
ficient flight time duration. No such model that meets the intended requirements
was accessible in the market. Therefore, the design of a relatively cost-effective
custom UAV for such a task was needed. The UAV design, shown in Figure 3.1,
is composed of three hardware blocks: B1, B2, and B3.

Figure 3.1: Hardware block diagram of the UAV.

3.4.1 Main Flight System, B1
The first block is the main flight system, which consists of the hardware needed to
enable the UAV to fly and carry a heavy payload while maintaining a stable flight
for an amount of time that is necessary to complete the inventory task. There-
fore, a hexacopter frame layout with an efficient open-source autopilot (Pixhawk

43

“output” — 2023/2/27 — 8:55 — page 44 — #62

2.4.8) that is compatible to operate with a companion computer was chosen for
this model. B1 block is responsible for enabling the UAV to take off and hover
with some degree of stability, which means that most of the flight dynamics are
managed by the hardware in this block. The hardware includes an efficient high
speed and high torque brush-less motors (T-motors 750 kv), large pitch propellers
(15′′ × 4.5′′), and electronic speed controllers (ESCs) with 45 A of output current
capacity. The ESCs translate the received signal messages from the autopilot to
sufficient energy that is supplied to each motor.

3.4.2 Sensors and Processing Units, B2
This block is responsible for adding intelligence to the contiguous flight system
block. Most inventory warehouses or retail shops are indoor spaces or GPS-denied
spaces. This led us to install a visual simultaneous localization and mapping (VS-
LAM) based camera (Realsense intel t265) to supply the autopilot with self local-
ization messages and act as a source of the odometry. Special adaptation was made
to infuse these messages into the autopilot, such as lowering the frequency rate of
input pose messages to the autopilot to avoid overflow and filtering outlier input
pose messages, resulting in an indoor guidance system for the UAV. This block
also enables the possibility to sense the environment of obstacles nearby through
a 3D-point-cloud depth proximity camera. All these sensor data, including the
data received from the RFID payload block (B3), are processed by the companion
computer (CC), which is a (Jetson Nano) single-board computer (SBC) that exists
on this block. The CC runs the RFID-SOAN algorithm. The output of this CC is
mainly the control signals in the form of the pose-goal or movement commands
to the autopilot.

3.4.3 RFID-Payload, B3
The third block consists of the RFID payload. It is composed of a light-weight
structure skeleton embedding the RFID-reader, a power converter/distributor cir-
cuit board (PDB), and a Keonn AdvanReader 160 [A25] RFID reader with four
output ports, each port connected to a Keonn Advantenna SP11 [A26] RFID an-
tenna placed each in a different orientation. This block provides all the RFID-
related data to other blocks, as needed. Figure 3.1 shows how these blocks inte-
grate with each other.

3.5 RFID-SOAN Workflow
The RFID-SOAN algorithm can be explained in two parts.

44

“output” — 2023/2/27 — 8:55 — page 45 — #63

3.5.1 Part 1: Passive OA System:

The designed UAV is expected to detect and avoid obstacles of the 3D plane in
its direction of movement. The UAV is equipped with a behavioral-based, low
computation-cost, costume-designed passive OA system. Its main objective is
to block any movement decisions toward the direction of an obstacle and al-
low movements toward the free-of-obstacles directions. An appropriate threshold
value, which refers to the relative distance d of the obstacle, is set to ensure the
safety of the UAV.

The input of the OA system is a stream of point cloud messages, which is
received directly from the 3D point cloud depth camera. This point cloud is rep-
resented as the matrix in Equation (3.1)

A =

a11 a12 a13 . . . a1n
...

...
...

ad1 ad2 ad3 . . . adn

 (3.1)

In this matrix, the value of each element aij is equal to the depth of a point
of space to the maximum depth that the sensor is able to read, dmax. Each point
has a position represented by the coordinates i and j (relative to the position of the
camera). If no point is detected at those coordinates, the value is equal to the max-
imum possible value. From this matrix, we transform the 3D space point cloud
into a 2D plane to reduce the complexity and computational cost of processing
the data, while maintaining the quality of the information extracted from those
data. This is achieved by taking the minimum value of each column, resulting in
a vector as shown in Equation (3.2).

L =
[
min

i
(ai1) min

i
(ai2) · · · min

i
(ain)

]
=[

l1 l2 · · · ln
] (3.2)

Then, we find the minimum value in L, as shown in Equation (3.3),

p = min
i
(li) (3.3)

If p < d, the OA system considers that an obstacle is in front of the drone as
shown in Figure 3.2.

45

“output” — 2023/2/27 — 8:55 — page 46 — #64

Figure 3.2: An illustration of the OA system parameters.

It is important to note that the UAV is designed to move only in the forward
x-axis direction (using +Pitch angle around the y-axis) and not in sideways y-
axis movements (using +-Roll angles around the x-axis), but it is able to rotate
CW and CCW (using +-Yaw angles around the z-axis). This designed navigation
scheme assures that the UAV covers the region ahead of it for obstacles at all
times. The OA system will continuously operate as a passive system and prevent
any forward movements in the presence of an object within d distance on the path
to the designated goal; however, the yaw movements around the z-axis (CW or
CCW rotations) are allowed to further scan for any obstacles in front of the UAV.

3.5.2 Part 2: The RFID Stigmergic Navigation Algorithm

The RFID protocol used by the reader is GEN2 session S0 [A27], where the RFID
tags in this session will constantly keep responding to the readers request signals
as long as they receive one from the reader. This indicates that all of the RFID
tags within the coverage range of the antennas will be continuously scanned while
the UAV is moving thus, increasing the chance of detection for all of the RFID
tags, especially for the tags that are in close range of the antenna.

46

“output” — 2023/2/27 — 8:55 — page 47 — #65

The algorithm’s inputs are the 4 sets of data after every finite period of time
∆t from each RFID antenna. Each set of data is composed of the sequence of
EPC codes from the RFID tags detected for the first time during this time interval,
from each antenna. It is worth mentioning that the RFID reader uses a technique
called time domain multiplexing (TDM). TDM is a method of transmitting and
receiving independent signals over a common signal path by means of synchro-
nized switches at each end of the transmission line so that each signal appears
on the line only a fraction of the time in an alternating pattern. This reduces the
possibility of cross interference or reading the same RFID tag at the same exact
discrete time by two different antennas.

The algorithm will compute a goal message for the UAV, which consists of a
target pose message, using the direction of maximum radiation and the number of
newly detected RFID tags of each antenna in the time interval, so that the UAV
attempts to move to the specified position/orientation in the world following the
maximum gradient of newly detected RFID tags.

After computing a goal pose message, the algorithm will request the status
of the path toward that goal using the passive OA system. If no obstacle within
d distance in the goal direction is detected, the CC will output command signals
for the UAV to move in that direction. However, it will still detect if dynamic
obstacles are in its path while moving. After reaching the goal, the same process
is repeated again. The block diagram in Figure 3.3 illustrates the RFID-SOAN
algorithm used by the UAV.

The new goal pose message/decision ψnew is computed as follows. If d⃗1, d⃗2,
d⃗3, and d⃗4 are the following 2D direction vectors shown in Equation (3.4):

d⃗1 = (1, 0) d⃗2 = (0, 1) d⃗3 = (−1, 0) d⃗4 = (0,−1) (3.4)

and group into the direction matrix D shown in Equation (3.5):

D =

d⃗1

d⃗2

d⃗3

d⃗4

 (3.5)

Each of these vectors corresponds to the x, y coordinates of the direction of
maximum radiation of each antenna, relative to the front direction of the UAV.
Note that d⃗1 is the front direction. After a time ∆t of reading RFID tags, we
obtain a weights vector w⃗ = (w1, w2, w3, w4), which corresponds to the number
of newly detected RFID tags read by each of the RFID antennas during this time
interval, as shown in Table 3.1.

47

“output” — 2023/2/27 — 8:55 — page 48 — #66

Figure 3.3: RFID-SOAN navigation algorithm workflow and block diagram.

Table 3.1: Orientation vector and weight of each RFID antenna.

Antenna Dir. Vector Weight
Front d⃗1 w1

Right d⃗2 w2

Back d⃗3 w3

Left d⃗4 w4

We obtain a new vector V⃗ in Equation (3.6) as the normalized weighted aver-
age of the vectors:

V⃗ =
w⃗ ·D
|w⃗ ·D|

(3.6)

To obtain the rotation angle θ, we compute the angle between V and the front

48

“output” — 2023/2/27 — 8:55 — page 49 — #67

vector d⃗1 shown in Equation (3.7):

θ = arccos V⃗ · d⃗1 (3.7)

The new orientation of the drone ψnew is the previous obtained angle plus the
computed rotation angle θ shown in Equation (3.8):

ψnew = ψold + θ (3.8)

In case the UAV does not read new tags in ∆t, it will enter a loop of trying to
read new tags in n number of tries ntries set by the user. Once no new tags are
read or no sufficient power is left, the UAV will decide to land.

3.6 Experiments

In logistics, the warehouse product flow determines the overall productivity and
efficiency. The design of the warehouse layouts depends on various parameters,
such as the available space, product throughput needs, and available resources.
Some typical warehouse layouts considered include the U-shaped, I-shaped, and
L-shaped patterns of shelves. The scenarios that we use to run our experiments
use similar patterns of warehouse layouts.

In this section, we show the results of the experiments conducted to test the
UAV model and its ability of it to autonomously navigate in an unknown envi-
ronment toward completing an inventory mission using the RFID-SOAN system.
We also compare the inventory results obtained with the results obtained using
dead reckoning navigation on the same UAV, where the UAV will navigate with a
pre-determined set of positions forming a route or path.

To validate the results obtained with both navigation schemes, we first measure, as
a baseline, the total unique RFID tag readings with the UAV statically positioned
and not moving throughout a fixed time duration. This time is equivalent to the
duration needed to finish a mission while flying.

For all the experiments, the UAV is placed at a distance of 1.75 m from the shelves.
We chose this distance carefully considering two important parameters: first, the
necessary safety space margin required for the UAV to fly and maneuver as ex-
plained before and illustrated in Figure 3.2; secondly, at this distance, the radiation
pattern of the RFID reader is at maximum, and therefore, it will cover a larger area
of detection.

49

“output” — 2023/2/27 — 8:55 — page 50 — #68

3.6.1 Scenario 1: One Side, One Aisle, 330 RFID Tags

In Scenario 1, we distribute 330 tags on a 15 m long shelf. Tags are placed in 11
boxes of 30 tags each. These boxes are uniformly horizontally placed throughout
the shelf with a fixed altitude of almost 2 m as shown in Figure 3.4.

Figure 3.4: Lab setup of Scenario 1.

Experiment 1A: Scenario 1, UAV at a Static Position

In Experiment 1A, we want to establish a baseline that will be used to compare the
effect of the two different navigation strategies (dead reckoning and stigmergy) on
the inventory accuracy. For this, we first measure the total unique RFID tags in
the environment with the UAV placed in a static position at the starting point for a
fixed duration of time. This time should be equal to or greater than the total flight
time required for the UAV to complete an inventory mission navigating through
Scenario 1, making sure that no more tags can be read.

The results of the total tags read as a function of time is shown in Figure 3.5.
Only 21.81% of the tags are read in this experiment.

50

“output” — 2023/2/27 — 8:55 — page 51 — #69

Figure 3.5: Scenario 1, Experiment 1A: total RFID tag readings vs. time from a
static position equal to the starting point.

Experiment 1B: Scenario 1, UAV Using Dead Reckoning Navigation

In Experiment 1B, the UAV will navigate in Scenario 1 using dead reckoning in a
fixed predefined path alongside the shelf containing tags.
This experiment represents the conventional way of pursuing an inventory mis-
sion for inventory robots, which requires creating a previous map and establishing
a previous set of way-points. For conventional inventory robots, the RFID and the
navigation systems operate completely independently of each other.
We show the resulting data from this experiment in Figure 3.6a,b. We can visu-
alize the plots of RFID tag readings with time and the route of the UAV in Rviz.
In this experiment, 50.90% of the tags are read, compared to the baseline value of
21.81% in Experiment 1A, showing the value of navigation, and hence the need
for a UAV.

The symbols (TR, TL, F, TB, S, and L) in all the following Rviz illustrations refer
to the pose positions, orientations, and actions (Turn Right, Turn Left, Forward,
Turn Back, Start, and Land).

51

“output” — 2023/2/27 — 8:55 — page 52 — #70

(a) (b)

Figure 3.6: Scenario 1, Experiment 1B: path shown on Rviz and total RFID tag
readings vs. time when the UAV uses dead reckoning navigation. (a) UAV path
in Rviz. (b) Unique RFID tags read vs. time.

Experiment 1C: Scenario 1, UAV Using RFID-SOAN Navigation

In Experiment 1C, the UAV will navigate using the proposed RFID-SOAN algo-
rithm through Scenario 1. No prior information of the scenario, including a map
or way-points, is supplied to the UAV to aid navigation.
We observe from Figure 3.7a that the UAV was successful at navigating autonomously
through the path of new detected tags using the RFID-SOAN algorithm. We show
the resulting tags read from this experiment in Figure 3.7b, where we can see that
although the mission takes about twice as long as in Experiment 1B, 96.66% of
the tags are read, compared to the 50.90% in Experiment 1B, showing the value of
the stigmergy approach and the RFID-SOAN algorithm to increase the accuracy
of the inventory.
The reason for this time difference is because the UAV decided to turn multiple
times trying to explore and navigate toward the highest population density of tags,
but was faced with an obstacle each time as shown in Figure 3.7a. The UAV re-

52

“output” — 2023/2/27 — 8:55 — page 53 — #71

mains facing the direction of the obstacle if it is still able to read new tags. This
ensures that all tags are read before leaving to a new target goal autonomously.

(a) (b)

Figure 3.7: Scenario 1, Experiment 1C: path shown on Rviz and total RFID tag
readings vs. time when the UAV uses RFID-SOAN navigation. (a) UAV path in
Rviz. (b) Unique RFID tags read vs. time.

3.6.2 Scenario 2: Two Sides, One Aisle, 330 Tags

In Scenario 2, we increase the complexity of the environment by placing fixtures
on both sides of the aisle as shown in Figure 3.8a, so the UAV will have to nav-
igate through this confined path between two fixtures simulating a close to a real
warehouse environment.

53

“output” — 2023/2/27 — 8:55 — page 54 — #72

(a) Top view of scenario 2.

Figure 3.8: Lab setup of Scenario 2.

Experiment 2A: Scenario 2, UAV at a static position

In Experiment 2A, the results of the total tags read as a function of time in Ex-
periment 2A are shown in Figure 3.9. Only 33.33% of the tags are read in this
experiment.

Figure 3.9: Scenario 2, Experiment 2A: total RFID tag readings vs. time from a
static position equal to the starting point.

54

“output” — 2023/2/27 — 8:55 — page 55 — #73

Experiment 2B: Scenario 2, UAV Using Dead Reckoning Navigation

In Experiment 2B, we show the resulting data from this experiment in Figure
3.10a,b, where we can visualize the plot of RFID tag readings with the time and
route of the UAV in Rviz. In this experiment, 48.78% of the tags are read, com-
pared to the baseline value of 33.33% in Experiment 2A.

(a) (b)

Figure 3.10: Scenario 2, Experiment 2B: path shown on Rviz and total RFID tag
readings vs. time when the UAV uses Dead Reckoning navigation. (a) UAV path
in Rviz. (b) Unique RFID tags read vs. time.

Experiment 2C: Scenario 2, UAV Using RFID-SOAN Navigation

In Experiment 2C, we observe from Figure 3.11a, that the UAV successfully nav-
igated and explored autonomously the path where the RFID tags were, using the
RFID-SOAN algorithm without having any prior information of the environment
nor human intervention. We show the RFID tag readings from this experiment in
Figure 3.11b. In this case, the mission takes only 2/3 longer than in Experiment
2B. In Experiment 2C, 97.27% of the tags are read, compared to the 48.78% in Ex-

55

“output” — 2023/2/27 — 8:55 — page 56 — #74

periment 2B, showing the value of the stigmergy approach and the RFID-SOAN
algorithm to increase the accuracy of the inventory.

(a) (b)

Figure 3.11: Scenario 2, Experiment 2C: path shown on Rviz and total RFID tag
readings vs. time when the UAV uses RFID-SOAN navigation. (a) UAV path in
Rviz. (b) Unique RFID tags read vs. time.

3.6.3 Scenario 3: Two Sides, One Aisle, 660 RFID Tags

For Scenario 3, we design a layout to simulate real warehouse aisles, where a
robot would have to navigate through aisles surrounding both of its sides with
higher RFID tag density. For a UAV, this increases considerably the complexity
of the mission, making the UAV navigate autonomously while avoiding obstacles
and performing an inventory mission. The goal also is to simulate and analyze the
designed UAV behavior in real-life warehouse environments. We increase the tag
density to 660 tags, as we can see in Figure 3.12.

56

“output” — 2023/2/27 — 8:55 — page 57 — #75

Figure 3.12: Lab setup of Scenario 3.

Experiment 3A: Scenario 3, UAV at a Static Position

In Experiment 3A, the results of the total tags read as a function of time are shown
in Figure 3.13. Only 23.78% of the RFID tags are detected in this experiment.

Figure 3.13: Scenario 3, Experiment 3A: total RFID tag readings vs. time from a
static position equal to the starting point.

57

“output” — 2023/2/27 — 8:55 — page 58 — #76

Experiment 3B: Scenario 3, UAV Using Dead Reckoning Navigation

In Experiment 3B, we show the resulting data from this experiment in Figure 3.14,
where we can visualize the plot of RFID tag readings with time. In this experi-
ment, 61.81% of the tags are detected, compared to the baseline value of 23.78%
in Experiment 3A.

Figure 3.14: Scenario 3, Experiment 3B: total RFID tag readings vs. time when
the UAV uses dead reckoning navigation.

Experiment 3C: Scenario 3 UAV Using RFID-SOAN Navigation

In Experiment 3C, we show the resulting tags read from this experiment in Fig-
ure 3.15, where we can see that in this case, the mission takes about four times
as long as in Experiment 3B, which is because the UAV stayed hovering, oriented
toward the highest population of tags, and not leaving until a higher density of
new tags was detected in another direction and no obstacles lay on the way to-
wards the goal targeted position, which was done autonomously. We can also see
that the designed UAV managed to autonomously navigate and explore the map
layout where RFID tags exist while performing an inventory mission with no need
for a map/way-points nor human intervention. In Experiment 3C, 96.81% of the
tags are read, compared to 61.81% in Experiment 3B, showing the value of the
stigmergy approach and the RFID-SOAN algorithm to increase the accuracy of
the inventory.

58

“output” — 2023/2/27 — 8:55 — page 59 — #77

Figure 3.15: Scenario 3, Experiment 3C: total RFID tag readings vs. time when
the UAV uses RFID-SOAN navigation.

3.6.4 Scenario 4: Fixtures Forming Two Aisles with a T Shape,
Varying Number of Tags

For this final scenario, we try to prove that the RFID-SOAN algorithm can navi-
gate successfully between shelves and around them, meaning that it will navigate
through more complex paths, by using the RFID-SOAN algorithm. We design
a T-shaped layout, thus, simulating one of the typical warehouse environments
used, as we can see in Figure 3.16, where we show an image of the layout in
the lab. For this layout, we decided to perform three different experiments, each
with a different tag density (300, 480, 960). The tags are placed in the central
aisle, and in only one of the lateral aisles. This information is not known to the
RFID-SOAN algorithm, which must use the stigmergic approach to navigate and
explore the path of the lateral aisle that has RFID tags placed on its shelves, while
not choosing the path of the other lateral aisle with no RFID tags.

Experiment 4A: Scenario 4, RFID-SOAN Navigation, 300 RFID Tags

In Experiment 4A, 300 tags are uniformly distributed in a horizontal manner
throughout the T-shaped layout. Figure 3.17a shows how the UAV chose only
the lateral aisle where the tags were placed, ignoring the lateral aisle with no tags
in it. Figure 3.17b, shows how the UAV was able to read 97.33% of all the tags in

59

“output” — 2023/2/27 — 8:55 — page 60 — #78

Figure 3.16: Laboratory Chapter Strigmergy of Scenario 4.

the environment in about 300 s.

Experiment 4B: Scenario 4, RFID-SOAN Navigation, 480 RFID Tags

In Experiment 4B, 480 tags are uniformly distributed in a horizontal manner
throughout the T-shaped layout. Figure 3.18, shows how the UAV was able to
read 97.29% of all the tags in the environment in about 400 s.

Experiment 4C: Scenario 4, RFID-SOAN Navigation, 960 RFID Tags

In Experiment 4C, 960 tags are uniformly distributed in a horizontal manner
throughout the T-shaped layout. Figure 3.19, shows how the UAV was able to
read 97.18% of all the tags in the environment in about 700 s.

60

“output” — 2023/2/27 — 8:55 — page 61 — #79

(a) (b)

Figure 3.17: Scenario 4, Experiment 4A: path shown in Rviz and tags read vs.
time, with the UAV using RFID-SOAN navigation in a T-shaped environment in
which 300 RFID tags were placed. (a) UAV path in Rviz. (b) Unique RFID tag
readings.

Figure 3.19: Scenario 4, Experiment 4C: tags read vs. time, with the UAV using
RFID-SOAN navigation in a T-shaped environment in which 960 RFID tags were
placed.

61

“output” — 2023/2/27 — 8:55 — page 62 — #80

Figure 3.18: Scenario 4, Experiment 4B: tags read vs. time, with the UAV using
RFID-SOAN navigation in a T-shaped environment in which 480 RFID tags were
placed.

3.7 Scenario 5: Simulation
In order to test the RFID-SOAN navigation in longer and more complex map
layouts, experiments may become too difficult for a particular lab space, and a
particular maximum flight autonomy of the UAV. In these cases, using a simulator,
such as the Gazebo [A28] ROS [A29] simulation environment, may be the best
alternative. Gazebo can run the same ROS nodes that are run on the UAV, making
the simulation very realistic.

3.7.1 Experiment 5A: T-Shaped Map Layout
In Experiment 5A, we use an RFID-system plugin [A30] that is composed of two
sensor plugins: RFID-Tag plugin and RFID-Antenna plugin. The simulated UAV
will have the same hardware architecture that we used for the UAV in the lab,
and the simulated map layout will be exactly the same as the T-shaped layout that
we used for the lab experiments of Scenario 4, in which 300 tags were distributed
along the aisle that corresponds to the green line in the simulated layout in Gazebo,
shown in Figure 3.20a. The red squares illustrate the path where no RFID tags are
placed on the shelves. The green-colored squares on the grid represent the path
that the UAV should take, as RFID-tags are placed and distributed along that path.
Finally, a group of RFID-tags is associated with each big grey transparent box in
the simulation. Figure 3.20b shows the Rviz path that the UAV took, which cor-

62

“output” — 2023/2/27 — 8:55 — page 63 — #81

responds to the correct path following and considering the direction of the unique
RFID tag density. Figure 3.21 shows the read tags during the whole mission. We
observe that, in the simulation, the UAV read about 99.33% of the tags in about
600 s, compared to 97.33% of the tags in 400 s in Experiment 4A (Figure 3.18),
which is in reasonable agreement given the complexity of the environment.

(a)

(b)

Figure 3.20: Scenario S1: T-shaped layout and path followed by the UAV. (a) Top
view of the simulation layout. (b) UAV chosen path in Rviz.

63

“output” — 2023/2/27 — 8:55 — page 64 — #82

Figure 3.21: Scenario S1: tags read vs. time, with the UAV using RFID-SOAN
navigation in a T-shaped environment in which 300 RFID tags were placed.

3.7.2 Experiment 5B: Square Shape Map Layout

In Experiment 5B, we test the map-less navigation and exploration feature of the
RFID-SOAN algorithm and the inventory performance in a more complex envi-
ronment. A square-shaped map layout is used with a much higher population
density of tags placed on shelves with very high altitude (6 m) as shown in Fig-
ure 3.22, thus simulating close to real-life warehouse environments, where using
a UAV can replace humans performing highly risky tasks. A total of 1700 tags are
distributed along the aisle that corresponds to the green line in the simulated lay-
out in Gazebo, shown in Figure 3.23a. Figure 3.23b shows the route that the UAV
chose in Rviz. From Figure 3.24 we observe that the UAV read about 96.41% of
the tags in about 1300 s, which shows the performance robustness the proposed
algorithm, which was able to operate regardless of the tag density and complexity
of the environment toward exploring unknown environments by using the existing
RFID tags that represent products in warehouses as environmental clues.

64

“output” — 2023/2/27 — 8:55 — page 65 — #83

Figure 3.22: Experiment 5B: A gazebo illustration showing the height of a fixture
shelve in the square shape map layout.

Table 3.2: Illustrates the results of all the experiments conducted with the UAV
using the RFID-SOAN algorithm.

Experiment Map-Layout Num. Tags in Map RFID Path Exploration Read Tags
1C 1-side/1-isle 330 Successful 96.66%
2C 2-sides/1-isle 330 Successful 97.27%
3C 2-sides/1-isle 660 Successful 96.81%
4A T-shape 300 Successful 97.33%
4B T-shape 480 Successful 97.29%
4C T-shape 960 Successful 97.18%
5A T-shape 300 Successful 99.33%
5B Square-shape 1700 Successful 96.41%

From Table 3.2, we observe that the designed UAV using the RFID-SOAN
algorithm was successful in exploring the correct path where RFID tags exist and
not navigating in paths where no RFID tags exist in all of the presented scenar-
ios, doing so without using a reference map or having prior knowledge of the
environment.

65

“output” — 2023/2/27 — 8:55 — page 66 — #84

(a)

(b)

Figure 3.23: Experiment 5A: T-shaped layout and path followed by the UAV. (a)
UAV chosen path in Rviz. (b) Side view of the simulation layout.

3.8 Conclusions

A solution design of a UAV performing dynamic inventory and warehouse explo-
ration in map-less environments autonomously for Industry 4.0 was proposed in
this paper. The future goal is to substitute humans performing risky inventory in

66

“output” — 2023/2/27 — 8:55 — page 67 — #85

Figure 3.24: Experiment 5B: tags read vs. time, with the UAV using RFID-SOAN
navigation in a square-shaped environment in which 1700 RFID tags were placed.

warehouses containing high shelves with an autonomous UAV. The system pro-
posed can be very useful for exploring RFID-zones in un-mapped or dynamic
storage type warehouses, where products are represented by RFID tags, doing
so with almost no human intervention, which substantially reduces the operation
cost.

Compared to dead reckoning navigation, RFID-SOAN has the distinctive ad-
vantage that it does not require any prior knowledge of the environment, nor the
need for a map, or establishing a set of predefined way-points.

When left in an environment in which RFID tags are present, the UAV using
the RFID-SOAN algorithm will navigate exploring the environment toward the
direction in which more new tags are read, covering automatically the parts of the
environment in which RFID tags are present. If the distribution of tags changes,
the UAV will follow a different path, while dead reckoning would require redefin-
ing the way-points.

When compared to a baseline in which the UAV was static, and to dead reck-
oning navigation, RFID-SOAN consistently showed better inventory accuracy in
a reasonable time, reaching an accuracy above 96.66% in all conducted experi-
ments.

Compared to dead reckoning, RFID-SOAN will not waste scarce flight time
exploring areas devoid of RFID tags.

67

“A” — 2023/2/27 — 8:55 — page 68 — #86

The simplicity of use, the ability to inventory un-mapped environments, the
adaptability with respect to different and changing layouts, and the accuracy in
the core inventory task make the RFID-SOAN algorithm a much better navigation
alternative than dead reckoning for autonomous inventory UAVs.

The proposed UAV using RFID-SOAN only relies on its own sensors, which
means that it does not need modification of the environment or the placement of
external sensors for it to navigate autonomously. The sensors used are very cost
effective, making the UAV model relatively cheap compared to other proposed
models (e.g. in [A31]).

3.9 Future Work
i Extending the RFID-SOAN algorithm for 3D Navigation. Although the pro-

posed algorithm enables the UAV to read above 96.66% of RFID tags in the
scenarios presented, the tags in the ground truth were placed horizontally
within a fixed height. This makes it easy for the UAV to read most tags by
flying at a fixed altitude. The RFID-SOAN algorithm should be extended to
three dimensions, enabling the UAV to inventory tags at different heights.
Without this, inventories with tags at different heights must be approached
as consecutive 2D inventories at increasing heights. This may require in-
creasing the number of RFID antennas, with the consequent increase in cost
and/or decrease in autonomy.

ii Flight time is considered a major parameter for UAVs, due to the limited size
of the power source that they can carry. In order to increase this parameter
for the designed UAV, lighter material for antennas and more power efficient
RFID readers can be considered.

iii Robust indoor positioning. We are currently working on making the de-
signed UAV more robust in indoor navigation, using extended sensor fusion
to further assure accurate and stable obstacle avoidance while executing an
inventory mission.

68

“A” — 2023/2/27 — 8:55 — page 69 — #87

Chapter-3 References

[A1] Tiago M. Fernández-Caramés, Oscar Blanco-Novoa, Manuel Suárez-
Albela, and Paula Fraga-Lamas. A uav and blockchain-based system for in-
dustry 4.0 inventory and traceability applications. Proceedings, 4(1), 2019.

[A2] Eric Sholes. Evolution of a uav autonomy classification taxonomy. In 2007
IEEE Aerospace Conference, pages 1–16. IEEE, 2007.

[A3] Abdussalam AA Alajmi, Alexandru Vulpe, and Octavian Fratu. Uavs for
wi-fi receiver mapping and packet sniffing with antenna radiation pattern
diversity. Wireless Personal Communications, 92(1):297–313, 2017.

[A4] Audi Media Centre audi uses drones to locate vehicles at neckarsulm site.
https://www.audi-mediacenter.com/en/photos/detail/
audi-uses-drones-to-locate-vehicles-at-neckarsulm\
\-site-92519. Accessed: 2022.

[A5] Mark C Tatum and Junshan Liu. Unmanned aerial vehicles in the con-
struction industry. In Proceedings of the Unmanned Aircraft System Ap-
plications in Construction, Creative Construction Conference, Primosten,
Croatia, pages 19–22, 2017.

[A6] Li Chen and Erica L Plambeck. Dynamic inventory management with learn-
ing about the demand distribution and substitution probability. Manufactur-
ing & Service Operations Management, 10(2):236–256, 2008.

[A7] Francis Heylighen. Stigmergy as a universal coordination mechanism: com-
ponents, varieties and applications. Human Stigmergy: Theoretical Devel-
opments and New Applications; Springer: New York, NY, USA, 2015.

[A8] Zachary Mason. Programming with stigmergy: using swarms for construc-
tion. In ICAL 2003: Proceedings of the eighth international conference on
Artificial life, pages 371–374, 2003.

69

“A” — 2023/2/27 — 8:55 — page 70 — #88

[A9] Istvan Karsai. Decentralized control of construction behavior in paper
wasps: an overview of the stigmergy approach. Artificial Life, 5(2):117–
136, 1999.

[A10] Alex M. Andrew. Behavior-based robotics by ronald c. arkin, with a fore-
word by michael arbib, intelligent robots and autonomous agents series, mit
press, cambridge, mass., 1998, xiv 491 pp, isbn 0-262-01165-4 (£39.95;
hbk). Robotica, 17(2):229–235, 1999.

[A11] Marc Morenza-Cinos, Victor Casamayor-Pujol, Jordi Soler-Busquets,
Jos Luis Sanz, Roberto Guzm, and Rafael Pous. Development of an RFID
Inventory Robot (AdvanRobot), pages 387–417. Springer International Pub-
lishing, Cham, 2017.

[A12] Isaac Ehrenberg, Christian Floerkemeier, and Sanjay Sarma. Inventory
management with an rfid-equipped mobile robot. In 2007 IEEE Interna-
tional Conference on Automation Science and Engineering, pages 1020–
1026, 2007.

[A13] G Greco, C Lucianaz, S Bertoldo, and M Allegretti. A solution for mon-
itoring operations in harsh environment: A rfid reader for small uav. In
2015 international conference on electromagnetics in advanced applica-
tions (ICEAA), pages 859–862. IEEE, 2015.

[A14] Jian Zhang, Xiangyu Wang, Zhitao Yu, Yibo Lyu, Shiwen Mao, Senthilku-
mar CG Periaswamy, Justin Patton, and Xuyu Wang. Robust rfid based
6-dof localization for unmanned aerial vehicles. IEEE Access, 7:77348–
77361, 2019.

[A15] Eyesee: the drone allowing to automate inventory in warehouses. http:
//www.hardis-group.com. Accessed: 2016.

[A16] Airborne data collection. http://dronescan.co. Accessed: 2016.

[A17] The flying inventory assistant. http://www.fraunhofer.de. Ac-
cessed: 2016.

[A18] Pranay Jhunjhunwala, M. Shriya, and Elizabeth Rufus. Development of
hardware based inventory management system using uav and rfid. In 2019
International Conference on Vision Towards Emerging Trends in Communi-
cation and Networking (ViTECoN), pages 1–5, 2019.

70

“A” — 2023/2/27 — 8:55 — page 71 — #89

[A19] Woong Kwon, Jun Ho Park, Minsu Lee, Jongbeom Her, Sang-Hyeon Kim,
and Ja-Won Seo. Robust autonomous navigation of unmanned aerial ve-
hicles (uavs) for warehouses’ inventory application. IEEE Robotics and
Automation Letters, 5(1):243–249, 2019.

[A20] Sung Moon Bae, Kwan Hee Han, Chun Nam Cha, and Hwa Yong Lee.
Development of inventory checking system based on uav and rfid in open
storage yard. In 2016 International Conference on Information Science and
Security (ICISS), pages 1–2. IEEE, 2016.

[A21] Ioan Susnea, Grigore Vasiliu, Adrian Filipescu, Adriana Serbencu, and
Adrian Radaschin. Virtual pheromones to control mobile robots. a neural
network approach. In 2009 IEEE International Conference on Automation
and Logistics, pages 1962–1967, 2009.

[A22] Ali Abdul Khaliq. From Ants to Service Robots: an Exploration in
Stigmergy-Based Navigation Algorithms. PhD thesis, Örebro University,
2018.

[A23] Ali Abdul Khaliq and Alessandro Saffiotti. Stigmergy at work: Planning
and navigation for a service robot on an rfid floor. In 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1085–1092.
IEEE, 2015.

[A24] Victor Casamayor-Pujol, Marc Morenza-Cinos, Bernat Gastón, and Rafael
Pous. Autonomous stock counting based on a stigmergic algorithm for
multi-robot systems. Computers in Industry, 122:103259, 2020.

[A25] Keonn’s AdvanReader 160 keonn’s advanreader 160. https://
keonn.com/components-product/advanreader-160/. Ac-
cessed: 2022.

[A26] Keonn’s AdvantennaSP11 keonn’s advantennasp11. https://
keonn.com/components-product/advantenna-sp11/. Ac-
cessed: 2022.

[A27] GEN. 2 rfid protocol gen. 2. https://www.gs1.org/epc-rfid.
Accessed: 2022.

[A28] Nathan Koenig and Andrew Howard. Design and use paradigms for
gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS)(IEEE Cat.
No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.

71

“output” — 2023/2/27 — 8:55 — page 72 — #90

[A29] Anis Koubâa et al. Robot Operating System (ROS)., volume 1. Springer,
2017.

[A30] RFID Plugin abdussalam alajami, a. a., rafael pous, and guillem moreno.
(2022). rfid-sensor gazebo plugin. ros wiki. http://wiki.ros.org/
RFIDsensor_Gazebo_plugin. Accessed: 2022.

[A31] Marius Beul, David Droeschel, Matthias Nieuwenhuisen, Jan Quenzel,
Sebastian Houben, and Sven Behnke. Fast autonomous flight in ware-
houses for inventory applications. IEEE Robotics and Automation Letters,
3(4):3121–3128, 2018.

72

“output” — 2023/2/27 — 8:55 — page 73 — #91

3.10 Overall Conclusion and Future Work
The study presented in Chapter 3, which consists of the design of a UAV that is
able to perform an inventory task indoors and in map-less environments, took var-
ious phases to reach its goal and to obtain promising results. These phases started
initially by designing a UAV that tended to perform the task of taking an RFID-
based inventory, which meant various hardware needed to be tested to find the
optimum combination of sensors for the design configuration. As mentioned in
Chapter 2, various navigation algorithms were tested on the UAV measuring the
cost-effectiveness, the power efficiency, the computational cost, the robustness
and stability of navigation, the effect on flight time, the performance of taking
an inventory, and other important parameters that affect the UAV. Throughout the
optimization experiments, the UAV models suffered many crashes which made
the UAV un-flyable and out of service for repair. These crashes resulted in time
delays due to the shipping time of the parts and the repair time needed to repair
the UAV. Nevertheless, the crashes during the first phase of the study in this thesis
substantially increased the costs. This led us to find solutions to mitigate these
costs using simulation. ROS allows the integration with some powerful simula-
tion tools which allow to simulate robots and environment models with almost
exact accuracy. Gazebo simulation tool as mentioned before allows to simulate
robot models, sensors, and worlds graphically and even simulates the physical pa-
rameters and dynamics that incorporate these models. However, at the moment
of designing the UAV, there were no available tools to simulate RFID technology
with robotics. Therefore, a design of a plugin that simulates RFID sensors and can
be used with Gazebo, and is ROS-based was a logical path to take at this point of
the study. The motivation was to allow the vast robotics community to be able to
simulate accurately RFID technology with robotics, doing so by creating an open-
source tool and publishing it on the main wiki page for ROS. Chapter 4, discusses
an article on the design of a simulator tool that simulates RFID technology with
robotics.

73

“output” — 2023/2/27 — 8:55 — page 74 — #92

“output” — 2023/2/27 — 8:55 — page 75 — #93

Chapter 4

A DESIGN PLATFORM TO
SIMULATE RFID SYSTEMS FOR
ROBOTS

4.1 Abstract

Simulation, robotics, and Radio Frequency Identification (RFID) technology have
significant roles in the new industrial revolution and their applications are key
aspects of making Industry 4.0 a reality. Developing efficient use cases in Indus-
try 4.0 almost always requires accurate simulation tools to be used in the digital
world. The problem of simulating RFID readers for robotics in environments
where high populations of RFID tags exist is addressed in this paper. This pa-
per will discuss the design of an RFID system plugin based on Robot Operating
System (ROS) and Gazebo simulator and the probability-based model on which
the plugin is based. To assess the performance of the proposed system model, the
simulation results of the designed plugin are compared with experiments. We also
prove that the proposed simulator is flexible enough to be used on any robot plat-
form, including aerial and ground robots. We show the initial results of the sim-
ulation of having an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground
Vehicle (UGV) equipped with an RFID reader, navigating in an environment in
which RFID tags have been placed. The robots will be reading tags in different
map layouts using RFID antennas, with different orientations. We compare the
simulation and experimental results in terms of the total unique tag readings vs.
time, for various map-layouts. Finally, we show how this plugin can be used in
robotics research by using it to simulate a novel, RFID-based stigmergic naviga-
tion strategy. We illustrate, the accurate navigation of the UAV using the proposed
plugin.

75

“output” — 2023/2/27 — 8:55 — page 76 — #94

Keywords: Gazebo, Industry 4.0, Inventory, KEONN, Retail, RFID Plugin,
RFID Technology, Robotics, ROS, UAV

4.2 Introduction
Robotics and automation are quickly becoming one of the main success factor in
e-commerce and Industry 4.0. They have a very big impact on the world of logis-
tics. The number of multipurpose industrial robots developed and designed in the
Industry 4.0 for Europe alone has almost doubled since 2004 [B1]. An essential
aspect of Industry 4.0 is autonomous production, warehouse, and inventory man-
agement methods powered by robots that can complete tasks intelligently, with the
focus on safety, flexibility, versatility, cost effectiveness, and collaboration. With-
out the need to isolate its working area, its integration into human workspaces be-
comes more economical and productive, and opens up many possible applications
in the industry [B2]. Industry 4.0 technology intends among other goals to revolu-
tionize Inventory Management. New technologies are already transforming how
businesses is approaching inventory management. AI algorithms, IoT-powered
tracking systems and robots can optimize existing inventory management pro-
cesses and streamline business planning [B3]. Simulations have an important role
in Industry 4.0. It leverages real-time data to mirror the physical world in a vir-
tual model, which can include robots, products, humans, and entire warehouses.
This allows operators to test and optimize the environment and robot configu-
ration in the virtual world before deployment, thereby driving down setup costs
and increasing quality. It could also aid retail companies to evaluate the risks,
costs, implementation barriers, impact on operational performance, and roadmap
toward Industry 4.0 [B4]. For much of the robotics community, the Open-source
Gazebo [B5] robot simulator is a fundamental tool in the development of ground
and aerial robot applications for indoor and outdoor environments. The Gazebo
simulator allows users to extend its functionality with user-defined plugins. By
using an API, plugins have access to the simulation objects and data, can transmit
information via topics by using Protocol Buffer [B6] messages, and apply torques
and forces to objects in the simulation scenario. The plugins must be initialized
with a robot, sensor, or world model. For applications using ROS [B7], the robot
descriptions are specified in the SDF [B8] or URDF [B9] file formats.

Gazebo supports multiple interfaces, allowing users to interact programmati-
cally with the simulation, including C++, a custom network transport, and ROS
messaging.

The use of RFID technology with robotics has recently attracted a lot of at-
tention both in the academic community and in the industry [B10], especially in
logistics and retail ([B11], [B12], [B13], [B14]).

76

“output” — 2023/2/27 — 8:55 — page 77 — #95

In this paper, we propose a solution for the problem of simulating RFID read-
ers for robotics in environments where high populations of RFID tags exist. We
propose a design of an RFID system plugin based on ROS and the Gazebo sim-
ulator and the probability-based model on which the plugin is based. This paper
is structured as follows: Section 4.3, presents the state of the art. Section 4.4,
presents the explanation of a simplified, effective, and fairly accurate Probability
of Detection (PD) model on which the plugin is based. Section 4.5, presents the
architecture and model integration of the designed plugin in ROS. Section 4.6,
present the environment layouts and robots that were used to conduct the exper-
iments illustrated in this paper. The results of the experiments in the laboratory
and simulations are described in Sections 4.7 and 4.8. Section 4.9, summarizes
the conclusions of this work, and Section 4.10, presents the future work.

4.3 Related work
Simulating environments before deploying them when large quantities of RFID
sensors and robots are used saves a lot of time and cost. The simulation of these
environments helps understand the weaknesses of the designed layout before its
deployment in the physical world. Such environments can be warehouses, re-
tail shops „etc. Having a simulation platform that allows to test different types
of mobile robots not only helps to asses and optimize the environment, but also
can be used to validate the performance of these robots, the planning/navigation
algorithms/strategies, and the RFID-related algorithms in the presence of RFID
technology. Very few RFID simulators have been designed in the past. There has
been related work by other researchers in the RFID domain on the simulation of
RFID systems. Han et al. in [B15], developed a system model of UHF RFID with
a strong focus on the RF/analog design of the RFID reader. The model presented
by Han et al. models the signal generation in the reader to verify whether the
signal transmitted complies with the specified spectrum mask in the radio regula-
tions. There is also a detailed model of the receiver part of the RFID reader that
further analyses the effect of transmitter/receiver coupling. The wireless channel
in their simulator is modeled as the vector addition of various multipaths. Authors
in [B16], present an RFID simulation engine, called RFIDSim, which implements
the ISO 18000-6C communication protocol [B17] and supports path loss, fading,
backscatter, capture, and tag mobility models. They show that RFIDsim can be
used to simulate large populations featuring thousands of RFID tags. Their model
also simulates the deep fades that lead to frequent power losses of the passive
RFID tags by modeling the multipath effects statistically. RFIDSim aimed to fa-
cilitate the relative comparison of different transmission control strategies. An
approach in [B18], similar to RFIDsim, proposed a simulation platform that re-

77

“output” — 2023/2/27 — 8:55 — page 78 — #96

lies on a discrete event simulator, designed also to implement a part of the ISO
18000-6C communication protocol supporting path loss, backscatter, capture, and
tag mobility models. These models however are either too old, hard to adapt to
robotics simulation platforms, or no longer available, and more importantly fo-
cused on the low-level communication issues between tags and reader antennas.
Only a few of these models allow environment remodeling, design, or manipula-
tion in real time. Most are not open source. Finally, none of the simulators can
be easily adapted to work with robots or the tools that come with ROS. During
the development of the proposed simulator in this paper, a study was published
by the authors in [B19]. The authors propose a simulator that is implemented
as a Gazebo plugin integrated with ROS. A tag localization algorithm that uses
the phase unwrapping technique and hyperbolae intersection method employing
a reader antenna mounted on a mobile robot is used to estimate the position of
the tags deployed in the presented scenarios. The user needs to specify the fre-
quency, the range, the phase noise, and the gain of the tag antenna, as well as
physical parameters, like damping coefficient and friction. The outcomes of their
experiments showed realistic results for environments with a low number of tags
(up-to 10). However, it is not known how the model will behave when simulat-
ing real environments with large populations featuring thousands of RFID tags.
The illustrated experiments comparing the simulator’s performance with real life
do not test the behavior of the simulator using different types of robots, asses the
accuracy of RFID tag detection in different altitudes, nor was it tested in different
environments with different tag densities. Having large populations of RFID tags
in an environment introduce more parameters that may reduce the accuracy of the
model. Cross interference is another type of interference that can degrade the per-
formance of the simulator. It is most likely to occur between RFID systems and
WIFI or personal area networks (WPAN) such as Bluetooth but only when devices
share common or adjacent frequency bands within the environment. In [B20], au-
thors propose an interference avoidance scheme that requires the knowledge of
the theoretical maximum collision time and collision probability between RFID
and WiFi/Bluetooth packets. This scheme generates an optimal channel based on
the current usage of the adjacent frequency channels thereby reducing the inter-
ference. We conclude from the above, that it is extremely complex to consider all
the parameters that affects the interrogated wave in a single algorithm, acquiring
an exact estimation of whether a tag is detected or not by a reader, especially in
environments where large populations of tags exist. In this paper, we introduce a
simulation tool that simulates RFID systems in Gazebo. This plugin uses a dif-
ferent approach than the previously mentioned models. The model does not aim
to estimate the detection of a single RFID tag. It rather estimates the probability
that the placed RFID tag can be detected or not considering various environment
and sensor parameters. This model unlike its counters is aimed to simulate dif-

78

“output” — 2023/2/27 — 8:55 — page 79 — #97

ferent types of robots in environments where hundreds or thousands of tags are to
be detected. This makes it ideal to simulate retail shops or big warehouses, where
autonomous inventory robots would need to be tested in such environments before
being deployed. The Gazebo environment is a very useful simulation tool for the
broad audience in the robotics community, however, it is computationally costly
and demands high system specification requirements. Complicated environments
where large quantities of RFID tags (hundreds to thousands) are required to be
detected, spawned, and managed can be very difficult to simulate. It may require
special and expensive machines to be able to run the environment using the sim-
ulators discussed above. Due to the simplicity of the proposed plugin, it enables
a large population of RFID tags to be simulated within the environment. In or-
der for the plugin to work properly, a calibration phase to adapt the model to the
environment is required, considering and encapsulating in a simplified manner
most characteristics and interference parameters in the environment that are hard
to consider. In this study, we run also multiple experiments comparing and vali-
dating the performance of the simulator in different laboratory environments. The
proposed plugin is not designed to work for a specific sensor or a specific manu-
facturer. It is designed to be general for any RFID reader and with any robot in
any environment. It is aimed to reach the broad audience of the robotics commu-
nity; therefore, it is Open Source, and already published [B21] in the main ROS
Wiki, website for ROS platform users, with about 370 downloads in the month of
the submission of this paper.

4.4 The proposed RFID system model

4.4.1 Model Overview

The proposed model is based on estimating a PD for each tag by each RFID
reader antenna. This probability depends on the relative position and orientation
of the tag with respect to the antenna, so it must be recalculated every time this
relative position changes, as the robot moves. The goal of the model is not to
estimate whether a specific tag is read or not, but to estimate how many tags will
be read from a given constellation of tags. When we compare with experiments,
we will not compare tags on an individual basis, but we will compare whether
the simulation and the experiment have read approximately the same number of
tags, and at a similar rate (tags read per second), which is the way accuracy is
calculated in RFID deployments.

The PD is defined for each tag-antenna pair as a function of 6 arguments.
The first 3 are the distance and two angle coordinates of the tag with respect to
antenna position and its direction of maximum radiation: R, θH , and θV , which in

79

“output” — 2023/2/27 — 8:55 — page 80 — #98

Gazebo are the representation of the transforms between the sensor-frames [B22]
"RFID-Antenna" and "RFID-Tag", which are automatically calculated by ROS.

The remaining 3 parameters are constants that depend on the particular RFID
system used and its RFID settings. These parameters areR0, the distance at which
half of the tags can be read during a specific duration of time, and the antenna
beam widths in the horizontal and vertical planes, ∆θH and ∆θV . R0 depends
mostly on the Equivalent Isotropic Radiated Power (EIRP) which is defined as
the product of the conducted power (Pin) and the antenna gain (Gt), EIRP =
Pin · Gt, as well as the sensitivity of the tags. ∆θH and ∆θV depend on the
particular reader antenna used in the system. These 3 parameters must be supplied
by the user of the plugin. The antenna beam-widths are normally found in the data
sheet of the antenna used in the system, and R0 must be adjusted by calibrating
the simulation against some experiments.

R0 is defined so that when R = R0 and θH = θV = 0 the probability of
detection is PD = 0.5. At other distances and angles, PD is calculated using the
antenna pattern based on the beam-widths, and the 1/R2 decay of surface power
density.

IncreasingR0 (by increasing theEIRP , the gain of the reader antenna, and/or
the sensitivity of the tags), will allow the antenna to detect distant tags with higher
probability while decreasing it will tend to allow only the detection of tags at
shorter distances. On the other hand, using antennas with wider beam-widths will
allow the antenna to detect tags at wider angles from the front direction of the
antenna.

4.4.2 Model Definition
An antenna’s radiation pattern describes how the antenna radiates/receives energy
into/from all directions in space, and is three-dimensional. In the model, we ap-
proximate the normalized (maximum value of 1) radiation pattern as the function
D0(θH , θV ,∆θH ,∆θV) in Eq. 4.1.

D0(θH , θV ,∆θH ,∆θV) ={
cos2

(
π
2
· θH
∆θH

)
· cos2

(
π
2
· θV
∆θV

)
if θH and θV ≤ π

2

0 if θH or θV > π
2

(4.1)

Note that:

• D0(0, 0,∆θH ,∆θV) = 1

• D0(±∆θH/2, 0,∆θH ,∆θV) =
1
2

80

“output” — 2023/2/27 — 8:55 — page 81 — #99

• D0(0,±∆θV /2,∆θH ,∆θV) =
1
2

• D0(±∆θH/2,±∆θV /2,∆θH ,∆θV) =
1
4

This approximation is valid for antennas with a well-defined main lobe and
considers any radiation in the back hemisphere as negligible.

Approximating the tag antenna as isotropic, and neglecting any multipath in-
terference, the received power by the antenna is proportional to the reader antenna
directivity and to 1

R2 , as shown in Eq. 4.2.

Prec(R,R0, θH , θV ,∆θH ,∆θV) ∝

D0(θH , θV ,∆θH ,∆θV) ·
R2

0

R2
(4.2)

Given that the probability of detection
pd(R,R0, θH , θV ,∆θH ,∆θV) must be defined so that:

• pd(0, R0, 0, 0,∆θH ,∆θV) = 1

• pd(R0, R0, 0, 0,∆θH ,∆θV) =
1
2

• pd(∞, R0, 0, 0,∆θH ,∆θV) = 0

We arbitrarily define it as:

pd(R,R0, θH , θV ,∆θH ,∆θV) =

B(x) =
2

1 + 3
√
x

(4.3)

where x is always positive, and is defined as:

x =
Prec(R0, R0, 0, 0,∆θH ,∆θV)

Prec(R,R0, θH , θV ,∆θH ,∆θV)

=
1

D0(θH , θV ,∆θH ,∆θV) · R2
0

R2

(4.4)

Any other smooth function B(x) so that B(0) = 1, B(1) = 1
2
, and B(∞) = 0

will give very similar results (e.g, B(x) = 2

1+3x2
, B(x) = 2−

√
x, B(x) = 2−x2),

but Eq. 4.4 has shown the best results when compared with experiment.
Fig. 4.1, shows a 3D visualization of the PD function using different values

for each parameter.

81

“output” — 2023/2/27 — 8:55 — page 82 — #100

(a) R0 = 1.2, ∆θV = ∆θH = π
2 (b) R0 = 3.0, ∆θV = ∆θH = π

2

(c) R0 = 1.2, ∆θH = π, ∆θV =
π
2

(d) R0 = 1.2, ∆θH = π
2 , ∆θV =

π

Figure 4.1: PD for various parameter sets.

4.5 RFID System Plugin Architecture
The RFID system Gazebo plugin is composed of two independent plugins: the
RFID-Tag plugin and the RFID-Antenna plugin. Both plugins are called from an
SDF model file. Depending on the application scenario, they can be attached to
the robot SDF model, or the world model, which represents the environment in
Gazebo.

4.5.1 RFID Tag plugin
As in real life, RFID tags are placed in the environment attached to products,
boxes, shelves, or any other objects. Each simulated RFID tag will be spawned
and represented as very small cubes. RFID tags will be spawned in groups, as-
sociated with box-like transparent objects. This object is referred to as a fixture.
The user will have the option to either load a costume map of fixtures or automat-
ically generates a semi costume map by adjusting some parameters. The costume
map is composed of a file that contains the fixture’s id and coordinates in the
map. The user can choose to load up to 10,000 fixtures and tags in an environ-
ment. The automatic map generator parameters are the number of fixtures, their

82

“output” — 2023/2/27 — 8:55 — page 83 — #101

height, their associated number of RFID tags, and the spawn range, which can
be accessed through the parameter list in the SDF file that Gazebo API permits.
The RFID-Tag plugin allows the graphical change of the fixture and tag model
designs. Real time manipulation of the fixtures and tags positions is allowed. The
spawned RFID tags will be connected to the odom_sim frame which represents
the map frame or the world in Gazebo.

4.5.2 RFID Antenna Plugin

Similar to the RFID-Tag plugin, the antenna model in the RFID-Antenna plugin
is spawned by loading its SDF model file. A ROS frame will be generated at the
same moment the antenna model is spawned in Gazebo, and the RFID antenna
child frame will be connected to a parent frame as defined by the user. In the case
of the robots used in our experiment, the antenna frames are directly connected
to the robot frame base_link. The RFID-Antenna plugin inherits the probability
model function, as explained in the PD model section. The PD requires the dis-
tance, azimuth, and co-elevation angles of each tag (R ,θH = π , θV) to produce
a probability of detection value. These parameters are provided by the direct pro-
cessing of relative transforms between the RFID antenna pose and the RFID tag
pose. This process is done in real time during the start of a mission. In Figs.
4.2, 4.3a, and 4.3b, we show the transform tree between the RFID tag, the RFID
antennas, the robot frame, the sensor frames, the odom, and the map-world frame.

Figure 4.2: Frame tree from RQT-ROS.

83

“output” — 2023/2/27 — 8:55 — page 84 — #102

(a) Gazebo illustration of an example scenario.

(b) Rviz illustration of an example scenario.

Figure 4.3: Example scenario shown in Gazebo and Rviz.

4.6 Environment Layouts and Robots Used IN The
Experiments

4.6.1 Robots used in the experiments

Unmanned Ground vehicle (UGV)

The pre-designed and patent UGV in [B23] is used. This UGV is used to carry the
RFID payload, and its hardware block diagram is shown in Fig. 4.4. The UGV
is designed to autonomously navigate within the given path in the intended map
layout. The RFID payload consists of a Keonn AdvanReader 160 [B24] RFID
reader having four RF ports, each port connected to a Keonn Advantenna SP11
[B25] RFID antenna placed each in a different orientation.

84

“output” — 2023/2/27 — 8:55 — page 85 — #103

Figure 4.4: Hardware block diagram of the UGV.

Unmanned Aired vehicle (UAV)

UAVs have evolved a great deal in the last several years in terms of technol-
ogy (e.g., autopilots, sensors, power efficient motors, battery capacities and sizes)
[B26, B27], enabling them to be used for different purposes and applications in-
cluding RFID-based inventory. In addition to the UGV, a custom-designed UAV
was built especially for the purpose of aerial based inventory, and to evaluate the
performance of the plugin compared to real laboratory environments. It is used
to carry the RFID payload for laboratory tests. The UAV is composed of 3 main
hardware blocks:

85

“output” — 2023/2/27 — 8:55 — page 86 — #104

1. Block 1 (B1): The Main flight system: The UAV was designed to navi-
gate indoors and to carry a heavy payload, therefore, a 6-motor UAV (hex-
acopter) frame was chosen. This chosen design layout enables a stable
flight in indoor spaces during a task-sufficient flight time. An efficient
open-source autopilot called (Pixhawk) that is compatible to operate with
a companion computer was used. This block is responsible for most physi-
cal and mechanical properties required for hovering and contains 6 motors,
6 propellers, and 6 electronic speed controllers (ESCs). The ESC’s main ob-
jective is to translate the signal received from the autopilot to energy from
the energy source and supply it to the motors. The energy source is com-
posed of a lithium polymer battery (LIPO) with the capacity of 8000mAh,
operating voltage 26V, and with high energy discharge rate.

2. Block 2 (B2): Sensors and Processing Units: Most inventory warehouses or
retail shops are indoor spaces or so-called GPS Denied Environments. This
led us to select a visual Simultaneous Localization and Mapping (SLAM)
based camera to supply the UAV with self-localization coordinates. Special
adaptation was made to infuse these coordinates into the autopilot, result-
ing in an indoor guidance system for the UAV. This part is responsible for
adding intelligence to the contiguous main flight system part. It also en-
ables the possibility to sense the environment and obstacles nearby through
a depth proximity camera. All these sensor data, including the data received
from the RFID-Payload, are processed by a companion computer (CC). The
CC will incorporate the navigation algorithm. This same algorithm will be
used for the simulation and laboratory experiments. The output of this CC
will be mainly the control signals in the form of pose-goal, or movement
commands to the autopilot.

3. Block 3 (B3): Payload: The UAV will carry the same payload as the UGV
but on the bottom of its structure rather than on top. It is composed of a
light-weight structure skeleton embedding the RFID-reader, the power con-
verter/distributor circuit board, the RFID-reader, and the 4 antennas. Each
antenna will be facing a different direction. This block provides all the
RFID-related data to other blocks if needed.

We can see its block diagram in Fig. 4.5.

86

“output” — 2023/2/27 — 8:55 — page 87 — #105

Figure 4.5: Hardware block diagram of the UAV.

4.6.2 Laboratory and Simulated Environments Layouts
In this section we present the scenarios used for both robots in simulation and
experiment:

Scenario 1: One-sided, uniformly-placed tags

In Scenario 1, 8 fixtures are placed at a fixed distance away from the robot’s path.
30 tags are placed within each fixture. Figs. 4.6 and 4.7 show the scenario map
layout in the laboratory and in simulation, each associated with both each robot:
the UGV and the UAV.

87

“output” — 2023/2/27 — 8:55 — page 88 — #106

(a) Laboratory setup.

(b) Simulation setup.

Figure 4.6: Laboratory and simulation setups of Scenario 1 with the UGV.

88

“output” — 2023/2/27 — 8:55 — page 89 — #107

(a) Laboratory setup.

(b) Simulation setup.

Figure 4.7: Laboratory and simulation setups of Scenario 1 with the UAV.

Scenario 2: Low-density uniformly-distributed tags in a square-shaped map
layout

The RFID system plugin would need to prove its performance and accuracy in
more complex environments, with different orientations of the tags with respect
to the antennas. Therefore, we designed a square-shaped map layout with 600
RFID tags in Scenario 2. The tags were placed uniformly on each side of the
square map, with some of the tags in the middle. The laboratory and Gazebo

89

“output” — 2023/2/27 — 8:55 — page 90 — #108

simulation setups for Scenario 2 are shown in Fig. 4.8.

(a) Laboratory setup.

(b) Simulation setup.

Figure 4.8: Laboratory and simulation setups of Scenario 2 with the UAV.

Scenario 3: Increased tag density, uniformly-distributed tags in a square-
shaped map layout

Scenario 3 was used to prove the performance and robustness of the RFID system
plugin in a higher-density situation. This was done by doubling the density of
tags in Scenario 2 to 1,200 tags, as shown in Fig. 4.9. This scenario also tests the

90

“output” — 2023/2/27 — 8:55 — page 91 — #109

performance of the plugin having to place tags in different positions on the z-axis.

(a) Laboratory setup.

(b) Simulation setup.

Figure 4.9: Laboratory and simulation setups of Scenario 3 with the UGV.

4.7 Comparison of Simulated and Experimental Re-
sults

For all the Experiments in these Scenarios, both robots will be tested with a con-
stant velocity of 1m/s. However, lower or higher velocities could be used. It is
important, to take into consideration the differences and the effects that the actual

91

“output” — 2023/2/27 — 8:55 — page 92 — #110

physical environment has on both robots as compared to the simulation. These
effects could be slight odometry or wheel misplacement errors due to the ground
surface for a UGV, to small displacements in the UAV position, while constantly
trying to stabilize itself in the air, this is due to the generated air turbulence from
the propellers and the quality of the localization messages from the visual SLAM
sensor.

Experiment 1. Scenario 1 With the UAV

In Experiment 1, we will use the UAV in Scenario 1 to test the performance of the
RFID system plugin. We compare the results obtained from the simulation with
the ones obtained from running the missions in the laboratory. We first place the
UAV at a defined starting position at a distance d from the fixtures. The UAV will
take off from that position and navigate in a straight line. We repeat these missions
for different values of the distance d. We run these missions with only the right
antenna active (the one facing the fixture). Fig. 4.10, illustrates the Experiment
1 setup. Figs. 4.11a and 4.11c, shows the simulation results at d = 1.75m and
d = 3.5m respectively. Whereas Figs. 4.11b and 4.11d, show the Lab results
at those distances. Figs. 4.12a and 4.12b, show plots that compare the RFID tag
readings vs. time in Experiment 1 in simulation and the in the laboratory, showing
a remarkable agreement both in the total number of tags read as well as in the rate
at which they are read.

Figure 4.10: Experiment 1: Scenario 1 with UAV placed at different distances
from the fixture with RFID tags.

92

“output” — 2023/2/27 — 8:55 — page 93 — #111

(a) Simulation: d = 1.75m. (b) Laboratory: d = 1.75m.

(c) Simulation: d = 3.5m. (d) Laboratory: d = 3.5m.

Figure 4.11: Experiment 1: Simulation and laboratory results.

93

“output” — 2023/2/27 — 8:55 — page 94 — #112

(a) d = 1.75m

(b) d = 3.5m

Figure 4.12: Experiment 1: Simulation vs. laboratory unique RFID tag readings.

Experiment 2. Scenario 1 With the UGV

In Experiment 2, we repeated Experiment 1 but using a UGV. The Simulation
results are shown in Figs. 4.13a and 4.13c, while Figs. 4.13b and 4.13d, shows
the results of Experiment 2 in the laboratory. Figs. 4.14a and 4.14b show the RFID
tag readings vs. time in Experiment 2 in simulation and the in the laboratory, again

94

“output” — 2023/2/27 — 8:55 — page 95 — #113

showing a remarkable agreement.

(a) Simulation: d = 1.75m. (b) Laboratory: d = 1.75m.

(c) Simulation: d = 3.5m. (d) Laboratory: d = 3.5m.

Figure 4.13: Experiment 2: Simulation and laboratory results.

95

“output” — 2023/2/27 — 8:55 — page 96 — #114

(a) d = 1.75m

(b) d = 3.5m.

Figure 4.14: Experiment 2: Simulation vs. laboratory unique RFID tag readings.

Experiment 3. Scenario 2 With the UAV

This experiment is designed to validate the plugin’s performance in a slightly
more complex environment. We compare the results obtained from the simula-
tion and the laboratory when the UAV is navigating throughout Scenario 2. Since
the scenario map layout is not a straight line as in Scenario 1, the effect of the

96

“output” — 2023/2/27 — 8:55 — page 97 — #115

orientation of the RFID antenna on the total number of unique RFID tags read is
more relevant. For this reason, we run Experiment 2 four times, and for each one
we activate only one of the four RFID antennas mounted on the UAV with differ-
ent orientations, as illustrated in Fig. 4.5. Figs. 4.15a, 4.15b, 4.15c, and 4.15d,
shows the obtained simulation and laboratory results for each antenna orientation,
validating the simulation model once again, in this more complex scenario.

(a) Front Antenna.

(b) Right Antenna.

97

“output” — 2023/2/27 — 8:55 — page 98 — #116

(c) Back Antenna.

(d) Left Antenna.

Figure 4.15: Experiment 3: Simulation vs. laboratory unique RFID tag readings.

Experiment 4. Scenario 2 With the UGV

In Experiment 4, we repeated Experiment 3, but with replacing the UAV with
the UGV. Figs. 4.16a, 4.16b, 4.16c, and 4.16d, illustrate the obtained simulation
vs. laboratory results for each antenna orientation. In this experiment, the agree-
ment between simulation and experiment is not as good, especially for the side

98

“output” — 2023/2/27 — 8:55 — page 99 — #117

antennas. The reason could be due to the difficulty of precisely navigating the
UGV within the path which relies only on the wheel odometry sensor for Dead
Reckoning navigation. The UGV was slightly closer to the right tags than the left
compared to the simulation. This can be noted from Figs. 4.16b and 4.16d, where
more tags are read by the right antenna compared to the left in the laboratory.

(a) Front Antenna.

(b) Right Antenna.

99

“output” — 2023/2/27 — 8:55 — page 100 — #118

(c) Back Antenna.

(d) Left Antenna.

Figure 4.16: Experiment 4: Simulation vs. laboratory unique RFID tag readings.

Experiment 5. Scenario 3 With the UAV

The goal of Experiment 5 is to test the performance of the RFID system plugin
when used in an environment with a higher density of tags and having tags and fix-
tures placed in different positions on the z-axis. We compare the obtained results
from the simulation and the laboratory, having the UAV navigating throughout

100

“output” — 2023/2/27 — 8:55 — page 101 — #119

Scenario 3. As in Experiment 4, we repeated Experiment 5 four times, each with
one of the four antennas active. We observe in Figs. 4.18a, 4.18b, 4.18c, and
4.18d, the results are in good agreement for all four antennas even though the tag
density was doubled. Figs. 4.17a, 4.17c, 4.17e, and 4.17g, illustrate the posi-
tion of the detected RFID tags in simulation, while Figs. 4.17b, 4.17d, 4.17f, and
4.17h, illustrate the position of the detected RFID tags in the laboratory, which
are also in very good agreement.

(a) Simulation: Front antenna. (b) Laboratory: Front antenna.

(c) Simulation: Right antenna. (d) Laboratory: Right antenna.

101

“output” — 2023/2/27 — 8:55 — page 102 — #120

(e) Simulation: Back antenna. (f) Laboratory: Back antenna.

(g) Simulation: Left antenna. (h) Laboratory: Left antenna.

Figure 4.17: Experiment 5: Position of the detected RFID tags in simulation and
in the laboratory.

102

“output” — 2023/2/27 — 8:55 — page 103 — #121

(a) Front Antenna.

(b) Right Antenna.

103

“output” — 2023/2/27 — 8:55 — page 104 — #122

(c) Back Antenna.

(d) Left Antenna.

Figure 4.18: Experiment 5: Simulation vs. laboratory unique RFID tag readings.

104

“output” — 2023/2/27 — 8:55 — page 105 — #123

Figure 4.19: Comparing laboratory vs. simulation UAV paths

We can notice in Figs. 4.17g and 4.17h, that with only the left antenna active
on the UAV, the majority of the detected unique RFID tags were located on the
edges of the map environment. On the other hand, in Figs. 4.17c, and 4.17d,
having only the right antenna active, we see that most of the detected tags were in
the fixtures placed in the middle. Some differences can be observed in particular
fixtures for other antennas, this is due to that the UAV navigation in the laboratory
is not as smooth as in the simulation. As noted before, the UAV in the laboratory
continuously tries to resist external drifting forces caused by turbulence generated
by the propellers and localization accuracy, these forces could not be precisely
simulated in Gazebo. The comparison of both paths of the UAV in the laboratory
and simulation environments can be seen in Fig. 4.19.

Experiment 6. Scenario 3 With the UGV

Finally, we repeated Experiment 5 but substituted the UAV with the UGV. The
results from Experiment 6, shown in Figs. 4.21a, 4.21b, 4.21c, and 4.21d, show
realistic and very good agreement with the exception of the right antenna. Figs.
4.20a, 4.20c, 4.20e, and 4.20g, illustrate the position of the detected RFID tags in
Gazebo, while Figs. 4.20b, 4.20d, 4.20f, and 4.20h, show the detected RFID tags
in the laboratory, again with realistic and good agreement.

105

“output” — 2023/2/27 — 8:55 — page 106 — #124

(a) Simulation: Front antenna. (b) Laboratory: Front antenna.

(c) Simulation: Right antenna. (d) Laboratory: Right antenna.

106

“output” — 2023/2/27 — 8:55 — page 107 — #125

(e) Simulation: Back antenna. (f) Laboratory: Back antenna.

(g) Simulation: Left antenna. (h) Laboratory: Left antenna.

Figure 4.20: Experiment 6: Position of the detected RFID tags in simulation and
in the laboratory.

107

“output” — 2023/2/27 — 8:55 — page 108 — #126

(a) Front Antenna.

(b) Right Antenna.

108

“output” — 2023/2/27 — 8:55 — page 109 — #127

(c) Back Antenna.

(d) Left Antenna.

Figure 4.21: Experiment 6: Simulation vs. laboratory unique RFID tag readings.

4.8 An Example of the Use of the Plugin in Robotics
Research: Stigmergic Navigation of a UAV

The ability of the RFID system plugin to simulate accurately the behavior of an
RFID system payload (reader and antennas) on board an operating mobile robot in

109

“output” — 2023/2/27 — 8:55 — page 110 — #128

an environment where RFID tags are present, enables it to be used in research that
involves RFID and Robotics technologies working together. For this application
scenario, we utilize the RFID system plugin to enable a UAV to navigate using
stigmergy [B28] to inventory a space using RFID technology. In this scenario, we
will have a UAV navigating autonomously through an environment where RFID
tags are present, but whose quantity and position are unknown. The used stigmer-
gic navigation technique consists of a robot navigating by choosing the direction
in which a higher number of tags are detected for the first time. At every step,
the UAV measures the number of new tags read by each of the four antennas and
follows the direction of the antenna which reads more unique tags. Research on
finding new UAV navigation strategies is expensive in time and money, and the
possibility to run simulations to validate the algorithms can speed up the process
considerably. But when RFID payloads are used, the simulation is only possible
if a simulation tool is available for the RFID system, such as the RFID system
plugin that we propose. For this simulation, 300 tags were uniformly placed in a
horizontal manner, throughout the T-shaped layout. The simulation and laboratory
setups are shown in Figs. 4.22a and 4.22b. Fig. 4.22c shows the path of the UAV
in simulation, and Fig. 4.22d shows that the UAV was able to read 283 tags out of
300 overall tags in the environment (94.33%). Robotics researchers interested in
using the RFID Gazebo plugin in their research can find it on the ROS wiki page
and repository [B21].

(a) Laboratory setup of the simulation Scenario of a T-shaped map layout.

110

“output” — 2023/2/27 — 8:55 — page 111 — #129

(b) UAV’s chosen path in Gazebo.

(c) UAV’s chosen path in rviz. (d) UAV’s total unique tags readings.

Figure 4.22: A simulation of a UAV using a Stigmergic based navigation in a
T-Shaped Map Layout.

4.9 Conclusions
In summary, this paper addresses the problem of simulating RFID systems, in-
cluding readers, antennas, and tags, being used by robots to navigate and perform

111

“B” — 2023/2/27 — 8:55 — page 112 — #130

other tasks, such as inventorying. The designed solution is composed of an easy to
use ROS-Gazebo plugin based on a simple but accurate probability model that re-
quires only 3 parameters from the user, only one of which must be calibrated (R0)
against measured results. The plugin was extensively tested by comparing simu-
lation and experimental results in 3 different scenarios of increasing complexity
and density of tags. In each of the three scenarios, an experiment was done with
both a UGV and a UAV. In all six experiments, the simulation and experimental
results were in enough agreement to use this simulation tool in robotics involving
RFID sensors.

The plugin allows to simulate environments before deploying them especially
when large quantities of RFID sensors and robots are needed to be used, which
saves a lot of time and cost. The proposed plugin through simulation of these
environments helps users understand the weaknesses of the designed layout before
its deployment in the physical world. Such environments can be warehouses, retail
shops „etc. The plugin allows robotics researchers to simulate environments in
which robots and RFID technology interact for various applications. In summary,
it is a powerful tool for researchers that use RFID technology to improve robots
in any sort of manner. However, an extra layer of statistically measuring R0 by
the user is needed for the plugin to work as intended. The entire neglect of the
back lobe and the consideration of the tag orientation is also considered a minor
limitation for this version. The following section will briefly explain the future
improvements to this plugin.

4.10 Future Work
There are several ways in which the accuracy of the Gazebo plugin could be im-
proved:

1. Considering the pattern and orientation of the RFID tag antennas.

2. Using the actual radiation diagram of the reader antennas instead of approx-
imating it based on the beam widths.

3. Automatizing the calibration of R0 measurement, so that the users of the
plugin do not have to define calibration procedures on their own.

These, together with improved documentation and examples of use will be the
future work related to this Gazebo plugin.

112

“B” — 2023/2/27 — 8:55 — page 113 — #131

Chapter-4 References

[B1] Roland Berger Strategy Consultants. New industrial revolution: How eu-
rope will succeed. international conference the next industrial revolution
manufacturing and society in the xxi century. Industry 4.0, 01 2014.

[B2] Mohd Aiman Kamarul Bahrin, Mohd Fauzi Othman, Nor Hayati Nor Azli,
and Muhamad Farihin Talib. Industry 4.0: A review on industrial automa-
tion and robotic. Jurnal Teknologi, 78(6-13), Jun. 2016.

[B3] Xue-Ming Yuan. Impact of industry 4.0 on inventory systems and opti-
mization. In Tamás Bányai and Antonella Petrilloand Fabio De Felice,
editors, Industry 4.0, chapter 3. IntechOpen, Rijeka, 2020.

[B4] William de Paula Ferreira, Fabiano Armellini, and Luis Antonio De Santa-
Eulalia. Simulation in industry 4.0: A state-of-the-art review. Computers
& Industrial Engineering, 149:106868, 2020.

[B5] Lenka Pitonakova, Manuel Giuliani, Anthony Pipe, and Alan Winfield.
Feature and performance comparison of the v-rep, gazebo and argos robot
simulators. In Manuel Giuliani, Tareq Assaf, and Maria Elena Giannaccini,
editors, Towards Autonomous Robotic Systems, pages 357–368, Cham,
2018. Springer International Publishing.

[B6] Protocol buffer for topics, ros. https://developers.google.
com/protocol-buffers/docs/overview. Accessed: 2021-10-
29.

[B7] Ron Mittler. Ros are good. Trends in plant science, 22(1):11–19, 2017.

[B8] SDF sdformat base element description. http://sdformat.org/
spec. Accessed: 2021.

[B9] Urdf format, gazebo ros wiki. http://wiki.ros.org/urdf. Ac-
cessed: 2021.

113

“B” — 2023/2/27 — 8:55 — page 114 — #132

[B10] Paolo Mezzanotte, Valentina Palazzi, Federico Alimenti, and Luca Roselli.
Innovative rfid sensors for internet of things applications. IEEE Journal of
Microwaves, 1(1):55–65, 2021.

[B11] Marc Morenza-Cinos, Victor Casamayor-Pujol, and Rafael Pous. Stock
visibility for retail using an rfid robot. International Journal of Physical
Distribution & Logistics Management, 2019.

[B12] Marc Morenza-Cinos, Victor Casamayor-Pujol, Jordi Soler-Busquets,
José Luis Sanz, Roberto Guzmán, and Rafael Pous. Development of an
RFID Inventory Robot (AdvanRobot), pages 387–417. Springer Interna-
tional Publishing, Cham, 2017.

[B13] Artur Khazetdinov, Andrey Aleksandrov, Aufar Zakiev, Evgeni Magid, and
Kuo-Hsien Hsia. Rfid-based warehouse management system prototyping
using a heterogeneous team of robots. 08 2020.

[B14] Riccardo Polvara, Manuel Fernandez-Carmona, Gerhard Neumann, and
Marc Hanheide. Next-best-sense: A multi-criteria robotic exploration
strategy for rfid tags discovery. IEEE Robotics and Automation Letters,
5(3):4477–4484, 2020.

[B15] Yifeng Han, Qiang Li, and Hao Min. System modeling and simulation of
rfid. Auto-ID Lab. White Paper, 01 2005.

[B16] Christian Floerkemeier and Sanjay Sarma. Rfidsim - a physical and logical
layer simulation engine for passive rfid. Automation Science and Engineer-
ing, IEEE Transactions on, 6:33 – 43, 02 2009.

[B17] Daniel Dobkin. The rf in RFID: uhf RFID in practice. Newnes, 2012.

[B18] Tiancheng Zhang, Yifang Yin, Dejun Yue, Qian Ma, and Ge Yu. A sim-
ulation platform for rfid application deployment supporting multiple sce-
narios. In 2012 Eighth International Conference on Computational Intel-
ligence and Security, pages 563–567. IEEE, 2012.

[B19] Salvatore D’Avella, Matteo Unetti, and Paolo Tripicchio. Rfid gazebo-
based simulator with rssi and phase signals for uhf tags localization and
tracking. IEEE Access, 10:22150–22160, 2022.

[B20] Chen Chi, T. M. a frequency hopping method for spatial rfid/wifi/bluetooth
scheduling in agricultural iot. Wireless Netw, 25:805–817, 2019.

114

“output” — 2023/2/27 — 8:55 — page 115 — #133

[B21] RFID Plugin abdussalam-alajami, rafael-pous, and guillem-moreno. rfid-
sensor gazebo plugin description and repository in ros wiki. http:
//wiki.ros.org/RFIDsensor_Gazebo_plugin. Accessed:
2022.

[B22] Ros transforms and frames frames and transform description. http://
sdformat.org/spec. Accessed: 2020.

[B23] Victor Casamayor-Pujol, Marc Morenza-Cinos, Bernat Gastón, and Rafael
Pous. Autonomous stock counting based on a stigmergic algorithm for
multi-robot systems. Computers in Industry, 122:103259, 2020.

[B24] Keonn’s AdvanReader 160 keonn’s advanreader 160. https://
keonn.com/components-product/advanreader-160/. Ac-
cessed: 2022.

[B25] Keonn’s AdvantennaSP11 keonn’s advantennasp11. https://keonn.
com/components-product/advantenna-sp11/. Accessed:
2022.

[B26] Eric Sholes. Evolution of a uav autonomy classification taxonomy. In 2007
IEEE Aerospace Conference, pages 1–16. IEEE, 2007.

[B27] Abdussalam AA Alajmi, Alexandru Vulpe, and Octavian Fratu. Uavs for
wi-fi receiver mapping and packet sniffing with antenna radiation pattern
diversity. Wireless Personal Communications, 92(1):297–313, 2017.

[B28] Abdussalam A. Alajami, Guillem Moreno, and Rafael Pous. Design of
a uav for autonomous rfid-based dynamic inventories using stigmergy for
mapless indoor environments. Drones, 6(8), 2022.

115

“output” — 2023/2/27 — 8:55 — page 116 — #134

4.11 Overall Conclusion and Future Work
The study presented in Chapter 3, exposes the benefits that a UAV has on perform-
ing autonomous inventory missions in indoor environments. We can clearly con-
clude the advantages that a UAV has over a UGV for such tasks. With the increas-
ing requirements of UAVs performing inventory tasks for autonomy, intelligence,
and multitasking, the efficiency and intelligence level of UAV single-machine op-
erations are struggling to meet the requirements of such task applications. For
example, when flying alone, the limited energy supply limits the flight distance
and operation range. Table 4.1, exposes the differences between both types of
robots comparing different aspects that affect the performance of performing an
inventory task.

Feature UAV UGV

Task time capacity up-to 1h less than 10min
Payload size and weight capacity +100kgs -10kgs

Navigation 3D plane 2D plane
maneuverability and agility superior poor
Processing power limitation limited Not limited

Hardware Complexity Complex Simple

Software Complexity Complex Simple

Experimental Costs very expensive cheap

Security Not secure Very secure

Table 4.1: A Comparison Table between UGVs and UAVs illustrating differences
in different aspects.

From Table 4.1, we note that due to the fact that a UGV is always placed on
the ground plane, it is able to carry relatively heavy payloads compared to a UAV.
A UAV is required to generate a force greater than 2 times the force of gravity
applied on the payload and body mass. The other advantage of being able to carry
a large size and heavy payload is the possibility of carrying large capacity power
sources, which can provide sufficient energy to all parts of the robot for a long
amount of time. Powerful processing units and high level sensors can be mounted
on the UGV due to the ability to provide the energy required for these devices.
The UAV however, can only carry a limited payload which means less power ca-
pacity sources and less functional time. However, we proved in Chapter 3, that
using a UAV has many advantages in comparison with using a UGV for inventory
missions, such as the ability to take inventory of items that are located on high

116

“output” — 2023/2/27 — 8:55 — page 117 — #135

shelves, its mobility/locomotion is not surface dependent as UGVs, its ability to
use the 3D plane for maneuverability and obstacle avoidance, the ability to cre-
ate 3D maps, and the ability to explore the environment by exploiting the vertical
plane. From the summary above, we concluded a hypothesis of the possibility of
increasing the performance of taking an inventory, if both robots can collaborate
to exploit the advantages of the heterogeneity feature in a team of robots. There-
fore, a strategy that contributes to the collaboration feature between distributed
heterogeneous robots for increasing their overall performance is presented and
explained in Chapter 5.

117

“output” — 2023/2/27 — 8:55 — page 118 — #136

“output” — 2023/2/27 — 8:55 — page 119 — #137

Chapter 5

A ROS-BASED DISTRIBUTED
MULTI-ROBOT LOCALIZATION
AND ORIENTATION STRATEGY
FOR HETEROGENEOUS
ROBOTS

5.1 Abstract

The problem of estimating and tracking the location and orientation of a mobile
robot by another in heterogeneous distributed multi-robots is studied in this pa-
per. We propose a distributed multi-robot localization strategy (DMLS) that is
Robotic Operating System (ROS) based. It consists of an algorithm that fuses
data of diverse sensors from 2 heterogeneous robots that are not connected within
their transform trees to localize and measure the relative position and orientation.
The method exploits the robust detection of the Convolutional Neural Networks
(CNN) and the accurate relative position measurements from the local costmap.
The algorithm is composed of two parts: The localization part and the relative
orientation measurement part. Localization is done by optimization and align-
ment calibration of the CNN output with the costmap in an individual robot. The
relative orientation measurement is done by a collaborative multi-robot fusing di-
verse sensor data to align and synchronize the transform frames of both robots
in their costmaps. To illustrate the performance of this strategy, the proposed
method is compared with a conventional object localization and orientation mea-
suring method that uses computer vision and QR codes. The results show that this
proposed method is robust and accurate while maintaining a degree of simplicity

119

“output” — 2023/2/27 — 8:55 — page 120 — #138

and efficiency in costs. The paper also presents various application experiments
in the laboratory and simulation environments. By using the proposed method,
distributed multi-robots collaborate to achieve collective intelligence from indi-
viduals, which increases team performance.

Keywords: Multi-robots, Localization, Collaboration, Exploration

5.2 Introduction

Localization is one of the main requirements for the autonomy of a mobile robot
[C1]. In order to navigate autonomously in their work space, mobile robots must
be able to localize themselves, indoors and outdoors. To successfully perform the
tasks required of them, mobile robots need to know their exact position and orien-
tation (pose). There have been numerous approaches to the localization problem
for a single robot utilizing different types of sensors and techniques. In [C2],
authors use a technique that combines position estimation from odometry with
observations of the environment from a mobile camera for achieving accurate self
localization. In [C3], authors present a Bayesian estimation and the Kalman filter
for object tracking. In [C4], authors develop two algorithms to register a range
scan to a previous scan in order to compute relative robot positions in an unknown
environment.

The development of multiple robot systems that solve complex and dynamic
problems in parallel is one of the key issues in robotics research. The multiple
robot system, in comparison with the single robot system, has the advantage of
collecting and integrating multiple sensor data from different robots for different
purposes and applications. For this reason, many robotic applications require that
robots are able to collaborate with each other within a team in order to perform
a certain task [C5]. An interesting application for multiple robot’ collaboration
in [C6], where authors aim to maintain an accurate and close to real time inven-
tory of items using Radio Frequency Identification technology (RFID), which is
considered crucial for an efficient Supply Chain Management (SCM). They first
define the problem of stock counting and then a solution based on a multi-robot
system is proposed.

However, in order for robots to increase their collaboration performance, they
will need to be able to localize each other in their own maps, which opens up
a wide degree of new applications such as map sharing for exploratory robots
in [C7], or map building and cooperative collaboration in [C8], and other [C9].
However, this is not a straight-forward process if they do not share a common
map or no prior information is given to the robots.

The advantages that derive from the exchange of information among the mem-

120

“output” — 2023/2/27 — 8:55 — page 121 — #139

bers of a team are more crucial in the case of heterogeneous team robots. A team
of robots that is composed of different types or platforms carrying different pro-
prioceptive and exteroceptive sensors, have different capabilities for sensing the
environment and self-localization. The exploitation of the heterogeneity feature
in distributed multi-robots allows researchers to find different strategies for coop-
erative multi-robot localization.

This paper proposes a Robotic operating system (ROS) based multi-robot lo-
calization and relative orientation measurement strategy for distributed hetero-
geneous robots. The proposed strategy or method helps increase the efficiency
of the collaboration between heterogeneous multi-robots in a team by address-
ing the problem of accurately detecting and localizing multi-robots in unknown
and unexplored environments autonomously and through cooperation. The pro-
posed method exploits the capability of the heterogeneity feature that exists in a
group of robots. It fuses data of diverse sensors from 2 heterogeneous robots that
are not connected within their transform trees to mutually localize and measure
their relative orientation. The method exploits the robust detection and tracking
of a Convolutional Neural Networks (CNNs) and the accurate relative distance
measurements from a local costmap. The exact localization and orientation mea-
surement is done when two members of a robot team are in close range from each
other, this is done by utilizing a stereo camera that exists on only one member of
the team, and the 2D local cost-maps from both robots that are constructed using
precise 2D-lidars.

5.3 Similar Work
Previous similar work has been done considering collaborative strategies for multi-
robot localization. A number of authors have considered pragmatic multi-robot
map-making. Some approaches use beacon type sensors. For example, in arti-
cle [C10], authors propose an algorithm for model-based localization that relies
on the concept of a geometric beacon. The algorithm is based on an extended
Kalman filter that utilizes matches between observed geometric beacons and a
priory map of beacon locations. The fact that a prior reference map was given and
shared between the robots, meant that the robots transform trees were somehow
connected. This made it relatively straightforward to transform observations from
a given position to the frame of reference of the other observers. The algorithm ex-
ploited structural relationships in the data. In other work [C11], Rekleitis, Dudek,
and Milios have demonstrated the utility of introducing a second robot to aid in
the tracking of the exploratory robot’s position and they introduced the concept
of cooperative localization. Their approach is based on using pairs of robots that
observe each other’s behavior, acting in concert to reduce odometry errors. Their

121

“output” — 2023/2/27 — 8:55 — page 122 — #140

approach improves the quality of the map by reducing the inaccuracies that occur
over time from dead reckoning errors. However, prior knowledge of their initial
location was also known, which reduced the autonomy of the system.
Vision-based systems have been widely used in robotic perception sensing. They
are also useful for distinguishing an individual robot for handling the case of more
than two robots. In the past few years, several authors have considered localizing
team members of a group of robots using each other. They used various types of
sensors for this objective including vision-based sensors. An example in [C12],
proposes an algorithm that allows robots to identify and localize each other. The
method requires all robots to be equipped with omnidirectional mono cameras.
Jennings et al. in [C13], used stereo vision to build a grid map and localize robots
by features in grid map such as corners. Their key idea is to find corners in a grid
map and compare these corners with a-priory landmarks at known positions. They
needed an exact reference of the map for their method to work, which makes it not
useful for exploration based robots. Fox et al. proposed a multi-robot Monte Carlo
Localization (MCL) approach in [C14], to localization with improved accuracy
of MCL. Their research shows accurate localization results and can be used for
multi-robot localization. However, it requires the transmission of a relatively large
amount of information. Pereira et al. in [C15], proposed an approach to localize
and track objects exploiting statistical operators and a simple graph searching al-
gorithm. In [C16], distributed sensing was developed based on Kalman filtering
to improve the target localization. However, these methods are only designed to
recognize and localize a specific entity or target. In a multi-robot scenario where
robot members collaborate, it is preferable and logical for each robot to localize
and track all of its teammates, also important features in the environment.
Researchers have also used CNNs for high performance features and robot identi-
fication and tracking. In [C17], authors using CNNs present a robust multi-robot
convoying approach that relies on visual detection of the leading agent, thus en-
abling target following in unstructured 3-D environments. However, although this
method detects the other robot with high performance and measures the relative
motions of that robot, it does not precisely localize the other robot nor measure its
relative orientation.

The distributed multi-robot localization strategy (DMLS) strategy introduced in
this paper, is designed to operate with the sensors or hardware that normally ex-
ists in an autonomous mobile robot that is able to construct a local costmap of
its surrounding environment. However, within a team of two robots, one of the
robots would require to be equipped with a camera. The camera can be the same
proximity sensor (e.g., RGBD camera) or the self localization tracking camera
that contributes to constructing a local costmap in the robot.
The DMLS strategy, exploits the strengths of the diverse sensors that exist in the

122

“output” — 2023/2/27 — 8:55 — page 123 — #141

heterogeneous team robots. It Utilizes the robust detection and tracking in CNNs
and the accurate proximity measurements extracted from a 2D local costmap that
is constructed using a 2D lidar for the accurate localization and relative orientation
estimations between the robots.

In section 5.6, the proposed localization method will be compared with a
vision-based conventional QR-pose estimation method. The QR-pose estimation
method was used due to its low computation and flexibility to operate on limited
machines such as Unmanned Aerial Vehicles (UAVs) and simple distributed Un-
manned Ground Vehicles (UGVs). It also operates in decentralized systems where
both robots do not share prior information or a map. Finally, the fact that makes
it is able to estimate position and relative orientation at the same time makes it a
good comparison reference to be used. Some application scenarios in section 5.7
illustrate the contribution of the proposed method using a laboratory environment
and a ROS-based simulation platform (Gazebo).

5.4 System Overview
For the experiments executed to implement and test the DMLS method introduced
in this paper, two independent heterogeneous robots are used, called Detector and
Pawn. These robots are designed to be able to cooperate on a shared task. The
robots are able to communicate using a common network.

For the experiments run in the lab, the Detector robot will be a small sized
UAV. The Detector’s hardware block diagram is shown in Fig. 5.1.
The UAV was designed to be able to execute stable navigation in indoor spaces
therefore, a 6-motor UAV (hexacopter) frame was chosen. The frame design lay-
out enables a stable flight in indoor spaces for a task-sufficient amount of time.
An efficient open-source autopilot (Pixhawk 2.4.8) is used. A compatible com-
panion computer (Jetson nano) is used as the main processing unit for the UAV.
The UAV also contains 6 brush-less motors (750kv), 6 propellers (16"x4" size),
and 6 electronic speed controllers (ESCs 40A of current discharge capacity). The
ESCs main objective is to translate the signal received from the autopilot to en-
ergy from the energy source and supply it to the motors. The energy source used
on the UAV is a lithium polymer battery (LIPO, 16V, 6cell), which capacity is
6000mAh, an operating voltage is 16.6V, and can supply a high current discharge
rate.

Since the UAV was intended to operate in indoor spaces (GPS-denied spaces),
a Visual Simultaneous Localization and Mapping (VI-SLAM) based camera was
added to the system to supply the UAV with self localization messages. The VI-

123

“output” — 2023/2/27 — 8:55 — page 124 — #142

SLAM camera used, has a built-in diverse suite of sensors which all feed into a
VI-SLAM pipeline, which fuses them into a 6 DOF estimation of position and
velocity of the camera relative to the environment at 200 Hz, therefore, precisely
tracking and self-localize the UAV. Special adaptation was made to integrate these
messages to the autopilot, resulting in an indoors guidance system for the UAV.
For the Experiments, the Pawn robot is a UGV and its hardware block diagram is
shown in Fig. 5.2.

The pre-designed and patent UGV in [C6] is used. The UGV is designed to
autonomously navigate within the given path in the intended map layout. In order
for the robots to be able to run the proposed localization method and successfully
localize each other, the Detector must have a camera mounted for detection. This
is not a requirement for the Pawn. However, sufficient sensors that enable the
construction of a local cost-map will be necessary for both the Detector and the
Pawn. For the laboratory Experiments, a UAV in [C18], has been chosen to be
the Detector for the manifest advantage of utilizing 3D space. This increases the
possibility of detection while hovering or flying. However, the UAV must land,
or be in the same 2D plane as the Pawn after detection. This step is necessary for
completing the sequential process of the proposed localization method, DMLS.

Figure 5.1: Hardware block diagram of the Detector.

124

“output” — 2023/2/27 — 8:55 — page 125 — #143

Figure 5.2: Hardware block diagram of the Pawn.

5.5 DMLS Framework
The proposed localization method consists of four parts.

5.5.1 First Part: Detecting and reducing the region of search
(RoS) using CNN

Throughout a mission, the Detector would first detect the Pawn as soon as it is in
the detection range of its camera and in line of sight (LoS). This is done by using a
high-performance, cost-effective, and low-computation CNN model called “Mo-
bileNetV2” [C19]. The MobileNetV2 model developed by Google is designed
to dramatically reduce the complexity cost and model size of the network. It is
specially optimized to operate on mobile devices. The architecture delivers high
accuracy results while keeping the parameters and mathematical operations as low
as possible. This makes it adequate for resource limited mobile robots. The ob-
jective of this CNN is to identify and classify the class/object of the detected robot
from a list of pre-trained classes/objects.

For our experiments, we trained the model with a dataset that is composed of
around 2000 high resolution images per class/object that are required to be de-
tected. The images for the dataset are taken from different angles, distances, and
illumination environments to assure the accurate detection of the class/object at

125

“output” — 2023/2/27 — 8:55 — page 126 — #144

any condition. Transfer learning was used on pre-trained existing models sup-
ported by the API. A total of 91 epochs (around 20h of training time), were used
to train the model with 6 classes/objects which include the Pawn and some im-
portant features of the laboratory environment. A boundary box will be plotted on
the object with the most likelihood (MLH) estimation to be the Pawn. The pixel
positions of the boundary box in the x-axis and y-axis of the entire pixel-space
PS of the image frame are provided by the CNN. The minimum and maximum
pixel position values on the horizontal axis (PS_H) of the boundary box will be
recorded as xpixmin and xpixmax as only the x-axis values will be used in the
calculations of the RoS.

5.5.2 Second Part: Camera frame and cost-maps calibration
and locating

The constructed local costmap of the robot is done by a ROS [C20] package, called
Move_base [C21]. This is achieved using proximity sensors mounted on the robot.
Move_base is a simple algorithm that constructs a matrix C, which represents a
local cost-map. The element cij represents a cost function in every cell of the cost-
map, or so-called cell-cost [C22]. This value represents the possibility of having
an obstacle within that cell.

However, due to the fact that the size of the local costmap of a robot differs
from one robot to another depending on the sensors type, detection range, and
local costmap parameters configurations, this implies that there will be a mis-
alignment of the size of the local costmap (width and height) with the horizontal
field of view (HFOV) of a camera frame. In other words, the local costmap might
include more obstacles in the environment than what the camera frame is able to
visualize as shown in Fig. 5.3. As a result, a calibration/alignment step is needed
to measure the effective local costmap that relates to the camera HFOV, which is
represented as the pink highlighted area in Fig. 5.3.

Most local costmaps are usually bigger in size than the HFOV of a camera frame
(if not, it can be set so by optimizing the local costmap size parameter). The ef-
fective local costmap will be a submatrix of the overall matrix that represents the
entire local costmap. The elements C′ and c′ij , represent the submatrix and the
cost function in every cell of the effective cost-map.

126

“output” — 2023/2/27 — 8:55 — page 127 — #145

Figure 5.3: Pixel to Cost map RoS translation.

The calibration step consists of the measurement of the boundaries of this sub-
matrix. By placing the robot in an empty free of obstacles position in space, and
at a set distance 0 < d < costmap − height/2 from the working distance [C23]

127

“output” — 2023/2/27 — 8:55 — page 128 — #146

in-front of the robot and camera, an object is introduced so it can be visible at the
edge of the left side of the image frame. From the local costmap a cell with a high
cost value cij = 100 will be created, the column position of this cell will then be
recorded j′min representing the left boundary or the starting column position of
the submatrix. The same process will be repeated but this time introducing an ob-
ject from the right side of the image frame to measure j′max, which represents the
column position of the right boundary of the submatrix marking the last column
position of the submatrix. The submatrix representing the effective local costmap
that matches the size of the camera frame span will only be considered as the re-
gion of search (RoS). In Fig. 5.3, an example that visualizes the submatrix and
is highlighted in pink can be seen. The submatrix as shown is aligned with the
image frame above.

From knowing j′min and j′max, the width of the submatrix which is also equal
to the HFOV span in meters represented as spand is calculated. Given the map
resolution, resol (m / cell), of the local costmap by the user that is used as an input
parameter to construct the local costmap, it is possible to calculate the minimum
span limit spandmin, and maximum span limit spandmax in meters shown in Eqs.
5.1 and 5.2.

spandmin = j′min ∗ resol (5.1)

spandmax = j′max ∗ resol (5.2)

spand = j′max + j′min (5.3)

The RoS column range RoSCR can be calculated in Eq. 5.4.

RoSCR = j′max − j′min (5.4)

Which represents the column size of the submatrix.
To align the horizontal pixels of the HFOV to the submatrix, in Eq. 5.5 the

algorithm calculates the NPC, which represents how many pixels of the PS_H
axis are associated per cell of the submatrix (pixels/cell).

NPC =
PS_H

RoSCR

(5.5)

Using xpixmin and xpixmax and knowing that the robot is at the center of its
local costmap c imax

2
jmax

2
, which is marked as the red square in the middle of the

matrix in Fig. 5.3, the algorithm calculates j′min and j′max, which represents the
left and right column position of the sub-submatrix as shown in Eqs. 5.6 and 5.7.

j′′min =
xpixmin

NPC
+ j′min (5.6)

128

“output” — 2023/2/27 — 8:55 — page 129 — #147

j′′max =
xpixmax

NPC
+ j′min (5.7)

This sub-submatrix C′′, that contains the cells C′′ij′′, represents the boundary box
position in the effective costmap in the entire local costmap.

Fig. 5.3 shows an example of having a 2m x 2m local costmapC with elements
c[40][40]. The upper section of the image shows the PS (PS_H = 800 pixels,
PS_V = 600 pixels), which represents the output image frame from the CNN.
The left and right boundaries of the detected boundary box are xpixmin = 50 and
xpixmax = 250 as shown in the image. The entire local costmap C can be written
as Eq. 5.8.

C =

 c00 c01 c02 . . . c0jmax

...
...

...
cimax0 cimax1 cimax2 . . . cimaxjmax

 (5.8)

Where imax and jmax = 40. The Detector however, is at the position of i = max/2
and j = max/2. The range of the RoS for the rows is from 0 to i = max/2.
Applying the equations above, it is possible to visualize the effective costmap in
Fig. 5.3 as all the elements of the matrix colored in pink and green, which can be
written as the submatrix c′ in Eq. 5.9.

C′ =

c′0j′min

c′0(j′min+1) . . . c′0j′max

...
...

c′imax
2

j′min
c′imax

2
(j′min+1) . . . c′imax

2
j′max

 (5.9)

The boundary box RoS which is shown in Fig 5.3 as all the elements of the array
colored in green, which can be written as the sub-submatrix c′′ in Eq 5.10.

C′′ =

c′′0j′′min

c′′0(j′′min+1) . . . c′′0j′′max

...
...

c′′imax
2

j′′min
c′′imax

2
(j′′min+1) . . . c′′imax

2
j′′max

 (5.10)

The cell c′′ij′′ with a cost value of 100 will represent the Pawn location in the
Detector frame. The coordinates of the Pawn, therefore, can be directly extracted
and recorded.

5.5.3 Third Part: Handshake
Up to this stage, only the coordinates of the Pawn in the Detector map-frame
alone are known. However, to able the robots to collaborate and share important
location information as we will discuss in the Section 5.7, the orientation of the

129

“output” — 2023/2/27 — 8:55 — page 130 — #148

Pawn MUST be known. The relative orientation of both robots cannot be directly
extracted using ROS transforms (TF packages [C24]). This is due to that the trans-
form trees or the frames of both robots are not connected. More input is needed
to compute the relative pose orientation of the Pawn. Therefore, a communication
handshake between the Detector and the Pawn will take place. This handshake
is done through a simple ROS service, “peer-to-peer communication”, where an
exchange of information is done between the robots. Since the coordinates of the
Pawn r⃗P = (xP , yP) in the Detector map-frame are known, the distance between
the Detector and the Pawn can be calculated using Eq. 5.11.

d = ∥r⃗P − r⃗′D∥ (5.11)

where r⃗′D = (x′D, y
′
D) are the coordinates of the Detector in its own map-frame.

This calculated distance will be then sent using the ROS service to the Pawn. In
return, requesting an exchange of information from the Pawn. This information
data will contain its own coordinates, hence, the Detector’s coordinates in the
Pawn map-frame. Given the distance between the Detector and the Pawn, the al-
gorithm within the Pawn, will search in its map-frame for a cell with a cost factor
cij = 100, which represents an obstacle within approximately a distance d from
itself. The coordinates of that obstacle will be obtained. At this point, the coordi-
nates of that obstacle/object having the same footprint of the Pawn, represent the
coordinates of the Detector in the Pawn’s map-frame. Since both robots are not
connected within their frame tree in ROS, meaning they are independent, these
coordinates must be translated and cannot be used directly. In subsection 5.5.4,
the explication of how the Pawn pose orientation and the frame-transforms are
calculated will be presented.

5.5.4 Fourth Part: Processing and Localizing

Once the Detector obtains the coordinates of the Pawn in the Detector’s frame,
and the Detector’s coordinates in the Pawn’s frame, the algorithm, using rotation
matrices as shown in the following equations, will be used to determine the rel-
ative pose. In ROS language, it would be the transform between the two frames,
"odom−pawn" and "odom−detector". Using Rviz [C25], the illustration of the
Pawn pose in x, y is shown, and the orientation in the z axis (yaw) in the local
cost map. All experiments were conducted on a 3x3 meter scaled grid with 0.5-
meter square-divisions as a ground truth in the laboratory and in Rviz. To further
explain the algorithm that computes the relative pose we assume that:

r⃗D = (xD, yD) are the coordinates of the Detector with respect to the Pawn,
(in the Pawn’s map-frame).

130

“output” — 2023/2/27 — 8:55 — page 131 — #149

r⃗P = (xP , yP) are the coordinates of the Pawn with respect to the Detector,
(in the Detector’s map-frame).

r⃗D0 = (xD0, yD0), are the coordinates of the Detector with respect to the Pawn
having rotating the Pawn to equal orientation of the Detector, (in the Pawn robot
map-frame). Considering the above declarations, Eq. 5.12 can be concluded.

r⃗D0 = −r⃗P (5.12)

Having applied the rotation matrix formula between xD, yD and xD0 , yD0 to
compute ϕ, which is the relative angle between the Pawn and the Detector, shown
in Eq. 5.15. In Fig. 5.4, the illustration of the corresponding parameters and the
frame transformation relation between the Detector and the Pawn can be seen.

Figure 5.4: The Detector and the Pawn frame-transformation relation.

[
xD

yD

]
=

[
cosϕ sinϕ

− sinϕ cosϕ

]
·

[
xD0

yD0

]
(5.13)

Which yields to Eq.5.14,[
xD

yD

]
=

[
xD0 yD0

yD0 −xD0

]
·

[
cosϕ

sinϕ

]
(5.14)

131

“output” — 2023/2/27 — 8:55 — page 132 — #150

and Eq.5.15. [
cosϕ

sinϕ

]
=

[
xD0 yD0

yD0 −xD0

]−1

·

[
xD

yD

]
(5.15)

Resulting in Eq. 5.16.[
cosϕ

sinϕ

]
=

1

x2D0
+ y2D0

·

xD0 · xD + yD0 · yD

yD0 · xD − xD0 · yD

 (5.16)

The angle ϕ can be extracted from the following equations Eqs. 5.17 and 5.18.

ϕ = ± arccos
[
xD0

·xD+yD0
·yD

x2
D0

+y2D0

]
(5.17)

By using Eq. 5.17 two different angles are extracted, in order to verify the correct
one which represents which rotation direction, ϕ is to be calculated using Eqs.
5.18 and find the matching angles.

ϕ = ± arcsin
[
yD0

·xD−xD0
·yD

x2
D0

+y2D0

]
(5.18)

A block diagram showing the workflow of the DMLS, and the full handshake
between the Detector and the Pawn, is shown in Fig. 5.5.

Figure 5.5: DMLS method Workflow and Block diagram.

5.6 Comparison with QR-code pose estimation method

5.6.1 Scenario 1: Pose estimation at d = 1.00m

In order to validate the performance of our localization method, the results are
compared with the ones from using the conventional QR-code pose estimation

132

“output” — 2023/2/27 — 8:55 — page 133 — #151

method for robotics [C26]. In Scenario 1, we analyze and compare the results
of both the DMLS and the QR-code localization methods on both robots, the
Detector and Pawn. The Pawn is placed at one-meter distance from the De-
tector in the x-axis, which represents the front facing direction of the Detector
map-frame. The Pawn was placed in 4 different positions on the y-axis, which
were: r⃗P = (1.00m, 0.65m), r⃗P = (1.00m, 0.25m), r⃗P = (1.00m,−0.25m),
r⃗P = (1.00m,−0.65m). At each position, 4 different sub-experiments are con-
ducted. In each, the Pawn is oriented to a different relative-orientation: ϕ =
0◦, 90◦,−90◦, 180◦, ending up with a total of 16 sub-experiments. The tests were
executed on a 3m x 3m grid with 0.5m x 0.5m subdivisions in the laboratory and
in Rviz. The Detector was in a static position with a fixed orientation for all the
tests.

Experiment 1A, Scenario 1, Using DMLS

In this experiment, the DMLS is used for localizing and relative orientation mea-
suring of the Pawn in the Detector map-frame for all of the 16 sub-experiments
of Scenario 1. In Fig. 5.6, an example of having the Pawn positioned at r⃗P =
(1.00m, 0.65m) and ϕ = 180◦ is shown. Fig. 5.6a shows the sketch of the sce-
nario done in the laboratory, and Fig. 5.6b shows an Rviz illustration of the local
cost-map of the Detector used to obtain an accurate estimation of the position and
orientation of the Pawn within the Detector map-frame. The red axis indicates the
direction each robot is facing ("x-axis").

(a) Sketch of the scenario in the
laboratory.

(b) Rviz illustration of the scenario
from local cost-map observation

by the Detector.

Figure 5.6: Scenario 1, Experiment 1A. Pawn positioned at r⃗P = (1.00m, 0.65m),
ϕ = 180◦ from Detector.

133

“output” — 2023/2/27 — 8:55 — page 134 — #152

Experiment 1B, Scenario 1, Using QR-pose estimation method

In Experiment 1B, the QR-code pose estimation method is used for localizing the
Pawn in the Detector map-frame for all of the 16 sub-experiments of Scenario 1.
In Fig. 5.7, an example where the Pawn is positioned at r⃗P = (1.00m, 0.25m)
and ϕ = 180◦ is shown. Fig. 5.7a shows the sketch of the scenario done in the
laboratory, and Fig. 5.7b shows an image of the detected QR code and corre-
sponding pose estimation. The results are presented in Table 5.1, which shows
that from the 16 sub-experiments, only in 8 the QR-code pose estimation method
was able to get a successful detection of the Pawn by the Detector. The QR-code
pose estimation method failed to identify and read the QR-code when it was not
entirely visible from the camera’s field of view (FOV). This shows that for having
a pose estimation, it is vital for the QR-code to fully appear in the captured camera
frame, whereas for the DMLS this is not a restriction, as long as the CNN is able
to identify the Pawn, and a pose estimation using DMLS can be accomplished by
only the partial appearance of the Pawn in the camera FOV. Among all the results
using the QR-pose estimation method, only those that were successful were used
to calculate the absolute mean error, and its variance, in Table 5.1.

(a) Sketch of the scenario in the
laboratory.

(b) Screenshot of the Detector
detecting a QR code on the Pawn.

Figure 5.7: Scenario 1, Experiment 1B. Pawn positioned at r⃗P = (1.00m, 0.25m),
ϕ = 180◦ from Detector.

5.6.2 Scenario 2: Pose estimation at d = 1.40m

In Scenario 2, to further test the range of detection with this setup, the same
methodology is repeated as in Scenario 1, but this time increasing the distance
between both robots to 1.40m, in the front axis of the Detector (x-axis), since

134

“output” — 2023/2/27 — 8:55 — page 135 — #153

Pawn pos. Lab ϕ DMLS ϕ QR-code ϕ
r⃗P = (1.00m, 0.65m) 180◦ 180◦ −
r⃗P = (1.00m, 0.65m) −90◦ −93◦ −
r⃗P = (1.00m, 0.65m) 90◦ 90◦ −
r⃗P = (1.00m, 0.65m) 0◦ 0◦ −
r⃗P = (1.00m, 0.25m) 180◦ 180◦ 179◦

r⃗P = (1.00m, 0.25m) −90◦ −81◦ −90◦

r⃗P = (1.00m, 0.25m) 90◦ 96◦ 86◦

r⃗P = (1.00m, 0.25m) 0◦ 0◦ −3◦

r⃗P = (1.00m,−0.25m) 180◦ 180◦ 178◦

r⃗P = (1.00m,−0.25m) −90◦ −81◦ 93◦

r⃗P = (1.00m,−0.25m) 90◦ 92◦ 93◦

r⃗P = (1.00m,−0.25m) 0◦ 0◦ 2◦

r⃗P = (1.00m,−0.65m) 180◦ 180◦ −
r⃗P = (1.00m,−0.65m) −90◦ −85◦ −
r⃗P = (1.00m,−0.65m) 90◦ 99◦ −
r⃗P = (1.00m,−0.65m) 0◦ 0◦ −

Mean µ = 3.643 µ = 2.229
Variance ρ2 = 13.274 ρ2 = 1.536

Table 5.1: Results of the experiments in Scenario 1 using the DMLS and QR-pose
estimation methods.

it was observed that the QR-code method did not consistently work with greater
distances. For this experiment, the Pawn is also placed in 4 different positions
from the Detector, which were: r⃗P = (1.40m, 0.80m), r⃗P = (1.40m, 0.25m),
r⃗P = (1.40m,−0.25m), r⃗P = (1.40m,−0.75m). At each position experiments
were conducted while placing the Pawn at 4 different orientations, obtaining 16
sub-experiment results in total.

Experiment 2A, Scenario 2, Using DMLS

In Experiment 2A, Experiment 1A in Scenario 1 is repeated but in Scenario 2. We
conclude from the results of all obtained poses and the absolute mean error shown
in Table 5.2, that at a higher distance, the DMLS method achieved to localize the
Pawn in all 16 sub-experiments while maintaining almost the same performance.

135

“output” — 2023/2/27 — 8:55 — page 136 — #154

Experiment 2B, Scenario 2, Using QR-pose estimation method

In Experiment 2B, Experiment 1B of Scenario 1 is repeated but in Scenario 2.
Since the QR-code cannot be read when the QR-code is only partially in the FOV
of the camera, only 8 of the 16 sub-experiments were successfully executed. The
pose estimations and the absolute mean error of the QR-pose estimation method
are shown in Table 5.2.

Pawn pos. Lab ϕ DMLS ϕ QR-code ϕ
r⃗P = (1.40m, 0.8m) 180◦ 180◦ −
r⃗P = (1.40m, 0.8m) −90◦ −81.41◦ −
r⃗P = (1.40m, 0.8m) 90◦ 92.79◦ −
r⃗P = (1.40m, 0.8m) 0◦ 0◦ −
r⃗P = (1.40m, 0.25m) 180◦ 180◦ 173.551◦

r⃗P = (1.40m, 0.25m) −90◦ −81.334◦ −93.63◦

r⃗P = (1.40m, 0.25m) 90◦ 96.379◦ 81.674◦

r⃗P = (1.40m, 0.25m) 0◦ 0◦ −1.757◦

r⃗P = (1.40m,−0.25m) 180◦ 180◦ 177.957◦

r⃗P = (1.40m,−0.25m) −90◦ −91.32◦ −91.584◦

r⃗P = (1.40m,−0.25m) 90◦ 89.088◦ 84.119◦

r⃗P = (1.40m,−0.25m) 0◦ 0◦ −7.248◦

r⃗P = (1.40m,−0.75m) 180◦ 173.38◦ −
r⃗P = (1.40m,−0.75m) −90◦ −83.25◦ −
r⃗P = (1.40m,−0.75m) 90◦ 98.213◦ −
r⃗P = (1.40m,−0.75m) 0◦ 0 −

Mean µ = 3.673 µ = 2.515
Variance ρ2 = 13.493 ρ2 = 6.326

Table 5.2: Results of the experiments in Scenario 2 using the DMLS and QR-pose
estimation methods.

5.6.3 Scenario 3: Pose estimation in case of different robots in
range

In scenario 3, since our robots are expected to operate within the presence of other
team member robots of different types, forms, and sizes also in more complex
environments, the experiments done in Scenario 1 and 2 are repeated but this time
involving an extra robot, known as Adversary Robot. The Adversary Robot has a
size and footprint bigger than the Pawn, meaning that in some scenarios, it could

136

“output” — 2023/2/27 — 8:55 — page 137 — #155

partially or fully distort the detection of the Pawn by blocking the LoS between
the Detector and the Pawn.

Scenario 3.1, Robots on different sides of the Detector’s FOV

In Scenario 3.1, the Pawn and Adversary Robot are placed at each side and in-front
of the Detector’s FOV. This concludes that the Detector would visually sense one
robot at each side of the image camera-frame. Fig. 5.8 illustrates the scenario.
The positions of all robots in the Detector’s map for scenario 3.1 can be found in
Table 5.3.

Scenario r⃗D r⃗P r⃗A

3.1 (0.00, 0.00) (1.00m,−0.25m) (1.00m, 0.25m)
3.2 (0.00, 0.00) (1.00m,−0.25m) (1.50m, 0.00)
3.3 (0.00, 0.00) (1.00m,−0.25m) (0.50m,−0.25m)

Table 5.3: Relative position of the Detector, Pawn, and Adversary robots in Sce-
narios 3.1, 3.2, and 3.3 with respect to the Detector.

Experiment 3.1A, Scenario 3.1, Using DMLS

In Experiment 3.1A in Scenario 3.1, the DMLS is used for localizing the Pawn
in the Detector’s map-frame. It can be clearly seen from Fig. 5.8a and the results
shown in Table 5.4 that the Detector has successfully identified, distinguished,
and localized the Pawn from the Adversary Robot.

Experiment 3.1B, Scenario 3.1, Using QR-code pose estimation method

In Experiment 3.1B in Scenario 3.1, the QR-code pose estimation method is
used to estimate the pose for the Pawn. It can be clearly seen from Fig. 5.8b and
the results shown in Table 5.3 that the Detector has successfully identified, distin-
guished, and localized the Pawn from the Adversary Robot. The reason was that
the QR-code was fully visible to the Detector, which was able to obtain a pose of
the QR-code.

137

“output” — 2023/2/27 — 8:55 — page 138 — #156

(a) Detecting the Pawn using the DMLS method.

(b) Detecting the Pawn using the QR-pose estimation method.

Figure 5.8: Scenario 3.1, Experiment 3.1A and 3.1B. The Pawn and Adversary
Robot placed at each side of the Detector’s FOV.

Scenario 3.2, Robots positioned on the same side of the Detector’s FOV

In Scenario 3.2, the Pawn and the Adversary Robots, are placed on the same side of
the map. However, the Pawn was placed closer to the Detector than the Adversary
Robot, as shown in Fig. 5.9. The positions of all robots for Scenario 3.2 can be
found in Table 5.3.

138

“output” — 2023/2/27 — 8:55 — page 139 — #157

Experiment 3.2A, Scenario 3.2, Using DMLS

In Experiment 3.2A, the DMLS method is used for localizing the Pawn in the
Detector’s map-frame. It can be clearly noted from Fig. 5.9, and the results shown
in Table 5.4, that the Detector, has successfully identified, distinguished, and ac-
curately localized the Pawn from the Adversary Robot, even though more cells
had a high-cost value in the RoS sub-matrix.

Experiment 3.2B, Scenario 3.2, Using QR-pose estimation method

In Experiment 3.2B, the QR-code pose estimation method is used for local-
izing the Pawn in the Detector’s map-frame. It can be clearly noted from Fig.
5.9b and the results shown in Table 5.4, that Detector, has successfully identified,
distinguished, and accurately localized the Pawn from the Adversary.

Scenario Real ϕ DMLS ϕ QR-code ϕ
3.1 180◦ 180◦ 179◦

3.2 180◦ 180◦ 180◦

Table 5.4: Provides the results of Experiments in scenario 3.1 and 3.2 using the
DMLS and QR-code pose estimation method.

(a) Detecting the Pawn using the DMLS method.

139

“output” — 2023/2/27 — 8:55 — page 140 — #158

(b) Detecting the Pawn using the QR-pose estimation method.

Figure 5.9: Scenario 3.2, Experiment 3.2A and 3.2B. The Pawn and Adversary
Robot are placed at one side of the Detector’s FOV while the Pawn is closer to the
Detector.

Scenario 3.3, Robots placed on the same side, with different relative distances
to the Detector

In Scenario 3.3, the Pawn and the Adversary Robot, are placed on the same side
of the Detector’s FOV, but this time the Pawn was behind the Adversary Robot,
hindering its visualization and detection of the Detector, making it non-LoS.

The Experiments in Scenario 3.3, as shown in Fig. 5.10 failed, as none of the
methods could detect the Pawn. In Fig. 5.10a, an illustration of how the DMLS
fails to detect the Pawn is shown, while Fig. 5.10b shows the QR-code pose
estimation method failing to detect the QR-code.

5.6.4 Scenario 4: continued pose detection in 360◦

The aim of the Experiment in scenario 4 is to test the detection robustness of both
methods. For doing so the Pawn is continuously rotated CW with 30◦ increments.
For each rotation, both methods are tested to verify if they were able to achieve
a successful detection of the Pawn. In total, 16 different sub-experiments were
tested on both methods. The Pawn was placed at d = 1.00m in the x-axis from
the Detector. The locations of the Pawn and the Detector can be found in Table
5.5.

140

“output” — 2023/2/27 — 8:55 — page 141 — #159

(a) Fail detection of the Pawn using the
DMLS method.

(b) Fail detection of the Pawn using the
QR-code pose estimation method.

Figure 5.10: Scenario 3.3, Experiment 4A and 4B. The Pawn and Adversary Robot
are placed at one side of the Detector’s FOV while the Pawn is hidden from the
Detector.

r⃗D r⃗P

(1.00m, 0.00m) (1.00m, 1.00m)

Table 5.5: Relative position of each robot in Scenario 4 to the Detector map-
frame.

141

“output” — 2023/2/27 — 8:55 — page 142 — #160

Experiment 4A, Scenario 4, Using DMLS

In Experiment 4A, the DMLS for is used for localizing the Pawn in the Detector’s
map-frame for all 16 sub-experiments of Scenario 4. It can be clearly noted from
the results shown in Table 5.6 that the Detector has successfully detected and
accurately localized the Pawn in all 16 orientations.

Experiment 4B, Scenario 4, Using QR-pose estimation method

In Experiment 4B, the QR-code pose estimation method was used for localizing
the Pawn in the Detector’s map-frame for all 16 sub-experiments of Scenario 4.
It can be clearly noted from the results shown in Table 5.6 that the Detector has
successfully detected and accurately localized the Pawn in all 16 orientations.

Real ϕ DMLS ϕ QR code ϕ
0◦ 0◦ 359◦

30◦ 30◦ 28◦

45◦ 46◦ 41◦

60◦ 56◦ 62◦

90◦ 84◦ 93◦

120◦ 126◦ 127◦

135◦ 140◦ 138◦

150◦ 155◦ 147◦

180◦ 180◦ 178◦

210◦ 215◦ 206◦

225◦ 229◦ 224◦

240◦ 240◦ 236◦

270◦ 270◦ 268◦

300◦ 297◦ 311◦

315◦ 317◦ 319◦

330◦ 335◦ 328◦

Mean µ = 2.898 µ = 3.599
Variance ρ2 = 5.30 ρ2 = 5.754

Table 5.6: Provides the results of Experiments in Scenario 4 using the DMLS and
QR-pose estimation method.

It is important to note that both methods were able to recover after a faulty
detection and successfully detect and localize the Pawn when the parameters that
affected the detection were present. Table 5.7, shows a fault tolerance comparison
for both methods with different conditions:

142

“output” — 2023/2/27 — 8:55 — page 143 — #161

Method Net. com. between Robots Robot relative ori. LoS
DMLS Not tolerant Tolerant Not tolerant

QR-code Tolerant Not tolerant Not tolerant

Table 5.7: Shows fault tolerance comparison between both methods in different
situations.

From Table 5.7, we can see that both models require different environment
conditions to operate as needed. For example, the DMLS requires that the De-
tector and the Pawn are able to connect through a wireless network, whereas the
QR-code pose estimation method does not, however, the latter is sensitive to the
relative orientation of the QR code as it fails to detect the QR code at some angles.
Finally, both methods require that both robots are in LoS to able to work properly.

5.7 Applications

5.7.1 Laboratory Experiment

The docking station and the robot docking mechanism are designed to work to-
gether, providing a mechanical and electrical connection between the charging
system and the robot [C27]. This communication in our case is composed of
infra-red LoS transmitted signals from the docking-sensors on the Pawn, with the
receiver on the Docking Station. Taking advantage of the full capacity of the CNN
used by the DMLS, the CNN model was trained to detect multiple important en-
tities in the environment, one of them being the Docking Station. We simulate a
scenario of the Pawn, during an end of a mission in an un-explored environment,
where it starts searching for the Docking Station, in order to self-charge and con-
tinue towards task completion. However, the Pawn fails to detect the Docking
Station due to an obstacle blocking the LoS communication between the Pawn
and the Docking Station as shown in Fig. 5.11a. The Detector, however, happens
to detect both the Pawn and the Docking Station using the pre-trained CNN model
on board. Utilizing the computed Pawn pose using DMLS, the Detector can share
with the Pawn the exact pose of the Docking Station in the Pawn’s map-frame.

In Figs. 5.11a and 5.11b the entity tagged as "1" is the Pawn. The entity
tagged as "2" is the obstacle blocking the LoS between the Docking Station and
the Pawn. The entity tagged as "3" is the Docking Station. The entity tagged as
"4" is the Detector which cannot be seen in Fig. 5.11a since it is the source point.
It can also be seen how both Pawn and Docking Station are being identified and
detected with a high level of confidence.

143

“output” — 2023/2/27 — 8:55 — page 144 — #162

(a) POV of the Detector during the test.

(b) Scenario picture of the test

Figure 5.11: Laboratory illustration of the Application scenario having Multi-
robots collaboration using DMLS.

5.7.2 Simulation Experiments
Feature Location Sharing Using Vision

In Simulating Scenario 1, Gazebo simulation platform is used for simulating Sce-
nario 1 that is shown in Fig. 5.12a, a Gazebo world model is designed for the
purpose of showing how a group of UGVs using the DMLS, can collaborate to
share important features in the environment.

For this Scenario, 3 UGVs will be used, one Detector and 2 Pawns called Pawn-1
and Pawn-2. The UGVs will initially spawn 1m away from each other. The De-

144

“output” — 2023/2/27 — 8:55 — page 145 — #163

tector’s initial position would be in the middle and the rest at the sides. First, the
Detector will detect Pawn-1, due to the fact that it is in LoS with the Detector,
lays within its local costmap detection region, and is detected by the CNN.

Then the Detector does a 360 deg. rotation to check if it is able to detect more
robots in the area. As a result, Pawn-2 will also be detected and successfully lo-
calized using the DMLS. Fig. 5.12b, shows the detection of both Pawns. The left
side of the image shows the camera output visually detecting the robots and the
right shows what is able to be sensed in the Detector’s frame.

After successful detection and localization between the robots, all robots would
be able to share their local costmaps with each other as shown in Fig. 5.13. This
will increase the environment awareness of each robot using the help of the others.
The robots will then pursue the tasks that they are designed for. In the case of this
Scenario, the robots will move in random directions exploring the map.

In Figs. 5.14a and 5.14b, the Detector has discovered and successfully located
important features in the environment. Not only features that are beneficial to the
robots like the charging/docking station are shared when discovered and local-
ized, however, using the DMLS robots can warn each other of dangerous zones.
An example of localizing surfaces unsuitable for the robots to navigate through
(i.e, stairs) is shown in Figs. 5.15a and 5.15b. The Detector uses just the first part
of the DMLS algorithm to detect and localize these features, as in this case the
orientation of the objects is not important.

145

“output” — 2023/2/27 — 8:55 — page 146 — #164

(a) Gazebo illustration of the Scenario.

(b) Rviz Detection of Pawn-1 & 2.

Figure 5.12: Simulation Scenario 1: The Detector localizing and sharing the po-
sitions with all robots.

146

“output” — 2023/2/27 — 8:55 — page 147 — #165

Figure 5.13: Simulation Scenario 1: An illustration from the Detector’s frame
showing local costmaps from all robots.

(a) Gazebo illustration of Localizing the Docking station.

147

“output” — 2023/2/27 — 8:55 — page 148 — #166

(b) Rviz illustration of Localizing the Docking station.

Figure 5.14: Simulation Scenario 1: Localizing and sharing the docking station
position with all robots.

(a) Gazebo illustration of Localizing the Stairs.

148

“output” — 2023/2/27 — 8:55 — page 149 — #167

(b) Rviz illustration of Localizing the Stairs.

Figure 5.15: Simulation Scenario 1: Localizing and sharing the position of the
stairs with all robots.

Collaborating in the existence of RFID tags

In Simulation Scenario 2, shown in Fig. 5.16a, a gazebo world model is designed
to show that using the DMLS, heterogeneous inventory robots can collaborate in
environments where RFID sensors exist for the purpose of autonomous map-less
navigation and completing an inventory mission.
The goal is to increase the overall team performance of completing an inventory
mission in environments where products are represented by RFID tags, such envi-
ronments are warehouses or retail shops. The robots will exploit the heterogeneity
feature in the team for exploring new regions that have RFID tags.
Inventory UGVs have proven to perform well during the recent years [C28]. They
are robust machines that can carry heavy payloads which allows large power
sources to be mounted onboard. This able them to operate for a considerable
amount of time. However, these robots are slow, considered limited, and not ade-
quate for exploration purposes.
On the other hand, UAVs are adequate for exploration purposes due to their agility,
maneuverability and are undependable of the ground surface type. However,
UAVs suffer from low flight time and have weight and size constraints for the
payload they can lift. This Scenario focuses on the exploitation of the benefits of
both types of robots for completing an inventory task.
Two heterogeneous robots are used. This time the Detector will be a UGV. The
Pawn will be a UAV. Both robots will be equipped with an RFID reader [C29] and

149

“output” — 2023/2/27 — 8:55 — page 150 — #168

directional antennas [C30]. The map will contain 2 shelves. Both are placed far
from each other and have a wall almost separating them as shown in Fig. 5.16a.

(a) Gazebo illustration of Scenario Simulation Scenario 2

(b) Rviz illustration Detection of Pawn.

Figure 5.16: Simulation Scenario 2: The Detector localizing the Pawn.

150

“output” — 2023/2/27 — 8:55 — page 151 — #169

Each shelf contains 6 boxes, each box contains a group of RFID tags. The
non-detected RFID tags will be represented as grey cubes. The RFID tags that are
detected by the Detector would be represented as blue cubes. Finally, the RFID
tags that are detected by the Pawn would be represented as red cubes. RFID tech-
nology is simulated using a ROS-based Gazebo plugin [C31]. Since the Detector
uses RFID stigmergic-based navigation [C32], therefore it would only navigate in
the region where it can detect new RFID tags. This implies that since the shelf
on the right side marked as (1) in Fig. 5.16a, would be considered outside of the
detection range, the Detector would not be aware of the existence of the RFID
tags on that side. It will only read the RFID tags on the left side marked as (2) in
Fig. 5.16a and shown in Fig. 5.17.

Figure 5.17: Simulation Scenario 2: Gazebo illustration of the RFID tag detection
located on the left shelves (2).

Since the Pawn operates as a "scout", it continuously searches for new zones
where populations of RFID tags exist and shares the location of where it was
able to detect these new RFID tags. The Pawn uses an autonomous navigation
scheme, which moves in a chosen direction as long as no obstacles are detected
in its direction of movement. The Pawn will choose a different direction in case
of an obstacle is detected in the direction of movement. In Fig. 5.18, more red
cubes can be seen that represent the detected RFID tags while the Pawn is flying
through the environment. As soon as new RFID tags are detected by the Pawn, as

151

“output” — 2023/2/27 — 8:55 — page 152 — #170

shown in Figs. 5.18 and 5.19b, the location coordinates of where the new RFID
tags are read will be relayed to the Detector. The Detector therefore will move to
new regions where new tags are explored by the Pawn, each time it receives this
data.

Figure 5.18: Simulation Scenario 2: Gazebo illustration of the RFID tag detection
located on the right shelves (1).

(a) Gazebo illustration of the Detector and Pawn positioned at the
newly discovered RFID tags zone.

152

“output” — 2023/2/27 — 8:55 — page 153 — #171

(b) Rviz illustration of the Detector and Pawn positioned at the new
discovered RFID tags zone.

Figure 5.19: Simulation Scenario 2: The Detector Moving towards the new ex-
plored zone of RFID tags, sent by the Pawn.

5.8 Conclusions

Driven by the growing interest in multi-robots trying to achieve collective intel-
ligence from individual simplicity, a strategy based on ROS that is used to lo-
calize and measures the relative orientation for distributed multi-robots is pre-
sented, for the case where the team robots are not connected within their trans-
form trees. This enables heterogeneous multi-robots to share valuable resources
among themselves. The proposed technique does not require modification of the
environment, such as placing QR codes, beacons, or complex sensors, nor it re-
quires prior knowledge of the map for it to function and obtain good results, as
do most currently used localization methods. We also prove empirically that it
is computationally inexpensive. It has been tested on several low computation
power single board computers (SBC) such as Jetson-Nano and on different robot
platforms. The proposed method relies only on the existing basic hardware of an
autonomous robot in multi-robot’s scenarios. Any robot that can use the basic

153

“output” — 2023/2/27 — 8:55 — page 154 — #172

navigation and path planning packages provided by ROS will be able to run this
localization model. At least one robot in the multi-robots group is equipped with
a visual sensor, and all robots in the group must be able to communicate with each
other.

Though the DMLS method, as illustrated in experiments, proves to have accu-
rate results and good performance similar to the QR-code pose estimation method
in most cases, it still has some limitations. These limitations are addressed in
Section 5.9.

5.9 Future Work
During intensive experimentation on our proposed localization method, some lim-
itations and opportunities were discovered:

a) Reducing the RoS in the map, by improving the algorithm to compute a smaller
RoS, which indicates the MLH obstacle to be the robot. This will significantly
reduce the possibility of the Detector to wrongly locate the Pawn.

b) Increasing the resolution of the local cost-map cells, by increasing the resolu-
tion of the map cells, and changing it from approximately 2.5cm per cell to just
a few millimeters per cell. This will lead to a higher resolution in extracting
the exact position of the Pawn.

c) Using AI to analyze the map, designing a neural network (NN) whose input
data consists of the local cost map of the robot by converting the map-frames to
consecutive images. This data-set will be fed into the NN during the detection
phase. The goal is to predict and distinguish the robot shape in a map, from
different shapes and patterns of different obstacles.

d) Using 3D mapping to increase method’s efficiency, eliminating intermediate
steps such as the Detector landing in order to be detected by the Pawn. In-
creasing the dynamism of the overall workflow of the DMLS Framework.

154

“C” — 2023/2/27 — 8:55 — page 155 — #173

Chapter-5 References

[C1] I.J. Cox. Blanche-an experiment in guidance and navigation of an au-
tonomous robot vehicle. IEEE Transactions on Robotics and Automation,
7(2):193–204, 1991.

[C2] F. Chenavier and J.L. Crowley. Position estimation for a mobile robot using
vision and odometry. In Proceedings 1992 IEEE International Conference
on Robotics and Automation, pages 2588–2593 vol.3, 1992.

[C3] A.L. Barker, D.E. Brown, and W.N. Martin. Bayesian estimation and the
kalman filter. Computers and Mathematics with Applications, 30(10):55–
77, 1995.

[C4] Feng Lu and Milios. Robot pose estimation in unknown environments by
matching 2d range scans. In 1994 Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 935–938, 1994.

[C5] Lynne Parker. Current state of the art in distributed autnomous mobile
robotics. In Distributed Autonomous Robotic Systems 4, pages 3–14, 01
2000.

[C6] Victor Casamayor-Pujol, Marc Morenza-Cinos, Bernat Gastón, and Rafael
Pous. Autonomous stock counting based on a stigmergic algorithm for
multi-robot systems. Computers in Industry, 122:103259, 2020.

[C7] Vinicio Rosas-Cervantes, Quoc-Dong Hoang, Soon-Geul Lee, and Jae-
Hwan Choi. Multi-robot 2.5d localization and mapping using a monte
carlo algorithm on a multi-level surface. Sensors, 21:4588, 07 2021.

[C8] Teresa A. Vidal-Calleja, Cyrille Berger, Joan Solà, and Simon Lacroix.
Large scale multiple robot visual mapping with heterogeneous landmarks
in semi-structured terrain. Robotics and Autonomous Systems, 59(9):654–
674, 2011.

155

“C” — 2023/2/27 — 8:55 — page 156 — #174

[C9] Karol Hausman, Jörg Müller, Abishek Hariharan, Nora Ayanian, and
Gaurav S Sukhatme. Cooperative multi-robot control for target tracking
with onboard sensing. The International Journal of Robotics Research,
34(13):1660–1677, 2015.

[C10] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by track-
ing geometric beacons. IEEE Transactions on Robotics and Automation,
7(3):376–382, 1991.

[C11] Ioannis Rekleitis, Gregory Dudek, and Evangelos Milios. Multi-robot col-
laboration for robust exploration. Ann. Math. Artif. Intell., 31:7–40, 10
2001.

[C12] K. Kato, H. Ishiguro, and M. Barth. Identifying and localizing robots in
a multi-robot system environment. In Proceedings 1999 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. Human and Envi-
ronment Friendly Robots with High Intelligence and Emotional Quotients
(Cat. No.99CH36289), volume 2, pages 966–971 vol.2, 1999.

[C13] Cullen Jennings, Don Murray, and J.J. Little. Cooperative robot localiza-
tion with vision-based mapping. Proceedings - IEEE International Con-
ference on Robotics and Automation, 4:2659 – 2665 vol.4, 02 1999.

[C14] Dieter Fox, Wolfram Burgard, Hannes Kruppa, and Sebastian Thrun.
A probabilistic approach to collaborative multi-robot localization. Au-
tonomous Robots, 8:325–344, 06 2000.

[C15] Guilherme AS Pereira, R Vijay Kumar, and Mario FM Campos. Local-
ization and tracking in robot networks. Departmental Papers (MEAM),
page 39, 2003.

[C16] Ashley Stroupe, Martin Martin, and Tucker Balch. Distributed sensor fu-
sion for object position estimation by multi-robot systems. Proceedings
- IEEE International Conference on Robotics and Automation, 2:1092–
1098, 01 2001.

[C17] I. Gavrilut, V. Tiponut, A. Gacsadi, and C. Grava. Cnn processing tech-
niques for multi-robot coordination. In 2007 International Symposium on
Signals, Circuits and Systems, volume 1, pages 1–4, 2007.

[C18] Abdussalam A. Alajami, Guillem Moreno, and Rafael Pous. Design of
a uav for autonomous rfid-based dynamic inventories using stigmergy for
mapless indoor environments. Drones, 6(8), 2022.

156

“C” — 2023/2/27 — 8:55 — page 157 — #175

[C19] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4510–4520, 2018.

[C20] Anis Koubâa et al. Robot Operating System (ROS)., volume 1. Springer,
2017.

[C21] Eitan Marder-Eppstein. MoveBase move base is a navigation package for
robots., 2018. Accessed: 2022.

[C22] Filip Novotny. Costmap is a cell cost based map creator package for robots.
http://wiki.ros.org/costmap_2d, 2021. Accessed: 2021.

[C23] Andy Rowlands. Fundamental optical formulae. In Physics of Digital
Photography, 2053-2563, pages 1–1 to 1–62. IOP Publishing, 2017.

[C24] TF transform package for tracking multiple coordinate frames over time.
http://wiki.ros.org/tf. Accessed: 2022.

[C25] Dave Hershberger. Rviz a 3d visualization tool for ros. http://wiki.
ros.org/rviz, 2022. Accessed: 2022.

[C26] Filip Novotny. QR_pose_estimator visp auto tracker is a qr code pose
estimator package for robots. http://wiki.ros.org/costmap\
_2d?distro=noetic. Accessed: 2021.

[C27] Guangming Song, Hui Wang, Jun Zhang, and Tianhua Meng. Automatic
docking system for recharging home surveillance robots. IEEE Transac-
tions on Consumer Electronics - IEEE Trans Consum Electron, 57:428–
435, 05 2011.

[C28] Marc Morenza-Cinos, Victor Casamayor-Pujol, Jordi Soler-Busquets,
Jos Luis Sanz, Roberto Guzm, and Rafael Pous. Development of an RFID
Inventory Robot (AdvanRobot), pages 387–417. Springer International
Publishing, Cham, 2017.

[C29] Keonn. Keonn’s AdvanReader 160 keonn’s advanreader 160. https:
//keonn.com/components-product/advanreader-160/,
2022. Accessed: 2022.

[C30] _Keonn. Keonn’s AdvantennaSP11 keonn’s advantennasp11. https://
keonn.com/components-product/advantenna-sp11/. Ac-
cessed: 2022.

157

“output” — 2023/2/27 — 8:55 — page 158 — #176

[C31] Abdussalam Alajami. RFID Plugin abdussalam alajami, guillem
moreno, rafael pous, ros wiki plugin. http://wiki.ros.org/
RFIDsensor_Gazebo_plugin, 2022. Accessed: 2022.

[C32] Francis Heylighen. Stigmergy as a universal coordination mechanism :
components , varieties and applications. In Human Stigmergy: Theoretical
Developments and New Applications., 2014.

158

“output” — 2023/2/27 — 8:55 — page 159 — #177

5.10 Overall Conclusion and Future Work
We concluded that collective intelligence can be achieved from individual simplic-
ity in heterogeneous (Ground and aerial) team robots. Using the DMLS method
increases the collaboration capacity between heterogeneous robots in a team, which
increases the overall performance of pursuing a task. However, the benefits still
come with a penalty of increasing the complexity of the team members, as more
algorithms, hardware, and software packages would be installed on the robots to
achieve this.

Furthermore, although the team robots would extend their environmental aware-
ness and sense of their environment using the DMLS method, they would still
face the limitation that is associated with their structure type, for example, a UGV
would still face complications navigating in un-prepared surfaces or terrains such
as smooth surfaces, roads, rails, .etc. A UAV would not be able to endure the
flight time required for completing an inventory mission of a huge warehouse, as
its structural characteristics limit it from carrying such heavy power sources that
would enable it to sustain aerial inventory needed to cover all the warehouses.

Therefore, the final approach in the pursuit of the study within this thesis was
to design a hybrid robot that shares the characteristics of both types of robots, the
"UAV and the "UGV", for the goal of increasing the performance of an individual
task-based robot. The study that discusses the solution design is presented in the
following Chapter 6.

159

“output” — 2023/2/27 — 8:55 — page 160 — #178

“output” — 2023/2/27 — 8:55 — page 161 — #179

Chapter 6

UNMANNED HYBRID
AERIAL-GROUND VEHICLE
DESIGNS

6.1 UHAGV v4

6.2 Abstract

The problem of increasing the operation time and extending the mobility of the
limited energy capacity small-sized Unmanned Aerial Vehicles (UAVs) is studied
in this paper. This paper presents a hybrid robot design and a simplified energy-
efficient locomotion strategy solution that enables ground mobility locomotion for
UAVs. The proposed strategy does not require installing motors for ground mo-
bility, but, it exploits the UAV for generating taxiing locomotion. The proposed
hybrid robot design confines important characteristics of "Unmanned Ground Ve-
hicles (UGVs)" and "UAVs" for the purpose of exploiting the benefits and mitigat-
ing some drawbacks that are associated with each robot type. The design consists
of a quadcopter, 2 large freely rotating passive side wheels, 3 small front wheels
for ground stabilization, and an autonomous custom braking system onboard.

IEEEkeywords: Hybrid robot, heterogeneous robot, mobile robots, energy-
efficient UAV, taxiing

161

“output” — 2023/2/27 — 8:55 — page 162 — #180

6.3 Introduction

In recent years, small-sized Unmanned Aerial Vehicles (UAVs) and Unmanned
Ground Vehicles (UGVs), have generated a lot of interest in civilian applica-
tions. Such applications include retail [D1], logistics [D2], research [D3], and
others [D4], [D5]. The continuous development of these machines and recent in-
novations have helped them enter a wide range of hitherto unexplored domains.
Advancement in computer systems, miniaturization of electronics, artificial in-
telligence, and composite materials is propelling the development of UGVs and
UAVs.

The different body structures and forms of both types of robots, UGVs and
UAVs, give them different behavioral characteristics, features, and different ad-
vantages between them. These features and advantages can be manifested in per-
forming different tasks that are adequate for the robot type. For example, UAVs
are superior in terms of mobility due to their ability to utilize the 3D space to get
from one place to another. However, if the terrain is UGV friendly, a UGV would
cross the same distance with consuming less energy as both carry the same pay-
load. A UGV can be designed to carry a heavy payload (i.e a 10kg payload) for
a longer distance and a longer operation time than a UAV carrying the same pay-
load. Hybrid or Self-heterogeneous UGV-UAV robots (UHAGVs), are designed
to compromise the trade-off between UAVs and UGVs, making them attractive for
researchers to further investigate their potential [D6]. Table 6.1, illustrates the ma-
jor beneficial differences between UAVs and UGVs. The goal behind the design

Robot
Type

Power
consumption

Payload
capacity

Terrain
Restrictions

Operation
Time

Aerial
based HIGH LOW

Air
Only LOW

Ground
based LOW HIGH

Ground
Only HIGH

Self
Heterogeneous MODERATE MODERATE

Air
& Ground HIGH

Table 6.1: The advantages and drawbacks of different types of robots

of the UHAGV model that is presented in this paper is to create a uni-system ma-
chine that confines the benefits of the two types of robots, aerial and ground, while
mitigating the disadvantages that are associated with each robot type, therefore,
increasing the performance of the resulting vehicle.

162

“output” — 2023/2/27 — 8:55 — page 163 — #181

6.4 Previous Work

New explorations and design innovations of hybrid ground/aerial robots have been
investigated recently by researchers. An interesting approach in [D7] uses passive
wheels attached to the frame of a UAV for bridge inspections. The wheels enable
it to climb and run on the bridge surface. Research in [D8] presents a design of
a UAV that also uses wheels and uses the approach of skateboard steering trucks,
which use lateral tilt to affect steering to exploit efficient rolling locomotion to
travel long distances on a smooth surface. A similar design in [D9], presents a
new all-around Air–Land–Sea UAV that uses floating wheels for mobility. The
wheels of this design are used for automatic battery charging as well. Researchers
in [D10] introduce a new design of a flying robot with Adaptive Morphology for
Multi-Modal Locomotion. They present a prototype that can use its wings to walk
on the ground and fly forward. However, these hybrid robot designs either lack
the autonomy and the ability to perceive their environment or construct their own
local map path plan/navigate autonomously through their environment. Other hy-
brid designs change their form for extending the mobility [D11], [D12].
In [D13] and [D14], a group of researchers propose a hybrid robot design and add
autonomy to it by equipping the robot with various sensors such as a 3D Lidar,
a depth camera, a wheel encoder, and a powerful processing unit. Although the
authors claim that ground mobility in their platform achieves a reduction in power
consumption by 5 times than when flying, the power-hungry processing unit and
sensors make their model very power-consuming during operation in any locomo-
tion type.

In this paper, we propose a self-heterogeneous robot that is designed to use a
much-simplified mobility approach than other approaches that are mentioned in
Section 6.4. The proposed simple design requires much less power-consuming
sensors and a much less powerful processing unit with the minor cost of adding
lighter-weight hardware, which, enables aerial and ground autonomy in naviga-
tion, while reducing costs and power consumption.

6.5 UHAGV Model

6.5.1 Hardware Structure

The UHAGV hardware structure can be explained into 3 main blocks as shown in
Fig. 6.1:

163

“output” — 2023/2/27 — 8:55 — page 164 — #182

Figure 6.1: Illustration of the Hardware configuration of the UHAGV.

1. Flight System Block: this block is considered the main drive block of the
robot. It contains the force-generating hardware that is necessary for mo-
bility, ground or aerial. This block contains a companion computer (CC),
for processing all the data from the sensor block and is responsible for con-
trolling the navigation decisions of the robot, a Flight controller (FC), for
controlling the flight dynamics-related parameters through the direct control
of the Electronic Speed Controllers (ESCs) and motors, and other necessary
components for enabling a stable flight.

2. Ground Mobility Block: this block contains the hardware that enables the
ground mobility locomotion for this robot. It contains two lateral large
wheels, which move freely on the main aluminum rod using frictionless
bearings. The aluminum main rod is fixed to the body of the UHAGV. Two
small front wheels are fixed to the base of the UHAGV for two reasons:
the first reason is to fix a relative pitch angle of the UAV to the ground,
the second reason is to prevent the UAV from over-flipping around the alu-
minum shaft when braking. Finally, this block also contains a braking sys-
tem, which consists of carbon fiber rods with high friction pads, these rods
are connected to high-torque digital servos. The whole braking system is
also fixed directly on the aluminum rod or so-called main axis.

164

“output” — 2023/2/27 — 8:55 — page 165 — #183

3. Sensors Block: the sensor block contains two types of sensors: A proxim-
ity sensor and a localization or a VSLAM sensor. The proximity sensor is
composed of a low-resolution, low-computational 2D/3D point-cloud cam-
era. The localization sensor is a low-power consumption VSLAM-enabled
tracking camera that has built-in IMUs for increasing localization accuracy.

Fig. 6.1 and Table 6.2, illustrate hardware specifications and configuration of
the UHAGV.

Hardware Component Type Number

Flight
controller (FC) Pixhawk 2.4.8 1

Electronic Speed
Controllers (ESC) 60Amps SimonK 4

Motors Brushless T-Motors 900kv 4

Companion
Computer(CC) RaspberryPi 4 1

Proximity Sensor 2D/3D Lidar 1

Energy Source
4cell 6,000 mAh

LIPO battery 1

Position Hold Sensor VSLAM Camera 1

Side Wheels
Light-weight
large wheels 2

Front Wheels
small

wheels 3

Servo
Linear

electric servo 2

Table 6.2: The Hardware description of the proposed UHAGV robot design.

6.5.2 UHAGV Notations

Fig. 6.2 shows the notations of the proposed UHAGV model, and is explained in
the following:

165

“output” — 2023/2/27 — 8:55 — page 166 — #184

Figure 6.2: A visual illustration of the axis, forces, and angles of the UHAGVs
frame to the world’s frame.

W⃗ = X⃗w, Y⃗w, Z⃗w The world inertial fixed frame

B⃗ = X⃗b, Y⃗b, Z⃗b The UHAGV body fixed frame

fi ∈ R The force generated from the i′th motor along the axis

F =
∑
fi ∈ R

The sum of the thrust applied from
all motors on the UHAGV

m ∈ R The mass of the airframe and payload

g = 9.8m/s2 The gravitational acceleration

N ∈ R>0 The diameter of the wheel

6.6 Navigation
The UHAGV is able to perceive its environment using sensors onboard. Through
the 2D/3D pointcloud and self-localization data, a 2D/3D local costmap repre-
senting the environment will be constructed. 2D Global and Local path planners
are used to generate the path toward the desired target while maintaining a safe
distance from obstacles. The generated costmaps and trajectory path planners will

166

“output” — 2023/2/27 — 8:55 — page 167 — #185

be used for both (ground and aerial) locomotion types on the UHAGV. Fig. 6.3,
shows a block diagram of the navigation skeleton that governs the locomotion
behavior of the UHAGV.

Figure 6.3: A block diagram of the navigation skeleton that governs the locomo-
tion behavior of the UHAGV.

6.6.1 Aerial Navigation:
The classic way of small-sized UAV-guided navigation is to focus on the abso-
lute position of the vehicle without taking care of the velocity vector. Besides
the stationary flight capability, the UAV is able to move towards any trajectory
in space employing longitudinal and lateral motions where the heading angle is
maintained at the origin. However, this strategy is not adequate for the proposed
UHAGV design, as most sensors onboard point towards the front direction of the
body frame. Non-holonomic navigation is used which enables the UAV to sat-
isfy desired dynamic behavior while tracking the geometric path. Thus, the UAV
dynamic model is arranged in such a way that the lateral motion (roll rotation)
can be canceled and longitude (pitch motion) and yaw angles would be used. The

167

“output” — 2023/2/27 — 8:55 — page 168 — #186

UHAGV while flying, is able to reach any position fined in space by its absolute
position and the yaw angle, using the forward and heading motions.

6.6.2 Ground Navigation:
The UHAGVs ground navigation is based on 2 main pillars: the motion controller
and the navigation controller. The UHAGVs initial state would imply having the
brakes actively locking the wheels of any movements, therefore, resisting any
ground movements using the brakes regardless of any motor activity.

1. Motion controller: to generate forward motion, motors on the UHAGV
would need to spin with a constant pre-set thrust value. The UAV body
surface plane would be inclined relative to the ground with a pre-fixed pitch
angle. The results of this setup enable the generation of a force in the for-
ward direction. For rotating motions (yaw direction), the braking system
will lock on one side wheel, while applying the same thrust value as in for-
ward motion. With only one motion-free wheel and the forward direction
force, the UHAGV is able to turn in CW or CCW senses. Using this mo-
tion strategy, the information of the local path planner is translated using a
custom-designed navigation controller to enable the UHAGV to follow the
constructed geometric path toward the goal.

2. Navigation controller: the UHAGV navigation controller is designed to
translate the information given by the planner into ready-to-use navigation
information for the UHAGV. The navigation information is a set of position
coordinates that guide the UHAGV to reach the target position as shown in
Fig. 6.4. The navigation controller uses a strategy that follows the generated
local path from the planner toward the final goal destination.

The global and local planner constructs a path (Path) towards the final
goal destination, which is represented as a set of consecutive positions p⃗i =
(xi, yi) that lead to the final target position. The Path and p⃗i, are the nav-
igation path messages1 and geometry pose messages2 that contains world-
frame coordinates.The strategy consists of 3 main parts. Due to that the
consecutive path positions p⃗i are very close to each other, an optimized path
is designed that consists of the path positions p⃗i with a larger distance be-
tween them. The goal of this step is to adapt the global/local path to the
UHAGV movements. The optimised new path consists of consecutive steps
S⃗i = (xsi , ysi).

1http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Path.html
2http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/PoseStamped.html

168

“output” — 2023/2/27 — 8:55 — page 169 — #187

Figure 6.4: A visual illustration of the navigation strategy of the UHAGV con-
troller.

Assuming that the initial position of the UHAGV is at S⃗i = (xSi
, ySi

), the
second part consists of calculating the position S⃗i

′ = (x′Si
, y′Si

) which would be
the result of rotating the body of the UHAGV along one of the chosen lateral
wheels untill the the forward axis of the UHAGV points exactly towards ⃗S(i+1) =
(xS(i+1)

, yS(i+1)). In other words, until the UHAGV faces the next position step.
In order to calculate the point position Si

′, we first compute the slope m1 and
m2 of ⃗S(i+1)Si

′ and ⃗Si
′O simultaneously as shown in eq. 6.1.

m1 =
yS(i+1)

− ySi
′

xS(i+1)
− xSi

′
, (6.1)

m2 =
ySi

′ − yO
xSi

′ − xO

Since ⃗S(i+1)Si
′ is ⊥ to ⃗Si

′O and O⃗ = (0, 0) we get the relation in eq. 6.2 and eq.
6.3.

m2 =
−1

m1
(6.2)

x2Si
′ + y2Si

′ = xS′
i
·xS(i+1)

+ yS′
i
·yS(i+1)

(6.3)

Knowing the radius r = 0.5, which represents half the size of the main axis rod
as shown in Fig. 6.4, and applying eq. 6.4 that satisfies the equations of a circle

169

“output” — 2023/2/27 — 8:55 — page 170 — #188

on eq. 6.3, we get the eq 6.5.

x2Si
′ + y2Si

′ = r2 (6.4)

ySi
′ =

r2 − xSi
·xS(i+1)

yS(i+1)

(6.5)

Applying the value of ySi
′ from eq. 6.5 on eq. 6.4, we get eq. 6.6.

(y2S(i+1)
+ x2S(i+1)

)x2Si
′ − (0.5xS(i+1)

)xSi
′ + (0.0625− 0.25yS(i+1)

) = 0 (6.6)

We assume that the constants a, b, and c have the values as shown in eq. 6.7.

a = y2S(i+1)
+ x2S(i+1)

, (6.7)

b = −0.5xS(i+1)
,

c = 0.0625− 0.25yS(i+1)

Using the quadratic formula in eq. 6.8, xSi
′ is calculated.

xSi
′ =

−b±
√
b2 − 4a·c
2a

(6.8)

From eq. 6.8 and eq. 6.4 ySi
′ is calculated.

The point Si
′ = (x′Si

, y′Si
) will have 2 values, the point closer to the point Si is

the chosen position point where the UHAGV will move towards.
The movement decision of the UHAGV would be decided by the eq. 6.9.

Decision =

TurnCW, if ySi

′ > ySi
→ the right brake activated

TurnCCW, if ySi
′ < ySi

→ the left brake activated

Moveforward, if ySi
′ = ySi

→ no brakes activated
(6.9)

The third part is the case where the UHAGV decides to move forward, the
UHAGV will move a distance of d from point (x′Si

, y′Si
) to point (xsi , ysi), which

can be calculated by the eq. 6.10.

d = || ⃗S(i+1) − S⃗ ′
i|| (6.10)

170

“output” — 2023/2/27 — 8:55 — page 171 — #189

6.6.3 Hybrid Navigation:

The UHAGV is able to switch between navigation strategies depending on the
situation. The UHAGV, unlike a typical UGV, would be able to simply avoid
obstacles in ground navigation and fly over them when needed to reach its goal as
shown in Fig. 6.5.

Figure 6.5: An Illustration of the UHAGV switching between ground and aerial
navigation.

6.7 Experiments

The experiment scenario, as shown in Fig. 6.6a, was conducted in the laboratory.
The purpose of this experiment is to test the ground mobility, navigation system,
and maneuverability of the UHAGV in the presence of obstacles. The UHAGV
would first construct a local costmap that relatively locates the obstacles of its
surrounding environment as shown in Fig. 6.6b and then calculate the global and
local path toward the desired goal. The algorithm in the navigation controller layer

171

“output” — 2023/2/27 — 8:55 — page 172 — #190

would then reconstruct a modified path as shown in Fig. 6.6c from the global path
that then will be passed directly as a set of motion instructions to the FC.

Finally, Fig. 6.6d, shows the recorded successful path throughout the mission
that the UHAGV was able to achieve.

(a) Laboratory illustration of the scenario

(b) Rviz illustration of the constructed 3D
local costmap.

172

“output” — 2023/2/27 — 8:55 — page 173 — #191

(c) Rviz illustration of the constructed paths
and steps.

(d) Rviz illustration of the trajectory that the
UHAGV took.

Figure 6.6: Images that articulate the Experiment Scenario.

173

“D” — 2023/2/27 — 8:55 — page 174 — #192

6.8 Conclusions
In this paper, a cost-effective self-heterogeneous robot is designed, developed, and
tested. We show in this paper a different mobility and navigation technique that
extends the mobility and operation time of a robot. The proposed design uses a
combination of a taxiing strategy and friction-based brakes for ground mobility.
The paper also shows that by using custom-designed brakes and a fixed relative
pitch angle, we achieve to reduce a substantial amount of energy rather than con-
suming the energy for stabilizing the UAV body on the main axis as in previously
designed models in the state of the art. The proposed technique also does not need
to use a counter force generated by the motors to stop the robot, however, it uses
a simple friction-based braking system that is applied on the wheels to stop the
whole robot. As a result of reducing a lot of energy while moving on the ground
surface rather than flying, the operation time is therefore increased, which can be
very beneficial for increasing the quality of performance of task-oriented robots.

6.9 Future Work
1. Autonomous adjustment of the pitch angle θ. At this point, the UHAGV

moves and navigates as a result of the Fx applied on its body, which is
generated from having a constant thrust and a fixed pitch angle θ. If the
UHAGV can autonomously set the fixed pitch angle, therefore, increasing
or decreasing θ, it would be able to adjust the velocity without consuming
more energy, while remaining the thrust values unchanged.

2. Computation efficient 3D planner. The UHAGV navigates following a set
of 2D position goals that represent a path defined by a planner. A 3D plan-
ner can be used to help decide when to switch the type of navigation from
ground to Aerial and vice versa, which would increase the autonomy of this
type of hybrid robot, especially for very short obstacles to the ground.

174

“D” — 2023/2/27 — 8:55 — page 175 — #193

Chapter-6 References

[D1] Nesrine Cherif, Wael Jaafar, Halim Yanikomeroglu, and Abbas Yon-
gacoglu. 3d aerial highway: The key enabler of the retail industry trans-
formation. IEEE Communications Magazine, 59(9):65–71, 2021.

[D2] Abdussalam A. Alajami, Guillem Moreno, and Rafael Pous. Design of
a uav for autonomous rfid-based dynamic inventories using stigmergy for
mapless indoor environments. Drones, 6(8), 2022.

[D3] Abdussalam AA Alajmi, Alexandru Vulpe, and Octavian Fratu. Uavs for
wi-fi receiver mapping and packet sniffing with antenna radiation pattern
diversity. Wireless Personal Communications, 92(1):297–313, 2017.

[D4] Alena Otto, Niels Agatz, James Campbell, Bruce Golden, and Erwin
Pesch. Optimization approaches for civil applications of unmanned aerial
vehicles (uavs) or aerial drones: A survey. Networks, 72(4):411–458, 2018.

[D5] Higinio González-Jorge, Joaquin Martínez-Sánchez, Martín Bueno, Arias,
and Pedor. Unmanned aerial systems for civil applications: A review.
Drones, 1(1), 2017.

[D6] Nur Shahida Roslin, Adzly Anuar, Muhammad Fairuz Abdul Jalal, and
Khairul Salleh Mohamed Sahari. A review: Hybrid locomotion of in-pipe
inspection robot. Procedia Engineering, 41:1456–1462, 2012. Interna-
tional Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012).

[D7] Moyuru Yamada, Manabu Nakao, Yoshiro Hada, and Naoyuki Sawasaki.
Development and field test of novel two-wheeled uav for bridge inspec-
tions. In 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 1014–1021, 2017.

[D8] Jared R. Page and Paul E. I. Pounds. The quadroller: Modeling of a
uav/ugv hybrid quadrotor. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4834–4841, 2014.

175

“output” — 2023/2/27 — 8:55 — page 176 — #194

[D9] Nana Takahashi, Shuhei Yamashita, Yurina Sato, Yuta Kutsuna, and Man-
abu Yamada. All-round two-wheeled quadrotor helicopters with protect-
frames for air–land–sea vehicle (controller design and automatic charging
equipment). Advanced Robotics, 29(1):69–87, 2015.

[D10] Ludovic Daler, Julien Lecoeur, Patrizia Bernadette Hählen, and Dario Flo-
reano. A flying robot with adaptive morphology for multi-modal locomo-
tion. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1361–1366, 2013.

[D11] Mengjie Zhang, Bo Chai, Lijuan Cheng, Zhaowu Sun, Guang Yao, and
Lei Zhou. Multi-movement spherical robot design and implementation.
In 2018 IEEE International Conference on Mechatronics and Automation
(ICMA), pages 1464–1468, 2018.

[D12] Scott Morton and Nikolaos Papanikolopoulos. A small hybrid ground-air
vehicle concept. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5149–5154, 2017.

[D13] David D. Fan, Rohan Thakker, Tara Bartlett, Meriem Ben Miled, Leon
Kim, Evangelos Theodorou, and Ali-akbar Agha-mohammadi. Au-
tonomous hybrid ground/aerial mobility in unknown environments. In
2019 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 3070–3077, 2019.

[D14] Arash Kalantari, Thomas Touma, Leon Kim, Rianna Jitosho, Kyle Strick-
land, Brett T. Lopez, and Ali-Akbar Agha-Mohammadi. Drivocopter: A
concept hybrid aerial/ground vehicle for long-endurance mobility. In 2020
IEEE Aerospace Conference, pages 1–10, 2020.

176

“output” — 2023/2/27 — 8:55 — page 177 — #195

6.10 UHAGV v5
During this thesis, various design layouts were tested for the goal of combining
the heterogeneous characteristics and features of aerial and ground robots in one
robot design.

One of these design models that is worth mentioning in this thesis is called
UHAGV v5 model. The structure idea and operating mechanism of this hybrid
robot design is that a UAV is able to use a ground platform with Omni-directional
wheels that allow carrying different payloads, while at the same time, the UAV has
the ability to detach and fly off when it does not need to use the ground platform or
its payload. The ground platform is composed of 4 honolomic-type wheels, which
are mounted on a square lightweight frame. The frame of the ground platform
is attached to a base with an aluminum rod called the docking axis, which is
specially designed for the UAV to be attached or docked on, as shown in Fig. 6.7.
The UHAGV v5 model, as for the UHAGV v4 model, uses a taxiing locomotion
technique for mobility while attached to the ground platform.

(a) A top view of the UHAGV v5 model.
(b) A side view of the UHAGV v5
model.

Figure 6.7: An illustration of the axes and direction of movement of all wheels
and motors of the UHAGV when moving in the linear forward direction.

Mobility

The ground mobility feature on this design operates as the following: Forward
movement: in order to generate a forward movement for the UHAGV v5, the rear
motors would need to spin faster than the front motors on the UAV, thus, inclining

177

“output” — 2023/2/27 — 8:55 — page 178 — #196

the body of the UAV with a pitch angle α along the docking axis. Since the thrust
of a UAV is the amount of upward force the UAV can produce when at full throttle,
an adequate thrust constant value KT and pitch angle α are set, which, therefore,
generates a force towards the front axis (+ Y-axis) that enable the movement of
the UHAGV in the linear forward direction. Figs. 6.7a and Fig. 6.7b, illustrate
the schematics of the forward movement of the UHAGV.

Reverse movement: for generating a backward or reverse movement for the
UHAGV v5, unlike the forward direction movement, the front motors would need
to spin faster than the rear motors on the UAV, thus, inclining the body of the UAV
with a pitch angle α along the main shaft axis. With an adequate thrust constant
value KT and a pitch angle α, a force towards the reverse direction of the body
frame (− Y-axis) will be generated to enable the movement of the UHAGV in the
linear reverse direction. Figs. 6.8a and Fig. 6.8b, illustrate the schematics of the
forward movement of the UHAGV.

(a) A top view of the UHAGV v5 model.

(b) A side view of the UHAGV v5 model.

Figure 6.8: An illustration of the axes and direction of movement of all wheels
and motors of the UHAGV when moving in the linear reverse direction.

Rotating movements: for applying rotation movements on the UHAGV v5,
both in CW and CCW directions, the diagonal motors would need to spin faster
than the other motors on the UHAGV. Applying an adequate thrust constant value
KT and a yaw angle β to generate a rotation force (Yaw) around the center point
of the UAV and ground platform (Z-axis). Figs. 6.9a, 6.9b, 6.10a, and 6.10b,
illustrate the schematics of the rotation movement of the UHAGV in CW and
CCW.

178

“output” — 2023/2/27 — 8:55 — page 179 — #197

(a) A top view of the UHAGV v5 model. (b) A side view of the UHAGV v5 model.

Figure 6.9: An illustration of the axes and direction of movement of all wheels
and motors of the UHAGV when rotating in a counter-clockwise direction.

(a) A top view of the UHAGV v5 model. (b) A side view of the UHAGV v5 model.

Figure 6.10: An illustration of the axes and direction of movement of all wheels
and motors of the UHAGV when rotating in a clockwise direction.

Navigation

The navigation and autonomous movement of this design will be investigated and
designed in future work from the writing of this thesis.

179

“output” — 2023/2/27 — 8:55 — page 180 — #198

“output” — 2023/2/27 — 8:55 — page 181 — #199

Chapter 7

CONCLUSIONS

This thesis reveals a collective set of conclusions that shares one important goal,
which is increasing the performance and automation of task-driven robots towards
industry 4.0. This set of conclusions can be briefly described as the following:

1. UAVs: exploiting UAVs for performing autonomous inventory tasks in map-
less environments was presented in this thesis. These powerful machines
prove to be very useful for autonomous inventory missions, especially in
large warehouses. However, the technology still faces many constraints and
drawbacks compared to ground inventory robots. The major constraints
were: the complexity of these machines (in terms of indoor navigation, sta-
bility, energy-computation power trade-offs), the high costs associated with
experimenting with these machines for research purposes, and the major
constrain of having a limited flight time, which makes the overall continu-
ous charging time very time-consuming and research-inefficient. The pro-
posed solution to mitigate the drawbacks of UAVs on research time and cost
efficiency, was to design a simulation tool for simulating RFID technology,
that enables the simulation of UAVs performing RFID-based inventory mis-
sions.

2. Simulation: the thesis proposes a simulation tool that enables the simulation
of RFID technology that is designed to cooperate with most robot types and
forms. Using the proposed simulation tool, more experiments were con-
ducted on UAVs performing autonomous inventory missions without the
risk of losing time on continuous charging, while reducing to null the costs
of repairing the machines/environment from possible crashes during exper-
imenting in the real world.

3. Heterogeneous Collaboration: this thesis also discusses how a team of het-
erogeneous robots, "aerial", and "ground", can benefit greatly by collaborat-

181

“T” — 2023/2/27 — 8:55 — page 182 — #200

ing in known environments. The thesis exposes a multi-robot localization
method that increases the overall team performance in unexplored environ-
ments. This thesis also articulates the benefits of the proposed method on an
inventory mission performed by a heterogeneous team of robots in various
scenarios. Although enabling the heterogeneous collaboration of a team of
robots permits collective intelligence from individual simplicity, however, it
will require pre-installing and running many algorithms on the robots which
increases the complexity and reduces autonomy. The result of this conclu-
sion is the design of a self-heterogeneous robot that shares the same hetero-
geneous features of 2 robots, "UAV" and "UGV".

4. Self-Heterogeneous or Hybrid vehicles: The thesis also discusses the de-
sign of a hybrid/self-heterogeneous robot for the purpose of increasing the
performance of an individual robot. The hybrid vehicle design, which com-
bines both features and characteristics of ground and aerial vehicles, was
able to show initial experimental results that show advantages in reduced
energy consumption, increasing the maximum operation time, and increas-
ing the distance traveled. The proposed UHAGV design, theoretically, has
a superior exploration performance than the other conventional ground or
aerial robots, which is considered one of the main pillars on which this the-
sis is based.

182

“T” — 2023/2/27 — 8:55 — page 183 — #201

Thesis References

[T1] Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard.
A review of physics simulators for robotic applications. IEEE Access,
9:51416–51431, 2021.

[T2] Maziar Arjomandi, Shane Agostino, Matthew Mammone, Matthieu Nel-
son, and Tong Zhou. Classification of unmanned aerial vehicles. Report
for Mechanical Engineering class, University of Adelaide, Adelaide, Aus-
tralia, pages 1–48, 2006.

[T3] Xingbang Yang and Xuan Pei. 15 - hybrid system for powering unmanned
aerial vehicles: Demonstration and study cases. In Massimiliano Lo Faro,
Orazio Barbera, and Giosué Giacoppo, editors, Hybrid Technologies for
Power Generation, Hybrid Energy Systems, pages 439–473. Academic
Press, 2022.

[T4] Regina Fazio Maruca. Retailing: confronting the challenges that face
bricks-and-mortar stores. Harvard Business Review, 77(4):159–159, 1999.

[T5] Mikko Kärkkäinen. Increasing efficiency in the supply chain for short life
goods using rfid tagging. International Journal of Retail & Distribution
Management, 31:529–536, 10 2003.

[T6] Marc Morenza-Cinos, Victor Casamayor-Pujol, Jordi Soler-Busquets,
Jos Luis Sanz, Roberto Guzm, and Rafael Pous. Development of an RFID
Inventory Robot (AdvanRobot), pages 387–417. Springer International
Publishing, Cham, 2017.

[T7] Pous, R. and De Porrata-Doria, R. (2018) automated inventory taking
moveable platform: advanrobot. https://patents.google.com/
patent/US9939816B2. accessed November 14, 2019.

[T8] Keonn’s AdvanReader 160 keonn’s advanreader 160. https://
keonn.com/components-product/advanreader-160/. Ac-
cessed: 2022.

183

“output” — 2023/2/27 — 8:55 — page 184 — #202

[T9] Keonn’s AdvantennaSP11 keonn’s advantennasp11. https://keonn.
com/components-product/advantenna-sp11/. Accessed:
2022.

[T10] Ali Abdul Khaliq. From Ants to Service Robots: an Exploration in
Stigmergy-Based Navigation Algorithms. PhD thesis, Örebro University,
2018.

[T11] Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre,
and Frédérick Carrel. A comprehensive survey of visual slam algorithms.
Robotics, 11(1):24, 2022.

[T12] Eitan Marder-Eppstein. MoveBase move base is a navigation package for
robots., 2018. Accessed: 2022.

184

“output” — 2023/2/27 — 8:55 — page 185 — #203

Chapter 8

LIST OF PUBLICATIONS

8.1 International journal articles

1. Alajami, Abdussalam A., Guillem Moreno, and Rafael Pous. 2022. "De-
sign of a UAV for Autonomous RFID-Based Dynamic Inventories Using
Stigmergy for Mapless Indoor Environments" Drones 6, no. 8: 208. doi:
10.3390/drones6080208 [First-Auther]

2. A. A. Alajami, G. Moreno and R. Pous, "A ROS Gazebo Plugin Design to
Simulate RFID Systems," in IEEE Access, vol. 10, pp. 93921-93932, 2022,
doi: 10.1109/ACCESS.2022.3204122. [First-Author]

3. Alajami, Abdussalam A., Nil Palau, Sergio Lopez-Soriano, and Rafael Pous,
"A ROS-based Distributed Multi-robot localization and orientation Strategy
for Heterogeneous Robots," in Intelligent Service Robotics 2022. [First-
Author, Accepted]

4. Alajami, Abdussalam A. and Rafael Pous, "Design of an Energy-efficient
Self-Heterogeneous Aerial-Ground Vehicle", in Drones journal, 2022. [First-
Auther, Under preparation]

5. V. Casamayor-Pujol, B. Gastón, S. López-Soriano, A. A. Alajami, and R.
Pous, "A Simple Solution to Locate Groups of Items in Large Retail Stores
Using an RFID Robot," in IEEE Transactions on Industrial Informatics, vol.
18, no. 2, pp. 767-775, Feb. 2022, doi: 10.1109/TII.2021.3080670. [Co-
Author]

185

“output” — 2023/2/27 — 8:55 — page 186 — #204

8.2 Conference proceeding
1. A. A. Alajami, R. Pous and G. Moreno, "Simulation of RFID Systems in

ROS-Gazebo," 2022 IEEE 12th International Conference on RFID Technol-
ogy and Applications (RFID-TA), 2022, pp. 113-116, doi: 10.1109/RFID-
TA54958.2022.9924062.[First-Author]

2. Alajami, Abdussalam A. and Rafael Pous, "Design of an Energy-efficient
Self-Heterogeneous Aerial-Ground Vehicle", in ICARA 2023: 2023 9’th
International Conference on Automation, Robotics, and Applications, 2023.
[First-Author, Accepted]

186

