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cĺınicas

Automatic text processing of clinical narratives
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Em primeiro lugar à minha faḿılia, em especial aos meus pais, por todo o
apoio que me deram durante estes anos.

Ao meu orientador, Professor Doutor José Lúıs Oliveira, e coorientador,
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Resumo A informatização dos sistemas médicos e a subsequente tendência por parte
de profissionais de saúde a substituir registos em formato de papel por reg-
istos electrónicos de saúde, permitiu que os serviços de saúde se tornassem
mais seguros e eficientes. Além disso, estes registos electrónicos apresentam
também o benef́ıcio de poderem ser utilizados como fonte de dados para es-
tudos observacionais. No entanto, estima-se que 70-80% de todos os dados
cĺınicos se encontrem na forma de texto livre não-estruturado e os dados
que estão estruturados não seguem todos os mesmos padrões, dificultando
o seu potencial uso nos estudos observacionais.
Esta dissertação pretende solucionar essas duas adversidades através do uso
de processamento de linguagem natural para a tarefa de extrair conceitos
de texto livre e, de seguida, usar um modelo comum de dados para os har-
monizar. O sistema desenvolvido utiliza um anotador, especificamente o
cTAKES, para extrair conceitos de texto livre. Os conceitos extráıdos são,
então, normalizados através de técnicas de pré-processamento de texto,
Word Embeddings, MetaMap e um sistema de procura no Metathesaurus
do UMLS. Por fim, os conceitos normalizados são convertidos para o mod-
elo comum de dados da OMOP e guardados numa base de dados.
Para testar o sistema desenvolvido usou-se o conjunto de dados i2b2 de
2010. As diferentes partes do sistema foram testadas e avaliadas individual-
mente sendo que na extração dos conceitos obteve-se uma precisão, recall e
F-score de 77.12%, 70.29% e 73.55%, respectivamente. A normalização foi
avaliada através do desafio N2C2 2019-track 3 onde se obteve uma exatidão
de 77.5%. Na conversão para o modelo comum de dados OMOP observou-
se que durante a conversão perderam-se 7.92% dos conceitos. Concluiu-se
que, embora o sistema desenvolvido ainda tenha margem para melhorias,
este demonstrou-se como um método viável de processamento automático
do texto de narrativas cĺınicas.





Keywords Concept Recognition, Information Retrieval, Natural Language Processing,
Text Mining.

Abstract The informatization of medical systems and the subsequent move towards
the usage of Electronic Health Records (EHR) over the paper format by
medical professionals allowed for safer and more efficient healthcare. Ad-
ditionally, EHR can also be used as a data source for observational studies
around the world. However, it is estimated that 70-80% of all clinical data
is in the form of unstructured free text and regarding the data that is struc-
tured, not all of it follows the same standards, making it difficult to use on
the mentioned observational studies.
This dissertation aims to tackle those two adversities using natural language
processing for the task of extracting concepts from free text and, afterwards,
use a common data model to harmonize the data. The developed system
employs an annotator, namely cTAKES, to extract the concepts from free
text. The extracted concepts are then normalized using text preprocessing,
word embeddings, MetaMap and UMLS Metathesaurus lookup. Finally, the
normalized concepts are converted to the OMOP Common Data Model and
stored in a database.
In order to test the developed system, the i2b2 2010 data set was used.
The different components of the system were tested and evaluated sepa-
rately, with the concept extraction component achieving a precision, recall
and F-score of 77.12%, 70.29% and 73.55%, respectively. The normal-
ization component was evaluated by completing the N2C2 2019 challenge
track 3, where it achieved a 77.5% accuracy. Finally, during the OMOP
CDM conversion component, it was observed that 7.92% of the concepts
were lost during the process. In conclusion, even though the developed sys-
tem still has margin for improvements, it proves to be a viable method of
automatically processing clinical narratives.
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Chapter 1

Introduction

1.1 Context and motivation

Over the years efforts were made to improve the healthcare system through informati-
zation, with healthcare providers moving towards the usage of Electronic Health Records
(EHR) replacing the old paper based format. An EHR is a digital version of a patient’s chart
[56]. Its digital format inherently makes it easier to keep up-to-date across multiple systems,
allowing for a faster lookup of a patient’s history as well as speeding up appointments and
office visits. This leads to a safer and more reliable prescribing with less medical errors due
to information being outdated or due to illegible handwriting [28]. For instance, in Louisiana,
Jane Herwehe et al. [61] implemented a system using the Louisiana Public health Information
Exchange (LaPHIE) as a source of patient data to alert medical providers when a patient with
HIV/AIDS had not received care in over twelve months. Overall, hospitals with electronic
medical record systems that have automated notes and records and clinical decision support
had fewer complications and lower mortality rates from medical errors, as well as lower costs
[35][80]. Additionally the storing of the records is also safer, as paper is prone to deterioration
and damages while digital data can be backed up periodically [28].

The other benefit of EHRs, and the one that will be the main focus of this dissertation,
comes from its secondary use, its use as a data source for observational studies. EHRs are
an increasingly important source of real-world healthcare data for observational research [43],
as they include large and diverse populations that represent real-world patterns of disease
and treatment. This diversity of the data sources also helps mitigate a common problem
when using data from a single medical unit or hospital, in that the data leads to heavily
biased results. Analyzing existing data also tends to be less expensive, less time consuming
and overall more convenient than creating a new curated dataset. As pointed out in the
work of Victor M.Castro et al. [46], researchers have used these data sources to test targeted
associations between drugs and possible adverse effects of those drugs [96][45] and to compare
the effectiveness of established therapies [47] Overall, having access to this much patient data
worldwide creates the potential to vastly improve medical discoveries and advancements.

Regarding the format of the data that can be present in an EHR, one could split it into
two categories, structured and unstructured. Structured data typically encodes lab values,
encounters and medication lists. Alternatively unstructured data is typical natural language
free text, commonly found in the form of medical notes or clinical narratives [68]. Free text
makes it harder for automated systems to operate normally as computers don’t inherently

1



understand the data present in natural language texts. One may question why don’t medical
professionals simply use the regular data fields and insert the data in a structured way, but
clinical narratives play an important role in the healthcare system. For example, it was
shown in the work of Preethi Raghavan et al. [85] that clinical narratives are essential to
solving 59% of the chronic lymphocytic leukemia (CLL) trial criteria and 77% of the prostate
cancer trial criteria, specifically, for resolving eligibility criteria with temporal constraints.
Writing the narrative helps clinicians describe the current clinical practice in a way that is
more convenient to share and discuss with other professionals. Additionally the narrative
can help them reflect on their practice or better analyze a peculiar clinical case [29]. This
combination of factors creates a dilemma, as it’s both important to keep free text, as well as
making it more structured and easier for automated systems to extract information from it,
demonstrating the importance of information retrieval and data uniformization methods.

1.2 Objectives

The focus of this dissertation is the development of tools for processing of the high volume
of unstructured data stored in clinical notes using Text mining and Natural Language Pro-
cessing (NLP) techniques to extract relevant medical concepts from them, with the purpose
of then normalizing the extracted data into a common format (data model). The goal of this
dissertation can thus be divided in the following four main steps:

• Explore the current state of the art NLP and text mining software as well as text
processing techniques;;

• Define a dataset, which must already have existing normalized data available in order
to validate the results of the system being developed;

• Develop text processing tools as well as employ existing NLP ones to extract the data
from the clinical notes;

• Normalize the data extracted from the dataset into the common data model.

1.3 Outline

This dissertation is organized into five more chapters, which are described below.
Chapter 2 - State of the art, presents current existing technologies, tools and methods

related to the main topics of this project. It begins by presenting some of the existing methods
of extracting information from unstructured data in the form of text, as well as the metrics
used to grade those extraction methods, then it proceeds to a comparison between multiple
state of the art annotating software, and the chapter concludes by discussing common data
models.

Chapter 3 - N2C2 challenge, describes the N2C2 2019 challenge track-3 and the system
developed to complete it. It starts by explaining what the goals of the challenge are, as well
as what dataset and evaluation methods will be used. A brief explanation regarding the
motivation to complete this challenge and how it fits within this dissertation’s theme is also
provided. Proceeding those introductory sections of the chapter, the steps taken to complete
the challenge, through the development of a Named Entity Normalization (NEN) system, are
described.

2



Chapter 4 - System implementation, presents the implemented system and provides
a discussion regarding its components. It starts by presenting the Named Entity Recognition
(NER) component developed, including the stages of its development and why each decision
was made in the process of improving its performance. Afterwards it presents the Extract
Transform Load (ETL) component, providing a brief explanation of its goal in the system
and expected outcomes, followed by the steps taken to make it possible.

Chapter 5 - Results, presents the results obtained from the tests done to the system
components implemented in chapter 4, providing a discussion regarding the methods used to
test and validate them, as well as the performance impact of each step taken to improve the
system.

Chapter 6 - Conclusion, briefly summarizes the accomplished work. Additionally
some ideas for future work are proposed to make the system easier to use from the end user
perspective, as well as pointers to improve the effectiveness of the implemented system.

3



Chapter 2

State of the art

This chapter aims to describe the current most relevant technologies, tools and methods
related to the main topics of this project. It begins by presenting some of the existing methods
of extracting information from unstructured data in the form of text, as well as the metrics
used to grade it. Proceeds to describe some of the main annotators, as well as some of the
related work done using them, and finalizes with a discussion about common data models
(CDM).

2.1 Dealing with unstructured data

As already mentioned in the introduction chapter, clinical narratives, which are a form
of unstructured free text, are an essential part of healthcare, especially in the more complex
cases, where the very act of putting thoughts in writing helps the healthcare professionals in
solving such cases. But they pose an added adversity to the automation of electronic medical
records systems that rely on data being properly structured. An estimated 70-80% of all
clinical data are available in free text documents [55], and although even text documents
may contain a few structured fields, such as title and date, the vast majority of its data is
in unstructured text form, and in order to use, query and analyze the data it needs to be
properly structured with each piece of information being tagged and categorized. With those
considerations, in order to derive high quality data from unstructured text one must resort to
methods of text mining and to a pivotal subset of text mining - Natural Language Processing
(NLP) [94].

Text mining is the process of exploring and analyzing large quantities of unstructured text
data [52] aided by software that can identify lexical or linguistic usage patterns in the data with
the purpose of extracting high-quality information from that same unstructured text data.
This encompasses tasks from information retrieval, concept extraction, to text classification
[60]. When using text mining in combination with the previously discussed electronic health
records (EHR), it allows for compelling developments like an hospital system capable of
estimating future bed demand using only textual information from early medical records from
the emergency department [73]; or a surgical site surveillance system that, through pattern-
matching based text mining of electronic health and administrative records for patients who
underwent surgical procedures recently, predicts whether the patient developed a surgical
site infection [37]; or predicting patient readmission by identifying specific factors recorded
in primary care [107]. Text mining is for the most part a probabilistic process, it targets
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patterns in an attempt to extract probably useful and probably correct information [102].

NLP is a component of text mining, it allows software to process, analyze and derive
information from the human natural language. While text mining focuses on the text itself,
NLP focuses on the underlying metadata. As described by Anne Kao et al. [66] it can be put
roughly as figuring out who did what to whom, when, where, how and why. NLP makes use of
linguistic concepts such as Part of Speech (POS) (e.g. noun, verb, adjective) and grammatical
structure. It has to deal with ambiguities and figure out what previously mentioned noun
is a pronoun referring to [66]. By better understanding the underlying meaning of the text
rather than just relying on specific text patterns and triggers, it allows for a deeper, more
nuanced analysis of health records. For instance, this enabled the development of a system
that is able to compute the chances of hospital fall risk. The system analyzes registered
nurses’ electronic narrative notes and discover if there is meaningful fall risk, as it was found
that these can contain information about clinical as well as environmental and organizational
factors that could affect fall risk but are not explicitly recorded by the provider as fall risk
factors [40]. Additionally in another recent study NLP was used to process hospital discharge
notes to improve the prediction of suicide and accidental death after discharge from hospitals
[64]. Ultimately, and especially in more advanced and complex systems, one could say there
is some overlap between what’s considered pure text mining and what’s considered NLP.

2.2 Text processing

To ease the process of deriving data from text, certain methods of text processing are
typically applied before the actual data retrieval process. The most commonly applied text
processing methods are normalization, tokenization and chunking. While the purpose of
normalization is transforming the text to improve the information extraction, the other two
methods are more centric on the actual extraction of, selecting, tagging and grouping up
information [59][65]. It’s also during the tagging of information that part-of-speech tagging
is performed, where each word is identified as being a noun, pronoun, verb, etc [77]. These
methods aren’t typically done separated but rather combined and applied sequentially.

2.2.1 Normalization

The goal of normalization is to turn every word to their most standard form allowing
processing to proceed uniformly. This is done through processes such as lowercasing, stem-
ming, lemmatization, punctuation removal or converting numbers to their word equivalents
[1]. Typically, the first step of normalization is lowercasing, which is a process where all text
is converted to lowercase, for example “Canada” becomes “canada”, like demonstrated on
Table 2.1. This makes it so that all variations of casing of a word will be converted to a single
uniform one, making the text processor more efficient.

Table 2.1: Demonstration of the lowercasing process used in text preprocessing

Original word Lowercase word

Canada canada

PORTUGAL portugal

TomCat tomcat
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As the goal is to extract valuable information, words that carry no value are removed.
In text mining these words are called stop words [86], which are words that add no mean-
ingful data and serve only to aid speech, such as “the”, “a”, “as”, “in”. Addiotionally,
symbols (e.g. “#”, “@”) as well as punctuation marks (e.g. quotation marks, question mark,
comma, hyphen) are also removed and replaced with a single space. These methods of text
uniformization can be seen in Table 2.2.

Table 2.2: Examples of text preprocessing methods of removal of stop words and removal of
punctuation marks

Original phrase Processed phrase

The “work” is done work is done

John’s car? john car

Hello, got the e-book? hello got e book

In order to make the text more uniform, word contractions are also expanded [21], meaning
that words such as “don’t” are converted to “do not”, which can be observed in Table 2.3.
This step has to be carefully planned with the previously mentioned symbol / punctuation
removal, because if the apostrophe is removed from a contraction, the algorithm might not
recognize the contraction, this can be solved by either not removing the apostrophe until
this step is done, not removing apostrophes in those specific cases, or making the contraction
algorithm recognize the contraction without the apostrophe, it’s up to the developer to decide
on a solution.

Table 2.3: Showcasing the text mining process of expansion of contractions

Contraction Expanded contraction

Don’t Do not

It’s It is

She’ll She will

While most other steps in normalization are applied sequentially and used together, the
next step involves two methods where only one of them is applied, depending on the preference
of the developper, these methods are stemming and lemmatization. Stemming consists of
reducing inflection in words (e.g. troubled, troubles) to their root form (e.g. trouble). It uses
a crude heuristic process that chops off the ends of words, so in some cases the words “trouble”,
“troubled” could be stemmed to “troubl” instead of “trouble”. A stemmer algorithm processes
each word without taking context into account, it cannot differentiate between words which
have different meanings depending on part of speech. The advantage of stemmers is that
they’re easier to implement and run faster, and the reduced accuracy may not matter for
some applications [78]. Alternatively, while lemmatization has the same goal as stemming
(i.e. reducing inflection in words and using their root form), it tries to do it the proper way.
Rather than just chopping letters off, it transforms words to their actual root, even if visually
they’re not similar, for example, the word “better” would map to “good”. A comparison
between the two methods can be seen in Table 2.4.
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Table 2.4: Examples of the comparisons between applying stemming and lemmatization al-
gorithms to the same words.

Word Stemming Lemmatization

better better good

computers comput computer

are are be

is is be

wanted want want

information inform information

informative inform informative

2.2.2 Tokenization and chunking

Tokenization is essentially splitting a phrase, sentence, paragraph or an entire text docu-
ment into smaller units, such as individual words or terms. Each of these smaller units are
called tokens. One can think of tokens as parts like a word is a token in a sentence, and
a sentence is a token in a paragraph [14][20]. It’s typically in this step that the previously
mentioned Part of Speech (POS) tagging process is applied. This process can be seen in
Figure 2.1 where the sentence “We saw the yellow dog” is tokenized and each token is ade-
quately identified with the corresponding POS tag. The tags present in the figure are personal
pronoun (PRP), verb (VBD - past tense), determiner (DT), adjective (JJ) and noun (NN -
singular) respectively.

Figure 2.1: Example of the tokenization with part of speech tagging [12].

In order to improve the tokenization process, chunking [30] may be utilized. Chunking
is a process where multi-token sequences are combined and labeled, called chunks. It works
on top of POS tagging, it uses POS-tags as input and provides chunks as output. One of
the main goals of chunking is to group into what are known as ”noun phrases”, typically
referred to as NP. These are phrases of one or more words that contain a noun, maybe some
descriptive words, maybe a verb, and maybe something like an adverb. The idea is to group
nouns with the words that are in relation to them. Using the previously shown POS tagging
Figure 2.1 as baseline, it’s shown in Figure 2.2 the result of employing the chunking process
to it. The smaller boxes show the word-level tokenization and part-of-speech tagging, while
the large boxes show higher-level chunking. Each of these larger boxes is called a chunk. Like
tokenization, which omits whitespace, chunking usually selects a subset of the tokens. Also
like tokenization, the pieces produced by a chunker do not overlap in the source text.
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Figure 2.2: Segmentation and labeling at both the token and chunk levels.

2.2.3 Named Entity Recognition (NER) and Normalization (NEN)

These methods of text processing, in the context of this dissertation, ultimately culminate
in Named Entity Recognition (NER) and Named Entity Normalization (NEN). Named Enti-
ties are defined as proper names and quantities of interest. This includes person and location
names, as well as dates, times, percentages and monetary amounts [50][81], or, in the context
of this dissertation, they can be thought of as medical concept names, dosages, etc.

NER refers to the task of locating those same entities in free text and subsequently
classifying them into predefined categories such as person names, locations, medical codes
or quantities. This is typically done through the usage of annotators, which like the name
suggests, are software used to annotate those named entities in free text. These annotators
will be discussed in more detail further in this chapter. NER plays an important role in
applications of information extraction and can be used as a source of information for NLP
applications [79].

Named Entity Normalization, like the name suggests, is a normalization task where it’s
assigned suitable identifiers to recognized entities, and it’s typically done after the NER pro-
cess. NEN is a challenging task, especially in the medical field, as many terms have multiple
synonyms and variations and medical professionals often refer to them using abbreviations
[70]. Several NER and normalization studies have been conducted in the past years to im-
prove and resolve these ambiguities, for instance, in the work of Hyejin Cho et al. [51], where
word embeddings created with the data from National Center for Biotechnology Information
(NCBI) were employed.

2.3 Evaluation methodology of NER systems

This section will go over the methodology typically employed when evaluating the perfor-
mance of a NER system. Before discussing some of NER tools and some of the work done
using each one of them, which will be presented in the next section, one must understand
the terminology used when grading their performance, what metrics are used, and why those
metrics are used. Evaluation metrics make use of four base definitions:

• True Positive (TP): correct prediction that an instance is positive;

• False Positive (FP): incorrect prediction that an instance is positive;

• True Negative (TN): correct prediction that an instance is negative;

• False Negative (FN): incorrect prediction that an instance is negative;

These metrics form the confusion matrix, observable in table 2.5, effectively measuring the
totality of outcomes [69][91].
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These metrics form the confusion matrix, observable in table 2.5, effectively measuring
the totality of outcomes [69][91].

Table 2.5: Confusion matrix of evaluation metrics for a NER system.

Predicted
Positive Negative

Actual
Positive TP FN
Negative FP TN

Through the presented metrics that form the confusion matrix it’s possible to derive
the standard metrics: precision, recall, accuracy and F-score, which all take values between
zero and one. Precision (Equation 2.1) measures the ability of a system to present only
the relevant entities, it’s the proportion of relevant entities among the retrieved entities. In
contrast, recall (Equation 2.2) measures the ability of a system to present all relevant entities,
it’s the proportion of relevant entities that were retrieved out of all relevant entities in the
collection [84].

Precision =
relevant items retrieved

total items retrieved
=

TP

TP + FP
(2.1)

Recall =
relevant items retrieved

relevant items in collection
=

TP

TP + FN
(2.2)

Accuracy (Equation 2.3) represents the proportion of correct classifications out of all
classifications. Although a high accuracy value is generally good, the number can be very
misleading as it does not take into account how the data is distributed. For instance, in
screening for a relatively rare condition, one can achieve a high accuracy ignoring all evidence
and classifying all cases as negative. If only 5% of patients have the condition in question, a
physician who always blindly states that the condition is absent will be right 95% of the time
so, for this reason accuracy may be considered as being of limited usefulness as an index of
diagnostic performance [76].

Accuracy =
correct classifications

all classifications
=

TP + TN

TP + TN + FP + FN
(2.3)

For the reasons previously presented, the metric that is typically used to evaluate NER
systems is the F-score (Equation 2.4), also commonly referred to as F1-score or F-measure,
which is the harmonic mean of precision and recall. The harmonic mean gives a better measure
of incorrectly classified cases as it penalizes extreme values, thus being more resistant to being
misleading in cases of highly imbalanced data sets.

Fscore = 2
Precision . Recall

Precision + Recall
(2.4)

It should be noted that no metric is infallible, although F-score has good qualities, the
metric has received some criticism, namely from David Hand and Peter Christen [58] for
giving equal importance to precision and recall, with the argument that different types of
mis-classifications incur different costs. It has also been pointed out by David Powers [84]
that, due to the nature of its formula, it ignores True Negatives.
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2.4 Available software

This section will go over some of the more relevant available software for annotating
medical concepts. It will go over the following software: cTAKES [8], MetaMap [18], MedEx
[106], MedTagger [17], BeCAS [5] and Neji [19]. Some of which are already equipped with a
pipeline that include the tools for text pre-processing before deriving the information from
the text. A brief description of each annotator will be presented, as well as some of the work
that other teams have accomplished using said software. The choice of these annotators is
based on a multitude of factors including popularity in the scientific community, the amount of
research papers in which they are mentioned and performance that other researchers achieved
while using them.

2.4.1 cTAKES

cTAKES, originally developed by a team of physicians, computer scientists and software
engineers at the Mayo Clinic, is an open source, NLP system. It’s an acronym for clinical Text
Analysis and Knowledge Extraction System and, like the name suggests, was designed aiming
at processing clinical free texts originating from EHRs, identifying relevant entities, such as
diseases, treatments and drugs, and mapping them to their corresponding Unified Medical
Language System (UMLS) [41] Metathesaurus concepts. It was built upon the Unstructured
Information Management Architecture (UIMA) [2][54] framework using components trained
specifically for clinical text [92]. One of its most appealing features is its modular, fully cus-
tomizable pipeline, and although by default it includes a version of the UMLS Metathesaurus
as its dictionary, it allows the usage of custom dictionaries provided by the user.

Kersloot MG et al. [67] included cTAKES in their developed web-based Medical Language
Processing system. Their system uses cTAKES for the pre-processing and processing of free-
text clinical narratives, since it uses the UMLS as its dictionary, providing a generic way of
concept matching and detection of syntactic relationships.

Another team used cTAKES to build a speech transcriber for Electronic Medical Records
use [101]. The team developed a speech transcriber for a web-based Electronic Medical
Record (EMR) with the goal of dealing with a major challenge faced by clinicians who use
EMR, which is the lowered perceived quality of patient-doctor communication and interaction
as a result of doctors being distracted with typical EMR forms use during consultations. In
their developed system cTAKES is later used for clinical annotation on the transcribed speech.

2.4.2 MetaMap

MetaMap is a biomedical text annotation tool developed by Dr. Alan Aronson [36] at the
National Library of Medicine (NLM). It’s a rule-based tool that uses NLP and computational
linguistic techniques to identify possible biomedical concept mentions in text and map them
to the UMLS Metathesaurus. It evaluates the annotations based on centrality, variation,
coverage and cohesiveness, scoring them based on their probability of being a match. It
provides some degree of configurability, allowing users to set option flags that control distinct
modules, as well as the output format, including XML, JSON and more human-readable text
formats.

Its capabilities as a tool for extracting relevant information from EHRs have been demon-
strated in the work of Jinying Chen et al. [48] - FOCUS (Finding impOrtant medicalConcepts
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most Useful to patientS), a system designed to help patients better understand their own EHR
notes. Many health organizations allow patients to access their own EHR notes through on-
line patient portals, however, EHR notes are typically long and contain abundant medical
jargon that can be difficult for patients to understand. FOCUS first identifies candidate
terms from each EHR note using MetaMap and then ranks the terms using a support vector
machine-based learn-to-rank algorithm.

MetaMap’s concept recognition capabilities can be used to ease the creation of subgroups
of populations, this can be seen in the work of Ruth Reátegui and Sylvie Ratté [87]. In
their work they analyzed discharge summaries of overweight and diabetic patients from the
i2b2 (Informatics for Integrating Biology to the Bedside) Obesity dataset and used MetaMap
in conjunction with UMLS to identify both the Concept Unique Identifiers (CUI) and the
preferred name that correspond to two semantic types: (1) Disease or Syndrome, and (2)
Mental or Behavioral Dysfunction. Three subgroups were identified after the diseases were
extracted and aggregated, which correspond to patients with sleep apnea, patients with heart
diseases, and patients with communicable diseases.

2.4.3 MedEx

MedEx was originally developed by Dr Hua Xu et al. [106] at the Vanderbilt University
Medical Center. The system was designed specifically for the task of extracting drug related
details from clinical notes, which means it extracts drug names as well as signature information
about drug administration, strength, route, and frequency. The names of the drugs are derived
from the RxNorm and UMLS [53]. The system consists of two main components: a semantic
tagger that labels words or phrases with a semantic category and a parser that uses a context-
free grammar to parse textual sentences into structured forms based on pre-defined semantic
patterns[105].

In a recent work MedEx was used on free-text clinical notes, as part of an automated
Electronic Health Record (EHR) data extraction system. It extracts information on eye
medications and compares it to information from medication orders to aid measuring visual
acuity (VA) and intraocular pressure (IOP) outcomes of cataract and glaucoma surgeries,
which are two types of surgeries undertaken to improve VA and lower IOP [100].

In a different work [103], MedEx’s capabilities in extracting information from medical
summaries were used to detect candidate noncancer drugs that can potentially be used for
the treatment of cancer. In order to achieve this, they used the synthetic derivative (SD) as
a data source, which contains comprehensive clinical data for more than 2.3 million patients,
and used MedEx to extract medication information from both structured (e.g. electronic
physician orders) and unstructured (i.e. clinical notes) data.

2.4.4 Becas

BeCAS is an online based biomedical concept recognition system that also presents a visual
delineation of the annotated concepts in the text [82]. It was built upon a modular biomedical
concept recognition system, integrating modules for PubMed article fetching, tokenization,
lemmatization, POS tagging, chunking, concept identification, abbreviation resolution and
interactive visual concept highlighting. Motivated by the lack of offers of no-installation, no-
maintenance and online modular solutions for concept annotation that can be easily integrated
in any text-processing pipeline, BeCAS provides its features through three interfaces: an
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HTTP REST API, a widget embeddable in web pages and an interactive web application.

Facihul Azam et al. [38] in an effort to provide a global overview of prostate cancer re-
search in genetics, used the BeCAS API for information retrieval and named entity recognition
demonstrating how to integrate text mining with network analysis investigating research con-
tributions of countries and collaborations within and between countries. Alternatively, using
BeCAS in conjunction with the already discussed MetaMap as terminology-driven baselines,
Noha Alnazzawi et al. [34] developed PhenoNorm which integrates a number of different sim-
ilarity measures to allow automatic linking of phenotype concept mentions to known concepts
in the UMLS to help uncover new disease-phenotype associations.

2.4.5 Neji

Neji [44] is a modular, open source framework specialized in biomedical concept recogni-
tion, integrating modules for biomedical NLP, such as sentence splitting, tokenization, lemma-
tization, part-of-speech tagging and chunking. It uses a hybrid method of concept recognition,
combining dictionary matching and machine learning, and it supports overlapped concept
names and disambiguation techniques due to a concept tree implementation. It’s particularly
appealing for developers and researchers as a result of the ease it provides in implementing
new modules or using pre-defined pipelines and its support for the most popular input and
output formats, namely Pubmed XML, leXML, CoNLL and A1.

João Rafael Almeida and Sérgio Matos [33] proposed extracting family history information,
from clinical notes in EHRs using NLP, and using this knowledge to help in diagnosis and
prognosis of patients. They used a Neji annotation server with a disease dictionary compiled
from the UMLS Metathesaurus, combined with Stanford CoreNLP tools to identify disease
mentions in the clinical notes.

Another example of Neji’s application can be seen on the work of Sérgio Matos et al.
[75], as they used Neji to pre-annotate documents, before importing them to Egas [11], a
web-based platform for text-mining assisted literature curation, to help on the task of identi-
fying mentions of human genomic variants in the biomedical literature, and associating these
mentions to corresponding genes, phenotypes and clinical attributes.

2.4.6 MedTagger

MedTagger [71] is an open-source NLP pipeline based on the Unstructured Information
Management Architecture (UIMA) framework for indexing based on dictionaries, information
extraction, and machine learning–based NER from clinical text. It’s composed of three main
components: MedTagger for indexing based on dictionaries, MedTaggerIE for information
extraction based on patterns, and MedTaggerML for machine learning-based NER.

Using MedTagger to break down sentences into words and identify concepts related to
peripheral artery disease (PAD), Naveed Afzala et al. [31] aimed to identify critical limb
ischemia (CLI) from clinical notes. They developed a NLP algorithm, extended from a pre-
viously validated NLP algorithm for PAD identification, and after MedTagger identified the
relevant concepts, their algorithm mapped specific categories to those concepts that were later
used for patient classification.

Additionally Sijia Liu et al. [72] proposed a rule-based information extraction system
to extract lab test results from clinical notes, mainly aimed at lab test results for referral
patients or lab tests that can be done in a non-clinical setting, in both cases the results can
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be captured in unstructured clinical notes. The sentence detector, tokenizer, part-of-speech
tagger and chunker are from MedTagger. The sentence boundaries obtained from the sentence
detector are used for the separation of semantic concepts.

2.4.7 Comparing and combining annotators

Over the years several teams benchmarked and compared some of these NLP systems
against each other. While these annotators have the same general goal of extracting relevant
information from free text they have vastly different implementation aspects, scalability po-
tential and even resource requirements of the computer system hosting and running it. As a
means to determine which annotator, or combination of annotators, is more adequate to fur-
ther achieve the objective of this dissertation, an analysis was conducted on previous studies
about the subject of benchmarking annotators, as well as the possibility of combining them
in a single system.

Benchmarks

Alejandro Rodŕıguez-González et al. [90] compared MetaMap and cTAKES in their re-
search. They developed a software that extracts diagnosis-related content from Web pages,
then applied a named-entity recognition approach based on MetaMap and cTAKES to extract
all relevant terms. The evaluation was performed by doing a manual analysis of the results
and parameters were computed in order to calculate precision, recall, specificity and F1 score
values. They found that overall the systems have similar results, however there were some
cases where one of the systems would have a slightly higher precision for specific drugs while
still having similar F1 scores.

Ruth Reátegui and Sylvie Ratté [88] compared the performance of MetaMap and cTAKES
in the task of entity extraction in clinical notes from the i2b2 (Informatics for Integrating
Biology to the Bedside) Obesity Challenge data. The results were evaluated with manually
annotated medical entities and it was found that MetaMap had an average of 0.88 in recall,
0.89 in precision, and 0.88 in F-score and cTAKES had an average of recall, precision and
F-score of 0.91, 0.89, and 0.89, respectively.

Eugene Tseytlin et al. [97] benchmarked 5 state-of-the-art semantic annotators, NOBLE
Coder (which they developed), cTAKES, MetaMap, Footnote 3 ConceptMapper and MGrep.
The benchmarking was done on two publicly available human-annotated corpora, ShARe,
consisting of annotated clinical notes, and CRAFT, consisting of annotated biomedical liter-
ature. All the tools performed better on the clinical notes corpus (ShARe) On the ShARe
corpus, NOBLE Coder, cTAKES, MGrep and MetaMap were of comparable performance,
while ConceptMapper lagged behind. On the CRAFT corpus, NOBLE Coder, cTAKES,
MetaMap and ConceptMapper had very similar results, whereas MGrep performed signifi-
cantly worse. In terms of speed, ConceptMapper was the fastest one, followed by cTAKES
and NOBLE Coder with similar results, and MGrep with slightly slower results. MetaMap
was by far the slowest (30 times slower than the best performing tool).

Combining systems

Alternatively to comparing systems to pick one to use, it’s possible that combining NLP
systems could yield better results. Yunqing Xia et al. [104] used a combination of MetaMap
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and cTAKEs for disorder recognition for the ShARe/CLEF eHealth 2013 task 1. They im-
plemented two baseline systems, one system is built using MetaMap and the other using
cTAKES. Afterwards they developed a system with the two previous systems combined that
performed better than either single system.

Applying NLP in social media and other non formal settings

One other method to understand the capabilities of these annotators may be to look
at some of its applications in tasks other than extracting data from clinical notes. Health
forums enable patients to learn and communicate on health issues online. These online social
platforms have millions of users and mining such large scale user generated content (UGC)
could help better understand users and patients on many health related topics.

Hongkui Tu et al. [98] randomly selected 100 posts, split the posts into sentences, and
later the sentences into words, and labeled all words with MetaMap. As a control method
the posts were also manually annotated. However the precision obtained on the word labels
was only 43.75%. They noticed that only a very small percentage of UMLS concepts are
discussed in medical forums, as most semantic types are not of interest (e.g., Reptile) or too
domain-specific (e.g., Cell Function). Their results show that more general semantic types
such as “Body Part, Organ, or Organ Component” (e.g. ears, hair) obtained high precisions
(greater than 85%). But very specific semantic types such as “Immunologic Factor” obtained
very low precisions (below 10%). Due to the nature of this data, another semantic type that
had high precision combined with a big amount of occurrences was “Mental Process“ (e.g.
think, hope), words that are widely used in online discussions but not for communicating
medical related issues. This combination of factors led them to the conclusion that directly
applying MetaMap on social media data on healthcare leads to low quality word labels. Like
most NLP systems, MetaMap is designed for processing medical data written by professionals
rather than UGC in online forums.

2.5 Common data models CDM

2.5.1 Context

As mentioned previously, the data present in EHRs is an important contributor to health-
care related observational studies around the world. In order to take full advantage of the
data in observational studies, the data often needs to be compared and contrasted, however
observational databases don’t all follow a standard when storing data, healthcare data can
vary greatly from one organization to the next, and even vary within the same organiza-
tion. For instance, EHRs are aimed at supporting clinical practice at the point of care, while
administrative claims data are built for the insurance reimbursement processes. Each has
been collected for a different purpose and may be stored in different formats using different
database systems and information models. Each organization follows their local rules, for
instance, in one database the patient information could be stored in a table named “patient”,
in another it could be “person”, in one of them there could be a field called “name”, while in
another it’s “patient name”. As a result one would need a specific query for each database
just to retrieve the information [25].

Despite the growing use of standard terminologies in healthcare [9], the same concept may
be represented in a variety of ways from one setting to the next, even if the database format
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(i.e. table names, field names) is the same, different naming conventions regarding medical
concepts could be used. As illustrated in Figure 2.3, four real observational databases, all
containing an inpatient admission (i.e. person who has been admitted to a hospital for bed
occupancy purposes) for a patient with a diagnosis of “acute subendocardial infarction”, and
yet they all have different table names, column names, table structures, ICD code writing
conventions (with and without decimal points) and different name conventions (ICD9 and
ICD10).

Figure 2.3: Example of an inpatient admission diagnosed with acute subendocardial infarction
from four real observational databases [27].

The purpose of a CDM is to standardize both the format and content of observational
data, thus allowing common software applications and analytics tools to be easily applied
across datasets from multiple healthcare organizations [22].

2.5.2 Observational Medical Outcomes Partnership Common Data Model
(OMOP-CDM)

The OMOP-CDM can accommodate both administrative claims and EHRs [25], as it de-
fines a set of data structures to ease the integration of disparate observational databases, with
minimal information loss, to a standardized vocabulary and allows the gathering of informa-
tion in the same way across different institutions. The OMOP-CDM is patient-centric, having
tables for data commonly needed in clinical trials and observational studies such as drug use,
procedures performed, etc. and only events that actually occurred are considered relevant,
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as such situations like canceled appointments are not stored. It’s optimized for identifying
patient populations based on what healthcare interventions patients had and their outcomes
enabling the characterization of these populations for multiple parameters like demographic
information, disease history, healthcare delivery, cost, treatments and sequence of treatments
[6]. This allows for an easier prediction of these occurrences in individual patients and helps
estimating the effect of such interventions on a population.

The overall approach is to create an open network of observational data holders and
require that the data holders translate their data into the OMOP-CDM, having every element
in the participant database mapped to the approved CDM vocabulary and placed in the
common data schema. It provides data organized in a way optimal for analysis while keeping
the patient’s personal information private, all data that might be used to identify them
(e.g. names, precise birthdays) are limited. It’s designed to record healthcare data from
observational databases from different sources from all over the world while allowing each
institution to keep and continue using their preferred vocabulary and format locally. This is
achieved by creating a direct mapping between the original data and standardized vocabularies
containing all necessary and appropriate corresponding standard healthcare concepts and,
even though all codes are mapped to the standardized vocabularies, the model also stores
the original source code to ensure no information is lost. It’s database platform independent,
meaning it can be used in any relational database (e.g. Oracle, SQL server), not requiring a
specific technology, and it’s optimized for data processing of data sources that vary in size,
including databases with up to hundreds of millions of patients [7]. These features allow
for a multi-center global analysis to be performed and enable the ability to pursue cross-
institutional collaborations accelerating research due to easy access to de-identified data that
is mapped onto these standard vocabularies.

The OMOP-CDM is maintained by Observational Health Data Sciences and Informatics
(OHDSI), which is an international collaborative with the goal of creating and applying open
source data analytic solutions to a large network of health databases in order to improve
healthcare. The OHDSI team comprises academics, industry scientists, healthcare providers,
and regulators whose mission is to improve medical decision making through the creation
of reliable scientific evidence about disease history, healthcare delivery, and the effects of
medical interventions by applying large-scale analyses to observational health databases [63].
The consortium also oversees the maintenance and the development of free analysis tools,
such as ATLAS [4] and HADES [13], which are all available as open source.

2.6 Summary

This chapter aimed to present the current knowledge about the topic of text mining and
NLP in the context of information retrieval of EHRs. There’s a multitude of advantages in the
usage of EHRs, such as more efficient billing, validating physician’s prescriptions to prevent
medical errors, checking on patients for risks of self harm and the one that will be the main
focus of this dissertation, their use in observational studies.

Most of the previously mentioned advantages require data to be properly structured and an
estimated 70-80% of all clinical data currently available are in free text documents, which poses
an added adversity to the automation and effective functioning of these systems. Preventing
medical professionals from writing clinical narratives is also not a viable option as it has been
shown that these are vital to the solving of more complex cases.

16



One possible solution is to extract the data from unstructured free text using text mining
and NLP, more specifically using annotators, which are programs specialized in the task
of extracting concepts from text using text mining and NLP. In this chapter a select few
annotators were presented, namely cTAKES, MetaMap, MedEx, Becas, Neji and MedTagger.
These annotators serve the same general purpose of extracting relevant concepts from free
text but are all very different, for instance, how they’re executed (e.g. online based through
a web browser or locally), how they’re operated (e.g. command line or graphical interface),
or even how customizable they are. It’s up to the users to select the annotator that is more
suitable to help them achieve their goals.

The data present in EHRs is an important contributor to healthcare related observational
studies around the world. In order to take full advantage of the data in observational studies
the data often needs to be compared and contrasted but observational databases don’t all
follow a standard when storing data. Healthcare data can vary greatly between organizations,
with each following their own local rules. For instance, in one database the patient information
could be stored in a table named “patient”, while in another it could be “person” or there
could be a field called “name”, while in another the field is called “patient name”. As a
result, one would need a specific query for each database just to retrieve the information.
The other issue being that concepts can be represented in a variety of ways based on different
conventions.

This disparity regarding how the data is stored emphasizes the need for a CDM for these
observational databases. The purpose of a CDM is to standardize both the format and content
of observational data. In this dissertation we will be focusing on one specific CDM, which is
the OMOP-CDM. The approach from the creators of this CDM was to create an open network
of observational data holders where each data holder is required to translate their data into
the OMOP-CDM by creating a direct mapping between the original data and standardized
vocabularies. This way every element in the participant databases is mapped to the approved
CDM vocabulary and placed in the common data schema while allowing each institution to
keep and continue using their preferred vocabulary and format locally. These features allow
for a multi-center global analysis to be performed and enable the ability to pursue cross-
institutional collaborations accelerating research due to easy access to de-identified data that
is mapped onto these standard vocabularies.
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Chapter 3

N2C2 Challenge

3.1 Introduction

As a means to incrementally build the final system to achieve the goals of this dissertation,
it was decided to complete this assignment as an intermediary task. This particular task was
selected as it provides clear objectives that align with part of the goals of the system being
developed. It provides a data set, as well as the expected results from the processing of the
data set. Another benefit is the fact that it was part of a challenge that’s been solved already
by multiple teams, from which the median accuracy of all participating teams was 77.33%.
This provides additional perspective and guidance to understand what methods are more
effective as well as setting an expected goal.

3.1.1 Description

The aim of the N2C2 2019 challenge track-3 [74] was to normalize medical entities to
standard medical vocabularies. The challenge focuses on Named Entity Normalization (NEN)
rather than Named Entity Recognition (NER). When discussing NER systems regarding clin-
ical notes, it generally consists of identifying mentions of relevant clinical terms, while NEN
involves linking named entities to concepts in standardized medical terminologies, thereby al-
lowing for better generalization across contexts. In this challenge the relevant clinical mentions
are already identified, and the task is to associate the mentioned text with its corresponding
Concept Unique Identifier (CUI). The metric taken into consideration throughout this chal-
lenge to evaluate the performance of the developed system is the accuracy on the test dataset,
as discussed previously the F1-score tends to be preferred, but this was the metric that the
task organizers’ decided to use and evaluate with.

3.1.2 Dataset

The task utilizes part of the i2b2 2010 data set [99], all records have been fully de-identified
and manually annotated for concept information. The dataset provided contains a total of
100 annotated discharge summaries and is split evenly in training and test subsets. In both
subsets it’s provided the position on the clinical text files of every annotated entity, for the
training subset it’s also provided the CUI for the entities.
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3.2 Implementation

This section will present and discuss the methods employed over the course of this chal-
lenge in order to achieve the final result.

3.2.1 Text pre-processing

In order to compare the text of the annotations and the results from looking up terms all
text had to be normalized, so text pre-processing rules were applied to each annotation, as well
as the results. The first step to normalize the text was making it all lower case, afterwards,
contractions were expanded (i.e. “couldn’t” is converted to “could not”) and punctuation
marks (i.e. commas, periods, quotation marks, question marks, etc) as well as symbols such
as “#” were removed. HTML entities, which are pieces of text that begin with an ampersand
( & ) and end with a semicolon ( ; ), were converted to their meaning. These entities are
used to display reserved characters, for example “<”, which is represented as “&lt;” (short
for “less than”), which would otherwise be interpreted as HTML code [15].

Common word replacements were applied, this was done mostly for abbreviations, for
example “b/l” was replaced with “bilateral”. The source of the replacements was based on
manual checking of the training dataset, common medical abbreviations and some chemical
elements, for instance i.e. “o2” replaced with “oxygen”. Additionally some words that are
commonly used such as “last” and “former” were replaced with their gold standard equivalent
“previous”.

In the course of the pipeline both stemming and lemming algorithms are used but not
simultaneously and are not applied in every case. What this means is that both texts being
compared will be compared with all the normalization methods discussed in this section with
the exception of lemmatization or stemming, and only then will they be lemmatized and
compared, and then the original texts will be stemmed and compared. This comparison is
only used in the Exact Matching method, that will be discussed later, the other methods only
used lemming as it proved to have better results. Stop words, which are words that carry
no meaningful data (e.g. “the”, “a”, “as”), were also removed. It should be noted that the
order in which each method is applied is important as to avoid conflicts, some systems would
render the following ones useless if applied before. For instance if the apostrophe punctuation
mark was removed in an earlier step, the contraction expander wouldn’t detect them.
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Table 3.1: Methods of text pre-processing applied on examples of text snippets from the
clinical notes.

Method Example input Example output

Lower casing The Patient the patient

Remove symbols
prescription for Tylenol #3 prescription for Tylenol 3
hospital day # 3 hospital day 3

Replace HMTL entities
20 &apos;s rang 20’s rang
SBP &lt; 100 or HR &lt; 55 SBP <100 or HR <55

Contractions expanded isn’t is not

Word replacements

b/l bilateral
o2 oxygen
vit vitamin
former previous
last previous
u/s ultrasound

Remove stop words
A leg leg
The patient patient
The patient was again seen patient

3.2.2 Word embedding

As a way to improve the comparison between the text of the annotations and the gold
standard, even with the use of text normalization to make them as similar as possible, one
would rather compare the actual meaning of the text than the text itself. Word embeddings
are a type of representation, typically in the form of a real-valued vector, where words with
similar meaning have similar representation, and as such words with similar meaning would
be closer in the vector space. Word embedding is a machine learning technique, thus the
meaning which will result in the value of the word vectors has to be learned. To achieve this
the publicly available BioWordVec model [49] was employed. This model was created using
the fastText library [42] and was generated from over 30 million documents from PubMed
articles and clinical notes from the MIMIC-III database.

In order to compare the degree of similarity between vectors cosine similarity is used.
Cosine similarity measures the similarity between two vectors of an inner product space. By
measuring by the cosine of the angle between two vectors it’s determined whether two vectors
are pointing in roughly the same direction [57], similarly to the example shown in Figure 3.1.
The closer in meaning the word vectors are, the smaller the angle will be and the similarity
will approach the value of one.
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Figure 3.1: Example showcasing the graphical representation of the cosine similarity between
different words [39].

3.2.3 Sieves

In earlier tests it was noted that the algorithms used didn’t reach high enough accuracies
individually. Due to this reason, and based on the work of João Rafael Almeida et al. [93]
done for this same task, a sieve based approach was decided upon. Rather than trying to
recognize every concept with a single method, in a sieve based system, each method is applied
sequentially. Every method used is seen as a sieve or a layer, so annotations that don’t get
identified in a sieve, whether with a certain degree of certainty or they weren’t identified at
all, are passed to the next sieve. The deciding factor for the order of the sieves was based on
the precision of each algorithm, with algorithms that are more strict and have higher precision
being used in the first sieves, and the ones with lower precision on later ones. In simpler terms,
initially it’s important to be certain during identifications, as incorrect identifications would
also render the next sieves useless as the annotation would already be marked as identified,
and as the annotation progresses through the sieves it starts to allow identifications with
lower degrees of certainty.

3.2.4 cTAKES

As an initial test, a state of the art Natural Language Processing (NLP) software, specif-
ically cTAKES, was used keeping its default settings and default dictionary. In order to test
its performance the previously discussed text normalization wasn’t applied to the annotations
beforehand and instead relied solely on its own capabilities. The default dictionary was the
UMLS AB 2016 which uses Snomed and RxNorm as a source of vocabularies. This resulted
in an accuracy of 22%. The dictionary was updated to its most up to date version, at the
time of this project was the 2019 AB, and a custom install of the dictionary was made to
include extra vocabulary sources, specifically NCI, ICD10 and Metathesaurus. These addi-
tional vocabulary sources were picked based on their usage in the training dataset and, with
these changes, it achieved an accuracy of 40%.

3.2.5 Exact Matching

The first method developed was an exact matching algorithm that used the training
dataset as a source of data. In information retrieval an exact matching method consists of
using validated text - meaning pairs from the already validated training annotations as a
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dictionary in order to assign a meaning (in this case the meaning is the associated CUI)
to the text in the annotations being evaluated. As the name implies, it matches when the
text is exactly the same, but even in such cases there can be dictionary collisions, meaning
that in the creation of the dictionary there can be multiple CUIs associated with the same
snippet of text. This is partially due to the nature of free text since clinical professionals
don’t always type the full medical terms, instead they might type the term in a more generic
way and not fully specify it by typing the complete scientific name, as it would be said in a
conversation. The other cause is the use of abbreviations, while some abbreviations are well
established, others rely on context. Two different terms that start with the same letters could
be abbreviated the same way.

In an attempt to mitigate some of the dictionary collisions several tests were done, as
demonstrated in Table 3.2, using a combination of lemmatization, stemming and lower cas-
ing. The tests consisted of associating the resulting text of separate normalization methods
to the CUI of the original annotation. For example in the table row where it’s presented
“Low+Lem”, it means that both the results of lower casing and of the lemmatization are
associated with the CUI of the original text. This method achieved an accuracy of 58% and
a precision of 95%, which means that while it will only provide a match on roughly half
the annotations, although when it does provide a match it’s almost certain to be a correct
prediction.

Table 3.2: Results of the combinations of normalization methods in the exact matching
algorithm. In this table “Low” refers to the Lower casing algorithm, “Stem” refers to the
stemming algorithm, “Lem” refers to the lemmatization algorithm, and “Base” refers to the
usage of the original text with no normalization.

Normalization method Accuracy Precision

Low+Stem+Lem 57,91% 95,52%

Stem+Lem 57,04% 95,23%

Low+Lem 57,01% 96,95%

Base+Lem 57,18% 96,70%

Low+Base+Lem 57,26% 96,68%

Low+Base+Stem+Lem 57,99% 95,60%

Low+Base+Stem+Lem 56,95% 96,15%

3.2.6 UMLS lookup

The next approach involved looking up the text annotation on the database of UMLS
Thesaurus concepts. The database had concepts from the following sources: Metathesaurus,
Snomed and RxNorm and was built with the following, publicly available tool py-umls [83],
which stands for “UMLS for Python”. The results were low, as presented in Table 3.3, having
a 20% accuracy and 32% precision, and although selecting only results that only had one
possible match resulted in an increase of precision to 47%, the accuracy dropped to 3%. In
either case, the results were too low to be considered. This happens mainly because, while
the annotations are normalized to be as close to the gold standard as possible, the database
being looked up isn’t normalized.
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Table 3.3: Results achieved from using the UMLS lookup method.

Picking method Accuracy Precision

First result was picked 20,7% 32,2%

Only cases with 1 result 3,2% 47,1%

In an attempt to improve this method the previously discussed word embedding was
applied. The text was still looked up in the local database, but every result was then embedded
and the resulting embeddings were compared with the embedding of the annotation being
looked up using cosine similarity. The similarity was used for more than just selecting the
most likely match in cases where the UMLS lookup provided multiple matches, it also served
as a threshold for the results, meaning that results that didn’t have an high enough similarity
were discarded. After testing different values for the similarity threshold it was shown that,
with a 0.99 similarity threshold it achieved an accuracy of 25% and precision of 78.7%. Using
a lower threshold it achieved a very slightly higher accuracy of 26.4% however it also resulted
in a substantially lower precision of 61.6%. Alternatively, on the opposite side of the spectrum
with the highest possible similarity threshold it was possible to achieve an 81.2% precision
yet the accuracy dropped drastically, as such 0.99 was picked as the threshold with most well
rounded results, and for these reasons it was used as the second sieve.

Table 3.4: Results from using word embeddings and cosine similarity on the results of the
UMLS Lookup method as a deciding factor.

Sim threshold Accuracy Precision

0,85 26,4% 61,6%

0,86 26,0% 63,2%

0,87 25,9% 64,8%

0,88 25,8% 66,1%

0,89 25,7% 68,5%

0,9 25,7% 70,4%

0,91 25,6% 72,6%

0,92 25,4% 73,2%

0,93 25,3% 73,8%

0,94 25,2% 74,1%

0,95 25,2% 75,0%

0,96 25,2% 75,8%

0,97 25,2% 78,1%

0,98 25,2% 78,6%

0,99 25,2% 78,7%

1 19,9% 81,2%

3.2.7 MetaMap

Following the first test that involved using a NLP software, namely cTAKES, as is with
no pre-processing of the text, the next logical step was to use it combined with the text
normalization and the previously discussed word embedding. For the third sieve, it was
decided to use MetaMap instead of cTAKES, as it was shown by the work of Alejandro
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Rodŕıguez-González et al. [90] that they have very similar performance. For this specific
case, there was already a python module [89] to help the integration and usage of MetaMap
through python, the programming language being used in the rest of the pipeline. MetaMap
processed the annotations after they were normalized with the text pre-processing discussed
earlier and it resulted in an accuracy of 48% and 48% precision. MetaMap has a built-in
scoring system for its predictions called MetaMap Indexing (MMI), and, in an attempt to
improve the results, it was used as a deciding factor for whether a result is kept or ignored.
Multiple values for this threshold were tested, as can be seen in table 3.5, and it was decided
that a value of 5.1 yielded the best results, with 46% accuracy and 62.6% precision.

Table 3.5: Analysis of the effect of Metamap’s MMI score threshold on the accuracy and
precision of the results.

MMI Accuracy Precision

3 48,12% 48,1%

3,2 48,12% 48,1%

3,4 48,12% 48,1%

3,6 48,12% 49,0%

3,8 47,07% 61,8%

4 46,25% 62,7%

4,2 45,98% 62,6%

4,4 45,98% 62,6%

4,6 45,98% 62,6%

4,8 45,98% 62,6%

5 45,98% 62,6%

5,1 45,98% 62,6%

5,18 45,98% 62,6%

5.18 0,04% 20,00%

After the first cull of results based on the MMI, a second pass is done using word em-
beddings and cosine similarity. This pass serves two purposes, deciding on results with equal
MMI and removing results that aren’t as reliable. As seen on table 3.6 multiple values were
tested, and the one that was decided on was 0.84, less strict than the one used on the exact
matching algorithm, resulting in a final accuracy of 42.8% and a precision of 73%.
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Table 3.6: Analysis of the cosine similarity threshold on the precision and accuracy of the
results.

Sim threshold Precision Accuracy

0 62,8% 62,8%

0,8 71,5% 45,5%

0,81 72,2% 45,1%

0,82 72,2% 44,2%

0,83 72,4% 43,7%

0,84 73,0% 42,8%

0,85 73,2% 42,3%

0,86 73,5% 41,2%

0,87 74,0% 40,6%

0,88 74,3% 40,1%

0,89 74,2% 39,6%

0,9 74,0% 39,2%

0,91 74,0% 38,9%

0,92 74,3% 38,7%

0,93 74,2% 38,4%

0,94 74,3% 38,3%

0,95 74,1% 37,9%

0,96 74,1% 37,9%

0,97 74,2% 37,8%

0,98 74,3% 37,7%

0,99 74,3% 37,7%

1 75,4% 30,0%

3.2.8 Final sieve and architecture

And lastly in the final sieve all annotations present in the training dataset were embedded
and the cosine similarity was calculated. For this case, since it was the final sieve, there was
no minimum similarity threshold. The pipeline, observable in Figure 3.2, using all sieves,
managed to achieve a 77.5% accuracy through the task organizers’ evaluation tool.
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Figure 3.2: Final system architecture employed for the N2C2 challenge.

3.3 Summary

In this chapter, a NEN system was developed in the process of completing the N2C2
2019 challenge track 3. The challenge provided clear guidelines, a dataset and metrics. The
task consisted of classifying snippets of text extracted from discharge summaries with the
appropriate UMLS CUI.

The motivation behind the decision to complete this challenge was that it allowed the
gradual development of the final system. Since the challenge was already completed by other
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teams in the past, it was possible to analyze what methods performed better as well as compare
the results of the system being developed with the results of other teams, which gave a better
perspective of how it performed. The employed system used a sieves based approach, which
means rather than attempting to classify every concept using a single method each method
is applied sequentially. So annotations that don’t get identified on a sieve are passed on to
the next.

The first sieve applied an exact matching algorithm that uses the training data in an
attempt to match the testing data.The second sieve consisted of looking up the text of the
annotation in the UMLS dictionary to find a matching term. The third sieve employed the
annotator MetaMap to attempt to classify the annotations with the appropriate CUI. The
fourth and final sieve used BioWordVec to create word embeddings of the testing annotations
and then used cosine similarity to compare them to the word embeddings of both the training
data and terms from the UMLS dictionary. The word embeddings method was also used as
a deciding factor in the two previous sieves (UMLS lookup and MetaMap) in cases where
they returned multiple possible Concept Unique Identifier (CUI) for a single annotation. The
system was able to achieve a 77.5% accuracy with the described methods, which is similar to
the median of the results of all participating teams at 77.33%.
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Chapter 4

System implementation

This chapter describes the implemented system for the automatic processing of clinical
notes. The purpose of the system is to process discharge notes, extract relevant medical con-
cepts in the text, classify the concepts with the appropriate CUI, normalize the concept into
the OMOP-CDM format and finally store the normalized concepts in a database according
to the OMOP schema.

The pipeline, observable in Figure 4.1, is essentially divided in three parts, the first part
being the Named Entity Recognition (NER) system, the second part being the Named Entity
Normalization (NEN) system, which was previously developed and tested for the N2C2 chal-
lenge in the previous chapter, and finally the third part being the Extract Transform Load
(ETL) system that performs the normalization of the annotations into the OMOP-CDM, and
subsequently stores the relevant data in a database.

Figure 4.1: Simplified overview of the clinical notes processing system.

The employed NEN system, as mentioned previously, is the same one that was developed
for the N2C2 challenge, which was already described and evaluated in the previous chapter,
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and for that reason it won’t be described in as much detail as the other two components of
the pipeline over the course of this chapter.

4.1 Named Entity Recognition

The employed NER system, in essence, consists of an annotator, specifically cTAKES, and
a set of components that directly and indirectly improve that annotator’s performance. The
system follows a sequential series of steps to achieve that, which can be seen in the overview
of the pipeline in Figure 4.2, starting by pre-processing the text of the clinical notes before
having the annotator process them. Following the task of identifying concepts in the text,
the resulting annotations are then filtered based on a set of rules, as well as possibly merged
with other annotations in cases where it’s deemed adequate, specifically when there’s some
overlap between two or more annotations. Those are the methods that can be considered as
indirect improvements to the annotator, as their purpose is fundamentally to make the task
of annotating easier and also correct the resulting annotations.

The other measure taken, which directly improves the annotator, was creating a custom
dictionary of concepts to be used by cTAKES. The remainder of this section will explain in
more detail each of the described components.

Figure 4.2: Overview of the architecture of the NER module.
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4.1.1 Text pre-processing

In order to make the task of recognizing relevant concepts in text by the annotator more
efficient, a text replacement algorithm was applied to the notes, based on the same text
replacements used on the previously discussed work for the N2C2 challenge. HTML entities
were replaced with their respective meaning and, as explained earlier, an HTML entity is a
piece of text that begins with an ampersand ( & ) and ends with a semicolon ( ; ). They’re used
to display reserved characters, for example “<”, which is represented as “&lt;” (short for “less
than”), which would otherwise be interpreted as HTML code. All percentages between 1%
and 99% were exchanged with “partial” as this is the standard naming present in the UMLS
vocabularies, making it easier for cTAKES to detect them. And lastly, text replacements
were applied for common abbreviations (e.g. “o2” for “oxygen, “r hip” for “right hip”, etc)
as well as some forms of normalizations (e.g. “former” and “last” changed to “previous”) and
unlike in the previous task, stop words were not removed.

Table 4.1: Methods of text pre-processing used in the NER system.

Method Text example Output

Replace HMTL entities
20 apos;s rang 20’s rang
SBP &lt; 100 or HR &lt; 55 SBP <100 or HR <55

Percentage normalization revealed a 70% lesion revealed a partial lesion

Text replacement

b/l bilateral
o2 oxygen
vit vitamin
former previous
last previous
u/s ultrasound
r hip right hip
l arm left arm

4.1.2 Annotator and dictionary rewrites

Unlike the previous task, cTAKES was chosen over MetaMap as the annotator. This choice
was made due to its software package providing a tool to add and customize dictionaries for
the software to use, which proved to be a crucial factor during the development of this system
as it allowed the use of a customized version of the UMLS Metathesaurus dictionary.

A custom UMLS dictionary was created by applying the Casper tool, created by Kristina
M. Hettne et al. [62]. This tool applies rewriting and suppression rules to the UMLS vo-
cabularies, which in their tests resulted in an increase of 3.4% in the number of concepts
recognized in the MEDLINE corpus.

The casper rewrite rules, as observable in Table 4.2, comprised of syntactic inversions for
terms such as “Failure, Renal” which would be added as “Renal failure”, possessive removal
by removing the “‘s” at the end of words in terms such as “Alzheimer’s disease”, splitting of
short form/long form for terms that have the description followed by an acronym (e.g. in the
terms ”Selective Serotonin Reuptake Inhibitors (SSRIs)” it would add “Selective Serotonin
Reuptake Inhibitors” and “SSRIs” separately), and removal of information about semantic
types between parentheses within the term (e.g. “Surgical intervention (finding)”), removal
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of text within angular brackets anywhere in a term (e.g. “Chondria <beetle>”) which in
UMLS are used to specify the meaning for words with multiple meanings, as well as other
non-essential parentheticals.

Table 4.2: Examples of the Casper rewrite rules applied to terms of the UMLS dictionary.

Rewrite rule Example text Result

Syntactic inversions Failure, Renal Renal failure

Possessive Alzheimer’s disease Alzheimer disease

Short form/long form
Selective Serotonin Selective Serotonin Reuptake Inhibitors
Reuptake Inhibitors (SSRIs) SSRIs

Semantic types Surgical intervention (finding) Surgical intervention

Angular brackets Chondria beetle Chondria

Additionally to the rewrite rules, there are also suppression rules, which can be seen in
Table 4.3, in these cases the terms are not edited and/or split into multiple terms like in the
rewrite rules, instead they’re completely removed. Among them, some of the more relevant
suppressions were removal of dosages in terms that include a percentage (e.g. “Oxygen 2%”),
keeping only the more general version of the term and removal of concept classifications such as
“not elsewhere classified”, “unclassified”, “without mention”, which are present at the end of
some terms’ text in the form of acronyms (e.g. “NEC”). There were also some miscellaneous
removals such as terms containing “other” at the beginning, “deprecated”, “unknown” or
“obsolete”.

Table 4.3: Examples of the Casper suppression rules applied to terms of the UMLS dictionary.

Suppression rule Example text

Dosages Oxygen 2%

At-sign ADHESIVE @@ BANDAGE

Enzyme classification numbers EC 2.7.1.112

Any classification
Ventriculoscopy NEC
Abnormality of white blood cells, not elsewhere classified

Any underspecification Hemophilia, NOS

Miscellaneous Robitussin DM (obsolete)

Using the discussed work of Kristina M. Hettne et al. on the Casper software as a baseline,
some additional rewrite rules were implemented, which can be observed in Table 4.4. These
changes were mainly based on the text observed in the clinical notes and created made in an
attempt to better reflect the more natural way that medical professionals describe and discuss
these concepts. It’s important to note, that while they’re technically referred to as rewrites,
they’re essentially alternative options, as these rewrites are added to the dictionary but the
old rules are also kept.

The first and most straightforward rule was the simplification of the spinal discs, by
removing the word “disc” from the terms (e.g. “C4/5 disc” changed to “C4/5”). Specifi-
cations of terms through the use of the word “while” or a comma were also simplified (e.g.
“Accident while engaged in sports activity” changed to “Accident”, “Root amputation, per
root” changed to “Root amputation”). Alternatively some specifications are done differently
through the colon punctuation mark, for example “Medication administration: inhalation”,
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in these cases everything before the colon is removed and the term would become just “inhala-
tion”. Terms that are presented as multiple alternatives with a slash, for example “droperidol
/ fentanyl”, were added back as separate terms “Droperidol” and “Fentanyl”. Terms that
contained the words “in” or “of”, as well as “in the” or “of the”, were processed in order to
create all the possible variations used in regular natural speech used by medical professionals,
for example the term “muscle cramps in the calf” results in “calf muscle cramps”, and “MRI
of the spine” results in “MRI of spine” and “Spine MRI”.

Finally, a more general clean up was applied where slashed numbers to represent partials
were removed (e.g. “Anterior 2/3 of tongue” changed to “Anterior of tongue”) as well as
other term specifications, done through the usage of dashes, parenthesis and/or numbers, that
aren’t normally described in normal speech (e.g. “Amylo-(1,4,6)-transglycosylase” changed
to “Amylo transglycosylase”). These rules were applied in cycles with the purpose that a
term might be eligible to a rule only after being processed and changed by a different one in
the previous cycle.

Table 4.4: Examples of the developed rewrite rules applied to terms of the UMLS dictionary.

Rewrite rule Example text Result

Simplify “discs” C4/5 disc C4/5

“while” specifications Accident while engaged in sports activity Accident

Comma specifications Root amputation, per root Root amputation

Colon specifications Medication administration: inhalation inhalation

Slashed terms droperidol / fentanyl
Droperidol
Fentanyl

Dash definition GBL - gamma-butyrolactone
GBL
Gamma-butyrolactone

Variations of “of” MRI of the spine
MRI of spine
Spine MRI

Variations of “in” Muscle cramps in the calf Calf muscle cramps

General clean up
Anterior 2/3 of tongue Anterior of tongue
Amylo-(1,4,6)-transglycosylase Amylo transglycosylase

4.1.3 Filtering annotations

During the development of the system it was decided to keep some additional metadata
on the annotations. This was done with the aim of providing additional data to analyze
and better understand some of the common factors among annotations that were correctly
selected as well as the ones that were incorrectly selected. Out of the metadata fields stored,
the ones that proved to have an impact were the vocabulary source (e.g. Snomed, RxNorm,
ICD, etc.) used to generate that annotation and the semantic type (e.g. Laboratory Proce-
dure, Food, Enzyme, etc.). By analyzing these metadata fields it was possible to pinpoint
which vocabulary sources and semantic types performed the worst individually, as well as
combinations of them.

The main concern with this method was that it could create a situation of overfitting the
solution to this particular dataset, making the solution too specific for this dataset rather
than a general solution that can be applied to other clinical notes in the future. To prevent
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this from happening some measures were taken: the analysis was first done through 5-fold
cross validation on the training dataset and only afterwards, using the data from the training
dataset and applying it to the test dataset. The results from it were compared to the ones
resulting from the previously done 5-fold cross validation done on the training dataset to
confirm that it performed similarly.

After analyzing the performance results of each vocabulary on the training dataset it was
decided to set a threshold for the minimum precision allowed, which means that all annotations
with a vocabulary source with a precision below this threshold value and a set minimum
occurrence amount were discarded. The reason for the minimum occurrence requirement was
that it’s not possible to infer that the source performs poorly overall for this sort of clinical
texts with such limited data. The goal being to only filter particularly poor performing ones,
as those are more likely to perform equally on a different clinical note.

4.1.4 Merging of annotations

Finally, in the last stage of the NER system, measures were taken to mitigate one fault
in the cTAKES system. While analyzing the resulting annotations, it was noticed that the
annotator was rather inaccurate at recognizing compound concepts, something that was also
documented in the work of Monica Agrawal et al. [32]. A compound concept is a concept
formed by simpler/smaller concepts, for example “left leg pain” is a compound concept formed
by the concepts “left”, “leg” and “pain”. While in these cases cTAKES did identify the
individual concepts accurately and even some less complex compound concepts like “left leg”
and “leg pain”, it failed to identify the compound concept as a whole. In order to fix this,
annotations that had overlapping words, for example, using the previous given example of
“left leg pain”, the word “leg” is in both the “left leg” and “leg pain” annotations, and as
such it would be merged into a single annotation.

4.2 Extract Transform Load

The final stage of the employed system is the Extract, Transform, Load (ETL), which is
the name given to a process that consists of data extraction from one or more data-sources,
its transformation and cleansing in order to make it optimized for reporting and analysis
and, finally, loading it into a data storage or data warehouse. A crucial requirement of ETLs
is that the process must be repeatable, so that it can be rerun whenever the source data is
updated. The goal of the ETL process in this context is to convert the concepts extracted from
the discharge summaries, standardize them to the OMOP-CDM and use them to populate a
database following the same common data model (CDM) schema. A simplified overview of
this process can be seen in Figure 4.3. Although, typically the process involves extracting
from multiple data sources, in this case, the data is from a single source: the output of the
NEN system.
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Figure 4.3: Simplified overview of the employed ETL system.

4.2.1 Converting CUI to OMOP-CDM concepts

The first step of this conversion is finding the corresponding standardized CDM concepts
for the concepts extracted from the discharge summaries. The concepts extracted in the dis-
charge summaries were classified using UMLS CUI and, in order to achieve this conversion
from the CUI to the standardized Common Data Model (CDM) concepts, two publicly avail-
able resources were used, the OHDSI-to-CUI mapping package created by Juan M. Banda
[23][16] and the OHDSI vocabulary obtained from Athena [3].

The OHDSI-to-CUI mapping package is essentially a list of OHDSI concept ID and CUI
pairs, which works as a dictionary, so by having one element of the pair it’s possible to
obtain the other. Athena is an OHDSI vocabularies repository which allows its users to query
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the vocabulary or, alternatively, download this vocabulary, which contains the concepts used
in the CDM, allowing the queries to be done locally rather than online. Thus, using the
OHDSI-to-CUI mapping, it was possible to associate the CUIs extracted from the discharge
summaries to standardized CDM concept IDs and consequently using these concept IDs to
find the corresponding concept in the vocabulary downloaded from Athena. Additionally, in
the process of developing this ETL, Athena’s query feature allowed for some form of validation
by manually comparing the resulting mappings.

4.2.2 Storing the converted concept

After finding the matching CDM concept for each extracted concept the next step was to
populate the database tables with this now standardized data. Having now the standardized
OHDSI concepts associated with the concepts annotated from the clinical text, the next logi-
cal step is storing them in a database that follows the OHDSI schema. The CDM version used
was the 5.4, which has 39 database tables, of which, in this process, 9 will be populated (per-
son, note, note nlp, observation, condition occurrence, drug exposure, procedure occurrence,
device exposure, measurement, specimen).

Each OHDSI concept is associated with a set of information fields related to it, such as its
domain, vocabulary source, whether it’s standard or not, as observable in Table 4.5. The first
step towards storing a standardized concept is knowing the adequate database table to store
it in. In order to achieve this, a mapping was done between all the possible concept domain
ID values and table names. This mapping was created using a combination of OMOP-CDM
documentations and the OHDSI online forums as the aspect of community behind this CDM
is an important factor.

Table 4.5: Example of a concept belonging to the Condition domain in the OMOP-CDM
format.

Field Value

concept id 4104316

concept name Multiple lesions

domain id Condition

vocabulary id SNOMED

concept class id Clinical Finding

standard concept S

concept code 300582001

valid start date 2002-01-31

valid end date 2099-12-31

invalid reason NAN

The final step is to populate the table fields. In essence, the data stored in these tables is
the OHDSI concept code, which will indirectly provide the previously mentioned associated
data related to that particular concept, the provenance of the data, and contextual data
specific to the concept type. The fields in these tables follow specific rules in this model.
Some fields are mandatory, as shown in the example presented in Table 4.6, which roughly
translates to meaning that they can’t be left empty, designated in most database languages
as “NOT NULL”. In cases where the value for a mandatory field isn’t present in the original
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data it should be filled with a single zero, which in this CDM represents that the value isn’t
present in the source data. These mandatory fields were the priority in being populated.
Additionally, some of the non mandatory fields were also populated, specifically the fields
pertaining to the source values. In this context the source refers to the identifier used to
classify the concept prior to the CDM standardization, which in this case was the UMLS
CUI.

Table 4.6: CONDITION OCCURRENCE database table in the OMOP-CDM schema.

Field name Type Mandatory

condition occurrence id Integer x

person id Integer x

condition concept id Integer x

condition start date Date x

condition start datetime Timestamp

condition end date Date

condition end datetime Timestamp

condition type concept id Integer x

condition status concept id Integer

stop reason Text

provider id Integer

visit occurrence id Integer

visit detail id Integer

condition source value Text

condition source concept id Integer

condition status source value Text

The process of storing data is done in a specific sequence in order to follow the specifi-
cations of the OHDSI schema. The reason for this is that each annotation must be linked
to a medical note and each note must be linked to a person. As such, the first tables being
populated are the “person”, “note” and “note nlp” tables. Every entry in the note table
refers to a single clinical note that was processed and it contains mostly metadata about the
note, such as the note’s file name, the date of when it was analyzed, what kind of note it is
(which in this case is “Discharge Summaries”) and the patient to whom it belongs.

The person table was only populated on a superficial level for the basic functioning of
the database. Every note, as well as each concept, must refer to a person. However the
focus of the system being developed is the extraction of medical concepts, and some fields
of the person table require a more specialized data extraction in order to extract personal
information relating to the patient’s sex and age. Some of these have to be indirectly deduced,
and for this reason, while table entries for the person table were created, they were only used
to associate a unique person identifier to notes and concepts, so the remaining mandatory
fields were filled with zeros which is the CDM’s standard for “not present in the source”.

The note nlp table contains every term extracted from the clinical notes, but unlike the
other more specialized tables, this table contains the term in its raw, unprocessed state,
including how it was originally typed in the note and its exact position on the clinical note’s
text where it was identified. Essentially, every extracted term is added both in the note nlp
table in its raw state and in its specific domain table after being converted to its standardized
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form.
The table fields adhere to a naming system that helps the developers better understand

their contents. For instance every table has a PREFIX id field, where PREFIX represents
the name of the database table. This rule is showcased in the example provided in Table
4.6, which demonstrates field condition occurrence id in the condition occurrence database
table. These PREFIX id fields store unique identifiers for each table entry. Every table has
a person id field , which is a unique id identifying the person in the database to whom the
discharge summary relates to. Some tables have a “type” field, for instance, there is the
a condition type concept id in the example presented in Table 4.6 This “type” field is used
to determine the provenance of the record (e.g. the concept was obtained from an EHR,
insurance claim, etc) [24], which, in this case, a value of 32817 was used for that field, that
means “EHR” in this model.

4.2.3 Creating, connecting and inserting data to the database

Although the act of storing the normalized data into the database has been discussed,
the actual database hasn’t been described yet. The database management system of choice
was the PostgreSQL [95], which is a reliable, relational Open Source system. The creation
of the database itself is a rather straightforward process using the publicly available Data
Definition Language scripts from the OHDSI github page [10] one can automate the creation
of the database, as well as setting it up in accordance with the OHDSI schema. Lastly, in
order to connect, read and insert data to the database, the Psycopg2 [26] python module was
used, which is a popular PostgreSQL database adapter.

4.3 Summary

The final implemented system comprises three components: NER, NEN and ETL, with
each component outputting data to the next one’s input. The NEN component being the one
already tested and evaluated in chapter 3 so, for that reason, this chapter only focused on
the NER and ETL components.

The approach while developing the NER system was to use an annotator, namely cTAKES,
and a set of methods to improve its performance. The first method aimed to make the
task of annotating easier by preprocessing the text in the notes. The main aspect of the
text preprocessing was the translation of medical abbreviations into their actual meaning,
since cTAKES was not recognizing the majority of the abbreviations used in the notes. The
second method employed consisted in enhancing the dictionary used by cTAKES by inserting
additional entries to it. The third and fourth methods targeted cTAKES’ output by first
merging overlapping annotations and afterwards filtering out annotations that originated
from vocabulary sources that had lower performance on the training data.

The final component of the system is the ETL, whose goal is to convert the now identified
annotations into standardized OMOP-CDM concepts. This conversion process is achieved
through the usage of the OHDSI-to-CUI mapping package created by Juan M. Banda which
makes it possible to translate the CUI used to identify the annotations into OMOP-CDM
concepts. After the conversion process is completed the concepts are stored in a PostgreSQL
database following the OMOP-CDM schema.
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Chapter 5

Results and validation

This chapter will present and discuss the results obtained from the evaluation of the
implemented system in the previous chapter. Specifically, it will go over the results of the
Named Entity Recognition (NER) and Extract Transform Load (ETL) components of the
system. The Named Entity Normalization (NEN) component won’t be discussed in this
chapter since it was already evaluated and discussed in chapter 3, in the context of the N2C2
challenge, which resulted in a 77.5% accuracy.

The two components will be evaluated and discussed separately due to the fact that the
results expected from each of them as well as the metrics used to measure their performance
being so disparate. The other reason being that the system is modular, as such separate
evaluation allows to pinpoint the weak points of the system and focus the development on
improving that specific component in the future.

5.1 Named Entity Recognition (NER) results

As pointed out through the course of this dissertation, the focus of a NER system is to
extract relevant concepts in free text and, as such, the evaluation methods and metrics chosen
must reflect that.

5.1.1 Dataset and evaluation method

The evaluation and testing was performed using the same data set as previously described
in the N2C2 challenge chapter, the i2b2 2010 data set, which as explained earlier, contains a
total of 100 annotated discharge summaries and is split evenly in training and test subsets.
In both subsets it’s provided the position on the text file of every relevant entity, making the
data set suitable to evaluate the NER system on, as there is an expected result to compare
it to.

In order to measure the performance of the system the annotations provided in the chal-
lenge were compared to the ones resulting from the use of the employed annotator, cTAKES.
This was done by comparing the spans of the annotations which, in this case, refers to their
start and end positions and, consequently, their length in the text of the clinical note. There
were also some added considerations and modifications, as the focus was to evaluate cTAKES
annotating capabilities and not simply how similar the resulting annotations are to the ones
in the challenge. Some of the annotations provided in the challenge were stripped of words
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that add no value to the medical concept, for instance, the word “the” in cases where the
annotation is “the patient”.

5.1.2 Discussion of the results from each step taken to improve the NER
system

The initial test was performed by using only cTAKES in its default state to annotate
the clinical notes, which resulted in a recall, precision and F-score of 60.4%, 53.25% and
56.44% respectively. The approach taken while developing this system was to first prioritize
achieving a high recall (i.e. high amount matching annotations), with precision being the
second priority (i.e. reducing false positive annotations). The logic behind this approach was
that by achieving a high annotation count first, it would be possible to afterwards analyze
the metadata in the annotations to filter out annotations that are more likely to be false
positives, thus increasing the precision.

The preprocessing of the text in the notes is the first stage of the NER component,
although it wasn’t originally expected to improve the results, due to cTAKES already having
a text preprocessing step in its pipeline, it surprisingly increased both the recall and precision,
by 4.98 and 3.42 percentage points respectively. After further analysis this was determined
to be mainly due to the step where abbreviations are replaced by their meaning in the text.

The filtering based on vocabulary sources improved the precision by 7.18 percentage points
but it also reduced the recall of the system by 2.49 percentage points. The improvement to the
precision was much greater than the loss of recall, which resulted in an overall improvement,
increasing the F-score by 2.62 percentage points.

The dictionary additions is the only method that directly enhances the annotator being
used, unlike the other methods which indirectly enhance its functionality. The additions
were initially created using Casper [62], and afterwards some additional ones were created.
These resulted in an increase of the recall and precision by 6.78 and 3.55 percentage points
respectively.

Finally, the last step and the one that proved to be the most impactful, the merging
of overlapping annotations. This step aimed at mitigating one negative aspect of cTAKES,
which is its inaccuracy at recognizing compound concepts, as also pointed out in the work of
Monica Agrawal et al. [32]. The merging resulted in a considerable improvement, increasing
recall and precision by 8.81 and 2.53 percentage points respectively.

After further analysis of the vocabulary filtering method it was observed that, within a
certain range of threshold values, which will be explained next, for the filter strictness, it’s
possible to sacrifice recall for precision while keeping the F-score mostly unchanged, which
can be observed in Figure 5.1. This wasn’t possible when the vocabulary filtering method
was initially introduced, however, it was possible after the implementation of the dictionary
rewrite and merging of overlapping annotation methods, which vastly increased the amount
of annotations, making the filtering increasingly effective. Before that increase in the amount
of annotations, making the filter more strict resulted in a severe drop of the F-score. With
this new development it was decided to go for a more precise system at the cost of some of
the recall.

The actual values of the thresholds were initially defined as 0.3, 0.45 and 0.6, which were
based on the recall distribution achieved using each vocabulary source individually. These
values were defined in initial tests done to the NER system and, for that reason, don’t
represent the results currently obtained. However, in order to not create overfitting of the
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solution to this particular data set, the scoring of each source, for the context of this filter,
were preserved. A mapping was done between the vocabulary sources and the recall result
obtained in those earlier tests. So, for clarity, those threshold values are now simply referred
to as low, medium and high strictness.

Figure 5.1: Graph demonstrating the effect of the vocabulary source filter’s strictness levels
on the recall, precision and F-score of the NER system.

5.1.3 Final results

As seen in Table 5.1, the system went from an F-score of 56.44% to 73.55% with the
employed methods, having significant improvements in both recall and precision. Although
each method improved the performance of the system, the methods that proved to have a
bigger impact were the dictionary additions (both from Casper and the ones included in this
work), and the merging of overlapping annotations.

Table 5.1: Evolution of the recall, precision and F-score values resulting from the implemen-
tation of each method to the NER system. The methods shown are cumulative, with each
row including the methods described from the previous rows.

Method Recall Precision F-score

Basic cTAKES analysis 60,04% 53,25% 56,44%

Text preprocessing 65,02% 56,67% 60,56%

Filtering vocab. sources 62,53% 63,85% 63,18%

Dictionary additions 69,31% 67,40% 68,34%

Merge of annotations 78,12% 69,93% 73,80%

Filter adjustment 70,29% 77,12% 73,55%
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5.2 Extract Transform Load (ETL) results

The evaluation of the ETL component used a vastly different approach from the NER
component. The conversion between the UMLS Concept Unique Identifier (CUI) and its cor-
responding OMOP-CDM concept ID was done using a pre-evaluated and validated mapping
[23][16]. However, the mapping is not completely infallible and, after analysis it was found
that a total of 7.92% of the annotations didn’t have a corresponding concept ID, so, for that
reason were discarded. It was also found that incorrect annotations were far more likely to
not have a corresponding CDM concept ID than the correct annotations. Specifically, during
the mapping process, 4.62% of the correct annotations were lost and 19.02% of the incorrect
annotations were lost. This translated to a loss of recall by 3.25 percentage points but an in-
crease of precision of 2.76 percentage points. For that reason the loss of F-score was minimal,
at 0.65 percentage points, resulting in a final F-score of 72.90

The conversion itself after finding the corresponding CDM concept ID is a rather direct
process. Once it’s defined which database table each concept domain ID redirects to, the
process becomes rather linear with no room for deviation. The validation of this process was
done in two stages. The first stage consisted of manually verifying each possible domain and
using the available OHDSI documentation along with some guidance from the OHDSI forums
to make sure that the data being stored was being correctly selected. In the second and
final stage, some extra precautionary verifications were done, such as selecting ten random
concepts, still in their original form, of each domain and looking them up on Athena [3] to
see if it matches their OMOP-CDM form, as well as querying the database to guarantee that
the data was being stored properly.

5.3 Summary

This chapter provided an analysis regarding the results achieved with the NER and ETL
components of the implemented system. The remaining component, NEN, wasn’t discussed
in this chapter since it was already tested and evaluated in chapter 3, where it was shown to
achieve a 77.5% accuracy. The evaluation and testing was performed using the same data set
as previously described in the N2C2 challenge chapter, the i2b2 2010 data set.

The NER component was evaluated based on its ability to recognize relevant concepts in
the notes and its performance was measured using precision, recall and F-score. Employing
a combination of methods to improve it, namely text preprocessing, cTAKES’ dictionary
improvements, vocabulary source filtering and merging of overlapping annotations, the system
achieved a recall, precision and F-score of 70.29%, 77.12% and 73.55% respectively.

The evaluation of the ETL component used a vastly different approach from the NER
component. The conversion between the UMLS CUI and its corresponding OMOP-CDM
concept ID was done using a pre-evaluated and validated mapping. However, the mapping is
not completely infallible and it was found that a total of 7.92% of the annotations didn’t have
a corresponding concept ID so, for that reason, they were discarded. That loss of annotations
was mostly mitigated by the fact that incorrect annotations were far more likely to not have
a corresponding concept ID than correct annotations. Lastly, some manual verifications were
made to assure that the data was being stored in the proper database tables and fields.
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Chapter 6

Conclusion and future work

This chapter will present the conclusions of this dissertation, including a general analysis
of the outcomes of the work carried out as well as potential future work to improve the
developed work.

6.1 Conclusion

The goal of this dissertation was to develop a system capable of automatically processing
clinical narratives by extracting relevant medical concepts from them and converting those
same concepts into OMOP-CDM standardized concepts.

In order to better understand the subject and how to approach it, text mining and Natural
Language Processing topics were studied and discussed, including frameworks that implement
such technologies. Afterwards, in the development stage, in an attempt to approach this task
in a more incremental way, the N2C2 2019 challenge was completed and described in chapter
3. This challenge served as an intermediary task, easing the development and testing of part
of the system due to the fact it provided clear guidelines, metrics and a dataset to evaluate
the performance of the developed work. Being a modular system, the component developed
for this challenge was then implemented in the final system seamlessly.

The remaining system was described in chapter 4, where its conception, features, decisions
taken to improve it, as well as its architecture were discussed. And finally, in chapter 5, the
performance of the system was analyzed, by measuring the impact of each step taken to
improve the system. Overall, the developed system fulfilled its objective of processing clinical
texts, extracting concepts and converting the extracted texts to OMOP-CDM standardized
concepts, as well as storing it in a database with a OMOP-CDM compliant schema, facilitating
the usage of such data for observational studies.

6.2 Future work

Although the implemented solution fulfills the specified requirements, there are still some
aspects of it that can be improved upon. Namely, the NER system could potentially be
improved by checking the neighboring annotations of each annotation for potential merges.
While the system currently merges overlapping annotations, there are still cases of annotations
that should be merged but don’t overlap. The extraction methods currently employed are
focused on the extraction of medical concepts, and, for this common data model, which is
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patient centric, some improvements should be made to derive better patient details from the
free text.

The other improvements being towards the system’s current lack of graphical interface.
The system is currently operated through a set of scripts to run, either the full pipeline, or
specific components. It would be an interesting proposal to make the system more autonomous
and user friendly, possibly making it possible to use it remotely through a browser.
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framework for biomedical concept recognition. 2013. URL: https:

//bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-
281#citeas, doi:10.1186/1471-2105-14-281.

[45] Victor Castro, Caitlin Clements, Shawn Murphy, Vivian Gainer, Maurizio Slater, Jeffrey
Weilburg, Jane Erb, Susanne Churchill, Isaac Kohane, Dan Iosifescu, Jordan Smoller,
and Roy Perlis. Qt interval and antidepressant use: a cross sectional study of electronic
health records. 2013. doi:10.1136/bmj.f288.

[46] Victor M. Castro, W. Kay Apperson, Vivian S. Gainer, Ashwin N. Ananthakrish-
nan, Alyssa P. Goodson, Christopher D. Herrick Taowei D. Wang, and Shawn N.
Murphy. Evaluation of matched control algorithms in ehr-based phenotyping stud-
ies: A case study of inflammatory bowel disease comorbidities. 2014. doi:10.1016/
j.jbi.2014.08.012.

[47] Victor M. Castro, W. Kay Apperson, Vivian S. Gainer, Ashwin N. Ananthakrish-
nan, Alyssa P. Goodson, Taowei D. Wang, Christopher D. Herrick, and Shawn N.
Murphy. Evaluation of matched control algorithms in ehr-based phenotyping stud-
ies: A case study of inflammatory bowel disease comorbidities. 2014. doi:10.1016/
j.jbi.2014.08.012.

[48] Jinying Chen, Jiaping Zheng, and Hong Yu. Finding important terms for patients
in their electronic health records: A learning-to-rank approach using expert an-
notations. 2016. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156821,
doi:10.2196/medinform.6373.

[49] Qingyu Chen, Yifan Peng, and Zhiyong Lu. Biosentvec: creating sentence embeddings
for biomedical texts. 2018. doi:10.48550/arXiv.1810.09302.

[50] Nancy Chinchor and Patricia Robinson. Muc-7 named entity task definition. In Pro-
ceedings of the 7th Conference on Message Understanding, volume 29, pages 1–21, 1997.

[51] Hyejin Cho, Wonjun Choi, and Hyunju Lee. A method for named entity normalization
in biomedical articles: application to diseases and plants. 2017. doi:10.1186/s12859-
017-1857-8.

[52] Hongjie Dai, Yen Ching Chang, Richard Tzong-Han Tsai, and Wen-Lian Hsu. New
challenges for biological text-mining in the next decade. 2009. doi:10.1007/s11390-
010-9313-5.

[53] Son Doan, Lisa Bastarache, Sergio Klimkowski, Joshua C Denny, and Hua Xu. Integrat-
ing existing natural language processing tools for medication extraction from discharge
summaries. Journal of the American Medical Informatics Association, 17(5):528–531,
09 2010. doi:10.1136/jamia.2010.003855.

[54] David Ferrucci and Adam Lally. Uima: an architectural approach to unstructured
information processing in the corporate research environment. Natural Language Engi-
neering, 10(3-4):327–348, 2004. doi:10.1017/S1351324904003523.

48

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-281#citeas
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-281#citeas
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-281#citeas
https://doi.org/10.1186/1471-2105-14-281
https://doi.org/10.1136/bmj.f288
https://doi.org/10.1016/j.jbi.2014.08.012
https://doi.org/10.1016/j.jbi.2014.08.012
https://doi.org/10.1016/j.jbi.2014.08.012
https://doi.org/10.1016/j.jbi.2014.08.012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156821
https://doi.org/10.2196/medinform.6373
https://doi.org/10.48550/arXiv.1810.09302
https://doi.org/10.1186/s12859-017-1857-8
https://doi.org/10.1186/s12859-017-1857-8
https://doi.org/10.1007/s11390-010-9313-5
https://doi.org/10.1007/s11390-010-9313-5
https://doi.org/10.1136/jamia.2010.003855
https://doi.org/10.1017/S1351324904003523


[55] Fern FitzHenry, Olga V. Patterson, Jason Denton, Jesse Brannen, Ruth M. Reeves,
Scott L. DuVall, and Michael E. Matheny. Omop cdm for natural language processing:
Piloting a va nlp data set.

[56] Tracy D Gunter and Nicolas P Terry. The emergence of national electronic health record
architectures in the united states and australia: models, costs, and questions. Journal
of medical Internet research, 7(1):e383, 2005.

[57] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.
2012. doi:10.1016/C2009-0-61819-5.

[58] David Hand and Peter Christen. A note on using the f-measure for evaluating
record linkage algorithms. Statistics and Computing, 28(3):539–547, 2018. doi:

10.1007/s11222-017-9746-6.

[59] Marcus Hassler and Günther Fliedl. Text preparation through extended tokenization.
WIT Transactions on Information and Communication Technologies, 37, 2006.

[60] Marti Hearst. What is text mining. SIMS, UC Berkeley, 5, 2003.

[61] Jane Herwehe, Wayne Wilbright, Amir Abrams, Susan Bergson, Joseph Foxhood,
Michael Kaiser, Luis Smith, Ke Xiao, Amy Zapata, and Manya Magnus. Implemen-
tation of an innovative, integrated electronic medical record (emr) and public health
information exchange for hiv/aids. 2011. doi:10.1136/amiajnl-2011-000412.

[62] Kristina M Hettne, Erik M van Mulligen, Martijn J Schuemie, Bob JA Schijvenaars,
and Jan A Kors. Rewriting and suppressing umls terms for improved biomedical term
identification. 2010. doi:10.1186/2041-1480-1-5.

[63] George Hripcsak, Jon D Duke, Nigam H Shah, Christian G Reich, Vojtech Huser,
Martijn J Schuemie, Marc A Suchard, Rae Woong Park, Ian Chi Kei Wong, Peter R
Rijnbeek, Johan van der Lei, Nicole Pratt, G Niklas Norén, Yu-Chuan Li, Paul E
Stang, David Madigan, , and Patrick B Ryang. Observational health data sciences and
informatics (ohdsi): Opportunities for observational researchers. PMID:26262116.

[64] Thomas H. McCoy Jr, Victor M. Castro, Ashlee M. Roberson, Leslie A. Snap-
per, and Roy H. Perlis. Improving prediction of suicide and accidental death af-
ter discharge from general hospitals with natural language processing. 2016. doi:

10.1001/jamapsychiatry.2016.2172.

[65] Ning Kang, Erik M van Mulligen, and Jan A Kors. Comparing and combining chunkers
of biomedical text. Journal of biomedical informatics, 44(2):354–360, 2011.

[66] Anne Kao and Steve Poteet. Natural language processing and text mining. Springer
Science & Business Media, 2007.

[67] Martijn G Kersloot, Francis Lau, Ameen Abu-Hanna, Derk L Arts, and Ronald Cornet.
Automated snomed ct concept and attribute relationship detection through a web-based
implementation of ctakes. Journal of biomedical semantics, 10, 2019. URL: https:
//www.ncbi.nlm.nih.gov/pubmed/31533810, doi:10.1186/s13326-019-0207-3.

49

https://doi.org/10.1016/C2009-0-61819-5
https://doi.org/10.1007/s11222-017-9746-6
https://doi.org/10.1007/s11222-017-9746-6
https://doi.org/10.1136/amiajnl-2011-000412
https://doi.org/10.1186/2041-1480-1-5
https://doi.org/10.1001/jamapsychiatry.2016.2172
https://doi.org/10.1001/jamapsychiatry.2016.2172
https://www.ncbi.nlm.nih.gov/pubmed/31533810
https://www.ncbi.nlm.nih.gov/pubmed/31533810
https://doi.org/10.1186/s13326-019-0207-3


[68] Ellen Kim, Samuel M Rubinstein, Kevin T Nead, Andrzej P Wojcieszynski, Peter E
Gabriel, and Jeremy L Warner. The evolving use of electronic health records (ehr) for
research. In Seminars in radiation oncology, volume 29, pages 354–361. Elsevier, 2019.

[69] Ajay Kulkarni, Deri Chong, and Feras A. Batarseh. 5 - foundations of data imbal-
ance and solutions for a data democracy. In Feras A. Batarseh and Ruixin Yang,
editors, Data Democracy, pages 83–106. Academic Press, 2020. URL: https://

www.sciencedirect.com/science/article/pii/B9780128183663000058, doi:https:
//doi.org/10.1016/B978-0-12-818366-3.00005-8.

[70] Robert Leaman, Ritu Khare, and Zhiyong Lu. Challenges in clinical natural
language processing for automated disorder normalization. 2015. doi:10.1016/
j.jbi.2015.07.010.

[71] Hongfang Liu, Suzette J. Bielinski, Sunghwan Sohn, Sean Murphy, Kavishwar B.
Wagholikar, Siddhartha R. Jonnalagadda, K.E. Ravikumar, Stephen T. Wu, Iftikhar J.
Kullo, and Christopher G Chute. An information extraction framework for cohort
identification using electronic health records. 2013. PMID:24303255. URL: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC3845757/.

[72] Sijia Liu, Liwei Wang, Donna Ihrke, Vipin Chaudhary, Cui Tao, Chunhua Weng, and
Hongfang Liu. Correlating lab test results in clinical notes with structured lab data: a
case study in hba1c and glucose. AMIA Summits on Translational Science Proceedings,
2017:221, 2017.

[73] Filipe Lucini, Flavio Fogliatto, Giovani da Silveira, Jeruza Neyeloff, Michel An-
zanello, Ricardo Kuchenbecker, and Beatriz Schaan. Text mining approach to pre-
dict hospital admissions using early medical records from the emergency depart-
ment. International Journal of Medical Informatics, 100:1–8, 2017. URL: https:

//www.sciencedirect.com/science/article/pii/S1386505617300011, doi:https:

//doi.org/10.1016/j.ijmedinf.2017.01.001.

[74] Yen-Fu Luo, Weiyi Sun, and Anna Rumshisky. Mcn: A comprehensive corpus for
medical concept normalization. 2019. doi:10.1016/j.jbi.2019.103132.

[75] Sérgio Matos, David Campos, Renato Pinho, Raquel M. Silva, Matthew Mort, David N.
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biomedical concept recognition services and visualization. 2013. URL: https:

//academic.oup.com/bioinformatics/article/29/15/1915/265850, doi:10.1093/
bioinformatics/btt317.

[83] Pascal Pfiffner. py-umls. Online; accessed 30-July-2022. URL: https://github.com/
chb/py-umls.

[84] David MW Powers. Evaluation: from precision, recall and f-measure to roc, informed-
ness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.

[85] Preethi Raghavan, James L. Chen, Eric Fosler-Lussier, and Albert M. Lai. How essential
are unstructured clinical narratives and information fusion to clinical trial recruitment?
2014.

[86] Anand Rajaraman and Jeffrey David Ullman. Data Mining, page 1–17. Cambridge
University Press, 2011. doi:10.1017/CBO9781139058452.002.
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