Prevalence and risk assessment of toxoplasmosis in commercial and communal sheep and goats in the North West province and occurrence in the Free State province

By
 MTHOKOZISI ERIC MASOMBUKA

Submitted in accordance with the requirements for the degree of

MASTER OF SCIENCE

 in the subject
AGRICULTURE

at the

UNIVERSITY OF SOUTH AFRICA

FLORIDA CAMPUS

SUPERVISOR

DR N GCEBE

CO-SUPERVISOR

PROF BG MOKOLOPI

January 2023

DECLARATION

Name: Mthokozisi Eric Masombuka
Student number: 67134238
Degree: Master of Science in Agriculture

Prevalence and risk assessment of toxoplasmosis in commercial and communal sheep and goats in the Northwest province and occurrence in the Free State province.

I declare that the above dissertation is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references.

10.02.2022

SIGNATURE
DATE

ACKNOWLEDGEMENTS

I want to thank my supervisors, Dr Noma Gcebe (ARC-OVR) and Prof Gloria Mokolopi (UNISA) for their guidance and support during this study. I am thankful to the ARC-OVR, Red Meat Research and Development in South Africa and the Department of Trade, Industry and Competition for funding the study as well as the North West University for paying for my tuition fees. I am grateful to the ARC-OVI Bacteriology personnel for their assistance during the lab work, the North West province animal health technicians, Ms Nthabiseng, Ms Lorato and Ms Bontsi for their assistance during sample collection.

To Dr Nthabiseng Mphuthi (NWU), thank you for coordinating and organizing for sampling collection. To Dr Rian Pierneef (ARC-BTP), thank you for helping with data analysis. I am grateful to Kgaogelo Mogano for her assistant with plotting the maps. To Kuda and Phomolo, thank you for always welcoming you into your home during my lab work.

I am thankful for the support and words of encouragement from my family and friends. KuZimu nabeZimu, siyathokoza.

Abstract

Toxoplasmosis is one of the most widespread parasitic zoonotic diseases arising from Toxoplasma gondii infection. This disease significant impact on sheep and goat production; however, it sometimes goes unnoticed in the herd, leading to unexpected and inexplicable abortions and death among the new-born's deaths. This study aimed to determine the prevalence and risk factors of T. gondii infections in sheep and goats from commercial and communal farms in the North West, as well as its occurrence in the Free State province. Additionally, we analysed variations and phylogenetic relationships in the T. gondii B1 and GRA6 gene sequences from isolates deposited in GenBank (https://www.ncbi.nlm.nih.gov/) to evaluate the usefulness of the two genes as phylogenetic markers. Toxoplasma gondii IgG antibodies and DNA were analysed in blood samples from 439 animals (164 sheep and 285 goats), vaginal swabs, milk, sheath scrapes from the North West province, and 11 diagnostic tissue samples from the Free State province. A questionnaire was administered to farmers used to assess potential risk factors associated with animals' exposure to T. gondii infections. Additionally, 183 gene sequences (107 B1 and 83 GRA6 gene sequences) retrieved from GenBank from different animal species originating from different countries were analysed, and single nucleotide polymorphisms (SNP's) were present in 17% and 83%, of the B1 and GRA6 gene sequences, respectively. Of the 439 sera tested, 13.9% ($95 \% \mathrm{CI}: 0.00-1.00 \%$) were positive for antibodies against T. gondii. It was discovered that sheep and goats had seroprevalences of 19.5% and 10.5%, respectively. T. gondii was not detected by PCR in any of the analysed samples ($\mathrm{n}=198$). Using the Chi-Squared test or odds ratio, the main risk factors associated with T. gondii infections were breed, gender, species, animal origin, history of abortion, disposal of aborted material, disposal of manure, type of breeding, district, municipality, feeding system, feed storage, and presence of cats on farms. The high seroprevalence in this study suggests that T. gondii exposure is widespread within the farms. The absence of genetic material associated with T. gondii by PCR even in seropositive animals suggests the animals were at some point exposed to the pathogen, but they do not shed the parasite in their reproductive tissues. Perhaps, these animals may potentially shed the pathogen in other tissues that we did not analyse. The isolates' gene sequence analysis showed that the GRA6 gene could work as a genetic marker for T. gondii in population studies compared to the B1 gene. To effectively prevent and control exposure to T. gondii infections, the identified risk factors must be considered.

Keywords: Toxoplasma gondii, Prevalence, PCR, ELISA, Sheep, Goats, North West, Free State, B1, GRA6, SNP, Phylogenetic Tree

TABLE OF CONTENTS

DECLARATION ii
ACKNOWLEDGEMENTS iii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF ACRONYMS AND ABREVIATIONS xi
LIST OF FIGURES xiii
LIST OF TABLES xiv
CHAPTER 1 1
INTRODUCTION 1
1.1 Background 1
1.2 Problem statement. 2
1.3 Aim and objectives 4
1.3.1 Aim 4
1.3.2 Objectives 4
1.4 Overview of the dissertation chapters 4
CHAPTER 2 6
LITERATURE REVIEW 6
2.1 Introduction 6
2.2 Aetiology 6
2.3 Life cycle 7
2.4 Epidemiology 8
2.4.1 In animals 9
2.4.2 In humans 10
2.5 Genotyping and genotypes 10
2.6 Virulence 12
2.6.1 Virulence factors 13
2.7 Host range susceptibility 15
2.8 Source of infection and transmission 16
2.8.1 Source of infection 16
2.8.2 Transmission 17
2.8.2.1 In animals 17
2.8.2.1.1 Transmission in cats 17
2.8.2.1.2 Transmission in livestock 18
2.8.2.1.3 Transmission in wildlife 18
2.8.2.1.4 Vertical transmission 18
2.8.2.2 Transmission in humans 19
2.8.2.2.1 Horizontal transmission 19
2.8.2.2.2 Vertical transmission 19
2.8.2.3 Organ transplants 19
2.9 Risk factors 20
2.9.1 Pathogen risk factors 20
2.9.2 Farm environment and management risk factors 21
2.9.3 Human risk factors 21
2.9.4 Age and gender of animals 21
2.9.5 Breed and species 22
2.10 Pathogenesis 22
2.11 Clinical signs and symptoms 22
2.11.1 In animals 23
2.11.2 In humans 23
2.12 Diagnosis. 24
2.12.1 Histopathology 24
2.12.2 Microscopic examination 24
2.12.3 Faecal floatation 24
2.12.4 Mouse inoculation 25
2.12.5 Serological assays 25
2.12.5.1 Dye test 25
2.12.5.2 Indirect fluorescent antibody test 26
2.12.5.3 Direct agglutination test 26
2.12.5.4 Modified agglutination test 26
2.12.5.5 Latex agglutination test 26
2.12.5.6 Enzyme-linked immunosorbent assay 26
2.12.6 Molecular assays 27
2.12.6.1 Conventional PCR 27
2.12.6.2 Real-Time PCR 27
2.12.7 Molecular genotyping 28
2.12.7.1 Microsatellite analysis 28
2.12.7.2 Multilocus sequence typing 28
2.12.7.3 Polymerase chain reaction-restriction fragment length polymorphism 28
2.12.7.4 Random amplified polymorphic DNA-PCR (RPD-PCR) 29
2.12.7.5 Variable number tandem repeats 29
2.13 Differential diagnosis 30
2.14 Treatment 30
2.14.1 In animals 30
2.14.2 In humans 31
2.15 Prevention and control 31
2.15.1 In animals 31
2.15.2 In humans 32
CHAPTER 3 33
MATERIALS AND METHODS 33
3.1 Study design 33
3.2 Study area 33
3.2.1 North West province 34
3.2.2 Free State province 35
3.3 Sample size 36
3.4 Sample collection 37
3.4.1 Blood 37
3.4.2 Milk 37
3.4.3 Sheath scraping 37
3.4.4 Vaginal swabs 37
3.4.5 Diagnostic submissions 38
3.5 Questionnaire 38
3.6 Ethical clearance 39
3.7 Test Methods 39
3.7.1 Serological assay for T. gondii IgG antibody 39
3.7.2 Molecular detection 40
3.7.2.1 Sample preparation 41
3.7.2.2 DNA extraction 41
3.7.2 Gene Amplification and Visualization 42
3.7.2.1 Universal ribosomal RNA (18S) amplification 42
3.7.2.2 Amplification of B1 gene 43
3.7.2.3 Toxoplasma gondii specific 18S rRNA gene amplification 44
3.7.2.4 Sequencing of universal 18 S rRNA fragment for T. gondii confirmation 44
3.7.3 Genetic and phylogenic analysis of the B1 and GRA6 gene sequences 45
3.8 Data analysis 45
CHAPTER 4 47
RESULTS 47
4.1 Sample distribution by sex and species 47
4.2 Overall seroprevalence. 49
4.3 Risk Factors 50
4.4 Molecular detection 55
4.4.1 Amplification of universal ribosomal 18S RNA 55
4.4.2 Amplification of B1 gene 56
4.4.3 Amplification of ribosomal T. gondii RNA (18S) gene 56
4.4.4 Sequencing of the universal 18S rRNA fragment for T. gondii confirmation 57
4.4.5 Correlation and agreement between the serological and molecular detection 57
4.5 Sequence and phylogenetic analysis of the T. gondii B1 and GRA6 gene sequences 58
4.5.1 Toxoplasma gondii B1 gene sequence analysis for 803 bp fragments 58
4.5.2 Toxoplasma gondii B1 gene sequence analysis from fragment sizes of between 300 to 1000 bp that were trimmed and aligned 58
4.5.3 Toxoplasma gondii B1 gene sequence analysis from fragment sizes of between 300 to 1000 bp that were trimmed and aligned 59
4.5.4 Phylogenetic relationship of T. gondii B1 gene from 803 bp sequences 60
4.5.5 Phylogenetic relationship of T. gondii B1 gene sequences ranging from 300 bp to 1000 bp that we trimmed and aligned 62
4.5.6 Phylogenetic relationship of T. gondii GRA 6 gene isolates 65
CHAPTER 5 69
DISCUSSION 69
5.1 Overall seroprevalence 69
5.2 Risk factors 72
5.3 Molecular detection 75
5.4 Correlation and agreement between serological (ELISA) and molecular detection (PCR) 76
5.5 Sequence analysis of the T. gondii B1 and GRA6 gene isolates. 76
5.5.1 Sequence analysis of T. gondii B1 gene isolates 77
5.5.2 Sequence analysis of T. gondii GRA6 gene isolates 79
5.6 Phylogenetic analysis of the T. gondii B1 and GRA6 gene sequences 81
5.6.1. Phylogenetic analysis of the T. gondii B1 gene sequences 81
5.6.2. Phylogenetic analysis of the GRA6 gene sequences 82
CHAPTER 6 84
CONCLUSIONS AND RECOMMENDATIONS 84
6.1 Conclusions 84
6.1.1 Seroprevalence 84
6.1.2 Risk factors 84
6.1.3 Molecular detection 84
6.1.4 B1 and GRA6 genes sequence analysis and phytogenic tree construction 85
6. 2 Recommendations 85
REFERENCES 86
APPENDICES 102
APPENDIX A: RISK ASSESSMENT QUESTIONAIRE 102
APPENDIX B: CONCERNT FORM 104
APPENDIX C: UNISA CAES HEALTH AND ANIMAL ETHICS CLEARANCE 105
APPENDIX D: DAFF APPROVAL LETTER 109
APPENDIX E: ANALYSED T. GODII B 1 SEQUENCES FOR 803 bp FRAGMENTS 111
APPENDIX F: ANALYSED T. gondii B1 GENE SEQUENCES WITH FRAGMENT SIZES BETWEEN 400 AND 1000 bp 119
APPENDIX G: ANALYSED T. GONDII GRA6 GENE SEQUENCES WITH TRIMMED AND ALIGNED FRAGMENT SIZES OF BETWEEN 400 AND 1000 bp. 134
APPENDIX H: INFORMATION ON THE T. GONDII B1 ISOLATES FOR THE 803 bp USED FOR SEQUENCE ANALYSIS AND PHYLOGENETIC TREE CONSTRUCTION 152
APPENDIX I: INFORMATION ON THE T. GONDII B1 ISOLATES AND/CLONES OF TRIMMED FRAGMENT SIZES OF BETWEEN 300-100 bp USED FOR SEQUENCE ANALYSIS AND PHYLOGENETIC TREE CONSTRUCTION 154
APPENDIX J: INFORMATION ON THE T. GONDII GRA6 ISOLATES AND/CLONES OF TRIMMED FRAGMENT SIZES OF BETWEEN 300-100 bp USED FOR SEQUENCE ANALYSIS AND PHYLOGENETIC TREE CONSTRUCTION 158

LIST OF ACRONYMS AND ABREVIATIONS

A	Absorbance
ARC-OVR	Agricultural Research Council-Onderstepoort Veterinary Research
AIDS	Acquired Immunodeficiency Syndrome
bp	Base Pair
CAES	Collage of Agriculture and Environmental Sciences
CDC	Canters for Disease Control and Prevention
CI	Confidence Interval
CNS	Central Nervous System
DAFF	Department of Agriculture, Forestry and Fisheries
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphate
DT	Dye Test
Dr	Doctor
ELISA	Enzyme-Linked Immunosorbent Assay
FS	Free State
HIV	Human Immunodeficiency Virus
HRM	High Resolution Melting
IFA	Indirect Florescent Agglutination Test
IFNg	Immunity-related GTPase
IgA	Immunoglobulin A
IgG	Immunoglobulin B
IgM	Immunoglobulin M
IHAT	Indirect Haemagglutination Test
LA	Latex Agglutination Test
MAT	Modified Agglutination Test
Mbp	Million Base Pairs
MLST	Multilocus sequence typing
NC	Negative Control
NCx	Negative Control Average
NW	North West
nm	Nanometre
OR	Odd Ratio
OIE	World Health Organization for Animal Health
PBS	Phosphate Buffered Solution
PCR	Polymerase Chain Reaction
PC	Positive Control
PCx	Positive Control Average
S/P	Ppecificity
PV	Paalitative Polymerase Reaction
qPCR	RAPD

RFLP	Random Fragment Length Polymorphism
ROP	Rhoptry Proteins
rDNA	Ribosomal Deoxyribose Nucleic Acid
rpm	Revolutions Per Minute
SA	South Africa
SNP	Single Nucleotide Polymorphism
TMB	50-Tetramethylbenzidine
TBE	Tris-Borate-EDTA
$\mathbf{U N I S A}$	University of South Africa
$\mathbf{U S}$	United States
\mathbf{v}	Volts
$\mathbf{V e t}$	Veterinarian
$\mathbf{W H O}$	World Health Organization
$\boldsymbol{\mu} \mathbf{l}$	Microliter
$\circ \mathbf{C}$	Degree Celsius
$\boldsymbol{\%}$	Percentage
\leq	Less than or equals to
\geq	Greater than or equals to
$<$	Less than

LIST OF FIGURES

Figure 2.1: Life cycle of T. gondii 08
Figure 2.2: Sources of T. gondii infection 17
Figure 2.3: Major routes of T. gondii transmission 20
Figure 3.1: A map showing study sides in the NW province 34
Figure 3.2: A map showing study sites in the FS province. 35
Figure 4.1: Geographic distribution of sampled sheep and goats in the districts and local municipalities 49
Figure 4.2: Geographic distribution of positive sheep and goats in the districts and local municipalities 56
Figure 4.3: Amplification of universal ribosomal RNA 18S PCR products 57
Figure 4.4: Amplification of 194 bp of B1 PCR products 57
Figure 4.5: Amplification of 88 bp 18 S ribosomal 18S PCR product 58
Figure 4.6: Phylogenetic tree of T. gondii B1 gene (803 bp) fragments) 61
Figure 4.7: Phylogenetic tree of T. gondii B1 isolates and/clones of trimmed fragment sizes of between 300-100 bp. 64
Figure 4.8: Phylogenetic tree of T. gondii GRA6 gene fragment 67

LIST OF TABLES

Table 2.1: Geographic distribution of T. gondii genotypes 12
Table 2.2: Molecular markers and targeted genes during VTNR genotyping 30
Table 3.1: Number and type of samples collected from sheep and goats in NW and FS provinces 36
Table 3.2: Breakdown of diagnostic submissions received at ARC-OVR from Free State province. 38
Table 3.3: Number of samples used for PCR as per origin, species, and sample type 40
Table 3.4: Universal ribosomal 18S gene primers 42
Table 3.5: B1 gene primer sequences 43
Table 3.6: Ribosomal 18S gene primer 44
Table 4.1: Demographic data on tested animals 47
Table 4.2: Seroprevalence of T. gondii infection among species 59
Table 4.3: Univariate risk factors associated with biological characteristics of the animals. 50
Table 4.4: Univariate risk factors associated with the origin and abortion history of the animals 52
Table 4.5: Univariate risk factors associated with the rearing environment of the animals. 53
Table 4.6: Correlation and agreement between serological (ELISA) and molecular detection (PCR) data 57

CHAPTER 1

INTRODUCTION

1.1 Background

Toxoplasmosis is a zoonosis caused by Toxoplasma gondii (T. gondii), an intracellular protozoan parasite that causes widespread infections in both humans and animals (Guy, 2014). The parasite's sexual cycle is completed in its definite host (domestic cats and other felids), producing oocysts that result in contamination of pasture, soil, feed, and water (OIE, 2008b; Djurković-Djaković et al., 2019), while its asexual cycle occurs in the intermediate host (all mammalians and avian species) (Robert-Gangneux and Dardé, 2012; Caldart et al., 2015; Hosein et al., 2016). Even though the parasite cannot induce clinical signs in the majority of animals, in other animals like sheep and goats, it induces life-threatening acute diseases (Guy, 2014). It manifests as a pregnancy disease in other animals, particularly in sheep and goats, by multiplying in the placenta and foetus (OIE, 2008b; Guy, 2014), making a diagnosis based on clinical symptoms difficult (Ishaku et al., 2018).

Toxoplasma gondii is one of the common pathogenic parasites found to infect humans and animals with a 30% estimated worldwide human infection rate (Guy, 2014). Toxoplasmosis is therefore of veterinary public health as well as animal health significance as it also affects the development of animals (Lopes et al., 2013; Pleyer et al., 2019). The disease shows mild and restricted clinical symptoms in immunocompetent individuals (Khan and Khan, 2018; Hosseini et al., 2019). However, in individuals with compromised immune systems and pregnant women, the parasite infection can be more severe (Hosseini et al., 2019). In these individuals, serious complications like retinocortical lesions, stillbirth and miscarriage have been reported (Montoya and Liesenfeld, 2004; Klun et al., 2006; Grigg and Sundar, 2009a; Hosseini et al., 2019).

The parasite consists of three different stages of infection, namely; tachyzoites, bradyzoites and sporozoites (Hill, Chirukandoth and Dubey, 2005; Condoleo et al., 2018). Infection with the parasite can be acquired by both animals and humans during the intake of raw or undercooked food, consuming fruits and drinking water and milk contaminated with oocysts, unintentional consumption of oocysts from the atmosphere and congenitally (Condoleo et al., 2018; Ishaku et al., 2018; Tilahun et al., 2018; Oliveira et al., 2019). Between 3 and 810 million
oocysts per infection are shed by cats in their faeces over an average period of 8 days, although this may last for up to three weeks; they become infectious after 24 hours and may remain infectious under environmental conditions suitable for its survival for more than a year (Areshkumar, Divya and Yasotha, 2018). These conditions include cold and hot temperatures.

Several studies have shown a significant variation in toxoplasmosis seroprevalence. Infection with T. gondii in domestic ruminants worldwide ranges from 3% to 92% in sheep (Tenter, 2000), 5% to 75% in goats (Tenter, 2000), and 1% to 92% in cattle (Hosein et al., 2016). In Africa, a meta-analysis performed by Tonouhewa et al. in 2017 showing reviewed data from 1969 to 2016 in African countries, found that the average approximate prevalence of the disease in camels, chickens, cattle, horses, pigs, goats was $36 \%, 37 \%, 12 \%, 26.1 \%, 26.0 \%$ and 22.9%, respectively. In South Africa (SA), the seroprevalence was reported to be 6.0 in sheep of Gauteng, 2.7% in sheep of the Free State, 6.3% in sheep of KwaZulu-Natal, 8% in sheep of the Western Cape province (Samra et al., 2007; Hammond-Aryee, Van Helden and Van Helden, 2015), 15.2% from cattle in the Mnisi community in Mpumalanga province (Adesiyun et al., 2020) and 20.8% from cattle in high throughput Klerksdorp and Rustenburg abattoirs of the North West province (Ndou et al., 2013). A recent study conducted in the Eastern Cape province has shown an overall seroprevalence of 83.33% in farms with sheep having the highest rate of infection of 64.46%, followed by 53.91% in goats, 33.9% in pigs, 32.11% in cats and 33.58% in chickens (Tagwireyi, Etter and Neves, 2019). There is no data for Limpopo and Northern Cape provinces.

Among the evaluated risk factors found to be associated with increased seropositivity of T. gondii for the different species in the south-eastern region of SA were: age, animal production system, cat faecal disposal, cat feed disposal, climate, location, rodent control and seropositive cat (Tagwireyi, Etter and Neves, 2019).

1.2 Problem statement

Toxoplasmosis is prevalent in most areas of the world, including but not limited to South Africa, and is of veterinary and medical importance due to its ability to cause miscarriages and ocular infections in humans as well as abortions, mummification, and stillbirths in livestock, particularly sheep and goats, resulting in a sizeable socio-economic loss for the farmers (Tenter, 2000; Azimpour-Ardakan et al., 2021). Despite this, it is still one of the understudied diseases
in SA with only a few studies conducted and published for toxoplasmosis in livestock. There have however been studies on seroprevalence, and associated risk factors of the disease conducted by Ndou et al., 2013 in the North West abattoirs, Twagwireyi et al, 2019 in the Eastern Cape, and Adesiyun et al, 2020 in Mnisi community Mpumalanga. Thus, there is a need to generate more widespread data for the rest of the country and identify strains that are circulating in our country to aid in prevention of future outbreaks.

There is a close link between domestic animals and the human population (rural, urban, agricultural workers, veterinarians, and butchers) and a great relationship between pets and humans which may lead to the transmission of zoonotic diseases between animals and humans (Areshkumar, Divya and Yasotha, 2018). In 1999, the Centers for Disease Control and Prevention (CDC) reported that T. gondii is one of three pathogens (including Salmonella and Listeria) that together account for more than 70% of all deaths because of foodborne illness in the United States (US). According to this report, T. gondii is responsible for approximately 24% of all deaths attributed to foodborne pathogens, with an estimated loss of 10,964 qualityadjusted life years and, 2,973 million dollars in costs due to illness, 86,686 illnesses, 4,428 hospitalizations, and 327 deaths per annum in the US (Batz, Hoffmann and Morris, 2011).

There are no recent published data on toxoplasmosis prevalence, risk factors associated with animal exposure, or knowledge of T. gondii strains currently circulating in the Free State (FS) and North West (NW) provinces to allow epidemiological investigations and tracing sources of infection for outbreak control in livestock and wildlife. There is therefore a need to investigate the prevalence of toxoplasmosis in communal and commercial sheep and goats in the NW province, the incidence of occurrence in the FS province, and identify risk factors associated with the disease within the animal population in the NW province, as well as generate data on the types of T. gondii strains currently circulating within the two provinces. Molecular characterization of Toxoplasma gondii isolates is central for understanding differences in disease transmission

Molecular characterization of T. gondii isolates is important for understanding differences in its transmission and manifestations. Thus, there is a need to analyse and evaluate the variation and phylogenetic relationship in the B1 and GRA6 gene sequences from the T. gondii isolates deposited in the GenBank, including those from South Africa in-order to assess the usefulness of the two genes as phylogenetic markers.

1.3 Aim and objectives

1.3.1 Aim

To investigate the prevalence and conduct a risk assessment of toxoplasmosis in commercial and communal sheep and goats in the NW province and the occurrence in Free State province. Furthermore, analyse variations and phylogenetic relationships in the T. gondii B1 and GRA6 gene sequences from the isolates deposited in GenBank to evaluate if they could be used as phylogenetic markers.

1.3.2 Objectives

- Investigate the prevalence of T. gondii in sheep and goats in commercial and communal farms across NW province using serological and molecular methods
- Assess risk factors associated with exposure and T. gondii transmission within the animal population using a questionnaire
- Investigate the genetic variation among the T. gondii B1 and GRA6 gene sequences from isolates deposited in the GenBank and their phylogenetic relationship through the construction of phylogenetic trees to assess if they could be used as phylogenetic markers
- Assess incidents of occurrence of T. gondii in Free State province using diagnostic samples submitted at ARC-OVR for other reproductive diseases

1.4 Overview of the dissertation chapters

This dissertation is made up of six chapters organised as follows:
I. Chapter 1: Introduction

This chapter provides a brief overview and background on the research including, the problem statement, aim and objectives, and research justification.

II. Chapter 2: Literature review

In this chapter, a literature review on the prevalence of T. gondii in communal and commercial sheep and goats and factors associated with exposure to the animals is discussed. It describes current and statistical data on the disease, its local and global
distribution, its effect on the veterinary public health and economy, and different methods currently used in the testing and detection of T. gondii.
III. Chapter 3: Methodology

This chapter provides details on how the study was designed, research areas, sample collection, and analysis, as well as statistical analysis of the data obtained.
IV. Chapter 4: Results

This chapter reports on the results obtained from the study and their interpretation.
V. Chapter 5: Discussion

This chapter discusses the results obtained in the study and compares them to the results obtained in other similar studies.
VI. Chapter 6: Conclusion and recommendation

This concluding chapter summarised the research findings based on the aim and objectives and make recommendations based on these findings.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Toxoplasmosis is known as one of the most widespread parasitic zoonotic diseases arising from T. gondii infection (Lopes et al., 2014). In small ruminants, T. gondii is one of the parasites that cause reproductive disorders (Tenter, 2000;Lopes et al., 2013). This pathogen is considered an efficient parasite because it rarely causes harm to its hosts (Stover et al., 1990). In 1908, Nicollae and Manceaux discovered the protozoan as an African rodent (Chenodactylus gundi) parasite of the spleen and other organs. This disease was differentiated from Leishmania in 1909 and was called toxoplasmosis, and there has been growing interest in its identification as a pathogen in many hosts, including humans since its discovery (Webster, 2010; Ibrahim, 2017). Most infections with the parasite show no clinical symptoms, but result in congenital toxoplasmosis, and reactivated encephalitis of toxoplasma in immunosuppressed people (transplant recipients and others) (Pleyer et al., 2019).

2.2 Aetiology

Toxoplasma gondii falls under the Apicomplex phylum, Coccidia class, Eucoccidiorida order, and Sarcocystidae family, which affects humans and a large number of vertebral hosts (Montoya and Liesenfeld, 2004; Robert-Gangneux and Dardé, 2012; Lopes et al., 2013). The species is the only member of the Toxoplasma genus. Cats are the primary hosts of T. gondii, but the pathogen has a large number of final hosts consisting of humans and all warm-blooded animals, including the mammalian and avian species (Guy, 2014; Ibrahim, 2017). Toxoplasma gondii's life cycle involves asexual replication in tissues and sexually reproducing in the cats' intestines (Tenter, Heckeroth and Weiss, 2000; Pal, Alem and Tuli, 2014; Ibrahim, 2017). Its life cycle is made up of three different stages, namely; oocysts in cat faeces, tachyzoites detected in the acute stage of the infection period in the secondary host, and bradyzoites occurring in cysts of tissues (Innes, 2010; Pal, Alem and Tuli, 2014; Ibrahim, 2017; Condoleo et al., 2018). These stages are all hosts infectious and the life cycle can continue for some time by transmitting cysts of tissue between secondary hosts (even without the primary hosts) and transmitting oocysts between primary hosts (Tenter, Heckeroth and Weiss, 2000; Pal, Alem
and Tuli, 2014; Garcia et al., 2017). The cyst can be found in the brain, heart muscle and striated muscle of hosts and remain in these organs and tissues for a lifetime (Irma and Nasronudin, 2015; Otranto et al., 2015).

The protozoan has 13 chromosomes in its complete haploid genome with little variation among strains, which has a size of approximately 65 million base pairs (Mbp) and has been found to include more than 8300 protein-coding genes (Ajioka, Fitzpatrick and Reitter, 2001; Castro et al., 2020; Xia et al., 2021; Fernández-Escobar et al., 2022).

2.3 Life cycle

Toxoplasma gondii has two life cycles: the sexual cycle occurring in the definitive host's enteroepithelial cells, resulting in oocytes production which are then secreted in faeces (OIE, 2008a, 2008b; Deshmukh et al., 2021) and the asexual cycle occurring in the intermediate host (OIE, 2008b; Irma and Nasronudin, 2015).

The two developmental stages during the asexual cycle are the fast-growing tachyzoite and the slow-growing bradyzoites (OIE, 2008b). Tachyzoites actively infiltrate host cells in acute infection and multiply within the cells, causing them to burst and release organisms locally and into the bloodstream (OIE, 2008b; Ibrahim, 2017). As the host establishes immunity, the parasite maintains its overall size and shape but converts into bradyzoites and multiplies more gradually within tissue cysts to create a persistent infection (Ibrahim, 2017; Jasim and Ayyal, 2018). The parasite's dormant stage in the host is represented by these tissue cysts, which are commonly found in the brain and skeletal muscle (OIE, 2008b; Jasim and Ayyal, 2018). In humans, viable muscular tissue cysts (meat) are a major source of infection (OIE, 2008b; Jasim and Ayyal, 2018). Tachyzoites can be shown in ascetic fluid or lung impress, ion smears as well as in tissue sections of the liver and other organs in animals with acute infection (OIE, 2008b; Jasim and Ayyal, 2018).

Figure 2.1 shows a toxoplasmosis life cycle, in which unsporulated oocysts are shed in the feces of the cat. Normally, large quantities of oocysts are shed for $1-2$ weeks only (Areshkumar, Divya and Yasotha, 2018). Oocysts sporulate in the atmosphere for $1-5$ days and become infective, depending on aeration, humidity and temperature (OIE, 2008b). Susceptible animals are infected after ingestion of sporulated oocysts, sporozoites are then released to penetrate the intestinal lining, which transforms into tachyzoites and causes
infection (OIE, 2008b; Ibrahim, 2017). Tachyzoites are present in the neural and muscle tissue and grow into bradyzoites of the tissue cyst (Tenter, 2000; Ibrahim, 2017).

Figure 2.1: Life cycle of T. gondii. Infective pathogens are spread in the form of oocysts (spores) shed in the faeces of infected cats (1) T. gondii is transmitted by contaminated food to domestic animals and rodents as well as to humans. (2) Cats acquire the disease while feeding, for example, infected rodents that contain tissue cysts. (3) The same occurs to humans when undercooked food from infected animals is eaten, (4) through infected tissue during transplantation. (5) and congenital placental transmission (adapted from Pleyer et al., 2019).

2.4 Epidemiology

Toxoplasma gondii is spread worldwide, but the spreading varies across different geographic locations of a region, across different geographic locations within the socio-economy, with no specificity in warm-blooded animals (Tenter, 2000). The degree of the protozoan's natural spread is determined by the environmental conditions. The parasite is most common in warm and low-lying climates than in cold ones and areas with mountains and wetlands than in dry areas (Dubey, 1991; Pal, Alem and Tuli, 2014; Ibrahim, 2017). Sporulated oocysts can survive for months and years under mild environmental conditions in moist soil, (Dubey, 2004; Hill, Chirukandoth and Dubey, 2005; Dubey and Lindsay, 2006).

2.4.1 In animals

Since felines are widespread and produce large quantities of oocytes, domestic cats are likely the main source of contamination of feed, plants, soil and water (Hill, Chirukandoth and Dubey, 2005). The rate of infection in naturally infected cats is measured through the infection of native rodent and avian populations as cats mostly acquire the infection by preying on such animals through different serological and molecular detection methods (Hill, Chirukandoth and Dubey, 2005). The more oocytes present in the environment, the greater the likelihood of infection of prey animals, resulting in an increased degree of infection in cats (Hill, Chirukandoth and Dubey, 2005). Seroprevalence in wild felids is frequently very high, reaching up to 100% in some cases.(Robert-Gangneux and Dardé, 2012).

Some marine species (sea otters, dolphins, seals, and walruses) have been reported to be infected, with prevalence ranging from 47 to 100 percent (Robert-Gangneux and Dardé, 2012). These marine animals act as sentinels for oocytes pollution of the environment through freshwater flow into the marine ecosystem (Conrad et al., 2005).

Prevalence in poultry can differ significantly depending on the production system (RobertGangneux and Dardé, 2012). Toxoplasma gondii infection is almost non-existent in industrialized poultry farms, although seroprevalence in free-range or backyard birds is typically high and can be up to 100 percent (Robert-Gangneux and Dardé, 2012).

In Southern European countries, sheep are the main source of infected meat with the seroprevalence ranging from 17 to 22 percent in lambs to 5 to 89 percent in adults (Dubey, 2009b; Robert-Gangneux and Dardé, 2012). Seropositivity rates in goats range from 4 to 77 percent (Dubey et al., 2008). Calves show higher rates of infection than adult cattle's during their initial grazing season, indicating that they become infected after being exposed to Toxoplasma gondii on pastures (Opsteegh et al., 2011).

In Africa, several studies conducted on animal toxoplasmosis have shown the variability in the level of infection within different animal species and areas, with high prevalence being observed in chickens and low prevalence in cattle (Tonouhewa et al., 2017). Seroprevalence studies conducted in SA have reported the T. gondii to be 5.6% in sheep (Samra et al., 2007), 8% in sheep of the Western Cape province (Hammond-Aryee, Van Helden and Van Helden, 2015) and 83.33 \% in farms of the south-eastern region with sheep in the farms having the highest rate of infection of 64.46%, followed 53.91 \% in goats (Tagwireyi, Etter and Neves, 2019). In the US, cattle infections are less prevalent when compared to sheep and pigs,
however, reviews conducted in European countries using serological and molecular assays to detect the parasite have shown negligible rates of infection in pigs and horses when compared to cattle and sheep (Tenter, 2000).

The largest non-feline reservoir of T. gondii is sheep and goats, especially pregnant or perinatal ewes (Areshkumar, Divya and Yasotha, 2018). Pigs usually become infected through the ingestion of oocytes from polluted soil and ingesting tissues from infected animals or by the prenatal transmission of the parasite transplacental (Dubey, 2009a).

2.4.2 In humans

Veterinarians, abattoir workers and cat owners have a high rate of infection (Ibrahim, 2017). A report by the CDC shows that an estimate of 11 percent of the 6 -year-old population has been infected with the parasite in the US and different locations all over the world. It is estimated that T. gondii infects 2 billion people worldwide with the majority of affected individuals remaining asymptomatic, making it the most widespread parasite of humans and animals (Fern, 2019; Pleyer et al., 2019). The World Health Organization (WHO) reports that 20 percent of the risk of food-borne disease in Europe results from T. gondii infection.

The first serological survey of toxoplasmosis from SA was first conducted in 1974 in the Transvaal and reported 37% seroprevalence (Monika and Paul, 2014). The survey found incidences of infections among Indians, Coloureds Whites, and Blacks to be $58 \%, 43 \%, 33 \%$ and 29% respectively (Mason, Jacobs and Fripp, 1974). A more recent study on the seroprevalence of the disease was conducted in Gauteng and reported a seroprevalence of 9.8\% (Kistiah et al., 2011). In Africa (Benin, Burkina Faso, Cameroon, DR Congo, Ethiopia, Ivory Coast, Nigeria, Rwanda, Tanzania and Zambia), a systematic review and meta-analysis on toxoplasmosis infection reported an overall prevalence of 51.01% (Dasa et al., 2021).

2.5 Genotyping and genotypes

Genotyping provides information on the genotypes that are common throughout various geographic areas, which is helpful for phylogenetic and molecular epidemiology studies to identify the origin of infections and outbreak investigations to establish a link between genotypes and clinical forms of the disease (Tibayrenc et al., 2002; Gebremedhin et al., 2014).

The genotypes of T. gondii isolates can be determined using some genetic markers, including as the surface antigens SAG1 to SAG4, MAG1, 850, L328, 62, BSR4 and SRS1 to 3, and excretory-secretory antigens GRA1 to GRA4, GRA6 and ROP1 (Howe and Sibley, 1995; Maryam et al., 2016; Lachkhem et al., 2021a). Dense granule antigens, also known as GRA proteins, are one of the most well-known markers (Maryam et al., 2016). They are typically produced in tachyzoites, but they are also present in encysted stages and bradyzoites (Maryam et al., 2016).

The first genotyping studies on T. gondii strains used the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) on a small number of laboratory strains and isolates, mostly from France and the US, and they resulted in the description of a clonal population structure with three main lineages, type I, II, and III (Howe and Sibley, 1995; Montoya and Liesenfeld, 2004; Lachkhem et al., 2021a). All these linages are related to virulence in mice with pathogenicity in mice and variability in certain genetic markers, such as the B1 and SAG genes used to classify strains during microsatellite analysis, multilocus sequence typing (MLST), PCR-RFLP, random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR), and high-resolution melting (HRM) analysis (Howe and Sibley, 1995; Miller et al., 2004; Montoya and Liesenfeld, 2004; Dardé, 2008; Abd et al., 2015; Lachkhem et al., 2021b). The three dominant T. gondii genotypes (type I, II, and III) emerged from one or more historically recent events of sexual recombination between two separate T. gondii ancestral lineages among felid definitive hosts, according to studies using SAGE 1, SAGE 2, ROP1, 850, L328, and 62 markers (Howe and Sibley, 1995; Su et al., 2003; Montoya and Liesenfeld, 2004).

Strains of T. gondii show diverse virulence or relative pathogenicity in a single species, and this may change with host adaptation (Su et al., 2010). Although the difference between the three genotypes is less than 1% at the genome sequence level, they have completely diverse virulence phenotypes (Dubey et al., 2007; Dardé, 2008). Virulence in one species does not necessarily correlate with virulence and genotypes in another species and different parts of the world (Grigg and Sundar, 2009).

A study on the genetic characterization of T. gondii discovered another clonal lineage (genotype 12) using PCR-RFLP in the wildlife of Northern America with types that were previously identified as types A and X of sea otter breeds using PCR-RFLP method (Dubey et al., 2011; Rajendran, Su and Dubey, 2012). Type II and type III strains are more prevalent in

Europe and North Africa, whereas types II, type III, and type 12 are dominant in wildlife in North America, while type I found in China is predominant in East Asia (Rajendran, Su and Dubey, 2012; Saraf et al., 2017). The types found in Africa and South America have more genetic diversity compared to the ones found in North America and Europe (Rajendran, Su and Dubey, 2012; Zheng et al., 2016). There is no available information about the strains (genotypes) prevalent in South Africa. Table 2.1 shows a summary of the geographic distribution of T. gondii genotypes as determined by microsatellite genotyping and PCR-RFLP and its probable link to human toxoplasmosis.

Table 2.1: Geographic distribution of T. gondii genotypes (Robert-Gangneux and Dardé, 2012)

Geographic distribution	Genotypes
Africa	African 1, 2, and 3 (haplogroup 6); type III (haplogroup 3); type II.
Asia	Type III (haplogroup 3), a common haplogroup found across the continent, has less genotypic variation than the ones in South America.
Europe	Type II (haplogroup 2) is the most common; type III is more common in South Europe, and other genotypes are seen infrequently.
North America	Type II (haplogroup 2), haplogroup 12, type III (haplogroup
3).	
South and Central	High genotypic diversity; some haplogroups are shared with America
	Africa (haplogroup 6); type II occurs infrequently; type I is uncommon; very atypical genotypes in the Amazonian Forest

2.6 Virulence

Toxoplasma gondii virulence is described as the number of tachyzoites needed to kill a mouse after intraperitoneal injection using different strains for complete virulence ranges. This can differ from maximum virulence (lethal one single tachyzoite) to avirulence (killing no matter what the dose) (Keane et al., 2011; Dubremetz and Lebrun, 2012; Hassan et al., 2019). The fact that this parasite is so widespread that it may infect an extensive spectrum of hosts, with the sole constraint being coldblooded animals, and this makes defining T. gondii pathogenicity difficult (Dubremetz and Lebrun, 2012; Li et al., 2014). The range of hosts, susceptibility to infection and the acute form of the disease, is quite diverse. Mice can die in a few days and rats
can be completely resistive, demonstrating that virulence is influenced by both parasite and host variables (Dubremetz and Lebrun, 2012).

Because the mouse is the most common laboratory host for T. gondii, many studies have focused on this model, and T. gondii virulence is mostly defined in terms of mouse infection, leading to a lot of uncertainty when defining virulence factors, because other hosts, particularly humans, may behave quite differently than rodents (Dubremetz and Lebrun, 2012; RobertGangneux and Dardé, 2012; Hassan et al., 2019).

Type I and III genotypes have different patterns of virulence in mice, with type I being highly virulent at a 100 percent lethal dose in mice following parasite dosage (Taniguchi et al., 2018). At low doses of infection, genotypes (type II, III, and African 1, 2, 3 types) that are prevalent in Europe, Asia, North America and North Africa, are not lethal to mice, while large quantities of T. gondii in South America's strains are very virulent and lethal to mice (Shwab et al., 2016).

2.6.1 Virulence factors

Virulence is known as the ability of a protozoan to cause disease in the host (Batt, 2016). It is therefore vital to define the virulence factors for T. gondii to provide possible therapeutic targets as well as to shed light on the general biology and evolution of Apicomplexans (Weilhammer and Rasley, 2011). Given that some strains of T. gondii are inherently considerably more virulent than others in mouse models, this parasite offers an intriguing framework for the analysis of virulence mechanisms (Howe and Sibley, 1995; Weilhammer and Rasley, 2011). Toxoplasma gondii has effectors that modify host cells in different ways, either leading to better parasite conditions, intracellular resistance to innate immune defence, or homeostasis modulation of the host immune system to control secondary response (Dubremetz and Lebrun, 2012).

Most of these factors are secreted during the invasion and passed to the cytosol host cell where they interfere with the work of host cells (Dubremetz and Lebrun, 2012). This process involves the folding of the host plasma membrane into a parasitophorous vacuole (PV), where the parasite undergoes numerous rounds of replication (Pernas and Boothroyd, 2011; RobertGangneux and Dardé, 2012). The PV membrane (PVM), which forms the actual interface between the parasite and the host cell is a highly specialized, unique membrane that typically lacks important host cell proteins but is greatly modified by secreted T. gondii proteins from rhoptries and dense granules, distinct secretory organelles that release their contents during invasion (Bradley and Sibley, 2007; Robert-Gangneux and Dardé, 2012).

These rhoptry proteins (ROP) are among more than 8300 genes encoded in T. gondii genome, and the kinase homologues lacking the catalytic triad needed for enzymatic action were the first to be described (Dubremetz and Lebrun, 2012). Their role was mysterious for close to 20 years until instigations on genomic and proteomic levels showed that some family members were true kinases, which led to more interest in their study, revealing that they are transferred to the host cell at the time of invasion (Dubremetz and Lebrun, 2012). The current knowledge on the interaction of T. gondii and these proteins is essential to the control of inflammation at multiple levels depending on the ROP protein concerned (Dubremetz and Lebrun, 2012). Their interference leads to a huge variance in virulence between strains as the genetic difference between these proteins has emerged as a major factor in the outcome of an infection, which can act at two main levels leading to infection (Dubremetz and Lebrun, 2012). At the first level, the Toll-like receptors (TLRs) stimulate antigen-presenting cells (APCs), resulting in NFkB activation and nuclear translocation, which activates the transcription of proinflammatory cytokines like IL12 and 18, which activates the production of interferon-gamma (IFNg) by T lymphocytes and NK cells (Dubremetz and Lebrun, 2012). In the second level, IFNg-activated infected cells will activate Interferon Regulated GTPases, which are capable of destroying the previously invulnerable PV, and virulent parasites will employ this second line of defence (Dubremetz and Lebrun, 2012).

According to reports, certain polymorphic rhoptry proteins including ROP18, ROP5, ROP16, and ROP17 are responsible for T. gondii virulence and that virulence-associated to ROP18 and ROP5 is the allelic forms (Dubremetz and Lebrun, 2012; Shwab et al., 2016). Immunity-related GTPases (IRGs) are disrupted by this pair of effectors (Behnke et al., 2012; Rêgo et al., 2017). In mice IRGs allow IFN- γ to regulate toxoplasmosis (Taylor, Feng and Sher, 2007; Howard, Hunn and Steinfeldt, 2011). Toxoplasma gondii pathogenicity is mediated by ROP16 and ROP17 (Taniguchi et al., 2018). ROP16 is essential for the regulation of the host's innate immune response by STAT3/6 activation, while ROP17 aids in preventing the clearance of the parasite by host cells (Etheridge et al., 2014).

The genes of the T. gondii virulence in mice have a strong bias towards variations in these effectors, as at least three of the effectors (ROP 5,16 and 18) have been identified through genetic crosses and the mapping of major virulence genes in the progeny (Fentress and Sibley, 2011; Dubremetz and Lebrun, 2012; Saeij et al., 2014). Because mice are a natural host in the parasite life cycle, the link between some of these factors and IRGs that are extensively expressed in mice but not in other species or humans may be biologically important
(Dubremetz and Lebrun, 2012). As a result, the potential influence of these virulence factors on other species and human toxoplasmosis infections is limited (Dubremetz and Lebrun, 2012).

2.7 Host range susceptibility

Toxoplasma gondii normally parasites the host without causing clinical illness (Hill, Chirukandoth and Dubey, 2005). Toxoplasma occurs in two forms: the free proliferative form present during acute infections and the cyst form which is connected to antibody production in the host (Mcgirr, 1968). The free form of the cyst is well accommodated by the host and may stay dormant in animal tissues for life (Robert-Gangneux and Dardé, 2012)

Cats play an important role in the epidemiology of the disease and the disease has not been shown to be virtually present in areas with no cats (Sarvi et al., 2015; Ibrahim, 2017). For instance, studies in the USA indicate that 60the per cent of cats were serologically positive for toxoplasma antigen, with the rest being infected through hunting (Ibrahim, 2017).

Toxoplasmosis occurs in domestic animals, wildlife, and poultry worldwide. However, prevalence varies in species. Seroprevalence in cattle is doubtful since cattle are not a good host for the parasite, though they may be infected (Mcgirr, 1968; Smith, 1991; Dubey, 2000; Hill and Dubey, 2013). The parasite is maintained in the environment by other wildlife, especially wild cats, through tissue cysts, which serve as a source of infection for predators and scavengers, as well as transmission to offspring (VanWormer et al., 2013). Domestic cats and hunting dogs can be infected by a variety of wild small animals, including rodents and birds which are the source of infection (VanWormer et al., 2013).

The epizootic disease in pigs has been studied in the USA, signs, lesions and the pathogen have been found in the lungs, lymph nodes, liver, and kidneys of piglets, and toxoplasma were recovered after mouse inoculation with material from the brain of the piglets' mother (Ibrahim, 2017).

Sheep and goats are T. gondii's primary non-feline reservoir, particularly pregnant or perinatal ewes, and their unpasteurized milk or milk-derived cheese may be contaminated by the organism (Areshkumar, Divya and Yasotha, 2018). Lopez et al 2013's study on sexual transmission of toxoplasma found that ewes negative for all reproductive pathogens became infected with the parasite after mating with seropositive male sheep, proving that sheep semen can also be a source of infection for sheep (Lopes et al., 2013). Pregnant sheep and goats that
become infected mostly during the intensive feeding cycle before lambing, processed food polluted with cat faeces containing oocysts and congenitally (Lopes et al., 2013; Ibrahim, 2017). After orally infecting seronegative males with T. gondii oocytes and allowing them to naturally mate with seropositive breeder female goats, Santana et al. 2013 were able to prove that male goats can sexually transmit T. gondii. The presence of antibodies against T. gondii was tested after mating using the ELISA test specific antibodies against T. gondii after mating and PCR analysis of semen samples, female foetal tissues, and the placenta revealed that ten of the twelve females utilized in the study had the parasite in their tissues (Santana et al., 2013).

2.8 Source of infection and transmission

2.8.1 Source of infection

Cat faeces serve as the sole source of infection for cattle, goats, sheep, and horses while cats become infected from ingesting tissues of the intermediate hosts (rodents and birds) infected with T. gondii as demonstrated in figure 2.2 (VanWormer et al., 2013; Ibrahim, 2017). Cats are infected through ingestion of intermediate hosts infected tissues with rodents and small birds being the most common, but all animals can also be intermediate hosts of the parasite (VanWormer et al., 2013). Rodents remain a source of infection for a long period (Ibrahim, 2017).

Following the development of sexual forms in the cat's intestinal epithelium (the only species in which this occurs), oocysts are shed in cats' faeces but are not infective for about 72 hours (Hill, Chirukandoth and Dubey, 2005; Markey et al., 2013). Faecal oocysts are shed in large quantities, particularly by young cats, and are highly resistant to climate conditions with the potential of causing infections in animals and humans (Markey et al., 2013; Ibrahim, 2017). Tissue cysts containing bradyzoites are the form most frequently seen in the tissues of animals, but in acute toxoplasmosis, tachyzoites may also be present (Markey et al., 2013).

Another potential source of T. gondii infection in humans is tissue cysts from game meat and other wild animal meat (Tenter, 2000). During evisceration and game handling, hunters and their families may also become contaminated (Dubey, 1991).

Figure 2.2: Sources of T. gondii infection (adapted from Robert-Gangneux and Dardé, 2012).

2.8.2 Transmission

Unlike most Apicomplex parasites, T. gondii can be transmitted horizontally through carnivorism or vertically from the mother to foetus between secondary hosts as demonstrated in Figure 2.3 (Blader and Saeij, 2009).

2.8.2.1 In animals

2.8.2.1.1 Transmission in cats

Cats play an important role in the transmission of toxoplasmosis. According to epidemiological data, the majority of cats acquire the infection in nature immediately after weaning, either by eating raw pet food or sharing food brought by the dam, thus T. gondii infections are higher in feral cats than in domestic cats (Dubey, 1991).

Cats often defecate on the soil and in the hay, barns, food bins, gardens, and flowerpots (Ibrahim, 2017). Cat faeces are usually hard and can stay limited to the region where defecation occurred for a longer period unless they are ill, few or no faeces stick to their anal area because of their leaching (grooming) (Dubey, 1991). The risk of transmission to humans through touching or caring for a cat is therefore low (Dubey, 1991).

2.8.2.1.2 Transmission in livestock

Intermediate hosts can get T. gondii infection through ingestion of feed and drinking water contaminated with sporulated oocytes from the environment (Elsheikha et al., 2009; Shwab et al., 2016; Dubey et al., 2020).

Experimental studies indicate that viable cysts in tissues can persist for life in animals (Dubey, 1991). In sheep, goats, pigs, and rabbits, tissue cysts are more common than in cattle, horses, and commercially raised fowl (Dubey, 1991). Cattle and buffaloes have an innate resistance to T. gondii and can eliminate tissue cysts from their tissues (Dubey, 1991).

2.8.2.1.3 Transmission in wildlife

Toxoplasma gondii infection and clinical toxoplasmosis can affect a wide range of wildlife animal species (Wyrosdick and Schaefer, 2015). The white-tailed deer is a species of importance as a sentinel host for domestic herbivores because of its proclivity to graze alongside livestock and its widespread distribution (Wyrosdick and Schaefer, 2015). Because of several factors, including poor DNA material from naturally infected wildlife due to the low density of T. gondii in tissues of asymptomatic animals, and difficulties in preserving and transporting tissue samples from remote areas, isolation of T. gondii from wildlife is difficult and time-consuming (Dubey et al., 2011; Vitaliano et al., 2014).

2.8.2.1.4 Vertical transmission

A study conducted by Franco et al., 2011 checked vertical transmission of T. gondii in mice and showed that vertical transmission occurs when females are infected primarily during pregnancy. In the study, females were infected with the T. gondii cyst before pregnancy and were also re-infected on the first day of pregnancy (Franco et al., 2011). Then animals were killed and placenta and embryos were collected and processed on the 19th day of pregnancy for morphological investigation, immunohistochemistry, and parasite detection using PCR and a mouse bioassay (Franco et al., 2011). Only placental tissues were shown to have parasites, according to morphological and immunohistochemical investigations (Franco et al., 2011).

Only mice inoculated with placental material demonstrated seroconversion in the mouse bioassay and T.gondii DNA was also only found in placental samples (Franco et al., 2011).

2.8.2.2 Transmission in humans

2.8.2.2.1 Horizontal transmission

Intermediate hosts acquire T. gondii infection horizontally through ingestion of infected animal tissues, consumption of food, water, or milk contaminated with sporulated oocytes or soil and tissue cysts in undercooked meat or meat by-products (Elsheikha et al., 2009; Guo et al., 2015; Deshmukh et al., 2021; Fazel et al., 2021).

2.8.2.2.2 Vertical transmission

If primary infection occurs during pregnancy, the congenital transmission may occur from mother to foetus (Blader and Saeij, 2009; Guo et al., 2015). After the maternal infection, the parasite enters the foetal bloodstream through placental penetration (Montoya and Liesenfeld, 2004; Colf et al., 2020). Before pregnancy, the maternal infection presents little or no threat to the foetus except in women who become infected a few months before conception (Tenter, 2000; Santana et al., 2013; Lopes et al., 2013; Colf et al., 2020). Only a small amount of T. gondii infections in adult human populations are acquired vertically (Tenter, 2000).

The frequency of congenital transmission varies depending on the time the mother was infected during gestation (Montoya and Liesenfeld, 2004). Transmission rate and disease severity are inversely related (Montoya and Liesenfeld, 2004). Infection acquired during the first and second trimesters has the potential to be transmitted to the foetus, resulting in severe congenital toxoplasmosis leading to abnormality, abortion and foetal death. (Montoya and Liesenfeld, 2004; Lopes et al., 2013; Guy, 2014; Guo et al., 2015).

2.8.2.3 Organ transplants

Seropositive donors may transmit the disease to seronegative recipients of organ transplants (Montoya and Liesenfeld, 2004). Toxoplasma gondii may also be transmitted by immunocompromised donors through blood or leucocytes, but these transmission modes are less common than cyst and oocyte transmission (Dubey, 1991; Irma and Nasronudin, 2015).

Figure 2.3: Major routes of T. gondii transmission (sourced from Tenter, 2000).

2.9 Risk factors

The great majority of factors (age, gender, environmental and management practices, animal production system, climate and feed storage, water source, and presence of cats on the farm) have been discovered to pose a risk for the spread and transmission of T. gondii within the animal population (Deng et al., 2016; Tagwireyi, Etter and Neves, 2019). With pathogen risk factors, there are no tests that can distinguish the route of infection between oocysts and tissue cyst ingestion (Pal, Alem and Tuli, 2014). The available proof of oocysts' route of infection is based on epidemiological surveys (Pal, Alem and Tuli, 2014).

2.9.1 Pathogen risk factors

Oocysts are very resistant to outside conditions such as short periods of cold and dehydration, which enables their environmental survival for at least one year and can also survive from 2 to 4.5 years in marine and freshwater (VanWormer et al., 2013; Ibrahim, 2017; Areshkumar, Divya and Yasotha, 2018). They can however be destroyed by exposure to temperatures between $90^{\circ} \mathrm{C}$ for 30 seconds and $50^{\circ} \mathrm{C}$ for 2.5 minutes (Ibrahim, 2017). Although tissue cysts are less resistant to external conditions than oocytes, they are more resistant to temperature changes and can survive for up to three weeks in chilled $\left(1-4^{\circ} \mathrm{C}\right)$ carcasses or
minced meat (Dubey et al., 1990; Tenter, 2000; Dubey, 2009b; Ibrahim, 2017). Tissue cysts may also withstand freezing for more than a week at temperatures between 1 and $8^{\circ} \mathrm{C}$ (Tenter, Heckeroth and Weiss, 2000; Mirza Alizadeh et al., 2018).

2.9.2 Farm environment and management risk factors

Farm environment such as bedding, contaminated water source and control have an impact on the spread of infection as they may be contaminated with oocysts (Samra et al., 2007; Andrade et al., 2013). Some studies indicate the cat's presence on the farms and direct contact with farm animals as the principal cause of the infection as cats can shed oocysts in their feces which results in the horizontal transmission of T. gondii in intermediate hosts (Pinheiro et al., 2009). An increased prevalence has been found in animals who drink water from the municipal water source than in a pond and mixed water sources (Tilahun et al., 2018).

The protozoan is mostly found at lower altitudes and in warm, hot and humid climates (Hammond-Aryee, Van Helden and Van Helden, 2015). A high infection rate has been shown in sheep as a result of high rainfall, which is a favourable environment for longer survival of oocytes on pasture (Ibrahim, 2017).

2.9.3 Human risk factors

Risk factors associated with contracting toxoplasmosis in humans arise from new-borns whose mothers are diagnosed with toxoplasmosis during pregnancy and people who are immunocompromised such as those with HIV/AIDS (Grigg and Sundar, 2009; Julie et al., 2019).

2.9.4 Age and gender of animals

Studies conducted by Tagwireyi et, al, (2019) and Deng et al, (2016) found that the age of the animals are a risk factor as adult animals are more susceptible to getting infected than young animals who are younger than 1 year (Deng et al., 2016; Tagwireyi, Etter and Neves, 2019). This might have to do with the fact that younger animals are more immune to infections than adult animals (Samra et al., 2007). Other studies conducted on the seroprevalence of T. gondii in ruminants noted a higher prevalence in female than male animals (Guimarães et al., 2013a; Tegegne et al., 2016; Tilahun et al., 2018). Females' higher sensitivity may be linked to their poorer immunologic resistance during stages of their lives when they experience hormonal changes and imbalances (Alexander and Stimson, 1988; Van Der Puije et al., 2000; Guimarães et al., 2013b).

2.9.5 Breed and species

The prevalence of T. gondii is higher in sheep and goats than in all the other animal species and different breeds within the species, proving that the type of breed is also a risk factor for the spread and transmission of T. gondii (Carneiro et al., 2009; Sarvi et al., 2015; Tagwireyi, Etter and Neves, 2019; Chaklu et al., 2020).

2.10 Pathogenesis

The number, genetic diversity and immune adaptation of the pathogen play a vital role in its pathogenesis. The parasite infection is acquired through carnivorism, oocytic and congenitally (Ajioka, Fitzpatrick and Reitter, 2001; Wang et al., 2013; Kadle, 2014).

Upon ingestion of uncooked meat containing tissue cysts or feed infected with cat faeces containing oocytes in warm-blooded animals, these cysts walls are digested inside the host stomach and release bradyzoites that are immune to gastric peptidases and eventually invade the small intestine and initiate extra-intestinal replication. (Tenter, 2000; Blader and Saeij, 2009; Ibrahim, 2017). Bradyzoites and sporozoites are released respectively and infect intestinal epithelium (Ibrahim, 2017). They then convert into tachyzoites after several rounds of epithelial replication, and then rapidly grow the disease-causing form that spread via the bloodstream and the lymph (Tenter, 2000; Blader and Saeij, 2009; Ibrahim, 2017). Tachyzoites invade and infect tissue throughout the body and replicate intracellularly until the cells burst (Tenter, 2000; Ibrahim, 2017). Young and immunocompromised animals will give in to generalized toxoplasmosis at this point, while older animals grow a strong cell-mediated immune response to tachyzoites (Ibrahim, 2017). Tissue cysts are usually seen in neural and muscle tissues following the development of bradyzoites and are typically located in the central nervous system (CNS), the brain, and skeletal and cardiac muscles. (Tenter, 2000; Ibrahim, 2017). The tissue cysts can live in the host for a lifetime with no apparent clinical signs in healthy animals (Ajioka, Fitzpatrick and Reitter, 2001; Otranto et al., 2015).

2.11 Clinical signs and symptoms

Toxoplasmosis occurs in four forms; subclinical, sub-acute, acute and chronic, depending mostly on the host's immune system (Guy, 2014; Ibrahim, 2017; Areshkumar, Divya and

Yasotha, 2018). Most cases of exposure do not cause clinical signs (Innes et al., 2019; Pleyer et al., 2019). The sub-acute infections are the ones with few or no visible clinical signs and lead to sudden death. The acute form is the result of tachyzoite tissue infection and tissue reactions (Ajioka, Fitzpatrick and Reitter, 2001).

Toxoplasma gondii affects different tissues and the clinical signs are dependent on the tissue involved (Ibrahim, 2017). Lungs, liver, brain, lungs, placenta, ears, spleen, lymph nodes, and adrenal glands are the most frequently affected tissues during the acute phase (Ibrahim, 2017). The chronic form is associated with the presence of parasite tissue cysts that contain bradyzoites that divide slowly (Ajioka, Fitzpatrick and Reitter, 2001). Bradyzoites remain inactive within cysts and do not cause tissue reactions (Ibrahim, 2017). The majority of infections are acquired through the gastrointestinal tract (Ibrahim, 2017). The clinical condition and the cause of toxoplasmosis differ between species and age groups (Montoya and Liesenfeld, 2004; Ibrahim, 2017).

2.11.1 In animals

Toxoplasma gondii infections in cats are mostly asymptomatic and rarely occur through vertical transmissions (Pal, Alem and Tuli, 2014). Dormant T. gondii infections are popular worldwide in domestic cats and wild felines (Tenter, 2000).

In cattle, the disease usually takes an acute course which results in fever, dyspnoea, and early nervous symptoms, accompanied by severe laziness and stillbirth, but it is not substantially involved in causing bovine abortion (Ibrahim, 2017). Pigs are highly sensitive and can be influenced by all ages (Ibrahim, 2017). The major symptoms of sheep and goats are foetal resorption, abortion, mummified lambs and death (Dubey, 2009b; Ibrahim, 2017; Ishaku et al., 2018). In horses, the disease is rare however, subclinical infections occur accompanied by atypical clinical symptoms such as ataxia, fever, encephalomyelitis, retinal degeneration, as well as abortion or stillbirth in pregnant horses (Miao et al., 2013; Ibrahim, 2017). Natural fowl outbreaks have been reported and as the result, the parasite was transmitted to mice (Ibrahim, 2017).

2.11.2 In humans

Although most human infections are asymptomatic, some result in clinical signs such as mild fever and swelling of lymph nodes which may continue for 1 to 12 weeks (Montoya and Liesenfeld, 2004). Pregnant women are at high risk of acquiring clinical toxoplasmosis as T.
gondii can present a danger to the foetus if they become infected for the first time at the early stages of pregnancy, leading to chorioretinitis, microcephaly, hydrocephalus and stillbirth (Guy, 2014; Areshkumar, Divya and Yasotha, 2018). Immunocompromised individuals, such as those living with HIV/AIDS, can develop significant illnesses ranging from diarrhoea, pneumonia, and liver disease to weight loss and central nervous system infection, and even death in severe cases (Shah et al., 2013; VanWormer et al., 2013).

2.12 Diagnosis

2.12.1 Histopathology

During a T. gondii infection, tachyzoites are converted into bradyzoites with the initiation of an immune response which slowly replicates in the cells to produce tissue cysts. There are often difficulties in finding T. gondii in aborting cows, goats and pigs; however, they might be seen in brain and placenta sections (OIE, 2008b). An autopsy may be performed in dead animals and aborted foetus to check for signs of toxoplasmosis (OIE, 2008a). Immunoperoxsidase staining technique in tissue parts or infected body fluids may reveal tachyzoites formation (Irma and Nasronudin, 2015). Confirmation for the identification of structures that looks like T. gondii in tissue sections from autopsies and the acute form of toxoplasmosis may be accomplished by immunohistochemistry which marks intact T. gondii (OIE, 2008b). This method is practical and sensitive as it may also be used for decomposed fixed tissues that cannot be used for isolation (OIE, 2008b).

2.12.2 Microscopic examination

Toxoplasma gondii's identification has historically relied on microscope analysis in faecal, soil, environmental and tissue specimens to distinguish the cyst of the parasite (Liu et al., 2015). Light microscopy detection alone, however, is less sensitive and inaccurate (Liu et al., 2015).

2.12.3 Faecal floatation

The faecal flotation method is performed on cat faeces to detect oocytes however, this method is not practical for the detection of T. gondii oocytes in cat faeces (Pal, Alem and Tuli, 2014). In fresh faeces unsporulated oocytes measure between 10 to $12 \mu \mathrm{~m}$ (Ibrahim, 2017). The existence of cysts in cat faeces does not indicate a relationship to clinical disease, as cysts can
be present in acute and chronic infections (OIE, 2008b). An active infection indicated by the presence of tachyzoites is in blood or body fluids (OIE, 2008b).

2.12.4 Mouse inoculation

Mouse neutralization assay may be used as a definitive diagnosis by inoculating suspicious substances into mice followed by an examination of exudates, tissues, or organs for the presence of tachyzoites or bradyzoites (Irma and Nasronudin, 2015; Ibrahim, 2017). The foetal brain and placental cotyledons are the best tissues for inoculation (OIE, 2008b). This test is regarded as a gold standard as it is highly sensitive and it can use larger tissue volumes, however, it is costly, time-consuming and has ethical problems (Sharma et al., 2019).

2.12.5 Serological assays

For the detection of groups of T. gondii antibodies or antigens, many serological assays are available. The dye test (DT) and Indirect fluorescent agglutination test (IFA) microscope can show the colour of tachyzoites (OIE, 2008b). Other serological assays that are dependent on the principle of toxoplasma tachyzoites agglutination with red blood cells or latex particles includes; a direct agglutination test (DAT), modified agglutination test (MAT), an indirect haemagglutination test (IHAT) and latex agglutination (LA) test (Liu et al., 2015). In an enzyme-linked immunosorbent assay (ELISA), the intensity of colour change defines the number of specific antibodies in a given solution in (OIE, 2008b).

IgM antibodies can be identified approximately 1 week after infection in the host and remain in the host for many months or years, which is why their detection without another test is inadequate for acute infection (Ibrahim, 2017). IgA antibodies are regarded in acute infections that occur before the production of IgM antibodies and can remain in the host for months (Guy, 2014; Ibrahim, 2017). The shorter IgE cycle may provide a higher indicator of an infection that is current. IgG antibodies indicate the presence of infection, but it does not give details on the nature of the infection. (Liu et al., 2015).

2.12.5.1 Dye test

The Dye test is regarded as a gold standard although it is clear and sensitive for humans and not for other species (OIE, 2008b). The test is hazardous as it uses live parasites, requires a high level of technical expertise and is therefore carried out only in reference laboratories (OIE, 2008b; Liu et al., 2015).

2.12.5.2 Indirect fluorescent antibody test

This assay is easy to perform and commonly employed as a tool for detecting IgG and IgM toxoplasma antibodies. Diluted serum samples are incubated with killed toxoplasma tachyzoites with sufficient anti-species fluorescent serum and a fluorescent microscope is then used to view the results (OIE, 2008b; Liu et al., 2015). Fluorescent-labelled antibodies and IFAT kits are being sold for various animals, and the procedure is affordable (OIE, 2008b). A fluorescence microscope is required to read the results, however, they are read virtually and individual variability can occur (Liu et al., 2015). Many species-specific conjugates may be difficult to find and potential cross-reactivity with rheumatoid and antinuclear antibodies can occur (OIE, 2008b).

2.12.5.3 Direct agglutination test

The direct agglutination test is sensitive as well as precise. Formalin-treated toxoplasma tachyzoites are incorporated in the well-microtiter plate in U-shaped form and diluted with a sera sample (OIE, 2008b). Samples will produce agglutination of various strengths if they are positive and precipitation of tachyzoites at the well's base if they are negative (OIE, 2008b).

2.12.5.4 Modified agglutination test

This test is extensively used to detect T. gondii from sera of all animal species. In a U-shaped microtiter plate, toxoplasma tachyzoites fixed in formalin are inserted and diluted with the sample sera. Production of a thin agglutination MAT will indicate positive serum samples, while negative samples at the bottom of the plate will produce a compact pellet of precipitated tachyzoites (Liu et al., 2015). The MAT may produce false-negative results in the early stages of infection or canine sera (OIE, 2008b).

2.12.5.5 Latex agglutination test

The latex agglutination test (LAT) is often used for screening in the epidemiologic survey due to the simplicity of performance; however, positive result requires further serological confirmation (Tp, 2010). In LAT, the soluble antigen is coated on latex particles, and agglutination is observed after the addition of positive serum (OIE, 2008b).

2.12.5.6 Enzyme-linked immunosorbent assay

The Enzyme-linked immunosorbent assay (ELISA) usually comprises a solid phase antigen or antibody, an enzyme-labelled antigen or antibody, and the enzyme reaction substratum that can
be changed to test antibodies and antigens (Liu et al., 2015). Clinically, acute infections need to be differentiated from chronic infections (OIE, 2008b). With ELISA, toxoplasma-specific IgG and IgM antibodies together with IgA can allow for a degree of discrimination between acute and chronic toxoplasmosis (OIE, 2008b; Liu et al., 2015; Khan and Khan, 2018).

2.12.6 Molecular assays

Several methods of detection of T. gondii are based on polymerase chain reactions (PCR) assay from tissue, body fluids, soil, water, and faecal nucleic acids have been developed. These assays are used for the diagnosis of toxoplasmosis in contrast to traditional serological methods and their findings are not based on the patient's immunological status (Su et al., 2010). Normally, conventional methods are not deceptive, but they are restricted to prenatal cases or patients with an immunocompromised system (Su et al., 2010). The advantages of using molecular methods include the need for small genetic material, the lack of confusing effects of environmental conditions and host, the examination of many samples in a short period and their high sensitivity (Azizi et al., 2014).

2.12.6.1 Conventional PCR

The PCR is based on the same principles for copying DNA as those found in nature. PCR is an active method for enzyme amplification that enables accurate DNA amplification of starting material in a short time from minute quantities (Su et al., 2010; Liu et al., 2015; Hanafiah et al., 2018). Many multicopy targeting genes are typically used to detect T. gondii to achieve high sensitivity in biological samples, including the B1 gene, the 529 bp repeat element and the ITS-1 or 18S rDNA sequence (Su et al., 2010; Liu et al., 2015). Also used as PCR markers, are other single-copy genes including SAG1, SAG2, and GRA1 (Liu et al., 2015). Copies of specific DNA fragments are usually analysed using an agarose gel and can be viewed using ethidium bromide staining and ultraviolet light illumination.

2.12.6.2 Real-Time PCR

Real-Time-PCR can identify low target DNA concentrations and quantify copies of similar template DNA starting copies. It integrates amplification steps and PCR material detection in one cycle, increasing the turnaround time to less than 4 hours from 24 to 48 hours (Pal, Alem and Tuli, 2014). The amplification product of the DNA amplification product is calculated during cycles using a probe or dyes during each cycle and can be measured by a known concentration standard (Liu et al., 2015).

2.12.7 Molecular genotyping

Molecular typing methods play an important role in the identification of T. gondii genotypes responsible for infections during epidemiological studies as it helps with keeping track of the source of their origin (Su et al., 2010; Castro et al., 2020). Several molecular technologies have been developed for T. gondii genotyping, including microsatellite analysis, multilocus sequence typing (MLST), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and high-resolution melting (HRM) analysis (de Melo Ferreira et al., 2004; Wang et al., 2013; Can et al., 2014; Zhang et al., 2015; Murphy, Stewart and Taylor, 2018).

2.12.7.1 Microsatellite analysis

This assay uses the length polymorphism of short nucleotide tandem repeats of a DNA (Su et al., 2010). In a population, the number of repeat units varies, generating multiple alleles at a microsatellite locus (Liu et al., 2015). Toxoplasma gondii microsatellite markers (TUB-2, W35, TgM-A, B18, B17, M33, IV.1, XI.1, M48, M102, N60, N82, AA, N61, N83) are detected using a single multiplex PCR assay during the analysis (Can et al., 2014).

2.12.7.2 Multilocus sequence typing

The MLST is focused on sequence polymorphisms like single nucleotide polymorphisms (SNPs), deletion and addition of nucleotides in the sequence, and has the highest resolution among all the typing methods when there is sufficient genomic DNA (Su et al., 2010; Liu et al., 2015). When typing, three polymorphic genes; SAG3, GRA6, and GRA7 are targeted using SAG3, GRA6 and GRA7 markers (Fernández-Escobar et al., 2020). This method, however, is not a good option for clinical samples because it requires high quantities of genomic DNA (Liu et al., 2015).

2.12.7.3 Polymerase chain reaction-restriction fragment length polymorphism

This method relies on the ability of endonucleases to recognize SNPs, the digestion of PCR products and the presence of distinct DNA patterns on the agarose gel after electrophoresis (Howe and Sibley, 1995). The traditional multilocus PCR-RFLP relies on single-copy polymorphic DNA sequences and normally needs a high T. gondii DNA concentration, thus making it hard to genotype T. gondii in clinical samples because of the small T. gondii DNA available (Liu et al., 2015). To reduce this disadvantage, a multiplex multilocus nested PCRRFLP (Mn-PCR-RFLP) assay that uses 10 genetic markers namely: SAG1, SAG2, SAG3,

BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico (Su et al., 2010; Rajendran, Su and Dubey, 2012). Before typing, all markers are amplified in a single reaction using multiplex PCR with external primers, and the products are used as templates to amplify individual markers by nested PCR (Liu et al., 2015). The benefit of this approach is that only a small number of individual samples are required and it is very useful if only small quantities of samples are available (Su et al., 2010).

2.12.7.4 Random amplified polymorphic DNA-PCR (RPD-PCR)

This assay is PCR-based and can be used without predetermined genetic data to classify DNA polymorphisms (Liu et al., 2015). It amplifies DNA under low-stringency conditions using single short arbitrary primers (de Melo Ferreira et al., 2004; Liu et al., 2015; Zhang et al., 2015). The assay has been used to detect the genetic differentiation of closely related organisms and in the identification of the T. gondii genotypes (Guo, Gross and Johnson, 1997). T. gondii can be divided into virulent and avirulent strains by making use of arbitrary primers based on RAPD-PCR murine virulence, and some of these primers are useful in identifying markers of virulence (Guo, Gross and Johnson, 1997). RAPD markers are DNA fragments obtained by PCR amplification of random regions of genomic DNA using a single primer of any nucleotide sequence (de Melo Ferreira et al., 2004). This assay is quick, easy and effective, but it can be difficult to replicate RAPD band profiles when laboratories, workers, equipment or conditions are changed (Liu et al., 2015).

2.12.7.5 Variable number tandem repeats

Tandem repeat variations, often known as VNTRs (varying number of tandem repeats), are loci where the population's internal copy count varies (Gelfand et al., 2014). Variable Number Tandem Repeat (VNTR) sequences have become important genotyping markers for a variety of organisms, including T gondii. Due to their high polymorphism about the number of tandem repetitions at a specific VNTR locus, VNTRs were initially used as markers for linkage mapping (Gelfand et al., 2014). Molecular markers (Table 2.2) have been developed to distinguish between genetic variants found in each clonal lineage and/or haplogroup (Table 2.2) (Moretta et al., 2018). The two main benefits of this method are: One is that variation results through DNA polymerase slippage and is independent of the parasite's sexual reproduction, and two is that nearby areas are typically conserved as a result of negative selective pressure (Moretta et al., 2018). This genotyping method primarily depends on PCR amplification using primers designed for the flanking regions of the VNTRs and on measuring
the sizes of the amplicons following electrophoretic migration (Moretta et al., 2018; Bakhtiari et al., 2021). These sizes correspond to the number of amplified VNTR copies since the length of the repeat units is known and the outcome is a numeric code that represents each VNTR locus's repeat count (Gelfand et al., 2014).

Table 2.2: Molecular markers and target genes on VTNR genotyping

Target gene/ locus	Molecular marker (s)
Cwf21 protein	282140
Uncharacterized protein	$225090 ; 231200 ; 225830 ; 316650$
Folate-binding protein YgfZ protein	267560
Serine/threonine specific protein phosphatase	223985
RNA pseudouridine synthase superfamily protein	202640

2.13 Differential diagnosis

Toxoplasmosis is rarely considered in a primary diagnostic list other than with problems of abortion and associated neonatal mortality (Ibrahim, 2017). The differential diagnosis for abortion in cattle, sheep and goats is associated with brucellosis, while in pigs it is associated with leptospirosis (Ibrahim, 2017). The cause of encephalitis in animals is not seen as a sign of toxoplasmosis in the animals because is linked to viral infections, bacteria, and verminous encephalomyelitis due to parasitic organisms with somatic movement larva migration (Ibrahim, 2017).

2.14 Treatment

2.14.1 In animals

For exotic ruminants, there is a shortage of clearly established toxoplasmosis treatments (Ibrahim, 2017). Treatment with a combination of sulfamethazine and pyrimethamine is effective in reducing the effects in pregnant ewes of experimentally induced toxoplasmosis (Dunay et al., 2009; Ibrahim, 2017). Treatment is given for 3 periods with an interval of 5 days over 3 days (Ibrahim, 2017). Sulphadiazine chemotherapy ($60 \mathrm{mg} / \mathrm{kg} /$ day) every $4-6 \mathrm{~h}$ and pyrimethamine $(0.5-1 \mathrm{mg} / \mathrm{kg} /$ day $)$ as a single dose restrict the spread of infection before immunity is gained from the host (Ibrahim, 2017).

2.14.2 In humans

Women contract the diseases during pregnancy for the first time and those infected with congenital ocular toxoplasmosis need to be treated, as well as the ones with the weak immune system (those with HIV/AIDS or neoplastic disease) and transplant recipients with active or reactivated infection (Pleyer et al., 2019).

Conventional treatment for clinical toxoplasmosis is normally made up of a mixture of pyrimethamine and sulphonamides, but is discouraged for use by pregnant women due to its effects on the foetus (Montoya and Liesenfeld, 2004; Ibrahim, 2017).

2.15 Prevention and control

2.15.1 In animals

On farms, toxoplasmosis prevention is more difficult, but animal feed should be protected where possible to exclude cats and prevent them from being exposed to insects (Ibrahim, 2017). Infection in cats can be prevented by ensuring that they are not fed raw or undercooked meat and unpasteurized milk and by keeping them indoors (Ross, Jones and Lynch, 2006; RobertGangneux, 2014). Dead animals should be properly disposed of to prevent them from being eaten by pigs and cats (Dubey, 1991; Ibrahim, 2017). An aborted ewe as a result of toxoplasmosis does not normally have recurring abortions due to toxoplasmosis, and can, therefore, be used for breeding in the future (Dubey, 1991).

In mid-pregnancy, monensin and decoquinate are given to ewes as an attempt to control abortion due to toxoplasmosis (Ibrahim, 2017). A live vaccine only for sheep consisting of attenuated tachyzoites that are approved for use in sheep to help prevent T. gondii-related abortion is commercially available in the United Kingdom, France and New Zealand (Dubey, 2009b; Ibrahim, 2017; Innes et al., 2019). There are plans to develop more vaccines for a one health approach to combat toxoplasmosis in cats, humans and food-producing animals (Innes et al., 2019). There is no data on the use of vaccines for T. gondii in Africa including SA. The non-use of vaccines against T. gondii in SA might be due to the lack of serological and molecular prevalence studies whose data will determine whether it is needed or not.

2.15.2 In humans

Human infections can be prevented and controlled by thoroughly washing hands with soap prior to handling meat (Klun et al., 2006). Meat must be cooked thoroughly before consumption at temperatures above $67^{\circ} \mathrm{C}$ (Pal, Alem and Tuli, 2014; Ibrahim, 2017). Freezing meat at $-12^{\circ} \mathrm{C}$ for at least 24 hours is effective in killing tissue cysts, however, sporulated oocysts are not killed by a temperature of $-20^{\circ} \mathrm{C}$ for up to 28 days (Ibrahim, 2017). Milk should also be pasteurized before consumption (Robert-Gangneux, 2014).

A pregnant woman must avoid contact with cats and clean their litter boxes. Gloves should be worn when gardening and fruits and vegetables should be washed thoroughly before eating, as oocysts can contaminate them (Ross, Jones and Lynch, 2006). Serological testing for women who are pregnant can help prevent congenital infections (Tenter, 2000). Despite the global importance of toxoplasmosis as a zoonotic disease, no human vaccinations exist at this time (Innes et al., 2019).

CHAPTER 3

MATERIALS AND METHODS

3.1 Study design

This was a prospective quantitative study constituting of four components. The first component entailed utilizing a questionnaire to determine the risk factors associated with animal exposure to toxoplasmosis in the NW province. The second component entailed determining the seroprevalence of T. gondii in the NW province using ELISA. The third component entailed using PCR to detect T. gondii in diagnostic tissue samples received at ARC-OVR from the FS province and collected tissue samples from the NW province. The fourth and final component entailed the use of bioinformatics to examine isolates of the T. gondii GRA6 and B1 housekeeping genes deposited in the GenBank from different species and countries to evaluate if they could be used as genetic markers.

3.2 Study area

The study was conducted on communal and commercial farms of both the NW (figure 3.1) and FS Provinces (figure 3.2). In the FS province, routine diagnostic samples were used to assess the occurrence. In the North West Province, villages were selected randomly from each municipality. In each village, efforts were made to consider all directions (East, West, North and South of the village using an abstract transect) to avoid bias. Farmers who did not give consent for their animals to be sampled were replaced with the next farms within the village.

3.2.1 North West province

Figure 3.1: A map showing study sites in the NW province (sourced from https://municipalities.co.za/provinces/view/8/north-west)

NW province is in the north of SA on the Botswana border, fringed by the Kalahari Desert in the west, Gauteng province to the east and the Free State to the south. It covers an area of 104 $882 \mathrm{~km}^{2}$ and has a population of 3748436 . Most of the province comprises flat areas of scattered trees and grassland. Mahikeng is the capital city of the province that lies near the Botswana border and forms a single urban area with its neighboring town, Mmabatho.

Between Potchefstroom and Klerksdorp in the south, Rustenburg in the east, and Brits in the west, there is the largest amount of economic activity. The southern region is widely known for its cattle rearing.

The four district municipalities that make up North West are further divided into 18 local municipalities. Sampling was conducted in all districts (marked in red stars on figure 3.1). Bojanala district at the Kgetleng River, Madibeng, Moses Kotane and Moretele municipalities, in Dr Kenneth Kaunda district at the JB Marks and Maquassi Hills municipalities, in Dr Ruth Segomotsi Mompati at Greater Taung, Kagisano-Molopo and Naledi municipality, in Ngaka Modiri-Molema district at Mahikeng, Ramotshere Moiloa and Ratlou municipalities. The
samples were processed and analysed at the Agricultural Research Council, Onderstepoort Veterinary Research (ARC-OVR), Bacterial PCR Laboratory.

3.2.2 Free State province

Figure 3.2: A map showing study sites in the FS province (sourced from https://municipalities.co.za/provinces/view/2/free-state)

The FS province is geographically located in the center of South Africa, bordered by the Northern Cape, Eastern Cape, North West, Mpumalanga, KwaZulu-Natal, and Gauteng provinces, as well as Lesotho. The FS is a rural province of farmland, mountains, goldfields, and widely dispersed towns.

It has the second-smallest population and the second-lowest population density in South Africa despite being the third-largest province. The province has a population of 2834714 , making up 5.1% of the total country's population, and a land area of $129825 \mathrm{~km}^{2}$. Bloemfontein, its capital city, serves as the seat of South Africa's legal system. Other significant cities include Bethlehem, Welkom, Kroonstad, and Sasolburg.

The province consists of four district municipalities, which are further divided into 18 local municipalities, and one metropolitan municipality (Mangaung Metropolitan Municipality) with its economy dominated by agriculture, mining, and manufacturing. Diagnostic tissue sample
submissions came from the local municipalities marked in red (figure 3.2) in Fezile Dabi, Lejweleputswa, Thabo Mofutsanyana, and Xhariep district, as well as Mangaung metropolitan municipality (red-marked).

3.3 Sample size

The sample size for the study was calculated using Thrusfield's (Thrusfield, 2004): $n=1.962$ $\mathrm{p}(1 \mathrm{p}) / \mathrm{d} 2$, with p being the estimated prevalence, d the estimated precision, and n the estimated sample size. Due to the lack of data on T. gondii prevalence in the study population, an expected prevalence ($\mathrm{P} \exp$) of 50% was used and 5% was set as the estimated precision (d).
$n_{0}=\frac{\left\{1.96^{2} \times P_{\text {exp }} \times\left(1-P_{\text {exp }}\right)\right\}}{d^{2}}$
$n_{0}=\frac{3.84 \times 0.5 \times 0.5}{0.0025}=\frac{0.96}{0.0025}=384 n_{0}=384$ heads of small ruminants in the North West.

However, for the study, a total of 439 (164 sheep and 275 goats) serum samples, 408 vaginal swabs, 94 milk and 31 sheath scrapes (Table 3.1).

Table 3.1: Number and type of samples collected from sheep and goats in NW and FS provinces

Province	Species	Type of Sample	Number (n)
	Sheep	Serum	164
		Sheath scrape	13
North West	Milk	29	
		Vaginal swabs	151
Goats	Serum	275	
		Sheath scrape	18
		Milk	65
		Vaginal swabs	257
	Sheep State	Tissue	9
	Goats	Tissue	2

3.4 Sample collection

Four different tissue samples were collected as shown in table 3.1 (whole blood, sheath scrapping, vaginal swabs, and milk from lactating animals). A purposive sampling of animals with a history of abortions or reproductive diseases and a random sampling of animals without a history of abortions or reproductive diseases was also conducted.

3.4.1 Blood

The animals were captured and restrained humanely to aseptically collect 5 ml of whole blood sample in the jugular vein, located on the neck of the animal with a 20-gauge vacutainer needle (Greiner Bio-One, Frickenhausen, Germany) and a vacutainer needle holder (Greiner bio-one, Frickenhausen, Germany) to collect the blood. The red stopper tube (Greiner bio-one, Frickenhausen, Germany) was labelled with animal identification and the sample collection site was used, placed into a cooler with ice packs and transported to the laboratory. The blood was then centrifuged at 3000 rpm for 10 minutes to obtain serum. The serum was harvested into sterile 2 ml micro-centrifuged tubes with sample identification and stored at $-20^{\circ} \mathrm{C}$ until required for analysis.

3.4.2 Milk

Milk samples were collected from nursing ewes and does after disinfecting teats and using latex gloves, approximately 100 ml of milk was collected into a sterile container by manual milking. The initial stream of milk was discarded, and a sterile container was filled with the next stream. The container was labelled and placed into a cooler box with frozen icepacks, transported to ARC-OVR, Bacterial PCR Laboratory and stored at $-20^{\circ} \mathrm{C}$ until analysis.

3.4.3 Sheath scraping

A Sheath scraping was conducted using a dry AI pipette attached to a 20 ml sterile reusable hypodermic syringe with a silicon rubber (Irons, Henton and Bertschinger, 2002). Rams and bucks were properly restrained on the neck. The collected aspirate was transferred into a container containing 4 ml of phosphate-buffered solution (PBS), and transported to ARC-OVR, Bacterial PCR Laboratory in a cooler box with ice packs and stored at $-20^{\circ} \mathrm{C}$ until analysis.

3.4.4 Vaginal swabs

Vaginal swabs were collected using sterile swabs by gently swabbing the vaginal wall. The swab was moistened with sterile saline in the absence of vaginal discharge to avoid discomfort
and irritation. The swabs were transported to ARC-OVR, Bacterial PCR Laboratory, and stored at $-20^{\circ} \mathrm{C}$ until analysis.

3.4.5 Diagnostic submissions

Diagnostic tissue samples submitted at ARC-OVR from aborted cases in sheep and goats of the Free State province were also analysed (table 3.2).

Table 3.2: Breakdown of diagnostic submissions received at ARC-OVR from Free State province

Species	District	Municipality	Town	$\begin{gathered} \hline \text { Type of } \\ \text { sample (s) } \end{gathered}$	Number (n)
Sheep	Fezile Dabi	Mafube	Frankfort	Tissues	2
	Thabo Mofutsanyana	Dihlabeng	Bethlehem		4
	Xhariep	Phumelela	Vrede		1
		Kopanong	Reddersburg		1
		Mangaung	Bloemfontein		1
Goat		Mangaung	Bloemdal		1
	Lejweleputswa	Matjhabeng	Hennenman		1

3.5 Questionnaire

During sample collection, an investigative questionnaire survey (Appendix A) was done to determine risk variables related to toxoplasmosis by questioning animal herders and/or farm owners. The hypothesized risk factors for T. gondii included; age (<1 year,> 1 year), breed, sex (male, female), location (municipality, district), animal management system (free-ranging), hygiene practices (frequency of cleaning the animal stables), feed storage (storage room, outside), knowledge of reproductive diseases, disposal of aborted material (burn, burry, hang on the tree/kraal), drinking water supply (dam, river, borehole, tap), the presence of cats (domestic and/or feral), as well as existence or absence of rodent control. Questions were derived from the literature (Abdallah et al., 2019; Tagwireyi, Etter and Neves, 2019).

3.6 Ethical clearance

The University of South Africa College of Agriculture and Environmental, Animal Research Ethics, and Health Research Ethics committees gave their approval for this study, with the ethics clearance number 2020/CAES_AREC/146 and REC-170616-051 (Appendix C). Approval was also granted by the Onderstepoort Veterinary Research Animal Ethics Committee with approval number: AEC 19.18. Further approval was obtained for Section 20 from the Department of Agriculture, Forestry and Fisheries (DAFF) with reference number 12/11/1/1 (Appendix D).

3.7 Test Methods

3.7.1 Serological assay for T. gondii IgG antibody

Sera from the animals ($\mathrm{n}=439$) was assayed using a two-strip IDEXX Toxotest antibody ELISA test kit for the detection of IgG antibodies against T. gondii was used following manufactures guidelines (IDEXX Laboratories, Liebelfd-Bern, Switzerland). Frozen sera and the test kit's reagents were thawed simultaneously at $25^{\circ} \mathrm{C}$, and the wash buffer was diluted $1: 400$ with distilled water. The sera, as well as the positive and negative controls supplied with the test kit, were pre-diluted 1:400 in the diluted buffer.

The diluted controls and sera were poured in a volume of $100 \mu 1$ into a T. gondii antigen precoated microtiter plate, and they were gently mixed by tapping on the sides. After mixing, the plate was covered with a plate cover and incubator at $37{ }^{\circ} \mathrm{C}$ for 1 hour. With $300 \mu 1$ of the wash buffer, each well was washed three times after incubation. Gently tapping the plate on absorbent paper removed the wash buffer residues. After adding $100 \mu 1$ of the conjugate to each well, covering it with a lid, and incubating it at $37^{\circ} \mathrm{C}$ for an hour, the bound antigenantibody complexes were conjugated. After incubation, the above-mentioned wash step was repeated to eliminate any unbound complexes, and $100 \mu 1$ of 3, 30, 5, 50-Tetramethylbenzidine (TMB) was added. The plates were again washed after incubation as described wash step was repeated after incubation to remove any unbound complexes, after which $100 \mu \mathrm{l}$ of $3,30,5$, 50-Tetramethylbenzidine (TMB) substrate was added into each well and incubated in the dark at room temperate for 15 minutes. After incubation, a stop solution of $100 \mu \mathrm{l}$ was added to each well and the absorbance was measured at 450 nanometers with a Thermo Labsystems MultiskanMS Original microplate reader (Thermo Fischer Scientific, Waltham, MA, USA).

The validity of the assay was assessed as follows: the two negative controls average optical density value of optical density of the two negative controls (NCx) at 450 nm (A450) should be less or equal to $(\leq) 0.500$. The two positive controls average value (PCx) at 450 nm (A450). Should be ≤ 2.500 and then the $\mathrm{PCx}-\mathrm{NCx}$ (A450) should be greater than or equal to $(\geq) 0.300$. Sample to positive (S / P) was calculated as per the formula below:
$\mathrm{S} / \mathrm{P} \%=100 \mathrm{x} \frac{\text { Sample } \mathrm{A}(450)-\mathrm{NCx}}{\mathrm{PCx}-\mathrm{NC}}$
For results interpretation, $\mathrm{S} / \mathrm{P} \%<20$ signified a negative result, $20 \leq \mathrm{S} / \mathrm{P} \%<30$ signified a suspect, $30 \leq \mathrm{S} / \mathrm{P} \%<100$ signified a weak positive result, and $\mathrm{S} / \mathrm{P} \% \geq 100$ signified a positive result. All samples that gave a suspect result were retested.

3.7.2 Molecular detection

Molecular detection by PCR was conducted on sheath scrapes, milk, vaginal swabs, and diagnostic tissue samples received during the study period. As shown in table 3.3, a total of 198 samples consisting of 138 vaginal swabs, 26 milk, 23 sheath scrapes from North West, and 11 diagnostic tissue samples from the Free State province were analysed. The aim was to use all the tissue samples collected (408 vaginal swabs, 94 milk samples, and 31 sheath scrapes) to determine the molecular prevalence; however, due to power outages and the breakdown of -80 freezers, we lost some of the samples and previously extracted were denatured, hence only 198 of the collected samples could be analysed. To ensure the integrity of the used samples a nano drop was used to measure the concentration of the DNA to prevent false negative results.

Table 3.3: Number of samples used for PCR as per origin, species, and sample type

Province	Species	Type of Sample	Number (n)
Sheep	Sheath scrape	8	
	Milk	6	
		Vaginal swabs	61
		Sheath scrape	15
	Goats	Milk	20
		Vaginal swabs	77

	Sheep	Tissue	9
Free State	Goats	Tissue	2

Total

3.7.2.1 Sample preparation

3.7.2.1.1 Vaginal swabs and sheath scrapes

A volume of 2 ml of the distilled water covering the butt of the swab and 2 ml of sheath scrape were poured into 2 ml microcentrifuge tubes and centrifuged at 8000 xg for 10 minutes. After centrifugation, the supernatant was discarded leaving approximately $200 \mu 1$ to be re-suspended to the pellet and mixed with a vortex until it is dissolved.

3.7.2.1.2 Milk

Two millimeters of milk were poured into a 2 ml microcentrifuge tube and centrifuged at 8000 xg for 10 minutes. After centrifuging, the supernatant was discarded leaving the cream; this was achieved by inserting the pipette tip between the cream and the pellet to suck up the supernatant, leaving approximately $200 \mu \mathrm{l}$ to be re-suspended to the pellet and the cream. It was then mixed with a vortex until it is dissolved.

3.7.2.2 DNA extraction

The DNA extraction from vaginal swabs, milk and sheath scrapes from the seropositive animals was performed using a high pure PCR template preparation kit (Roche, SA) following manufactures instruction. The extraction was done as follows:

3.7.2.2.1 Sample lysis and DNA binding

A volume of $200 \mu \mathrm{l}$ binding buffer and $40 \mu \mathrm{l}$ of proteinase K was added to each of the tubes of the above-prepared samples mixed and incubated at $70^{\circ} \mathrm{C}$ for 10 minutes. After incubation, $100 \mu \mathrm{l}$ of isopropanol was added, mixed, and applied to a high pure filter tube attached to a collection tube, which was centrifuged at 8000 xg for 1 minute. The filter was then removed from the collection tube after centrifuging, and the collection was discarded.

3.7.2.2.2 Washing

Five hundred microliters of inhibition removal buffer were added to the filter tube and centrifuged at 8000 xg for 1 minute. The collecting tube was thrown away, and the filter tube was inserted into a clean collection tube in which $500 \mu \mathrm{l}$ wash buffer, was centrifuged again at 8000 xg . The filter tube was removed and inserted into a clean collection tube, discarding the old collection tube. The previous step was repeated, and the filter tube was placed and inserted into another clean collection tube and spun at 13000 xg for 10 seconds to remove residual wash buffer.

3.7.2.5 Elution of DNA

The filter tube that was washed in the above step was inserted into a clean sterile 2 ml microcentrifuge tube and $200 \mu 1$ of pre-warmed $\left(70^{\circ} \mathrm{C}\right)$ elution buffer (10 mM Tris- $\mathrm{HCl}, \mathrm{pH}$ 8.5) was added to the filter tube and centrifuged at 8000 xg for 1 minute. The filter tube was discarded, and the eluted DNA was stored at $-20^{\circ} \mathrm{C}$ until analysis.

3.7.2 Gene Amplification and Visualization
 3.7.2.1 Universal ribosomal RNA (18S) amplification

The success of the DNA extraction and the presence of parasitic DNA in the samples were checked using universal ribosomal 18 S rRNA gene primers (Table 3.4). Each PCR was carried in a $25 \mu 1$ reaction mixture containing $12.5 \mu 1$ master mix, $0.5 \mu 1$ of each primer in Table 3.4 (Inqaba Biotechnical Industries (Pty) Ltd, Tshwane, South Africa), $6.5 \mu 1$ of nuclease-free water and $5 \mu \mathrm{l}$ of T. gondii DNA. The amplification was carried out with the Bio-Rad T100 thermal cycler by cycling the reaction for 35 cycles, with initial denaturation at $95^{\circ} \mathrm{C}$ for 10 minutes, followed by denaturation at $95^{\circ} \mathrm{C}$ for 10 seconds, annealing at $60^{\circ} \mathrm{C}$ for 30 seconds, and lastly, extension at $74^{\circ} \mathrm{C}$ for 1 minute. Nuclease-free water was used as the negative control for non-DNA.

Table 3.4: Universal 18S rRNA primers (Wang et al., 2014)

Primers	Sequence
Forward (1A)	5^{\prime}-AACCTGGTTGATCCTGCCAGT-3'
Reverse (564R)	$5^{\prime}-$ GGCACCAGACTTGCCCTC -3'

3.7.2.1.1 Visualization and confirmation of PCR amplicons

Five microliters of amplicons were used to confirm DNA amplification on a 2% ethidium bromide-stained agarose gel with an expected size of 700 bp using a quick load 100 bp molecular weight ladder (New England Biolabs, Ipswich, MA, USA). Bio-Rad Laboratories, SA). The gel was run for three hours at 80 volts using 1X TBE buffer (Bio-Rad Laboratories, SA). The PCR products were visualized using a gel documentation system (Bio-Rad Laboratories, SA).

3.7.2.2 Amplification of B1 gene

Nested PCR was performed using the extracted DNA as a template and two set of primers targeting the B1 gene of T. gondii (Inqaba Biotechnical Industries (Pty) Ltd, Tshwane, South Africa) (Table 3.5), as described by Jones et at, 2000 (Jones et al., 2000).

3.7.2.2.1 First amplification

For the first round of amplification, PCR was carried out in a reaction of $25 \mu 1$ containing 12.5 $\mu 1$ of Master Mix Red (Ampliqon, Denmark), $0.5 \mu 1$ of each primer (Table 3.5), and $5 \mu 1$ of DNA. The amplification was carried out with the Bio-Rad T100 thermal cycles where the reaction mixture was denatured for 10 seconds at $93^{\circ} \mathrm{C}$, followed by 10 seconds of annealing at $57^{\circ} \mathrm{C}$, and finally, 30 seconds of extension for 40 cycles at $72^{\circ} \mathrm{C}$. Inhouse T.gondii positive control (assertion number: OP029036) that was sequenced from the B1 gene in another study was used, and nuclease-free water was used as the negative control for non-DNA.

Table 3.5: Primer sequences for B1 gene (Jones et al., 2000)

Primers	Sequence	Sequence Position
External forward	5^{\prime}-GGAACTGCATCCGTTCATGAG-3'	$694-714$
External reverse	5^{\prime}-TCTTTAAAGCGTTCGTGGTC-3'	$887-868$
Internal forward	5^{\prime} - TGCATAGGTTGCAGTCACTG-3'	$757-776$
Internal reverse	5^{\prime} - GGCGACCAATCTGCGAATACACC-3'	$853-831$

3.7.2.2.2 Visualization and confirmation of PCR amplicons

Five microliters of amplicons were used to confirm DNA amplification on a 2% agarose gel stained with ethidium bromide with an expected size of 193 bp on the first round of amplification and 96 bp on the nested amplification using a quick load molecular weight ladder of 100 bp (New England Biolabs, Ipswich, MA, USA). The gel was run for two hours at 80
volts using 1X TBE buffer (Bio-Rad Laboratories, SA). The PCR data were visualized using a gel documentation system (Bio-Rad Laboratories, SA).

3.7.2.3 Toxoplasma gondii specific 18S rRNA gene amplification

Each PCR was carried in a $25 \mu 1$ reaction mixture containing $12.5 \mu 1$ master mix (Ampliqon, Denmark), $0.5 \mu 1$ of each T. gondii specific 18S rRNA gene primer in Table 3.6 (Inqaba Biotechnical Industries (Pty) Ltd, Tshwane, South Africa), $6.5 \mu 1$ of nuclease free water and 5 $\mu \mathrm{l}$ of DNA. The amplification was carried out with the Bio-Rad T100 thermal cycler by cycling the reaction for 35 cycles, with initial denaturation at $95{ }^{\circ} \mathrm{C}$ for 10 minutes, followed by denaturation at $95^{\circ} \mathrm{C}$ for 10 seconds, annealing at $60^{\circ} \mathrm{C}$ for 30 seconds, and lastly, extension at $74{ }^{\circ} \mathrm{C}$ for 1 minute. Nuclease-free water served as the negative control for non-DNA and an inhouse T. gondii positive control (assertion number: OP029036) that was sequenced from the B1 gene in another study was used.

Table 3.6: Toxoplasma gondii rRNA 18S gene primer sequences (Jones et al., 2000)

Primers	Sequence	Sequence Position
Forward	5^{\prime}-CCTTGGCCGATAGGTCTAGG-3'	170-189
Reverse	5^{\prime}-TCTTTAAAGCGTTCGTGGTC-3'	$253-231$

3.7.2.3.1 Visualization and confirmation of PCR amplicons

Five microliters of amplicons were used to confirm DNA amplification on a 2% agarose gel stained with ethidium bromide with an expected size of 88 bp using a quick load molecular weight ladder of 50 bp (New England Biolabs, Ipswich, MA, USA). The gel was run for three hours at 80 volts using 1X TBE buffer (Bio-Rad Laboratories, SA). The PCR products were visualized using a gel documentation system (Bio-Rad Laboratories, SA).

3.7.2.4 Sequencing of universal $18 S$ rRNA fragment for T. gondii confirmation

Sequencing of the universal 18S rRNA PCR products was done at Inqaba Biotechnical industries (Pty) Ltd (Tshwane South Africa). Sequencing was performed from both ends using the forward and reverse primer sequences that were initially used for amplification. Following sequencing, the sequences from both strands were manually modified, and pairwise alignments
were carried out using the BioEdit Sequence alignment editor (version 7.2.5). Using the basic local alignment tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi), the generated consensus sequences were examined for gene sequence identity and similarity on the NBI platform.

3.7.3 Genetic and phylogenic analysis of the B1 and GRA6 gene sequences

The B1 gene is found in 35 copies of the T. gondii genome, making PCR directed at the B1 gene more sensitive than PCR directed at single copy locations like GRA6 (Parameswarana et al., 2009). As a result, these two housekeeping genes are commonly used for detection and confirmation of the presence of genetic material of T. gondii. The B1 and GRA6 gene sequence were then retrieved from the GenBank (https://www.ncbi.nlm.nih.gov/) to evaluate if they could be used as phylogenetic markers. Since there are no T. gondii sequence isolates from the study areas and South Africa on GenBank, isolates from other countries were used. The retrieved sequence isolates were then manually trimmed, aligned, and analyzed for the presence of single nucleotide polymorphism (SNP) and ultimately used to construct phylogenetic trees toa analyze their phylogenetic relationship.

3.7.3.1 Sequence analysis and phylogenetic tree construction

Using Molecular Evolutionary Genetics Analysis (MEGA) (version 11), sequences were manually edited, trimmed, and aligned from the 5^{\prime} end to the 3 ' end so that all sequences start and end at the same sequence. Multiple sequence alignments of both individual genes were carried out using ClastalW in MEGA (version 11) to calculate the degree of similarity between each gene sequence (Thompson, Higgins and Gibson, 1994). After aligning the sequences, single nucleotide polymorphisms (SNPs) were manually identified and examined. Phylogenetic trees were constructed using MEGA version 11's neighbor-joining technique, and the maximum composite likelihood method was used to validate them (Saitou and Nei, 1987; Tamura, Stecher and Kumar, 2021). One thousand replicate were used in the bootstrapping method.

3.8 Data analysis

A 95\% confidence interval was used to calculate different prevalence values. Association of risk factors (age, gender, species, breed, type of breeding, origin of animals, history of abortion
disposal of aborted material, district, municipality, type of farm, presence of cats, water source, feeding system, feed storage and disposal of manure) with seroprevalence of T. gondii was investigated. All the data was entered into a spreadsheet of Microsoft Excel and analysed in Stata 15 (StataCorp, College Station, TX, USA). The univariable logistic regression model was used to test variables at the individual level against disease exposure. For the initial analysis, the Chi-square test (P -value ≤ 0.05) was used to test all variables individually for their unconditional association with the result. The variables that produced the highest p-value of \geq 0.05 during the analysis of univariable logistic regression were excluded.

The correlation and agreement between serological and molecular data were calculated using the proportion of agreement expected formula: $\left(\left(\mathrm{P}_{\mathrm{e}}\right)=((\right.$ row total x column total $) /$ grand total) X 100 and Cohen's Kappa (к) test using the formulas below (Cohen, 1960). The degree of agreement based on was assessed using the following criteria: 0-20 none, 0.21-0.39 fair agreement, $0.40-0.59$ minimal agreement, 0.60-0.79 moderate agreement, $0.80-0.89$ strong agreement, and > 0.90 almost perfect agreement (Petrie and Watson, 2013).

$$
k \frac{\operatorname{Pr}(a)-\operatorname{Pr}(e)}{1-\operatorname{Pr}(e)}
$$

$\operatorname{Pr}(\mathrm{e})$ indicates chance agreement, whereas $\operatorname{Pr}(\mathrm{a})$ indicates the actual observed agreement.

$$
\text { Expected agreement }(\operatorname{Pr}(e))=\frac{\left(\frac{\mathrm{cm}^{1} \mathrm{x} \mathrm{rm}^{1}}{\mathrm{n}}\right)+\left(\frac{\mathrm{cm}^{2} \mathrm{x} \mathrm{rm}^{2}}{\mathrm{n}}\right)}{\mathrm{n}}
$$

where:

- cm^{1} stands for column 1 marginal,
- cm^{2} stands for column 2 marginal,
- rm^{1} stands for row 1 marginal,
- rm^{2} stands for row 2 marginal, and
- n stands for the total number of tested samples.

CHAPTER 4

RESULTS

4.1 Sample distribution by sex and species

Table 4.1 displays the number of sampled of animals' species across all four districts and local municipalities in the NW province. A total of 439 animals were sampled with goats making up 62.6% of the total and sheep making up 37.3%, with females (92.3%) outnumbering males (7.7%). The sheep and goats sampled geographic distribution among the district and local municipalities is shown in figure 4.1.

Table 4.1: Demographic data on tested animals

District	Municipality	Species	n
Bojanala Platinum	Kgetleng River		
		Sheep	3
		Goats	7
	Madibeng		
		Sheep	2
		Goats	4
	Moses Kotane		
		Sheep	3
		Goats	17
	Moretele		
		Sheep	9
		Goats	30
Dr Kennet Kaunda	JB Marks		
		Sheep	6
		Goats	6
	Maquassi Hills		
		Sheep	2
		Goats	16
	Greater Taung		
		Sheep	11
Dr Ruth Segomotsi		Goats	20
Mompati	Kagisano-Molopo		
		Sheep	10
		Goats	21

	Naledi		
		Sheep	
Goat	15		
	Mahikeng	10	
		Sheep	
Ngaka Modiri	Gamotshere Moiloa		71
Molema		Sheep	94
	Ratlou	Goats	12
		Sheep	10
		Goats	19
Total		40	

n : number of animals sampled

Figure 4.1: Geographic distribution of sampled sheep and goats in the districts and local municipalities

4.2 Overall seroprevalence

Of the 439 sera tested, 13.9% (95% CI: $0.69-4.07$) were positive for antibodies against T. gondii. The seroprevalence for both sheep and goats were 19.5% ($32 / 164$) ($95 \% \mathrm{CI}: 0.24-1.92$) and 10.5% (29/285) (95% CI: 0.42-3.31) respectively (Table 4.2). Toxoplasma gondii infection among the species is presented in Table 4.2. In females, the variation in seroprevalence among the sexes was more pronounced than in males, with 61/405 (15\%) in females and 2/34 (5.8\%) in males (Table 4.3). The seroprevalence in Dr Ruth Segomotsi Mompati was the highest at 21.6% (19/87) followed by Ngaka Modiri Molema at 15.1% (37/245), Bojanala Platinum at 5.2% (4/77), and lastly, Dr Kennet Kaunda districts were at 3.3% (1/30) respectively (Table 4.3). Figure 4.1 displays the distribution of positive sheep and goats in the district and local municipalities.

Table 4.2: Seroprevalence of T. gondii infection among species

Species	n	No. of positive samples	Percentage (\%)	95% CI
Sheep	164	32	19.5	$0.24-1.92$
Goats	275	29	10.5	$0.42-3.31$
Total	439	61	13.9	$0.69-4.07$

n : number of animals tested; No.: number; CI: confidence interval

Figure: 4.2: Geographic distribution of positive sheep and goats in the districts and local municipalities

4.3 Risk Factors

Among the risk factors linked to higher T. gondii exposure among the animals, the following were statistically significant based on univariable analysis: breed, gender, species, the origin of animals, history of abortion, disposal of aborted material, district, municipality, feeding system, feed storage and presence of cats in the farms (Table 4.3, 4.4 and 4.5).

Among the factors associated with biological characteristics of the animals (Table 4.3), breed ($\mathrm{OR}=4.34 ; 95 \% \mathrm{CI}=0.38-2.56 ; p=<0,01$) was statistically significant with the mixed breed (17.9%) of both sheep and goats showing more susceptibility to exposure followed by Boerbok (5.6\%) and White Dorper (5.9\%). Both Polled Dorset and Saanen breeds showed 0\% prevalence. Within the species $(\mathrm{OR}=2.27 ; 95 \% \mathrm{CI}=1.37-5.39 ; p=<0.01)$, sheep (20.1\%) showed more seropositivity than goats (10.9%). The gender ($\mathrm{OR}=9.57 ; 95 \% \mathrm{CI}=2.19-41.76$; $\mathrm{p}=<0.01$) of the animals was also a risk factor with pronounced seropositivity in females (15%) than in males (5.8%). Type of breeding ($\mathrm{OR}=7.34 ; 95 \% \mathrm{CI}=0.31-13.73 ; \mathrm{p}=0.04$) was also a risk factor with the animals that breed naturally having the highest risk that the ones that breed naturally (13.9%) and artificially by insemination (5.9%).

Table 4.3: Univariate risk factors associated with biological characteristics of the animals

Risk factors	n	No. of positive	Percentage $(\%)$	OR	95\% CI	p-value	
	1	7	2	28.5			
	1.2	1	0	0			
	2	137	15	10.9			
Age (years)	3.5	6	1	16.6			
	4	217	33	15.2			
	2.5	2	0	0	1.71	$0.6-3.3$	>0.05
	5	53	11	20.1			
	6	10	0	0			
Gender	4	0	0				
	Male	34	0	0			
	Female	405	61	15			

Species	Sheep	164	33	20.1	2.72	$1.37-5.39$	$<0.01^{* a}$
	Goats	275	30	10.9			
Type of	Natural	422	59	13.9	7.34	$0.31-13.73$	0.04^{*}
Breeding	Natural and AI	17	1	5.9			
	Boerbok	108	6	5.6			
	Dorper	18	0	0			
	Kalahari red	1	0	0			
	Mixed	291	52	17.9	4.34	$0.38-2.56$	$>0.01^{*}$
	Polled Dorset	2	0	0			
	Saanen	2	0	0			
	White Dorper	17	1	5.9			

$\overline{\mathrm{CI}: ~ c o n f i d e n c e ~ i n t e r v a l ; ~} n$: number of animals tested; No.: number of positive animals; OR:
Odds Ratio; *: statistically significant; AI: artificial insemination; ${ }^{\text {a }}$ based on chi-square
Origin of the animals $(\mathrm{OR}=2.76 ; 95 \% \mathrm{CI}=0.15-6.61 ; \mathrm{p}=<0.01)$ showed that it also plays a role in their exposure to T. gondii with animals bought from the local market and auction showing a higher seroprevalence (63.2%), followed by the ones bought on the local market and own breed (26.6%), local market (16.1%), then the ones bought on auctions (6.2%), and lastly, own breed with the showing the lowest seroprevalence (5.8\%) Animals with a history of abortion ($\mathrm{OR}=3.34 ; 95 \% \mathrm{CI}=1.55-7.20 ; p=<0.01$) showed a higher prevalence (24.7%), than those with no history of abortion (11.9\%) (Table 4.4). The disposal of aborted material (OR= 1.96; $95 \% \mathrm{CI}=0.43-1.16 ; p=<0.001$) from the animals had no significance in the animals' exposure to T. gondii infection with burying, burring and feeding the pets, burning the material, burning or burring the aborted material, burning or hanging on the tree or kraal, feeding to pets, those that get sent state veterinary service and animals that never aborted having a seroprevalence of $16.7 \%, 32.3,0 \%, 33.3 \%, 0 \%, 14.3 \%, 13.1 \%, 0 \%$, respectively (Table 4.4).

Different districts $(\mathrm{OR}=3.7 ; 95 \% \mathrm{CI}=3.27-14.79 ; p=<0.01)$ showed different in seroprevalence (Table 4.5), with Dr Ruth Segomotsi Mompati having the highest number of seropositive animals (21.6\%), followed by the Ngaka Modiri Molema (15.1\%), then Bojanala Platinum (5.2\%), and Dr Kennet Kaunda (3.3\%). Within municipalities (OR=3.66; 95\%CI= 1.84-7.27; $p=>0.01$), Naledi had the highest number of seropositive animals (52%), followed by Ramotshere Moiloa (40.9), Ratlou (36.2), Kagisano-Molopo (16.1\%), Moretele (7.3\%),

Maquassi Hills (5.6\%), Moses Kotane (5\%), Mahikeng (4.2\%), Greater Taung (3.2\%) and the lowest being JB Marks, Kgetlengriver, and Madibeng all with 0% seroprevalence. There was a higher prevalence (24%) from farms with the presence of cats $(\mathrm{OR}=3.46 ; 95 \% \mathrm{CI}=1.79$ 6.69; $\mathrm{p}=<0.01$) than the ones that did not have cats (10%). Feeding systems (OR=7.87; 95\% $\mathrm{CI}=2.95-21.01, \mathrm{p}=<0.01$) showed varying seroprevalence with the free and home-fed animals (21.1\%) having the highest seroprevalence, followed by the free grazing animals (17.9%), then free grazing and farm fed (2.3\%) and lastly, home fed (0%). Animals from farms where feed is stored $(\mathrm{OR}=21.0 ; 95 \% \mathrm{CI}=3.05-217.63 ; \mathrm{p}=<0.01)$ in a car garage, designated room, designated shack, storeroom, in the house and those that are not fed feed showed a seroprevalence of $17.9 \%, 3.9 \%, 5.6 \%, 17.9 \%, 42.9 \%$, and 18.7% respectively. The disposal of manure ($\mathrm{OR}=3.18 ; 95 \% \mathrm{CI}=0.06-1.05 ; \mathrm{p}=<0.01$) was a risk factor with the animals from farms who use the manure as a fertilizer having the highest seroprevalence (16.7%), followed by the ones that dispose it in the bins (13.6%), the one that never clean their kraals (4.2%), and that burry it in the soil had 0% seroprevalence. Age (OR=7.68; 95\%CI= 0.25-1.00; p=0.66), type of farm $(\mathrm{OR}=1.51 ; 95 \% \mathrm{CI}=0.96,2.39 ; \mathrm{p}=0.6)$, and water source $(\mathrm{OR}=0.49 ; 95 \% \mathrm{CI}=0.24-$ $1.00 ; \mathrm{p}=0.06$) were found to be insignificant to the animal's exposure to T. gondii infection (Table 4.3 and 4.5).

Table 4.4: Univariate risk factors associated with the origin and abortion history of the animals

Risk factors	n	No. of positive	Percentage $(\%)$	OR	95\% CI	p-value	
	Auction	112	7	6.2			
Origin of animals	Local market	174	28	16.1			
	Local market and auction	19	12	63.2			
	Own breed	104	6	5.8			
	Local market and	30	8	26.6			
	own breed	81	20	24.7	3.34	$1.55-7.20$	$<0.01^{* a}$
History of abortion	Yes	339	40	11.9			

CI: confidence interval; n : number of animals tested; No.: number of positive animals; OR:
Odds Ratio; *: statistically significant; AI: artificial insemination; ${ }^{\text {ab }}$ based on chi-square

Table 4.5 Univariate risk factors associated with the rearing environment of the animals

Risk factors		n	No. of positiv e	Percentag $\mathrm{e}(\%)$	OR	95\% CI	p-value
District	Bojanala	77	4	5.2			
	Platinum						
	Dr Kennet	30	1	3.3			
	Kaunda						
	Dr Ruth	88	19	21.6	3.7	3.27-14.79	<0.01*
	Segomotsi						
	Mompati						
	Ngaka Modiri	245	37	15.1			
	Molema						

$\left.\begin{array}{llccccccl}\hline & \text { Car garage } & 28 & 5 & 17.9 & & & & \\ & \text { Designated } & 128 & 5 & 3.9 & & & & \\ & \text { room }\end{array}\right)$

CI: confidence interval; n : number of animals tested; No.: number of animals tested; statistically significant; OR: odds ratio; ${ }^{\text {ab }}$ based on chi-square; CRF: commercial CNF: communal

4.4 Molecular detection

4.4.1 Amplification of universal ribosomal 18S RNA

Out of the 198 samples tested using universal 18S ribosomal RNA primers, 190 were amplified. This proved that our extraction method worked and that the samples had parasite DNA. An example of a gel picture with some of the tested samples is shown in figure 4.3.

Figure 4.3: Amplification of universal ribosomal 18S PCR products. Lane $\mathbf{1}$ is the DNA molecular weight ladder of 100 bp (New England Biolabs, Ipswich, MA, USA); lane 2 is the nuclease free water, a negative control; lane 3 to lane $\mathbf{1 1}$ are some of the tested samples.

4.4.2 Amplification of B1 gene

Out of the 198 samples tested using B primers with an expected size of 194 bp , none of them amplified. Figure 4.4 shows an example of some of the tested samples.

Figure 4.4: Amplification of 194 bp of B1 PCR products. Lane 1 to lane 4 are some of the tested samples; lane 5 is nuclease free water, a negative control; lane $\mathbf{6}$ is a T. gondii positive control; and lane $\mathbf{7}$ is a DNA molecular weight ladder of 100 bp (New England Biolabs, Ipswich, MA, USA).

4.4.3 Amplification of ribosomal T. gondii RNA (18S) gene

All the 198 samples tested by T. gondii 18S rRNA amplified using 18S rRNA primers did not amplify. A 0% molecular detection was recorded. Figure 4.5 shows an example of some of the tested samples.

Figure 4.5: Amplification of 88 bp ribosomal RNA 18S PCR products. Lane 1 is the DNA molecular weight ladder 100 bp of (New England Biolabs, Ipswich, MA, USA). Lane 2 is nuclease free water, a negative control; lane $\mathbf{3}$ and lane $\mathbf{4}$ are some of the diagnostic samples; lane $\mathbf{5}$ to lane $\mathbf{8}$ are T. gondii positive controls.

4.4.4 Sequencing of the universal 18S rRNA fragment for T. gondii confirmation

Four amplicons (\#7, \#45, \#48, and B1) from the amplified samples were sequenced. After sequencing, the sequences were edited and Blasted to confirm if they are T. gondii. The results of the Blast showed that they are eukaryotic DNA, not T. gondii or any other organism that causes reproductive illnesses and abnormalities in sheep and goats.

4.4.5 Correlation and agreement between the serological and molecular detection

The Cohen's kappa (k) test showed that there is an agreement of 50% and a fair correlation between the seropositivity (ELISA) and molecular detection (PCR) with a kappa of 0.33 as shown in table 4.6.

Table 4. 6: Correlation and agreement between serological (ELISA) and molecular detection (PCR) data

		PCR		Row marginals		Agreement	Cohen's Kappa
		Positive	Negative				
ELISA	Positive	61	126	187	rm^{1}	0.50	0.33
	Negative	0	187	187	rm^{2}		
Column	Marginals	61	313	374	n		
$\mathrm{cm}^{1} \quad \mathrm{~cm}^{2}$							

4.5 Sequence and phylogenetic analysis of the T. gondii B1 and GRA6 gene sequences

4.5.1 Toxoplasma gondii B1 gene sequence analysis for 803 bp fragments

Single nucleotide polymorphism was found in 29% ($7 / 24$) of the analysed gene sequences from Mexican sheep isolates, as shown in Appendix E with SNPs highlighted in red. The SNPs were at position 506 in isolate Tecuanillo178, at positions 574, 616, and 667 in isolate EIReal11, at position 581 in isolate ElReal109a, at position 525 in isolate Camelalote106, at position 228 in isolate Estacion98 and at the same position (132) on isolate Camalote102b and Estacion101b. These isolates did not show pronounced differences in their SNPs position, which is not surprising given they are from the origin and species. Appendix H contains a list of the analysed isolates, their assertion numbers, as well as the host and country from which they were isolated.

4.5.2 Toxoplasma gondii B1 gene sequence analysis from fragment sizes of between 300 to 1000 bp that were trimmed and aligned

As shown in Appendix F with yellow (absent sequences) and red (SNPs) highlighted colors, SNP we identified in 46% (38/83) of the analysed isolate sequences. Isolate TgCatAu_7 from a cat in Australia had absent sequences from position 50 until position 110 and it was the only isolate with absent sequences. This isolate exhibited a distinction from the rest of the isolate, even the ones that were isolated from the same species in Australia as it was the only one with absent codons at these positions.

Isolate Estacion98 from sheep in Colima, Mexico had SNP at position 16, isolate Camolote 102b from sheep in Michoacan, Mexico had it at position 222, isolate Estacion101b from sheep in Colima, Mexico had it at position 126, isolate 16A from sheep in Iran, at positions 396, 325, 331 and 396, sheep isolates 1A, 2A, 16A, and 26 from Camel in Iran all had it at position 325, isolate CR34 from California mussel in the USA had them at positions 187, and 354, isolate SR217 from California mussel in the USA at positions 199 and 325, isolate 2A from sheep in Iran at positions 287 and 237, isolate 25 from Camel in Iran had them at position 187. The Iranian sheep and camel isolates had SNPs at the same position which could be mean they are the same strain. This was the same observation from all the sheep although they are not of the same origin which could be an indication of them being affected by a strain that is most isolated in sheep.

Isolate SR231 from California muscle in California, isolate SR222 from California muscle in USA, TGK-KLK-365-IMNO from an Ixodes ricinus tick in Poland, and isolate SR222 from California muscle in the USA, all had them at position 187, 45, and 199, respectively. Isolate

TGK-KLR-IMNO from an Ixodes ricinus tick had them at positions 39 and 452, isolate 781-L-IMNO also from an Ixodes Ricinus tick in Poland had them at positions 4, 35, 452, and 472, isolate 782-L-IMNO from an Ixodes ricinus tick in Poland had them at positions 4, 35, 452, and 472 , and at positions $118,119,199$, and 243 in isolates of the Ixodes ricinus tick from Poland (TGK-KLR-625-IMNO, TGK-KLR-631-IMNO, TGK-KLR-583-IMNO, and TGK-KLR-610-IMNO). The Ixodes ricinus ricks and the California muscle isolates indicate a possible relation as they show SNPs at the same positions.

The SNP was also identified from black bears isolate 220 from the USA had it at position 325, while isolate 222 had them at positions 325,396 , and 459. Isolate TGK-KLR-983-IMNO from an Ixodes ricinus tick in Poland had them at positions 402, 325, and 234, isolate TGK-KLR-744-IMNO had them at positions 452, 456, and 471, and isolate TGK-KLR-836-IMNO had SNPs at positions 452, and 471. Clones from Iran: clone SY5 from sheep had SNP at position 402, clone CG21 from chicken had it at position 187, clone SY4 from sheep had it at positions 234, and 325, while clones SY12 from sheep and clone CQ7 from cattle both had it at the same position (325). It is interesting to note that there are SNP positions shared among these isolates although they were isolated from different species originating from different countries. The isolates from Iran also present with SNPs at different locations, except for cow for the cow and sheep isolate. Appendix I contains a list of the isolates and/or clones, their assertion numbers, as well as the hosts and countries from which they were isolated.

4.5.3 Toxoplasma gondii B1 gene sequence analysis from fragment sizes of between 300 to 1000 bp that were trimmed and aligned

As shown in the sequences marked in red (SNPs) and yellow (absent sequences) in Appendix G, SNPs and absent sequences were found in 83% (63/76) and 80% (61/76) of the isolates' analysed GRA6 gene sequences, respectively. Apart from isolates $\mathrm{TgCoP} 02, \mathrm{TgCoP} 03$, and TgCo 04 from coyotes in the United States, isolate TgA18001 from a Jaguar in French Guiana, isolate TgSoUs 14 from sea otter in the USA, isolate TgBobcatMS1 from a cat in Mississippi, and isolates (TgWolfMN11, TgWolfMN12, TgWolfMN13, TgWolfMN19, TgWolfMN25, TgWolfMN26, TgWolfMN27, TgWolfMN28 and TgWolfMN29) from grey wolves, all the sequences had absent sequences from position 272 to position 274 . On isolate $\operatorname{TgA105037}$ from chicken in Gabon, sequences were absent from positions 241 to 303. All Turkish cat isolates (TgCatTr_ Izmir02, TgCatTr_ Izmir03, TgCatTr_ Izmir06, TgCatTr_ Izmir09, TgCatTr_Izmir11, TgCatTr_Izmir12, TgCatTr_ Izmir18, $\mathrm{TgCatTr}_{-}$Izmir29, $\mathrm{TgCatTr}_{-}$

Izmir20, and TgCatTr_Izmir22) showed SNPs at the same locations, at positions 21 and 89 and 151, respectively. The grey wolf isolates TgWolfMN11, TgWolfMN12, TgWolfMN13, TgWolfMN19, TgWolfMN25, TgWolfMN26, TgWolfMN27, TgWolfMN28 and TgWolfMN29 from the USA had SNPs at position 75, 126, 142, 279, 401, and 423, respectively, except for isolate TgWolfMN20, which had additional SNPs at locations 21, 86, $151,319,544,559$, and 597 in addition to the same SNPs at positions 126 and 146 shared with the other isolates.

Isolates TgCkPr 01 (chicken), TgCkPr 02 (chicken), TgCkPr 04 (chicken), TgCkPr 16 (chicken), TgPiPr02 (pig), TgCkPr14 (pig) from Portugal all had SNPs at the same positions (21, 319, 544, 597 and 599), except for isolates TgPiPr 05 (pig) and TgCkPr 03 (chicken) which only had them at position 21 and 151. Gabon isolates TgA105001 (chicken), TgA105002 (chicken), TgA10511 (goat), TgA105015 (chicken), TgA105016 (chicken), TgA105018 (chicken), and TgA105043 (chicken) shared SNPs at locations 21, 86, 319, 544, 559, and 597. (chicken). Additionally, position 150 was shared by isolates TgA18005, TgA05002, TgA105043, and TgA105001. Compared to the other isolates, TgA32129 (sheep) only had SNPs at positions 21 and 279. The SNPs for the USA coyotes isolate $\mathrm{TgCoPa} 02, \mathrm{TgCoPa} 03, \mathrm{TgCoPa} 04$, and TgCoPa 07 were located at positions $75,126,273,279$, and 401, respectively. French Guiana isolate TgA18001 (jaguar) had SNPs at positions 75,126, and 279, while isolate TgA105002 (grison) had them at positions 21, 151, 151, 319, 544, 559, and 562. Again, we see isolatesfr Iranian isolate 4A (goat) had SNPs at positions 21,151, 287, and 319, isolate 22 (camel) had them at positions 59, and 151 , isolate 7 B (sheep) at positions 21,89 , and 151 , isolate 5 A (sheep) at positions $21,51,89,287$, and 319 , isolate 5 B (sheep) at positions 89 , and 151 , isolate 11 (sheep) at positions $51,89,287,319,559$, and $579,22 \mathrm{R}$ (sheep) at positions $21,89,151$, and 319 , lastly isolate 16A (sheep) at positions 21, 59, 151, 421, and 510. Appendix J contains a list of the isolates/clones, their assertion numbers, the host, and the countries from which they were isolated.

In this analysis, we saw similarities in SNPs position from isolates isolated from the same species of the same origin. This is interesting since it indicates that the strains of these isolates are not species specific.

4.5.4 Phylogenetic relationship of T. gondii B1 gene from 803 bp sequences

Figure 4.6 shows the phylogenetic relatedness of sheep from Mexican sheep isolates that resulted from trimming and alignment of gene sequences from various countries and species
that were retrieved from the GenBank based on B1 gene sequence (803 bp) (https://www.ncbi.nlm.nih.gov/). Despite being from different parts of Mexico, the majority of isolates clustered (cluster 2) together in the phylogenetic tree, suggesting high sequence similarity. Although isolate Camalote102b and Estacion101b are not from the same state, they formed their own cluster (cluster 1), suggesting they are more related than the rest of the isolates.

Figure 4.6: Phylogenetic tree of T. gondii B1 gene (803 bp fragments). The Neighbor-Joining approach was used to infer the evolutionary history (Saitou and Nei, 1987). The bootstrap consensus tree produced from 1000 repeats is supposed to represent the evolutionary history of the taxa under consideration (Felsenstein, 1985). Branch collapse occurs for partitions repeated in less than 50% of bootstrap repetitions. The percentage of duplicate trees in the bootstrap test (1000 iterations) where the associated taxa clustered together is shown next to the branches (Felsenstein, 1985). The evolutionary distances, which are measured in terms of the number of base substitutions
per site, were calculated using the Maximum Composite Likelihood method (Tamura, Nei and Kumar, 2004). There were 24 nucleotide sequences in this investigation.

4.5.5 Phylogenetic relationship of T. gondii B1 gene sequences ranging from 300 bp to 1000 bp that we trimmed and aligned

Figure 4.7 shows phylogenic relatedness from isolates/clones from various countries and species from trimmed and aligned T. gondii B1 sequences ranging from 300 to 1000 bp retrieved from GenBank (https://www.ncbi.nlm.nih.gov/). Following the construction of the phylogenic tree, the isolates were grouped into 7 clusters. The first cluster was composed of isolates 220 and 222 from American black bears, isolate SR217 from California muscle, isolate 26 from Iranian camel, isolates 1A, 16A, and 16B, clones SY12 and SY4 from Iranian sheep, and clone CQ7 from Iranian cattle. Within cluster 1, isolate 1A, 16A, 16B, 24A, 220, 222, SR217, and clones SY4 and SY12 all formed a sub-cluster. Cluster two formed from isolates. Iranian chicken clone CG19, Iranian goat clones GQ2, GQ3, GY3, and GY4, and isolates 4B and 15B, as well as Iranian camel isolate 22 all contributed to the formation of cluster 2. Cluster 2 also included the Iranian sheep isolates 28B, 22A, 5A, and clones SY3 AND SY5. ElReal109a, ElReal111, Tecuanillo174, Tecuanillo175, Tecuanillo177, Tecuanillo178, Tecuanillo179, Coalatilla 170, Coalatilla 173, StaRosa114, Estacion98, Juluapan110, and Estacion101a are sheep isolates from Colima, Mexico, making up the second cluster. Cluster 2 was similarly produced by an isolate of Camolote106 from sheep in Michoacan, Mexico. Iranian chicken clone CG19, Iranian goat clones GQ2, GQ3, GY3, and GY4, and isolates 4B and 15B, as well as Iranian camel isolate 22 all contributed to the formation of cluster 2. Cluster 2 also included the Iranian sheep isolates 28B, 22A, 5A, and clones SY3 AND SY5, as well as clone D from duck and CY2 cattle both from Iran. Isolate ElReal109a, ElReal111, Tecuanillo174, Tecuanillo175, Tecuanillo177, Tecuanillo178, Tecuanillo179, Coalatilla 170, Coalatilla 173, StaRosa114, Estacion98, Juluapan110, and Estacion101a are from sheep isolates in Colima, Mexico, making up the second cluster. Cluster 2 was similarly produced by an isolate of Camolote106 from sheep in Michoacan, Mexico. Ixodes ricinus tick isolated from Poland, isolate TG-KLR-583-IMNO, TG-KLK-1018-IMNO, TG-KLK983-IMNO and TF-KLK-720-IMNO, TG-KLK-720-IMNO, TG-KLK-830-IMNO, TG-KLK-555-IMNO, TG-KLK-365-IMNO, and TG-KLR-625-IMNO formed part of cluster 2. Australian cat isolates TgCatAu_6 and TgCatAu_8 were the final isolates making up cluster 2. Clone CG21 from Iranian chicken, isolate 25 from Iranian camels, isolate SR231 from California muscle, and
isolate CR34 from California muscle made up the third cluster. Both muscles isolates and subclustered under the third cluster. Sheep isolates Camalote102b from Michoacan and Estacion101b from Colima, both in Mexico, formed Cluster 4. Isolates from the Polish Ixodes ricinus $836-\mathrm{L}-\mathrm{IMNO}$, 774-L-IMNO, 782-L-IMNO, and 781-L-IMNO collectively formed cluster 5, with isolates 836-L-IMNO and 774-L-IMNO forming subcluster 5.1 and isolates 782-L-IMNO and 781-L-IMNO forming subcluster 5.2. Isolates TG-KLR-610-L-IMNO and SR222 from California muscle, California, as well as the Polish isolates TG-KLR-631-LIMNO and TG-KLR-610-L-IMNO of Ixodes ricinus formed Cluster 6. Three isolates, SR215 from California muscle, TgCatAu_7 from an Australian cat, and C-F-TG-56 from a South Korean cat formed the final cluster, cluster 7, which also formed subcluster 7.1 with TgCatAu_7 and C-F-TG-56.

Figure 4.7: Phylogenetic tree of T. gondii B1 gene from trimmed fragment sizes of 300 to 1000 bp sequences. The Neighbor-Joining approach was used to infer the evolutionary history (Saitou and Nei, 1987). The bootstrap consensus tree produced from 1000 repeats is supposed to represent the evolutionary history of the taxa under consideration (Felsenstein, 1985). Branch collapse occurs for partitions repeated in less than 50\% of bootstrap repetitions. The percentage of duplicate trees in the bootstrap test (1000 iterations) where the associated taxa clustered together is shown next to the branches (Felsenstein, 1985). The evolutionary distances, which are measured in terms of the number of base substitutions per site, were calculated using the Maximum Composite Likelihood method (Tamura, Nei and Kumar, 2004). There were 83 nucleotide sequences in this analysis.

4.5.6 Phylogenetic relationship of \boldsymbol{T}. gondii GRA 6 gene isolates

The phylogenic tree shown in figure 4.8 illustrates relatedness based on GRA6 gene sequences that vary in length from 400 base pairs to 1000 base pairs that were retrieved from GenBank from isolates from different countries and species. Six clusters were formed through the construction of the phylogenic tree. The chicken isolates $\operatorname{TgA105015,~} \operatorname{TgA105016}$, and $\operatorname{Tg} A 105018$ from Gabon formed cluster 1 together with isolate TgPiPr 02 and TgPiPr 14 from pigs in Portugal, isolate TgA105011 from a goat in Gabon, isolate TgFoxPa03 from a red fox in Portugal, TgCkPr 04 from a chicken in Portugal, TgWolfMN20 from a grey wolf in the USA, and finally, pig isolates from Portugal TgCKPr01, TgCKPr02, TgCKPr04, and TgCKPr16. Isolates TgWtdUs10 from a white-tailed deer from the USA and TgA18005 from a Grison in French Guiana formed cluster 2. Cluster 3 formed from 3 isolates (TgA105002, TgA105043 and $\operatorname{TgA105001}$) from chicken in Gabon, with isolate $\operatorname{TgA105043}$ and $\operatorname{TgA105001}$ forming subcluster 3.1.

Cluster 4 was made up of the Iranian sheep isolates $5 \mathrm{~A}, 8 \mathrm{~A}$, and 11 , as well as the red fox isolate TgFoxPa06 and the sheep isolate Tgshir2 from Mashhad, Iran. Isolate 5A and 8A formed a subcluster, while isolate 11 formed subcluster 4.1 with Tgshir2. Gray wolf isolates TgWolfMN11, TgWolfMN12, TgWolfMN13, TgWolfMN19 TgWolfMN25, TgWolfMN26, TgWolfMN27, TgWolfMN28, and TgWolfMN29 from the USA all clustered under cluster 5. Additionally, grouped under cluster 5 were the isolates TgA105037 from chickens in Gabon, TgA18001 from a jaguar in French Guiana, TgBobcatMS1 from a cat in Mississippi, USA, and TgSoUs14 from a coyote in the USA. Within cluster 5, isolates TgWolfMN11 and TgBobcatMS1 formed subcluster 5.1. Cluster 6 was the final cluster, and it included the chicken isolates TgA32129, TgA105051, TgA105053, TgA105003, and TgA105004 from Gabon, as well as the isolates TgCkPr 03 TgCkPr 11 from chicken in Portugal, TgFoxPa10 from red fox in the USA, TgPiPr 09 and TgPiPr 13 from pigs in Portugal, and $\mathrm{TgCoPa} 01, \mathrm{TgCoPa} 07$
and TgCoPa 08 from a coyote in the USA. Cat isolates TgCatTR Izmir02, TgCatTR Izmir03, TgCatTR Izmir06, TgCatTR Izmir09, T TgCatTR Izmir02, TgCatTR Izmir11, TgCatTR Izmir12, TgCatTR Izmir18, TgCatTR Izmir19, and TgCatTR Izmir22 from Turkey, isolates KM from Chinese cat, TgWtdUs08 from white-tailed deer, isolate 5B from Iranian sheep, TgA32129 from Gabon sheep, and TgA32129 from France sheep also clustered under cluster 6. The Iranian camel isolates (isolates 22 and 24) were also in cluster 6.
94 T. gondii isolate TgA105016 Chicken Gabon (KU599078.1)
94 T. gondii isolate TgA105015 Chicken Gabon (KU599077.1)
${ }_{93}$ T T. gondii isolate TgA105011 Goat Gabon (KU599079.1) T. gond isolate TgA105018 Chicken Gabon (KU599080.1
${ }_{93}^{93}$ gondil isolate TgWolfMN20 Gray wolf USA (KU599108.1)
${ }_{93}{ }_{9}{ }^{-}$ T. gondii isolate TgPiPr02 Pig Portugal (KU599132.1)

- T. gondii isolate TgCkPr02 Chicken Portugal (KU599134.1)
${ }_{93}$ T. gondii isolate TgCkPr02 Chicken Portugal (KU599134.1)
— T. gondii isolate TgPiPr14 Pig Portugal (KU599136.1)
90 T. gondii isolate TgCkPr04 Chicken Portugal (KU599137.1)
${ }_{63}$ T. gondii isolate TgA18005 Grison French Guiana (KU599092.1) $\}$ Cluster 2
T. gondii isolate TgA105002 Chicken Gabon (KU599090.1)
${ }_{61}^{61}\left[\begin{array}{l}\text { T gondii isolate TgA105043 Chicken Gabon (KU599089.1) } \\ \text { T. gondii isolate TgA105001 Chicken Gabon (KU599088.1) }\end{array}\right]$
Cluster 3 T. gondii isolate 4A Goat Iran (KU672651.1)
${ }_{54}$ T. gondii isolate 5A Sheep Iran (KU672648.1)
${ }^{-1}$ T. gondii isolate 8A Sheep Iran (KU672643.1)

- T. gondii isolate TgA105037 Chicken Gabon (KU599084.1) T. gondii isolate TgWolfMN19 Gray wolf USA (KU599113.1)
T T. gondii isolate TgA18001 Jaguar French Guiana (KU599093.1T. gondii isolate TgSoUs14 Sea otter California (EU180622.1) T. gondii isolate TgCoPa 03 Coyote USA (KU599128.1) - T. gondii isolate TgCoPa 02 Coyote USA (KU599127.1)
\qquad T. gondii isolate TgWolfMN25 Gray wolf USA (KU599119.1) - T. gondii isolate TgWolfMN12 Gray wolf USA (KU599111.1)
- T. gondii isolate TgWolfMN26 Gray wolf USA (KU599116.1)
- T. gondii isolate TgWolfMN28 Gray wolf USA (KU599115.1)
T. gondii isolate TgWolfMN13 Gray wolf USA (KU599114.1)
64 [T. gondii isolate TgWolfMN29 Gray wolf USA (KU599112.1)
${ }_{64}$ [T . gondii isolate TgWolfMN11 Gray wolf USA (KU599111.1)
gondii isolate TgBobcatMS1 Cat Mississippi USA (KY364199.
Subcluster 5.1
- T. gondii isolate TgA32129 Sheep France (KU599076.1) T. gondii isolate TgA105051 Chicken Gabon (KU599081.1) T. gondii isolate TgA105053 Chicken Gabon (KU599082.1)
— T. gondii isolate TgA105004 Chicken Gabon (KU599083.1) T. gondii isolate TgA105003 Chicken Gabon (KU599085.1) T. gondii isolate TgCoPa 08 Coyote USA (KU599121.1) T. gondii isolate TgFoxPa10 Red fox USA (KU599124.1) T. gondii isolate TgCkPr03 Chicken Portugal (KU599138.1) T. gondii isolate TgPiPr13 Pig Portugal (KU599141.1) - T. gondii isolate TgCatTr Izmir06 Cat Turkey (KU599144.1) - T. gondii isolate TgCatTr Izmir18 Cat Turkey (KU599147.1) T. gondii isolate TgCatTr Izmir02 Cat Turkey (KU599150.1) T. gondii isolate TgCatTr Izmir20 Cat Turkey (KU599153.1)
T. gondii isolate 24 Camel Iran (KU672652.1)
- T. gondii isolate 5B Sheep Iran (KU672647.1)
- T. gondii isolate TgCatTr Izmir19 Cat Turkey (KU599152.1)
- T. gondii isolate TgCatTr Izmir11 Cat Turkey (KU599149.1)
T. gondii isolate TgCatTr Izmir22 Cat Turkey (KU599145.1)
— T. gondii isolate TgPiPr09 Pig Portugal (KU599143.1)
Cluster 6
Cluster 5
\qquad

教

— T. gondii isolate TgA32129 Sheep Gabon (KU599076.1).

- T gondii isolate TgWTDPa06 White-tailed deer USA (KU599129.1)
T. gondii isolate TgCoPa 01 Coyote USA (KU599123.1)
— T. gondii isolate TgWtdUs08 White-tailed deer USA (KU599110.1)
- T. gondii isolate 22R Sheep Iran (KU672645.1)
- T. gondii isolate 16A Sheep Iran (KU672644.1)
— T. gondii isolate 22 Camel Iran (KU672650.1)
- T. gondii isolate 7B Sheep Iran (KU672649.1)
T. gondii isolate KM Cat China (KX781158.1)
T. gondii isolate TgCatTr Izmir03 Cat Turkey (KU599151.1)
T. gondii isolate TgCatTr Izmir12 Cat Turkey (KU599148.1)
- T. gondii isolate TgCatTr Izmir09 Cat Turkey (KU599146.1)
- T. gondii isolate TgCkPr11 Chicken Portugal (KU599142.1)
T. gondii isolate TgPiPr05 Pig Portugal (KU599140.1)
- T. gondii isolate TgCoPa07 Coyte USA (KU599125.1)
T. gondii isolate TgCoPa05 Coyote USA (KU599122.1)
— T. gondii isolate TgA105052 Chicken Gabon (KU599086.1)
- T. gondii isolate TgA32109 Sheep France (KU599075.1)

Figure 4.8: Phylogenic tree of T. gondii GRA6 gene sequences. The Neighbor-Joining approach was used to infer the evolutionary history (Saitou and Nei, 1987). The bootstrap consensus tree produced from 1000 repeats is supposed to represent the evolutionary history of the taxa under consideration (Felsenstein, 1985). Branch collapse occurs for partitions repeated in less than 50% of bootstrap repetitions. The percentage of duplicate trees in the bootstrap test (1000 iterations) where the associated taxa clustered together is shown next to the branches (Felsenstein, 1985). The evolutionary distances, which are measured in terms of the number of base substitutions per site, were calculated using the Maximum Composite Likelihood method (Tamura, Nei and Kumar, 2004). There were 76 nucleotide sequences in this analysis.

CHAPTER 5

DISCUSSION

In many farms across the world, reproductive diseases like toxoplasmosis have a significant impact on animal production in sheep and goats, and many instances go unnoticed within the herd, resulting in unforeseen and unexplained abortions, foetal and new-borns deaths (Dubey et al., 2020). In other cases, these diseases cause recurrent illnesses in the herds, resulting in low reproductive output over time, which becomes a thorn in the herds' economic sustainability. Various diagnostic and screening methods can be used to evaluate sheep and goats' seroprevalence of toxoplasma-specific IgG antibodies. Furthermore, there is no universally recognized T. gondii reference material against which different diagnostic and screening tests can be compared (Ahmad et al., 2015). In addition to determining the prevalence and risk assessment of toxoplasmosis in commercial and communal sheep and goats in the NW province and its occurrence in the FS province, the objective of this study was to also compare and evaluate the variation in the B1 and GRA gene sequences from isolates deposited in the GenBank as well as their phylogenetic relationships. This is, as far as we know, the first study of its kind on sheep and goats in the study areas.

5.1 Overall seroprevalence

The Seroprevalence of T. gondii in sheep and goats has been reported throughout the world, as well as in Africa, and in Gauteng, Free State, KwaZulu-Natal and in the Eastern and Western Cape provinces of South Africa (Samra et al., 2007; Hammond-Aryee, Van Helden and Van Helden, 2015; Tagwireyi, Etter and Neves, 2019). In this study, the overall seroprevalence of T. gondii in sheep and goats of the North West province was found to be 13.9% using an ELISA test, with sheep (19.5\%) having a higher seroprevalence than goats (10.5\%). This could be attributed to the fact that sheep have more likelihood of contracting infection from the pasture and soil since they graze near the ground, whereas goats prefer browsing, reducing their chances of coming into contact with oocysts in the pasture and soil (Bentum et al., 2019). The seroprevalence in sheep found in this study is higher than the 8% found in the Western Cape and the 4.3% (ELISA) and 5.6% (IFAT) (Samra et al., 2007). Although both studies were conducted in South Africa, the difference in detected seroprevalence could be due to a variety of factors, including the type of farming systems (communal vs. commercial), the geo-climatic conditions as it is colder in the Western Cape compared to the North West which is warmer, and, most importantly, the serological tests used (ELISA vs. IFAT) due to different sensitivities
(Hove, Lind and Mukaratirwa, 2005; Ishaku et al., 2018; Tagwireyi, Etter and Neves, 2019). A study conducted in the Eastern Cape found a seroprevalence of 64.46% and 53.9% for sheep and goats respectively, which is higher than the one found in this study (Tagwireyi, Etter and Neves, 2019). The higher seroprevalence in the Eastern Cape might be attributed to the fact that is much more humid in the coastal and the humidity promotes the viability of T. gondii oocysts compared to the dry semi-desert climate in the North West province (Fayer, 1981; Hammond-Aryee, Van Helden and Van Helden, 2015; Ibrahim, 2017).

An overall seroprevalence of 67.2% using IFAT was found in sheep and goats in Zimbabwe ,which is almost 5 times higher than the one found in this study (Hove, Lind and Mukaratirwa, 2005). The vast difference in the seroprevalence between the two studies might be influenced by factors such as location (Zimbabwe vs. North West province), farm management system (communal vs. commercial and communal), a period when the samples were collected (the year 1999-2000 vs. the year 2019-2021), and serological test that is used (IFAT vs. ELISA). These factors have an influence on the exposure of the animals to T. gondii infections (Kamani, Mani and Egwu, 2010; Andrade et al., 2013; Hoda et al., 2015; Areshkumar, Divya and Yasotha, 2018; Bentum et al., 2019). The seroprevalence of goats in neighbouring Botswana was 10% using IHAT, which matches the seroprevalence of goats identified in this study (Sharma et al., 2003). This could be because they are both dry semi-desert regions, which is not conducive to long-term oocyte survival. In studies conducted in other African countries, the seroprevalence of sheep and goats was found to be, 17.68% using DAT, 30.5% using ELISA, 5.7% using ELISA, 18.8% using ELISA, 37.4% using MAT in Ethiopia, Ghana, Nigeria (Borno), Algeria, and Tunisia, respectively (Van Der Puije et al., 2000; Kamani, Mani and Egwu, 2010; Sharif et al., 2017; Abdallah et al., 2019; Al Hamada et al., 2019; Lachkhem et al., 2021a). Nigeria's seroprevalence is lower than the study's average and that of the rest of Africa. This could be explained by the fact that the study was only conducted in Borno state, which is just one of the 36 states in Nigeria. The variations in seroprevalence between African countries could be attributed to climatic differences, with arid areas having a lower rate of seroprevalence (Samra et al., 2007; Julie et al., 2019).

In Asia, a systematic review and meta-analysis conducted in China showed a sheep seroprevalence of 8.5%, where different serological techniques were used and are lower than the results of this study (Wang et al., 2021). Iran had a seroprevalence of 9.7% for sheep, using MAT which is consistent with the findings of this study, although the investigations utilised different tests (Raeghi, Akaberi and Sedeghi, 2011). Thailand observed a seroprevalence of
27.9% using LAT in goats, which is 3 times greater than what was found in this study (Jittapalapong et al., 2005). Thailand is a tropical country, and the humidity and moisture are known to help oocysts survive longer, increasing the likelihood of infection (Innes, 2010; Ibrahim, 2017).

In Europe, the seroprevalence of sheep and goats in Romania was reported to be 50.64% and 75% using ELISA, respectively (Hotea et al., 2021). Because Romania is humid compared to the dry North West, climatic differences are known to play a role in variations between the two regions with increased seroprevalence in humid regions (Hotea et al., 2021). The seroprevalence found in the sheep and goats of Greece was using ELISA was 48.6% and 30.7%, respectively, which is higher than what was found in this study (Tzanidakis et al., 2012). Belgium reported a seroprevalence of 87.4% using ELISA, ten times more than what was found in this study (Verhelst et al., 2014). A seroprevalence of 56.6% for sheep using ELISA was found in Scotland (Katzer et al., 2011). This is two times the seroprevalence found in this study and the same range as the seroprevalence found in the Eastern Cape province, South Africa which used ELISA (Tagwireyi, Etter and Neves, 2019).

Seroprevalence in sheep in American countries like Argentina, Brazil, Colombia and Costa Rica was 17.3% using IFAT, 30.2% using IFAT, 23.5% using ELISA, and 41.1% using ELISA, respectively (Guimarães et al., 2013b; Hecker et al., 2013; Villagra-Blanco et al., 2019a; Martínez-Rodriguez, Tafur-Gómez and Guzman-Barragan, 2020a). The seroprevalence found in Colombia and Argentina agrees with the findings of this study, with Costa Rica having the greatest seroprevalence. The discrepancy in seroprevalence between the results obtained in this study and those obtained in the American countries could be due to the different climatic conditions and serological assays used (IFAT vs ELISA) (Villagra-Blanco et al., 2019b). Further studies using ELISA have found seroprevalence on the Caribbean islands to be 67%; 58%, in Dominica, 48\%; 57\% in Grenada, 89%; 80\% in Montserrat, 57%; 42\% in St. Kitts and Nevis in sheep and goats respectively (Hamilton et al., 2014). In Norwegian dairy goats, a seroprevalence of 17% using DAT was discovered, which was higher than the results reported in this study for goats (Stormoen, Tharaldsen and Hopp, 2012). The results of the varying seroprevalence could have been influenced by the different assays (ELISA vs DAT) used in the studies (Martínez-Rodriguez, Tafur-Gómez and Guzman-Barragan, 2020b). The Caribbean islands had a higher seroprevalence for both sheep and goats compared to the one found in this study and agree with the one reported by Tagwireyi, Etter and Neves, 2019 in the Eastern Cape province. In comparison to the dry North West region, the islands and the Eastern Cape
province provide a warm and humid environment suitable for long-term survival of oocysts (Dubey et al., 1990). Our findings provide the first evidence of T. gondii infections in communal and commercial sheep and goats of the North West province.

5.2 Risk factors

The association of toxoplasmosis with the biological characteristics of animals has shown that species and breed can influence the exposure of sheep and goats to the disease infection (Arwa Lachkhem and Wahiba Sakly, 2015). In the Univariate analysis, seropositivity was found to be higher in sheep than in goats and it was also higher in the mixed breeds of both sheep and goats. The difference in seroprevalence between the two species is attributed to the fact that sheep are grazers who eat short grasses and clovers near the soil, whereas goats are natural browsers who consume leaves and twigs from taller bushes and shrubs, making them more likely to encounter oocysts (Hamilton et al., 2014; Stelzer et al., 2019). Mixed-bred animals are more likely to be infected than pure breeds due to inbreeding, thus altering the genetic make-up of the animals resulting in the animals being easily susceptible to infections as a result of weaker altered genetic make-up from inbreeding (Webster, 2010; Chaklu et al., 2020). The history of abortion was found to play a role in animal exposure to T. gondii with those who have a history of abortion having higher seropositivity (24.7%) than those who had not (11.9\%). Primary infection with T. gondii during the first or second trimester of pregnancy is linked to abortions in sheep, whereas primary infection during the later stages of pregnancy results in the birth of lambs with congenital infection (Rodger et al., 2006; Katzer et al., 2011). Although farmers did not give information about the stage of pregnancy in which these abortions occur, this confirms that animals were exposed to T. gondii which might have played a role in these abortions. These findings provide further support for previous studies that reported T. gondii as a predisposing factor for abortions in sheep and goats (Sharma et al., 2003; Buxton et al., 2006; Rodger et al., 2006; Franco et al., 2011). Animals from farms where aborted material was buried and fed to pets had a higher seropositivity rate (41.9\%) than those from farms where it was burned (0%) and sent to the state veterinarian (0%), implying that disposal of aborted material played a role in the exposure. The pets can acquire T. gondii infection if they dig up and eat the buried material, or if they are fed the aborted material, which then contaminates the animals' water, pastures, and soil, exposing the rest of the farm's animals to the oocysts that may be present. Those who are burned ensure that the cysts are burned alongside the aborted
material, while those who are sent to the state veterinarian limit exposure by not contaminating the farm environment. A similar study conducted in Botswana found the disposal of aborted material to be significant in the exposure of sheep and goats to toxoplasmosis (Sharma et al., 2003).

Since small ruminants are herbivorous, their principal source of T. gondii contamination is felids and oocysts shed in the environment. Therefore, the presence of other wild felids that may be shedding oocysts into the environment may pose a risk of transmission to small ruminants (Dubey et al., 2021). This renders the environmental or rearing factors associated with the exposure of the animals to the disease important. The main identified risk factors were the district municipality, the local municipality, the presence of cats on the farms, and the disposal of manure. Analysis of epidemiological data shows that on most farms in the study areas, cat activities are not monitored and are free to roam around the farms and have access to pastures, pens, and stables. As a result, oocyst shedding is widespread, increasing the risk of T. gondii infection. Since cats tend to bury their faeces, having access to feed storage facilities raises the potential for contamination; these sites are excellent for such unpleasant feline activities. This finding is comparable to that of other studies that found an increase in seropositivity with the presence of cats on farms (Dubey, 2009b; Tagwireyi, Etter and Neves, 2019; Adesiyun et al., 2020).

Dr Ruth Segomotsi district municipality had the highest seropositivity among the district municipalitiess (21.6\%), while Dr Kenneth Kaunda district municipality had the lowest (3.3\%). Within local municipalities, Naledi had the highest seropositivity (52\%) while JB Marks, Kgetlengrivier and Madibeng local municipalities had no seropositive animals (0\%). Dr Ruth Segomotsi district municipality is the largest district municipality in the North West province with the poorest rural areas, and Naledi local municipality falls within this district municipality, meaning they have more communal farms than commercial, and the higher seropositivity could be attributed to the fact that most of these farmers tend to not know about reproductive diseases like toxoplasmosis which might lead to poor hygiene practices in their farms to which cats have easy access (Martínez-Rodriguez, Tafur-Gómez and Guzman-Barragan, 2020b). In comparison to Dr Ruth Segomotsi district municipality, Dr Kenneth Kaunda district municipality only has commercial farms with farmers who tend to be more knowledgeable about reproductive diseases like toxoplasmosis and who have good hygiene practices on the farms as they are farming for profit (Stelzer et al., 2019). These good hygiene practices therefore, prevent the attraction of cats to their farms as they have rodent controls, which are
the main attraction of cats, reducing the shedding of oocysts by cats, and thus reducing the exposure of animals (Hamilton et al., 2014; Ibrahim, 2017). These findings are in agreement with the ones reported in other studies where there was higher seropositivity in sheep and goats on communal than commercial farms (Hove, Lind and Mukaratirwa, 2005; Tagwireyi, Etter and Neves, 2019). The 0% seropositivity in JB Marks, Kgetlengrivier, and Madibeng local municipalities could be due to a lower number of sampled animals, resulting in less precision as the number of animals present in each municipality is misrepresented (Kasiulevičius, Šapoka and Filipavičiūte, 2006). There was a high seroprevalence from farms that use manure as a fertilizer, a similar finding to that of Tagwireyi et el., 2019 (Tagwireyi, Etter and Neves, 2019). The use of manure as fertilizer could act as a vector for spreading oocyst, especially if there are cats in that farms that shed their faeces on the manure.

The age of the animals usually influences the exposure of animals to infections with older animals being more at risk due to their declining immunity than the young one who has a much stronger immunity (Schares et al., 2017; Stelzer et al., 2019). However, in this study, the age had no significant association with the exposure of the animals to T. gondii infection and this is in accordance with other studies in the East Hararghe zone of Oromia region, Ethiopia and Nigeria where they also had more positive young animals (<1 year) than older animals (>1 year) (Bártová et al., 2017; Tilahun et al., 2018). Gender of the animals was statistically significant in the exposure of the animals to the parasite with females having higher seroprevalence than males, a finding similar to the one found in the Eastern Cape (Tagwireyi, Etter and Neves, 2019). The increased seroprevalence in females may result from physiological changes, hormonal fluctuations, immunosuppression associated with pregnancy, and lactation stress (Khalife et al., 2022). Animals that were allowed to only breed naturally had a seroprevalence than the ones they allowed them to breed naturally and artificially inseminate them. This finding is agreement with the findings of study by Lopez et al., 2013 which examined the viability of the sexual transmission of T. gondii in reproductive female sheep (Lopes et al., 2013). Artificial insemination procedures are conducted aseptically to prevent contaminations and infection, while animals can mate without the same measures. factors in the rearing of the animal's environment including the type of farm, water supply, feed storage, and waste disposal were all found to have no statistically significant association with T. gondii seropositivity in this study. These findings corroborate the findings of the studies conducted in Brazil (Piaui), Central Ethiopia, China, Dutch, Northern Portugal and Northern Italy (Lopes
et al., 2013; Gebremedhin et al., 2013; Gazzonis et al., 2015; Liu, Li and Pan, 2015; Deng et al., 2016; Rêgo et al., 2016)

5.3 Molecular detection

Infections with the T. gondii can occur in three forms as mentioned in the literature review: horizontally via oocyst, horizontally via tissue cysts, and vertically through tachyzoites (Ibrahim, 2017; Dubey et al., 2020). As a result, the type of samples that are collected in accordance with the different routes and stages of infection will influence its detection with molecular methods (Liu et al., 2015; Fernández-Escobar et al., 2022). Vaginal swabs, sheath scrapes, milk and diagnostic tissue samples were tested to detect T. gondii using nested and conventional PCR.

Despite serological evidence of the animals' exposure to T. gondii infection from the ELISA results, the parasite was not detected from all the above-mentioned analysed samples. This nondetection is similar to the absence of detection that Clune et al. reported (Clune et al., 2022). Studies by Lopes et al. and Santana et al. have shown that the parasite can be sexually transmitted by the tachyzoites in the semen of infected male sheep and goats to the females (Santana et al., 2013; Lopes et al., 2013). However, in these studies, detection and confirmation were done from the muscular tissues and organs of T. gondii seropositive animals that were sacrificed after the study instead of sheath scrapings or vaginal swabs like we did in this study. This may suggest that the tachyzoites were no longer being shed in the reproductive organs of the animals at the time of sampling or the infection occurred via a different route of infection. It is also important to note that tachyzoites are susceptible to harsh environmental conditions such as extreme heat and dryness and die off quickly outside the host (Tenter, 2000; Dubey et al., 2021).

The absence of T. gondii from the milk samples differs from the findings by Gazzonis et al. in which they detected the parasitic DNA in 20.6% (13/63) of milk samples (Gazzonis et al., 2019). Milk become contaminated with oocytes that are shed from the cats and the tachyzoite form of the parasite (Tenter, 2000; Dubey et al., 2020). An experiment by Neto et al., 2018 in which they inoculated milk samples from naturally infected goats in Brazil detected T. gondii DNA from the brains of inoculated mice (Ferreira Neto et al., 2018). These results would
therefore suggest that the milk was not contaminated with oocysts or tachyzoite form of T. gondii and that the animals had no current infections.

5.4 Correlation and agreement between serological (ELISA) and molecular detection (PCR)

The reliability of the results obtained during research studies depends on the consistency and agreement among the data collection and processing methods used (McHugh, 2012). Therefore, processes that gauge agreement among the various collected data need to be included in welldesigned research studies. One aspect of overall confidence in the accuracy of a research study is the reliability of collected and processed data. Any research work has a variety of potential sources of errors, and the accuracy of the study's results and conclusions depends on how well the researcher manages these sources of error (McHugh, 2012; Petrie and Watson, 2013).

In this study, an agreement of 50% between the serological and molecular data was calculated, indicating that only 50% of the data is erroneous. This agreement is consistent with what was found in another similar study (Bachand et al., 2019). Cohen's kappa was further calculated to determine the correlation between the data set, and kappa value was 0.33 indicating a fair correlation between the two tests. There are not many comparison studies that compare different techniques for diagnosing T. gondii infection. However, a comparison study by Schares et al., 2017 using similar methods resulted in moderate agreement ($k=0.60$) (Schares et al., 2017) . The sample sizes could have influenced the difference correlation as they had more samples which increased their change of molecular detection and thus better comparisons.

5.5 Sequence analysis of the T. gondii B1 and GRA6 gene isolates

In the past decades, numerous distinct loci have been studied through the sequencing of housekeeping genes, antigens, and neutral introns (Khan et al., 2007; Chen et al., 2012). This dawn of genomic research and technological advancements have enabled researchers to get indepth knowledge of genetic structure, genome diversity, structures of different strains, polymorphisms, and their interactions (Beck et al., 2009; Yucesan et al., 2021). Similarly, estimating local rates of evolution based on numerous alignments allows for a quantitative evaluation of the strength of evolutionary constraints and the significance of functional features (Lau et al., 2016).

One of the many ways of examining variation among sequences is the identification of single nucleotide polymorphism that is found in genomes at specific locations known as sequencetagged sites (STS), and they can be utilized for gene mapping, identifying population structure, and conducting functional studies (Stuart Brown, 1998; Fazaeli and Ebrahimzadeh, 2007; Bawm et al., 2020). Single nucleotide polymorphisms are regarded as the most helpful biomarkers for disease diagnosis because of their common frequency, ease of analysis, affordable genotyping, and ability to conduct relation studies using statistical and bioinformatics techniques (Biradar et al., 2014; Cubas-Atienzar et al., 2018; Vallejos-Vidal et al., 2020). Single nucleotide polymorphisms were identified and used to establish a link between sequence variation and genetic traits during the analysis of the genome sequences in this study, which allowed us to identify a gene that could be used as a genetic marker between the B1 and GRA6 T. gondii housekeeping genes.

5.5.1 Sequence analysis of T. gondii B1 gene isolates

The B1 gene is one of the widely targeted genes when detecting T. gondii in clinical and environmental samples (Fernández-Escobar et al., 2022). It is a multicopy gene and although multicopy genes are known to be more sensitive than single-copy genes, there are significant problems in targeting them (Costa and Bretagne, 2012). With multicopy genes, determining the number of repeats for each strain using multicopy genes and choosing primers and probes based on conserved sequences from among the numerous repeats of the three main T. gondii lineages are both difficult tasks (Saeij, Boyle and Boothroyd, 2005; Costa and Bretagne, 2012). Some studies have discovered that the B1 gene, although found in 35 copies of the gene, is less sensitive than other often targeted genes, leading to misdiagnosis of the parasite (Edvinsson et al., 2006, 2007; Costa and Bretagne, 2012; Camilo et al., 2017). Given that it is frequently used for detection, this suggests the need for its analysis to determine if it could be used as a phylogenetic genetic marker for studies.

Significant polymorphism was discovered in the B1 genomic sequences of the analysed isolates. With the B1 sequence analysis of the 803 bp fragments, seven of the 24 analysed isolates (Tecuanillo178, ElReal11, ElReal109a, Camalote102b, Camalote106, Estacion101b, and Estacion98) had SNPs. Although all these isolates where isolated from sheep in Mexico, they still showed slight variation through the identified SNPs as they were not identified at the same locations. This low variation was expected since the isolates are from the same country in neighboring states along the coast, which indicates they have might have similar
environmental adaptation and survival wich does not influence the altercation of their genomes as supported by other studies where gene isolates from neighboring areas did not show significant variation (Dubey, 2009b; Dubey et al., 2020; Cong et al., 2021). This was a limitation in the study since trimming and alignment of gene sequences from all the retrieved isolates only produced Mexican sheep isolates, which limited analysis of other sequences from other hosts and countries.

Of the total ($n=83$) analysed T. gondii B 1 genes for the isolates with fragment sizes of 300 bp , we found 29% ($24 / 83$) of the isolates with SNPs. Isolate TgCatAu_7 from a cat in Australia showed a total variation from the rest of the isolates as it had absented sequences from position 50 until position 110. The relation was also observed through the absence of sequences on all the isolates at the same position (78), except for California muscle isolate SR222 from the USA. This data is in agreement with previous findings in which they found genetic variation from isolates originating from different hosts and geographic locations (Chen et al., 2012; Wang et al., 2013; Cubas-Atienzar et al., 2018).

Isolate Estacion98 from sheep in Colima, Mexico, had an SNP at position 16, isolate Camolote 102b from sheep in Michoacan, Mexico had it at position 222, isolate Estacion101b from sheep in Colima, Mexico, had it at position 126, isolate 16A from sheep in Iran, had them at positions $396,325,331$ and 396 , isolate from sheep 1A, 2A, 16A, and 26 from Camel in Iran, had them at position 325, isolate CR34 from California muscle in California, had them at positions 187 and 354, isolate SR217 from California muscle in California, had them at position 199 and 325, isolate 2A from sheep from Iran had them at position 287 and 237, isolate 25 from Camel in Iran had them at position 187. Isolates SR231 and SR222 from California muscle in the USA, TGK-KLK-365-IMNO from Ixodes Ricinus tick in Poland, and SR222 from California muscle in California all had SNPs at position 187, 45, and 199, respectively. Isolate TGK-KLR-IMNO from an Ixodes Ricinus tick had them at positions 39 and 452, isolate 781-L-IMNO from an Ixodes Ricinus tick in Poland had them at position 4, 35, 452, and 472, and isolate 782-L-IMNO from an Ixodes Ricinus tick in Poland had them at position 4, 35, 452, and 472. The single nucleotide polymorphisms were found at positions 118, 119, 199, and 243 in isolates of the Ixodes Ricinus tick from Poland (TGK-KLR-625-IMNO, TGK-KLR-631IMNO, TGK-KLR-583-IMNO, and TGK-KLR-610-IMNO). The presence of SNPs at different locations among the sequences further supports studies that were able to show that variation among hosts exits irrespective of whether they are from the same geographic location or not (Maryam et al., 2016; Arefkhah et al., 2019; Fernández-Escobar et al., 2022).

Black bears isolate 220 from the USA had it at position 325, while isolate 222 had them at positions 325, 396, and 459. Isolate TGK-KLR-983-IMNO from an Ixodes Ricinus tick in Poland had SNPs at positions 402,325 , and 234 , isolate TGK-KLR-744-IMNO had them at positions 452 , 456, and 471, and isolate TGK-KLR-836-IMNO had SNPs at positions 452, and 471. Clones from Iran: clone SY5 from sheep had SNP at position 402, clone CG21 from chicken had it at position 187, clone SY4 from sheep had it at positions 234, and 325, while clones SY12 from sheep and clone CQ7 from cattle both had it at position 325. Although some of these isolates had SNPs at different locations of the sequence, they are not far off to suggest that their sequences are different as supported by Galal et al., (2019).

5.5.2 Sequence analysis of T. gondii GRA6 gene isolates

One of the well-known T. gondii markers is the parasitic molecules known as dense granule antigens (GRA), which are secreted into the parasitophorous vacuole and the dense granules of tachyzoites, both of which are connected to the network of the GRA (Lecordier et al., 1995; Rome et al., 2008; Beck et al., 2009; Etheridge et al., 2014; Maryam et al., 2016). They are immunogenic and are in control of the parasites' ability to survive inside cells (Rome et al., 2008). These antigens have a single copy gene and are polymorphic (Edvinsson et al., 2007; Rome et al., 2008; Beck et al., 2009; Chen et al., 2012; Maryam et al., 2016; Arefkhah et al., 2019). GRA6 is infrequently used as a marker for detection in studies, despite being referenced in the literature as a potential genetic marker and target GRA used for T. gondii detection like the rest of the dense granule antigens (Dubey et al., 2011; Wang et al., 2013; FernándezEscobar et al., 2022). This motivated us to study the GRA6 gene isolates and determine if they could indeed be used as a marker for the detection or if their limited usage is because of it being a poor marker.

Among the analysed GRA6 sequence isolates ($\mathrm{n}=76$), 82.9% (63/76) of them had SNPs and some had absent sequences. $80,3 \%(61 / 76)$ of the isolates had absent sequences at the same positions (272 to position 274), 18% (14/76) did not have and 1% had them at a different position (241 to 303). This shows that isolates can still be different even when they were isolated from the same species and origin. Some studies suggest that these absence of sequences might be a result of gene mutations (Chaichan et al., 2017; Vallejos-Vidal et al., 2020). All Turkish cat isolates showed SNPs at the same locations which can be influenced by that they are all isolated from the host in the same location as was noted in other studies (Hassan et al., 2019). The grey wolf isolates from the USA showed SNPs at the same locations, apart from
isolate TgWolfMN20, which had additional SNPs at different locations in addition to the same SNPs shared with the other isolates. According to a review by Chaichan et el., 2017, it is also common for isolates of the same origin and hosts to differ genetically (Chaichan et al., 2017).

Chicken and pig isolates from Portugal had SNPs at the same positions, except for isolates TgPiPr05 (pig) and TgCkPr 03 (chicken) which only had them at different positions. All the Gabon isolates shared SNPs at the same. Additionally, position 150 was shared by isolates $\operatorname{TgA} 18005, \operatorname{TgA} 05002, \operatorname{TgA105043}$, and $\operatorname{TgA} 105001$ with isolate, $\operatorname{TgA} 32129$ (sheep) having them at different locations from the rest of the Gabon isolates. The SNPs for the USA coyotes isolates were located at positions. The French Guiana isolates had SNPs at different positions. The route of T. gondii infection is said to have an impact on the adaptation and genetic structure of the parasite on its host cells and the environment of the hosts, hence similarities that could be an indication of the same route of infections for the hots were seen (Guy, 2014; Saraf et al., 2017; Innes et al., 2019).

The Iranian isolates from all the different species had SNPs at completely different positions. Although these isolates contained SNPs in different locations, their phylogenetic tree still demonstrated that they had a close phylogenetic relationship, with just a slight difference in bootstrap difference values. This might indicates that the SNPs in some genes do greatly influence the sequence of the genome to a point of phylogenic variation (Vallejos-Vidal et al., 2020).

Studies on sequence analysis in other targeted T. gondii genes during genotyping (B1, SAG1, SAG2, GRA3, GRA5, GRA7, and GRA14) have shown substantially lower levels of polymorphism than GRA6, which is more polymorphic in comparison to the others (Rome et al., 2008; Chen et al., 2012; Biradar et al., 2014; Wang et al., 2015; Maryam et al., 2016; Bahadori et al., 2018; Arefkhah et al., 2019; Firouzeh and Foroughiborj, 2021). Climate is crucial for the preservation of T. gondii oocysts and tachyzoites with regions where the infections occur tend to have higher temperatures, less precipitation, and lower altitudes than those where it does not (Kantzoura et al., 2013; Rouatbi et al., 2020). These variations between the two gene sequences (B1 and GRA6) could also be a result of immune selection since GRA6 is highly immunogenic compared to the B 1 , therefore is probably extreme for targets of selection pressure by enabling their quick presentation as antigens inside the host cell (Saeij et al., 2014). These findings demonstrate that GRA6 can be used as phylogenetic marker.

5.6 Phylogenetic analysis of the T. gondii B1 and GRA6 gene sequences

To describe and visually illustrate complicated interactions in population biology, a phylogenetic network is preferred to the conventional separating phylogenetic tree (Morrison, 2005). The maximization of comparability or the minimum evolution principle is frequently applied in the development of phylogenetic trees (Saitou and Nei, 1987; Rouatbi et al., 2020). The standard algorithm of tree-making methods based on this theory is to look at all potential branching patterns or a predetermined number of topologies branching patterns that are likely to be close to the true tree, and then select the one that exhibits the least amount of overall evolutionary change as the final tree (Saitou and Nei, 1987). Through this method, we are then able to determine the genetic relationship between these isolates.

5.6.1. Phylogenetic analysis of the T. gondii B1 gene sequences

The highest bootstrap percentages ($\geq 50 \%$) validated the isolates clustering on the phylogenetic tree. The B1 phylogenetic tree from the 803 bp fragments resulted in the formation of two clusters from two Mexican states, Colima and Michoacan. Although the two clusters formed, the bootstrap values were the same for both, implying a low genetic variability among the isolates. This finding is similar to another study that found low genetic variation between isolates originating from the same hosts of the same geographic location (Wang 2015). Interestingly, cluster 1 is formed by isolates from one of each state. This relationship between the sequences of isolates Camalote102b and Estacion101b may be explained by the possibility that animals were transported between the neighbouring states. The observation that the two isolates shared SNPs at the same location (position 132) further supports their phylogenetic relation as it was expected.

With the phylogenetic tree construction of B1 gene isolates with fragment sizes of between 300 to 1000 bp that were trimmed and aligned, seven clusters were generated with some generating subclusters. Through the clustering of various isolates and/or clones from 5 distinct animal species (sheep, camel, California mussel, black bear, and cattle), we were able to see their phylogenetic relationship despite them being isolated from different species and countries. This demonstrates a close relationship between some of the Irian and the USA isolates which is interesting given the different climatic conditions in both countries. As surprising as this observation is, it is not an unusual occurrence as other studies were able to demonstrate a such relationship between different hosts of different origins (Tenter, 2000; Can et al., 2014;

Fernández-Escobar et al., 2022). The Iranian isolates and/or clones from dominated cluster 1 by making up 73% of the cluster ($8 / 11$).

Even more association between the isolates from various species and geographical regions could be seen in Cluster 2. The species diversity included both the most common T. gondii hosts (sheep, goat, cattle, cat, duck, and chicken) and less common hosts (mussel and Ixodes Ricinus ticks) (Dubey, 2009b). This is however not a new occurrence as more studies were able to show an association between isolates and/clones from different species originating from different locations (Galal et al., 2018; Fernández-Escobar et al., 2022). The association could be largely influenced by the ability of the T. gondii parasite to adapt to different hosts and environments (Stuen, Granquist and Silaghi, 2013). The Mexican isolates clustered again on cluster 4. In cluster 5 we saw the clustering of 4 Ix odes ricinus ticks which further subclustered into two groups. This suggests that, in contrast to other isolates from the same hosts that clustered separately, they have a strong ancestral association (Xia et al., 2021). A study conducted in Asia also found similar results where isolates from the same type of host obtained from the showed a strong ancestral relation (Chaichan et al., 2017). Once more, demonstrating that these isolates are not host specific, the tick isolates further clustered into cluster 6 with the American muscle strain.

The last cluster of the tree, cluster 7, seen cat isolates cluster together although one was isolated from Australia and the other in South Korea. It is also interesting to note that the Australian isolate (TgCatAu_7) had absent sequences from multiple locations in its sequence while the South Korean isolate (C-F_Tg-56) only had an absent sequence in one position. The discrepancy may be a result of the different living environments and geographic locations of the cats (Zheng et al., 2016; Kakakhel et al., 2021). The bootstrap values are the only difference between the cat isolate and the mussel isolate they clustered with.

5.6.2. Phylogenetic analysis of the GRA6 gene sequences

The highest bootstrap percentages ($\geq 50 \%$) validated the isolates clustering on the phylogenetic tree. Six distinct clusters were identified by phylogenetic analysis of the 76 T. gondii GRA6 isolates with fragment sizes of between 300 to 100 bp that were trimmed and aligned from the retrieved sequences. Cluster one and five comprised isolates from different hosts and geographical locations that showed similar genetic variation with only a difference in bootstrap values. Cluster 5 however clustered with more isolates from the USA (15/16) and it is also interesting to note that all the gray wolfs clustered in cluster five and they all had SNPs at the
same locations during the sequence analysis, proving a strong phylogenetic relationship. Grey wolf isolate and cayote originate from the same family, hence this relationship makes sense. The cat isolation TgBobcatMS1 from Mississippi, USA formed a subcluster with a grey wolf isolate from the same country, and while having SNPs in the same place as the cat isolate, the jaguar isolate did not subcluster with them. Studies have been able to demonstrate that despite having close genetic relationships among themselves, T. gondii isolates typically have limited genetic variation, even when originating from the same host (Khan et al., 2007)

Cluster 2 formed from a white-tailed deer isolate from the USA and a grison isolate from Gabon. This relation was unexpected given that they are from two different continents and there were no similarities between them during the sequence analysis. However, studies have been able to show that this does happen amongst isolates as a result of mutations in their genes (Khan et al., 2007). The third cluster of the tree was made up of 3 Gabon chicken isolates with two of them (TgA105043 and TgA105001) forming a subcluster. The have been other studies that observed this type of clustering from the isolates of the same host and geographic location, owing to common ancestral linage (Bridgett et al., 2011).

CHAPTER 6
 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Set study objectives were achieved as the seroprevalence ad risk factors that pose a risk for exposure to the animals to T. gondii were identified. Molecular detection and occurrence in the FS province were not achieved owing to the reasons discussed under discussion. We were able to demonstrate that the GRA6 gene is a good marker for T. gondii genotyping than the B1 gene, and their phylogenetic relationship, which allowed us to identify genetic diversity among the T. gondii B1 and GRA6 gene sequences isolates. As far as we are aware, this is the first study to identify T. gondii seroprevalence and risk factors that contribute to the animals' exposure to the parasite, and we were able to show that the disease exists on both communal and commercial farms in the NW province and determine occurrence in the FS province.

6.1.1 Seroprevalence

The seroprevalence of both the sheep and goats was determined from serum using ELISA with sheep having the highest seroprevalence compared to goats, proving that sheep are more susceptible to exposure to the parasite compared to goats. Additionally, the seroprevalence varied between districts and municipalities, with the highest seroprevalence seen in areas closest to Botswana's and the Northern Cape province's borders. During the study, it was also discovered that several of the villages in the Dr Ruth Segomotsi Mompati District (the district with the highest prevalence), which are at the border of the Northern Cape and the North West Province, import some of their sheep and goats from the Northern Cape.

6.1.2 Risk factors

Risk factors for the exposure of sheep and goats to T. gondii included breed, species, animal origin, district, municipality, history of abortion, handling of aborted material, presence of cats on the farms, feeding system, and feed storage. Age, gender, type of farm, water supply, feed storage, and waste disposal were all found to have no significance in the bearing of seropositivity.

6.1.3 Molecular detection

There was no detection of T. gondii on PCR from the samples that were tested. This indicates that the animals were only exposed to T. gondii and there was no current infection from them.

In addition, the samples that were analysed were likely not good type of samples to detect the T. gondii pathogen and were also not enough to afford greater chance of detection of the genetic material of the parasite.

6.1.4 B1 and GRA6 genes sequence analysis and phytogenic tree construction

There was no vast variation between the B1 genes for the 803pb fragments when compared to the B1 gene sequences and phylogenetic analysis of the fragment sizes of between 400 to 1000 pb although they are isolates from the same gene. This suggests that the fragment size might also have an impact on the variation amongst isolates of the same genes and using the same fragment sizes could not be ideal in studying gene variation amongst the isolates or intraspecific phylogenetic analysis.

When comparing the GRA6 gene to the B1 gene's sequence and phylogenetic results, GRA6 gene results presented more sequence variation and phylogenetic relationship among T. gondii isolates from various hosts and geographical locations, allowing for the genotype differentiation of the isolates under study. These results suggest that the GRA6 gene can indeed be used in population genetic studies of T. gondii isolates as a potential genetic marker and should be considered for use more frequent than it is currently used. A limitation of the study was the lack of isolates from the study area and South Africa, our 0\% molecular prevalence, and non-detection from the Free State tissue samples. As a result, only the isolates from the rest of the worldwide isolates deposited in the GenBank.

6. 2 Recommendations

Farmers should take into consideration the risk factors that are associated with the seropositivity found in this study. This will allow them to have preventative measures that will limit the exposure of the animals within the farms as this study was able to show that the animals are indeed exposed to T. gondii infections.

According to the Animal Diseases Act of 1984 (ACT 35 1984) and the Animal Diseases Regulations (R. 2026 of 1986) No. 10469 of September 26, 1986, toxoplasmosis is not regarded as a regulated and notifiable disease and it is not currently monitored regularly by farmers and state veterinary services, and the data obtained in this study demonstrates the need for routine monitoring of the disease to prevent misdiagnosis of abortion and stillbirth cases. In addition, toxoplasmosis should also be considered when investigating abortion or stillbirth cases.

REFERENCES

Abd, H. et al. (2015) 'Bio-typing of Toxoplasma gondii isolate solates from complicated pregnant Egyptian women omen', 3(9), pp. 453-458.

Abdallah, M. C. et al. (2019) 'Cross-sectional survey on Toxoplasma gondii Infection in Cattle, Sheep, and Goats in Algeria: Seroprevalence and risk factors', Veterinary Sciences, 6(3), pp. 1-15. doi: 10.3390/VETSCI6030063.

Adesiyun, A. A. et al. (2020) 'Sero-Epidemiological Study of Selected Zoonotic and Abortifacient Pathogens in Cattle at a Wildlife-Livestock Interface in South Africa', 20(4), pp. 258-268. doi: 10.1089/vbz.2019.2519.
Ahmad, N. et al. (2015) 'Seroprevalence and associated risk factors of toxoplasmosis in sheep and goats in Pothwar Region, Northern Punjab, Pakistan’, Pakistan Journal of Zoology, 47(1), pp. 161-167.

Ajioka, J. W., Fitzpatrick, J. M. and Reitter, C. P. (2001) 'Toxoplasma gondii genomics: Shedding light on pathogenesis and chemotherapy', Expert Reviews in Molecular Medicine. North-West Univ. - Ferdinand Postma Lib., 3(1), pp. 1-19. doi:
10.1017/S1462399401002204.

Alexander, J. and Stimson, W. H. (1988) 'Sex hormones and the course of parasitic infection', Parasitology Today, 4(7), pp. 189-193. doi: 10.1016/0169-4758(88)90077-4.

Andrade, M. M. C. et al. (2013) 'Seroprevalence and risk factors associated with ovine toxoplasmosis in Northeast Brazil', Parasite, 20(1). doi: 10.1051/parasite/2013019.

Arefkhah, N. et al. (2019) 'Molecular genotyping and serological evaluation of Toxoplasma gondii in mothers and their spontaneous aborted fetuses in Southwest of Iran', Comparative Immunology, Microbiology and Infectious Diseases, 66(May), p. 101342. doi: 10.1016/j.cimid.2019.101342.

Areshkumar, M., Divya, S. and Yasotha, A. (2018) 'Toxoplasmosis-A Zoonotic Threat to Human Beings', (May), pp. 16-19. Available at: www.stmjournals.com.

Arwa Lachkhem, I. L. and Wahiba Sakly, D. S. (2015) 'Prevalence of Toxoplasmosis in Sheep, Goats and Cattle in Southern Tunisia', Journal of Bacteriology \& Parasitology, 06(05), pp. 10-14. doi: 10.4172/2155-9597.1000245.

Azimpour-Ardakan, T. et al. (2021) 'Designing and developing of high-resolution melting technique for separating different types of Toxoplasma gondii by analysis of B1 and ROP8 gene regions', Journal of Microbiological Methods, 184(November 2020). doi: 10.1016/j.mimet.2021.106188.

Azizi, H. et al. (2014) 'Molecular survey of Toxoplasma gondii in sheep, cattle and meat products in Chaharmahal va Bakhtiari province, Southwest of Iran', Iranian Journal of Parasitology, 9(3), pp. 429-434.

Bachand, N. et al. (2019) 'Serological and molecular detection of Toxoplasma gondii in terrestrial and marine wildlife harvested for food in Nunavik, Canada', Parasites and Vectors. BioMed Central, 12(1), pp. 1-10. doi: 10.1186/s13071-019-3408-9.

Bahadori, E. S. et al. (2018) 'Journal of Veterinary Science \& Phylogenetic Analysis of Toxoplasma gondii Type II and Type III by PCR-', 9(3), pp. 1-5. doi: 10.4172/21577579.1000541.

Bakhtiari, M. et al. (2021) 'Variable number tandem repeats mediate the expression of proximal genes', Nature Communications. Springer US, 12(1), pp. 1-12. doi: 10.1038/s41467-021-22206-z.

Bártová, E. et al. (2017) 'Seroprevalence and risk factors of Neospora spp. and Toxoplasma gondii infections among horses and donkeys in Nigeria, West Africa', Acta Parasitologica, 62(3), pp. 606-609. doi: 10.1515/ap-2017-0073.

Batt, C. A. (2016) 'Virulence', Elsevier Inc., pp. 10-11.
Batz, M., Hoffmann, S. and Morris, G. (2011) ‘T he 10 P aThogen -F ood C ombinaTions W iTh Ranking the Risks ':, University of Florida, Emerging Pathogens Institute.

Bawm, S. et al. (2020) 'Seroprevalence of Toxoplasma gondii in household cats in Myanmar and molecular identification of parasites using feline faecal oocysts', Food and Waterborne Parasitology, 20. doi: 10.1016/j.fawpar.2020.e00094.

Beck, H. P. et al. (2009) 'Molecular approaches to diversity of populations of apicomplexan parasites', International Journal for Parasitology. Pergamon, 39(2), pp. 175-189. doi: 10.1016/J.JJPARA.2008.10.001.

Behnke, M. S. et al. (2012) 'The Polymorphic Pseudokinase ROP5 Controls Virulence in Toxoplasma gondii by Regulating the Active Kinase ROP18’, PLoS Pathogens, 8(11). doi: 10.1371/journal.ppat. 1002992.

Bentum, K. E. et al. (2019) 'Seroprevalence of Toxoplasma Gondii antibodies in sheep and goats slaughtered at the Kumasi Abattoir, Ghana’, Journal of Immunoassay and Immunochemistry. Taylor \& Francis, 40(5), pp. 495-501. doi:
10.1080/15321819.2019.1642916.

Biradar, S. S. et al. (2014) 'Genetic characterization of Toxoplasma gondii isolates from chickens in India by GRA6 gene sequence analysis', 59(4), pp. 666-674. doi: 10.2478/s11686-014-0288-1.

Blader, I. J. and Saeij, J. P. (2009) 'Communication between Toxoplasma gondii and its host: Impact on parasite growth, development, immune evasion, and virulence', Apmis, 117(5-6), pp. 458-476. doi: 10.1111/j.1600-0463.2009.02453.x.

Bradley, P. J. and Sibley, L. D. (2007) 'Rhoptries: an arsenal of secreted virulence factors’, Current Opinion in Microbiology, 10(6), pp. 582-587. doi: 10.1016/j.mib.2007.09.013.

Bridgett, M. et al. (2011) 'A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids', pp. 1294-1305. doi: 10.1101/gr.116301.110.1294.

Buxton, D. et al. (2006) 'Toxoplasmosis: The possibility of vertical transmission', Small Ruminant Research, 62(1-2 SPEC. ISS.), pp. 43-46. doi: 10.1016/j.smallrumres.2005.07.037.

Caldart, E. T. et al. (2015) 'Zoonosis in dogs and cats attended by the Birth Control Project: Toxoplasma gondii, Leishmania spp. and Leptospira spp., serodiagnosis and epidemiology', Semina:Ciencias Agrarias, 36(1), pp. 253-266. doi: 10.5433/1679-0359.2015v36n1p253.

Camilo, L. M. et al. (2017) 'Molecular diagnosis of symptomatic toxoplasmosis: a 9-year retrospective and prospective study in a referral laboratory in São Paulo, Brazil', Brazilian Journal of Infectious Diseases, 21(6), pp. 638-647. doi: 10.1016/j.bjid.2017.07.003.

Can, H. et al. (2014) 'Genetic characterization of Toxoplasma gondii isolates and
toxoplasmosis seroprevalence in stray cats of Izmir, Turkey', PLoS ONE, 9(8). doi: 10.1371/journal.pone. 0104930 .

Carneiro, A. C. A. V. et al. (2009) 'Seroprevalence and risk factors of caprine toxoplasmosis in Minas Gerais, Brazil', Veterinary Parasitology, 160(3-4), pp. 225-229. doi:
10.1016/j.vetpar.2008.10.092.

Castro, B. B. P. et al. (2020) 'A simple method to generate PCR-RFLP typing profiles from DNA sequences in Toxoplasma gondii', Infection, Genetics and Evolution, 85(July), pp. 1-7. doi: 10.1016/j.meegid.2020.104590.

Chaichan, P. et al. (2017) 'Geographical distribution of Toxoplasma gondii genotypes in Asia: A link with neighboring continents’, Infection, Genetics and Evolution, 53, pp. 227238. doi: 10.1016/j.meegid.2017.06.002.

Chaklu, M. et al. (2020) 'Toxoplasma gondii infection in backyard chickens (Gallus domesticus): Seroprevalence and associated risk factors in Northwest Ethiopia', Veterinary Parasitology: Regional Studies and Reports, 21 (June), pp. 10-14. doi:
10.1016/j.vprsr.2020.100425.

Chen, J. et al. (2012) 'Genetic diversity among Toxoplasma gondii strains from different hosts and geographical regions revealed by sequence analysis of GRA5 gene', pp. 1-6.

Clune, T. et al. (2022) 'Toxoplasma gondii is not an important contributor to poor reproductive performance of primiparous ewes from southern Australia: a prospective cohort study', BMC Veterinary Research, 18(1), pp. 1-10. doi: 10.1186/s12917-022-03211-w.

Cohen, J. (1960) 'A Coefficient of Agreement for Nominal Scales', Educational and Psychological Measurement, 20(1), pp. 37-46. doi: 10.1177/001316446002000104.

Colf, B. E. van der et al. (2020) 'Seroprevalence of Toxoplasma gondii infection among pregnant women in Windhoek, Namibia, in 2016', Journal of Public Health in Africa, 2(2), pp. 98-101. doi: 10.4081/jphia.2011.e24.

Condoleo, R. et al. (2018) 'Risk Assessment of Human Toxoplasmosis Associated with the Consumption of Pork Meat in Italy’, Risk Analysis, 38(6), pp. 1202-1222. doi: 10.1111/risa. 12934.

Cong, W. et al. (2021) 'Prevalence, genotypes and risk factors for Toxoplasma gondii contamination in marine bivalve shellfish in offshore waters in eastern China', Ecotoxicology and Environmental Safety, 213. doi: 10.1016/j.ecoenv.2021.112048.

Conrad, P. A. et al. (2005) 'Transmission of Toxoplasma: Clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment', International Journal for Parasitology, 35(11-12), pp. 1155-1168. doi: 10.1016/j.ijpara.2005.07.002.

Costa, J. M. and Bretagne, S. (2012) 'Variation of B1 gene and AF146527 repeat element copy numbers according to Toxoplasma gondii strains assessed using real-time quantitative PCR', Journal of Clinical Microbiology, 50(4), pp. 1452-1454. doi: 10.1128/JCM.06514-11.

Cubas-Atienzar, A. I. et al. (2018) 'Genotyping of Toxoplasma gondii from pigs in Yucatan, Mexico', Veterinary Parasitology: Regional Studies and Reports, 14(October), pp. 191-199. doi: 10.1016/j.vprsr.2018.10.009.

Dardé, M. L. (2008) ‘Toxoplasma gondii, "new" genotypes and virulence’, Parasite, 15(3), pp. 366-371. doi: 10.1051/parasite/2008153366.

Dasa, T. T. et al. (2021) 'Toxoplasmosis infection among pregnant women in Africa: A systematic review and meta-analysis', PLoS ONE, 16(7 July), pp. 1-14. doi:
10.1371/journal.pone. 0254209 .

Deng, H. et al. (2016) 'Risk factors related to Toxoplasma gondii seroprevalence in indoorhoused Dutch dairy goats', Preventive Veterinary Medicine, 124, pp. 45-51. doi: 10.1016/j.prevetmed.2015.12.014.

Deshmukh, A. S. et al. (2021) 'Seroprevalence and risk factors of Toxoplasma gondii infection among veterinary personnel and abattoir workers in Central India', Parasitology International, 84(June). doi: 10.1016/j.parint.2021.102402.

Djurković-Djaković, O. et al. (2019) 'Toxoplasmosis: Overview from a One Health perspective', Food and Waterborne Parasitology, 15, pp. 12-15. doi:
10.1016/j.fawpar.2019.e00054.

Dubey et al. (2020) 'Recent epidemiologic and clinical importance of Toxoplasma gondii infections in marine mammals: 2009-2020', Veterinary Parasitology, 288(September). doi: 10.1016/j.vetpar.2020.109296.

Dubey, J. P. et al. (1990) 'Effect of high temperature on infectivity of Toxoplasma gondii tissue cysts in pork', Journal of Parasitology, 76(2), pp. 201-204. doi: 10.2307/3283016.

Dubey, J. P. (1991) 'Toxoplasmosis--an overview.', The Southeast Asian journal of tropical medicine and public health, 22 Suppl, pp. 88-92.
Dubey, J. P. (2000) 'Sources of Toxoplasma gondii infection in pregnancy: Until rates of congenital toxoplasmosis fall, control measures are essential', Bmj, 321(7254), pp. 127-128. doi: 10.1136/bmj.321.7254.127.

Dubey, J. P. (2004) ‘Toxoplasmosis - A waterborne zoonosis’, Veterinary Parasitology, 126(1-2 SPEC.ISS.), pp. 57-72. doi: 10.1016/j.vetpar.2004.09.005.

Dubey, J. P. et al. (2007) 'Molecular and biological characterization of Toxoplasma gondii isolates from free-range chickens from Guyana, South America, identified several unique and common parasite genotypes', Parasitology, 134(11), pp. 1559-1565. doi: 10.1017/S0031182007003083.

Dubey, J. P. et al. (2008) 'High prevalence and abundant atypical genotypes of Toxoplasma gondii isolated from lambs destined for human consumption in the USA', International Journal for Parasitology, 38(8-9), pp. 999-1006. doi: 10.1016/j.ijpara.2007.11.012.

Dubey, J. P. (2009a) 'History of the discovery of the life cycle of Toxoplasma gondii', International Journal for Parasitology. Australian Society for Parasitology Inc., 39(8), pp. 877-882. doi: 10.1016/j.ijpara.2009.01.005.

Dubey, J. P. (2009b) 'Toxoplasmosis in sheep-The last 20 years', Veterinary Parasitology, 163(1-2), pp. 1-14. doi: 10.1016/j.vetpar.2009.02.026.

Dubey, J. P. et al. (2011) 'Genetic characterisation of Toxoplasma gondii in wildlife from North America revealed widespread and high prevalence of the fourth clonal type', International Journal for Parasitology, 41(11), pp. 1139-1147. doi: 10.1016/j.ijpara.2011.06.005.

Dubey, J. P. et al. (2020) 'Economic and public health importance of Toxoplasma gondii infections in sheep: 2009-2020', Veterinary Parasitology, 286(July). doi:
10.1016/j.vetpar.2020.109195.

Dubey, J. P. et al. (2021) 'Recent epidemiologic and clinical Toxoplasma gondii infections in wild canids and other carnivores: 2009-2020', Veterinary Parasitology, 290(October 2020). doi: 10.1016/j.vetpar.2020.109337.

Dubey, J. P. and Lindsay, D. S. (2006) 'Neosporosis, Toxoplasmosis, and Sarcocystosis in Ruminants', Veterinary Clinics of North America - Food Animal Practice, 22(3), pp. 645671. doi: 10.1016/j.cvfa.2006.08.001.

Dubremetz, J. F. and Lebrun, M. (2012) 'Virulence factors of Toxoplasma gondii', Microbes and Infection, 14(15), pp. 1403-1410. doi: 10.1016/j.micinf.2012.09.005.

Dunay, I. R. et al. (2009) 'Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model', Antimicrobial Agents and Chemotherapy, 53(10), pp. 4450-4456. doi: 10.1128/AAC.00502-09.

Edvinsson, B. et al. (2006) 'Real-time PCR targeting a 529-bp repeat element for diagnosis of toxoplasmosis', Clinical Microbiology and Infection, 12(2), pp. 131-136. doi: 10.1111/j.1469-0691.2005.01332.x.

Edvinsson, B. et al. (2007) 'Rapid genotyping of Toxoplasma gondii by pyrosequencing', Clinical Microbiology and Infection, 13(4), pp. 424-429. doi: 10.1111/j.14690691.2006.01661.x.

Elsheikha, H. M. et al. (2009) 'Seroprevalence of and risk factors for Toxoplasma gondii antibodies among asymptomatic blood donors in Egypt', Parasitology Research, 104(6), pp. 1471-1476. doi: 10.1007/s00436-009-1350-z.

Etheridge, R. D. et al. (2014) 'The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice', Cell Host and Microbe, 15(5), pp. 537-550. doi: 10.1016/j.chom.2014.04.002.

Fayer, R. (1981) 'Toxoplasmosis update and public health implications.', Canadian Veterinary Journal, 22(11), pp. 344-352.

Fazaeli, A. and Ebrahimzadeh, A. (2007) 'A new perspective on and re-assessment of SAG2 locus as the tool for genetic analysis of Toxoplasma gondii isolates', pp. 99-104. doi: 10.1007/s00436-006-0449-8.

Fazel, R. et al. (2021) 'PCR-based detection of Toxoplasma gondii from cattle in southern Iran', Comparative Immunology, Microbiology and Infectious Diseases, 77(January). doi: 10.1016/j.cimid.2021.101677.

Felsenstein, J. (1985) 'Confidence Limits on Phylogenies: An Approach Using the Bootstrap', Evolution, 39(4), p. 783. doi: 10.2307/2408678.

Fentress, S. J. and Sibley, L. D. (2011) 'The secreted kinase ROP18 defends toxoplasma's border', BioEssays, 33(9), pp. 693-700. doi: 10.1002/bies.201100054.

Fern, A. (2019) 'Molecular Epizootiology of Toxoplasma gondii and Cryptosporidium parvum in the Eastern Oyster'.

Fernández-Escobar, M. et al. (2020) 'Isolation and genetic characterization of Toxoplasma gondii in Spanish sheep flocks', Parasites and Vectors. BioMed Central, 13(1), pp. 1-14. doi: 10.1186/s13071-020-04275-z.

Fernández-Escobar, M. et al. (2022) ‘Toxoplasma gondii Genotyping: A Closer Look Into Europe', Frontiers in Cellular and Infection Microbiology, 12(March), pp. 1-15. doi: 10.3389/fcimb.2022.842595.

Ferreira Neto, J. M. et al. (2018) 'An outbreak of caprine toxoplasmosis - Investigation and case report', Ciencia Rural, 48(5). doi: 10.1590/0103-8478cr20170790.

Firouzeh, N. and Foroughiborj, H. (2021) ‘Genetic Diversity of Toxoplasma Gondii by Serological and Molecular Analyzes in Different Sheep and Goat Tissues in Northeastern Iran', pp. 1-18.

Franco, P. S. et al. (2011) 'Evaluation of vertical transmission of Toxoplasma gondii in Calomys callosus model after reinfection with heterologous and virulent strain', Placenta, 32(2), pp. 116-120. doi: 10.1016/j.placenta.2010.11.012.

Galal, L. et al. (2018) ‘Toxoplasma and Africa: One Parasite, Two Opposite Population Structures', Trends in Parasitology, 34(2), pp. 140-154. doi: 10.1016/j.pt.2017.10.010.

Galal, L. et al. (2019) 'Diversity of Toxoplasma gondii strains at the global level and its determinants', Food and Waterborne Parasitology, 15. doi: 10.1016/j.fawpar.2019.e00052.

Garcia, J. L. et al. (2017) ‘The use of ELISA, nPCR and qPCR for diagnosis of ocular toxoplasmosis in experimentally infected pigs', Research in Veterinary Science, 115(June), pp. 490-495. doi: 10.1016/j.rvsc.2017.07.022.

Gazzonis, A. et al. (2019) 'Toxoplasma gondii in naturally infected goats: Monitoring of specific IgG levels in serum and milk during lactation and parasitic DNA detection in milk. Preventive Veterinary Medicine. 170. 104738. 10.1016/j.prevetmed.2019.104738. The zoonotic protozoa To'.

Gazzonis, A. L. et al. (2015) ‘Toxoplasma gondii in small ruminants in Northern Italy Prevalence and risk factors', Annals of Agricultural and Environmental Medicine, 22(1), pp. 62-68. doi: 10.5604/12321966.1141370.

Gebremedhin, E. Z. et al. (2013) 'Seroepidemiological study of ovine toxoplasmosis in East and West Shewa Zones of Oromia Regional State, Central Ethiopia', BMC Veterinary Research, 9, pp. 1-8. doi: 10.1186/1746-6148-9-117.

Gebremedhin, E. Z. et al. (2014) 'Isolation and genotyping of viable Toxoplasma gondii from sheep and goats in Ethiopia destined for human consumption', Parasites and Vectors, 7(1), pp. 1-8. doi: 10.1186/1756-3305-7-425.

Gelfand, Y. et al. (2014) 'VNTRseek - A computational tool to detect tandem repeat variants in high-throughput sequencing data’, Nucleic Acids Research, 42(14), pp. 8884-8894. doi: 10.1093/nar/gku642.

Grigg, M. E. and Sundar, N. (2009) 'Sexual recombination punctuated by outbreaks and clonal expansions predicts Toxoplasma gondii population genetics', International Journal for Parasitology. Australian Society for Parasitology Inc., 39(8), pp. 925-933. doi:
10.1016/j.ijpara.2009.02.005.

Guimarães, L. A. et al. (2013a) 'Prevalence and risk factors associated with anti-Toxoplasma gondii antibodies in sheep from Bahia state, Brazil Prevalência e fatores de risco associados a anticorpos anti-Toxoplasma gondii em ovinos da Bahia, Brasil', 2961, pp. 220-224.
Available at: www.cbpv.com.br/rbpv.

Guimarães, L. A. et al. (2013b) 'Prevalence and risk factors associated with anti-Toxoplasma gondii antibodies in sheep from Bahia state, Brazil Prevalência e fatores de risco associados a anticorpos anti-Toxoplasma gondii em ovinos da Bahia, Brasil', 2961, pp. 220-224.

Guo, M. et al. (2015) 'Prevalence and risk factors for toxoplasma gondii infection in meat animals and meat products destined for human consumption', Journal of Food Protection, 78(2), pp. 457-476. doi: 10.4315/0362-028X.JFP-14-328.

Guo, Z. G., Gross, U. and Johnson, A. M. (1997) ‘Toxoplasma gondii virulence markers identified by random amplified polymorphic DNA polymerase chain reaction', Parasitology Research, 83(5), pp. 458-463. doi: 10.1007/s004360050280.

Guy, E. C. (2014) ‘Toxoplasmosis’, PROTOZOAL INFECTIONS, pp. 31-33.
Al Hamada, A. et al. (2019) 'Risk factors associated with seropositivity to Toxoplasma among sheep and goats in Northern Iraq', Veterinary Parasitology: Regional Studies and Reports. Elsevier, 15(September 2018), p. 100264. doi: 10.1016/j.vprsr.2019.100264.

Hamilton, C. M. et al. (2014) 'Seroprevalence of Toxoplasma gondii in small ruminants from four Caribbean islands', Parasites and Vectors, 7(1), pp. 1-4. doi: 10.1186/1756-3305-7-449.

Hammond-Aryee, K., Van Helden, L. S. and Van Helden, P. D. (2015) ‘The prevalence of antibodies to Toxoplasma gondii in sheep in the Western Cape, South Africa', The Onderstepoort journal of veterinary research, 82(1), p. 993. doi: 10.4102/ojvr.v82i1.993.

Hanafiah, M. et al. (2018) 'Detection of Toxoplasma gondii copro-prevalence by polymerase chain reaction using repetitive 529 bp gene in feces of pet cats (Felis catus) in Yogyakarta, Indonesia', Veterinary World, 11(9), pp. 1338-1343. doi: 10.14202/vetworld.2018.13381343.

Hassan, M. A. et al. (2019) ‘Clonal and atypical Toxoplasma strain differences in virulence vary with mouse sub-species', International Journal for Parasitology, 49(1), pp. 63-70. doi: 10.1016/j.ijpara.2018.08.007.

Hecker, Y. P. et al. (2013) 'First report of seroprevalence of Toxoplasma gondii and Neospora caninum in dairy sheep from Humid Pampa, Argentina', Tropical Animal Health and Production, 45(7), pp. 1645-1647. doi: 10.1007/s11250-013-0396-1.

Hill, D. E., Chirukandoth, S. and Dubey, J. P. (2005) ‘ Biology and epidemiology of Toxoplasma gondii in man and animals ', Animal Health Research Reviews, 6(1), pp. 41-61. doi: 10.1079/ahr2005100.

Hill, D. E. and Dubey, J. P. (2013) 'Toxoplasma gondii prevalence in farm animals in the United States', International Journal for Parasitology, 43(2), pp. 107-113. doi: 10.1016/j.ijpara.2012.09.012.

Hoda, A. E. M. E. B. et al. (2015) ‘Bio-typing of Toxoplasma gondii isolate solates from complicated pregnant Egyptian women omen', 3(9), pp. 453-458.

Hosein, S. et al. (2016) 'Toxoplasma gondii detection in cattle: A slaughterhouse survey', Veterinary Parasitology, 228, pp. 126-129. doi: 10.1016/j.vetpar.2016.09.001.

Hosseini, S. A. et al. (2019) 'Human toxoplasmosis: A systematic review for genetic diversity of Toxoplasma gondii in clinical samples', Epidemiology and Infection, 147. doi: 10.1017/S0950268818002947.

Hotea, I. et al. (2021) 'Seroprevalence and Risk Factors for Toxoplasma gondii Infection in Sheep and Goats from Romania', Parasitologia, 1(2), pp. 36-44. doi:
10.3390/parasitologia 1020005.

Hove, T., Lind, P. and Mukaratirwa, S. (2005) ‘Seroprevalence of Toxoplasma gondii infection in goats and sheep in Zimbabwe', Onderstepoort Journal of Veterinary Research, 72(4), pp. 267-272. doi: 10.4102/ojvr.v72i4.175.

Howard, J. C., Hunn, J. P. and Steinfeldt, T. (2011) 'The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii', Current Opinion in Microbiology, 14(4), pp. 414-421. doi: 10.1016/j.mib.2011.07.002.

Howe, D. K. and Sibley, L. D. (1995) 'Toxoplasma gondii comprises three clonal lineages: Correlation of parasite genotype with human disease', Journal of Infectious Diseases, 172(6), pp. 1561-1566. doi: 10.1093/infdis/172.6.1561.

Ibrahim, N. (2017) 'Review on Toxoplasmosis and Its Zoonotic Importance', Research \& Reviews: Journal of Biology, 5(2), pp. 21-29.

Innes, E. A. (2010) 'A brief history and overview of toxoplasma gondii', Zoonoses and Public Health, 57(1), pp. 1-7. doi: 10.1111/j.1863-2378.2009.01276.x.

Innes, E. A. et al. (2019) 'A one health approach to vaccines against Toxoplasma gondii', Food and Waterborne Parasitology, 15. doi: 10.1016/j.fawpar.2019.e00053.

Irma, Y. and Nasronudin (2015) 'Pathogenesis , Diagnostic and Management of', 5(4), pp. 100-106.

Irons, P. C., Henton, M. M. and Bertschinger, H. J. (2002) ‘Collection of preputial material by scraping and aspiration for the diagnosis of Tritrichomonas foetus in bulls', Journal of the South African Veterinary Association, 73(2), pp. 66-69. doi: 10.4102/jsava.v73i2.558.

Ishaku, B. S. et al. (2018) 'Seroprevalence and Risk Factors for Toxoplasma gondii in Pigs, Sheep and Goats at Slaughter in Jos Municipal Abattoir, Nigeria', Veterinary Sciences: Research and Reviews, 4(2). doi: 10.17582/journal.vsrr/2018/4.2.55.61.

Jasim, G. and Ayyal, R. I. (2018) 'Investigation of Toxoplasmosis in Human, Camels and Goats by Using Molecular Methods', Indian Journal of Natural Sciences, 9(50). Available at: http://tnsroindia.org.in/JOURNAL/issue50/ISSUE 50 FULL TEXT PART 2.pdf?cv=1.

Jittapalapong, S. et al. (2005) 'Seroprevalence of Toxoplasma gondii infection in domestic goats in Satun Province, Thailand', Veterinary Parasitology, 127(1), pp. 17-22. doi: 10.1016/j.vetpar.2004.08.019.

Jones, C. D. et al. (2000) '18S rDNA Genes of T . Gondii in Aqueous Humor AND', Investigative Ophthalmology, 41(3), pp. 634-644.

Julie, B. et al. (2019) 'Seroprevalence of two abortive parasites : Toxoplasma gondii and Neospora caninum in domestic animals in', (February).

Kadle, A. A. H. (2014) 'Sero-Prevalence of Toxoplasmosis in Domestic Animals in Benadir Region, Somalia', Open Journal of Veterinary Medicine, 04(08), pp. 170-174. doi: 10.4236/ojvm.2014.48019.

Kakakhel, M. A. et al. (2021) 'The presence of Toxoplasma gondii in soil, their transmission, and their influence on the small ruminants and human population: A review', Microbial

Pathogenesis, 158(February). doi: 10.1016/j.micpath.2021.104850.
Kamani, J., Mani, A. U. and Egwu, G. O. (2010) 'Seroprevalence of Toxoplasma gondii infection in domestic sheep and goats in Borno state, Nigeria', Tropical Animal Health and Production, 42(4), pp. 793-797. doi: 10.1007/s11250-009-9488-3.

Kantzoura, V. et al. (2013) 'Seroprevalence and risk factors associated with zoonotic parasitic infections in small ruminants in the Greek temperate environment', Parasitology International, 62(6), pp. 554-560. doi: 10.1016/j.parint.2013.08.010.

Kasiulevičius, V., Šapoka, V. and Filipavičiūté, R. (2006) 'Sample size calculation in epidemiological studies', Gerontologija, 7(4), pp. 225-231. doi: 013165/AIM. 0010.

Katzer, F. et al. (2011) 'Increased Toxoplasma gondii positivity relative to age in 125 Scottish sheep flocks; Evidence of frequent acquired infection', Veterinary Research, 42(1), pp. 1-9. doi: 10.1186/1297-9716-42-121.

Keane, T. M. et al. (2011) 'Mouse genomic variation and its effect on phenotypes and gene regulation', Nature, 477(7364), pp. 289-294. doi: 10.1038/nature10413.

Khalife, S. et al. (2022) 'Seroprevalence and risk assessment of Toxoplasma gondii infection in sheep and goats in North and Beqaa governorates of Lebanon', Veterinary World, 15(9), pp. 2180-2185. doi: 10.14202/vetworld.2022.2180-2185.

Khan, A. et al. (2007) 'Recent transcontinental sweep of Toxoplasma gondii driven by a single monomorphic chromosome', 104(37). doi: 10.1073/pnas. 0702356104.

Khan, K. and Khan, W. (2018) ‘Congenital toxoplasmosis: An overview of the neurological and ocular manifestations', Parasitology International, 67(6), pp. 715-721. doi: 10.1016/j.parint.2018.07.004.

Kistiah, K. et al. (2011) 'Seroprevalence of Toxoplasma gondii Infection in HIV-positive and HIV-negative subjects in Gauteng, South Africa', Southern African Journal of Epidemiology and Infection, 26(4), pp. 225-228. doi: 10.1080/10158782.2011.11441457.

Klun, I. et al. (2006) 'Cross-sectional survey on Toxoplasma gondii infection in cattle, sheep and pigs in Serbia: Seroprevalence and risk factors', Veterinary Parasitology, 135(2), pp. 121-131. doi: 10.1016/j.vetpar.2005.08.010.

Lachkhem, A. et al. (2021a) 'First isolation and genotyping of Toxoplasma gondii strains from domestic animals in Tunisia', Scientific Reports. Nature Publishing Group UK, 11(1). doi: 10.1038/s41598-021-88751-1.

Lachkhem, A. et al. (2021b) 'First isolation and genotyping of Toxoplasma gondii strains from domestic animals in Tunisia', Scientific Reports. Nature Publishing Group UK, 11(1). doi: 10.1038/s41598-021-88751-1.

Lau, Y. L. et al. (2016) 'Deciphering the draft genome of Toxoplasma gondii RH strain', PLoS ONE, 11(6), pp. 1-15. doi: 10.1371/journal.pone.0157901.

Lecordier, L. et al. (1995) 'Characterization of a dense granule antigen of Toxoplasma gondii (GRA6) associated to the network of the parasitophorous vacuole', Molecular and Biochemical Parasitology. Elsevier, 70(1-2), pp. 85-94. doi: 10.1016/0166-6851(95)00010X.

Li, M. et al. (2014) 'Phylogeny and virulence divergency analyses of Toxoplasma gondii
isolates from China', Parasites and Vectors, 7(1), pp. 1-12. doi: 10.1186/1756-3305-7-133.
Liu, Q. et al. (2015) 'Diagnosis of toxoplasmosis and typing of Toxoplasma gondii', Parasites and Vectors. ???, 8(1), pp. 1-14. doi: 10.1186/s13071-015-0902-6.

Liu, Z. K., Li, J. Y. and Pan, H. (2015) 'Seroprevalence and risk factors of Toxoplasma gondii and Neospora caninum infections in small ruminants in China', Preventive Veterinary Medicine, 118(4), pp. 488-492. doi: 10.1016/j.prevetmed.2014.12.017.

Lopes, A. P. et al. (2013) 'Seroprevalence of Toxoplasma gondii infection in cattle, sheep, goats and pigs from the North of Portugal for human consumption', Veterinary Parasitology, 193(1-3), pp. 266-269. doi: 10.1016/j.vetpar.2012.12.001.

Lopes, A. P. et al. (2014) 'Epidemiological review of Toxoplasma gondii infection in humans and animals in Portugal', Parasitology, 141(13), pp. 1699-1708. doi:
10.1017/S0031182014001413.

Lopes, W. D. Z. et al. (2013) 'Sexual transmission of Toxoplasma gondii in sheep', Veterinary Parasitology, 195(1-2), pp. 47-56. doi: 10.1016/j.vetpar.2012.12.056.

Markey, B. et al. (2013) Clinical Veterinary Microbiology. second. Britian: Elsevier Ltd.
Martínez-Rodriguez, L. C., Tafur-Gómez, G. A. and Guzman-Barragan, B. L. (2020a) 'Toxoplasma gondii in small ruminants in northeastern areas of Colombia: Seroprevalence and risk factors', Parasite Epidemiology and Control. Elsevier Ltd, 10, p. e00147. doi: 10.1016/j.parepi.2020.e00147.

Martínez-Rodriguez, L. C., Tafur-Gómez, G. A. and Guzman-Barragan, B. L. (2020b) 'Toxoplasma gondii in small ruminants in northeastern areas of Colombia: Seroprevalence and risk factors', Parasite Epidemiology and Control. Elsevier Ltd, 10, p. e00147. doi: 10.1016/j.parepi.2020.e00147.

Maryam, Norouzi et al. (2016) 'Genotyping of Toxoplasma gondii Strains Isolated from Patients with Ocular Toxoplasmosis in Iran', Iran J Parasitol, 11(3), pp. 316-324.

Mason, P. R., Jacobs, M. R. and Fripp, P. J. (1974) 'Serological survey of toxoplasmosis in the Transvaal’, South African Medical Journal, 48(40), pp. 1707-1709.

Mcgirr, E. M. (1968) 'Section of Epidemiology and Preventive Medicine Thyroid Disease [Abridged]', 61(April), pp. 385-389.

McHugh, M. L. (2012) 'Lessons in biostatistics interrater reliability : the kappa statistic', Biochemica Medica, 22(3), pp. 276-282. Available at: https://hrcak.srce.hr/89395.
de Melo Ferreira, A. et al. (2004) 'Genetic variability of Brazilian Toxoplasma gondii strains detected by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and simple sequence repeat anchored-PCR (SSR-PCR)', Infection, Genetics and Evolution, 4(2), pp. 131-142. doi: 10.1016/j.meegid.2004.03.002.

Miao, Q. et al. (2013) 'Seroprevalence of Toxoplasma gondii in horses and donkeys in Yunnan Province, Southwestern China’, Parasites and Vectors, 6(1), pp. 1-5. doi: 10.1186/1756-3305-6-168.

Miller, M. A. et al. (2004) 'An unusual genotype of Toxoplasma gondii is common in California sea otters (Enhydra lutris nereis) and is a cause of mortality', International Journal for Parasitology, 34(3), pp. 275-284. doi: 10.1016/j.ijpara.2003.12.008.

Mirza Alizadeh, A. et al. (2018) 'A review on inactivation methods of Toxoplasma gondii in foods', Pathogens and Global Health. Taylor \& Francis, 112(6), pp. 306-319. doi: 10.1080/20477724.2018.1514137.

Monika, K. H. and Paul, E. (2014) 'Toxoplasmosis in South Africa- Old Disease in A New Context', 4(22), pp. 101-106.

Montoya, J. G. and Liesenfeld, O. (2004) ‘Toxoplasmosis’, 363, pp. 1965-1976.
Moretta, R. et al. (2018) 'Genotyping of Toxoplasma gondii: The advantages of variable number tandem repeats within coding regions', Infection, Genetics and Evolution, 65(July), pp. 226-230. doi: 10.1016/j.meegid.2018.07.026.

Morrison, D. A. (2005) 'Networks in phylogenetic analysis: New tools for population biology', International Journal for Parasitology, 35(5), pp. 567-582. doi: 10.1016/j.ijpara.2005.02.007.

Murphy, T. W., Stewart, W. C. and Taylor, J. B. (2018) 'Factors affecting ewe somatic cell count and its relationship with lamb weaning weight in extensively managed flocks1', Translational Animal Science, 2(suppl_1), pp. S159-S162. doi: 10.1093/tas/txy031.

Ndou, R. V. et al. (2013) 'A seroprevalance survey of Toxoplasma gondii amongst slaughter cattle in two high throughput abattoirs in the North West Province of South Africa', Journal of Food, Agriculture and Environment, 11(1), pp. 338-339.

OIE (2008a) 'Collection and shipment of diagnostic specimens', OIE Terrestrial Manual 2018, pp. 1-14.

OIE (2008b) ‘Toxoplasmosis', Terrestrial Manual, pp. 1284-1293.
Oliveira, G. C. et al. (2019) 'Prevalence of Toxoplasma gondii infections in swine of nontecnified rearing farms of the northeastern region of the state of São Paulo, Brazil and associated risk factors', Parasite Epidemiology and Control. The Authors, 4(December), p. e00080. doi: 10.1016/j.parepi.2018.e00080.

Opsteegh, M. et al. (2011) 'Low predictive value of seroprevalence of Toxoplasma gondii in cattle for detection of parasite DNA', International Journal for Parasitology. Australian Society for Parasitology Inc., 41(3), pp. 343-354. doi: 10.1016/j.ijpara.2010.10.006.

Otranto, D. et al. (2015) 'The role of wild canids and felids in spreading parasites to dogs and cats in Europe Part I: Protozoa and tick-borne agents', Veterinary Parasitology. Available at: http://dx.doi.org/10.1016/j.vetpar.2015.04.022.

Pal, M., Alem, B. and Tuli, G. (2014) ‘Toxoplasmosis in Animals and Humans - Its Diagnosis, Epidemiology and Control', International Journal of Livestock Research, 4(2), p. 1. doi: 10.5455/ijlr. 20140608054253.

Parameswarana et al. (2009) 'Vertical transmission of Toxoplasma gondii in Australian marsupials', Parasitology, 136(9), pp. 939-944. doi: doi:10.1017/S0031182009006453.

Pernas, L. and Boothroyd, J. (2011) 'Association of host mitochondria with the parasitophorous vacuole during Toxoplasma infection is not dependent on rhoptry proteins ROP2/8', Bone, 23(1), pp. 1-7. doi: 10.1038/jid.2014.371.

Petrie, A. and Watson, P. (2013) 'Statistics for Veterinary and Animal Science', Australian Veterinary Journal, 78(8), pp. 570-570. doi: 10.1111/j.1751-0813.2000.tb11906.x.

Pinheiro, J. W. et al. (2009) 'Prevalence and risk factors associated to infection by Toxoplasma gondii in ovine in the State of Alagoas, Brazil', Parasitology Research, 105(3), pp. 709-715. doi: 10.1007/s00436-009-1472-3.

Pleyer, U. et al. (2019) ‘Toxoplasmosis in Germany’, Deutsches Aerzteblatt Online. doi: 10.3238/arztebl.2019.0435.

Van Der Puije, W. N. A. et al. (2000) 'The prevalence of anti-Toxoplasma gondii antibodies in Ghanaian sheep and goats', Acta Tropica, 76(1), pp. 21-26. doi: 10.1016/S0001-706X(00)00084-X.

Raeghi, Akaberi and Sedeghi (2011) 'Seroprevalence of Toxoplasma gondii in Sheep, Cattle and Horses in Urmia North-West of Iran', 6(4), pp. 90-94.

Rajendran, C., Su, C. and Dubey, J. P. (2012) ‘Molecular genotyping of Toxoplasma gondii from Central and South America revealed high diversity within and between populations', Infection, Genetics and Evolution, 12(2), pp. 359-368. doi: 10.1016/j.meegid.2011.12.010.

Rêgo, W. M. F. et al. (2016) 'Risk factors for Toxoplasma gondii infection in goats and sheep raised in the State of Piauí in northeast Brazil', Small Ruminant Research, 141, pp. 1723. doi: 10.1016/j.smallrumres.2016.04.010.

Rêgo, W. M. F. et al. (2017) 'Association of ROP18 and ROP5 was efficient as a marker of virulence in atypical isolates of Toxoplasma gondii obtained from pigs and goats in Piauí, Brazil', Veterinary Parasitology, 247(September), pp. 19-25. doi:
10.1016/j.vetpar.2017.09.015.

Robert-Gangneux, F. (2014) 'It is not only the cat that did it: How to prevent and treat congenital toxoplasmosis', Journal of Infection, 68(SUPPL1). doi:
10.1016/j.jinf.2013.09.023.

Robert-Gangneux, F. and Dardé, M. L. (2012) 'Epidemiology of and diagnostic strategies for toxoplasmosis', Clinical Microbiology Reviews, 25(2), pp. 264-296. doi: 10.1128/CMR.05013-11.

Rodger, S. M. et al. (2006) 'Role of endogenous transplacental transmission in toxoplasmosis in sheep', Veterinary Record, 159(23), pp. 768-772. doi: 10.1136/vr.159.23.768.

Rome, M. E. et al. (2008) 'Intervacuolar transport and unique topology of GRA14, a novel dense granule protein in Toxoplasma gondii', Infection and Immunity, 76(11), pp. 48654875. doi: 10.1128/IAI.00782-08.

Ross, D. S., Jones, J. L. and Lynch, M. F. (2006) 'Toxoplasmosis, cytomegalovirus, listeriosis, and preconception care', Maternal and Child Health Journal, 10(SUPPL. 7), pp. 189-193. doi: 10.1007/s10995-006-0092-0.

Rouatbi, M. et al. (2020) 'Original Article Molecular detection and phylogenetic analyses of Toxoplasma gondii from naturally infected sheep in Northern and Central Tunisia', (2017), pp. 22-31. doi: $10.1002 / \mathrm{vms} 3.53$.

Saeij, J. P. J. et al. (2014) ‘Polymorphic Secreted Kinases Are Key Virulence Factors in Toxoplasmosis', 27(4), pp. 1-19. doi: 10.1037/a0032811.Child.

Saeij, J. P. J., Boyle, J. P. and Boothroyd, J. C. (2005) 'Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host', Trends in Parasitology, 21(10), pp. 476-481. doi: 10.1016/j.pt.2005.08.001.

Saitou, N. and Nei, M. (1987) 'The neighbor-joining method: a new method for reconstructing phylogenetic trees.', Molecular biology and evolution, 4(4), pp. 406-425. doi: 10.1093/oxfordjournals.molbev.a040454.

Samra, N. A. et al. (2007) 'Seroprevalence of toxoplasmosis in sheep in South Africa’, Journal of the South African Veterinary Association, 78(3), pp. 116-120. doi: 10.4102/jsava.v78i3.301.

Santana, L. F. et al. (2013) 'Evidence of sexual transmission of Toxoplasma gondii in goats', Small Ruminant Research, 115(1-3), pp. 130-133. doi: 10.1016/j.smallrumres.2013.08.008.

Saraf, P. et al. (2017) 'On the determination of Toxoplasma gondii virulence in mice', Experimental Parasitology, 174, pp. 25-30. doi: 10.1016/j.exppara.2017.01.009.

Sarvi, S. et al. (2015) 'Cattle toxoplasmosis in Iran: A systematic review and meta-analysis', Asian Pacific Journal of Tropical Medicine, 8(2), pp. 120-126. doi: 10.1016/S1995-7645(14)60301-1.

Schares, G. et al. (2017) 'High seroprevalence of Toxoplasma gondii and probability of detecting tissue cysts in backyard laying hens compared with hens from large free-range farms', International Journal for Parasitology, 47(12), pp. 765-777. doi: 10.1016/j.ijpara.2017.07.003.

Shah, M. et al. (2013) 'S eroprevalence of T oxoplasma M ohmand agency, P akistan gondii infection in domestic animals of Mohmand agency, Pakistan', 1(1), pp. 34-37.

Sharif, M. et al. (2017) 'Genetic diversity of Toxoplasma gondii isolates from ruminants: A systematic review’, International Journal of Food Microbiology, 258(March), pp. 38-49. doi: 10.1016/j.ijfoodmicro.2017.07.007.

Sharma, R. et al. (2019) 'Comparison of tissues (heart vs. brain)and serological tests (MAT, ELISA and IFAT)for detection of Toxoplasma gondii in naturally infected wolverines (Gulo gulo)from the Yukon, Canada', Food and Waterborne Parasitology, 15. doi: 10.1016/j.fawpar.2019.e00046.

Sharma, S. P. et al. (2003) 'Isolation of Toxoplasma gondii from goats with a history of reproductive disorders and the prevalence of Toxoplasma and chlamydial antibodies', Onderstepoort Journal of Veterinary Research, 70(1), pp. 65-68.

Shwab, E. K. et al. (2016) ‘Erratum: Corrigendum to "The ROP18 and ROP5 gene allele types are highly predictive of virulence in mice across globally distributed strains of Toxoplasma gondii" (International Journal for Parasitology (2016) 46(2) (141-146) (S0020751915003124) (10.1016/', International Journal for Parasitology, 46(9), p. 603. doi: 10.1016/j.ijpara.2016.05.003.

Smith, J. (1991) 'Foodborne Toxoplasmosis’, Journal of Food Safety, 12(1), pp. 17-57. doi: 10.1111/j.1745-4565.1991.tb00063.x.

Stelzer, S. et al. (2019) 'Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact', Food and Waterborne Parasitology, 15. doi: 10.1016/j.fawpar.2019.e00037.

Stormoen, M., Tharaldsen, J. and Hopp, P. (2012) ‘Seroprevalence of Toxoplasma gondii infection in Norwegian dairy goats'. doi: 10.1186/1751-0147-54-75.

Stover, J. et al. (1990) 'Toxoplasma gondii in a collection of nondomestic ruminants',

Journal of Zoo and Wildlife Medicine, (May), pp. 295-301.
Stuart Brown (1998) 'Snapping Up SNPs’, (2), p. 1090.
Stuen, S., Granquist, E. G. and Silaghi, C. (2013) ‘Anaplasma phagocytophilum-a widespread multi-host pathogen with highly adaptive strategies', Frontiers in Cellular and Infection Microbiology, 4(JUL), pp. 1-33. doi: 10.3389/fcimb.2013.00031.
Su, C. et al. (2003) 'Recent expansion of Toxoplasma through enhanced oral transmission', Science, 299(5605), pp. 414-416. doi: 10.1126/science. 1078035.
Su, C. et al. (2010) 'Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii', Parasitology, 137(1), pp. 1-11. doi:
10.1017/S0031182009991065.

Tagwireyi, W. M., Etter, E. and Neves, L. (2019) 'Seroprevalence and associated risk factors of toxoplasma gondii infection in domestic animals in southeastern South Africa',
Onderstepoort Journal of Veterinary Research, 86(1), pp. 1-6. doi: 10.4102/ojvr.v86i1.1688.
Tamura, K., Nei, M. and Kumar, S. (2004) 'Prospects for inferring very large phylogenies by using the neighbor-joining method', Proceedings of the National Academy of Sciences of the United States of America, 101(30), pp. 11030-11035. doi: 10.1073/pnas. 0404206101.

Tamura, K., Stecher, G. and Kumar, S. (2021) 'MEGA11: Molecular Evolutionary Genetics Analysis Version 11', Molecular Biology and Evolution, 38(7), pp. 3022-3027. doi: 10.1093/molbev/msab120.

Taniguchi, Y. et al. (2018) 'Atypical virulence in a type III Toxoplasma gondii strain isolated in Japan’, Parasitology International, 67(5), pp. 587-592. doi: 10.1016/j.parint.2018.05.010.

Taylor, G. A., Feng, C. G. and Sher, A. (2007) ‘Control of IFN- γ-mediated host resistance to intracellular pathogens by immunity-related GTPases (p47 GTPases)', Microbes and Infection, 9(14-15), pp. 1644-1651. doi: 10.1016/j.micinf.2007.09.004.

Tegegne, D. et al. (2016) 'Seroepidemiology and associated risk factors of Toxoplasma gondii in sheep and goats in Southwestern Ethiopia', BMC Veterinary Research. BMC Veterinary Research, 12(1), pp. 4-9. doi: 10.1186/s12917-016-0906-2.

Tenter, A. M. (2000) 'ToxAstrid M. Tenteraoplasma gondii: from animals to humans', International journal for parasitology, 30(12-13), pp. 1217-1258.

Tenter, A. M., Heckeroth, A. R. and Weiss, L. M. (2000) ‘Toxoplasma gondii: From animals to humans', International Journal for Parasitology, 30(12-13), pp. 1217-1258. doi: 10.1016/S0020-7519(00)00124-7.

Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) ‘CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice', Nucleic Acids Research, 22(22), pp. 46734680. doi: 10.1093/nar/22.22.4673.

Thrusfield, M. (2004) Veterinary Epidemiology, Equine Internal Medicine: Second Edition. doi: 10.1016/B0-72-169777-1/50023-8.

Tibayrenc, M. et al. (2002) 'Microsatellite analysis of Toxoplasma gondii shows considerable polymorphism structured into two main clonal groups Microsatellite analysis of Toxoplasma gondii shows considerable polymorphism structured into two main clonal groups',

7519(February). doi: 10.1016/S0020-7519(01)00301-0.
Tilahun, B. et al. (2018) 'Seroprevalence and Risk Factors of Toxoplasma gondii Infection among Domestic Ruminants in East Hararghe Zone of Oromia Region, Ethiopia’, Veterinary Medicine International, 2018. doi: 10.1155/2018/4263470.

Tp, B. (2010) 'Agglutination Test', pp. 1-11.
Tzanidakis, N. et al. (2012) 'Toxoplasma gondii in sheep and goats: Seroprevalence and potential risk factors under dairy husbandry practices', Veterinary Parasitology. Elsevier B.V., 190(3-4), pp. 340-348. doi: 10.1016/j.vetpar.2012.07.020.

Vallejos-Vidal, E. et al. (2020) ‘Single-Nucleotide Polymorphisms (SNP) Mining and Their Effect on the Tridimensional Protein Structure Prediction in a Set of Immunity-Related Expressed Sequence Tags (EST) in Atlantic Salmon (Salmo salar)', Frontiers in Genetics, 10(February), pp. 1-18. doi: 10.3389/fgene.2019.01406.

VanWormer, E. et al. (2013) 'Molecules to modeling: Toxoplasma gondii oocysts at the human-animal-environment interface', Comparative Immunology, Microbiology and Infectious Diseases, 36(3), pp. 217-231. doi: 10.1016/j.cimid.2012.10.006.

Verhelst, D. et al. (2014) 'Seroprevalence of Toxoplasma gondii in domestic sheep in Belgium', Veterinary Parasitology. Elsevier B.V., 205(1-2), pp. 57-61. doi: 10.1016/j.vetpar.2014.07.001.

Villagra-Blanco, R. et al. (2019a) 'Seroprevalence of Toxoplasma gondii and Neospora caninum infections and associated factors in sheep from Costa Rica', Parasite Epidemiology and Control. Elsevier Ltd, 4, p. e00085. doi: 10.1016/j.parepi.2019.e00085.

Villagra-Blanco, R. et al. (2019b) 'Seroprevalence of Toxoplasma gondii and Neospora caninum infections and associated factors in sheep from Costa Rica', Parasite Epidemiology and Control. Elsevier Ltd, 4, p. e00085. doi: 10.1016/j.parepi.2019.e00085.

Vitaliano, S. N. et al. (2014) 'Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes', International Journal for Parasitology: Parasites and Wildlife, 3(3), pp. 276-283. doi: 10.1016/j.ijppaw.2014.09.003.

Wang, L. et al. (2013) 'Genotypes and Mouse Virulence of Toxoplasma gondii Isolates from Animals and Humans in China', PLoS ONE, 8(1). doi: 10.1371/journal.pone. 0053483.

Wang, S. et al. (2015) 'Sequence Variation in Superoxide Dismutase Gene of Toxoplasma gondii among Various Isolates from Different Hosts and Geographical Regions', 53(3), pp. 253-258.

Wang, W. et al. (2021) 'The prevalence of Toxoplasma gondii in sheep in China: A systematic review and meta-analysis’, Research in Veterinary Science, 138(September 2020), pp. 19-29. doi: 10.1016/j.rvsc.2021.05.016.

Wang, Y. et al. (2014) 'Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis', PLoS ONE, 9(3). doi: 10.1371/journal.pone. 0090053.

Webster, J. P. (2010) ‘Dubey, J.P. Toxoplasmosis of Animals and Humans’, Parasites \& Vectors, 3(1), pp. 2-3. doi: 10.1186/1756-3305-3-112.

Weilhammer, D. R. and Rasley, A. (2011) 'Genetic approaches for understanding virulence
in Toxoplasma gondii', Briefings in Functional Genomics, 10(6), pp. 365-373. doi: 10.1093/bfgp/elr028.

Wyrosdick, H. M. and Schaefer, J. J. (2015) 'Toxoplasma gondii: History and diagnostic test development', Animal Health Research Reviews, 16(2), pp. 150-162. doi: 10.1017/S1466252315000183.

Xia, J. et al. (2021) 'Third-generation sequencing revises the molecular karyotype for Toxoplasma gondii and identifies emerging copy number variants in sexual recombinants', Genome Research, 31(5), pp. 834-851. doi: 10.1101/GR.262816.120.

Yucesan, B. et al. (2021) 'Whole-genome sequencing of a Toxoplasma gondii strain from a Turkish isolate using next-generation sequencing technology', Acta Tropica, 218(March). doi: 10.1016/j.actatropica.2021.105907.

Zhang, F. K. et al. (2015) 'Molecular detection and genotypic characterization of Toxoplasma gondii in wild waterfowls in Jilin Province, Northeastern China', Parasitology International, 64(6), pp. 576-578. doi: 10.1016/j.parint.2015.08.008.

Zheng, W. Bin et al. (2016) 'Molecular detection and genetic characterization of toxoplasma gondii in farmed minks (Neovison vison) in northern China by PCR-RFLP', PLoS ONE, 11(11), pp. 1-8. doi: 10.1371/journal.pone.0165308.

APPENDICES

APPENDIX A: RISK ASSESSMENT QUESTIONAIRE

Risk assessment questionnaire for communal and commercial farm in the North West and Free State Provinces

Date: \qquad

Section A: General Information
1.1. Farm details:

Province \qquad District \qquad Municipality \qquad
Farm/Village: \qquad GPS coordinates \qquad
1.2. Interviewee

Owner	Worker	Herd man	Family	Neighbour	Other:

1.3. Gender

Male	Female

1.4. Age group
1.4. Age group

<5	$5-18$	$18-30$	$31-39$	$40-49$	$50-59$	$60-69$	$70-79$	>80

1.5. Literacy status

Never went to school	Primary School	Secondary School	Tertiary School

Section B: Animal Details
2.1. Species

Sheep Goats
2.2. Breed

Breed	Number

2.3 Sex and number of animals
2.14. What do you do with the manure from the stables/kraals?

Section C: Knowledge of Animal Reproductive Diseases Responsible for Abortions

3.1. Do you know that there are animal diseases that can lead to abortions in animals? | Yes | No |
| :--- | :--- |

3.2. Do you have any animals with the history of aborting? | Yes | No |
| :--- | :--- |

If yes, continue with question 3.3-3.5.
3.3. At what stage of the pregnancy does abortion occur?

Early	Mid	Late

3.4. What do you do when it occurs?
3.5. What do you do to the aborted foetus?

Burry	Burn	Leave it the stable/kraal	Feed pets	Dispose in the bin	Submit to state vet office

3.6. Where do you keep aborted animals?

Isolated from the herd	With the herd

APPENDIX B: CONCERNT FORM

CONSENT TO PARTICIPATE IN THIS STUDY

I, \qquad (participant name), confirm that the person asking my consent to take part in this research has told me about the nature, procedure, potential benefits and anticipated inconvenience of participation.

I have read (or had explained to me) and understood the study as explained in the information sheet.

I have had sufficient opportunity to ask questions and am prepared to participate in the study.

I understand that my participation is voluntary and that I am free to withdraw at any time without penalty (if applicable).

I am aware that the findings of this study will be processed into a research report, journal publications and/or conference proceedings, but that my participation will be kept confidential unless otherwise specified.

I agree to the recording of the <insert specific data collection method>.

I have received a signed copy of the informed consent agreement.

Participant Name \& Surname
(please print)

Participant Signature \qquad Date \qquad

Researcher's Name \& Surname. (please print)
\qquad Date \qquad

UNISA-CAES HEALTH RESEARCH ETHICS COMMITTEE UNISA-CAES ANIMAL RESEARCH ETHICS COMMITTEE

Date: 09/11/2020	NHREC Registration \# : REC-170616-051 REC Reference \# : 2020/CAES_AREC/146 Name : Mr ME Masombuka Student \#: 67134238
Dear Mr Masombuka	
Decision: Ethics Approval from $05 / 11 / 2020 ~ t o ~ 31 / 10 / 2021 . ~$	

Researcher(s): Mr ME Masombuka

mthokozo@icloud.com

Supervisor (s): Dr G Mokolopi
kgobeg@unisa.ac.za; 011-471-3909
Dr N Gcebe gceben@arc.agric,za; 012-529-9138

Working title of research:

Prevalence and risk assessment of toxoplasmosis in commercial and communal sheep and goats in the Free State and North West provinces

Qualification: MSc Agriculture

Thank you for the application for research ethics clearance by the Unisa-CAES Health and Animal Research Ethics Committees for the above mentioned research. Ethics approval is granted for one year, renewable until the completion of the project, subject to further clarification, and submission of yearly progress reports. Failure to submit the progress report will lead to withdrawal of the ethics clearance until the report has been submitted.

Due date for progress report: 31 October 2021

Please note the points below for further action:

Feedback from the Animal Research Ethics Committee:

1. How many farms/households will be sampled, and how many animals per farm/household?
2. Who will collect all the different samples - will the veterinarian (Dr Mphuthi) do it, or will the researcher collect some of the samples?
3. Will Dr Mphuthi collect the samples in both the Free State and North West, as he/she is situated in North West? Or will someone else collect the Free State samples?
4. The SAVC number of the veterinarian must be provided, as well as a commitment letter confirming her availability for the duration of the study.
5. There must be permission from the state veterinarian and/or the community leaders in each research area. The researcher is cautioned that sample collection may not commence until the permission has been obtained and submitted to the committee.
6. The ethics application form is incomplete and needs to be completed in detail.
7. How will the does and ewes be restrained during the procedures? Who will do it? What is their recent experience with such procedures?
8. Where will the sampling take place - will it be at communal (e.g. diptank) areas, or at farmsteads?
9. The researcher must specify the method of euthanasia that will be applied in the unlikely event that an animal is seriously injured during the research, e.g. when being restrained, for instance. The procedure must be on record, no matter how unlikely serious injury to the animals may be. Furthermore, who will perform the procedure?
10. The sample size formula needs to be corrected ($Z^{2} \times \mathrm{P}^{1-p}$)

Feedback from the Health Research Ethics Committee:

1. The supervisor has not signed the health ethics application form.
2. Is two minutes realistic for the completion of the interview? Will it not take longer than that?
3. With regard to the multivariate analysis, the committee recommends that the variables should be selected based on the objectives and the purpose for fitting the specific statistical model, rather than stepwise. The stepwise approach is numerically based and sometimes rejects a key variable needed for the success of the research.

The low risk application was reviewed by the UNISA-CAES Health and Animal Research Ethics Committees on 05 and 06 November 2020 respectively in compliance with the Unisa Policy on Research Ethics and the Standard Operating Procedure on Research Ethics Risk Assessment.

The proposed research may now commence with the provisions that:

1. The researcher will ensure that the research project adheres to the relevant guidelines set out in the Unis Covid-19 position statement on research ethics attached.
2. The researcher (s) will ensure that the research project adheres to the values and principles expressed in the UNISA Policy on Research Ethics.
3. Any adverse circumstance arising in the undertaking of the research project that is relevant to the ethicality of the study should be communicated in writing to the Committee.
4. The researcher (s) will conduct the study according to the methods and procedures set out in the approved application.
5. Any changes that can affect the study-related risks for the research participants, particularly in terms of assurances made with regards to the protection of participants' privacy and the confidentiality of the data, should be reported to the Committee in writing, accompanied by a progress report.
6. The researcher will ensure that the research project adheres to any applicable national legislation, professional codes of conduct, institutional guidelines and scientific standards relevant to the specific field of study. Adherence to the following South African legislation is important, if applicable: Protection of Personal Information Act, no 4 of 2013; Children's act no 38 of 2005 and the National Health Act, no 61 of 2003
7. Only de-identified research data may be used for secondary research purposes in future on condition that the research objectives are similar to those of the original research. Secondary use of identifiable human research data require additional ethics clearance.
8. No field work activities may continue after the expiry date. Submission of a completed research ethics progress report will constitute an application for renewal of Ethics Research Committee approval

Note:
The reference number 2020/CAES_HREC/146 should be clearly indicated on all forms of communication with the intended research participants, as well as with the Committees

Yours sincerely,

Prof MA Anti

W.M. Strauss.

Dr WM Strauss

Chair of UNISA-CAES Health REC

E-mail: antwima@unisa.ac.za
Tel: (011) 670-9391
$878 / 9$

Prof SR Magano

Acting Executive Dean : CAES
E-mall: magansr@unisa.ac.za
Tel: (011) 471-3649

Chair of UNISA-CAES Animal REC
E-mail: strauwm@unisa.ac.za
Tel: (011) 471-2163

APPENDIX D: DAFF APPROVAL LETTER

agriculture, forestry \& fisheries

Department

Agriculture, Forestry and Fisheries
REPUBLIC OF SOUTH AFRICA

Directorate Animal Health, Department of Agriculture, Forestry and Fisheries Private Bag X138, Pretoria 000

Enquiries: Mr Herry Gololo • Tel: +27 123197532 • Fax: +27 123197470 • E-mail: HerryG@daff.gov.za Reference: 12/11/1/1

Dr Nomakorinte Gcebe
Onderstepoort Veterinary Institute
100 Old Soutpan Road
Onderstepoort
0110
Email: GcebeN@arc.agric.za
Dear Dr Gcebe,

RE: PERMISSION TO DO RESEARCH IN TERMS OF SECTION 20 OF THE ANIMAL DISEASES ACT, 1984 (ACT NO. 35 OF 1984)

Your application sent per email on 17 May 2019, requesting permission under Section 20 of the Animal Disease Act, 1984 (Act No. 35 of 1984) to perform a research project or study, refers. I am pleased to inform you that permission is hereby granted to perform the following study, with the following conditions:

Conditions:

1. This permission does not relieve the researcher of any responsibility which may be placed on him/her by any other act of the Republic of South Africa;
2. The study is approved as per the application form dated 17/05/2019 and the correspondence thereafter. Written permission from the Director: Animal Health must be obtained prior to any deviation from the conditions approved for this study under this Section 20 permit. Please apply in writing to HerryG@daff.gov.za;
3. All potentially infectious material utilised, collected or generated during the study are to be destroyed at the completion of the study. Records must be kept for five years for auditing purposes;
4. Samples may only be collected from animals where the state veterinary official has confirmed that the area is not under any restriction due to disease which the species is susceptible to;
5. Samples from abattoirs may only be removed subject to obtaining permission from the owner and the provincial veterinary official providing oversight for that specific abattoir;
6. All samples must be packaged and transported in accordance with International Air Transport Association (IATA) requirements and the National Road Traffic Act, 1996 (Act No. 93 of 1996);
7. Isolates of Coxiella burnetii and Toxoplasma gondi as well as extracted DNA and purified protein derivatives from this study may be stored at the OVI Bacteriology laboratories and any further use or distribution is subject to obtaining a separate Section 20 approval;
8. If required, an application for an extension must be made by the responsible researcher at least one month prior to the expiry of this Section 20 approval.

Title of research/study: Prevalence of Q-fever and Toxoplasmosis in slaughtered and farmed animals in Free State, North West and Limpopo Provinces of South Africa and development of cell mediated immunity biomarkers.

Researcher: Dr Nomakorinte Gcebe
Institution: Onderstepoort Veterinary Institute
Our ref Number: 12/11/1/1
Your ref: n / a
Expiry date: 2022-04

Kind regards,

Date: $\quad 2019-07-30$

APPENDIX E: ANALYSED T. GODII B1 SEQUENCES FOR 803 bp FRAGMENTS

Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecuanillo179
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102b
StaRosa103
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98

TTGGTTCCGC CTCCTTCGTC CGTCGTAATA TCAGGCCTTC TGTTCTGTTC TTGGTTCCGC CTCCTTCGTC CGTCGTAATA TCAGGCCTTC TGTTCTGTTC
 GCTGTCTGTC TAGGGCACCC TTACTGCAAG AGAAGTATTT GAGGTCATAT GCTGTCTGTC TAGGGCACCC TTACTGCAAG AGAAGTATTT GAGGTCATAT

$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$
 110120130140150

Tecuanillo178 CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC Tecuanillo177 CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC Tecuanillo175 CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC Tecuanillo174 CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC Coalatilla173 CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC Coalatilla170 CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC StaRosa114 CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC StaRosa112 Juluapan11 Tecuanillo179 Tecoman108 StaRosa107 ElReal111 ElReal109b ElReall09a Camalote106 Camalote104 Camalote102b StaRosa103 Camalote102a Estacion101b Estacion101a StaRosa113 Estacion98 CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC CGTCCCATGA AGTCGACCAC CTGTTTCCTC TTTTCACTGT CACGTACGAC CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC CGTCCCATGA AGTCGACCAC CTGTTTCCTC TTTTCACTGT CACGTACGAC CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC CGTCCCATGA AGTCGACCAC CTGTTTCCTC TCTTCACTGT CACGTACGAC

Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecuanillo179
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReall09a
Camalote106
Camalote104
Camalote102b
StaRosa103
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98

ATCGCATTCA AGGGAAGAGA TCCAGCAGAT CTCGTTCGTG TATTCGAGAC ATCGCATTCA AgGGAAGAGA TCCAGCAGAT CTCGTTCGTG TATTCGAGAC

	210	220	230	240	50
Tecuanillo178	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	GTGC
Tecuanillo177	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	ATTCTTGTGC
Tecuanillo175	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	AtTCTTGTGC
Tecuanillo174	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	AtTCTTGTGC
Coalatilla175	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	Attctigtac
Coalatilla170	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	Attctigtac
StaRosal14	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	ATTCTTGTGC
StaRosal12	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	AtTCTTGTGC
Juluapan11	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	Attctigtg
Tecuanillo179	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	GAATGCAAC	GC
Tecoman108	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AgAATGCAAC	Attctigtac
StaRosal07	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	Attctigtac
ElReal111	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	AtTCtTGTGC
ElReall09b	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	ATTCTTGTGC
ElReall09a	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	Attctigtac
Camalote106	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	ATTCTTGTGC
Camalote104	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	AtTCTTGTGC
Camalote102b	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	Attctigtac
StaRosal03	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	Attctigtac
Camalote102a	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	ATTCTTGTGC
Estacion101b	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	ATTCTTGTGC
Estacion10	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	Attctigtac
StaRosal13	AAGAGAGGTC	CGCCCCCACA	AGACGGCTGA	AGAATGCAAC	ATTCTTGTGC
Estacion98	AAGAGAGGTC	CGCCCCCACA	AGACGGC	AGAATGCAA	Attctigtac

Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla175
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecuanillo179
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102b
StaRosa103
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98

TGCCTCCTCT CATGGCAAAT GCCAGAAGAA GGGTACGTGT TGCATCATAA TGCCTCCTCT CATGGCAAAT GCCAGAAGAA GGGTACGTGT TGCATCATAA

	$310 \quad 320$	330	340	350
Tecuanillo178	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Tecuanillo177	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	A
Tecuanillo175	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Tecuanillo174	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Coalatilla175	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Coalatilla170	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
StaRosal14	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	CCTCCAGAA
StaRosal12	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Juluapan11	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Tecuanillo17	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Tecoman108	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
StaRosal07	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
ElReall11	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	A
ElReall09b	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
ElReall09a	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Camalote106	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Camalote104	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Camalote102b	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
StaRosal03	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Camalote102a	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Estacion101b	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
Estacion101	CAAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	ACCTCCAGAA
StaRosal13	CAGAGCTGT ATTTCCCGCT	GGCAAATACA	GGTGAAATGT	CCTCCAGAA
Estacion98	CAAGAGCTGT ATTTCCCGCT	GCAAATAC	GTGAAAT	CC

AAGCCACCTA GTATCGTGCG GCAATGTGCC ACCTCGCCTC TTGGGAGAAA AAGCCACCTA GTATCGTGCG GCAATGTGCC ACCTCGCCTC TTGGGAGAAA

	410	420	430	440	450
Tecuanillo178	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Tecuanillo177	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Tecuanillo175	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Tecuanillo174	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Coalatillal73	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Coalatilla170	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
StaRosal14	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
StaRosal12	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Juluapan11	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Tecuanillo17	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Tecoman108	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
StaRosal07	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
ElReall11	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	A
ElReall09b	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
ElReall09a	AAGAGGAAGA	GACGCTGCCG	C	TGAAAAGG	C
Camalote106	AAGAGGAAG	GACGCTGCCG	CTGTTTTG	AATGAAAAGG	ATTCATTTTC
Camalote104	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Camalote102a	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
StaRosal03	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Camalote102b	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Estacion101b	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Estacion101a	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
StaRosal13	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAGG	ATTCATTTTC
Estacion98	AAGAGGAAGA	GACGCTGCCG	CTGTTTTGCA	AATGAAAAG	ATI

Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecuanillo179
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102a
StaRosa103
Camalote102b
Estacion101b
Estacion101a
StaRosa113
Estacion98

GCAGTACACC AGGAGTTGGA TTTTGTAGAG CGTCTCTCTT CAAGCAGCGT GCAGTACACC AGGAGTTGGA TTTTGTAGAG CGTCTCTCTT CAAGCAGGGT GCAGTACACC AGGAGTTGGA TTTTGTAGAG CGTCTCTCTT CAAGCAGCGT GCAGTACACC AGGAGTTGGA TTTTGTAGAG CGTCTCTCTT CAAGCAGCGT

$$
\begin{aligned}
& \text {....|....||....||....||....||.....| } \\
& 510520530540
\end{aligned}
$$

Tecuanillo178 ATTGTTGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecuanillo179
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102b
StaRosa103
Camalote102b
Estacion101b
Estacion101a
StaRosa113
Estacion98

ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA
ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATtGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AGATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA ATtGTCGAGT AGATCAGAAA GGAAATGCAT CCGTTCATGA GTATAAGAAA ATTGTCGAGT AgATCAGAAA GGAACTGCAT CCGTTCATGA GTATAAGAAA

Tecuanillo178 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA Tecuanillo177 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA Tecuanillo175 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA Tecuanillo174 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA Coalatilla173 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA Coalatilla170 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA StaRosa114 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA StaRosa112 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA Juluapan11 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA Tecuanillo179 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA Tecoman108 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA StaRosa107 AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA ElReal111 ElReal109b ElReal109a Camalote106 Camalote104 Camalote102b
StaRosa103 Camalote102b Estacion101b Estacion101a
StaRosa113
Estacion98

AAAATGTGGG AATGAAAGAG ACGGTAATGT GTTTGCATAG GTTGCAGTCA AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA AAAATGTGGG AATGAAAGAG ACGCTAATGT ATTTGCATAG GTTGCAGTCA AAAATGTGGG AATGAAAGAG ACGCTAATGT GTTTGCATAG GTTGCAGTCA

Tecuanillo178 CTGACGAGCT CCCCTCTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG Tecuanillo177 CTGACGAGCT CCCCTCTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG Tecuanillo175 CTGACGAGCT CCCCTCTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG Tecuanillo174 CTGACGAGCT CCCCTCTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG Coalatilla173 CTGACGAGCT CCCCTCTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG Coalatilla170 CTGACGAGCT CCCCTCTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG StaRosa114 CTGACGAGCT CCCCTCTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG StaRosa112 CTGACGAGCT CCCCTCTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG Juluap Tecuanillo179 Tecoman108 StaRosa107 ElReal111 ElReal109b ElReall09a Camalote106 Camalote104 Camalote102b StaRosa103 Camalote102a Estacion101b Estacion101a StaRosa113 Estacion98

CTGACGAGCT CCCCTCTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG CTGACGAGCT CCCCTTTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG CTGACGAGCT CCCCTCTGCT GGCGAAAAGT GAAATTCATG AGTATCTGTG

Tecuanillo178 CAACTTTGGT GTATTCGCAG ATTGGTCGCC TGCAATCGAT AGTTGACCAC Tecuanillo177 CAACTTTGGT GTATTCGCAG ATTGGTCGCC TGCAATCGAT AGTTGACCAC Tecuanillo175 CAACTTTGGT GTATTCGCAG ATTGGTCGCC TGCAATCGAT AGTTGACCAC Coalatilla173 Coalatilla170 StaRosa114 StaRosa112 Juluapan11 Tecuanillo179 Tecoman108 StaRosa107 ElReal111 ElReal109b ElReal109a Camalote106 Camalote104 Camalote102b StaRosa103 Camalote102a Estacion101b Estacion101a StaRosa113 Estacion98

Tecuanillo174 CAACTTTGGT GTATTCGCAG ATTGGTCGCC TGCAATCGAT AGTTGACCAC CAACTTTGGT GTATTCGCAG CAACTTTGGT G CAACTTTGGT GTATTCGCAG CAACTTTGGT GTATTCGCAG ATTGGTCGCC TGCAATCGAT AGTTGACCAC CAACTTTGGT GTATTCACAA ATTGGTCGCC TGCAATCGAT AGTTGACCAC CAACTTTGGT GTATTCGCAG ATTGGTCGCC TGCAATCGAT AGTTGACCAC

Tecuanillo178 Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecuanillo179
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102a
StaRosa103
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98

GAACGCTTTA AAGAACAGGA GAAGAAGATC GTGAAAGAAT ACGAGAAGAG GAACGCTTTA AAGAACAGGA GAAGAAGATC GTGAAAGAAT ACGAGAAGAG

Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecuanillo179
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102b
StaRosa103
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98

GTACACAGAG ATAGAAGTCG CTGCGGAGAC AGCGAAGACT GCGGATGACTT GTACACAGAG ATAGAAGTCG CTGCGGAGAC AGCGAAGACT GCGGATGACTT

APPENDIX F: ANALYSED T. gondii B1 GENE SEQUENCES WITH FRAGMENT SIZES BETWEEN 400 AND 1000 bp

Tecuanillo179
Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102b
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98
CG21
CG19
D1
GQ3
GQ2
CQ7
GY3
GY2
CY2
SY12
SY5
SY4
GY4
SY3
241
222
220
836-L-IMNO
782-L-IMNO
781-L-IMNO
774 -L-IMNO
TG-KLR-720
TG-KLR-631
TG-KLR-625
TG-KLR-610
TG-KLR-583
TG-KLR-555
TG-KLK-101
TG-KLK-983
TG-KLK-905
2A
TG-KLK-830

CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT CGCTTCCTTC GTCCGTCGTA ATATCAGGCC TTCTATTCTG TTCGCTGTCT CGCTTCCTTC GTCCGTCGTA ATATCAGGCC TTCTATTCTG TTCGCTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCCG TTCGCTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT

```
TG-KLK-365
25
16A
16B
1A
24A
26
28B
22A
5A
22
15B
7B
4B
3B
2B
5B
TgCatAu_8
TgCatAu_6
TgCatAu_7
TgCatAu-2
R236
SR231
SR222
SR217
SR215
CR34
C-F-TG-56
```

CGCTTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCCGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGTTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT CGCCTCCTTC GTCCGTCGTA ATATCAGGCC TTCTGTTCTG TTCGCTGTCT

Tecuanillo179
Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102b
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98
CG21
CG19
D1
GQ3
GQ2
CQ7

GTCTAGGGCA CCCTTACTGC AAGAGAA-GT ATTTGAGGTC ATATCGTCCC GTCTAGGGCA CCCTTACTGC AAGAGAA-GT ATTTGAGGTC ATATCGTCCC

GY3	GTCTAGGGCA	C AAGAGAA-GT	TC	C
GY2	GTCTAGGGC	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
CY2	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
SY12	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
SY5	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
SY4	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtAtCGTCCC
GY4	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
SY3	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
241	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
222	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
220	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
836-L-IMNO	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
782-L-IMNO	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
781-L-IMNO	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
774-L-IMNO	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
TG-KLR-720	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
TG-KLR-631	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
TG-KLR-625	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
TG-KLR-610	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
TG-KLR-583	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
TG-KLR-555	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
TG-KLK-101	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
TG-KLK-983	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
TG-KLK-905	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
2A	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
TG-KLK-830	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
TG-KLK-365	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
25	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
16A	GTCTAGGG	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
16B	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
1A	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
24A	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtAtcGtccc
26	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
28B	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
22A	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
5A	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
22	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
15B	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
7B	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
4B	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
3B	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
2B	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
5B	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
TgCatAu_8	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
TgCatAu_6	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
TgCatAu_7				
TgCatAu_2	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
R236	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
SR231	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
SR222	GTCTAGGGCA	CCCTTACTGC AAGAGAAAGT	ATTTGAGGTC	AtATCGTCCC
SR217	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
SR215	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	AtATCGTCCC
CR34	GTCTAGGGCA	CCCTTACTGC AAGAGAA-GT	ATTTGAGGTC	ATATCGTCCC
C-F-TG-56	GTCTAGGG	CCCTTACTGC AAGAGAA-	ATTTGAG	AtATCG

$$
\begin{aligned}
& 110120130140150
\end{aligned}
$$

Tecuanillo179 ATGAAGTCGA CCACCTGTTT CCTCTCTTCA CTGTCACGTA CGACATCGCA

Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReallo9a
Camalote106
Camalote104
Camalote102b
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98
CG21
CG19
D1
GQ3
GQ2
CQ7
GY3
GY2
CY2
SY12
SY5
SY4
GY4
SY3
241
222
220
836-L-IMNO
782-L-IMNO
781-L-IMNO
774-L-IMNO
TG-KLR-720
TG-KLR-631
TG-KLR-625
TG-KLR-610
TG-KLR-583
TG-KLR-555
TG-KLK-101
TG-KLK-983
TG-KLK-905
2A
TG-KLK-830
TG-KLK-365
25
16A
16B

ATGAAGTCGA CCACCTGTTT CCTCTCTTCA CTGTCACGTA CGACATCGCA ATGAAGTCGA CCACCTGTTT CCTCTTTTCA CTGTCACGTA CGACATCGCA ATGAAGTCGA CCACCTGTTT CCTCTCTTCA CTGTCACGTA CGACATCGCA ATGAAGTCGA CCACCTGTTT CCTCTTTTCA CTGTCACGTA CGACATCGCA ATGAAGTCGA CCACCTGTTT CCTCTCTTCA CTGTCACGTA CGACATCGCA ATGAAGTCGA CCACCTGCTT CCTCTCTTCA CTGTCACGTA CGACATCGCA ATGAAGTCGA CCACCTGTTT CCTCTCTTCA CTGTCACGTA CGACATCGCA

1A	ATGAAGTCGA	A CCACCTGTTT	T CCTCTCTTCA	A CTGTCACGTA	A C
24A	ATGAAGTCGA	A CCACCTGTTT	T CCTCTCTTCA	A CTGTCACGTA	A CGACATCGC
26	ATGAAGTCGA	CCACCTGTTT	ССтСтСтTCA	CTGTCACGTA C	CGACATCGCA
28B	ATGAAGTCGA	CCACCTGTTT	CCtCtcttca	CTGTCACGTA C	CGACATCGCA
22A	ATGAAGTCGA	CCACCTGTTT	ССтСтСтtca	CTGTCACGTA C	CGACATCGCA
5A	ATGAAGTCGA	CCACCTGTtT	ССтСтСтtca	CTGTCACGTA C	CGACATCGCA
22	ATGAAGTCGA	CCACCTGTTT	CCTCTCTTCA	CTGTCACGTA C	CGACATCGCA
15B	ATGAAGTCGA	CCACCTGTTT	ССтСтСтtca	CTGTCACGTA C	CGACATCGCA
7B	ATGAAGTCGA	CCACCTGTTT	CCTCTCttca	CTGTCACGTA C	CGACATCGCA
4B	ATGAAGTCGA	CCACCTGTTT	CCTCTCTTCA	CTGTCACGTA C	CGACATCGCA
3B	ATGAAGTCGA	CCACCTGTTT	CCTCTCTtca	CTGTCACGTA C	CGACATCGCA
2B	ATGAAGTCGA C	CCACCTGTTT	CCTCTCTTCA	CTGTCACGTA C	CGACATCGCA
5B	ATGAAGTCGA	CCACCTGTTT	ССтСтСтtca	CTGTCACGTA C	CGACATCGCA
TgCatAu_8	ATGAAGTCGA	CCACCTGTTT	CCTCTCTTCA	CTGTCACGTA	CGACATCGCA
TgCatAu_6	ATGAAGTCGA	CCACCTGTTT	ССТСТСТTCA	CTGTCACGTA	CGACATCGCA
TgCatAu_7		CCACCTGTTT	CCTCTCTTCA	CTGTCACGTA C	CGACATCGCA
TgCatAu_2	ATGAAGTCGA	CCACCTGTTT	CCTCTCttca	CTGTCACGTA	CGACATCGCA
R236	ATGAAGTCGA	CCACCTGTtT	ССтстстtca	CTGTCACGTA C	CGACATCGCA
SR231	ATGAAGTCGA	CCACCTGTtT	ССтстстtca	CTGTCACGTA C	CGACATCGCA
SR222	ATGAAGTCGA	CCACCTGTTT	CCTCTCTTCA	CTGTCACGTA C	CGACATCGCA
SR217	ATGAAGTCGA	CCACCTGTTT	CCTCTCTTCA	CTGTCACGTA C	CGACATCGCA
SR215	ATGAAGTCGA C	CCACCTGTtT	ССтСтСтTCA	CTGTCACGTA C	CGACATCGCA
CR34	ATGAAGTCGA C	CCACCTGTTT	ССтСтСttca	CTGTCACGTA	CGACATCGCA
C-F-TG-56	ATGAAGTCGA	CCACCTGTTT	ССТСТСTTCA	CTGTCACGTA C	CGACATCGCA

Tecuanillo179
Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReallo9a
Camalote106
Camalote104
Camalote102b
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98
CG21
CG19
D1
GQ3
GQ2
CQ7
GY3
GY2
CY2
SY12

TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTACTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAGA

```
SY5
SY4
GY4
SY3
241
222
220
836-L-IMNO
782-L-IMNO
781-L-IMNO
774-L-IMNO
TG-KLR-720
TG-KLR-631
TG-KLR-625
TG-KLR-610
TG-KLR-583
TG-KLR-555
TG-KLK-1018
TG-KLK-983
TG-KLK-905
2A
TG-KLK-830
TG-KLK-365
25
16A
16B
1A
24A
26
28B
22A
5A
22
15B
7B
4B
3B
2B
5B
TgCatAu_8
TgCatAu_6
TgCatAu_7
TgCatAu_2
R236
SR231
SR222
SR217
SR215
CR34
C-F-TG-56
B
TgCatAu_6
```

TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAAA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAAA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTACTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTACTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAAA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTACTCG AGACAAGAGA TTCAAGGGAA GAGATCCAGC AGATCTCGTT CGTGTATTCG AGACAAGAGA

GGTCCGCCCC CACAAGACGG CTGAAGAATG CAACATTCTT GTGCTGCCTC GGTCCGCCCC CACAAGACGG CTGAAGAATG CAACATTCTT GTGCTGCCTC

StaRosa114

StaRosal12
Juluapan11
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReallo9a
Camalote106
Camalote104
Camalote102b
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98
CG21
CG19
D1
GQ3
GQ2
CQ7
GY3
GY2
CY2
SY12
SY5
SY4
GY4
SY3
241
222
220
836-L-IMNO
782-L-IMNO
781-L-IMNO
774-L-IMNO
TG-KLR-720
TG-KLR-631
TG-KLR-625
TG-KLR-610
TG-KLR-583
TG-KLR-555
TG-KLK-1018
TG-KLK-983
TG-KLK-905
2A
TG-KLK-830
TG-KLK-365
25
16A
16B
1A
24A
26
28B
22A
5A
22
15B
7B

GgTCCGCCCC CACAAGACGG CTGAAGAATG CAACATTCTT GTGCTGCCTC GGTCCGCCCC CACAAGACGG CCGAAGAATG CAACATTCTT GTGCTGCCTC GGTCCGCCCC CACAAGACGG CTGAAGAATG CAATATTCTT GTGCTGCCTC GGTCCGCCCC CACAAGACGG CTGAAGAATG CAACATTCTT GCGCTGCCTC GGTCCGCCCC CACAAGACGG CTGAAGAATG CAACATTCTT GTGCTGCCTC GGTCCGCCCC CACAAGACGG CTGAAGAATG CAACATTCTT GTGCTGCCTC

4B
3B
2B
5B
TgCatAu_8
TgCatAu_6
TgCatAu_7
TgCatAu_2
R236
SR231
SR222
SR217
SR215
CR34
C-F-TG-56

GgTCCGCCCC CACAAGACGG CTGAAGAATG CAACATTCTT GTGCTGCCTC GGTCCGCCCC CACAAGACGG CTGAAGAATG CAACATTCTT GTGCTGCCTC

Tecuanillo179
Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102b
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98
CG21
CG19
D1
GQ3
GQ2
CQ7
GY3
GY2
CY2
SY12
SY5
SY4
GY4
SY3
241
222
220
836-L-IMNO 782-L-IMNO

CTCTCATGGC AAATGCCAGA AGAAGGGTAC GTGTTGCATC ATAACAAGAG CTCTCATGGC AAATGCCAGA AGAAGGGTAC GTGTTGCATC ATAACAAGAG

```
781-L-IMNO
774-L-IMNO
TG-KLR-720
TG-KLR-631
TG-KLR-625
TG-KLR-610
TG-KLR-583
TG-KLR-555
TG-KLK-1018
TG-KLK-983
TG-KLK-905
2A
TG-KLK-830
TG-KLK-365
25
16A
16B
1A
24A
26
28B
22A
5A
22
15B
7B
4B
3B
2B
5B
TgCatAu 8
TgCatAu_6
TgCatAu_7
TgCatAu_2
R236
SR231
SR222
SR217
SR215
CR34
C-F-TG-56
```

CTCTCATGGC AAATGCCAGA AGAAGGGTAC GTGTTGCATC ATAACAAGAG CTCTCATGGC AAATGCCAGA AGAAGGGTAC GTGTTGCATC ATAACAAGAG

Tecuanillo179
Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla173
StaRosa114
StaRosa112
Juluapan11
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106

$$
\begin{aligned}
& \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid \\
& 310320330340350
\end{aligned}
$$

CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA

Camalote104

 Camalote102b Camalote102a Estacion101b Estacion101aStaRosa113
Estacion98
CG21
CG19
D1
GQ3
GQ2
CQ7
GY3
GY2
CY2
SY12
SY5
SY4
GY4
SY3
241
222
220
836-L-IMNO
782-L-IMNO
781-L-IMNO
774-L-IMNO
TG-KLR-720
TG-KLR-631
TG-KLR-625
TG-KLR-610
TG-KLR-583
TG-KLR-555
TG-KLK-101
TG-KLK-983
TG-KLK-905
2A
TG-KLK-830
TG-KLK-365
25
16A
16B
1A
24A
26
28B
22A
5A
22
15B
7B
4B
3B
2B
5B
TgCatAu_8
TgCatAu_6
TgCatAu_7
TgCatAu_2
R236

CTGTATtTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACACGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACACGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACACGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACACGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACACGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACACGTGAA ATGTACCTCC AGAAAAGCCA CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA

```
SR231
SR222
SR217
SR215
CR34
C-F-TG-56
CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA
SR222 CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA SR217 CTGTATTTCC CGCTGGCAAA TACACGTGAA ATGTACCTCC AGAAAAGCCA
SR215
C-F-TG-56
CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA
CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA
CTGTATTTCC CGCTGGCAAA TACAGGTGAA ATGTACCTCC AGAAAAGCCA
```

Tecuanillo179
Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102b
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98
CG21
CG19
D1
GQ3
GQ2
CQ7
GY3
GY2
CY2
SY12
SY5
SY4
GY4
SY3
241
222
220
836-L-IMNO
782-L-IMNO
781-L-IMNO
774-L-IMNO
TG-KLR-720
TG-KLR-631
TG-KLR-625
TG-KLR-610
TG-KLR-583
TG-KLR-555
TG-KLK-1018

CCTAGTATCG TGCGGCAATG TGCCACCTCG CCTCTTGGGA GAAAAAGAGG CCTAGTATCG TGCGGCAATG TGCCACCTCG CCTCTTGGGA GAAAAAAAGG CCTAGTATCG TGCGGCAATG TGCCACCTCG CCTCTTGGGA GAAAAAGAGG CCTAGTATCG TGCGGCAATG TGCCACCTCG CCTCTTGGGA GAAAAAGAGG
TG-KLK-983
TG-KLK-905
2A
TG-KLK-830
TG-KLK-365
25
16A
16B
1A
24A
26
28B
22A
5A
22
15B
7B
4B
3B
2B
5B
TgCatAu_8
TgCatAu_6
TgCatAu_7
TgCatAu_2
R236
SR231
SR222
SR217
SR215
CR34
C-F-TG-56

CCTAGTATCG TGCGGCAATG TGCCACCTCG CCTCTTGGGA GAAAAAGAGG CCTAGTATCG TGCGGCAATG TGCCACCTCG CCTCTTGGGA GAAAAGGAGG CCTAGTATCG TGCGGCAATG TGCCACCTCG CCTCTTGGGA GAAAAAGAGG CCTCGTATCG TGCGGCAATG TGCCACCTCG CCTCTTGGGA GAAAAAGAGG CCTAGTATCG TGCGGCAATG TGCCACCTCG CCTCTTGGGA GAAAAAGAGG

$$
\begin{aligned}
& \text {...|...| ...|...| ...|....||....| ...|....| } \\
& 410420430440450 \\
& 410420430440450
\end{aligned}
$$

Tecuanillo179
Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote105
Camalote102b
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98
CG21
CG19

AAGAGACGCT GCCGCTGTTT TGCAAATGAA AAGGATTCAT TTTCGCAGTA AAGAGACGCT GCCGCTGTTT TGCAAATGAA AAGGATTCAT TTTCGCAGTA

D1	AAGAGACGCT	GCCGCTGTTTT	TGCAAATGAA	AAGGATTCAT
GQ3	TTTCGCAGTA			
GQ2	AAGAGACGCT	GCCGCTGTTT	TGCAAATGAA	AAGGATTCAT
CQTTCGCAGTA				
GY3	AAGAGACGCT	GCCGCTGTTT	TGCAAATGAA	AAGGATTCAT

Tecuanillo179 CACCAGGAGT TGGATTTTGT AGAGCGTCTC TCT

Tecuanillo178
Tecuanillo177
Tecuanillo175
Tecuanillo174
Coalatilla173
Coalatilla170
StaRosa114
StaRosa112
Juluapan11
Tecoman108
StaRosa107
ElReal111
ElReal109b
ElReal109a
Camalote106
Camalote104
Camalote102b
Camalote102a
Estacion101b
Estacion101a
StaRosa113
Estacion98
CG21
CG19
D1
GQ3
GQ2
CQ7
GY3
GY2
CY2
SY12
SY5
SY4
GY4
SY3
241
222
220
836-L-IMNO
782-L-IMNO
781-L-IMNO
774-L-IMNO
TG-KLR-720
TG-KLR-631
TG-KLR-625
TG-KLR-610
TG-KLR-583
TG-KLR-555
TG-KLK-1018
TG-KLK-983
TG-KLK-905
2A
TG-KLK-830
TG-KLK-365
25
16A
16B

CACCAGGAGT TGGATTTTGT AGAGCGTCTC TCT
CACCAGGAGT TGGATTTTGT AGAGCGTCTC TCT
CACCAGGAGT TGGATTTTGT AGAGCGTCTC TCT CACCAGGAAT TGGATTTTGT AGAGCGTCTC TCT CACCAGGAGT TGGATTTTGT AGAGCGTCTC TCT CGCCATGAGT TGGATTTTGT GAAGCGTCTC TCT CGCCATGAGT TGGATTTTGT AAAGCGTCTC TCT CGCCATGAGT TGGATTTTGT AAAGCGTCTC TCT CGCCATGAGT TGGATTTTGT GAAGCGTCTC TCT CACCAGGAGT TGGATTTTGT AGAGCGTCTC TCT CACCAGGAGT TGGATTTTGT GGAGCGTCTC TCT CACCAGGAGT TGGATTTTGT AGAGCGTCTC CCT CACCAGGAGT TGGATTTTGT AGAGCGTCTC TCT CACCAGGAGT TGGATTTTGT AGAGCGTCTC TCT

1A	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
24A	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
26	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
28B	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
22A	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
5A	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
22	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
15B	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
7B	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
4B	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
3B	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
2B	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
5B	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
TgCatAu_8	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
TgCatAu_6	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
TgCatAu_7	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
TgCatAu_2	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
R236	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
SR231	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
SR222	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
SR217	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
SR215	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
CR34	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT
C-F-TG-56	CACCAGGAGT TGGATTTTGT	AGAGCGTCTC TCT

APPENDIX G: ANALYSED T. GONDII GRA6 GENE SEQUENCES WITH TRIMMED AND ALIGNED FRAGMENT SIZES OF BETWEEN 400 AND 1000 bp

24
4A
22
7B
5A
5B
11
22R
16A
8A
KM
Izmir20
Izmir19
Izmir03
Izmir02
Izmir11
Izmir12
Izmir18
Izmir22
Izmir09
Izmir06
TgPiPr09
TgCkPr11
TgPiPr13
TgA32129
TgPiPr05
TgCkPr03
TgCkPr04
TgPiPr14
TgCkPr01
TgCkPr02
TgCkPr16
TgPiPr02
TgFoxPa06
TgWTDPa06
TgCoPa03
TgCoPa02
TgCoPa04
TgCoPa07
TgFoxPa10
TgCoPa01
TgCoPa05
TgCoPa08
TgFoxPa03
TgWolfMN25
TgWolfMN27
TgWolfMN12
TgWolfMN2 6
TgWolfMN28
TgWolfMN13
TgWolfMN19
TgWolfMN2 9
TgWolfMN11
TgWtdUs08

AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT

TgWtdUs10 TgWolfMN20
TgA18001 TgA18005 TgA105002
TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TGTCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC CATCTGAGGC AGAAGCGTAA CTTCTGTCCT AAATGGCACA CGGTGGCATC TATCTGAGGC AGAAGCGTAA CTTCTGTCCT

24
4A
22
7B
5A
5B
11
22R
16A
8A
KM
Izmir20
Izmir19
Izmir03
Izmir02
Izmir11
Izmir12
Izmir18
Izmir22
Izmir09
Izmir06
TgPiPr09
TgCkPr11
TgPiPr13
TgA32129
TgPiPr05
TgCkPr03
TgCkPr04
TgPiPr14
TgCkPr01
TgCkPr02
TgCkPr16
TgPiPr02
TgFoxPa06
TgWTDPa06

TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT GTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT GTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT GTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTTTTCA TGGGTGTACT GTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT

TgCoPa03
TgCoPa02
TgCoPa04
TgCoPa07
TgFoxPa10
TgCoPa01
TgCoPa05
TgCoPa08
TgFoxPa03
TgWolfmN25
TgWolfMN27
TgWolfMN12
TgWolfmN26
TgWolfMN28
TgWolfMN13
TgWolfMN19
TgWolfmN29
TgWolfmN11
TgWtdUs08

TgWtdUs10

TgWolfmn 20
TgA18001
TgA18005
TgA105002
TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

TTAACTGTCT CCACAGTTGC TGTGATCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGATCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGATCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTTTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGATCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTTTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGATCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTTTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGATCTTT GTAGTCTTCA TGGGTGTACT GTAACTGTCT CCACAGTTGC TGTGGTCTTT GTAGTCTTCA TGGGTGTACT TTAACTGTCT CCACAGTTGC TGTGATCTTT GTAGTCTTCA TGGGTGTACT
 CGTCAATTCG TTGGGTGGAG TCGCTGTCGC AGCAGACAGC GGTGGTGTTA CGTCAATTCG TTGGGTGGAG TCGCTGTCGC AGCAGACAGC GGTGGTGTTA

Izmir12
Izmir18
Izmir22
Izmir09
Izmir06
TgPiPr09
TgCkPr11
TgPiPr13
TgA32129
TgPiPr05
TgCkPr03
TgCkPr04
TgPiPr14
TgCkPr01
TgCkPr02
TgCkPr16
TgPiPr02
TgFoxPa06
TgWTDPa06
TgCoPa03
TgCoPa02
TgCoPa04
TgCoPa07
TgFoxPalo
TgCoPa01
TgCoPa05
TgCoPa08
TgFoxPa03
TgWolfMN25
TgWolfMN27
TgWolfMN12
TgWolfMN26
TgWolfMN28
TgWolfMN13
TgWolfmn19
TgWolfMN2 9
TgWolfMN11
TgWtdUs08
TgWtdUs10
TgWolfmn20
TgA18001
TgA18005
TgA105002
TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

CGTCAATTCG TTGGGTGGAG TCGCTGTCGC AGCAGACAGC GGTGGTGTTA CGTCAATTCG TTGGGTGGAG TCGCTGTCGC AGCAGACAGC GATGGTGTTA CGTCAATTCG TTGGGTGGAG TCGCTGTCGC AGCAGACAGC GGTGGTGTTA CGTCAATTCG TTGGGTGGAG TCGCTGTCGC AGCAGACAGC GGTGGTGTTA CGTCAATTCG TTGGGTGGAG TCGCTTTCGC AGCAGACAGC GGTGGTGTTA CGTCAATTCG TTGGGTGGAG TCGCTTTCGC AGCAGACAGC GGTGGTGTTA CGTCAATTCG TTGGGTGGAG TCGCTTTCGC AGCAGACAGC GGTGGTGTTA CGTCAATTCG TTGGGTGGAG TCGCTGTCGC AGCAGACAGC GATGGTGTTA CGTCAATTCG TTGGGTGGAG TCGCTTTCGC AGCAGACAGC GGTGGTGTTA CGTCAATTCG TTGGGTGGA

GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AgCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AgAAGCAGTG GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AgCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GgCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AgAAGCAGTG AgCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GgCAgACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AgCAgAcccc tTCGgAAACC GgTTCGAgCg gTggacagca AgAAgcagtg GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AgCAgACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GgCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AgCAgACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AgAAGCAGTG GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AgCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AgCAgACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG

TgA105002
TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

24
4A
22
7B
5A
5B
11
22R
16A
8A
KM
Izmir20
Izmir19
Izmir03
Izmir02
Izmir11
Izmir12
Izmir18
Izmir22
Izmir09
Izmir06
TgPiPr09
TgCkPr11
TgPiPr13
TgA32129
TgPiPr05
TgCkPr03
TgCkPr04
TgPiPr14

TgCkPr01

TgCkPr02
TgCkPr16
TgPiPr02
TgFoxPa06

TgWTDPa06

TgCoPa03
TgCoPa02
TgCoPa04
TgCoPa07

AgCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AgCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GgCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG AGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG GGCAGACCCC TTCGGAAACC GGTTCGAGCG GTGGACAGCA AGAAGCAGTG

GGGACCACTG AAGACTATGT CAACTCTTCG GCGATGGGCG GTGGCCAAGG GGGACCACTG AAGACTATGT CAACTCTTCG GCGATGGGCG GTGGCCAAGG

TgFoxPa10
TgCoPa01
TgCoPa05
TgCoPa08
TgFoxPa03
TgWolfmN25
TgWolfmN27
TgWolfMN12
TgWolfMN26
TgWolfMN28
TgWolfMN13
TgWolfmN19
TgWolfMN29
TgWolfMN11
TgWtdUs08
TgWtdUs10
TgWolfmn20
TgA18001
TgA18005
TgA105002
TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

GgGACCACTG AAGACTATGT CAACTCTTCG GCGATGGGCG GTGGCCAAGG GGGACCACTG AAGACTATGT CAACTCTTCG GCGATGGGCG GGGACCACTG AAGACTATGT CAACTCTTCG GCGATGGGCG GGGACCACTG AAGACTATGT CAACTCTTCG GCGATGGGCG GTGGCAAG GGGACCACTG AAGACTATGT CAACTCTTCG GCGATGGGCG GTGGCCAAGG GgGACCACTG AAGACTATGT CAACTCTTCG GCGATGGGCG GTGGCCAAGG

```
...| ...|| ...||...| ....|...|| ....|....| ....|....|
    260 270 280 290 300
```


CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG
CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGAAGCG GCGGAGGGCG
CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG
CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG
CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGAAGCG GCGGAGGGCG
CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG
CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGAAGCG GCGGAGGGCG
CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG
CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG
CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGAAGCG GCGGAGGGCG
CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGAAGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGAAGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGAAGCG GCGGAGGGCG GACICGIIA GCTGAAGATG A---IACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGAAGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG

24
4A
22
7B
5A
5B
11
22R
16A
8A
KM
Izmir20
Izmir19
Izmir03
Izmir02
Izmir11
Izmir12
Izmir18
Izmir22
Izmir09

Izmir06
TgPiPr09
TgCkPr11
TgPiPr13
TgA32129
TgPiPr05
TgCkPr03
TgCkPr04
TgPiPr14
TgCkPr01
TgCkPr02
TgCkPr16
TgPiPr02
TgFoxPa06
TgWTDPa06
TgCoPa03
TgCoPa02
TgCoPa04
TgCoPa07
TgFoxPal0
TgCoPa01
TgCoPa05
TgCoPa08
TgFoxPa03
TgWolfMN25
TgWolfMN27
TgWolfMN12
TgWolfMN26
TgWolfmn28
TgWolfMN13
TgWolfMN19
TgWolfMN2 9
TgWolfMN11
TgWtdUs08
TgWtdUs10
TgWolfMn20
TgA18001
TgA18005
TgA105002
TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGAAGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG ATGATACAGC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG ATGATACAGC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG ATGATACAGC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG ATGATACAGC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG ATGATACAGC CTCCGATGCG GCGGAGGGCG CGACTCGTTA GCTGAAGATG A---TACAAC CTCCGATGCG GCGGAGGGCG

CGACTCGTTA CGACTCGTTA CGACTCGTTA CGACTCGTTA GCTGAAGATG A---TACAAC CGACTCGTTA GCTGAAGATG A---TACAAC C CGACTCGTTA GCTGAAGATG ATGATACAGC C CGACTCGTTA GCTGAAGATG A---TACAAC C CGACTCGTTA GCTGAAGATG ATGATACAGC CTCCGAGCG GCGGAGGGCG

ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT

TgA105043 TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ---TTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGTG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT ACGTTGACCC TTTTCCCGCG CTGGCGAATG AGGGGAAGTC GGAGGCGCGT

GGCCCGTCGC TCGAGGAAAG AATCGAAGAA CAGGGCACAA GACGACGTTA ggccegtcge tcgaggaiag AAtcgangai cagggcacai gacgacgtta GGCCCGTCGC TCGAGGAAAG AATCGAAGAA CAGGGCACAA GACGACGTTA

TgCoPa01
TgCoPa05
TgCoPa08
TgFoxPa03
TgWolfMN25
TgWolfMN27
TgWolfmN12
TgWolfmn26
TgWolfmN28
TgWolfMN13
TgWolfmN19
TgWolfmN29
TgWolfMN11
TgWtdUs08
TgWtdUs10
TgWolfmn20
TgA18001
TgA18005
TgA105002
TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

24
4A
22
7B
5A
5B
11
22R
16A
8A
KM
Izmir20
Izmir 19
Izmir03
Izmir02
Izmir11
Izmir12
Izmir18
Izmir22
Izmir09
Izmir06

GGCCCGTCGC TCGAGGAAAG AATCGAAGAA CAGGGCACAA GACGACGTTA GgCCCGTCGC TCGAGGAAAG AATCGAAGAA CAGGGTACAA GACGGCGTTA GGCCCGTCGC TCGAGGAAAG AATCGAAGAA CAGGGCACAA GACGACGTTA GGCCCGTCGC TCGAGGAAAG AATCGAAGAA CAGGGCACAA GACGACGTTA

CTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA CTCCTCTGTT CAAGAACCAC GAGCGAAGGT GCCTAGCAAA CGAACACAGA CTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA

TgPiPr09
TgCkPr11
TgPiPr13
TgA32129
TgPiPr05
TgCkPr03

TgCkPr04

TgPiPr14

TgCkPr01

TgCkPr02

TgCkPr16
TgPiPr02
TgFoxPa06
TgWTDPa06
TgCoPa03
TgCoPa02
TgCoPa04
TgCoPa07
TgFoxPa10

TgCoPa01

TgCoPa05
TgCoPa08
TgFoxPa03
TgWolfmN25
TgWolfMN27
TgWolfMN12
TgWolfMN26
TgWolfmN28
TgWolfmN13
TgWolfMN19
TgWolfmN29
TgWolfMN11
TgWtdUs08
TgWtdUs10
TgWolfmN20
TgA18001
TgA18005
TgA105002
TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

CTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA TTCCTCTGTT CAAGAACCAC AAACGAAGGT GCCTAGCAAA CGAACACAGA TTCCTCTGTT CAAGAACCAC AAACGAAGGT GCCTAGCAAA CGAACACAGA TTCCTCTGTT CAAGAACCAC AAACGAAGGT GCCTAGCAAA CGAACACAGA CTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA TTCCTCTGTT CAAGAACCAC AAACGAAGGT GCCTAGCAAA CGAACACAGA TTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA TTCCTCTGTT CAAGAACCAC AAACGAAGGT GCCTAGCAAA CGAACACAGA TTCCTCTGTT CAAGAACCAC AAACGAAGGT GCCTAGCAAA CGAACACAGA CTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA CTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA CTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA TTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA CTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA TTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA CTCCTCTGTT CAAGAACCAC AAGCGAAGGT GCCTAGCAAA CGAACACAGA TTCCTCTGTT CAAGAACCAC AAACGAAGGT GCCTAGCAAA CGAACACAGA

24
4A
22
7B
5A
5B
11
22R
16A
8A
KM
Izmir20
Izmir19
Izmir03
Izmir02
Izmir11
Izmir12
Izmir18
Izmir22
Izmir09
Izmir06
TgPiPr09
TgCkPr11
TgPiPr13
TgA32129
TgPiPr05
TgCkPr03
TgCkPr04
TgPiPr14
TgCkPr01
TgCkPr02
TgCkPr16
TgPiPr02
TgFoxPa06
TgWTDPa06
TgCoPa03
TgCoPa02
TgCoPa04
TgCoPa07
TgFoxPalo
TgCoPa01
TgCoPa05
TgCoPa08
TgFoxPa03
TgWolfmn25
TgWolfMN27
TgWolfMN12
TgWolfMn26
TgWolfMN28
TgWolfMN13
TgWolfMN19
TgWolfMn29
TgWolfMN11
TgWtdUs08
TgWtdUs10
TgWolfmn20
TgA18001
TgA18005
TgA105002

AACGCCACAG ACTCATTGGT GCTGTGGTGT TGGCAGTATC TGTGGCAATG AACGCCACAG ACTCATTGGT GCTGTGGTGT TGGCAGTATC TGTGGCAATG

TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2 TgBobcatMS

AACGCCACAG ACTCATTGGT GCTGTGGTGT TGGCAGTATC TGTGGCAATG AACGCCACAG ACTCATTGGT GCTGTGGTGT TGGCAGTATC TGTGGCAATG

CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC CTTACCGCTC TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCCAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC

TgCoPa01
TgCoPa05
TgCoPa08
TgFoxPa03
TgWolfMN25
TgWolfMN27
TgWolfmN12
TgWolfmn26
TgWolfmN28
TgWolfmN13
TgWolfmN19
TgWolfMN29
TgWolfMN11
TgWtdUs08
TgWtdUs10
TgWolfMN20
TgA18001
TgA18005
TgA105002
TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCCAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCCAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCCAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCCAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCCAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC CTTACCGCTT TCTTTCTTCG AAGGACTGGA CGACGCTCTC CCCAAGAACC

24
4A
22
7B
5A
5B
11
22R
16A
8A
KM
Izmir20
Izmir19
Izmir03
Izmir02
Izmir11
Izmir 12
Izmir18
Izmir22
Izmir09
Izmir06

ATCTGGGGGT GGTGGTGGAA ATGATGCAGG CAATAATGCT GGGAACGGTG ATCTGGGGAT GGTGGTGGAA ATGATGCACG CAATAATGCT GGGAACGGTG ATCTGGGGGT GGTGGTGGAA ATGATGCAGG CAATAATGCT GGGAACGGTG

TgPiPr09
TgCkPr11
TgPiPr13
TgA32129
TgPiPr05
TgCkPr03
TgCkPr04
TgPiPr14
TgCkPr01
TgCkPr02
TgCkPr16
TgPiPr02
TgFoxPa06
TgWTDPa06
TgCoPa03
TgCoPa02
TgCoPa04
TgCoPa07
TgFoxPalo
TgCoPa01
TgCoPa05
TgCoPa08
TgFoxPa03
TgWolfmn25
TgWolfmN27
TgWolfMN12
TgWolfMN2 6
TgWolfMN28
TgWolfmn13
TgWolfMN19
TgWolfMN2 9
TgWolfMN11
TgWtdUs08
TgWtdUs10
TgWolfmn20
TgA18001
TgA18005
TgA105002
TgA105043
TgA105001
TgA105052
TgA105003
TgA105037
TgA105004
TgA105053
TgA105051
TgA105018
TgA105011
TgA105016
TgA105015
TgA32129
TgA32109
TgSoUs14
Tgshir2
TgBobcatMS

ATCTGGGGGT GGTGGTGGAA ATGATGCAGG CAATAATGCT GGGAACGGTG ATCTGGGGAT GGTGGTGGAA ATGATGCAGG Atctgggant ggtggtggai Atgatgcagg ATCTGGGGAT GGTGGTGGAA ATGATGCAGG ATCTGGGGGT GGTGGTGGAA ATGATGCAGG ATCTGGGGGT GGTGGTGGAA ATGATGCAGG Atctgggagt ggtggtggai Atgatgcagg ATCTGGGGGT GGTGGTGGAA ATGATGCAGG ATCTGGGGAT GGTGGTGGAA ATGATGCAGG ATCTGGGGGT GGTGGTGGAA ATGATGCAGG ATCTGGGGAT GATGGTGGAA ATGATGCAGG ATCTGGGGAT GGTGGTGGAA ATGATGCAGG ATCTGGGGGT GGTGGTGGAA ATGATGCAGG Atctggagat gatgatgaia Atgatgcagg ATCTGGGGAT GGTGGTGGAA ATGATGCAGG ATCTGGGGAT GGTGGTGGAA ATGATGCAGG ATCTGGGGAT GGTGGTGGAA ATGATGCAGG ATCTGGGGGT GGTGGTGGAA ATGATGCAGG ATCTGGGGGT GGTGGTGGAA ATGATGCAGG ATCTGGGGGT GGTGGTGGAA ATGATGCAGG Atctgggagt gatgatggai Atgatgcagg ATCTGGGGGT GGTGGTGGAA ATGATGCAGG ATCTGGGGGT GGTGGTGGAA ATGATGCAGG Atctgggait ggtggtgaia Atgatgcagg ATCTGGGGAT GGTGGTGGAA ATGATGCAGG ATCTGGGGAT GGTGGTGGAA ATGATGCAGG ATCTGGGGAT GGTGGTGGAA ATGATGCAGG AtCTGGGGGT GGTGGTGGAA ATGATGCAGG ATCTGGGGGT GGTGGTGGAA ATGATGCAGG AtCTGGGGGT GGTGGTGGAA ATGATGCAGG Atctggagat ggtgatggai Atgatgcagg ATCTGGGGGT GGTGGTGGAA ATGATGCAGG

CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACGGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACGGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACGGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACCGTG CAATAATGCT GGGAACGGTG CAATAATGCT GGGAACGGTG CAATAATGCT GGGAACGGTG CAATAATGCT GGGAACGGTG CAATAATGCT GGGAACGGTG

24	GGAATG
4A	GGAATG
22	GGAATG
7B	GGAATG
5A	GGAATG
5B	GGAATG
11	GGAATG
22R	GGAATG
16A	GGAATG
8A	GGAATG
KM	GGAATG
Izmir20	GGAATG
Izmir19	GGAATG
Izmir03	GGAATG
Izmir02	GGAATG
Izmir11	GGAATG
Izmir12	GGAATG
Izmir18	GGAATG
Izmir22	GGAATG
Izmir09	GGAATG
Izmir06	GGAATG
TgPiPr09	GGAATG
TgCkPr11	GGAATG
TgPiPr13	GGAATG
TgA32129	GGAATG
TgPiPr05	GGAATG
TgCkPr03	GGAATG
TgCkPr04	GGAATG
TgPiPr14	GGAATG
TgCkPr01	GGAATG
TgCkPr02	GGAATG
TgCkPr16	GGAATG
TgPiPr02	GGAATG
TgFoxPa06	GGAATG
TgWTDPa06	GGAATG
TgCoPa03	GGAATG
TgCoPa02	GGAATG
TgCoPa04	GGAATG
TgCoPa07	GGAATG
TgFoxPa10	GGAATG
TgCoPa01	GGAATG
TgCoPa05	GGAATG
TgCoPa08	GGAATG
TgFoxPa03	GGAATG
TgWolfMn 25	GGAATG
TgWolfmN27	GGAATG
TgWolfMN12	GGAATG
TgWolfMN26	GGAATG
TgWolfMN28	GGAATG
TgWolfMN13	GGAATG
TgWolfmN19	GGAATG
TgWolfMn 29	GGAATG
TgWolfmN11	GGAATG
TgWtdUs08	GGAATG
TgWtdUs10	GGAATG
TgWolfmn 20	GGAATG
TgA18001	GGAATG
TgA18005	GGAATG
TgA105002	GGAATG

TgA105043	GGAATG
TgA105001	GGAATG
TgA105052	GGAATG
TgA105003	GGAATG
TgA105037	GGAATG
TGA105004	GGAATG
TgA105053	GGAATG
TgA105051	GGAATG
TgA105018	GGAATG
TgA105011	GGAATG
TgA105016	GGAATG
TgA105015	GGAATG
TgA32129	GGAATG
TgA32109	GGAATG
TgSoUs14	GGAATG
Tgshir2	GGAATG
TgBobcatMS	GGAATG

APPENDIX H: INFORMATION ON THE T. GONDII B1 ISOLATES FOR THE 803 bp USED FOR SEQUENCE ANALYSIS AND PHYLOGENETIC TREE CONSTRUCTION

Isolate	Species	Country of origin	Accession number
Tecuanillo178	Sheep	Colima, Mexico	KX270386.1
Tecuanillo177	Sheep	Colima, Mexico	KX270385.1
Tecuanillo175	Sheep	Colima, Mexico	KX270384.1
Tecuanillo174	Sheep	Colima, Mexico	KX270383.1
Coalatilla173	Sheep	Colima, Mexico	KX270382.1
Coalatilla170	Sheep	Colima, Mexico	KX270381.1
StaRosa114	Sheep	Colima, Mexico	KX270380.1
StaRosal12	Sheep	Colima, Mexico	KX270379.1
Juluapan110	Sheep	Colima, Mexico	KX270378.1
Tecuanillo179	Sheep	Colima, Mexico	KX270387.1
Tecoman 108	Sheep	Colima, Mexico	KX270377.1
StaRosa107	Sheep	Colima, Mexico	KX270378.1
ElReal111	Sheep	Colima, Mexico	KX270375.1
ElReal109b	Sheep	Colima, Mexico	KX270367.1
ElReal109a	Sheep	Colima, Mexico	KX270373.1
Camalote106	Sheep	Michoacan, Mexico	KX270372.1
Camalote 105	Sheep	Michoacan, Mexico	KX270371.1
Camelote 102b	Sheep	Michoacan, Mexico	KX270369.1
StaRosa103	Sheep	Colima, Mexico	KX270370.1)
Camelote102a	Sheep	Michoacan, Mexico	KX270368.1

Estacion101b	Sheep	Colima, Mexico	KX270367.1
Estacion101a	Sheep	Colima, Mexico	KX270366.1
StaRosa113	Sheep	Colima, Mexico	KX270365.1
Estacion98	Sheep	Colima, Mexico	KX270364.1

APPENDIX I: INFORMATION ON THE T. GONDII B1 ISOLATES AND/CLONES OF TRIMMED FRAGMENT SIZES OF BETWEEN 300-100 bp USED FOR SEQUENCE ANALYSIS AND PHYLOGENETIC TREE CONSTRUCTION

Isolate/clone	Host	Country of origin	Accession number
Isolate Tecuanillo178	Sheep	Colima, Mexico	KX270386.1
Isolate Tecuanillo177	Sheep	Colima, Mexico	KX270385.1
Isolate Tecuanillo175	Sheep	Colima, Mexico	KX270384.1
Isolate Tecuanillo174	Sheep	Colima, Mexico	KX270383.1
Isolate Coalatilla 173	Sheep	Colima, Mexico	KX270382.1
Isolate Coalatilla 170	Sheep	Colima, Mexico	KX270381.1
Isolate StaRosa114	Sheep	Colima, Mexico	KX270380.1
Isolate StaRosa112	Sheep	Colima, Mexico	KX270379.1
Isolate Juluapan 110	Sheep	Colima, Mexico	KX270378.1
Isolate Tecuanillo179	Sheep	Colima, Mexico	KX270387.1
Isolate Tecoman108	Sheep	Colima, Mexico	KX270377.1
Isolate StaRosa107	Sheep	Colima, Mexico	KX270378.1
Isolate ElReal111	Sheep	Colima, Mexico	KX270375.1
Isolate ElReal109b	Sheep	Colima, Mexico	KX270367.1
Isolate ElReal109a	Sheep	Colima, Mexico	KX270373.1
Isolate Camalote 106	Sheep	Michoacan, Mexico	KX270372.1
Isolate Camalote 105	Sheep	Michoacan, Mexico	KX270371.1
Isolate Camelote 102b	Sheep	Michoacan, Mexico	KX270369.1
Isolate StaRosa 103	Sheep	Colima, Mexico	KX270370.1)
Isolate Camelote 102a	Sheep	Michoacan, Mexico	KX270368.1
Isolate Estacion 101b	Sheep	Colima, Mexico	KX270367.1

Isolate Estacion101a	Sheep	Colima, Mexico	KX270366.1
Isolate StaRosa113	Sheep	Colima, Mexico	KX270365.1
Isolate Estacion98	Sheep	Colima, Mexico	KX270364.1
Isolate 2A	Sheep	Iran	KU672642.1
Clone CG21	Chicken	Iran	MN275916.1
Clone CG19	Chicken	Iran	MN275915.1
Clone D1	Duck	Iran	MN275914.1
Clone GQ2	Goat	Iran	MN275912.1
Clone CQ7	Cattle	Iran	MN275910.1
Clone GY3	Goat	Iran	MN275909.1
Clone GY2	Goat	Iran	MN275908.1
Clone CY2	Cattle	Iran	MN275907.1
Clone SY12	Sheep	Iran	MN275906.1
Clone SY5	Sheep	Iran	MN275905.1
Clone SY4	Sheep	Iran	MN275904.1
Clone GY4	Goat	Iran	MN275911.1
Clone SY3	Sheep	Iran	MN275903.1
Isolate 25	Camel	Iran	KU672641.1
Isolate 16A	Sheep	Iran	KU672640.1
Isolate 16B	Sheep	Iran	KU672639.1
Isolate 1 A	Sheep	Iran	KU672638.1
Isolate 24A	Sheep	Iran	KU672637.1
Isolate 26	Camel	Iran	KU672636.1
Isolate 28B	Sheep	Iran	KU672635.1
Isolate 22 A	Sheep	Iran	KU672634.1

Isolate 5A	Sheep	Iran	KU672633.1
Isolate 22	Camel	Iran	KU672632.1
Isolate 15B	Goat	Iran	KU672630.1
Isolate 7B	Sheep	Iran	KU672629.1
Isolate 4B	Goat	Iran	KU672628.1
Isolate 3B	Goat	Iran	KU672627.1
Isolate 2B	Sheep	Iran	KU672626.1
Isolate 5B	Sheep	Iran	KU672625.1
Isolate 241	Black bear	USA	MH744807.1
Isolate 222	Black bear	USA	MH744806.1
Isolate 220	Black bear	USA	MH744805.1
Isolate 836-L-IMNO	Ixodes ricinus ticks	Poland	KX944482.1
Isolate 782-L-IMNO	Ixodes ricinus ticks	Poland	KX944481.1
Isolate 781-L-IMNO	Ixodes ricinus ticks	Poland	KX944480.1
Isolate 744-L-IMNO	Ixodes ricinus ticks	Poland	KX944479.1
Isolate TG-KLR-720-IMNO	Ixodes ricinus ticks	Poland	KU748893.1
Isolate TG-KLR-631-IMNO	Ixodes ricinus ticks	Poland	KU748892.1
Isolate TG-KLR-625-IMNO	Ixodes ricinus ticks	Poland	KU748891.1
Isolate TG-KLR-610-IMNO	Ixodes ricinus ticks	Poland	KU748890.1
Isolate TG-KLR-583-IMNO	Ixodes ricinus ticks	Poland	KU748889.1
Isolate TG-KLR-555-IMNO	Ixodes ricinus ticks	Poland	KU748888.1
Isolate TG-KLK-1018-IMNO	Ixodes ricinus ticks	Poland	KU748887.1
Isolate TG-KLK-983-IMNO	Ixodes ricinus ticks	Poland	KU748886.1
Isolate TG-KLK-905-IMNO	Ixodes ricinus ticks	Poland	KU748885.1
Isolate TG-KLK-830-IMNO	Ixodes ricinus ticks	Poland	KU748883.1

Isolate TG-KLK-365-IMNO	Ixodes ricinus ticks	Poland	KU748882.1
Isolate TgCatAu_8	Cat	Australia	KT881382.1
Isolate TgCatAu_6	Cat	Australia	KT881353.1
Isolate TgCatAu_7	Cat	Australia	KT881319.1
Isolate TgCatAu_2	Cat	Australia	KT881314.1
Isolate R236	California mussel	USA	KM243028.1
Isolate SR231	California mussel	USA	KM243027.1
Isolate SR222	California mussel	USA	KM243025.1
Isolate SR217	California mussel	USA	KM243024.1
Isolate SR215	California mussel	USA	KM243022.1
Isolate CR34	Cat	South Korea	MW063448.1
Isolate C-F-TG-56			

APPENDIX J: INFORMATION ON THE T. GONDII GRA6 ISOLATES AND/CLONES OF TRIMMED FRAGMENT SIZES OF BETWEEN 300-100 bp USED FOR SEQUENCE ANALYSIS AND PHYLOGENETIC TREE CONSTRUCTION

Isolate	Host	Country of origin	Accession number
24	Camel	Iran	KU672652.1
4A	Goat	Iran	KU672651.1
22	Camel	Iran	KU672650.1
7B	Sheep	Iran	KU672649.1
5A	Sheep	Iran	KU672648.1
5B	Sheep	Iran	KU672647.1
11	Sheep	Iran	KU672646.1
2R	Sheep	Iran	KU672645.1
16A	Sheep	Iran	KU672644.1
8A	Sheep	Iran	KU672643.1
KM	Cat	China	KX781158.1
TgCatTr_Izmir20	Cat	Turkey	KU599153.1
TgCatTr_Izmir 19	Cat	Turkey	KU599152.1
TgCatTr_Izmir03	Cat	Turkey	KU599151.1
TgCatTr_Izmir02	Cat	Turkey	KU599150.1
TgCatTr_Izmir 11	Cat	Turkey	KU599149.1
TgCatTr_Izmir 12	Cat	Turkey	KU599148.1
TgCatTr_Izmir22	Cat	Turkey	KU599147.1
TgCatTr_Izmir 18	Cat	Turkey	KU599145.1
TgCatTr_Izmir09	Cat	Turkey	KU599146.1

TgCatTr_Izmir06	Cat	Turkey	KU599144.1
TgPiPr09	Pig	Portugal	KU599143.1
TgCkPr11	Chicken	Portugal	KU599142.1
TgPiPr 13	Pig	Portugal	KU599141.1
TgPiPr05	Pig	Portugal	KU599140.1
TgCkPr03	Chicken	Portugal	KU599138.1
TgCkPr04	Chicken	Portugal	KU599137.1
TgPiPr 14	Pig	Portugal	KU599136.1
TgCkPr01	Chicken	Portugal	KU599135.1
TgCkPr02	Chicken	Portugal	KU599134.1
TgCkPr 16	Chicken	Portugal	KU599133.1
TgPiPr02	Pig	Portugal	KU599132.1
TgFoxPa06	Red fox	USA	KU599130.1
TgFoxPa03	Red fox	USA	KU599120.1
TgWolfMN25	Gray wolf	USA	KU599119.1
TgWolfMN27	Gray wolf	USA	KU599118.1
TgWolfMN26	Gray wolf	USA	KU599116.1
TgWolfMN28	Gray wolf	USA	KU599116.1
TgWolfMN13	Gray wolf	USA	KU599115.1
TgWolfMN28	Gray wolf	USA	KU599115.1
TgWolfMN13	Gray wolf	USA	KU599114.1
TgWolfMN19	Gray wolf	USA	KU599113.1
TgWolfMN29	Gray wolf	USA	KU599112.1
TgWolfMN11	Gray wolf	USA	KU599111.1

TgWolfMN20	Gray wolf	USA	KU599108.1
TgA18001	Jaguar	French Guiana	KU599092.1
TgSoUs14	Sea otter	USA	EU180622.1
TgWTDPa06	White-tailed deer	USA	KU599129.1
TgWtdUs08	White-tailed deer	USA	KU599110.1
TgWtdUs 10	White-tailed deer	USA	KU599109.1
TgCoPa03	Coyote	USA	KU599128.1
TgCoPa02	Coyote	USA	KU599127.1
TgCoPa04	Coyote	USA	KU599126.1
TgCoPa07	Coyote	USA	KU599125.1
TgCoPa10	Coyote	USA	KU599124.1
TgCoPa01	Coyote	USA	KU599123.1
TgCoPa05	Coyote	USA	KU599122.1
TgCoPa08	Coyote	USA	KU599121.1
GAB5-GAL-DOM01-(TgA105002)	Chicken	Gabon	KU599090.1
GAB3-GAL-DOM11-(TgA105043)	Chicken	Gabon	KU599089.1
GAB3-GAL-DOM02-(TgA105001)	Chicken	Gabon	KU599088.1
GAB3-GAL-DOM08-(TgA105052)	Chicken	Gabon	KU599086.1
GAB1-GAL-DOM10-(TgA105003)	Chicken	Gabon	KU599085.1
GAB2-GAL-DOM01-(TgA105037)	Chicken	Gabon	KU599084.1
GAB2-GAL-DOM02-(TgA105004)	Chicken	Gabon	KU599083.1
GAB4-GAL-DOM01-(TgA105053)	Chicken	Gabon	KU599082.1

GAB2-GAL-DOM06-(TgA105040)	Chicken	Gabon	KU599081.1
GAB1-GAL-DOM13-(TgA105018)	Chicken	Gabon	KU599080.1
GAB1-CAP-AEG06-(TgA105011)	Goat	Gabon	KU599079.1
GAB1-GAL-DOM11-(TgA105016)	Chicken	Gabon	KU599078.1
GAB1-GAL-DOM06-(TgA105015)	Chicken	Gabon	KU599077.1
FR-OVI-ARI022-(TgA32129)	Sheep	France	KU599076.1
FR-OVI-ARI043-(TgA32109)	Sheep	France	KU599075.1
Tgshir2	Sheep	Mashhad, Iran	KM372588.1
TgBobcatMS1	Cat	Mississippi, USA	KY364199

