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A B S T R A C T

We perform an experimental study to evaluate the performance of a matheuristic for the production
routing problem (PRP). First, we develop a basic matheuristic that prescribes starting from a partial initial
solution, completing it using a sequence of constructive heuristics, and improving it using a general-purpose
mixed-integer programming heuristic. Next, we investigate the effect of three state-of-the-art mathematical
formulations on the proposed matheuristic convergence. The formulations are implemented and tested with
and without the use of valid inequalities. In addition, by suggesting different techniques to generate a feasible
starting solution for our matheuristic, we assess the contribution of an initial solution to the matheuristic’s
overall performance. We conduct extensive computational experiments on benchmark data instances for the
PRP. The results show that a proper choice of an embedded mathematical formulation depends on the data
instances’ features, such as the number of customers and the length of the planning horizon. The comparisons
undertaken in this study indicate that having a better initial solution does not necessarily lead to finding a
better final solution.
1. Introduction

This study investigates the production routing problem (PRP) with
a discrete and finite time horizon. The problem combines three famous
subproblems from the literature: lot-sizing, vehicle routing, and inven-
tory management problems. Contributions dealing with the PRP ap-
peared in the mid-1990 when Chandra (1993) and Chandra and Fisher
(1994) successfully combined production and distribution decisions.
However, the problem remained widely unexplored until mid-2010s,
when the interest in it gained momentum, perhaps in connection to
the growing application of vendor-managed inventory (VMI) policies in
the business. This interest is demonstrated by the surging number of its
solution methods, which are often disparate. We differentiate between
(i) exact algorithms, (ii) heuristic algorithms, and (iii) the hybridization
of heuristic and exact algorithms, yielding the so-called matheuris-
tic algorithms. For a comprehensive review on solution methods for
the PRP, we refer the readers to Adulyasak et al. (2015) and Díaz-
Madroñero et al. (2015). Hrabec et al. (2022) also reviewed some
pertinent contributions to the PRP and showed that solving a PRP is
better than solving sequential problems if the optimality gap of the
integrated problem is below a certain threshold (11%).
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Matheuristics, which are reputable for obtaining high-quality so-
lutions, have recently come under the spotlight. For example, Russell
(2017) developed a matheuristic that involves the solution of a relaxed
version of a mixed-integer program (MIP) to derive lot-sizing decisions,
followed by the use of a vehicle routing algorithm to determine final
routes. Avci and Yildiz (2019) proposed a matheuristic that decomposes
the problem into a sequence of subproblems. Distribution and routing
subproblems are solved heuristically, while a mathematical model is
used to derive the lot-sizing, inventory, and delivery quantity decisions.
Chitsaz et al. (2019) proposed a three-phase matheuristic for the joint
assembly, production, and inventory routing problem. The first phase
determines a setup schedule, while the second phase optimizes produc-
tion quantities, supplier visit schedules, and shipment quantities. The
third phase solves a vehicle routing problem (VRP) for each period in
the planning horizon. Recently, Manousakis et al. (2021a) designed an
efficient matheuristic for solving the PRP. The crux is that exploring
both feasible and infeasible solution spaces with a local search can lead
to improved PRP solutions. The matheuristic employs mathematical
models to restore feasibility and improve incumbent solutions. Vadseth
et al. (2023) proposed a multi-start matheuristic that creates a set of
vailable online 10 April 2023
305-0548/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2023.106232
Received 27 June 2022; Received in revised form 3 March 2023; Accepted 24 Mar
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ch 2023

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:mohamed.ben.ahmed@himolde.no
mailto:ben.mohamed@moreforsking.no
mailto:Lars.M.Hvattum@himolde.no
mailto:aagra@ua.pt
https://doi.org/10.1016/j.cor.2023.106232
https://doi.org/10.1016/j.cor.2023.106232
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106232&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Operations Research 155 (2023) 106232M.B. Ahmed et al.

v
T
n
t
T
p
w
t
t
b
s
a
e
t
w
T
a
m

l

𝑗
W

initial solutions to the PRP by first solving a production subproblem
and then a routing subproblem. Differentiation techniques, such as
relaxing or tightening the problem’s constraints, are used to ensure
that a distinct solution is obtained at each restart. Finally, a mathe-
matical model that applies customer insertion and removal operations
is repeatedly run on the pool of constructed solutions, leading to an
improved solution. Mousavi et al. (2022) proposed a matheuristic for
solving the stochastic PRP with perishable products. It breaks down the
problem into five subproblems, where the solution to one subproblem
is conveyed to the following one. Other approaches that go in line
with the aforementioned contributions can be found in Miranda et al.
(2018), Neves-Moreira et al. (2019), and Avci and Yildiz (2020).

The applications of matheuristics are not solely limited to the
context of the PRP, and matheuristics have been implemented to solve
other routing problems as documented by Doerner and Schmid (2010)
and Archetti and Speranza (2014). Other surveys on matheuristics
are presented by Blum et al. (2011), Hanafi and Todosijević (2017),
and Boschetti and Maniezzo (2022). In the vast majority of these
contributions, the design of matheuristics is involved in a manual,
experimental approach guided by the algorithm designers’ experience
and the exploitation of problem-specific knowledge. The developed
matheuristics are ad-hoc and do not necessarily provide an understand-
ing of how a combination of MP-based exact methods and heuristic
search techniques can best improve algorithmic performance (Blum
et al., 2011). Besides, a deeper understanding of the performance of
mathematical components is lacking, which would eventually provide,
if it exists, insights into the optimal configuration of matheuristics for
the PRP. Finally, one needs to further investigate the sensitivity of
matheuristics to the initial solution. While hypothetically, an excellent
initial solution can improve the performance of a matheuristic, it may
be, in some cases, challenging to improve, resulting in higher execution
times.

This paper’s main contribution is to design a generic matheuristic
for the PRP and evaluate its performance under different mathematical
formulations. The matheuristic incorporates three phases, each one
relying on a basic/general-purpose method. The first phase is a mixed-
integer programming (MIP) relaxation of the entire problem where
only the integrality of lot-sizing decisions is maintained. In the second
phase, we develop a sequence of construction heuristics to determine
the distribution and the routing decisions, thus yielding a complete
initial solution. The last phase uses a general-purpose MIP heuristic that
iteratively attempts to improve the given solution. The matheuristic’s
parameters do not require an extensive fine-tuning, and their values are
adjusted using offline calibration techniques. Three mathematical for-
mulations are developed and tested within the matheuristic framework,
namely: (1) a four-index vehicle flow formulation, (2) a three-index
ehicle flow formulation, and (3) a two-commodity flow formulation.
he first formulation uses integer variables associated with each pair of
odes to count the number of times a vehicle travels between them. In
he second formulation, these variables are aggregated over all vehicles.
he third formulation defines two continuous flow variables for each
air of nodes representing the vehicle’s total load and empty space
hile traversing these two nodes, respectively. These formulations are

ested with and without using valid inequalities to assess the impact of
hese inequalities on the algorithm’s overall performance. Furthermore,
y allowing for different techniques to generate a feasible starting
olution for our matheuristic, we aim to measure the contribution of
n initial solution to the matheuristic’s overall performance. Detailed
xperimental analyses follow our study, and we apply several metrics
o evaluate the matheuristic components’ performance. Additionally,
e compare our matheuristic with other methods that solved the PRP.
he obtained results show that our method competes well with exact
lgorithms, while it outperforms existing heuristic and matheuristic
ethods.

To the best of our knowledge, there are no studies in the existing
2

iterature that adopted a similar experimental methodology where
the study of models is done while embedded in a matheuristics. A
handful of similar contributions exist concerning the design of meta-
heuristics. For example, Prins (2004) investigated how features of a
genetic algorithm influenced the quality of solutions to a VRP. Hemmati
and Hvattum (2016) investigated the importance of randomization in
adaptive large neighborhood search when solving maritime pickup
and delivery problems, whereas Sousa et al. (2016) evaluated the
importance of initial solution algorithms in simulated annealing when
solving energy resource scheduling problems.

We are not aware of existing studies that compare PRP formulations
with respect to their role in heuristic search. However, one can find
insightful contributions in the literature about the quality of linear
programming (LP) relaxations of different formulations for the inven-
tory routing problem (Archetti and Ljubić, 2022) and the multi-depot
routing problem (Bektaş et al., 2020), as well as the performance of
flow formulations for the capacitated location-routing problem when
used in a branch-and-cut framework (Contardo et al., 2013).

The remainder of this paper is organized as follows. In Section 2, we
introduce the formal definition of the PRP and some useful notation
used in the following sections. In Section 3 we introduce different
formulations for the PRP. The details of the matheuristic framework
are presented in Section 4. This is followed by a description of the
experimental setup and the tests performed in Section 5 and some
concluding remarks in Section 6.

2. Problem description

The PRP can be defined on a complete undirected graph 𝐺 = (𝑁,𝐸)
where 𝑁 = 𝑁𝐶 ∪ {0} is the set of nodes, 𝑁𝐶 is the subset of customers
nodes, node 0 represents the plant facility, and 𝐸 = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑁, 𝑖 <
} is the set of edges. We define the set 𝑇 = {1,… ,𝐻} of time periods.
ith each edge (𝑖, 𝑗) ∈ 𝐸 is associated a routing cost 𝑐𝑖𝑗 . A fleet of 𝑚

identical vehicles is made available in each period 𝑡 ∈ 𝑇 , and every
vehicle has a transportation capacity of 𝑄 units. For each node 𝑖 ∈ 𝑁𝐶

and time period 𝑡 ∈ 𝑇 , let 𝑑𝑖𝑡 denote the demand of customer 𝑖 in period
𝑡. For each node 𝑖 ∈ 𝑁 , a starting inventory level 𝐼𝑖0 and a maximum
inventory level 𝐿𝑖 are given. We denote by ℎ𝑖 the inventory holding cost
at node 𝑖 ∈ 𝑁 . The setup cost at the plant and the variable production
cost are represented by 𝑠 and 𝑢, respectively. The production capacity
at the plant facility is given by 𝐶. Hence, the PRP aims at determining
a production and a distribution plan such that:

• Production capacity at the plant facility is respected.
• Vehicle capacities and inventory capacities at both customers and

the production plant are satisfied.
• Stock-out at customers are not allowed.
• Backlog of demand is not allowed.
• Each customer is visited at most once in each time period.
• Vehicle routes start and end at the plant in each time period.
• The total cost, given by the sum of the setup cost at the plant,

the variable production cost, the inventory holding cost at the
customers and the plant, plus the routing costs, is minimized.

We define the following additional notation. Let 𝛥(𝑆) = {(𝑖, 𝑗) ∈ 𝐸 ∶
𝑖 ∈ 𝑆, 𝑗 ∉ 𝑆 or 𝑖 ∉ 𝑆, 𝑗 ∈ 𝑆} be the set of edges incident to a node set
𝑆 (for simplicity, we write 𝛥(𝑖) to represent the set of edges incident to
𝑖 ∈ 𝑁). Let 𝐸(𝑆) the set of edges (𝑖, 𝑗) ∈ 𝐸, such that 𝑖, 𝑗 ∈ 𝑆, where
𝑆 ⊆ 𝑁 .

3. Multi-vehicle formulations for the PRP

This section introduces three state of the art mathematical formula-
tions of the generic PRP version: a four-index vehicle flow formulation,
a three-index vehicle flow formulation, and a two-commodity flow

formulation.
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3.1. A four-index vehicle flow formulation

In the four-index vehicle flow formulation, originally presented
by Adulyasak et al. (2014a), we define for every time period 𝑡 ∈ 𝑇
the binary decision variable 𝑥𝑖𝑗𝑘𝑡 that takes the value 1 if and only if a
ehicle 𝑘 ∈ 𝐾 travels directly between nodes 𝑖, 𝑗 ∈ 𝑁 . We also define
𝑖𝑘𝑡 as a binary variable taking the value 1 if node 𝑖 is visited by vehicle
∈ 𝐾 in period 𝑡 ∈ 𝑇 . In addition, 𝐼𝑖𝑡 is a continuous decision variable

orresponding to the inventory level of node 𝑖 ∈ 𝑁 at the end of time
eriod 𝑡 ∈ 𝑇 , while 𝑞𝑖𝑘𝑡 represents the quantity delivered to customer
∈ 𝑁𝐶 by means of vehicle 𝑘 ∈ 𝐾 in period 𝑡 ∈ 𝑇 . Finally, let 𝑦𝑡 be the
inary setup variable, and 𝑝𝑡 the continuous production level variable,
oth defined for each time period 𝑡 ∈ 𝑇 . With these decision variables,
he four-index vehicle flow formulation of the PRP, henceforth called
IVF, is given by:

in 𝑓 (𝑥, 𝑦, 𝑧) =
∑

𝑡∈𝑇

(

𝑢𝑝𝑡 + 𝑠𝑦𝑡 +
∑

𝑖∈𝑁
ℎ𝑖𝐼𝑖𝑡 +

∑

(𝑖,𝑗)∈𝐸

∑

𝑘∈𝐾
𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑡

)

(1.1)

subject to

𝐼0,𝑡−1 + 𝑝𝑡 =
∑

𝑖∈𝑁𝐶

∑

𝑘∈𝐾
𝑞𝑖𝑘𝑡 + 𝐼0𝑡, ∀𝑡 ∈ 𝑇 , (1.2)

𝐼𝑖,𝑡−1 +
∑

𝑘∈𝐾
𝑞𝑖𝑘𝑡 = 𝑑𝑖𝑡 + 𝐼𝑖𝑡, 𝑖 ∈ 𝑁𝐶 , ∀𝑡 ∈ 𝑇 , (1.3)

𝑝𝑡 ≤ min

{

𝐶,
∑

𝑖∈𝑁𝐶

𝐻
∑

𝑙=𝑡
𝑑𝑖𝑙

}

𝑦𝑡, ∀𝑡 ∈ 𝑇 , (1.4)

𝐼0𝑡 ≤ 𝐿0, ∀𝑡 ∈ 𝑇 , (1.5)
𝐼𝑖,𝑡−1 +

∑

𝑘∈𝐾
𝑞𝑖𝑘𝑡 ≤ 𝐿𝑖, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (1.6)

∑

𝑖∈𝑁𝐶

𝑞𝑖𝑘𝑡 ≤ 𝑄𝑧0𝑘𝑡, ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , (1.7)

∑

𝑘∈𝐾
𝑧𝑖𝑘𝑡 ≤ 1, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (1.8)

𝑖𝑘𝑡 ≤ min

{

𝐿𝑖, 𝑄,
𝐻
∑

𝑙=𝑡
𝑑𝑖𝑙

}

𝑧𝑖𝑘𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , (1.9)

∑

𝑗∶(𝑖,𝑗)∈𝐸
𝑥𝑖𝑗𝑘𝑡 = 2𝑧𝑖𝑘𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , (1.10)

∑

(𝑖,𝑗)∈𝐸(𝑆)
𝑥𝑖𝑗𝑘𝑡 ≤

∑

𝑖∈𝑆
𝑧𝑖𝑘𝑡 − 𝑧𝑒𝑘𝑡, ∀𝑆 ⊆ 𝑁𝐶 ,

𝑒 ∈ 𝑆, |𝑆| ≥ 2, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , (1.11)
𝑧0𝑘𝑡 ≥ 𝑧0,𝑘+1,𝑡, 1 ≤ 𝑘 ≤ 𝑚 − 1, ∀𝑡 ∈ 𝑇 , (1.12)

𝑗
∑

𝑖=1
2(𝑗−𝑖)𝑧𝑖𝑘𝑡 ≥

𝑗
∑

𝑖=1
2(𝑗−1)𝑧𝑖,𝑘+1,𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , (1.13)

𝑝𝑡, 𝐼𝑖𝑡, 𝑞𝑖𝑘𝑡 ≥ 0, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , (1.14)
𝑦𝑡, 𝑧𝑖𝑘𝑡 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , (1.15)

𝑥𝑖𝑗𝑘𝑡 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐸 ∶ 𝑖 ∈ 𝑁𝐶 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , (1.16)

𝑥0𝑗𝑘𝑡 ∈ {0, 1, 2}, ∀𝑗 ∈ 𝑁𝐶 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 . (1.17)

The objective function (1.1) calls for the minimization of the total
perational costs, that is, the sum of the setup costs, the unit production
osts, the transportation costs, and the inventory holding costs at both
he plant facility and the customers. Constraints (1.2)–(1.3) define the
nventory level at the production plant and at the customers, respec-
ively. If production occurs at a specific time period 𝑡 ∈ 𝑇 , then a setup
ost is incurred at the production facility and is forced via constraints
1.4). The produced quantity cannot surpass the production capacity
either the total demand in the remaining time periods. Constraints
1.5)–(1.6) ensure that the inventory quantities at the plant and the cus-
omers, respectively, do not exceed their capacities at the end of each
eriod. Constraints (1.7) are vehicle capacity constraints. Constraints
1.8) allow each customer to be visited at most once during each time
3

eriod. If there is a positive delivery to a node, then a visit is forced
y constraints (1.9). Constraints (1.10) are the degree constraints of
ustomers; they require the number of edges incident to each node to
e equal to 2 if it is visited or 0 otherwise. Constraints (1.11) are the
ubtour elimination constraints (SEC) for each vehicle route and each
eriod. Constraints (1.12)–(1.13) are symmetry breaking constraints.
inally, constraints (1.14)–(1.17) define the domains of the variables.

The SECs are dynamically generated in each node of the branch-and-
ound tree. Their separation amounts to the solution of the classical
in-cut problem presented in Padberg and Rinaldi (1991). Adulyasak

t al. (2014a) also strengthen the formulation (1.1)–(1.17) using sev-
ral valid inequalities. They are valid for the multivehicle PRP with
apacitated production, and they are described in Appendix A.1. The
ighter formulation is, henceforth, referred to by FIVF-VI.

.2. A three-index vehicle flow formulation

The previous formulation has the drawback that the number of vari-
bles grows in proportion to the number of vehicles. Alternatively, one
an express the routing constraints with variables that do not comprise
vehicle index, in a similar manner to Adulyasak et al. (2014a). The

ormulation is written using the variables 𝑞, 𝑧, and 𝑥 with the same
otation, but the vehicle index 𝑘 is dropped. The only exception is that
ariable 𝑧0𝑡, which is changed to be an integer variable representing
he number of vehicles leaving the plant in period 𝑡 ∈ 𝑇 . Below, the
hree-index vehicle flow formulation is provided, henceforward named
IVF:

in 𝑓 (𝑥, 𝑦, 𝑧) =
∑

𝑡∈𝑇

(

𝑢𝑝𝑡 + 𝑠𝑦𝑡 +
∑

𝑖∈𝑁
ℎ𝑖𝐼𝑖𝑡 +

∑

(𝑖,𝑗)∈𝐸
𝑐𝑖𝑗𝑥𝑖𝑗𝑡

)

(2.1)

ubject to (1.5)–(1.6) and

𝐼0,𝑡−1 + 𝑝𝑡 =
∑

𝑖∈𝑁𝐶

𝑞𝑖𝑡 + 𝐼0𝑡, ∀𝑡 ∈ 𝑇 , (2.2)

𝐼𝑖,𝑡−1 + 𝑞𝑖𝑡 = 𝑑𝑖𝑡 + 𝐼𝑖𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (2.3)

𝑝𝑡 ≤ min

{

𝐶,
∑

𝑖∈𝑁𝐶

𝐻
∑

𝑙=𝑡
𝑑𝑖𝑙

}

𝑦𝑡, ∀𝑡 ∈ 𝑇 , (2.4)

𝐼0𝑡 ≤ 𝐿0, ∀𝑡 ∈ 𝑇 , (2.5)
𝐼𝑖,𝑡−1 + 𝑞𝑖𝑡 ≤ 𝐿𝑖, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (2.6)

𝑞𝑖𝑡 ≤ min

{

𝐿𝑖, 𝑄,
𝐻
∑

𝑙=𝑡
𝑑𝑖𝑙

}

𝑧𝑖𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (2.7)

∑

𝑗∶(𝑖,𝑗)∈𝐸
𝑥𝑖𝑗𝑡 = 2𝑧𝑖𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (2.8)

𝑧0𝑡 ≤ 𝑚, ∀𝑡 ∈ 𝑇 , (2.9)
∑

(𝑖,𝑗)∈𝐸(𝑆)
𝑥𝑖𝑗𝑡 ≤

∑

𝑖∈𝑆

(

𝑄𝑧𝑖𝑡 − 𝑞𝑖𝑡
)

, ∀𝑆 ⊆ 𝑁𝐶 , |𝑆| ≥ 2, 𝑡 ∈ 𝑇 , (2.10)

𝑝𝑡, 𝐼𝑖𝑡, 𝑞𝑖𝑡 ≥ 0, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 . (2.11)
𝑦𝑡, 𝑧𝑖𝑡 ∈ {0, 1}, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (2.12)

𝑧0𝑡 ∈ Z+, ∀𝑡 ∈ 𝑇 , (2.13)
𝑥𝑖𝑗𝑡 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐸 ∶ 𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (2.14)

𝑥0𝑗𝑡 ∈ {0, 1, 2}, ∀𝑗 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 . (2.15)

Constraints (2.2)–(2.8) are similar to (1.2)–(1.3), (1.6), and (1.9)–
1.10), respectively. Constraints (2.9) limit the number of vehicles
eaving the production facility to the number of available vehicles
n each period. Constraints (2.10) are the subtour elimination and
ehicle capacity constraints. They have a form similar to the gener-
lized fractional subtour elimination constraints (GFSEC) for the VRP,
nd they are separated using the four heuristic separation algorithm
resented by Lysgaard et al. (2004). Besides, the model can be further
trengthened by adding valid inequalities. We describe in Appendix A.2
he valid inequalities associated with the TIVF formulation. The tighter
ormulation is, henceforward, called TIVF-VI.
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3.3. A two-commodity flow formulation

The third formulation for solving the basic variant of the PRP is
based on the two-commodity flow formulation introduced by
Manousakis et al. (2021a). The formulation requires an extended graph
𝐺′ = (𝑁 ′, 𝐸′) obtained from 𝐺 by adding the artificial node 𝑛 + 1,
uplicating the production facility. Vehicle paths now start from vertex
and end at vertex 𝑛+1. The formulation is written using the variables

, 𝑧, and 𝑥 with the same notation, but the vehicle index 𝑘 is dropped.
In addition, two continuous flow variables 𝑓𝑖𝑗𝑡 and 𝑓𝑗𝑖𝑡 are introduced
for each edge (𝑖, 𝑗) ∈ 𝐸′ and they represent the load and the residual
capacity of the vehicle traveling from 𝑖 to 𝑗 at time 𝑡 ∈ 𝑇 , respectively.
More specifically, for any route of a feasible solution, the flow variables
define two directed paths, one from node 0 to 𝑛 + 1, whose variables
represent the vehicle load, and another from node 𝑛 + 1 to 0, whose
ariables represent the residual capacity of the vehicle. The two-
ommodity flow formulation is as follows, henceforward referred to
s 𝑇𝐶𝐹 :

in 𝑓 (𝑥, 𝑦, 𝑧) =
∑

𝑡∈𝑇

(

𝑢𝑝𝑡 + 𝑠𝑦𝑡 +
∑

𝑖∈𝑁 ′
ℎ𝑖𝐼𝑖𝑡 +

∑

(𝑖,𝑗)∈𝐸′
𝑐𝑖𝑗𝑥𝑖𝑗𝑡

)

(3.1)

subject to (2.2)–(2.7) and

𝑝𝑡 ≤
∑

𝑖∈𝑁𝐶

( 𝐻
∑

𝑙=𝑡
𝑑𝑖𝑙 − 𝐼𝑖,𝑡−1

)

− 𝐼0,𝑡−1, ∀𝑡 ∈ 𝑇 , (3.2)

∑

𝑗∶(𝑖,𝑗)∈𝐸
𝑥𝑖𝑗𝑡 = 2𝑧𝑖𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (3.3)

∑

𝑖∈𝑁𝐶

𝑥0𝑖𝑡 ≤ 𝑚, ∀𝑡 ∈ 𝑇 , (3.4)

∑

𝑗∈𝑁𝐶

𝑥0𝑗𝑡 =
∑

𝑖∈𝑁𝐶

𝑥𝑖,𝑛+1,𝑡, ∀𝑡 ∈ 𝑇 , (3.5)

𝑓𝑖𝑗𝑡 + 𝑓𝑗𝑖𝑡 = 𝑄𝑥𝑖𝑗𝑡, ∀𝑖, 𝑗 ∈ 𝑁 ′, 𝑖 < 𝑗, 𝑡 ∈ 𝑇 , (3.6)
∑

𝑗∈𝑁,𝑖≠𝑖
𝑓𝑖𝑗𝑡 = 𝑄𝑧𝑖𝑡 − 𝑞𝑖𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (3.7)

∑

𝑗∈𝑁𝐶

𝑓0𝑗𝑡 =
∑

𝑖∈𝑁𝐶

𝑞𝑖𝑡, ∀𝑡 ∈ 𝑇 , (3.8)

∑

𝑖∈𝑁𝐶

𝑓𝑖,𝑛+1,𝑡 = 0, ∀𝑡 ∈ 𝑇 , (3.9)

𝑝𝑡, 𝐼𝑖𝑡, 𝑞𝑖𝑡 ≥ 0, ∀𝑖 ∈ 𝑁 ′, 𝑡 ∈ 𝑇 . (3.10)
𝑦𝑡, 𝑧𝑖𝑡 ∈ {0, 1}, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (3.11)

𝑓𝑖𝑗𝑡 ≥ 0, ∀𝑖, 𝑗 ∈ 𝑁 ′, 𝑖 ≠ 𝑗, 𝑡 ∈ 𝑇 , (3.12)

𝑥𝑖𝑗𝑡 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐸′, 𝑡 ∈ 𝑇 . (3.13)

The objective function (3.1) minimizes the total production, setup,
nventory, and routing costs. Constraints (3.2) ensure that the produced
uantities together with the remaining plant facility inventory at any
ime period 𝑡 ∈ 𝑇 cannot exceed the actual customers’ stocks. These
onstraints serve to further tighten the formulation, and they were
resented in the previous formulations. Constraints (3.3) are the degree
onstraints for the customers. Constraints (3.4) ensure that the number
f vehicles leaving the plant facility are equal to those returning to
t, and their number should not exceed the fleet size as defined by
onstraints (3.5). Constraints (3.6) and (3.7) define the relationship
etween vehicle flow and commodity flow variables. Constraints (3.8)
nd (3.9) impose the correct values for the commodity flow variables
ncident to the plant facility vertices. We emphasize that the TCF for-
ulation directly implies the subtour elimination constraints from the

low reformulated constraints (3.6)–(3.9). Finally, constraints (3.10)–
3.13) set the domains and the integrality of the decision variables.
or completeness, we describe the valid inequalities associated with the
CF formulation in Appendix A.3, and which were originally presented
y Manousakis et al. (2021a). The tighter formulation is, henceforth,
4

eferred to by TCF-VI.
4. Solution method

To solve the PRP, we propose a matheuristic that is composed of
three phases: an initialization phase, a completion phase, and an im-
provement phase. In Phase I, we run a MIP relaxation of the PRP. Phase
II takes as an input the partial solution obtained from the previous
stage and completes it using a sequence of heuristics. Once a complete
solution is obtained, a weighted proximity search algorithm is invoked
in Phase III to improve the incumbent solution. In the following, we
describe each phase in detail. The outline of the overall matheuristic is
displayed in Fig. 1.

4.1. Initialization phase

In Phase I, we decide when to produce and how much to produce
by solving a relaxation of the PRP model. In the relaxed form, the
integrality conditions on the customer visit variables 𝑧 and the vehicle
routing variables 𝑥 are relaxed. Only the integrality of the production
variables 𝑦 is retained. Subtour elimination constraints are removed
rom the formulations, but for the FIVF and the TIVF formulations
hey are dynamically inserted when violated. Note that maintaining
he routing and distribution requirements in a relaxed form ensures
hat there can exist a feasible compatible solution to the 𝑦−variables

(in terms of vehicle capacities and stock-out at customers); however, it
does not ensure that deliveries do not split. This follows from the facts
that the 𝑞-variables satisfy the vehicle capacity, the maximum level
inventory policy requirements, and the constraints that disallow stock-
outs. The optimal value of the relaxed model yields a lower bound on
the original model’s optimal value.

4.2. Completion phase

At this stage, decisions about visit times, customers’ assignment to
vehicles, and vehicle routes must be determined to obtain a complete
solution to the PRP. These decisions are made by solving a sequence of
heuristics. The obtained solution may be infeasible in terms of vehicle
capacity and stock-out constraints at the production plant. However,
it can be used to initialize Phase III even if it is infeasible. We hence
proceed as follows:

1. Assign customer to time periods and set the quantities to be de-
livered to each customer in each time period using a construction
heuristic, that we refer to as the customer urgency heuristic.

2. Assign customers to vehicles by applying a modified version of
the first fit decreasing bin packing algorithm (Johnson et al.,
1974).

3. Determine the route of each vehicle on each day by solving a TSP
on the subset of customers visited by each vehicle and using the
Lin–Kernighan algorithm (Lin and Kernighan, 1973).

A detailed description of the customer urgency heuristic, and the
modified fit decreasing bin packing algorithm is provided in Ap-
pendix B.

4.3. Improvement phase

The improvement phase includes a weighted proximity search (WPS)
algorithm and a feasibility recovery procedure. The latter is invoked
only if the starting solution is infeasible, and it works by eliminating
violations of vehicle capacities and stock-outs at the production plant.

Both components are described below.
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Fig. 1. Matheuristic for the production routing problem.
4.3.1. Weighted proximity search
The improvement phase is based on the WPS algorithm (Rodrigues

et al., 2021), which is adapted from the classic proximity search
proposed by Fischetti and Monaci (2014). The WPS aims to improve a
given solution to the PRP, referred to as (𝑥̄, 𝑦̄, 𝑧̄), by looking within the
search space for an improved solution with a fixed minimum amount.
This can be done by replacing the problem’s original objective function
with a Hamming distance function centered on the given solution. The
new objective function, henceforth called the proximity function, is
defined by:

𝛥𝑥𝑤(𝑥, 𝑥̄) ∶=
∑

𝑡∈𝑇

∑

(𝑖,𝑗)∈𝐸|𝑥̄𝑖𝑗𝑡=0
𝑤𝑥𝑖𝑗𝑡𝑥𝑖𝑗𝑡 +

∑

𝑡∈𝑇

∑

(𝑖,𝑗)∈𝐸|𝑥̄𝑖𝑗𝑡=1
𝑤𝑥𝑖𝑗𝑡(1 − 𝑥𝑖𝑗𝑡), (4.1)

𝛥𝑦𝑤(𝑦, 𝑦̄) ∶=
∑

𝑡∈𝑇 |𝑦̄𝑡=0
𝑤𝑦𝑡 𝑦𝑡 +

∑

𝑡∈𝑇 |𝑦̄𝑡=1
𝑤𝑦𝑡 (1 − 𝑦𝑡), (4.2)

𝛥𝑧𝑤(𝑧, 𝑧̄) ∶=
∑

𝑡∈𝑇

∑

𝑖∈𝑁𝐶
|𝑧̄𝑖𝑡=0

𝑤𝑧𝑖𝑡𝑧𝑖𝑡 +
∑

𝑡∈𝑇

∑

𝑖∈𝑁𝐶
|𝑧̄𝑖𝑡=1

𝑤𝑧𝑖𝑡(1 − 𝑧𝑖𝑡), (4.3)

min𝛥𝑤 ∶= 𝛥𝑥𝑤(𝑥, 𝑥̄) + 𝛥
𝑦
𝑤(𝑦, 𝑦̄) + 𝛥

𝑧
𝑤(𝑧, 𝑧̄). (4.4)

where 𝑤𝑥𝑖𝑗𝑡 ∈ R represent the weights of variables 𝑥𝑖𝑗𝑡, (𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝑇 ,
𝑤𝑦𝑡 ∈ R the weights of variables 𝑦𝑡, 𝑡 ∈ 𝑇 , and 𝑤𝑧𝑖 ∈ R the weights
of variables 𝑧𝑖𝑡, 𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , respectively. These weights intend
to capture information about which variables are more promising to
change to find an improved solution. Therefore, given a feasible solu-
tion, higher weights should be assigned to the less promising variables
to change, while lower weights should be associated with the more
promising variables to change.

Hence, by using the weighted Hamming distance function (4.4), the
WPS can be described as follows. We start with the initial solution,
obtained from Phase II. Then, at each iteration, the cutoff constraint:

𝑓 (𝑥, 𝑦, 𝑧) ≤ 𝑓 (𝑥̄, 𝑦̄, 𝑧̄) − 𝜃 (4.5)

(depending on a given cutoff tolerance value 𝜃 > 0) is added to the
MIP problem. The cut-off constraint (4.5) limits the search to solutions
improving the incumbent solution’s cost by the specified tolerance
5

value. The problem’s original objective is replaced by the Hamming
distance function (4.4) to promote finding nearby better solutions, and
the resulting model is solved using a MIP solver. The obtained solution
is then used to recenter the Hamming distance function and define the
new cutoff constraint, and the process is repeated until a given stopping
criterion is reached. Algorithm 1 describes the steps of the WPS.

Algorithm 1: The weighted proximity search algorithm
1 Let (𝑥0, 𝑦0, 𝑧0) be an initial feasible solution.
2 Set (𝑥̄) ∶= (𝑥0), (𝑦̄) ∶= (𝑦0), and (𝑧̄) ∶= (𝑧0),
3 repeat
4 add the cutoff constraint (4.5) to the MIP problem
5 replace the original objective function by the Hamming

distance function (4.4), and add equations (4.1)–(4.3) to
the model

6 run the MIP solver on the modified problem
7 if a new feasible solution (𝑥̄, 𝑦̄, 𝑧̄) is found then
8 recenter 𝛥𝑤 at the new solution (𝑥̄, 𝑦̄, 𝑧̄)
9 update weights’ calculations
10 else
11 go to 15
12 end
13 update 𝜃 (facultative)
14 until until a termination criteria is reached;
15 return (𝑥̄, 𝑦̄, 𝑧̄)

4.3.2. Feasibility recovery procedure
The feasibility recovery procedure is based on the idea that the WPS

(see Section 4.3.1) can be extended to eliminate violations of vehicle
capacities and stock-outs constraints at the plant. This is done by
identifying in the incumbent solution customers and vehicles yielding
an infeasibility and adding a cut-off constraint to the WPS model
to reduce the amount of these infeasibilities. Prior to describing the
recovery procedure, we introduce the following notation. Given an
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infeasible solution (𝑥̄, 𝑦̄, 𝑧̄), let 𝑡 denote the set of routes of (𝑥̄, 𝑦̄, 𝑧̄) that
yield an excess vehicle load over the vehicle capacity 𝑄 in each period
𝑡 ∈ 𝑇 . We introduce 𝑎𝑖𝑡𝑟 a parameter that takes value 1 if customer
𝑖 ∈ 𝑁𝐶 is visited by route 𝑟 ∈ 𝑡, 𝑡 ∈ 𝑇 , and 0 otherwise. We define
𝜉 ∈ R, a variable that represents the amount exceeding the vehicle load,
computed as follows:

𝜉 =
∑

𝑟∈

(

∑

𝑖∈𝑁𝐶

𝑎𝑖𝑡𝑟𝑞𝑖𝑡

)

−𝑄.

Also, let  ⊆ 𝑇 denote the set of time periods when a stock-out
occurs at the plant node 0. Similarly, let 𝜓 ∈ R, be a variable that
defines the amount for stock-outs at the plant, obtained by:

𝜓 =
∑

𝑡∈
−𝐼0𝑡.

Hence, a new cut-off constraint (4.6) that replaces the original
one (4.5) is appended to the MIP model for the sake of reducing the
infeasibility:

𝜉 + 𝜓 ≤ 𝜉 + 𝜓̄ − 𝜃𝑓 . (4.6)

where 𝜃𝑓 > 0 is a given cutoff tolerance, 𝜉 is the constant amount
associated with vehicle excess in (𝑥̄, 𝑦̄, 𝑧̄), and 𝜓̄ is the constant amount
associated with stock-outs at the plant in (𝑥̄, 𝑦̄, 𝑧̄), respectively. The re-
sulting model is solved using a MIP solver. One needs to run this process
only once since the vehicle capacity and the inventory constraints will
enforce a feasible solution. The cutoff constraint (4.6) helps, in this
regard, the MIP solver to repair infeasibilities within short computing
times by increasing the relaxation grip of the formulation (Fischetti and
Fischetti, 2018). Finally, to ensure that the recovery procedure does not
deteriorate the solution quality, an additional cut-off constraint (4.7),
defined by:

𝑓 (𝑥, 𝑦, 𝑧) ≤ 𝑓 (𝑥̄, 𝑦̄, 𝑧̄) + 𝜃𝑞 . (4.7)

is appended to the MIP model, and where 𝜃𝑞 > 0 is a given quality
deviation value.

4.3.3. Weight calculations
Here we explain how the weights associated with the proximity

search binary variables are computed. We use a combination of the
Linear Relaxation Proximity (LRP) approach and the Three-Value System
(3-VS) approach, both introduced by Rodrigues et al. (2021). By apply-
ing the LPR, the weight 𝑤𝑗 associated with any generic variable 𝑥𝑗 can
be expressed at each iteration by:

𝑤𝑗 = 1 − |𝑥̄𝑗 − 𝑥𝐿𝑃𝑗 |.

where 𝑥𝐿𝑃𝑗 is the optimal value taken by 𝑥𝑗 in the model’s LP-relaxation,
and 𝑥̄𝑗 its integer value in the incumbent solution. Then, a variable
𝑥𝑗 whose value in the current solution is closer to its value in the LP-
relaxation yields a higher weight. Hence, the weights associated with
the 𝑥−variables, the 𝑦−variables, and the 𝑧−variables in Eq. (4.4) are
given by:

𝑤𝑥𝑖𝑗𝑡 = 1 − |𝑥̄𝑖𝑗𝑡 − 𝑥𝐿𝑃𝑖𝑗𝑡 |, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝑇 ,

𝑤𝑦𝑡 = 1 − |𝑦̄𝑡 − 𝑦𝐿𝑃𝑡 |, ∀𝑡 ∈ 𝑇 ,

𝑤𝑧𝑖𝑡 = 1 − |𝑧̄𝑖𝑡 − 𝑧𝐿𝑃𝑖𝑡 |, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 .

The LRP approach performs well for optimization problems with
an optimal solution close to the solution of the LP-relaxation (Ro-
drigues et al., 2021). It is not computationally intensive, since the
required computational time corresponds only to the solution time of
the LP-relaxation.

Remark 1. Given that: (i) we are solving a relaxation of the PRP model
in Phase I of our matheuristic, (ii) the integrality of the production
variables is maintained in this relaxation, and (iii) the production costs
6

are usually the major cost component in a PRP setting, it would be
natural to assume that the objective function of the solution obtained in
Phase I is relatively close to the optimal one; thus it could be effectively
used to compute the proximity search weights. In doing so, the weights
associated with the 𝑦−variables will turn to zero.

Next, we apply the 3-VS discretization approach to transform the
problem’s weights into discrete values. This is done in two steps. First,
the weights are discretized into R different values {1,… , 𝑅}, where 𝑅
is an integer number greater than one defined a priori. The weights
associated with the 𝑥−variables can be transformed as follows:

𝑤𝑥𝑖𝑗𝑡 = (𝑅𝑥 + 1) −

⌈

𝑅𝑥 −
(𝑤𝑥𝑖𝑗𝑡 −𝑤

min,𝑥)(𝑅𝑥 − 1)

𝑤max,𝑥 −𝑤min,𝑥

⌉

, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝑇 .

here 𝑤min,𝑥 = min{𝑤𝑥𝑖𝑗𝑡 ∶ ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝑇 } and 𝑤max,𝑥 = max{𝑤𝑥𝑖𝑗𝑡 ∶
(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝑇 }. The resulting weights are next converted into a
hree-value system as follows:

𝑥
𝑖𝑗𝑡 =

⎧

⎪

⎨

⎪

⎩

1, if 1 ≤ 𝑤𝑥𝑖𝑗𝑡 < 𝑡
𝑥
2 ,

𝑅𝑥∕2, if 𝑡𝑥2 ≤ 𝑤𝑥𝑖𝑗𝑡 < 𝑡
𝑥
3 ,

𝑅𝑥, if 𝑡𝑥3 ≤ 𝑤𝑥𝑖𝑗𝑡 < 𝑅𝑥,

∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝑇 .

where 𝑡𝑥2 and 𝑡𝑥3 are integer threshold values between 1 and 𝑅 defined
a priori such that 𝑡𝑥2 ≤ 𝑡𝑥3 . Similarly, we proceed for the 𝑧−variables to
obtain:

𝑤𝑧𝑖𝑡 =

⎧

⎪

⎨

⎪

⎩

1, if 1 ≤ 𝑤𝑧𝑖𝑡 < 𝑡
𝑧
2,

𝑅𝑧∕2, if 𝑡𝑧2 ≤ 𝑤𝑧𝑖𝑡 < 𝑡
𝑧
3,

𝑅𝑧, if 𝑡𝑧3 ≤ 𝑤𝑧𝑖𝑡 < 𝑅𝑧,

∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 .

where 𝑡𝑧2 and 𝑡𝑧3 are integer threshold values between 1 and 𝑅 and
𝑡𝑥2 ≤ 𝑡𝑥3 . With respect to the 𝑦−variables whose initial weights are equal
to 0, we set their corresponding weights as follows:

𝑤𝑦𝑖𝑡 =

{

1, if 𝑦̄𝑡 ≠ 𝑦𝐿𝑃𝑡 ,
𝑅𝑦, otherwise,

∀𝑡 ∈ 𝑇 .

Remark 2. Variables’ weights under their initial continuous represen-
tation would induce a computationally hard model (Rodrigues et al.,
2021) and thus, must be mapped into discrete values using the 3-
VS discretization approach. To avoid any loss of quality due to the
approximation, the choice of the parameters 𝑡2 and 𝑡3 is extensively
studied in the computational section.

5. Computational experiments

Computational experiments were carried out using a Lenovo
NextScale nx360 M5 machine, with a dual 2.3 GHz Intel Xeon E5-
2670v3 processor with 64 GB RAM. The matheuristic was implemented
in C++, compiled with the Linux compiler g++ in release mode. The
mathematical components were solved using CPLEX 12.10 with the
default settings, except when solving the proximity search subproblems,
where we emphasize the search toward finding early feasible solutions.

5.1. Experimental setup

Our computation experiments follow three main goals. First, we
evaluate the impact of mathematical formulations within a matheuristic
framework by comparing three state-of-the-art formulations for the
PRP. Second, we expand our analysis by assessing the effect of valid
inequalities using the considered formulations. Finally, we evaluate the
matheuristic’s convergence behavior with different starting solutions.
For these analyses, we create a set of experiments by selecting, in each
trial, a distinct mathematical formulation to be used by the mathe-
matical components (namely, Phase I & Phase III) of the matheuristic
described in Section 4. Hence, the matheuristic is run once using each
of the 32 = 9 combinations of formulations. By further considering
the use of valid inequalities, the number of experiments is doubled,
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Table 1
Comparison of the matheuristic’s performance for different schemes of
3 − 𝑉 𝑆 discretization.

Scheme Average gap (in %) Average time (in s.)

PS 0.63 4980
3 − 𝑉 𝑆(20,40) 0.52 5184
3 − 𝑉 𝑆(30−60) 0.37 5509
3 − 𝑉 𝑆(40−80) 0.5 4594

yielding a total of 9×2 = 18 variations of the matheuristic. The tests are
onducted on benchmark data instances for the PRP (Adulyasak et al.,
014a). The data set contains 168 instances with 𝑁𝐶 from 10 to 50 and
ith time horizons of 𝐻 = 3, 6, and 9 periods, respectively. The number
f vehicles is set to either 𝑚 = 2 or 𝑚 = 3 for the instances with 𝑁 ≤ 25
nd to 𝑚 = 3 or 𝑚 = 4 for the rest of instances.

.2. Choice of parameters and calibration

This section explains the choice of the parameters used in our
omputational experiments. First, the matheuristic method has a com-
utational time limit of 4 h, of which 600 s is the time limit imposed
n Phase I. No limit was imposed on the total number of iterations
n Phase III; however, each iteration stops when the first feasible
olution is found (Fischetti and Monaci, 2014). Besides, the duration
f every single iteration was restricted to one hour at maximum. We
onsider cut-off tolerances of 𝜃 = 1 and 𝜃𝑓 = 1, respectively. Rodrigues

et al. (2021) demonstrated that a unitary value of the cut-off tolerance
performs better than higher values. For the quality deviation, using
𝜃𝑞 = 5% of the starting solution’s objective value led to subproblems
that were relatively quickly solved, while leading to the first feasible
solution being found having a comparable objective function value as
the starting solution.

The discretization scheme described in Section 4.3.3 requires defin-
ing a maximum possible value for the weights 𝑅. We set 𝑅 = 𝑅𝑥 =
𝑅𝑧 = 100 for both 𝑥 and 𝑧 variables, whereas we assign a higher
value 𝑅𝑦 = 1000 for the 𝑦−variables to restrict the change in their
values during the WPS. Next, we choose the parameters 𝑡2 and 𝑡3 of the
3−𝑉 𝑆 discretization approach. Three combinations of values are tested:
(20,40), (30,60), and (40,80). Preliminary experiments for each setting
of values were carried out on a training set of 27 instances. Moreover,
we tested the classic proximity search (PS) heuristic where all weights
are equal to one. Table 1 displays the average obtained results. The first
column defines the discretization scheme, while the following columns
present the average gap 𝑍𝑀−𝑍𝑏𝑒𝑠𝑡

𝑍𝑏𝑒𝑠𝑡 to the best-known upper bound and
he average running time used by the matheuristic, respectively.

The results indicate that the WPS approach is instrumental to im-
rove the matheuristic performance. Under all discretization schemes,
t provides better results on the set of selected instances than the
tandard PS without a significant increase in the computational time.
ccording to Table 1, the lowest average gap corresponds to (𝑡2, 𝑡3)=

(30,60), which will be selected in our study.

5.3. Main results

In this section, we provide the main results derived from the set
of tests performed on Adulyasak et al. (2014a) instances. Table 2 de-
scribes, in columns 1–3, the configuration of each conducted test, that is
to say, the formulation implemented in each mathematical component
of the matheuristic. Then, for each test, we report the average percent-
age deviation of the MIP-relaxation bound (MIP gap) with respect to the
value of the best-known upper bound and the average computing time
in seconds. Columns 4 and 5 display the average percentage deviation
of the constructive solution objective to the best-known upper bound
(Cnst. gap) and the MIP-relaxation bound (LB gap), respectively. The
computing time of Phase II is always negligible (a few milliseconds)
7

and thus not reported. Columns 6–8 relate to the results derived from
Phase III of our matheuristic. They display the average percentage
deviation of the final solution’s objective to the best-known upper
bound (Final gap), the average percentage improvement (% impr.) with
respect to the starting solution, and the average computing time in
seconds, respectively. In all columns of Table 2, we put boldface letters
on the shortest average computing time and average deviation to the
best-known upper bounds; otherwise, boldface letters are used for the
best average improvement to the starting solution.

Table 2 abounds with interesting observations. A first observation is
that the TCF formulation produces, on average, tighter MIP relaxations
than the other formulations, which are at most within 5.75% of the
best-known integer bound. Besides, the FIVF formulation outperforms
the TIVF formulations in this regard. This observation extends the
findings of Adulyasak et al. (2014a) and Archetti et al. (2014), which
showed that the FIVF formulation is superior to the TIVF one in terms
of root node lower bounds and optimality gaps. The relaxed form of
the TIVF formulation, in general, converges faster than the alternative
formulations. A further observation is that the relaxed representation
does not produce the same results across all runs (for example tests
four and five). This issue is related to floating point arithmetic, where
the rounding of continuous values is unpredictable and can cause
the same program to produce different results on the same operating
machine/system (Klotz, 2014).

The matheuristic builds initial solutions always within at most 10%
of the best primal bound. We see that the initial solutions produced by
the TCF formulation yield a better optimality gap than those derived
from alternative formulations, which is, on average, 8.84% far from
the best integer bound. Additionally, the gap between the starting
solution and the MIP relaxation, given by Cnst. gap, is relatively high.
It increases to up to 22.28% for solutions derived from the TIVF for-
mulation, while it is lower for those obtained by the FIVF formulation,
averaging up to 20.88%. However, the starting solutions originating
from the TCF formulation deviate less from their MIP relaxation by
up to 14.41% on average. On one side, these observations explain that
the quality of the produced initial solution is highly contingent on the
mathematical formulation used. On the other side, they show that the
TCF formulation fits better with the constructive heuristic associated
with our matheuristic.

Next, we are interested in evaluating the quality of the final so-
lutions derived from Phase III. Surprisingly, the FIVF formulation,
when used to guide the WPS, provides the best performance on the
benchmark PRP instances where the deviations from the optimal so-
lutions or best upper bounds range between 1.15% and 1.61%. Better
performance is achieved when valid inequalities are considered. The
percentage improvement with respect to the starting solutions is sig-
nificant and increases to 7.16% on average. The results obtained from
the alternative formulations are slightly worse, where gaps of the
best upper bound for the TIVF and TCF formulations are at most
2.29% and 2.21%, respectively; the corresponding average percentage
improvements are 5.73% and 5.89%, respectively. On average, the
execution times are lower when the TIVF formulation is used to drive
the search. However, this behavior is a direct consequence of the non-
improvement termination criterion imposed during the WPS. Clearly,
after a few iterations, it becomes difficult for the TIVF formulation
to improve the incumbent solution, thus, forcing the matheuristic to
stop. The matheuristic does not necessarily perform better with good
initial solutions, although their choice may affect the search quality.
We further investigate this aspect in the following sections. Moreover,
our experiments showed that Phase III often starts with an infeasible
solution in terms of vehicle capacities and stock-outs at the production
plant. The feasibility recovery procedure was capable of quickly restor-
ing feasibility (in a few seconds or less) without significantly increasing
the objective function value.
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Table 2
Average results obtained from the tests performed on Adulyasak et al. (2014a) instances.

Test # Configuration Phase I Phase II Phase III

Phase I Phase III MIP gap (%) CPU (s) Cnst. gap (%) LB gap (%) Final gap (%) % impr. CPU (s)

1 FIVF-VI FIVF-VI 7.16 2.51 9.77 19.41 1.26 7.16 8,396
2 TCF-VI 7.16 2.51 9.77 19.41 1.49 6.98 8,798
3 TIVF-VI 7.16 2.55 9.79 19.43 1.91 6.13 4,724

4 FIVF FIVF 8.35 0.46 9.50 20.83 1.50 6.81 8,138
5 TCF 8.35 0.45 9.50 20.83 2.12 6.31 8,262
6 TIVF 8.33 0.45 9.57 20.88 2.13 6.64 5,606

7 TIVF-VI TIVF-VI 7.22 0.24 9.30 18.94 1.95 6.23 5,168
8 TCF-VI 7.16 0.26 9.35 18.91 1.33 6.85 8,580
9 FIVF-VI 7.16 0.27 9.35 18.91 1.15 6.99 8,482

10 TIVF TIVF 9.54 0.07 9.03 22.23 2.29 5.73 5,494
11 TCF 9.56 0.06 9.06 22.28 2.21 5.89 7,949
12 FIVF 9.56 0.06 9.06 22.28 1.42 6.52 8,425

13 TCF-VI TCF-VI 4.48 3.01 8.89 14.41 1.60 6.33 8,669
14 FIVF-VI 4.48 3.00 8.89 14.41 1.37 6.50 8,358
15 TIVF-VI 4.48 3.04 8.84 14.35 1.27 6.48 5,274

16 TCF TCF 5.76 0.36 9.48 16.83 2.07 6.38 8,058
17 FIVF 5.76 0.36 9.48 16.83 1.61 6.74 7,867
18 TIVF 5.74 0.38 9.48 16.79 1.59 6.73 5,477

* Indicates the number of new best bounds found, or matched out of 168 instances.
Table 3
Benchmark algorithms for Adulyasak et al. (2014a) instances.

Reference Abbreviation Sol CPU Threads Solver Runtime (in s.)

Schenekemberg et al. (2021) SSPG-BC E Intel (R) Xeon (R) 2.60 GHz 6 Gurobi 8.1 5,700.8
Adulyasak et al. (2014a) ACJ-BC E AMD Opteron 2.40 GHZ 8 Cplex 12.3 15,785
Adulyasak et al. (2014b) ACJ-ALNS H 2.10 CPU PC Duo Default Cplex 12.2 30.4
Vadseth et al. (2023) VACS-M M Intel Xeon Gold 6144 3.5 GHz 1 Gurobi 9.1 21
This paper BHA-M M Intel Xeon E5-2670 2.3 GHz 1 Cplex 12.10 25,236

Note: E = Exact method, H = Heuristic, M = Matheuristic.
5.4. Comparison to the state-of-the-art approaches

In this section, we compare our aggregated results, obtained from
tests scenarios {1,9,14}, to previous studies that have tackled the same
instances. These studies include the branch and cut algorithms (B&C)
of Adulyasak et al. (2014a) and Schenekemberg et al. (2021), the adap-
tive large neighborhood (ALNS) algorithm of Adulyasak et al. (2014b),
and the multi-start matheuristic of Vadseth et al. (2023), which are
referred to as ACJ-BC, SSPG-BC, ACJ-ALNS, and VACS-M, respectively.
Our matheuristic is named BHA-M. In Table 3, we summarize the
essential features of these solution methods. The table displays, for
each method, the abbreviation, the solution type, the CPU machine’s
characteristic, the number of used threads, the solver, as well as the
average runtime. However, an entirely precise comparison of these
methods’ performances is never possible due to different operating
systems, programming languages, and runtimes.

Table 4 provides a comparison of the performance of these methods.
It indicates the number of instances where each method produces an
equal or better objective than the others. Instances with a strictly better
objective are shown in parentheses. The bottom two rows indicate the
number of best known solutions (BKS), and the average gap to the BKSs
obtained by each method. A more detailed comparison can be found in
Appendix C.

We see from Table 4 that our matheuristic largely outperforms
the VACS-M matheuristic in terms of the number of best known solu-
tions (BKS) found or improved. Surprisingly, VACS-M yields a slightly
better optimality gap than ours. Taking a closer look at the detailed
results provided in Appendix C, we observe that VACS-M, over most
test instances, yields higher objective function values, except on a
few large instances (particularly with 𝑁 ≥ 45, 50). The disparity in
performance between VACS-M and our method over these instances
8

is significant. However, the average gap is skewed towards VACS-M,
Table 4
Performance comparison between different solution methods on Adulyasak et al.
(2014a) instances.

ACJ-BC SSPG-BC ACJ-ALNS VACS-M BHA-M

ACJ-BC * 130(6) 168(155) 148(113) 157(61)
SSPG-BC 162(38) * 167(160) 162(126) 165(68)
ACJ-ALNS 13(0) 8(1) * 48(28) 48(17)
VACS-M 55(20) 42(6) 154(144) * 75(42)
BHA-M 107(11) 90(3) 151(144) 126(93) *

#BKS 128 158 8 41 95
Gap (%) 0.13 0.005 1.39 0.39 0.43

which is expected considering that our matheuristic, which relies on
a complete mathematical formulation of the PRP, struggles with an
increased number of customers and time periods. VACS-M proposed a
decomposition-based matheuristic that overcomes this issue, however,
it behaves poorly on the small and medium instances. Our matheuristic
also largely outperforms the ACJ-ALNS metaheuristic.

The branch-and-cut algorithms ACJ-BC and SSPG-BC, successfully
tackled these instances, but they had to rely on larger CPU times
and use parallel runs with several threads (8 and 6 threads). Yet, our
matheuristic was able to improve upon them in a few instances and
match their performance oi many other instances.

5.5. Experimental analysis

In this section, we analyze the factors influencing the matheuristic’s
performance. Toward this aim, we use the primal gap of Berthold
(2013) as a performance measure. Given an incumbent solution (𝑥, 𝑦, 𝑧)
with the objective function value 𝑍, and assume that an optimal (or
best-known solution) is given with the objective function value 𝑍𝑏𝑒𝑠𝑡,
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Fig. 2. Course of the primal gap when running the matheuristic with and without valid inequalities.
the primal gap of (𝑥, 𝑦, 𝑧) is defined as

𝛾(𝑥, 𝑦, 𝑧) =

⎧

⎪

⎨

⎪

⎩

0, if 𝑍 = 𝑍𝑏𝑒𝑠𝑡,
1, if (𝑥, 𝑦, 𝑧) is infeasible,
|𝑍𝑏𝑒𝑠𝑡 −𝑍|∕max{|𝑍𝑏𝑒𝑠𝑡

|, |𝑍|}, otherwise.

Then, assuming that we are given the objective function values of
ntermediate incumbent solutions and the points in time when they
ave been found, we define the primal gap function 𝑝(𝑡) as

𝑝(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if no feasible solution has been found
until point 𝑡, and otherwise

𝛾(𝑥𝑡, 𝑦𝑡, 𝑧𝑡), with (𝑥𝑡, 𝑦𝑡, 𝑧𝑡) being the incumbent
solution at point 𝑡.

The function 𝑝(𝑡) is, by definition, a step function that measures the
quality of the solution found over time, and it changes whenever a new
incumbent solution is found. It monotonically decreases and converges
to 0 if an optimal solution is found.

5.5.1. Effect of valid inequalities
As a first analysis, we compare the performance of the matheuristic

using the primal gaps when running with and without valid inequali-
ties. Comparisons are carried out for different options of mathematical
9

formulations, thus contrasting the results of test scenarios (described
in Table 2) 1 to 4, 7 to 10, and 13 to 16, respectively. We show in
Fig. 2 the evolution of the primal gap over time. The figure is based on
the average result of all instances. The running time of each instance
is expressed as a percentage of the maximum permitted running time
(𝑡𝑚𝑎𝑥 = 4 hours). Fig. 2 has a logarithmic representation, which helps
to highlight the scale of performance variations between the tested
scenarios.

Fig. 2 demonstrates the importance of valid inequalities within a
matheuristic search. The convergence of the primal gap when using
valid inequalities (represented by the solid black line in the figure)
is faster overall than without using valid inequalities (represented by
the dotted red line). However, a limited variability is observed in the
case of the FIVF-embedded matheuristic. The plots’ trajectories are
indistinguishable for minimal values of (𝑡∕𝑡𝑚𝑎𝑥), which indicates that
the effect of valid inequalities is marginal for: (i) small-sized instances
(those that do not require a significant computational time), and (ii) in
the very early stages of heuristic search. Hence, one may conclude that
using valid inequalities within a matheuristic setting is overall superior
in terms of the primal gap. For this reason, only experiments with valid
inequalities are considered subsequently.

5.5.2. Effect of mathematical formulations
The second experiment examines whether the choice of mathemati-
cal formulations affects algorithmic convergence. Hence, contributions
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Fig. 3. Course of the primal gap when running the matheuristic with different mathematical formulations–Comparison by instance size.
ained from the mathematical formulations embedded within the WPS
Phase III) are weighted against each other. Precisely, we are con-
rasting the average results obtained from tests scenarios {1,9,14}
gainst those obtained from {2,8,13}, and {3,7,14}, respectively. For a
omprehensive evaluation, analyses are carried out separately on data
nstances with comparable numbers of customers and planning horizon
engths. First, instances are arranged into the following subsets:

• Small: First 48 instances including 10 to 15 customers.
• Medium: Next 72 instances including 20 to 30 customers.
• Large: Last 48 instances including 35 to 50 customers.

Fig. 3 compares the course of the primal gap obtained by the
atheuristic for each subset of instances and where different mathe-
atical formulations are implemented within the WPS. The solid black

ine corresponds to the course of the average primal gap function (taken
ver 168 instances) when running the matheuristic with the FIVF-VI
ormulation. Additionally, the dotted red line and the dashed blue line
orrespond to the course of the average primal gap function when
unning the matheuristic with the TIVF-VI and the TCF-VI formulations,
espectively. On the subset of small-sized instances, we observe that the
hree implementations find good-quality solutions (the average final
rimal gap is less than 1%) and that the FIVF-implementation acts
ore effectively almost at any point of the time (for 𝑡∕𝑡𝑚𝑎𝑥 ≥ 1%). The
10

CF implementation performs poorly in general, converging toward
good-quality solutions only later in the run. Regarding the subset of
medium-sized instances, it is difficult to establish a clear dominance
among the three formulations, although the TIVF-implementation led
to the best improvement in the primal gap on average. The TIVF-
implementation is inferior to the values reported on the subset of
small-sized instances, which was expected considering the added com-
plexity caused by the increased number of customers. Regarding the
subset of large instances, the TIVF-embedded matheuristic quickly finds
a good-quality solution but fails later to achieve significant improve-
ments. The TIVF formulation does not appear to be competitive in
large-sized instances as widely claimed in the literature. The TCF-
embedded matheuristic is slightly better, particularly in the early and
the late stages of the search, which could explain its ability to improve
the best-known upper bounds (Table 2). Looking also at Table 6 in Ap-
pendix B, we see that many of the improved best-known upper bounds
belonged to the subset of large-sized instances and were obtained using
a TCF formulation.

Next, our comparisons are conducted on new subsets of instances,
arranged following the length of their planning horizon. The subsets
include 72 instances with 𝐻 = 3, 56 instances with 𝐻 = 6, and 40
instances with 𝐻 = 9, respectively. Fig. 4 shows the course of the
primal gap recorded by the matheuristic on each subset of instances
and with different implemented mathematical formulations in Phase

III.
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Fig. 4. Course of the primal gap when running the matheuristic with different mathematical formulations – Comparison by the planning horizon length.
As visible in Fig. 4, the TIVF-implementation yields the worst per-
ormance among the three implementations in instances with short
lanning horizons. The implementation’s performance is worsened for
igher values of (𝑡∕𝑡𝑚𝑎𝑥) due to its deficiency on large-sized instances
as shown previously). Recall that higher values of (𝑡∕𝑡𝑚𝑎𝑥) corre-

spond primarily to instances with many customers. Such interference
is further corroborated when looking at the plot associated with the
TCF implementation, which records the lowest primal gap for high
values of (𝑡∕𝑡𝑚𝑎𝑥). The FIVF-implementation has a consistent behavior
regardless of (𝑡∕𝑡𝑚𝑎𝑥) values (by inference, of customers’ number),
which might suggest its usefulness on this subset of instances. On the
subset of instances with 𝐻 = 6, the same assessment as before for
the TIVF-implementation still holds, while both the FIVF and the TCF
implementations exhibit better behaviors, intriguingly proportionate.
Larger planning horizons have a more pronounced effect on the FIVF
and the TIVF implementations whose performances degraded, while the
TIVF-implementation is seemingly more efficacious on instances with
𝐻 = 9.

5.5.3. Effect of initial solutions
As a final experiment, we investigate whether the starting solution’s

quality significantly affects the performance of the matheuristic. We
test the matheuristic with three starting solutions, each derived from
the MIP relaxation of a different PRP formulation. In all cases, the
11
mathematical formulation associated with the WPS is varied to rule
out any bias that might be induced by the performance inequality of
the three formulations. That is, we are contrasting the average results
from test case one against those resulting from 9 and 14, from test
case two against those from 8 and 13, and finally, the results obtained
from test case three against the results of tests 7 and 15 (described in
Table 2), respectively. Similar to the previous experiments, we map in
each run the course of the matheuristic’s primal gap over time, and
it is shown in Fig. 5. The solid black line corresponds to the course
of the average primal gap function (taken over 168 instances) when
initiating the matheuristic with a FIVF-based solution. In contrast, the
dotted red line and the dashed blue line correspond to the course
of the average primal gap function when initiating the matheuristic
with TIVF-based and TCF-based solutions, respectively. Each subplot
within the figure corresponds to an alternative implementation of the
matheuristic obtained using a different formulation during Phase III,
and where valid inequalities are appended.

Fig. 5 puts in evidence almost similar behaviors of the matheuristic
for different options of starting solutions. In the first and the third
implementations, initiating the matheuristic with a TIVF-based solution
leads to a tiny improvement in the primal gap. However, when the TIVF
formulation simultaneously initiates and guides the algorithmic search,
the matheuristic becomes less efficient. The same observation is also
valid for the other two formulations. Another indication provided by
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Fig. 5. Course of the primal gap when running the matheuristic under different initial solutions options.
Fig. 5 is that the best initial solution, in this case, obtained through
the TCF formulation, does not necessarily lead to finding the best final
solution.

Finally, to further consolidate our findings on the effect of the initial
solution quality on the matheuristic performance, we conduct addi-
tional analyses using Spearman’s rank correlation test (Pirie, 2006).
This type of testing was preferred over other non-parametric tests
because it does not assume data normality. Here, two hypotheses, the
null hypothesis 𝐻0 and the alternative hypothesis 𝐻𝑎, are defined.
The null hypothesis is that the quality of the initial solutions does not
affect the quality of the final solutions of the matheuristic, whereas the
alternative hypothesis is that a better initial solution leads to a better
final solution. For all pairs of matheuristic runs (𝑀1,𝑀2) with distinct
initial solutions but identical implementation in Phase III, we compute
their primal gap’s deviations at the beginning and the end of both runs,
given by 𝛿(0) = 𝑝𝑀1 (0) − 𝑝𝑀2 (0), and 𝛿(𝑡𝑚𝑎𝑥) = 𝑝𝑀1 (𝑡𝑚𝑎𝑥) − 𝑝𝑀2 (𝑡𝑚𝑎𝑥)
respectively.

Hence, we run Spearman’s test to measure the strength and direction
of correlation between the two primal gap deviations. The output of
the test is the 𝑝-value and the correlation coefficient 𝑟𝑠. The 𝑝-value
is a measure of how likely an observed correlation is due to chance.
A 𝑝-value within the significance level [0, 0.05] allows us to reject the
null hypothesis (Pirie, 2006). The correlation coefficient 𝑟𝑠 can take a
12

range of values from +1 to −1. A value of 0 indicates no association
Table 5
Spearman’s test results.
𝑁 Nb. of instances Spearman test

Sample size 𝑟𝑠 𝑝-value

10 24 216 0.04 0.30
15 24 216 −0.01 0.44
20 24 216 0.06 0.19
25 24 216 0.00 0.49
30 24 216 0.00 0.48
35 16 144 −0.16 0.03
40 16 144 0.20 0.01
45 8 72 0.07 0.28
50 8 72 −0.02 0.35

All 168 1512 0.01 0.35

between the two variables. A value greater than 0 indicates a positive
association, while a value less than 0 indicates a negative association.
Table 5 shows the test results grouped by the number of customers
𝑁 . We report, for each group, the number of instances, the sample
size (number of pairwise comparisons between matheuristic runs), the
correlation coefficient 𝑟𝑠, and the p- value. In the final row of Table 5,
we report the obtained results aggregated over all data instances.

Table 5 indicates that for all data instances, except those with 35

and 40 customers, no apparent correlation exists between the quality of



Computers and Operations Research 155 (2023) 106232M.B. Ahmed et al.

d

M

D

A

c
w
f

c
f

the initial and final solutions. All of these tests returned non-significant
p-values and almost zero correlation values. For instances with 35
customers, it was shown that good starting solutions have a detrimental
effect on matheuristic quality, while they exhibit a positive impact
when run on instances with 40 customers. Nevertheless, the correlation
is too weak to be generalized.

6. Concluding remarks

This paper presents an experimental study of matheuristic perfor-
mance for the PRP considering different mathematical formulations.
For the sake of this study, we developed a novel matheuristic con-
sisting of three phases. First, initial lot-sizing decisions are obtained
by a master problem relaxation. Next, a sequence of heuristic algo-
rithms completes the associated partial solution in terms of distribution
and routing decisions. Finally, the incumbent solution is iteratively
improved using a general-purpose MIP heuristic. Vehicle capacity viola-
tions and inventory stock-outs at the plant facility are permitted in the
construction phase; however, they are later repaired using a recovery
procedure. Three mathematical formulations have been implemented
and tested within the matheuristic framework: a four-index vehicle
flow formulation, a three-index vehicle flow formulation, and a two-
commodity flow formulation. The proposed matheuristic turned out to
be very competitive with state-of-the-art algorithms by matching or
improving the best-known upper bounds, although this was not the
primary aim of this effort.

The experimental study assesses the impact of various design al-
ternatives and choices of matheuristics for the PRP. More specifically,
we investigated the computational effects stemming from the choice
of mathematical formulations, using valid inequalities, and alternating
the starting solutions within a matheuristic framework. We perform
extensive computational tests on benchmark PRP instances and use
consistent performance measures to compare the performance of the
matheuristic under the proposed configurations. The results give us
a better view of the models that work better for a matheuristic in
practice. In particular, they showed that the contribution of a mathe-
matical formulation to the matheuristic convergence is instance-specific
and mainly attributable to the number of customers and the length
of the planning horizon considered. It is also clear that integrating
valid inequalities is highly beneficial, regardless of the considered
mathematical formulation. Additionally, a matheuristic with a strong
initial solution (in terms of optimality gap) is not necessarily superior
to one with a weaker initial solution. Several reasons might explain
this behavior, and they relate to the data instances’ inherent fea-
tures, the definition of the search neighborhood, and the particular
features of solvers, all of which are details often not fully known to
the practitioner.

CRediT authorship contribution statement

Mohamed Ben Ahmed: Methodology, Software, Writing – original
raft. Lars Magnus Hvattum: Conceptualization, Methodology, Super-

vision, Writing – review & editing. Agostinho Agra: Conceptualization,
ethodology, Writing – review & editing.

ata availability

Data will be made available on request.

cknowledgments

The authors thank the two anonymous referees for their valuable
omments and suggestions that helped improve the paper. This research
as carried out with financial support from the AXIOM project, partly

unded by the Research Council of Norway.
13
Appendix A. Valid inequalities

Several valid inequalities have been added to strengthen the pro-
posed PRP formulations, and all of them originate from the existing
literature. In what follows, we present the valid inequalities associated
with each mathematical formulation.

A.1. Valid inequalities for the FIVF formulation

We present here the inequalities that are valid for the FIVF for-
mulation, and which were originally proposed by Adulyasak et al.
(2014a). Denote by 𝑡′ and 𝑡′′ the earliest period when the plant
must produce and the earliest period when at least one customer
must be replenished to prevent a stock-out, respectively; i.e., 𝑡′ =
𝑎𝑟𝑔𝑚𝑖𝑛1≤𝑡≤𝐻

{

∑

𝑖∈𝑁𝐶 max{0,
∑𝑡
𝑗=1 𝑑𝑖𝑗 − 𝐼𝑖0} − 𝐼00 > 0

}

, and 𝑡′′ =

min𝑖∈𝑁𝐶 𝑡𝑖ε, where 𝑡𝑖ε = 𝑎𝑟𝑔𝑚𝑖𝑛1≤𝑡≤𝐻
{

∑𝑡
𝑗=1 𝑑𝑖𝑗 − 𝐼𝑖0 > 0

}

. Let 𝑀 be

the minimum shipping quantity in 𝑡′′; i.e, 𝑀 =
∑

𝑖∈𝑁𝐶 max
{

0,
∑𝑡′′
𝑗=1

𝑑𝑖𝑗 − 𝐼𝑖0
}

. The first two inequalities are intended to prevent stock-outs
and are given by:
𝑡′
∑

𝑡=1
𝑦𝑡 ≥ 1, (A.1.1)

∑

𝑘∈𝐾

𝑡′′
∑

𝑡=1
𝑧0𝑘𝑡 ≥

⌈

𝑀
𝑄

⌉

. (A.1.2)

Constraints (A.1.1) ensure that a production process will be
launched no later than 𝑡′, while constraints (A.1.2) compute a lower
bound on the number of used vehicles. The following inequalities
further strengthen customer replenishment:

𝐼𝑖,𝑡−𝑙−1 ≥

( 𝑙
∑

𝑗=0
𝑑𝑖,𝑡−𝑗

)(

1 −
∑

𝑘∈𝐾

𝑙
∑

𝑗=0
𝑧𝑖𝑘,𝑡−𝑗

)

, ∀𝑖 ∈ 𝑁𝐶 ,

𝑡 ∈ 𝑇 , 𝑙 = 0, 1,… , 𝑡 − 1. (A.1.3)

Constraints (A.1.3) imply that if a customer 𝑖 ∈ 𝑁𝐶 is not served
at time period 𝑡 ∈ 𝑇 , then the available stock at inventory 𝐼𝑖𝑡 should
over the customer’s demand in the corresponding period. Finally, the
ollowing inequalities are concerned with the routing decisions:

𝑧𝑖𝑘𝑡 ≤ 𝑧0𝑘𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , (A.1.4)
𝑥𝑖𝑗𝑘𝑡 ≤ 𝑧𝑗𝑘𝑡 and 𝑥𝑖𝑗𝑘𝑡 ≤ 𝑧𝑖𝑘𝑡, ∀(𝑖, 𝑗) ∈ 𝐸(𝑁𝐶 ), 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 . (A.1.5)

Constraints (A.1.4) force the plant node and the customer node to
be included in the same route traveled at time 𝑡 ∈ 𝑇 , if customer
𝑖 ∈ 𝑁𝐶 is visited, that is 𝑧𝑖𝑡 = 1. Constraints (A.1.5) are referred to as
logical inequalities, and they say that if a customer 𝑖 is the successor,
respectively the predecessor, of customer 𝑗 in the route traveled at
period 𝑡 ∈ 𝑇 , then 𝑗 has to be visited too.

A.2. Valid inequalities for the TIVF formulation

The valid inequalities proposed above can be adapted for the TIVF
formulation as follows:

𝑡′
∑

𝑡=1
𝑦𝑡 ≥ 1, (A.2.1)

𝑡′′
∑

𝑡=1
𝑧0𝑡 ≥

⌈

𝑀
𝑄

⌉

, (A.2.2)

𝐼𝑖,𝑡−𝑙−1 ≥

( 𝑙
∑

𝑗=0
𝑑𝑖,𝑡−𝑗

) (

1 −
𝑙

∑

𝑗=0
𝑧𝑖,𝑡−𝑗

)

,

∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , 𝑙 = 0, 1,… , 𝑡 − 1, (A.2.3)
𝑧𝑖𝑡 ≤ 𝑧0𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (A.2.4)

𝐶
𝑥𝑖𝑗𝑡 ≤ 𝑧𝑖𝑡 and 𝑥𝑖𝑗𝑡 ≤ 𝑧𝑗𝑡, ∀(𝑖, 𝑗) ∈ 𝐸(𝑁 ), 𝑡 ∈ 𝑇 . (A.2.5)
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Besides, we add a priori the following inequalities:

𝑄𝑧0𝑡 ≥
∑

𝑖∈𝑁𝐶

𝑞𝑖𝑡, ∀𝑡 ∈ 𝑇 . (A.2.6)

Constraints (A.2.6) ensures that the number of routed vehicles is
ufficient to carry the total delivered quantities to all customers at
ach time period. Finally, because the GFSECs (2.10) are weak, we can
urther strengthen the TIVF formulation by considering the following
ubtour elimination constraints (SECs):
∑

𝑖,𝑗)∈𝐸(𝑆)
𝑥𝑖𝑗𝑡 ≤

∑

𝑖∈𝑆
𝑧𝑖𝑡 − 𝑧𝑒𝑡, ∀𝑆 ⊆ 𝑁𝐶 , |𝑆| ≥ 2, 𝑒 ∈ 𝑆, 𝑡 ∈ 𝑇 .

(A.2.7)

These inequalities are inserted to prevent subtours in each time
eriod, however, they do not prevent violations at vehicle capacities,
nd they must necessarily be used together with the GFSECs (2.10).
hese cuts are separated dynamically using the min-cut algorithm.

.3. Valid inequalities for the TCF formulation

In their paper, Manousakis et al. (2021a) described and imple-
ented three sets of valid inequalities for the TCF formulation. The

irst set of inequalities is adopted from a similar formulation for the
nventory routing problem, which was described in Manousakis et al.
2021b). These inequalities are given by:

𝑥0𝑖𝑡 ≤ 𝑧𝑖𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (A.3.1)
𝑥𝑖𝑗𝑡 ≤ 𝑧𝑖𝑡, ∀(𝑖, 𝑗) ∈ 𝐸(𝑁𝐶 ), 𝑡 ∈ 𝑇 , (A.3.2)

𝑥𝑖𝑗𝑡 ≤ 𝑧𝑗𝑡, ∀(𝑖, 𝑗) ∈ 𝐸(𝑁𝐶 ), 𝑡 ∈ 𝑇 , (A.3.3)

𝑓𝑖𝑗𝑡 ≥ 𝑑𝑗𝑡𝑥𝑖𝑗𝑡 − 𝐼𝑗,𝑡−1, ∀(𝑖, 𝑗) ∈ 𝐸(𝑁𝐶 ), 𝑡 ∈ 𝑇 , (A.3.4)

𝑓𝑗𝑖𝑡 ≥ 𝑑𝑖𝑡𝑥𝑖𝑗𝑡 − 𝐼𝑖,𝑡−1, ∀(𝑖, 𝑗) ∈ 𝐸(𝑁𝐶 ), 𝑡 ∈ 𝑇 , (A.3.5)
𝑡

∑

𝑙=1
𝑧𝑖𝑙 ≥

⌈

∑𝑡
𝑙=1 𝑑𝑖𝑙 − 𝐼𝑖0
min(𝑄,𝐿𝑖)

⌉

, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 , (A.3.6)

𝑡2
∑

𝑙=𝑡1

𝑧𝑖𝑙 ≥

⌈∑𝑡2
𝑙=𝑡1

𝑑𝑖𝑙 − 𝐿𝑖
min(𝑄,𝐿𝑖)

⌉

, ∀𝑖 ∈ 𝑁𝐶 , 𝑡1, 𝑡2 ∈ 𝑇 , 𝑡1 < 𝑡2, (A.3.7)

𝑡2
∑

=𝑡1

𝑧𝑖𝑙 ≥

∑𝑡2
𝑙=𝑡1

𝑑𝑖𝑙 − 𝐼𝑖,𝑡1−1
min(𝑄,𝐿𝑖)

, ∀𝑖 ∈ 𝑁𝐶 , 𝑡1, 𝑡2 ∈ 𝑇 , 𝑡1 < 𝑡2, (A.3.8)

𝑡2
∑

𝑙=𝑡1

𝑧𝑖𝑙 ≥

∑𝑡2
𝑙=𝑡1

𝑑𝑖𝑙 − 𝐼𝑖,𝑡1−1
∑𝑡2
𝑙=𝑡1

𝑑𝑖𝑙
, ∀𝑖 ∈ 𝑁𝐶 , 𝑡1, 𝑡2 ∈ 𝑇 , 𝑡1 < 𝑡2. (A.3.9)

Inequalities (A.3.1)–(A.3.3) are the logical inequalities, and they
are similar to those described within the two previous formulations.
Inequalities (A.3.4) and (A.3.5) define lower bounds on the flow vari-
ables. It ensures that the flow (which translates to the load carried by
a vehicle before visiting a customer 𝑖 ∈ 𝑁𝐶 , or the residual capacity
after visiting customer 𝑖 ∈ 𝑁𝐶 ) is higher or equal to the stock-out at
the customer. Moreover, inequalities (A.3.6)–(A.3.9) impose a lower
bound on the number of performed visits to a customer 𝑖 ∈ 𝑁𝐶

during any time interval within the planning horizon. An additional
set of inequalities was proposed by Manousakis et al. (2021a), and they
describe as follow:

𝑓𝑖𝑗𝑡 ≤ 𝑄𝑥𝑖𝑗𝑡, ∀(𝑖, 𝑗) ∈ 𝐸(𝑁𝐶 ), 𝑡 ∈ 𝑇 ,

(A.3.10)
𝑓𝑗𝑖𝑡 ≤ 𝑄𝑥𝑖𝑗𝑡, ∀(𝑖, 𝑗) ∈ 𝐸(𝑁𝐶 ), 𝑡 ∈ 𝑇 ,

(A.3.11)

𝑞𝑖𝑡 ≤ min
{

𝐿𝑖 + 𝑑𝑖𝑡, 𝑄,
𝐻
∑

𝑙=𝑡
𝑑𝑖𝑙

}

𝑧𝑖𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 ,
14

(A.3.12) 𝐼
𝑞𝑖𝑡 ≤ min
{

𝐿𝑖 + 𝑑𝑖𝑡 − 𝐼𝑖,𝑡−1,
𝐻
∑

𝑙=𝑡
𝑑𝑖𝑙 − 𝐼𝑖,𝑡−1

}

𝑧𝑖𝑡, ∀𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 .

(A.3.13)

Inequalities (A.3.10) and (A.3.11) are the logical constraints related
to the flow variables. These variables can be positive only when the
edge (𝑖, 𝑗) is traversed. Furthermore, inequalities (A.3.12) and (A.3.13)
impose an upper bound on the delivered quantities. Finally, Manousakis
et al. (2021a) presented new valid inequalities for the production
setup variables, and which were inspired from the work of Coelho and
Laporte (2014). They can be described as follows:

𝑦𝑡𝐶 ≥
∑

𝑖∈𝑁𝐶

(𝑑𝑖𝑡 − 𝐼𝑖,𝑡−1) − 𝐼0,𝑡−1, ∀𝑡 ∈ 𝑇 ,

(A.3.14)
𝑡

∑

𝑙=1
𝑦𝑙 ≥

⌈

∑

𝑖∈𝑁𝐶
∑𝑡
𝑙=1 𝑑𝑖𝑙 − 𝐼𝑖0
𝐶

⌉

, ∀𝑡 ∈ 𝑇 , 𝑡 > 1,

(A.3.15)

𝑡2
∑

𝑙=𝑡1

𝑦𝑙 ≥

⌈
∑

𝑖∈𝑁𝐶

(

∑𝑡2
𝑙=𝑡1

𝑑𝑖𝑙
)

− 𝐿𝑖 − 𝐿0

𝐶

⌉

, ∀𝑡1, 𝑡2 ∈ 𝑇 , 𝑡1 < 𝑡2,

(A.3.16)

𝑡2
∑

𝑙=𝑡1

𝑦𝑙 ≥

∑

𝑖∈𝑁𝐶

(

∑𝑡2
𝑙=𝑡1

𝑑𝑖𝑙
)

− 𝐼𝑖,𝑡1−1 − 𝐼0,𝑡1−1
𝐶

, ∀𝑡1, 𝑡2 ∈ 𝑇 , 𝑡1 < 𝑡2.

(A.3.17)

Inequalities (A.3.14) ensure that a production process will be
launched when the stock at both the customer and the plant is not
enough to satisfy the demands. Inequalities (A.3.15)–(A.3.17) impose
lower bounds on the minimum number of setups during any time
interval within the planning horizon.

Appendix B. Constructive heuristics

We present here a description of the customer urgency heuristic,
and the modified next fit decreasing algorithm, both used in the second
phase of our matheuristic. The customer urgency heuristic is a merge-
and-round heuristic that iterates over the set of fractional 𝑧−variables.

ny fractional visit (given by a fractional value of 𝑧) is shifted to the
next one in time, and both deliveries are merged. If this operation
induces stock-outs at customer inventories, then the rounding is per-
formed in the opposite direction. If a merge cannot be performed,
or no other fractional value of 𝑧 exists, the heuristic will round up
the fractional visit to 1. Algorithm 2 describes the main steps of the
customer urgency heuristic. In Algorithm 2, we use 𝑈𝐶

𝑡 , to refer
to the set of urgent customers which shall incur a stock-out at time
period 𝑡 ∈ 𝑇 , while 𝑁𝑈𝐶

𝑡 , called the set of non-urgent customers,
contains the remaining ones. The modified next fit decreasing algorithm
assigns customer deliveries, ordered from the largest to the smallest,
to vehicles. If a delivery fits none of the available vehicles, then it
is assigned to the one with the largest residual capacity. Algorithm 3
describes the bin-packing algorithm. Since the values of the 𝑧−variables
in Phase I can be fractional, we cannot ensure deliveries do not split;
thus, violations may occur concerning vehicle capacities and stock-outs
at the production plant. We allow for an infeasible starting solution;
however, we propose later a procedure to recover vehicles and the plant
infeasibilities.

Remark 3. The feasibility condition introduced in lines 9 and 19 in
lgorithm 2 is given by:

𝑖𝑡 + 𝑞𝑖,𝑡∗𝑖 ≤ 𝐿𝑖, ∀𝑡 ∈ 𝑇 , 𝑖 ∈ 𝑈𝐶
𝑡 , 𝑡∗𝑖 ∈ 𝑇 , 𝑡∗𝑖 > 𝑡,

𝑁𝑈𝐶 ∗ ∗ ∗

𝑖𝑠 − 𝑞𝑖𝑡 ≥ 0, ∀𝑡 ∈ 𝑇 , 𝑖 ∈ 𝑡 , 𝑡𝑖 ∈ 𝑇 , 𝑡𝑖 > 𝑡, 𝑠 = 𝑡,… , 𝑡𝑖 − 1.
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Algorithm 2: Customer urgency heuristic.
1 for 𝑡← 1 to 𝐻 do
2 for 𝑖 ∈ 𝑁𝐶 do
3 Define 𝑟𝑖𝑡 = 𝐼𝑖,𝑡−1∕𝑑𝑖𝑡, the urgency ratio
4 end
5 Let 𝑈𝐶

𝑡 ∶= {𝑖 ∈ 𝑁𝐶 ∶ 𝑟𝑖𝑡 < 1 and 0 < 𝑧𝑖𝑡 < 1}
6 Sort 𝑈𝐶

𝑡 by ↓ 𝑟𝑖𝑡
7 for 𝑖 ∈ 𝑈𝐶

𝑡 do
8 Let 𝑡∗𝑖 ← next fractional visit of customer 𝑖
9 if <Feasibility condition> then
10 𝑞𝑖𝑡 ← 𝑞𝑖𝑡 + 𝑞𝑖,𝑡∗𝑖
11 𝐼𝑠𝑡 ← 𝐼𝑠𝑡 + 𝑞𝑖,𝑡∗𝑖 , 𝑠 = 𝑡,… , 𝑡∗𝑖 − 1
12 𝑧𝑖𝑡 ← 1, 𝑧𝑖,𝑡∗𝑖 ← 0, 𝑞𝑖,𝑡∗𝑖 ← 0
13 end
14 end
15 Let 𝑁𝑈𝐶

𝑡 ∶= {𝑖 ∈ 𝑁𝐶 ∶ 𝑟𝑖𝑡 ≥ 1 and 0 < 𝑧𝑖𝑡 < 1}
16 Sort 𝑁𝑈𝐶

𝑡 by ↑ 𝑟𝑖𝑡
17 for 𝑖 ∈ 𝑁𝑈𝐶

𝑡 do
18 Let 𝑡∗𝑖 ← next fractional visit for customer 𝑖
19 if <Feasibility condition> then
20 𝑞𝑖,𝑡∗𝑖 ← 𝑞𝑖,𝑡∗𝑖 + 𝑞𝑖𝑡
21 𝐼𝑠𝑡 ← 𝐼𝑠𝑡 − 𝑞𝑖𝑡, 𝑠 = 𝑡,… , 𝑡∗𝑖 − 1
22 𝑧𝑖𝑡 ← 0, 𝑧𝑖,𝑡∗𝑖 ← 1, 𝑞𝑖𝑡 ← 0
23 end
24 end
25 end
26 Round to 1 all remaining fractional z-values (if exist).

It ensures that customers’ inventory levels remain within the preset
limits.

Algorithm 3: A modified next fit decreasing bin packing
lgorithm.
1 for 𝑡← 1 to 𝐻 do
2 Let 𝑁𝑡 the set of customer to be served on time period 𝑡
3 Sort elements of 𝑁𝑡 by ↓ 𝑞𝑖𝑡
4 Let  = ∅ the set of bins used so far
5 for 𝑖 ∈ 𝑁𝑡 do
6 for 𝑘 ← 1 to || do
7 Let 𝜎𝑘 the residual capacity of bin 𝑘
8 if 𝜎𝑘 ≥ 𝑞𝑖𝑡 then
9 Assign customer 𝑖 to bin 𝑘
10 𝜎𝑘 ← 𝜎𝑘 − 𝑞𝑖𝑡
11 break
12 end
13 end
14 if 𝑘 = || and || < 𝑚 then
15 || ← || + 1
16 Assign customer 𝑖 to bin ||

17 𝜎
||

← 𝑄 − 𝑞𝑖𝑡
18 else
19 Let 𝑘∗ be the bin with highest residual capacity
20 Assign customer 𝑖 to bin 𝑘∗ even it violates the

capacity
21 𝜎𝑘∗ ← 𝜎𝑘∗ − 𝑞𝑖𝑡
22 end
23 end
24 end
15

i

Fig. 6. Cost structure of PRP solutions.

Appendix C. Detailed numerical results

Comparison with state-of-the-art methods

In Table 6, we report the results obtained by the proposed matheuris-
tic, aggregated over all the tested configurations, versus the ones
reported by other papers that have solved the same instances. For each
instance, we report the value of the objective function obtained by each
method, the lower bound (LB), the best-known solution (UB), and the
percentage optimality gap (Gap) given by |𝐿𝐵−𝑈𝐵|

|𝐿𝐵| . Next, we display the
ercentage deviation of objective functions obtained by each method
rom best know values. In the final row of Table 6, we report the
verage calculations over all instances. We use boldface letters if our
atheuristic finds the best know solution, while an underline indicates

hat the best solution was obtained only by our matheuristic. Since
ll methods were run on machines with different capabilities and
arameter settings, comparing CPU times becomes inconsistent. It is
orth noting that our matheuristic was run with a time limit of four
ours.

olution analysis

Additional analyses are performed on the obtained results from our
atheuristics to gain insights into the characteristics of PRP solutions.
e compute the percentage ratios 𝑃𝐶, 𝑇𝐶, and 𝐼𝐶 corresponding to

he production, transportation, and inventory costs, divided by the total
osts. Fig. 6 displays the average ratio calculations for each class of data
nstances (small, medium, large). It is apparent that production yields
he highest costs, while transportation and inventory costs are much
ower.

Additionally, Fig. 7 compares the normalized cost values of different
ntermediate and final solutions generated by the matheuristic. In more
etail, the outlined values show: (i) the average total, production,
ransportation, and inventory costs of the relaxed solution (highlighted
n green); (ii) the average total, production, transportation, and in-
entory costs of the starting solution (highlighted in blue); and (iii)
he average total, production, transportation, and inventory costs after
mprovement (highlighted in red). A couple of interesting conclusions
an be made from this figure. First, the starting solution yields, on
verage, the highest transportation cost, which is significantly reduced
fter the improvement phase. It can also be observed that there are
o significant differences in production and inventory costs before
nd after refinement. One can assume that obtaining a solution with
he lowest total costs after the improvement phase is due to the

mprovement in routing decisions.
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Fig. 7. Spider-chart comparing cost evolution throughout the matheuristic.
Table 6
Detailed results obtained on Adulyasak et al. (2014a) benchmark data instances.

Instance Total cost Bounds % dev. from current best solution

ACJ-BC SSPG-BC ACJ-ALNS VACS-M BHA-M LB UB Gap (%) ACJ-BC SSPG-BC ACJ-ALNS VACS-M BHA-M

1 13,924 13,924 14,102 14,102 13,924 13,924 13,924 0.00 0.00 0.00 1.28 1.28 0.00
2 98,434 98,434 98,612 98,612 98,434 98,434 98,434 0.00 0.00 0.00 0.18 0.18 0.00
3 19,751 19,751 19,751 19,799 19,751 19,751 19,751 0.00 0.00 0.00 0.00 0.24 0.00
4 10,792 10,792 10,792 10,792 10,792 10,792 10,792 0.00 0.00 0.00 0.00 0.00 0.00
5 14,002 14,002 14,102 14,102 14,002 14,002 14,002 0.00 0.00 0.00 0.71 0.71 0.00
6 98,512 98,512 98,648 98,612 98,512 98,512 98,512 0.00 0.00 0.00 0.14 0.10 0.00
7 20,550 20,550 21,235 20,712 20,550 20,550 20,550 0.00 0.00 0.00 3.33 0.79 0.00
8 10,974 10,974 11,004 10,974 10,974 10,974 10,974 0.00 0.00 0.00 0.27 0.00 0.00
9 29,559 29,559 29,659 29,559 29,559 29,559 29,559 0.00 0.00 0.00 0.34 0.00 0.00

(continued on next page)
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10 197,769 197,769 198,287 197,769 197,769 197,769 197,769 0.00 0.00 0.00 0.26 0.00 0.00
11 40,249 40,249 40,784 40,249 40,249 40,249 40,249 0.00 0.00 0.00 1.33 0.00 0.00
12 21,248 21,248 21,318 21,313 21,248 21,248 21,248 0.00 0.00 0.00 0.33 0.31 0.00
13 29,897 29,897 29,942 30,124 29,897 29,897 29,897 0.00 0.00 0.00 0.15 0.76 0.00
14 198,107 198,107 198,674 198,334 198,107 198,107 198,107 0.00 0.00 0.00 0.29 0.11 0.00
15 41,668 41,668 42,064 41,898 41,668 41,668 41,668 0.00 0.00 0.00 0.95 0.55 0.00
16 21,559 21,559 21,573 21,559 21,559 21,559 21,559 0.00 0.00 0.00 0.06 0.00 0.00
17 50,929 50,929 51,563 50,929 50,929 50,929 50,929 0.00 0.00 0.00 1.24 0.00 0.00
18 369,259 369,259 370,176 369,259 369,259 369,223 369,259 0.01 0.00 0.00 0.25 0.00 0.00
19 69,464 69,464 72,900 69,464 69,464 69,464 69,464 0.00 0.00 0.00 4.95 0.00 0.00
20 39,631 39,631 40,004 39,638 39,631 39,631 39,631 0.00 0.00 0.00 0.94 0.02 0.00
21 51,739 51,739 52,200 51,761 51,739 51,739 51,739 0.00 0.00 0.00 0.89 0.04 0.00
22 370,069 370,069 370,624 370,091 370,069 370,055 370,069 0.00 0.00 0.00 0.15 0.01 0.00
23 72,148 72,148 76,376 73,933 72,148 72,148 72,148 0.00 0.00 0.00 5.86 2.47 0.00
24 40,276 40,276 40,564 40,331 40,276 40,276 40,276 0.00 0.00 0.00 0.72 0.14 0.00
25 19,488 19,488 19,610 19,504 19,488 19,488 19,488 0.00 0.00 0.00 0.63 0.08 0.00
26 136,128 136,128 136,144 136,144 136,128 136,119 136,128 0.01 0.00 0.00 0.01 0.01 0.00
27 28,687 28,687 29,599 29,206 28,687 28,687 28,687 0.00 0.00 0.00 3.18 1.81 0.00
28 15,163 15,163 15,163 15,163 15,163 15,163 15,163 0.00 0.00 0.00 0.00 0.00 0.00
29 19,680 19,680 19,689 19,881 19,680 19,680 19,680 0.00 0.00 0.00 0.05 1.02 0.00
30 136,320 136,320 136,839 136,521 136,320 136,320 136,320 0.00 0.00 0.00 0.38 0.15 0.00
31 30,376 30,376 31,523 30,734 30,376 30,376 30,376 0.00 0.00 0.00 3.78 1.18 0.00
32 15,469 15,469 15,469 15,469 15,469 15,469 15,469 0.00 0.00 0.00 0.00 0.00 0.00
33 41,627 41,627 41,628 41,870 41,627 41,623 41,627 0.01 0.00 0.00 0.00 0.58 0.00
34 273,827 273,827 274,028 274,070 273,827 273,827 273,827 0.00 0.00 0.00 0.07 0.09 0.00
35 57,294 57,294 59,158 57,294 57,294 57,294 57,294 0.00 0.00 0.00 3.25 0.00 0.00
36 29,556 29,556 29,770 29,556 29,556 29,556 29,556 0.00 0.00 0.00 0.72 0.00 0.00
37 42,191 42,191 42,543 42,361 42,191 42,191 42,191 0.00 0.00 0.00 0.83 0.40 0.00
38 274,391 274,391 275,057 274,561 274,391 274,391 274,391 0.00 0.00 0.00 0.24 0.06 0.00
39 60,087 60,087 63,331 60,941 60,087 60,087 60,087 0.00 0.00 0.00 5.40 1.42 0.00
40 30,090 30,090 30,196 30,206 30,090 30,090 30,090 0.00 0.00 0.00 0.35 0.39 0.00
41 73,204 73,204 74,908 73,368 73,204 73,204 73,204 0.00 0.00 0.00 2.33 0.22 0.00
42 522,754 522,754 524,310 522,918 522,896 522,713 522,754 0.01 0.00 0.00 0.30 0.03 0.03
43 102,002 102,002 104,339 105,334 103,138 102,002 102,002 0.00 0.00 0.00 2.29 3.27 1.11
44 56,644 56,644 57,669 56,944 56,680 56,644 56,644 0.00 0.00 0.00 1.81 0.53 0.06
45 74,854 74,764 75,253 75,045 74,787 74,349 74,764 0.56 0.12 0.00 0.65 0.38 0.03
46 524,376 524,314 524,875 524,441 524,387 523,630 524,314 0.13 0.01 0.00 0.11 0.02 0.01
47 108,055 108,046 113,184 110,036 111,351 104,317 108,046 3.57 0.01 0.00 4.76 1.84 3.06
48 57,914 57,893 59,486 58,293 57,919 57,092 57,893 1.40 0.04 0.00 2.75 0.69 0.04
49 22,209 22,209 22,394 22,388 22,209 22,209 22,209 0.00 0.00 0.00 0.83 0.81 0.00
50 157,479 157,479 157,767 157,658 157,479 157,479 157,479 0.00 0.00 0.00 0.18 0.11 0.00
51 31,708 31,708 32,697 31,708 31,708 31,708 31,708 0.00 0.00 0.00 3.12 0.00 0.00
52 17,171 17,171 17,171 17,171 17,171 17,171 17,171 0.00 0.00 0.00 0.00 0.00 0.00
53 22,375 22,375 22,552 22,463 22,375 22,375 22,375 0.00 0.00 0.00 0.79 0.39 0.00
54 157,645 157,645 157,822 157,733 157,645 157,645 157,645 0.00 0.00 0.00 0.11 0.06 0.00
55 32,851 32,851 34,596 32,851 32,851 32,851 32,851 0.00 0.00 0.00 5.31 0.00 0.00
56 17,400 17,400 17,550 17,400 17,400 17,400 17,400 0.00 0.00 0.00 0.86 0.00 0.00
57 47,466 47,466 47,466 47,564 47,466 47,463 47,466 0.01 0.00 0.00 0.00 0.21 0.00
58 315,846 315,846 316,446 315,944 315,846 315,820 315,846 0.01 0.00 0.00 0.19 0.03 0.00
59 63,746 63,746 66,848 64,017 63,746 63,746 63,746 0.00 0.00 0.00 4.87 0.43 0.00
60 33,488 33,488 33,663 33,497 33,488 33,488 33,488 0.00 0.00 0.00 0.52 0.03 0.00
61 47,681 47,681 48,107 48,005 47,681 47,681 47,681 0.00 0.00 0.00 0.89 0.68 0.00
62 316,061 316,061 316,572 316,385 316,061 316,035 316,061 0.01 0.00 0.00 0.16 0.10 0.00
63 65,789 65,789 68,730 65,869 65,789 65,789 65,789 0.00 0.00 0.00 4.47 0.12 0.12
64 33,859 33,859 34,136 33,859 33,859 33,859 33,859 0.00 0.00 0.00 0.82 0.00 0.00
65 82,150 82,150 82,926 82,150 82,150 82,150 82,150 0.00 0.00 0.00 0.94 0.00 0.00
66 596,230 596,230 597,370 596,230 596,230 596,187 596,230 0.01 0.00 0.00 0.19 0.00 0.00
67 110,925 110,925 114,032 110,925 112,565 110,925 110,925 0.00 0.00 0.00 2.80 0.00 1.48
68 62,920 62,920 63,008 62,928 62,920 62,920 62,920 0.00 0.00 0.00 0.14 0.01 0.00
69 82,685 82,685 83,005 83,077 82,741 82,685 82,685 0.00 0.00 0.00 0.39 0.47 0.07
70 596,765 596,765 597,052 596,874 596,765 596,708 596,765 0.01 0.00 0.00 0.05 0.02 0.00
71 115,499 115,182 120,371 116,688 117,771 115,182 115,182 0.00 0.28 0.00 4.51 1.31 2.25
72 63,919 63,919 64,394 63,919 63,919 63,914 63,919 0.01 0.00 0.00 0.74 0.00 0.00
73 26,055 26,055 26,177 26,177 26,055 26,055 26,055 0.00 0.00 0.00 0.47 0.47 0.00
74 182,115 182,115 182,241 182,237 182,115 182,112 182,115 0.00 0.00 0.00 0.07 0.07 0.00
75 35,939 35,939 37,990 35,939 35,939 35,939 35,939 0.00 0.00 0.00 5.71 0.00 0.00
76 19,528 19,528 19,528 19,528 19,528 19,528 19,528 0.00 0.00 0.00 0.00 0.00 0.00
77 26,269 26,269 26,413 26,386 26,269 26,269 26,269 0.00 0.00 0.00 0.55 0.45 0.00
78 182,329 182,329 182,616 182,392 182,329 182,329 182,329 0.00 0.00 0.00 0.16 0.03 0.00
79 37,754 37,754 39,293 37,754 37,754 37,754 37,754 0.00 0.00 0.00 4.08 0.00 0.00
80 19,891 19,891 19,956 19,891 19,891 19,891 19,891 0.00 0.00 0.00 0.33 0.00 0.00
81 56,869 56,869 57,063 57,062 56,869 56,869 56,869 0.00 0.00 0.00 0.34 0.34 0.00
82 366,289 366,289 366,671 366,487 366,289 366,289 366,289 0.00 0.00 0.00 0.10 0.05 0.00
83 73,339 73,339 78,374 73,339 73,339 73,339 73,339 0.00 0.00 0.00 6.87 0.00 0.00
84 38,231 38,231 38,409 38,320 38,231 38,231 38,231 0.00 0.00 0.00 0.47 0.23 0.00
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85 57,077 57,077 57,684 57,472 57,077 57,077 57,077 0.00 0.00 0.00 1.06 0.69 0.00
86 366,497 366,497 367,089 366,892 366,497 366,497 366,497 0.00 0.00 0.00 0.16 0.11 0.00
87 76,112 76,112 79,814 76,428 76,112 76,112 76,112 0.00 0.00 0.00 4.86 0.42 0.00
88 38,726 38,726 39,093 38,726 38,798 38,726 38,726 0.00 0.00 0.00 0.95 0.00 0.19
89 99,868 99,868 100,654 100,068 99,879 99,868 99,868 0.00 0.00 0.00 0.79 0.20 0.01
90 719,788 719,809 720,803 719,852 719,892 719,738 719,788 0.01 0.00 0.00 0.14 0.01 0.01
91 133,290 133,260 133,290 134,591 136,388 133,260 133,260 0.00 0.02 0.00 0.02 1.00 2.35
92 76,197 76,197 77,482 76,819 76,632 76,190 76,197 0.01 0.00 0.00 1.69 0.82 0.57
93 100,690 100,689 101,165 101,215 101,371 100,680 100,689 0.01 0.00 0.00 0.47 0.52 0.68
94 720,609 720,609 721,543 720,873 721,370 720,537 720,609 0.01 0.00 0.00 0.13 0.04 0.11
95 139,695 138,295 141,218 140,296 145,528 134,383 138,295 2.91 1.01 0.00 2.11 1.45 5.23
96 77,725 77,457 78,889 77,471 77,882 76,383 77,457 1.41 0.35 0.00 1.85 0.02 0.55
97 28,872 28,872 29,186 29,081 28,872 28,872 28,872 0.00 0.00 0.00 1.09 0.72 0.00
98 205,992 205,992 206,434 206,215 205,992 205,975 205,992 0.01 0.00 0.00 0.21 0.11 0.00
99 41,164 41,164 43,657 42,223 41,164 41,164 41,164 0.00 0.00 0.00 6.06 2.57 0.00
100 22,589 22,589 22,648 22,589 22,589 22,589 22,589 0.00 0.00 0.00 0.26 0.00 0.00
101 29,157 29,157 29,536 29,483 29,157 29,157 29,157 0.00 0.00 0.00 1.30 1.12 0.00
102 206,277 206,277 206,592 206,603 206,277 206,265 206,277 0.01 0.00 0.00 0.15 0.16 0.00
103 42,543 42,543 44,323 43,574 42,543 42,543 42,543 0.00 0.00 0.00 4.18 2.42 0.00
104 22,860 22,860 22,869 22,860 22,860 22,860 22,860 0.00 0.00 0.00 0.04 0.00 0.00
105 61,287 61,287 61,747 61,450 61,350 61,287 61,287 0.00 0.00 0.00 0.75 0.27 0.10
106 413,637 413,637 414,332 413,674 413,764 413,609 413,637 0.01 0.00 0.00 0.17 0.01 0.03
107 82,249 82,249 86,464 82,893 82,897 82,249 82,249 0.00 0.00 0.00 5.12 0.78 0.79
108 44,007 44,007 44,263 44,024 44,007 44,007 44,007 0.00 0.00 0.00 0.58 0.04 0.00
109 61,741 61,741 62,083 62,152 61,784 61,741 61,741 0.00 0.00 0.00 0.55 0.67 0.07
110 414,091 414,091 415,132 414,440 414,222 414,057 414,091 0.01 0.00 0.00 0.25 0.08 0.03
111 85,895 85,072 89,079 85,586 85,931 85,072 85,072 0.00 0.97 0.00 4.71 0.60 1.01
112 44,593 44,588 44,909 44,644 44,588 44,271 44,588 0.72 0.01 0.00 0.72 0.13 0.00
113 110,070 109,977 110,557 110,373 111,786 109,745 109,977 0.21 0.08 0.00 0.53 0.36 1.64
114 800,629 800,387 802,301 801,084 802,413 800,308 800,387 0.01 0.03 0.00 0.24 0.09 0.25
115 151,878 148,252 152,780 151,002 164,341 144,501 148,252 2.60 2.45 0.00 3.05 1.85 10.85
116 86,292 85,530 88,253 85,974 86,138 84,465 85,530 1.26 0.89 0.00 3.18 0.52 0.71
117 111,263 111,142 111,500 111,384 116,151 109,852 111,142 1.17 0.11 0.00 0.32 0.22 4.51
118 802,111 801,634 803,361 802,120 805,823 800,599 801,634 0.13 0.06 0.00 0.22 0.06 0.52
119 158,605 155,142 158,932 156,604 164,033 145,376 155,142 6.72 2.23 0.00 2.44 0.94 5.73
120 88,578 86,882 89,020 86,939 87,370 84,691 86,882 2.59 1.95 0.00 2.46 0.07 0.56
121 35,503 35,503 35,980 35,616 35,503 35,503 35,503 0.00 0.00 0.00 1.34 0.32 0.00
122 256,903 256,903 257,471 257,016 256,916 256,887 256,903 0.01 0.00 0.00 0.22 0.04 0.01
123 49,660 49,660 53,959 50,453 49,660 49,660 49,660 0.00 0.00 0.00 8.66 1.60 0.00
124 27,774 27,774 27,829 27,774 27,774 27,774 27,774 0.00 0.00 0.00 0.20 0.00 0.00
125 35,854 35,854 36,340 36,001 35,854 35,854 35,854 0.00 0.00 0.00 1.36 0.41 0.00
126 257,254 257,254 257,724 257,401 257,254 257,251 257,254 0.00 0.00 0.00 0.18 0.06 0.00
127 51,475 51,475 55,641 52,375 51,749 51,475 51,475 0.00 0.00 0.00 8.09 1.75 0.53
128 28,160 28,160 28,227 28,160 28,160 28,160 28,160 0.00 0.00 0.00 0.24 0.00 0.00
129 74,939 74,939 75,286 75,189 75,147 74,939 74,939 0.00 0.00 0.00 0.46 0.33 0.28
130 515,039 515,039 515,683 515,327 515,334 514,989 515,039 0.01 0.00 0.00 0.13 0.06 0.06
131 99,846 99,282 103,930 99,930 101,235 99,282 99,282 0.00 0.57 0.00 4.68 0.65 1.97
132 54,410 54,410 54,705 54,501 54,483 54,187 54,410 0.41 0.00 0.00 0.54 0.17 0.13
133 75,487 75,472 76,054 75,817 75,938 75,467 75,472 0.01 0.02 0.00 0.77 0.46 0.62
134 515,594 515,572 516,096 515,878 516,115 515,522 515,572 0.01 0.00 0.00 0.10 0.06 0.11
135 104,045 102,869 106,455 103,034 109,106 99,822 102,869 3.05 1.14 0.00 3.49 0.16 6.06
136 55,439 54,975 55,578 55,040 55,094 54,339 54,975 1.17 0.84 0.00 1.10 0.12 0.22
137 44,422 44,422 44,640 44,463 44,422 44,422 44,422 0.00 0.00 0.00 0.49 0.09 0.00
138 320,512 320,512 320,832 320,647 320,533 320,489 320,512 0.01 0.00 0.00 0.10 0.04 0.01
139 61,530 61,530 64,253 61,952 61,705 61,530 61,530 0.00 0.00 0.00 4.43 0.69 0.28
140 34,162 34,162 34,350 34,162 34,162 34,162 34,162 0.00 0.00 0.00 0.55 0.00 0.00
141 44,461 44,461 44,767 44,468 44,468 44,461 44,461 0.00 0.00 0.00 0.69 0.02 0.02
142 320,816 320,818 321,225 320,914 320,855 320,786 320,816 0.01 0.00 0.00 0.13 0.03 0.01
143 63,823 63,596 65,326 64,363 63,611 61,489 63,596 3.43 0.36 0.00 2.72 1.21 0.02
144 34,688 34,644 34,691 34,644 34,728 34,461 34,644 0.53 0.13 0.00 0.14 0.00 0.24
145 96,393 96,393 97,071 96,615 96,926 96,210 96,393 0.19 0.00 0.00 0.70 0.23 0.55
146 646,929 646,926 647,543 647,145 647,463 646,784 646,926 0.02 0.00 0.00 0.10 0.03 0.08
147 123,837 123,149 126,750 123,495 127,922 120,868 123,149 1.89 0.56 0.00 2.92 0.28 3.88
148 67,180 66,854 67,180 66,895 67,140 66,510 66,854 0.52 0.49 0.00 0.49 0.06 0.43
149 97,104 96,757 97,235 96,701 98,855 96,076 96,701 0.65 0.42 0.06 0.55 0.00 2.23
150 647,331 647,287 647,955 647,235 648,690 646,600 647,235 0.10 0.01 0.01 0.11 0.1 0.32
151 129,933 127,335 130,286 127,117 135,637 121,524 127,117 4.60 2.22 0.17 2.49 0.00 6.70
152 68,115 67,815 68,115 67,873 67,944 66,632 67,815 1.77 0.44 0.00 0.44 0.09 0.19
153 50,446 50,446 50,592 50,446 50,446 50,446 50,446 0.00 0.00 0.00 0.29 0.00 0.00
154 376,125 376,125 376,804 376,283 376,166 376,061 376,125 0.02 0.00 0.00 0.18 0.04 0.01
155 69,629 69,662 72,914 72,250 70,072 69,292 69,629 0.49 0.00 0.05 4.72 3.76 1.13
156 39,929 39,965 39,929 39,980 39,959 39,788 39,929 0.36 0.00 0.09 0.00 0.13 0.08
157 50,872 50,905 51,425 50,902 50,915 50,543 50,872 0.65 0.00 0.06 1.09 0.06 0.08
158 376,654 376,693 377,454 376,638 376,604 376,068 376,604 0.14 0.01 0.02 0.23 0.01 0.00
159 73,658 72,182 73,658 72,408 72,570 69,432 72,182 3.96 2.04 0.00 2.04 0.31 0.54
160 40,862 40,587 40,862 40,762 40,500 40,009 40,500 1.23 0.89 0.21 0.89 0.65 0.00
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161 46,726 46,726 47,005 46,812 46,726 46,726 46,726 0.00 0.00 0.00 0.60 0.18 0.01
162 340,782 340,782 341,118 340,996 340,928 340,751 340,782 0.01 0.00 0.00 0.10 0.06 0.04
163 65,260 65,260 68,045 66,387 65,449 65,260 65,260 0.00 0.00 0.00 4.27 1.73 0.29
164 36,347 36,347 36,695 36,347 36,347 36,347 36,347 0.00 0.00 0.00 0.96 0.00 0.00
165 47,138 47,138 47,577 47,297 47,149 47,138 47,138 0.00 0.00 0.00 0.93 0.34 0.02
166 341,426 341,378 341,938 341,379 341,573 341,312 341,378 0.02 0.01 0.00 0.16 0.00 0.06
167 68,125 67,900 71,560 69,266 69,352 66,691 67,900 1.81 0.33 0.00 5.39 2.01 2.14
168 36,969 36,967 37,123 36,923 36,971 36,701 36,923 0.61 0.12 0.12 0.54 0.00 0.13

Average 0.32 0.13 0.005 1.39 0.39 0.43
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