TOWARDS SPECIFICATION FORMALISMS FOR DATA WAREHOUSE
SYSTEMS DESIGN

by

ISAAC NKONGOLO MBALA

submitted in accordance with the requirements for the degree of

MASTER OF SCIENCE

in the subject

COMPUTING

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF JOHN ANDREW VAN DER POLL

July 2022

Declaration

Name: Isaac Nkongolo Mbala

Student number: 28533044

Degree: MSc Computing

Exact wording of the title of the dissertation as appearing on the electronic copy
submitted for examination:

Towards Specification Formalisms for Data Warehouse Systems Design

| declare that the above dissertation is my own work and that all the sources that | have
used or quoted have been indicated and acknowledged by means of complete
references.

| further declare that | submitted the dissertation to originality checking software and that
it falls within the accepted requirements for originality.

| further declare that | have not previously submitted this work, or part of it, for
examination at Unisa for another qualification or at any other higher education
institution.

(The dissertation will not be examined unless this statement has been submitted.)

20 July 2022

SIGNATURE DATE

Abstract

Several studies have been conducted on formal methods; however, few of these studies
have used formal methods in the data warehousing area, specifically system
development. Many reasons may be linked to that, such as that few experts know how to
use them. Formal methods have been used in software development using mathematical
notations. Despite the advantages of using formal methods in software development,
their application in the data warehousing area has been restricted when compared with

the use of informal (natural language) and semi-formal notations.

This research aims to determine the extent to which formal methods may mitigate failures
that mostly occur in the development of data warehouse systems. As part of this research,
an enhanced framework was proposed to facilitate the usage of formal methods in the
development of such systems. The enhanced framework focuses mainly on the
requirements definition, the Unified Modelling Language (UML) constructs, the Star
model and formal specification. A medium-sized case study of a data mart was
considered to validate the enhanced framework. This dissertation also discusses the

object-orientation paradigm and UML notations.

The requirements specification of a data warehouse system is presented in natural
language and formal notation to show how a formal specification may be drifted from
natural language to UML structures and thereafter to the Z specification using an

established strategy as a guideline to construct a Z specification.

Keywords: case study, data warehouse systems, formal methods, multidimensional
model, object-oriented models, Snowflake model, Star model, UML class diagram, Z

notation.

Opsomming

Alhoewel verskeie studies oor formele metodes gedoen is, het min hiervan formele
metodes in die databergingarea, spesifiek stelselontwerp, gebruik. Dit kan aan baie redes
toegeskryf word, soos dat min kundiges weet hoe om dit te gebruik. Formele metodes is
in sagtewareontwikkeling gebruik wat wiskundige notasies gebruik. Ten spyte van die
voordele van formele metodes in sagtewareontwikkeling, is die toepassing daarvan in
die databergingarea beperk wanneer dit met die gebruik van informele (natuurlike taal)

en semiformele notasies vergelyk word.

Hierdie navorsing beoog om te bepaal tot watter mate formele metodes foute kan
uitskakel wat hoofsaaklik in die ontwikkeling van databeringstelsels voorkom. As deel
van hierdie navorsing is 'n beter raamwerk voorgestel om die gebruik van formele
metodes in die ontwikkeling van sulke stelsels te fasiliteer. Die beter raamwerk fokus
hoofsaaklik op die definisie van vereistes, die Unified Modelling Language (UML) -
konstukte, die Star-model en formele spesifikasies. Die mediumgrootte gevallestudie van
'n datamark is oorweeg om die beter raamwerk geldig te verklaar. Hierdie verhandeling

bespreek ook die voorwerpgeoriénteerde paradigma en die UML-notasies.

Die vereiste spesifikasie van 'n databergingstelsel word in natuurlike taal en formele
notasie voorgehou om aan te dui hoe 'n formele spesifikasie van natuurlik taal na UML-
strukture kan verskuif en daarna na die Z-spesifiekasie deur 'n gevestigde strategie as 'n

riglyn te gebruik om 'n Z-spesifikasie te konstrueer.

Sleutelwoorde: gevallestudie, databergingstelsels, formele metodes, multidimensionele
model, voorwerpgeoriénteerde modelle, Snowflake-model, Star-model, UML-

klasdiagram, Z-notasie.

Vi

Tshobokanyo

Go nnile le dithutopatlisiso di le mmalwa ka mekgwa e e fomale, fela ga se
dithutopatlisiso tse dintsi tsa tseno tse di dirisitseng mekgwa e e fomale mo karolong ya
bobolokelobogolo jwa data, bogolo segolo mo ntlheng ya thadiso ya ditsamaiso tsa
dikhomphiutha. Go ka nna le mabaka a le mantsi a a ka golaganngwang le seno, go
tshwana le gore ga se baitseanape ba le kalo ba ba itseng go e dirisa. Mekgwa e e fomale
e e dirisitswe mo tlhabololong ya dirweboleta go dirisiwa matshwao a dipalo. Le fa go
na le melemo ya go dirisa mekgwa e e fomale mo tlhabololong ya dirweboleta, tiriso ya
yona mo bobolokelobogolong jwa data e lekanyeditswe fa e tshwantshanngwa le tiriso ya

matshwao a a seng fomale (puo ya tlwaelo) le a a batlang a le fomale.

Patlisiso eno e ikaelela go bona gore a mekgwa e e fomale e ka fokotsa go retelelwa go go
diragalang gantsi mo tlhabololong ya ditsamaiso tsa bobolokelobogolo jwa data. Jaaka
karolo ya patlisiso eno, go tshitshintswe letlhomeso le le tokafaditsweng go bebofatsa
tiriso ya mekgwa e e fomale mo tlhabololong ya ditsamaiso tse di jalo. Letthomeso le le
tokafaditsweng le tota ditlhokego tsa tlhaloso, megopolo ya Unified Modelling Language
(UML), sekao sa Star le ditlhokego tse di rulaganeng. Go dirisitswe patlisiso ya tobiso e e
magareng ya data mart go tthomamisa letlhomeso le le tokafaditsweng. Tlhotlhomisi eno

gape e lebelela pharataeme e e totileng sedirwa/selo le matshwao a UML.

Ditlhokego tsa tsamaiso ya polokelokgolo ya data di tlhagisiwa ka puo ya tlholego le
matshwao a a fomale go bontsha ka moo tlhagiso e e fomale e ka lebisiwang go tswa kwa
puong ya tlholego go ya kwa dipopegong tsa UML mme morago e lebe kwa tlhalosong
ya ditlhokego ya Z go dirisiwa togamaano e e ntseng e le gona jaaka kaedi ya go aga

tlhaloso ya ditlhokego ya Z.

vii

Keywords: thutopatlisiso ya tobiso, ditsamaiso tsa polokelokgolo ya data, mekgwa e e
fomale, sekao sa maphatamantsi, dikao tse di totileng sedirwa/selo, sekao sa Snowflake,

sekao sa Star, setshwantsho sa maemo sa UML, tlhaloso ya ditlhokego ya Z.

viii

Acknowledgement

First and foremost, I would like to return all the glory and be grateful to the God
Almighty, the one who allowed all of this to happen, for the strength to keep pushing

and the wisdom to accomplish this project.

I want to express my gratitude to my supervisor, Professor John Andrew van der Poll,
for his advice, guidance, and support in completing this research work dissertation.
Without his aid, this research work would have been too arduous a task for me to

undertake.

I would like to thank the Council for Scientific and Industrial Research (CSIR) and the
Unisa Division of Student Funding (DSF) for providing financial assistance to carry out

this research project.

Lastly, I would like to express my deepest gratitude to the following people: Mrs
Henriette Mufumbi, Saddat Kitengie, Athou Lumami, Clovis Mulala, Innocentia Moleko,
Emmanuel Muzeu, Heritier Akpata, Lebrice Kapenga, Mitterand Bahindwa, Fabrice
Kitengie, Ernelly Nsimba, Felly Kaniki, Christian Kimbobe, Gulith Mboma, Gloire
Monika, Erick Kabakanyi, Mandy Ada, Grace Mayombo, Patricia Mukaramur and others.

Thank you for the encouragement, love and unconditional support.

Dedication

This thesis is dedicated to the memory of my lovely dearest father, Ph. D. Elie Donatien
Mulamba (June 1945 - January 2013) and to the memory of my lovely dearest uncle, the
pharmacist Justin Joad Mukendi (1942 - February 2002).

To my dear lovely mother, Mrs Marthe Ntanga, and my lovely dearest brothers and
sisters - Pepin Kapena, Abel Mutombo, Jordan Muanza, Naomie Mpemba and Priska
Ngalula, thank you for the continued support, love and prayers. My special thanks go to

my girlfriend for her patience, unconditional love, and support.

Mukalenga Yepowa nzambi atumbi shibua.

List of Publications

The following publications emanated from this research:

Mbala, Isaac N. and Van der Poll, John A. (2018): Towards a Framework
Embedding Formalisms for Data Warehouse Specification and Design.
International Journal of Digital Information and Wireless Communications (IJ]DIWC)
7(4), pp. 200 - 214, The Society of Digital Information and Wireless
Communications, 2017 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print).

Isaac Nkongolo Mbala and John Andrew van der Poll (2020a): Evaluation of Data
Warehouse Systems by Models Comparison. 18t Johannesburg International
Conference on Science, Engineering, Technology & Waste Management (SETWM-
20) Nov. 16-17, 2020 Johannesburg (SA).

Isaac Nkongolo Mbala and John Andrew van der Poll (2020b): Towards a Formal
Modelling of Data Warehouse Systems Design. 18t Johannesburg International

Conference on Science, Engineering, Technology & Waste Management (SETWM-
20) Nov. 16-17, 2020 Johannesburg (SA).

Xi

List of Acronyms

Term Description
BI Business Intelligence
CSIR Council for Scientific and Industrial Research
CSv Comma-Separated Values
DB Database
DM Data Mart
DSF Division of Student Funding
DW Data Warehouse
ER Entity Relationship
ES Established Strategy
ETL Extract-Transform-Load
FM Formal Method
IoT Internet of Things
JAD Joint Application Design
KPI Key Performance Indicator
MD Multidimensional
MRQ Main Research Question
OCL Object Constraint Language

Xii

Term

Description

OLAP Online Analytical Processing
OMG Object Modelling Group
OMT Object Modelling Technique
OOMD Object-Oriented Multidimensional
PO Proof Obligation

RO Research Objective

RQ Research Question

SK Surrogate Key

SRQ Sub Research Question

UML Unified Modelling Language
UX User experience

xiii

List of Figures

Figure 1-1: Problem Statementccccociciviiiniiiniiiiiniiiincicceeeee e 7
Figure 1-2: The research onion (Saunders et al., 2019)ccccccooiiiiiiniinniiiiccene 8
Figure 1-3: The structure of the dissertation............ccccoocciiiiiiiiiiniiiiccce 12
Figure 2-1: DW System Architecture (Oketunji & Omodara, 2011: page 43).................... 20
Figure 2-2: Data warehouse partitioned by four databases...........c...cccccccevieiinnnccnnnee. 22
Figure 2-3: Complementary Top-down & Bottom-up........c.cccceveueciveiniicnncciniciniciene 27
Figure 2-4: Requirement-driven approach...........cccccoiiiiniiiniiiiiiiiiiiicccce, 29
Figure 2-5: Supply-driven approach ..o 30
Figure 2-6: Hybrid-driven approach...........ccccocoveiniiiiniiniiicinccccceeceeeeneenes 31
Figure 2-7: A Multidimensional Model (Mbala & Van der Poll, 2017)ccccccvueueunenee. 34
Figure 2-8: A multidimensional Star schema...........ccccccveineinicniniiniicnccecee 36
Figure 2-9: A multidimensional snowflake schema..............ccccccceviiiiiiiiiiiiie 37
Figure 2-10: A UML Class representationcocccoeeeeeeineiniireninieinieeieeeeseessenenenenenne 43
Figure 2-11: A unidirectional associationc.cocceeveuevivieinieiniicnineiecceeceeenee 45
Figure 2-12: A bidirectional association............ccccocciviiuiiniiiiiiniiiiiiccccece 46
Figure 2-13: An aggregation association............ccoeiviiiiiiiiniiiiiiiiccs 46
Figure 2-14: A generalization association............cccccevueuiiniiiniiiniiiiiiiicccccecees 47
Figure 3-1: A UML class diagram of an appointment booking systemc.cc........ 67
Figure 4-1: The research onion (Saunders et al., 2019)ccccoeiiiiiiiiniiiiis 103
Figure 4-2: Research Process Structure (Summarized by the researcher)........................ 111

Figure 5-1: Evaluation and Comparison Framework (Mbala & Van der Poll, 2020a) ... 115

Figure 5-2: Star Model ..o 120
Figure 5-3: Snowflake model............ccccooiiiiiiiiiiiii e 121
Figure 5-4: Model 1 (Mbala & Van der Poll, 2020a)cccceceiviiuiiiniiiniiiniiciiciiecee 124

Xiv

file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598526
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598527
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598528
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598529
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598530
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598531
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598532
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598533
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598534
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598535
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598536
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598537
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598538
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598539
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598540
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598541
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598542
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598543
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598544
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598545
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598546
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598547
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598548
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598549

Figure 5-5: Model 2 (Mbala & Van der Poll, 2020a)ccccoeeiniiuinineiniiiniieinicciecnes 125

Figure 6-1: Enhanced Framework.............cccccoiiiiiiiicccccce, 143
Figure 6-2: Star Model (Mbala & Van der Poll, 2020b)...........cccooeiviniiiniininiincinieennes 148
Figure 6-3: Z schema representing the Product classcccccoeiviiiiniinniincniinnes 150
Figure 6-4: Z schema representing the Store classcccoccocioiniiiiiiinniiniiccne, 151
Figure 6-5: Z schema representing the Date classccccceeiniininiiniiniiinciicces 152
Figure 6-6: Z schema representing the Customer class............cccccoeecieinnnciiinnnccnnee. 152
Figure 6-7: Z schema representing the Sale classccccccuveiniiiiniiniiinniiicieces 153
Figure 6-8: Z schema representing the Star model.............cccccccccoiniiiiinnniiee. 156

XV

file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598550
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598551
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598552

List of Tables

Table 2-1: Advantages and disadvantages of techniquesccccccoeeiviiicincinncnncnne. 27
Table 2-2: UML diagrams types per categoryccccoccveireiniiieinieinieieiecieeecsieeeenenenns 41
Table 2-3: Various multiplicities of an association (Adesina-Ojo, 2011).........cccccceueueueneeee. 45
Table 3-1: Descriptions of the given sets of the appointment booking system................. 68
Table 3-2: Partial operations summary of the appointment booking system 92
Table 5-1: Classes and interfaces diStancesccccooeoiviviiiiiniiiiine, 127
Table 5-2: Attributes of the class features.............coooiiiiiiiniiiiinniccee, 128
Table 5-3: Relation features.............ccccciiiiiiiiiniiicice e 129
Table 5-4: Items pair’s comparison for Model 1 and Model 2............ccccccovvviincinnnnnnnes 136

XVi

Table of Contents

ADSETACE. ... iii
OPSOMIMUING ...ttt bbb bbb bbb bbb bbb v
TSRODOKANY 0.ttt s vii
AcknNowledgement..........ccciiiiiiiiii ix
DICATION ...ttt X
List Of PUDLICAtIONS.cuciiiiiiiiiiiiicii s Xi
LiSt Of ACTONYINSooviiiiiiiciiccc bbb xii
LiSt Of FIGUIESvviiiiiciccc s xiv
LSt Of TADIES ...ttt XVi
Chapter T INtrOAUCHION........ccviviieiiicicec et 1
1.1 BackGIoUNdcoooiiiiiiiicicc s 1
1.2 Context and Motivation ... 2
1.3 Problem Statement...........ccccuiiiiiiiiiiii s 4
1.4 ReSEATCh QUESHIONSveeevieie ettt ettt ettt e et e eteeeeeeteeeteeeteeeaeesaeesaeeenreenteenseeaseeeseseneseneeenreen 5
1.5 Research Aim and ODbJectiVes..........coceiiiiiiiiiiiiiiiiiici 6
1.6 Research Methodology ..o 8
1.7 Significance of the Research ..o 9
1.8 Limitations and Delineationscccccovviiiiiiiiiiiiiiiiiic s 10
1.9 Dissertation Structure.........ccoviiiiiiiiiiii 11
1.10 Chapter SUIMMATYcceuiieiriciceee e 14
Chapter 2 Literature REVIEW ... 15
2.1 INErOAUCHON .. 15
2.2 DefINItIONSvvvviicicicicc s 16
2.3 Data Warehouse Systems CONCEPLScccovvviiecicieiiiiiiici e 18
2.4 Data Warehouse Systems Fundamentalsc.cccccooiiiiiniiiiniiicccce, 19
2.5 Data Warehouse Systems Designcccovuruiiriiiiiiiciiiiicic s 21
2.5.1 Requirements Analysis Phaseccocoovvviiiiniiiiiiiiiiicccccccccccc e 24
2.5.2 Conceptual Design Phase..........cccociiiiiiiiiiiiii e 33

2.6 Object-Orientation Modelccooviiiiiiiiiiininiic s 38

2.7 Object-Orientation Properties ..ot 38

2.8 A short history of the Unified Modelling Language.............cccccoovvininniinnnnniciccccce, 40
2.9 Unified Modelling Language Artefactsc.ccccevriiiiiiiiiiiiiiicecces 40
2.10 UML Class DIiagrams...........ccovuviriririninininieieieieeese s sessssssssnns 42
2.10.1 CIASSES....vviuiiriiiiicicic s 43
2.10.2 RelationShips.......cccoiiiiiiiiiiiiiiceic e 43
2.11 Advantages and Disadvantages of the Object-Orientation Model.............ccccccvviiiiinnnnne 47
2.11.1 Advantages of Modelling with UMLcccccccooiiiiiiniiiiic 47
2.11.2 Disadvantages of Modelling with UMLcccccooiiiiiiiiiiiicc 48
2.12 Chapter SUMMATYccociiiiiiiii bbb 48
Chapter 3 Formal Methods and Z notations..............ccceeeeeciccicii 50
3.1 INErOAUCHON ... 50
3.2 Formal Methods OVervVIew ... 51
3.3 AN OVEIVIEW Of Z ..ottt ettt 52
3.3.1 Requirements Statementccccoviiiiiiiiiiiiiii 53
B.3.2 SUIMNIMATY ..ottt b st 64
3.4 An Appointment Booking System in Z...........ccccoviiiiniiiiiiiiii 65
3.4.1 Requirements of the Case Studycccceeiviviiiiiiiiiiii 65
3.4.2 Conceptual MOdel..........cciiiiiiiiiiiciieee e 66
3.4.3 Specification APPTOACHccoveveiiiiiiiciirece s 68
3.4.4 Operations of the SYSteMcccccviiiiiiiiiiiiiic 73
3.4.5 Specification of the System State...........ccccouviiiiiiiiiiiiii 90
3.4.6 Specification of the Initial State..........cccccoviiiiiiiniiii 91
3.4.7 Specification SUMIMATYcccciiiiiiiiiiiii s 92
3.4.8 Occurred Proof Obligations from the Specificationccccoeovcivniiiiiiciiiiie, 94
3.5 Chapter SUMMATYccoviiiiiiii e 100
Chapter 4 Research Design and Methodologyccoeiiiniiiiiiniiiiiics 102
4.7 INtrodUCHON ... 102
4.2 Research PhiloSOPhYcccciiiiiiiiciiiicc e 104
4.3 Research APProach........cccciiiiiiiiiiiiic 106
4.4 Methodological ChoiCes...........cccuiuiiiiiiiiiii e 107
4.5 Research Strategycocoeueueieieieiciciccccc 108
4.6 Time HOTIZON ... 109

4.7 Techniques and procedures...........cccoeiiiiiiiiiiiiiiiiii s 110

4.8 Research PIOCESSccccuiiiiiiiiiiiiciccccc 111
4.8.1 Content ANALYSISccceuiuiiiiiiiiiiiiiic 112
4.8.2 Developing APProachi ... 112
4.8.3 Extended Frameworkccocoviiiiiiiiiiiiii s 112
4.8.4 Enhanced FrameworkK..........cccviiiiiiiiiiiiii e 113

4.9 Chapter SUIMIMATYcccoeieirieieieieicicicc e 113

Chapter 5 Models Evaluation and Comparisoncceeueeccciiiiciii e 114

5.1 INtrodUCHON ... 114

5.2 Object-Oriented Multidimensional Model ..., 116

5.3 Logical Design Models...........cccoiviiiiiiiiiiniiiiiii e 118
5.3.1Star Model ... 119
5.3.2 Snowflake Model..........cccccouiiiiiiiiiiiiiiiii 120

5.4 Case StUAY ..o 121

5.5 Star and Snowflake models in OOMD.........cccccceviviiiiiiiiiiiiii s 122
5.5.1 Star model using OOMDccccoiiiiiiiiiiii e 122
5.5.2 Snowflake model using OOMD..........ccccooiiiiniiiiiiiii s 124

5.6 Framework of COmMPAriSON.........ccocuiiiiiiiiiiiiiiii s 126

5.7 Outcome Of COMPATISOTN.....ccvevuiiriiieiiirieieeiree ettt 135

5.8 Chapter SUMMATY ... 140

Chapter 6 Formalizing the Star Schema............cccccoiiiiiiiiiiiii 142

0.1 INErOAUCHON ..o 142

6.2 A Revisit Of UMLccoiiiiiiiiii s 144

0.3 A REVISIE Of Z ..o s 144

0.4 Case SEUAY ..o 145

6.5 Formalization of the Star modelin Zcccooviiiiiiiiiic 149

0.6 Chapter SUMIMATY ..o 157

Chapter 7 CONCIUSIONcuiiiiiiiiiccci e 159

7.1 INtroOdUCHON ..o 159

7.2 Research Questions and FINdings..........cccoviiiiiiniiiiiiniiicccc s 159

7.3 Analysis of FINAINEGScceviiiiiiiiiiiiici s 163

7.4 CONIIDULIONSooviiiiiiiiic s 164

7.5 FUtUIe WOTK ..o 165

RELETEIICOS ..ottt ettt e ettt e e e e e e e e e teeeesseaaa e eaeeeeeesaaaa e aeeeeeessesaaaeseeeeesssesaanseseneeeseranan 166

Appendix A. Ethical Clearance Certificate............cccoviiiniiiiiiniiiiccccee s 174
Appendix B. Language Editing Certificatecccccevuruiiiiiiiiiiiiis 178
Appendix C. Turnitin Reportcccoeuiiiiiiiiiiiiiii s 180
Appendix D. Towards a Formal Modelling of a Data warehouse Systems Design...................... 182
Appendix E. Permission to SUDIML.........ccccoeiiiiiiiiiiiiicc s 190

XX

Chapter 1 Introduction

1.1 Background

The main purpose of this research study is to determine the extent to which formal
methods for data warehouse (DW) systems may mitigate failures that usually occur in
the development of such systems. Furthermore, this study has two secondary purposes.
Firstly, it seeks to facilitate the requirements elicitation and analysis to obtain a set of
requirements, which are presented in Chapter 2. Secondly, it seeks to assist designers to
compare the two main design models and thereafter select the most appropriate model

to be used during the development. This aspect is discussed in Chapter 5.

The formal method specification language used is Z language. Various models are used
to develop data warehouse systems at both the conceptual and logical design phases.
Among the most accepted conceptual design models, the object-oriented
multidimensional (OOMD) model is used to portray the static aspects of data warehouse
systems because it is based on UML semantics, and the use of UML semantics in the
representation of the static aspects of DW systems makes the OOMD model more suitable

for the development of such systems (Babar et al., 2020).

UML constructs are adopted to represent the OOMD models of DW systems as diagrams
at the conceptual design phase. The multidimensional (MD) models that use UML
constructs are translated into Z schemas to clarify possible ambiguities that could lead to
system inconsistencies. The specification formalism is also enhanced by considering
aspects related to user experience. A case study modelled in OOMD is also presented to

strengthen the representation of MD models of DW systems. This Chapter provides an

overview of this dissertation's formal methods (FMs) and data warehouse systems. In
addition, the problem statement that incited this research is discussed. Finally, the

research questions that were formulated to address the research problems are outlined.

1.2 Context and Motivation

World technologies are continuously developing, including computer networking, social
media, and the internet of things (IoT) (Reddy & Suneetha, 2021). As a result, information
systems now play a role in almost all areas of human lives. At the same time, databases
supporting these information systems have grown in scale to petabytes (101> bytes) of
billions of records. These records may be modelled and fashioned to generate useful
information and knowledge that enables and contributes to a seamless business decision-
making process (Babar et al., 2020). However, traditional databases do not meet the
requirements for data analysis intended to support day-to-day operations, and these
limitations may only be overcome by using data warehouse systems (Reddy and
Suneetha, 2021). The role of a data warehouse is to provide strategic information to

decision-makers based on the historical data stored in the system.

Unfortunately, many data warehouse projects fail to meet the business purpose and
requirements because the importance of entire requirements elicitation and subsequent
specification phases are often overlooked (Mbala & Van der Poll, 2017, Moukhi et al.,
2019). Furthermore, the requirements that need to be met during these definition phases
are often inadequate or inconsistent, thus leading to erroneous specifications (Elamin et

al., 2017; Mbala & Van der Poll, 2017).

FMs embody a mathematical approach for facilitating specifications' correctness,
completeness and consistency (Pandey & Batra, 2013; Pandey & Srivastava, 2015). They

2

also assist with the early detection of shortcoming densities in specification, design and
code and thus reduce proofreading costs during the development of systems (Pandey &
Batra, 2013). Using formal methods for specification in the development of data
warehouse systems may provide a precise and unambiguous description of such systems

at the conceptual design phase.

An increasing need for and growth of formal methods for specification has ensured the
creation of many formal method specification languages. Formal method specification
languages rely on set theory and first-order predicate calculus (S. Pandey & Batra, 2013).
Z is one of the formal method specification languages based on set theory and first-order
predicate calculus (Zafar & Alhumaidan, 2011; Pandey & Batra, 2013; Moremedi, 2015).
Z has previously been successfully used to provide unambiguous specifications and

define safety-critical systems (Moremedi, 2015).

UML is an object-modelling language that uses different diagrams to model systems.
UML uses various diagrams at various phases to portray systems. For instance, the
interaction between users and a system is described using use-case diagrams. Class
diagrams are used to represent the static aspect of systems. UML is a high-level
specification language. This research focuses on the lower level that is limited to the use

of class diagrams to represent the static aspect of data warehouse systems.

This research aims to determine the extent to which formal methods may alleviate the
failure that occurs in the development of data warehouse systems using Z notations.
These notations are used for translating the object-oriented multidimensional models into
Z schemas to reduce ambiguities that could lead to inconsistencies during development.

To accomplish this goal, a medium-sized case study modelled in an object-oriented

multidimensional model will be used to represent the static aspect of data warehouse

systems.

1.3 Problem Statement

Using the formal specification language Z to develop data warehouse systems can assist
in alleviating failures that occur during development. This is because Z has the potential
to reduce the shortcomings in a system. However, although Z can structure large
specifications for systems with a sequence of operations using schemas (Moremedi, 2015),
it may be arduous to manage specifications for a large system that can generate
correspondingly large specifications (Adesina-Ojo, 2011; Dongmo, 2016). Similarly,
object-oriented multidimensional models may steer to a better understanding and enable
decision-makers to play a significant role in the specification. Still, object-oriented
multidimensional models may also have disadvantages as they allow ambiguities owing

to their inherent use of semi-formal notations that could lead to inconsistencies.

As aresult, a need exists for integrating both OMD models and formal methods to obtain
an accurate and clear model of data warehouse systems that would match the business
purpose and requirements expressed by decision-makers. For this goal to be achieved,
we advocate for a notation that can define the described specification problem. This
problem statement can be considered the main research question for developing data
warehouse systems based on the research objectives. To this end, the following Section

outlines the research questions that are aimed at addressing the research objectives.

1.4 Research Questions

The following research questions (RQs) have been formulated to define and accomplish
the objectives of this research. In an attempt to define and accomplish the objectives of
this research, a set of research questions (RQs) were formulated. To this end, the main

research question that this research study seeks to answer is:

MRQ: To what extent may formal methods be used to model a data warehouse system in the

conceptual design phase?

The following sub-research questions (SRQs), which are designed to answer the MRQ in
detail, were also formulated:

SRQ1: What are the requirements elicitation approaches for data warehouse systems development?
SRQ2: How may the two (2) prominent requirements elicitation approaches be combined?
SRQ3: What are the main models used in the development of data warehouse systems?

SRQ4: What is the most suitable model for the development of data warehouse systems?

SRQ5: To what extent does formal specification facilitate the development of data warehouse

systems?

SRQ6: How do formal proofs increase confidence in a formal specification?

1.5 Research Aim and Objectives

The aim of this research work is to determine the extent to which formal methods may
mitigate failures that occur during the development of data warehouse systems. It is
envisaged that such information will be used to develop a framework for assisting system
designers in developing a conceptual framework model that will help to meet end-users'

and decision makers’ expectations and needs.

To accomplishing the research aim, the following research objectives (ROs) were
developed:

RO1: Examine the literature on data warehouse systems concepts;

RO2: Identify the critical issues that face DW systems during the development;

RO3: Identify the significant problems related to the failures of DW systems during the

development;
RO4: Recommend a framework that may help clarify ambiguities that could lead to system

inconsistencies;

Following the above-detailed research questions, Figure 1.1 schematically portrays what

is further addressed in this dissertation.

Formal Transformation | Static Aspect

|
: Requirements Definition |
' I
- I
| UML Constructs I
|
' I
: Data Warehouse Model |
I----------- ----------‘I

Formal Model

Formal Specification

Figure 1-1: A Proposed Framework

Figure 1-1 embodies two processes. The first process is the formal transformation process
that represents the static aspects of the system to be developed. It involves requirements
definition, UML constructs, and data warehouse models to achieve representation. The
formal model is the second process, and it formally specifies the system's static aspects

to be developed using formal specification notations.

The following Section introduces the research methodology to elucidate the methodology

used by the researcher to conduct this research.

1.6 Research Methodology

This research used a combination of positivism and interpretive philosophical
paradigms. A mixed research method simple with a case study research strategy, was
applied. A research approach combining the inductive and deductive approaches was

adopted, and a cross-sectional time horizon was used, as depicted in Figure 1-2.

——————

Positivism Philosophy

Approach to
theory development

Methodological

choice
I

Mono method
quantitative

i
Deduction Critical

realism

Mono method
qualitative —

|
|
————e

Survey

Experiment
Archival
research

Cross-sectional

Multi-method
quantitative

Data

collection Case study Mefrrs
and data retivism
1‘ analysis - DESRSLS—. L ;—— Strategy(ies)

Multi-method
qualitative

Longitudinal
research ~ ~~_______ /S _____/ _______ ——— Time

N_a Tative Grounded horizon

quiry

Mixed method
simple

Post-
modernism

Mixed method
complex

Induction

Techniques and
procedures

Pragmatism

—— e

Figure 1-2: The research onion (Saunders et al., 2019)

Figure 1-2 presents the research onion developed by Saunders et al. (2019) to portray the
research process. In the case of this research project, the process of the research was as

follows:

To accomplish the aim of this research study, the researcher first needed to identify and
examine the existing ambiguities within the development of data warehouse systems
with a view to determining how these ambiguities occur and how they are becoming a
problem in the development of data warehouse systems. The research onion depicted in

Figure 1-2 is discussed in more detail in Chapter 4.

The researcher has conducted a literature review to identify the major challenges that
contribute to the failure of data warehouse systems during their development. The
process of identifying the challenges included the requirements elicitation and analysis
for erroneous prone. A framework to assist with the requirements elicitation and analysis

is presented in Chapter 2.

The most significant contributor to the failure of data warehouse systems was discussed
further when reviewing data warehouse systems concepts in Chapter 6. Therefore, this
study aimed to develop a framework that may help clarify ambiguities that can lead to

system inconsistencies in the development of data warehouse systems.

The research data were gathered through analyses of academic literature. The researcher
first Started with a literature search to collect background literature on the work achieved
in data warehouse systems development to identify other aspects that this research

project may address. The following Section presents the significance of the research.
1.7 Significance of the Research

The object-oriented multidimensional models portray data warehouse systems at the
conceptual design phase using UML as the standard language (Gosain & Mann, 2011).
The DW system specifications should be accessible to all designers continuously in the

9

data warehouse project. The OOMD models can deliver the specification in a
comprehensible manner, but they are not considered rigorous enough, and may generate

lengthy specifications when used in large projects (Gosain & Mann, 2011; Moremed;,

2015).

The Z language can yield a specification that is concise and unambiguous. The schema
notation is utilized to decompose large specifications into smaller pieces and portrays
each piece individually. However, the Z language requires rigorous training and practical

experience before achieving the benefits (Moremedi, 2015).

It is for this reason that this research is intended to determine the extent to which formal
methods may mitigate failures that occur during the development of data warehouse
systems by helping clarify ambiguities that can lead to inconsistencies in such systems.
Multidimensional models specified in class diagrams using UML constructs will be
transformed into Z notations to indicate to what extent a Z language may depict a UML
specification. The Z notation also specifies a medium-sized case study modelled in

OOMD.

1.8 Limitations and Delineations

The researcher found some ambiguities that designers faced during the development of
data warehouse systems that needed some attention to be improved and anticipated
devising a way to alleviate those ambiguities. The researcher noted that the creation of
data warehouse systems depended on the choice of the development technique or
approach selected by a designer, which is based on either user requirements or data
requirements that is either in natural language or diagrams (or tables), both of which are
susceptible to multiple interpretations leading to inconsistencies.

10

The above led the researcher to further investigate these inconsistencies due to
ambiguities. After determining the extent to which ambiguities existing in the
development can be alleviated, a framework was suggested to address the existing
ambiguities. The ambiguities comprised inadequate or inconsistent requirements in the
specification of DW systems requirements that could lead to the diminution of clarity of
the system. However, one of the research's limitations is that a single researcher has

conducted the study owing to the study being a dissertation.

The scope of this research is limited to the design of data warehouse systems in the
conceptual design phase. Hence, other levels such as the extraction-transformation-

loading (ETL) (Dahlan & Wibowo, 2016; Reddy & Suneetha, 2021) are not discussed in

this dissertation. The following Section provides the dissertation structure.

1.9 Dissertation Structure

This dissertation consists of seven (7) Chapters, including this Chapter. The main
contributions of the dissertation are in Chapters 2, 5 and 6. Each Chapter, excluding this
one, Starts with an introductory Section and concludes with a Chapter summary. The

structure of the dissertation is summarized in Figure 1-3.

11

Chapter 1: Introduction of the Study

AV

Chapter 2: Literature Review

G

Chapter 3: Formal Methods and Z notation

<

Chapter 4: Research Design and Methodology

G

Chapter 5: Models Evaluation and Comparison

<

Chapter 6: Formalizing the Star Schema

-

Chapter 7: Conclusion and Future Works

G

References

<G

Appendices

Figure 1-3: The structure of the dissertation

Chapter 1 presents the introduction and background of the study, which is the basis upon
which this study is grounded. This Chapter also presents the research problem, research
questions, aim and objectives, methodology, limitations and delineations, and the

significance of the research.

Chapter 2 introduces the background literature on concepts related to data warehouse
systems before presenting a framework for requirements elicitation and definition of data

warehouse systems development.

12

Chapter 3 is a literature study on formal methods and Z notation. This Chapter also
presents a small case study that shows how Z works in the general case of a system
specification. Lastly, typical proof obligations that arise from Z specifications are

presented.

Chapter 4 delivers the research methodology applied in this research project, namely the

research approach, strategy, design, and data collection and analysis techniques.

Chapter 5 represents a medium-sized case study modelled in object-oriented
multidimensional models to illustrate Star and snowflake schemas mostly used to design
DW systems based on the same set of requirements at the logical design phase.
Furthermore, the Chapter evaluates data warehouse system models through a model
comparison approach to select a suitable model based on semantical features for

developing a DW system.

Chapter 6 illustrates how UML constructs adopted to represent the object-oriented
multidimensional models are translated into Z structures using schemas to specify the
system. Finally, it is worth noting that this Chapter shows how to define data warehouse

systems in the conceptual design phase.

Chapter 7 answers the research questions outlined at the beginning of the dissertation.
In addition, this Chapter shows the extent to which the research questions denoted in
Chapter 1 are answered. Furthermore, the Chapter outlines the direction for future works

and concludes the research study.

13

1.10 Chapter Summary

This Chapter addressed the background of the study, the research problem, aim and
objectives. It also highlighted the significance of the research before outlining the

questions of the research as well as the limitations and delineations.

The study's focus area was presented with a declaration of the problem details, and the
research significance supports the necessity to conduct this research. Furthermore, the
research methodology was discussed to show the methods adopted by the researcher to

conduct this research.
The following Chapter presents the literature review on the concept of data warehouse

systems development as well as the framework that lays the foundation for eliciting and

analyzing the business purpose and requirements.

14

Chapter 2 Literature Review

2.1 Introduction

The previous Chapter provided the background and the motivation for this research, the
problem statement, research questions, research aim and objectives, the research
significance, research methodology, limitations and delineations, as well as the layout of

the dissertation.

This Chapter reviews the literature related to Data warehouse systems. Further, a
discussion on object orientation and UML is introduced. The following research

objectives (ROs), which were initially listed in Section 1.5, are also discussed in detail:
RO1: Examine the literature on Data warehouse systems concepts;

RO2: Identify the critical problems that face DW systems during the development; and

RO3: Identify the significant issues related to the failures of DW systems during the development.
Furthermore, this Chapter seeks to address the following research questions, which
appear for the first time in Section 1.4:

SRQ1: What are the requirements elicitation approaches for Data warehouse systems

development?

SRQ2: How may the two (2) prominent requirements elicitation approaches be combined?

15

The layout of this Chapter is as follows. This Section provides essential information about
the relevant literature related to this research. In addition, it gives theories about Data
warehouse systems that cover the research objectives. Some key terms and Data
warehouse systems concepts are defined in Sections 2.2 and 2.3, respectively. After
presenting the Data warehouse systems fundamentals in Section 2.4, Section 2.5 is
focused on Data warehouse systems design. The model and properties of object-
orientation are discussed in Sections 2.6 and 2.7, respectively. Following a brief discussion
on the history of UML in Section 2.8, Section 2.9 discusses the UML artefacts relevant to
the software specification. Section 2.10 presents the UML class diagram. Before
concluding the Chapter with a summary in Section 2.12, the advantages and

disadvantages of the object-orientation model are highlighted in Section 2.11.

2.2 Definitions

Definition 2.2.1

A Data warehouse is a system that collects and merges data periodically from various
sources within a dimensional or normalized data store. It is made available to end-users
so they may comprehend and use it. In addition, it keeps historical data for many years
for business intelligence or other analytical activities (Oketunji & Omodara, 2011; Dahlan
& Wibowo, 2016; Mohammed, 2019). A Data warehouse is considered the core
constituent of business intelligence (BI) that describes the information analysis to enhance

and optimize business decisions and performance (Yulianto & Kasahara, 2020).

16

Definition 2.2.2

Business intelligence is the distribution of precise critical information to the relevant
decision-makers within an essential timeframe to sustain efficient decision-making
(Oketunji & Omodara, 2011). It is a data-driven process that amalgamates data storage
and collection with knowledge management to supply input into the business decision-

making process to allow organizations to improve their decision-making process (Larson,

2019).

Definition 2.2.3

A Data mart (DM) is a subset of a Data warehouse that stores historical data in an
electronic repository that does not involve the organization's daily operations. Instead,
the historical data used in the Data mart are usually applied to a specific area of the

organization (Oketunji & Omodara, 2011; Larson, 2019; Utami et al., 2020).

Definition 2.2.4

A fact table is the main table thought of as the focus of interest for the decision-making
process used in a dimensional model to store the numerical performance measurements
of the business resulting from a business process within a single Data mart (Oketunji &

Omodara, 2011; Espinasse, 2013; Mbala & Van der Poll, 2017).

Definition 2.2.5

Dimension tables are axes of analysis for the decision-making process. Dimensions

contain many attributes of textual type to describe the business. Dimensions are always

17

related to the fact table. They are the entry points into the fact table (Oketunji & Omodara,
2011; Mbala & Van der Poll, 2017).

The following Section examines and addresses the literature on Data warehouse systems

concepts.
2.3 Data Warehouse Systems Concepts

Data warehousing is the process of gathering data intended to be stored in a managed
database in which data are subject-oriented and integrated, time-variant and non-volatile
for decision-making support (Dahlan & Wibowo, 2016; Larson, 2019; Mohammed, 2019;
Babar et al., 2020; Reddy & Suneetha, 2021). Data warehousing is a good approach for
transforming operational data into essential and reliable information to sustain decision-
making. The process of Data warehousing consists of extracting data from various
heterogeneous data sources to clean, filter, transform and store these into a common
structure that is easy to access and use for BI and other analytical activities (Oketunji &

Omodara, 2011).

In the world of Data warehouse systems development, Bill Inmon and Ralph Kimball are
the two great known authors who created different techniques to address the
development of Data warehouse systems. Bill Inmon suggested a top-down technique
that tackled the development of Data warehouse systems, starting with the extraction-
transformation-loading (ETL) process, which works from external data sources to build
a Data warehouse (Mbala & Van der Poll, 2017). In contrast, Ralph Kimball tackled the
development of Data warehouse systems by applying the well-established bottom-up
technique that commences with the same process (ETL) but this time for one or more
Data marts separately (Mbala & Van der Poll, 2017). Most practitioners of DW systems

18

usually apply one of the two techniques to devise their DW systems. (Mbala & Van der
Poll, 2017; Reddy & Suneetha, 2021).

Reddy and Suneetha (2021) stated that a Data warehouse is a large repository of
integrated data obtained from multiple sources in an organization for the specific
purpose of data analysis (Reddy & Suneetha, 2021). On the other hand, a Data warehouse
is defined as “a subject-oriented, integrated, time-variant and non-volatile collection of
data in support of management’s decisions” (Dahlan & Wibowo, 2016; Larson, 2019;

Mohammed, 2019; Babar et al., 2020; Reddy & Suneetha, 2021).

By “subject-oriented”, a Data warehouse focuses on analyzing and modelling data for
decision-makers rather than concentrating on an organization’s day-to-day transaction
processing operation. By “integrated”, a Data warehouse is modelled using data from
varied, heterogeneous databases such as relational flat files and databases. By “time-
variant”, the Data warehouse aims to store data for historical purposes. The time-variant
requests save several copies of the basic details of different timeframes. Finally, “non-
volatile” means that changes, insertions, or deletions are no longer made after loading
data into a Data warehouse. Consequently, a Data warehouse is recognized as one of the
most complex information systems, and numerous complexity coefficients describe its

maintenance and design (Oketunji & Omodara, 2011; Sekhar Reddy & Suneetha, 2020).

The following Section presents the fundamentals of Data warehouse systems.
2.4 Data Warehouse Systems Fundamentals

One of the main functions of Data warehouse systems is to conduct concise analyses to
assist decision-makers with strategic information and improve organizational

19

performance (Abai et al., 2013; Reddy & Suneetha, 2021). Building a conventional
operational system requires considering not only the requirements for performing the
company operations automatically but the analytical requirements carrying the decision-

making process must also be considered (Nasiri et al., 2015; Mbala & Van der Poll, 2017).

According to Saddad et al. (2020) and Utami et al. (2020), a Data warehouse system
comprises data marts. All components utilised for the access, development and

maintenance of this system are presented in Figure 2-1.

Data Sources Staging area Data Warehouse End Users

Analysis

Operational

system
‘ Reporting

Operational

system
Mining

[
Flat files

Figure 2-1: DW System Architecture (Oketunji & Omodara, 2011: page 43)

The architecture of a Data warehouse is portrayed in Figure 2-1, showing the main
components involved in constructing such a system. The above architecture
encompasses four (4) main components: data sources, staging, Data warehouse, and

end-users. The data sources component involves the collection of data from different

20

sources (traditional databases, comma-separated values (CSV) files, and others). The
staging component is the process that extracts, transforms and loads the data into the
warehouse. The Data warehouse component contains different small Data warehouses
called data marts that are individually seen as subsets of a Data warehouse put together
to compose a DW system. Finally, the end-users component allows access to the
information stored in the warehouse using online analytical processing (OLAP)

applications.

In a data warehousing project, numerous metadata types exist, for example, information
about the data sources, the structure and semantics of the Data warehouse, the tasks
executed in the construction, and the maintenance and access of a Data warehouse. Two
main phases are mostly involved in implementing a Data warehouse system: conceptual

design and requirements analysis (El Mohajir & Jellouli, 2014; Mohammed, 2019).

A conceptual view of the system is firstly defined based on the user requirements,
followed by the ETL process for data acquisition using the related data sources and,
eventually, the decision-making process using the database technology and other ways
of accessing data for analysis purposes (Oketunji & Omodara, 2011). The following

Section introduces the design of Data warehouse systems.

2.5 Data Warehouse Systems Design

A Data warehouse may also be defined as linking some operational databases with the
decision-making process added to the resultant structure. Since a data mart is viewed as
a subset of a Data warehouse, which is faster to build than a full DW (Utami et al., 2020),
a data mart is considered one of the operational databases within the Data warehouse.
Subsequently, the following notation in Definition 2.5.1 is used to define a Data

21

warehouse, assuming that various databases do not include common elements when

correctly normalized, apart from foreign-keys matching (Mbala & Van der Poll, 2017):

Definition 2.5.1

n
Link DBi , where
i=1

(Vi)(¥j) (1<i, j<n+i#j=DBiN DBj = ®)

The following example illustrates Definition 2.5.1.

EXAMPLE 2.5.1

Suppose a Data warehouse includes four (4) linked databases (DB1, DBz, DB;3, and DB4).

Since a Data warehouse is viewed as a partition of individual databases, it may be

represented diagrammatically, as indicated in Figure 2-2 (Mbala & Van der Poll, 2017):

DB
DB

DB
DB

Figure 2-2: Data warehouse partitioned by four databases

Although Data warehouse systems are similar in various phases to any software

22

development system, a declaration of different activities that ought to be performed
related to the requirements collection, design and implementation within an operational

platform, among other activities, are demanded.

The development process of a Data warehouse system commences by identifying and
gathering user requirements, followed by the design of the dimensional model and,
finally, the testing and maintenance. This development process requires the analytical
requirements supporting the decision-making process to be captured, and such

requirements are not easy to elicit and define.

El Mohajir and Jellouli (2014) and Mbala and Van der Poll (2017) have stated that the
requirements analysis and the conceptual design phases are major phases within such a
system's design. According to Jindal and Shweta (2012) and Mbala and Van der Poll

(2017), the most important stage in developing a Data warehouse is the design phase.

The Data warehouse systems design is essentially based on supporting the company's
decision-making process to facilitate the analytical activities (El Mohajir & Jellouli, 2014;
Nasiri et al., 2015). However, the design of these systems remains different from the
conventional or traditional operational systems that provide data to the Data warehouse

(El Mohajir & Jellouli, 2014; Nasiri et al., 2015; Reddy & Suneetha, 2020).

The challenges that used to cause the failure of many Data warehouse systems in the past
were that these systems attempted to provide strategic information from operational
systems, and the requirements analysis phase was often overlooked in the design process
(Mbala & Van der Poll, 2017; Moukhi et al., 2019). Based on these reasons, over 80% of
Data warehouse systems do not meet the end-users and decision-makers' expectations

and needs (Elamin et al., 2017; Mbala & Van der Poll, 2017).

23

A realisation of a set of stages is claimed to develop a Data warehouse system, namely
the requirements analysis phase, conceptual design phase, logical design phase and
physical design phase (El Mohajir & Jellouli, 2014; Reddy & Suneetha, 2021). The
following Sections elucidate the context of requirements analysis and conceptual design
that is taken into account as the two main phases in the design of DW systems (Mbala &

Van der Poll, 2017).

2.5.1 Requirements Analysis Phase

Requirements analysis plays a significant role in Data warehouse systems design, having
a major influence on making decisions throughout the implementation of Data
warehouse systems (Abai et al., 2013; Moukhi et al., 2019; Reddy & Suneetha, 2020).
However, the analysis phase of user requirements still lacks a standard approach on
which designers can rely to Start the design of their systems, making the design of such
systems very complex (Soares & Cioquetta, 2012; Moukhi et al., 2019). The purpose of
requirements analysis is to detect which knowledge is helpful for decision-making by
exploring the user requirements and expectations in user-driven and goal-driven
approaches and by checking the validity of operational data sources in a data-driven

approach (EI Mohajir & Jellouli, 2014; Sekhar Reddy & Suneetha, 2020).

The requirements analysis phase guides designers and other practitioners to disclose the
necessary elements of the multidimensional model (facts, measures and dimensions)
required to assist in calculating and manipulating future data. The multidimensional
model has an essential effect on the success of Data warehouse systems (Abai et al., 2013;

Mbala & Van der Poll, 2017).

24

Various approaches have been used in the course of Data warehouse systems design,
leaning on both (Top-down and Bottom-up) techniques aforementioned, namely the
data-driven approach, goal-driven approach, user-driven approach and mixed-driven
approach (Hoang, 2011; Jindal & Shweta, 2012; Abai et al., 2013; El Mohajir & Jellouli,
2014; Nasiri et al., 2015; Reddy & Suneetha, 2020). These approaches are described briefly

below.

v' The data-driven approach, called the supply-driven approach, uses the bottom-up
technique and generates subject-oriented business data schemas by only leaning on
the operational data sources and disregarding business goals and decision-makers'

requirements.

v' The goal-driven approach that leans on a top-down technique enables information
generation, such as Key Performance Indicators (KPIs) of principal business areas
based only on business objectives and processes by overlooking data sources and

user requirements.

v" The user-driven approach is similar to the goal-driven approach because it leans on
the top-down technique. However, this approach allows for yielding analytical
requirements translated by the dimensions and measures of each subject by

neglecting business purposes and data sources.

However, these three primary above-mentioned approaches have their advantages and
disadvantages (Mbala & Van der Poll, 2017). The user-driven approach begins with a
detailed agreement of the requirements and expectations of the users, which gives it

numerous advantages, such as enhancing productivity, improving the work quality,

25

support and training costs, and increasing general user satisfaction (Mbala & Van der

Poll, 2017).

The correct elicitation of user requirements remains a primary challenge, and many
techniques, such as the use of Joint Application Design (JAD) sessions (Friedrich & Van
Der Poll, 2007; Mbala & Van der Poll, 2017), were put forward. Hence, a mixed-driven
approach that combines two or all three main approaches was proposed by Sekhar Reddy
& Suneetha (2020). They aim to obtain the “best result” that may meet the requirements

and expectations of end-users and decision-makers (Mbala & Van der Poll, 2017).

The Data warehouse systems design is fundamentally based on requirement-driven and
data-driven approaches. The requirement-driven approach is also known as the demand-
driven or analysis-driven approach. The data-driven approach is also named the supply-
driven or source-driven approach. The data-driven approach aims to produce a
conceptual schema through a re-engineering process of the data sources by neglecting

the contribution of the end-users.

In contrast, the requirement-driven approach aims to yield a conceptual schema solely
based on requirements formulated by the end-users and decision-makers (Di Tria et al.,
2011, Mbala & Van der Poll, 2017; Sekhar Reddy & Suneetha, 2020). Eventually,
combining the requirement-driven and data-driven approaches gives an

analysis/source-driven approach (refer to Figure 2-3) (Mbala & Van der Poll, 2017):

26

Top-down
Requirement-driven
User-driven
Demand-driven
Goal-driven

Analysis-driven

lm e e e e e e e ey

» DW
Source-driven
Supply-driven

Data-driven

Bottom-up

Figure 2-3: Complementary Top-down & Bottom-up

Table 2-1 introduces the advantages and disadvantages of approaches grouped by

technique (Mbala & Van der Poll, 2017).

Table 2-1: Advantages and disadvantages of techniques

Goal-driven

dimensional data

Demand-
driven seen through the
. data mart.

Analysis-

driven

Requi It is accessible
equirement-

driven from a Data

warehouse to

Technique Approach Advantages Disadvantages
Top-down User-driven The DW provides | It is not flexible to the
coherent requirements change

during the

implementation.

It is highly exposed to the

risk of failure.

27

Technique Approach

Advantages

Disadvantages

reproduce a data

mart.

Bottom-up | Data-driven
Source-driven

Supply-driven

Data Mart is less
exposed to the

risk of failure.

It facilitates the
return on
investment and
leads to concrete

results quickly.

The data view for each

data mart is narrowed.

The redundant data
penetration within each

data mart.

2.5.1.1 Requirements-driven Approach

The development of the conceptual schema within the requirement-driven approach is

based on user requirements and business requirements. The organizational objectives

and requirements, which systems of a Data warehouse are expected to address, sustain

the decision-making process that comprises the requirements needed for the conceptual

schema. Therefore, the information gathered serves as a basis for the initial Data

warehouse design development (Zimanyi, 2006; Mbala & Van der Poll, 2017).

Figure 2-4 portrays the analysis-driven approach framework with all the relevant phases.

28

Identify users

Determine analysis demands v

Define, refine and prioritize goals

l v
Model business processes
Detail user needs
Determine
processes for Specify services
accomplishment of or activities
goals

Document requirements specification

Figure 2-4: Requirement-driven Approach

2.5.1.2 Supply-driven Approach

The conceptual schema development in the supply-driven approach leans on the data
available in the operational systems. This approach aims to identify multidimensional
models that may be conveniently implemented over legacy operational databases (data
marts). However, an exhaustive analysis of these databases is conducted to extract the
necessary elements to represent facts, measures, and dimensions. The unveiling of these
elements conveyed to an initial Data warehouse schema can correspond to various

analysis objectives (Zimanyi, 2006; Mbala & Van der Poll, 2017).

Figure 2-5 depicts the supply-driven approach framework with all the considered steps.

29

Identity
operational
systems

Apply derivation
process

Figure 2-5: Supply-driven Approach

2.5.1.3 Hybrid-driven Approach

Document
requirements
specification

The hybrid-driven approach is the approach that amalgamates the two approaches

mentioned above that can be used in parallel to get the best set of requirements that may

meet the expectations and needs of end-users and decision-makers (Zimanyi, 2006;

Mbala & Van der Poll, 2017). The requirements mapping operation occurs while facts,

measures and dimensions are identified during the decisional modelling and mapped

over entities within the source schema (Giorgini et al., 2008; Mbala & Van der Poll, 2017).

The framework of the hybrid-driven approach is presented in Figure 2-6.

30

Supply-driven

Requirement-driven
Identify operational Identify users
systems
. Determine demands
Apply derivation .
analysis
process

»| Matching process [*

Requirements definition

Figure 2-6: Hybrid-driven Approach

From all the above-discussed approaches, the critical step to be considered is the
requirements definition step, which allows the documentation of all the information
obtained from the previous step. This step includes the business purposes and
requirements expressed in more detail by the end-users and decision-makers. Before
reaching this last step, a crucial step called the matching process needs to be performed
to match the two sets of requirements obtained through the top-down and the bottom-
up approaches. The extended ALGORITHM 2.1 (Mbala and Van der Poll, 2017) executes
the matching process by merging the two data sets of requirements that address a

software requirements elicitation (SRE).

31

BEGIN ALGORITHM 2.1

INITIALISATION

structured data index (i) 1is set to 1
unstructured data index (j) is set to 1
structured data length is set to m
unstructured data length is set to n
structured data set (S) is set to U
unstructured data set (U) is set to ¢
END INITIALISATION

BEGIN

/* Structured data set is the arbitrary union of all the individual

structured data sets */

END
BEGIN
/* Unstructured data set 1is the arbitrary union of all the
individual unstructured data sets */
n
U= U Ujy

j=1
END

/* Merge the two data sets into two separate sets, S and U. The

operator [l denotes a distributed set-theoretic intersection. */

32

C=SNU

END ALGORITHM 2.1

The purpose of ALGORITHM 2.1 is to execute the matching process that helps to
reconcile the two sets of requirements to obtain a set of requirements that meets the
expectations and needs of the decision-makers and end-users. The reconciliation of the
two sets of requirements, S and U, is obtained by merging the requirement- and supply-
driven approaches by matching common information between unstructured and
structured data. These requirements sets are non-homogenous and in different formats.
For example, one may contain structured data (supply-driven approach), and the other
set may contain unstructured data (requirement-driven approach) obtained through
incomplete and often inconsistent requirements expressed by end-users and decision-

makers.

The following Section presents the conceptual design phase, which is the other major

phase within the design of Data warehouse systems.

2.5.2 Conceptual Design Phase

Although various research works on the design of Data warehouse systems consider
mostly the logical and physical designs of these systems, the essential foundation of
building a Data warehouse is to develop a formal, complete, abstract design that is well
documented and thoroughly achieves the requirements. This phase helps represent the
essential elements within the multidimensional model after defining or specifying

requirements (Mbala & Van der Poll, 2017).

33

The conceptual design phase assists in developing a conceptual schema that meets the
functional requirements documented and gathered from the requirements analysis phase
to achieve the end-users and decision-makers’ needs and expectations (El Mohajir and
Jellouli, 2014; Mbala & Van der Poll, 2017). There are many accepted models in the
conceptual design phase, namely the dimensional fact model, multidimensional entity-
relationship (ER) model, Star ER model and object-oriented multidimensional model
(Sekhar Reddy & Suneetha, 2020). In addition, in the logical design phase, snowflake,

Star, and fact constellation schemas are known (Reddy & Suneetha, 2021).

According to Reddy and Suneetha (2021), the multidimensional model is proposed as the
dimensional modelling technique to store historical data that requires a huge data space
in facts, measures, and dimensions form. Figure 2-7 depicts the multidimensional model

for the Data warehouse systems.

Facts - table Dimensions - table
1...n 1...n
Measures Attributes

Figure 2-7: A Multidimensional Model (Mbala & Van der Poll, 2017)

Figure 2-7 indicates that there might be many facts containing measures linked to several
dimensions containing different attributes. For example, according to Mbala and Van der
Poll (2017; 2020a), a Star model is a multidimensional model with one fact table in the
middle and linked to other dimension tables. On the other hand, a snowflake model is a
multidimensional model where one fact table is centered and linked to other dimension

tables related to sub-dimension tables or hierarchies.

34

The following car rental company example illustrates the generic multidimensional Star

and snowflake model in the logical design phase:

EXAMPLE 2.5.2

Suppose a car rental company wants to study the performance of a rental department by
analyzing the fact renting in terms of the amount measure. Figures 2-8 and 2-9 represent
the current case study into the multidimensional Star and snowflake models,

respectively.

35

Dim - Cars

CarSK
idCar
Price

Type

Brand

Dim - Client

Fact - Renting

Dim - Date

ClientSK
idClient
Name
Country

CarSK
AgencySK
DateSK
ClientSK
Amount

Year
Month
Week
Day
DateSK

Dim - Agency

AgencySK
idAgency
Country
City

Figure 2-8: A Multidimensional Star Schema

36

Dim - Cars
T SubDim - Brand
idCar idBrand
Price Name
Type
idBrand
Fact - Renting im -
Dim - Client e Dare
CarSK Year
ClientSK AgSK Month
idClient DateSK Week
Name ClientSK Day
idCountry Amount DateSK
SubDim - Country Dim - Agency
idCountr
name g -
idAgency
idCountry
City

Figure 2-9: A Multidimensional Snowflake Schema

This research focuses on the object-oriented multidimensional model in the conceptual
design phase, as the object-oriented model provides a good solution for designing
systems at the conceptual design level (Gosain & Mann, 2011). Moreover, the OOMD
model is more suitable to model such systems as it is based on UML semantics (Babar et
al., 2020). The following Section introduces the object orientation model that a system

may apply for the modelling.

37

2.6 Object-Orientation Model

Object orientation is a model of software development that sees a system as a collection
of collaborating objects that models a real-world entity and captures the system's
feedback on its environment (Adesina-Ojo, 2011). The Unified Modelling Language was
broadly approved as a standard object-oriented modelling language for the design of
software (Moura et al., 2015; Singh et al., 2016; Al-Fedaghi, 2021; Kog et al., 2021). As
recognised by Al-Fedaghi (2021) and Shcherban et al. (2021), UML is a standard

modelling language for depicting software systems design.

The primary construct in object-oriented modelling is the object, which puts together the
data and behaviour. Adesina-Ojo (2011) indicates that an object is an abstraction of a
system component that comprises states and behaviours or methods. States of an object
are descriptive characteristics defined by the current values of its attributes. Behaviours

of an object are actions performed on attributes to change the state.

A group of objects sharing the same attributes, behaviours and semantics is called a class.
A class is used to represent a type of object (what it will include, how it will be created
and how it will work) by capturing the system's glossary. Two or more classes in the same
system may collaborate, sending and receiving messages. The object-orientation

properties that a system may abide by are presented in the next Section.
2.7 Object-Orientation Properties

It is essential to follow good software engineering practice in the course of the system

implementation for the system design's traceability and the system's flexibility and

38

extensibility. As observed by Adesina Ojo (2011), the following number of attributes

characterized below may differentiate other models from a model that has been

modelled, devised and implemented within the object-oriented model:

Inheritance is an important concept used to apply the idea of the reusability of
objects. A new class type can be specified or defined by extending a previously
existing class description with some new features. For example, a class person
(also known as the parent) can be defined with essential functionalities of a person,
and a new class named client (also known as a child) can be derived from it with
a few modifications. The major interest of the inheritance is the ability to extend a
class to access and use its parent's data and functionalities by assuring that one

copy of data and behaviours exists.

Abstraction is a concept that usually focuses on essential aspects of the system
while overlooking details by declaring any behaviours of a class without
providing any definitions of the behaviours” functionality. However, this concept
requires any classes with an abstract method to be extended to a new class that can

implement the method declared abstract.

Encapsulation, also called information hiding, is the concept that isolates the
external aspects of an object accessible to other objects from the internal
implementation details. This concept requires that access to attributes be allowed
only through the behaviours of the class to reach a high level of data
independence. The access levels to attributes or behaviours can be classified as
private, protected, and public. Any aspects of a class with a private level of access
are not visible to other classes with which it is communicating. On the other hand,

any aspects of a class marked with the public as the level of access are visible to

39

other classes they are collaborating with. Eventually, any aspects of a class with a
protected level of access are only visible to the derived class that extended it.

e Polymorphism also means the same method that may behave differently on
different objects. Other objects can use the same method in different ways. A class
(parent) method must be declared abstract, and derived classes (child) can define
this method differently, keeping the same name as in the parent class to implement

this concept.

The following Section presents a brief history of UML approved as the de-facto

modelling language for object-oriented systems (Shcherban et al., 2021).
2.8 A short history of the Unified Modelling Language

The object modelling technique (OMT) is an object modelling language for the modelling
and devising software developed by a group of individuals (Rambaugh, Booch and
Jacobson) to develop object-oriented systems and support object-oriented programming.
The UML has been released to standardize object-oriented modelling notations (Reddy
& Suneetha, 2021). Further contributions have been made by large companies such as
IBM, Microsoft, and Unisys with release version 1.0 (Adesina-Ojo, 2011; Moura et al.,
2015). The UML depicts the unification of the Booch and OMT methodologies.

2.9 Unified Modelling Language Artefacts

Many notations may be utilized to model the system. One of them is UML, which the
object management group (OMG) acknowledged as an industry standard, and is also

regarded as the most famous and pervasive graphical modelling notation for object-

40

oriented software development (Nikiforova et al., 2015, Moura et al., 2015; Reddy &
Suneetha, 2021).

UML is a language used for visualizing, defining, organizing, and documenting a system
to be created. Many diagrams are used to model a system with UML and there exist 12
types of diagrams that may be used to perform the documentation, allowing each of them
to model a system in different views. These diagrams are clustered into three categories:
structural, behavioural, and model management (Kog et al., 2021). Table 2-2 lists all the

UML diagrams according to their category (Kog et al., 2021).

Table 2-2: Types of UML diagrams per category

Structural Diagram Behavioural Diagram Model Management
Diagram
1. Object Diagram 5. Use Case Diagram 10. Models Diagram
2. Class Diagram 6. Activity Diagram 11. Package Diagram
3. Component
7. Communication 12. Subsystems Diagram

Diagram
Diagram
4. Deployment

Diagram 8. Sequence Diagram

9. State Machine Diagram

UML diagrams are utilized to model business processes and systems specifically; class
diagrams play a prominent role in the design phase, for example, mission-critical systems
(Singh et al., 2016; Sekhar Reddy & Suneetha, 2020; Babar et al., 2020). However, since
this research focuses on the design of systems, which in this case is the Data warehouse

at their conceptual and logical phases, this work explicitly explores class diagrams as the

41

suitable diagrams to be used for the representation of Data warehouse systems at these

phases.

Class diagrams are the most common diagrams used in software development projects
for modelling the application domain and structural aspects using classifiers and
relationships as their building blocks (Moura et al., 2015; Babar et al., 2020). Further
discussions about other diagrams are omitted from this research because they are beyond

the scope of this research work.

Although UML has the most popular and expanded graphical modelling notation for
object-oriented software development, practically all the UML diagrams still do not have
formal semantics for modelling a system (Moura et al., 2015; Reddy & Suneetha, 2021).
Furthermore, UML introduced the object constraint language (OCL) invented by IBM to
express the rules and semantics of a UML model that combines the natural language and
logic to overcome some UML limitations in terms of accurately defining detailed aspects

of a system design (Adesina-Ojo, 2011; Reddy & Suneetha, 2021).

However, although the use of OCL provides the improvement of formalism for UML
models, OCL is still criticized for being more weighty than the traditional formal methods

(Adesina-Ojo, 2011; Reddy & Suneetha, 2021).

2.10 UML Class Diagrams

A UML class diagram is a structural diagram that represents the group of identified
classes with relationships between them that fashion a system. A relationship is a
semantic linking between classes (Adesina-Ojo, 2011; Moura et al., 2015; Mbala & Van
der Poll, 2020a). A structural diagram defines the static aspects of a system (Babar et al.,

42

2020). Class diagrams are UML diagrams that can be directly mapped with
object-oriented languages. The specifier mostly looks at classes, interfaces, collaborations,

and relationships (Moura et al., 2015).

2.10.1 Classes

A UML class is a representation of a set of objects of a system in the form of a rectangle
with three cells containing the name of the class at the top, a list of fields or attributes in
the middle, and a list of operations in the last cell to depict methods (Mbala & Van der

Poll, 2020a). For example, Figure 2-10 illustrates a UML class diagram.

Name

Attributes

Operations

Figure 2-10: A UML class representation

An interface is defined as an operation or method set that specifies the responsibility of a

class. Finally, collaborations represent the communication between objects.

2.10.2 Relationships

The lines between the boxes (classes) in a UML class diagram represent relationships,
also called associations (Mbala & Van der Poll, 2020a). Moura et al. (2015) stated that

UML class diagrams provide associations to capture relationships among objects. The

43

relationships among classes are numerous, for example, association, aggregation,

composition, dependency, and generalization (Mbala & Van der Poll, 2020a).

Adesina-Ojo (2011) observed that the association is an organizational relationship between
two classes decorated with an association name, end names, multiplicities and
navigability symbols. These decorations can be made explicitly to characterize the nature

and constraints of the association.

Association Name is just an etiquette that can include verb or verb phrases to designate
that an origin class is executing an action on a target class or to characterize the nature of

the relationship between classes.

End names, also known as role names, are alternative methods for tagging an association.
They are mostly used to characterize the specific role that one class plays in a relationship
or to merely detect one end of an association. End names are represented by etiquettes
used at one end of an association where the association links to a class. Thus, an
association is presumed to have an association name “has” if and only if both the

association name and end names are absent.

Association multiplicity is defined as the number of times that instances of a class may be
associated with an instance of another class, represented by a range of non-negative
integer values (lower value ... upper value) but also represented by the character “*”
indicating an “unlimited” number of instances (Mbala & Van der Poll, 2020a). These are
some ranges of the multiplicity of an association: one-to-one, one-to-many, and many-to-

many (Adesina-Ojo, 2011; Mbala & Van der Poll, 2020a). Table 2-3 portrays the various

ranges of association multiplicities.

44

Table 2-3: Various multiplicities of an association (Adesina-Ojo, 2011)

Informal Description Multiplicity Indicator
Zero or one 0.1

Exactly one 1

Zero or more 0.*

One or more 1.*

Many (with n > 1) n

Zero to many (withn >1) 0.n

One to many (with n > 1) 1.n

Arrowheads designate association navigability to refer to the traversal direction between
classes that can either be unidirectional or bidirectional. Figures 2-11 and 2-12 depict the

unidirectional and bidirectional associations, respectively.

Customer Account
1 have
name amount
*
Add() L1 Deposit()

Figure 2-11: A unidirectional association

45

Customer Account

1 have
name amount

Add() Deposit()

Figure 2-12: A bidirectional association

Aggregation association is a form of association represented by an empty diamond as an
indicator at the association end attached to the whole object of the whole-part relationship
to describe the whole-part relationship between objects (Mbala & Van der Poll, 2020a).

Figure 2-13 represents the aggregation association.

Customer Account
name <> L.* amount
Add() 1 Deposit()

Figure 2-13: An aggregation association

Generalization association is a multi-level association where objects are classified
hierarchically represented by an empty triangle as an indicator at the association end
attached to the parent object with child objects connected to the parent object to represent
the inheritance of child objects from the parent object. Figure 2-14 illustrates the

generalization association (researchers” own construction).

46

Person

name
phone

Add()

Client Agent

Update() Update()

Figure 2-14: A generalization association

The following Section addresses the advantages and disadvantages of the object-

orientation model.

2.11 Advantages and Disadvantages of the Object-
Orientation Model

2.11.1 Advantages of Modelling with UML

One of the advantages of modelling with UML is that UML models can be used in the
analysis and definition phases where requirements persistently change. Another
advantage of UML is that it is a language that can be extended (Adesina-Ojo, 2011). UML
is considered more appropriate and considerable for the system’s design (Babar et al.,

2020). According to Al-Fedaghi (2021), the flexibility of UML for software development

47

makes it well-suited for the design of a system. The use of UML steers to an enhancement
in collaboration between technical and non-technical skills. UML helps mitigate the
ambiguity and questions concerning the design if the absence of design documentation

becomes a problem in the long run.

2.11.2 Disadvantages of Modelling with UML

UML lacks more precision (Adesina-Ojo, 2011; Babar et al., 2020). According to Adesina-
Ojo (2011), UML also lacks accuracy for rigorous analysis in its semantics due to the
inherent use of natural language (e.g. English), which is susceptible to ambiguity.
Al-Fedaghi (2021) observed that UML has grown in complexity, making people feel better

off without it.

2.12 Chapter Summary

This Chapter discusses the theories about Data warehouse systems that cover the
research objectives and the properties of the object-oriented method. The focus of this
Chapter was twofold: on the one hand, the approaches for requirements elicitation and
definition in the design of Data warehouse systems and, on the other hand, the object-

oriented model used for modelling systems.

The two (2) main approaches available for the design of Data warehouse systems were
presented. Furthermore, amalgamating the two main approaches to obtain a good set of
requirements was also introduced. Finally, UML, the standard language used for object-

oriented systems, was discussed.

48

The first main approach discussed in the requirements analysis phase was the
requirement-driven approach. A requirement-driven approach is typically used to
develop a conceptual schema based on user and business requirements. The information
collected while using this approach is used for the initial development of Data warehouse
design. Afterwards, the supply-driven approach was presented, which is similar to the
approach used to extract essential elements, such as facts, measures and dimensions,
which may lead to an initial Data warehouse schema. Finally, a third approach addressed
was a hybrid approach that assists in obtaining a good set of requirements that meet the

expectations and needs of the end-users and decision makers.

The advantages and disadvantages of using UML for modelling a system to specify and
analyze were also presented. One of the advantages given for UML is the ability to be
used in the specification and analysis phases where requirements persistently change. On
the other hand, the main disadvantage of using UML is the absence of accuracy in the

semantics.

In the following Chapter, formal methods and Z notations viewed as a means to generate

a concise and clear model of the proposed system are introduced.

49

Chapter 3 Formal Methods and Z notations

3.1 Introduction

In Chapter 2, a literature review was conducted to address the failure of data
warehousing projects that usually occur in developing Data warehouse systems. In
addition, some advantages and disadvantages of the object-oriented methodology were
discussed. One such shortcoming was the lack of precision in the UML semantics because
these semantics are partially in natural language (English), which is susceptible to
ambiguity. Formal methods mentioned in this chapter aim at reducing mistakes that may
not be evident in requirements specifications by providing an alternative way to provide

a formal model of the proposed system with more precision and reduced ambiguity.

The purpose of the current Chapter is twofold. Firstly, we discuss some concepts defined
in Z by specifying the requirements stated in the descriptive case study into Z notations.
Secondly, UML is used as an intermediate step to translate the requirements defined in
natural language into class diagrams. Finally, we translate the class diagrams into Z

specifications and provide typical proof of obligations arising from specifications.
An example is used as a descriptive case study for the understandability of some concepts
defined in Z. This Chapter seeks to address the following question, which was initially

raised in Section 1.4.2:

SRQ6: How do formal proofs increase confidence in a formal specification?

50

The structure of the Chapter is as follows: a brief introduction to formal methods is
presented in Section 3.2, followed by a discussion on one of the formal method
specification languages, which in this case is Z in Section 3.3. After that, the Z
specifications applied in a small real-world case study to provide more precision in the
specification of the proposed system are presented in Section 3.4. Finally, Section 3.5

concludes the Chapter with a summary of what was presented in this Chapter.

In the next Section, formal methods are addressed.

3.2 Formal Methods Overview

Formal methods are mathematical and logical techniques which may be used for
analyzing, specifying and checking the behaviour and properties of a system viewed as
a collection of mathematical objects (Adesina Ojo, 2011; Zafar & Alhumaidan, 2011;
Pandey & Srivastava, 2015). Han and Jamshed (2016) declared that formal methods assist

in reducing errors at earlier phases of software development.

The use of formal methods as a commutation to natural language (English) specification
requires the use of formalisms (set theory and first-order predicate calculus), a concept in
software engineering (Rodano & Giammarco, 2013). However, formal methods may still
be applied to provide a consistent and concise complement to natural language

specification (Gulati & Singh, 2012).

Formal methods use discrete mathematics to accurately formulate the requirements
specification (Bakri et al., 2013). Mathematics and logic used by formal methods shape
the ground for developing efficient software for critical systems (Rizvi et al., 2013).
However, the advantage of using formal methods in the software development cycle

51

would be its accuracy and clearness in providing a precisely defining description,

minimizing misconception (Han & Jamshed, 2016).

According to Pandey and Srivastava (2015), formal methods lean on three methods:
formal specification, formal checking and refinement. In this Chapter, the researcher
leans towards the model-based language Z (Spivey, 1992; Steyn, 2009; Nemathaga, 2020)

as a means to formally specify a system. The following section presents Z.

3.3 An Overview of Z

Z was invented by a French researcher, Jean Raymond Abrial and was then developed
further by the Oxford Programming Research Group in the 1970s at the University of
Oxford (Geer, 2011; S. Pandey & Batra, 2013; Dongmo, 2016; Nemathaga, 2020). Z is a set
of conventions used to describe and model computing systems and present mathematical
text (Bakri et al, 2013). In addition, Z is a model-based language utilized in the
requirements specification and verification stage, relying on the concept of Zermelo-
Fraenkel set theory, lambda-calculus and first-order predicate logic (Zafar &

Alhumaidan, 2011; S. Pandey & Batra, 2013; Nemathaga, 2020).

According to Steyn (2009) and Nemathaga (2020), set theory is the basic mathematics
theory because numerous mathematic theorems embodying Euclidian geometry and
arithmetic can be expressed as theorems in set theory, and the representation of set-
theoretic problems is allowed by the Zermelo-Fraenkel set theory axiomatization.
Therefore, the system's abstraction is provided by using set theory and first-order logic

(Adesina-Ojo, 2011; Nemathaga, 2020).

52

A Z specification is constructed by the definition of schemas (or schemata), which are
very useful at the design level for managing the system. Schemas are used to describe
static and dynamic aspects of a proposed system. A Z schema comprises a name,
declaration, and predicate (Zafar & Alhumaidan, 2011; Dongmo, 2016; Grant, 2016). A Z

schema is depicted as follows:

_SchemaName

declaration part

predicate part

The SchemaName represents the name of the schema. The declaration part comprises the
form declarations x: T, where x is a variable of type T, which means that a value of x is a
member of set T (knowing that types are set in Z). The predicate part comprises
expressions of predicate logic that specify the relationships between variables. The
description of a system in Z is defined by modelling the states in which the system may

be and the operations that provoke the change of these states.

To illustrate Z constructs, next, an explanatory real-world case study as the requirements

statement for ease-of-understandability of some concepts defined in Z is introduced.

3.3.1 Requirements Statement

The case describes the specification of an appointment booking system for a clinic. The
system enables a patient to book an appointment to meet up with a doctor and cancel an
appointment when there is no more need. On the other hand, a doctor should schedule

an appointment and delete a date (schedule) when there is no need anymore.

53

3.3.1.1 Z Data Types (Given Sets)

Z has an established strategy for constructing a specification, and every specification
ought to follow such a strategy. Types in Z may be basic or composite. The basic types (also
called given sets) elements are utilized like building blocks for more complex composite
types and for the purpose of describing objects of interest within the system (Dongmo,
2016). An example of two basic types extracted from the requirements statement in the
preceding Section to portray the given sets of all possible PATIENTs who could book an

appointment to see a doctor on a specific DATE of their schedule is as follows:
[PATIENT, DATE]

Variables specify the data maintaining the system state, and they are either local or global.
Variables in Z are also referred to as components. A variable that is declared into a
schema and only used within that schema is called local. In contrast, a variable is called
global when it is stated outside of a schema and can be used in the entire specification by
all the schemas. For example, the axiomatic definition introduces a global variable as

follows:

’ declaration part

‘ predicate part

The following example describes the axiomatic definition of a global variable:

54

‘ min: 7

‘minS-ZO

A type called a free type in Z is used for determining the finite detailed list containing an
enumeration of values that can have the type. The following is an example of a free type,
Status used to indicate explicitly three distinct states that an appointment may be in
during the course of its lifetime:

Status ::= requested | approved | cancelled
The following declaration is used to present the variable of type Status:

appointmentStatus: Status

The following Section addresses the concept of Z schemas.
3.3.1.2 Z Schemas

The schema’s form depicted in Section 3.3 is vertical, and the epitomized notation used

below is the horizontal form of a schema (Dongmo, 2016):
SchemaName == [Declaration Section | Predicate or Constraint Section]
A schema is used to organize and arrange mathematical notations describing the states

and operations of the system to be specified. There are two types of schemas in Z: state

schemas that capture the static aspect of a system and operation schemas that capture the

55

dynamic aspect of the system. The following example of a booking system from the

requirements statement in Section 3.3.1 illustrates a state schema:

State Schema

A state schema, also known as system state schema or abstract state, is used to define the
static behaviour of the system. The components of the system’s state are declared in the

declaration part, and constraints are specified in the predicate part in a state schema.

[Patient, Date]

_BookingDB
members : P Patient
dates : P Date
bookings : Patient «— Date

dom bookings € members

Schema BookingDB shown above represents the state of the system. Members describe the
set of patients, dates represent the set of dates, and bookings depict the set of pairs
describing the relationship between patients and their dates. The predicate part declares

that only patients in members can be associated with dates in the system.

Schema as types

There are three kinds of composite types in Z: schema, set, and Cartesian. Examples of

the different kinds of composite types referred to in the preceding paragraph are:

x: P Patient /* set type */

56

y:AXB /* Cartesian type */

z: Schema /* schema type */

Where x is a set of elements from Student, y is a set of all possible pairs in which the first
element is an element from A and the second element is an element from B. The

declaration z: Schema indicates that a value called z is of type Schema.

Initial State Schema

An initial state schema defines the different states that a system may initially Start with.
The initial state schema has an identical signature to the state schema (i.e., the initial state
schema resembles the state schema) apart from the fact that all states or variables
enumerated in the schema have a decoration using an apostrophe or prime (). This
decoration is used to indicate that the values of variables have been changed after the
execution of an operation on them, and variables without decoration indicate that no
operation has been performed on them. More than one initial state schema can be defined

based on the need (Adesina-Ojo, 2011).

It can be assumed that initially, the patients list in the list of members is empty, and the
list of available dates that patients must book is also empty. In this case, the state of the

BookingDB is represented as follows:

_InitBookingDB
BookingDB'

members' = &
dates' = &
bookings' = &

57

Schema InitBookingDB shows that there exists an state BookingDB' of the state schema
BookingDB whose the components members' = @, dates' = @ and bookings' = @, which implies

the realization of the initial state schema. However, the initialization theorem is used as:

+ 3 BookingDB' ® InitBookingDB

Following the turnstile symbol () we state that there exists an after state BookingDB'such

that InitBookingDB holds (Steyn, 2009).

Operation Schema

An operation schema specifies an operation in terms of relationships between the state
before and after the operation has been performed. Variables contained in the declaration
part of the schema represent the before and after state, or input- and output variables.
The relationship between the states of the operation before and after is defined in the

predicate part of the schema.

The following conventions are used: a question mark (?) is added to the variable name to
indicate the input variable, and an exclamation mark (!) is suffixed to the output variable.
In addition, the A symbol is used to indicate that there can be a change in the state when
an operation is executed, and the E symbol is used to denote no change in the state

(Adesina-Ojo, 2011).

To illustrate the concept of a Z operation, consider the following schema that allows a

patient to book a date to consult a doctor:

58

_BookAppointment
ABookingDB

patient?: Patient
date?: Date
msg!: MESSAGE

patient? € members

date? € dates

patient? — date? bookings

bookings' = bookings U { patient? — date? }
dates' = dates \ { date? }

msg! = OK

The first precondition patient? € members in the schema BookAppointment specifies that the
patient must belong to the list of existing members before making any bookings. The
second line date? € dates states that a date used as input must be in the list of available
dates of the doctor. The third line patient? = date? & bookings is the second precondition
that indicates that the patient cannot book a date twice. We use the notation x = y to
express the ordered pair (X, y) to show how the functions members and dates extend to be
mapped with the new patient and date values to the given booking. At the end of the
operation, a new booking was added to the list of appointments, and a booked date was

removed from the list of available dates.

Since the precondition of each operation can be calculated, an error may likely be yielded,
and additional operations may then be needed to handle the error. However, as
BookAppointment may need further operations to specify error conditions that may occur,

it is called a partial operation (Dongmo, 2016).

59

Error condition

As mentioned in the previous Section, the first three lines in the predicate part of the
BookAppointment schema specify a partial view (i.e., it may generate errors). Therefore,

the following schemas are used to specify the different errors that may arise for each case.

_UnknownPatient
=ZBookingDB

patient?: Patient
msg!: MESSAGE

patient? members
msg! = UNKNOWN_PATIENT

The first predicate patient? ¢ members in the schema UnknownPatient indicates that the
patient identity is not present in the set of patients, and, as a result, the system returns

UnknownPatient as the error message.

_UnavailableDate
EZBookingDB
date?: Date
msg!: MESSAGE

date? # dates
msg! = UNAVAILABLE_DATE

The first predicate date? ¢ dates in the schema UnavailableDate above indicates that the
date is not available in the set of available dates, and, as a result, the system returns

UnavailableDate as the error message.

60

_AlreadyBooked
=BookingDB
patient?: Patient
date?: Date
msg!: MESSAGE

patient? — date? € bookings
msg! = ALREADY_BOOKED_DATE

The first predicate patient? » date? € bookings in the schema AlreadyBooked above
indicates that a patient identity has already booked the given date, and, as a result, the

system returns AlreadyBooked as an error message.

Total Operation

A full version of the operation that allows the mapping of each patient to an exact date
can be established by merging the operation schema under normal conditions and those

managing errors. The following schema includes a complete operation for booking an

appointment:

61

_ RobustBookingDB
ABookingDB

=BookingDB
patient? : Patient
date? : Date
msg!: MESSAGE

(patient? € members

date? e dates

patient? — date? e bookings
bookings' = bookings U { patient? — date? }
dates' = dates \ { date? }

msg! = OK) Vv

(patient? ¢ members

msg! = UNKNOWN_PATIENT) v
(date? ¢ dates

msg! = UNAVAILABLE_DATE) v
(patient? — date? € bookings

msg! = ALREADY_BOOKED_DATE)

The following abbreviated Z schema-calculus notation is used to represent the total

operation:

RobustBookingDB 2 BookingAppointment vV
UnknownPatient V
UnavailableDate V

AlreadyBooked

The operation’s semantics are as follows: the declaration part of the forming operation is
acquired by combining the declarations of every single operation, and the predicates of
each of the individual schemas are segregated or disjoined. Operation RobustBookingDB

denotes a total operation, usually defined via Z’s schema calculus. In this case it is an

62

expression that utilizes the Z disjunction operator (V) to amalgamate two or several
schemas. Other schema operators are available to support the construction of schema

expressions.

Schema Calculus (£)

A Z schema calculus is used to merge two or more schemas specified for a given
operation using the disjunction (V) and conjunction (A) operators between the combined
schemas to specify a complete operation. An example of a Z total operation is used in the
illustration of RobustBookingDB schema above. Other schema operators provided in Z are
schema composition (;), schema conjunction (A), schema negation (—) and schema

inclusion (Dongmo, 2016).

1. Schema negation (7): The negation of a schema S is a schema indicated by —S that

introduces the same set of components by negating the predicate part.

2. Schema conjunction (A): The conjunction of two schemas is a schema that presents
both variable sets and imposes both sets of constraints by specifying different aspects of
a specification individually and then amalgamating them to compose a complete

representation.

3. Schema composition (;): Let M and N be two operation schemas and X, an operation
defined as X = M ; N. The semantics of X is as follows: if the state of the system S can be
changed from S to S1 by the operation schema M and the operation schema N can also
change S1 to S2, then X is an operation that allows changing the state of the system from

S to S2.

63

4. Schema inclusion: The inclusion of a schema name S1 in the declaration part of another
state schema S2 introduces a combination of components that allows referring to that
combination as a unique entity. The declarations of S1 are embodied within those of S2,
and the predicates of S1 are added to those of S2. The operation and total schema

discussed above are examples of schema inclusion.

The use of Z does not necessarily ensure that the end product of the developed system
will not have flaws. Some limitations of the schema calculus have been identified, and an
analysis of the use of schemas as types has been conducted (Dongmo, 2016). However,
the major drawback of using Z is that it is hard to yield state and operation schemas for
a large system that yields a correspondingly large specification (refer to RobustBookingDB
schema) due to the absence of object-oriented structures. To this end, Z has been
expanded to Z++ and Object-Z to admit object orientation. The discussion of object-

oriented variations of Z is beyond the scope of this dissertation.

3.3.2 Summary

In this Section, we specified directly from the requirements statement (see Section 3.3.1),
the structures, functions and operators used in Z to represent some concepts defined in

Z.

The following Section presents the case study introduced in Section 3.3.1 to show how
UML constructs can be used as an intermediate step to specify the static and dynamic

aspects of a given system.

64

3.4 An Appointment Booking System in Z

We present in more detail a case study of the simplified appointment booking system
stated in Section 3.3.1 that caters for booking capturing and processing as well as patient
and doctor information. An introduction of the case study problem statement is first
made, followed by the illustration of a high-level conceptual model of the given problem

highlighting the different entities needed to be captured by the case study.

The purpose of this Section is neither to address the processing of an object-oriented
development methodology nor to use it as an exercise in requirement elicitation. Instead,
a simple case of a Z specification is presented in the following Sections, and some typical

proof obligations that arise from such a Z specification are highlighted.

The following section introduces the problem statement of the given problem and shows

how Z specifies a given system's operations.
3.4.1 Requirements of the Case Study

An appointment booking system assists in capturing and processing appointments. The
system may contain various subsystems for manipulating different phases of the
appointment achievement process, such as appointment booking, including member and

schedule information.

The appointment booking system records different booked appointments done by
patients based on dates available in the schedule. Each schedule's date, time, day and

status are kept. A new schedule can be added. A schedule may also be deleted or removed

65

from the system. A schedule’s status can be updated to unavailable when the time has
expired or when the date and time have been booked. A list of all dates available in the

schedule can be obtained.

The system has two types of members, namely patients and doctors. No two members
may have the same phone number. The name, phone number, email and birthday are
maintained for each member. New members may be added to the system. Amongst
members, only a patient can be removed from the system if they have not booked any

appointments in a month. All the information about a member may be updated.

An appointment for a member can be booked, and the information attached to an
appointment includes the member, schedule, reason and status. A new appointment has
a status of “requested” at the booking. While in requested status, an appointment may be
rejected or approved. A doctor is allowed to reject or approve an appointment, while a

patient can only request or reject an appointment.

Therefore, an appointment may change to “rejected” if it has been rejected or “approved”
if it has been accepted. When an appointment is rejected, the status of the specific booked
date from the schedule becomes available again if the specific date is still available in the

calendar and remains the same if the appointment has been approved.

3.4.2 Conceptual Model

The following UML class diagram is used to represent the object-oriented aspect of the
given problem (Moura et al., 2015). The UML class diagram depicted in Figure 3-1
contains the principal classes of the given problem: Appointment, Schedule, Member,

Doctor and Patient. It also contains the classes like Appointments, Members and

66

Schedules to provide operations that may handle the collective states of Member,

Appointment and Schedule.

Members
Appointments AddPatient)
AddDoctor()
Add() DeletePatient()
Cancel()
1
1 +members
+appointments .
Member
Appointment Appointments Member name
status . 1 email
reason phone
. birthday
Cancel() Appointments
Approve() * Update()
1 | Schedule Z%
Schedules Schedule
Doctor Patient
+schedules date
day
Add() time
Update() 1 * status
Delete()
DisplayAll() Update()

Figure 3-1: A UML class diagram of an appointment booking system

The following Sections examine the patterns used to translate the high-level conceptual

model concepts, representing the system's static aspects into Z.

3.4.3 Specification Approach

The following is the modelling of the static aspects of the appointment booking system.
The specifications below follow the established strategy (ES) for modelling a system in Z
(see Section 3.3.1.2).

3.4.3.1 Given Sets

The clinic doctor accesses the system to create a schedule of their availability defined by
the date, time and day. On the other hand, the patient accesses the system to create a
profile to book an appointment with the doctor. The following basic types are the given
sets of a given problem described in the problem statement:

[APPOINTMENT, MEMBER, SCHEDULE, DOCTOR, PATIENT]

[STRING, DATE, TIME]

STATUS::= requested | approved | rejected | available | unavailable

The descriptions of the sets above are given in Table 3-1.

Table 3-1: Descriptions of the given sets of the appointment booking system

Given Sets Description

APPOINTMENT | Appointments approved or cancelled are stored there

68

Given Sets Description

MEMBER Accesses the system to create an availability schedule and book
appointments

PATIENT Accesses the system to create a profile to be able to book
appointments

DOCTOR Accesses the system to create a schedule of their availability

SCHEDULE A patient accesses it to check the availability of the doctor

STRING Attribute type for all attributes containing alphanumeric values

DATE Dates on which appointments are booked

TIME Time of the day on which appointments are booked

STATUS Status of each schedule and appointment before and after the
booking

The following Section shows how the Member class and its attributes can be specified in

Z.

3.4.3.2 Member Class

Member below specifies the details of the existing member in the system. The schema's
name has been selected to be the same as the one in the class. The component members: P
MEMBER depicts the identities of all available members in the system. A given set
STRING is defined to specify all attributes that intend to contain a set of characters. For

example, no two members can have the same phone number, using the partial injective

69

function memPhone: MEMBER »» STRING. Such declaration of a component is a function

from a domain to a range.

_Member
members: P MEMBER

memName, memPhone, memEmail: MEMBER —— STRING
memBirthday: MEMBER — DATE

dom memName = members

dom memPhone = members

dom memEmail = members

dom memBirthday = members

Vp1, po: members ® p; #p, = memPhone(p,) # memPhone(p,)
Vi, j: members ® i =j < i.members = j.members

In the predicate part of the schema above, the domain of each attribute is equal to the
identities. For example, dom memPhone = members. Lastly, to illustrate the constraint that
no two members may have the same phone number, the following is used to specify the
constraint in the predicate part: Vp, p,: members ¢ p; # p, = memPhone(p,) # memPhone(p,)
and the predicate Vi, j: members o i.members = j.members < i =j, is used to state that the

identities used in the system are unique.

The Member class is the parent class of doctor and patient classes (child). The identity
sets of the child classes are stated as subsets of the member identity set in the following

7 axiomatic definition:

DOCTOR: P MEMBER
PATIENT: P MEMBER

‘ (DOCTOR, PATIENT) partition MEMBER

70

The Doctor, Patient and Member represent the different specification approaches for

inheritance. Doctor and Patient are specifications of Member.

The remaining classes, Schedule, Appointment, Doctor and Patient for this case study are

specified in the following subsection.

3.4.3.3 Schedule Class

The Schedule schema specifies the availability schedule of the doctor. The schema’s name
is the same as the class. SCHEDULE depicts the identities of all available schedules in the
system. A schedule has two status types (available and unavailable), defined before and

after the booking’s operation.

_Schedule
schedules: P SCHEDULE

schDate: SCHEDULE —+ DATE
schDay: SCHEDULE —+ DAY
schTime: SCHEDULE —+ TIME
schStatus: SCHEDULE —+ STATUS

dom schDate = schedules

dom schDay = schedules

dom schTime = schedules

dom SchStatus = schedules

Vi, j: schedules ¢ i =j < i.schedules= j.schedules

The following Section presents the Appointment class specification in Z.

71

3.4.3.4 Appointment Class

The Appointment schema defines the tracking of dates booked by using the
APPOINTMENT as the identities of all available appointments in the system. The name
of the schema is still the same as the class. Three status types are defined before and after

the booking operation for an appointment: requested, approved and cancelled.

_Appointment
appointments : P APPOINTMENT

appMember : APPOINTMENT — MEMBER
appSchedule : APPOINTMENT —+ SCHEDULE
appStatus : APPOINTMENT — STATUS
appReason : APPOINTMENT —+ STRING

dom appMember = appointments

dom appSchedule = appointments

dom appStatus = appointments

dom appReason = appointments

Vi, j: appointments «i = j < i.appointments = j.appointments

The Appointment schema declares two attributes appMember and appSchedule, that assist
in mapping the APPOINTMENT identity to their associated MEMBER and SCHEDULE
identities, respectively, due to the one-to-many bidirectional relationship so that a
member can navigate between appointment and schedule as well as between
appointment and member. So, for example, from an appointment identity, one can find
the related member identity of the member who booked the appointment and the
schedule identity of the date that has been booked by a member using appMember and

appSchedule functions.

The following Sections illustrate the Doctor and Patient classes” specifications in Z.

72

3.4.3.5 Doctor and Patient Class

The doctor accesses the system to schedule an appointment and the patient to book the
appointment. To specify that doctor and patient are child classes of the member class
(parent) because of the relationship (generalization) that exists between them, the
following two constraints (doctors © members and patients S members) have been declared

in the predicate Section of the doctor schema and patient schema, respectively as below.

_Doctor
Member

doctors: P DOCTOR

doctors € members

As shown in the schema Doctor above, the predicate part states that doctors are
included among members in the system.

_Patient
Member

patients: P PATIENT

patients € members

The predicate in schema Patient specifies that patients are included among members in

the system.

3.4.4 Operations of the system

Following the discussion of modelling the system's static aspects in Section 3.4.3, we now
want to model the dynamic aspects of the system. The modelling of each effective

operation of the system is made separately. The modelling of the error message for each

operation is specified following the partial operation. The modelling Starts with the

73

operations that do not alter the system's state, followed later by those that modify the
system's state. The construction for the Z specifications of the dynamic aspects also

follows Z’s Established Strategy (ES).

3.4.4.1 Finding appointments of a member

It is possible to find the appointments of a member through an operation.
DisplayAppsForMember is an operation that returns all the appointment identities for a
given member identity. However, a member identity (representing a member) must have
booked an appointment to obtain the result from the given operation. The operation
below queried the details of appointments made by a member. The use of the decorations

II'/I

“?” denoting an input variable and “!” designating an output variable as well as “E” have

been explained in more detail before (refer to Section 3.3.1.2).

_DisplayAppsForMember
& Appointment
member?: MEMBER
appointments!: P APPOINTMENT
message!: MESSAGE

¥m: appointments ® appMember(m) = member?
appointments! = {a : appointments | appMember(a) = member?}
message! = EXIST_MEMBER

The first predicate in DisplayAppsForMember indicates that the member identity must be
present in the set of members’ appointments. The output of this operation (appointment!)
is a subset of appointment identities of which the member is equal to the specified input
(member?). We use the notation {x: S | P} with S as set and P as a predicate to mean that

the values set of x taken from S satisfies P (Steyn, 2009).

74

If the member does not exist in the domain, then the schema DisplayAppsForMember has
to specify feedback of no appointment yet. The following schema models the feedback
through the operation called NoAppointment. The use of = Appointment specifies that the
Appointment schema has been included in NoAppointment and is not changed. Therefore,

this operation does not change the Appointment schema.

_NoAppointment
= Appointment
member?: MEMBER
appointments!: P APPOINTMENT
message!: MESSAGE

vm: appointments e appMember(m) # member?
message! = NO_APPOINTMENT_YET

The first predicate in NoAppointment indicates that the member identity is not present in
the set of members’ appointments. To this end, the system returns NoAppointment as the

€rror message.

3.4.4.2 Adding a member

The following schema models an operation named AddMember to add a new member to
the system. The precondition of the operation is that the member should not exist in the
system. In addition, the phone number is checked to ensure that no two members have
the same phone number when adding a new member. Once the precondition is met, then

the new member can be successfully added to the system.

75

_AddMember
AMember

member?: MEMBER

name?, phone?, email?: STRING
birthday?: DATE

message!: MESSAGE

member? & members

phone? ran memPhone

members' = members U member?

memName' = memName U {member? — name?}
memPhone' = memPhone U {member? — phone?}
memEmail' = memEmail U {member? — email?}
memBirthday' = memBirthday U {member? — birthday?}
message! = MEMBER_SUCCESSFULLY_ADDED

The declaration of AMember denotes that the schema inclusion of the Member schema into
AddMember schema and the Member state can be changed due to the specified operations.
Finally, the dash symbol of decoration (') distinguishes the after-state instance

components from the corresponding before-state instance components.

If a new member in the system has the same member identity as one of the existing
members, an error message such as ExistingIDMember is displayed to the system's

member.

_ExistingIDMember
& Member

member?: MEMBER
message!: MESSAGE

member? € members
message! = ID_MEMBER_ALREADY_EXIST

76

The schema ExistingIDMember above illustrates that the error message must be displayed
to the member trying to add an existing member identity to the system. The precondition

that verifies this constraint is member? € members.

Suppose there is a new member trying to be added with a phone number that already
exists in the system. In that case, the system should display to the member an error

message such as ExistingPhoneNumber.

_ExistingPhoneNumber
= Member

member?: MEMBER
message!: MESSAGE

member? members
phone? € ran memPhone
message! = PHONE_NUMBER_ALREADY_EXIST

The schema ExistingPhoneNumber above specifies that the error message is displayed to
the member trying to add an existing phone number in the system. The precondition that
verifies this constraint is phone? € ran memPhone. Note that this may in real life not be a
realistic restriction, since a new member who lives in the same household as an existing

member may indeed have the same phone number.

3.4.4.3 Deleting a member

A member, specifically a patient, can be deleted from the system. However, the business
rule is that not all the records related to the specific patient should be removed from the

system.

77

The schema DeleteMember is the operation used to delete a member in the system. The
precondition of the operation is that the member should exist in the system, which means
the member identity must be found in the system. If the precondition is met, then the
existing member can be successfully deleted from the system. Otherwise, an error

message is displayed to the member using the system.

_ DeleteMember
A Member
member?: MEMBER
message!: MESSAGE

member? € members

members' = members \ {member?}

memName' = {member?} < memName

memEmail' = {member?} < memEmail

memPhone' = {member?} < memPhone
memBirthday' = {member?} < memBirthday
message! = MEMBER_SUCCESSFULLY_DELETED

The declaration of AMember indicates the inclusion of the schema Member into the schema
DeleteMember above. The use of A denotes that the state of the schema Member included
in the DeleteMember schema can be changed due to the specified operations. The first
predicate is the first precondition that requires the specified member to be present in the

system.

The remaining predicates declare that the functions memName, memEmail, memPhone and
memBirthday are modified by the removal of the mapping for the specified member
(member?), and the state of the members set has been modified to reflect the removal of the
member identity by using the predicate members' = members \ {member?}. We use the anti-
restriction operator 4 in the relation S 4 V, defined as the set of all tuples (x, y) in V,

where x does not belong to the domain S (Steyn, 2009).

78

If there is no member with that member identity in the system, an error message such as
NotExistsMember is specified. For example, the following schema portrays the
NotExistsMember error message displayed for a user trying to delete a non-existing

member identity. The precondition that verifies this constraint is member? & members.

_NotExistsMember
= Member

member?: MEMBER
message!: MESSAGE

member? ¢ members
message! = NOT_EXISTING_MEMBER

The first predicate in the schema NotExistsMember indicates that the member identity

should exist in the system to allow the system’s member to perform the operation.

3.4.4.4 Updating a Member

For this case, we would like to consider all the possibilities when a system user wants to
update a piece of information concerning a member. Hence, the idea of updating each

member’s attribute follows the different schemas handling each operation.

_UpdateMemberName
A Member

member?: MEMBER
name?: STRING
message!: MESSAGE

member? € members

members’ = members

memName’ = memName ® {member? — name?}
message! = MEMBER_NAME_UPDATED

79

The first predicate in the schema UpdateMemberName verifies that the member exists in
the system. The second predicate means the member identity of the specific member
remains invariant. Finally, the third predicate declares that the function memName is
changed by the remapping operation to associate the new value of the name for the given
member (member?), and the message is displayed after the operation has been

successfully performed.

_UpdateMemberPhone
A Member

member?: MEMBER
phone?: STRING
message!: MESSAGE

member? € members

members’ = members

memPhone’ = memPhone ® {member? — phone?}
message! = MEMBER_PHONE_UPDATED

The first predicate in the schema UpdateMemberPhone verifies that the member exists in
the system. The second predicate means the member identity of the specific member
remains unchanged. The third predicate declares that the function memPhone is changed
by the remapping operation to associate the new value of the phone for the given member
(member?) and finally, the message MEMBER_PHONE_UPDATED is displayed after the

operation has been successfully executed.

80

_UpdateMemberEmail
A Member

member?: MEMBER
email?: STRING
message!: MESSAGE

member? € members

members’ = members

memEmail’ = memEmail ® {member? — email?}
message! = MEMBER_EMAIL_UPDATED

The first predicate in the schema UpdateMemberEmail verifies that the member exists in
the system. The second predicate means the member identity of the specific member
remains unchanged. The third predicate declares that the function memEmail is changed
by the remapping operation to associate the new value of the email for the given member
(member?) and finally, the message MEMBER_EMAIL_UPDATED is displayed after the

operation has been successfully performed.

_UpdateMemberBirthday
A Member

member?: MEMBER
birthday?: STRING
message!: MESSAGE

member? € members

members’ = members

memBirthday’ = memBirthday ® {member? — birthday?}
message! = MEMBER_BIRTHDAY_UPDATED

The first predicate in the schema UpdateMemberBirthday verifies that the member exists in
the system. The second predicate means the member identity of the specific member

remains unchanged. The third predicate declares that the following function memBirthday

81

is changed by the remapping operation to associate the new birthday value for the given
member (member?) and finally, the message MEMBER_BIRTHDAY UPDATED is

displayed after the operation has been successfully executed.

Suppose the system user would like to update all member’s attributes. In this case, the
UpdateMember schema is the schema operation used to update all attributes of the
instance of a member in the system. The operation’s precondition is the same as the
DeleteMember operation schema in that the member should exist in the system to proceed
with the operation. In addition, it means that the member identity must be found among
the members. If the precondition is met, the existing member can be successfully updated

in the system. Otherwise, an error message is displayed to the member using the system.

__UpdateMember
A Member

member?: MEMBER

name?, phone?, email?: STRING
birthday?: DATE

message!: MESSAGE

member? € members

members' = members

memName' = memName ® {member? — name?}
memEmail' = memEmail ® {member? — email?}
memPhone' = memPhone ® {member? — phone?}
memBirthday' = memBirthday ® {member? — birthday?}
message! = MEMBER_SUCCESSFULLY_UPDATED

The first predicate in the schema UpdateMember above is the first precondition that
requires the specified member to be present in the system. The remaining predicates

declare that the functions memName, memEmail, memPhone and memBirthday are changed

82

by the remapping operation to associate the new name, email, phone and birthday values
respectively to the given member (member?). To perform the remapping operation, the
overriding operator € into the relation S € T (S is overridden by T) means everything in
the domain of T is related to the same objects as T and everything in the domain of S to
the mappings S (Steyn, 2009). Finally, the predicate members' = members indicates that the

state of the members set does not change.

The above-defined UpdateMember operation schema may also be obtained through the

schema calculus using the total operation as follows:

RobustUpdateMember 2 UpdateMemberName V
UpdateMemberPhone v
UpdateMemberEmail V

UpdateMemberBirthday

The schema calculus formula above defines schema RobustUpdateMember below:

83

_RobustUpdateMember
A Member

member?: MEMBER

name?, phone?, email?: STRING
birthday?: DATE

message!: MESSAGE

(member? € members

members’ = members

memName’ = memName @ {member? — name?}
message! = MEMBER_NAME_UPDATED) v
(member? € members

members’ = members

memPhone’ = memPhone @ {member? — phone?}
message! = MEMBER_PHONE_UPDATED) Vv
(member? € members

members’ = members

memEmail’ = memEmail ® {member? — email?}
message! = MEMBER_EMAIL_UPDATED) v
(member? € members

members’ = members

memBirthday’ = memBirthday ® {member? — birthday?}
message! = MEMBER_BIRTHDAY_UPDATED)

3.4.4.5 Adding a Schedule

The following schema models the AddSchedule operation, which consists of adding a new
schedule to the system. The precondition of the operation is that the schedule should not
exist in the system. Once the precondition is met, the new schedule may be successfully

added to the system.

84

_AddSchedule
A Schedule

schedule?: SCHEDULE
date?: DATE

time?: TIME

day?: DAY

status?: STATUS
message!: MESSAGE

schedule? & schedules

schedules' = schedules U {schedule?}
schDate' = schDate U {schedule? ~ date?}
schTime' = schTime U {schedule? ~ time?}
schDay' = schDay U {schedule? ~ day?}
schStatus' = available

message! = SCHEDULE_ADDED

The first predicate in the schema AddSchedule checks that the schedule identity is not yet
present in the system. The remaining predicates state that the schedules, schDate, schDay
and schTime functions are extended to map the new schedule, date, day and time values
to the given schedule identity. Since all the schedule status values are initialized to
“available” for the first time, the value of the status attribute has already been defined in
the predicate part of the schema, i.e., schStatus = available. If a schedule identity already
exists in the system, an error message ExistingIDSchedule is displayed to the member

using the system.

_ExistinglDSchedule
= Schedule

schedule?: SCHEDULE
message!: MESSAGE

schedule? € schedules
message! = EXISTING _ID_SCHEDULE

85

The first predicate in the schema ExistingIDSchedule indicates that the schedule identity
should not exist in the system to allow the member using the system to book a new

appointment.

3.4.4.6 Booking an Appointment

Booking an appointment with the doctor is allowed if and only if there is an available
date and time in the system to enable a patient to book an appointment. Booking an
appointment changes the status of the schedule for the specific date and time in the
system, and a new appointment has the status of “requested” for the first time. The status
of a booked appointment can be changed later to “approved” or “rejected” based on the
doctor’s final decision. A booked appointment is available as long as the date and time

specified in the system are valid.

86

__BookAppointment
AAppointment

ASchedule

EMember

member?: MEMBER
schedule?: SCHEDULE
appointment?: APPOINTMENT
status?: STATUS

reason?: STRING

message!: MESSAGE

member? € members

schedule? € schedules

appointment? ¢ appointments

appointments' = appointments U appointment?

appMember' = appMember U {appointment? — member?}
appSchedule’ = appSchedule U {appointment? — schedule?}
appStatus' = requested

appReason' = appReason U {appointment? — reason?}
message! = APPOINTMENT_BOOKED

In the schema BookAppointment above, the three schema inclusions in the declaration part
indicate that we intend to make some changes in the two schemas, Schedule and
Appointment, and we use the Member schema to verify that the member who is booking
an appointment in the system is an existing member. The first two predicates are the
preconditions to check if the specified member and schedule (date and time) really exist
in the system. The third predicate is the precondition to ensure that the appointment

identity is not in the system.

The remaining predicates state that the appointments, appMember, appStatus, appSchedule
and appReason functions are expanded to map the new member, schedule, status and

reason values to the given appointment identity. Since all the appointment status values

87

are initialized to “requested” for the first time, the value of the status attribute has already
been defined in the predicate part of the schema, i.e., appStatus’ = requested. If an
appointment identity already exists in the system, an error message

ExistingID Appointment is displayed to the member using the system.

_ExistinglDAppointment
& Appointment
appointment?: APPOINTMENT
message!: MESSAGE

appointment? & appointments
message! = EXISTING_ID_APPOINTMENT

The first predicate in the schema ExistingIDAppointment indicates that the appointment
identity already exists in the system. Consequently, the member should not be allowed
to book a new appointment.

3.4.4.7 Approving an Appointment

An approval operation updates an appointment from the system. The approval operation

for Appointment is specified as follows:

88

_ ApproveAppointment
AAppointment

ASchedule

appointment?: APPOINTMENT
status?: STATUS

schedule?: SCHEDULE
message!: MESSAGE

appointment? € appointments

appointments' = appointments

Vs: appointments » appSchedule(s) = schedule?
schStatus' = unavailable

appStatus' = approved

message! = APPOINTMENT_APPROVED

Again, the first predicate of the above-mentioned schema ApproveAppointment is the
typical precondition of an update operation that requires the specified appointment
identity to be present in the system. The remaining predicates declare that the statuses of
the schedule and appointment have been updated with these new values since they are
free type variables. Finally, the predicate appointments' = appointments indicates that the

appointments' state does not change.

3.4.4.8 Cancelling an appointment

The operation of cancelling updates an appointment in the system. The cancelling

operation for Appointment is specified as follows:

89

_ CancelAppointment
AAppointment

ASchedule

appointment?: APPOINTMENT
status?: STATUS

schedule?: SCHEDULE
message!: MESSAGE

appointment? € appointments

appointments' = appointments

Vs: appointments » appSchedule(s) = schedule?
if appSchedule(s) = schedule? then [* Checking if the date is still valid */
schStatus' = available

appStatus' = rejected

message! = SUCCESSFULLY_REJECTED

else

schStatus' = unavailable

appStatus' = approved

message! = SUCCESSFULLY_APPROVED
endif

The first predicate of the above-mentioned schema CancelAppointment is the typical
precondition of an update operation that requires the specified appointment identity to
be present in the system. The remaining predicates declare that the statuses of the
schedule and appointment have been updated with these new values since they are free
type variables. Finally, the predicate appointments' = appointments indicates that the state

of the appointments set does not change.

3.4.5 Specification of the System State

Following the ES, it is required to specify the schema that depicts the whole system state.

All the operations are specified on the whole state to capture all errors and that the full

90

invariant may be proved to hold after the operation. The system state for this case study

is given below:

_MySystem
Appointment
Schedule
Member
Doctor
Patient

3.4.6 Specification of the Initial State

The initial state of the whole system is obtained by combining all the initial states of
different classes that constitute this whole system. For example, the initial state of the
member class is specified by the operation schema that contains only the after-state
components. Let us assume that the initial state of the Appointment schema is called

InitAppointment, and it is specified as follows:

_InitAppointment
Appointment

appointments = &
appMember = @
appSchedule = @
appStatus = &
appReason = &

The initial state of the schedule schema can also be specified as follows:

91

_InitSchedule
Schedule

schedules = &
schDate = @
schDay = @
schTime=Q
schStatus = &

Consequently, the initial state of the whole system is specified as:

_InitSystem
InitAppointment

InitSchedule
InitMember
InitDoctor
InitPatient

3.4.7 Specification Summary

Table 3-2 provides a specification summary operation of the appointment booking
system enumerating the operation and denoting the input and output variables and the
preconditions of each operation. As per Z’s Established Strategy, only the partial

operations are displayed in Table 3-2.

Table 3-2: Partial operations summary of the appointment booking system

Operations Inputs and Outputs Preconditions

DisplayAppsForMember | member? : MEMBER Vm: appointments ¢
appointments! : P appMember (m) =
APPOINTMENT member?

92

Operations Inputs and Outputs Preconditions
AddMember member? : MEMBER member? &
name? : STRING members
email? : STRING phone? ¢ ran
memPhone
phone? : STRING
birthday? : STRING
message! : MESSAGE
UpdateMember member?: MEMBER member? €
name?: STRING members
email?: STRING
phone?: STRING
birthday?: STRING
message! : MESSAGE
DeleteMember member?: MEMBER member? €
message! : MESSAGE members
AddSchedule schedule?: SCHEDULE schedule? ¢
date?: DATE schedules
day?: DAY
time?: TIME
status?: STATUS
message! : MESSAGE
BookAppointment member?: MEMBER member? €
members

schedule?: SCHEDULE

appointment?: APPOINTMENT

reason?: STRING
status?: STATUS
message! : MESSAGE

schedule? €
schedules

appointment? ¢
appointments

93

Operations Inputs and Outputs Preconditions

ApproveAppointment appointment?: APPOINTMENT | appointment? €
status?: STATUS appointments
schedule?: SCHEDULE vs: appointments ¢

appSchedule (s) =
message! : MESSAGE schedule?

Cancel Appointment appointment?: APPOINTMENT | appointment? €
status?: STATUS appointments
schedule?: SCHEDULE Vs: appointments «

appSchedule (s) =
message! : MESSAGE schedule?

Other operations’ schemas can be found in the Appendix A of this dissertation. Finally,

in the next Section, we highlight a selection of proof obligations from Z specifications.

3.4.8 Occurred Proof Obligations from the Specification

As Steyn (2009) observed, most proof obligations arise when there is a change in the
system's state. In this Section, we identify and address some proof obligations that

occurred from Z specifications.

3.4.8.1 Initialization Theorem

It has been shown that every time an initial state schema is defined or specified, a proof
obligation occurs to demonstrate that such a state can be produced. For example, the
proof obligation for the InitSchedule initial state schema (refer to Section 3.4.6) can be

specified as follows:

94

t 3 Schedule “® InitSchedule

That means that we need to prove there is an after state such that the initial state schema

predicate is applicable.

3.4.8.2 Simplification of the Precondition

According to Steyn (2009), the precondition of an operation is acquired by concealing the
after state components using the existential quantifier in the predicate part of the schema.

Hence, the precondition for the AddSchedule operation is defined as:

__PreAddSchedule
Schedule

schedule?: SCHEDULE
date?: DATE

time?: TIME

day?: DAY

status?: STATUS

g Schedule’
schedule? e schedules
schedules’ = schedules U schedule?
schDate' = schDate U {schedule? — date?}
schTime' = schTime U {schedule? — time?}
schDay' = schDay U {schedule? — day?}

schStatus' = available

As per Steyn (2009), we can make the precondition illustrated above simpler by using the

one-point-rule (¢) as follows:

95

_ PreAddSchedule
Schedule

schedule?: SCHEDULE
date?: DATE

time?: TIME

day?: DAY

status?: STATUS

schedule? & schedules

However, every time a precondition has been simplified, proof of its equivalence to the
original version is needed (Steyn, 2009). In this case, the schema PreAddSchedule above is

the precondition of the AddSchedule operation:

I pre AddSchedule =

[Schedule
schedule?: SCHEDULE
date?: DATE
day?: DAY
time?: TIME
status?: STATUS

schedule? e schedules]

In Z, the “pre” prefix operator denotes the precondition of a schema (Steyn, 2009). The
right side of the equality (=) used above is the horizontal or linear form of schema

definition (refer to Section 3.3.1.2).

96

3.4.8.3 Type of After State

A specification is provided for every component of a schema that may be subjected to a
possible state change. In this case, a proof obligation occurs to show that the
corresponding after state component is the correct type (Steyn, 2009). Let us consider the
schema UpdateMember (refer Section 3.4.4.4) to show the successful completion of the
operation by proving that components memEmail and memPhone (i.e., memEmail' =
Member ~+STRING and memPhone' = Member ~+STRING) are more limited than their

underlying carrier type.

However, to prove that the after state of a component is more limited as expected, the
proof obligations for the UpdateMember are required to be discharged (Steyn, 2009).
Specifically, the following proof obligations are required to be discharged for
UpdateMember:

Member

members': P MEMBER
memName': MEMBER — STRING
memPhone': MEMBER < STRING
memEmail': MEMBER < STRING
memBirthday': MEMBER < STRING
member?: MEMBER

name?: STRING

email?: STRING

phone?: STRING

birthday?: STRING

|

dom memName' = members'

97

dom memPhone' = members'

dom memEmail' = members'

dom memBirthday' = members’

member? € members

email? ¢ ran memEmail

phone? ran memPhone

members' = members

memName' = memName ® {member? — name?}
memPhone' = memPhone ® {member? — phone?}
memEmail' = memEmail ® {member? — email?}

memBirthday' = memBirthday ® {member? — birthday?}

memName' € MEMBER —+ STRING
memPhone' e MEMBER -+ STRING
memEmail' e MEMBER >+ STRING
memBirthday' € MEMBER —+ STRING

The aforementioned notation declares a proof obligation that stems from Steyn (2009).

3.4.8.4 Total Operations

A proof obligation arises to prove that it is indeed a total one every time a total operation
is specified (Steyn, 2009). A precondition must be a partition to make an operation a total
one. The precondition needs to be proved total, and any two-component preconditions
are pairwise disjoint (see the above UpdateMember schema). Let us consider the schema

calculus AddMemberTotal for the AddMember operation:

98

+ pre AddMember v
pre ExistinglDMember v
pre ExistingEmailAddress v

pre ExistingPhoneNumber

Another way to specify that the precondition is total is when the disjunction of all the
component preconditions is a tautology, which is a clause that is valid under all

interpretations as follows (Steyn, 2009):

I pre AddMemberTotal =

[Member
member?: MEMBER
name?: STRING
email?: STRING
phone?: STRING
birthday?: STRING

true]

In addition, it is required that all the component preconditions are pairwise disjoint, and

this is demonstrated by the following predicate using the conjunction operator:

F (pre AddMember A pre ExistingiDMember) = & A
(pre AddMember A pre ExistingEmailAddress) = & A
(pre AddMember A pre ExistingPhoneNumber) = &

99

3.4.8.5 Operation Interaction

A number of proof obligations arises from the composition (3) of operations (Steyn, 2009).
For instance, a composition of an add operation followed by a delete operation of the
same element produces no change of state (Steyn, 2009). Let us consider AddMember

followed by DeleteMember:
AddMember s DeleteMember + £ Member

As expected, the deletion of an element followed by its creation keeps the state unaltered:
DeleteMember § AddMember F & Member

The discussion on the proof obligations concludes our discussion of Z. The following

Section provides a summary of the current Chapter.

3.5 Chapter Summary

In this Chapter, the purpose was not to compare two Z specifications. However, we first
modelled the small case study of a simple appointment booking system directly from the
requirements statement described in Section 3.3.1 to illustrate some concepts defined in
Z. On the other hand, we demonstrated how to specify the static and dynamic aspects of
the proposed system by first translating the requirements statement into the high-level
conceptual model concepts using specific patterns followed by the specification of these
patterns in Z. We described the structures, functions and operators used in Z specification
by breaking down the specified system into smaller pieces to represent the Z schemas
individually.

100

Z has been successfully used in this small case study to provide the specification where
precision, quality and safety are needed. In addition, a selection of typical proof
obligations that arise from Z specification has also been presented using mathematical
theorems to verify the correctness of the specification and mitigate errors.
Notwithstanding, Z does still not ensure that the final product software never has flaws;

if it is correctly used, it may reduce the global cost of the software project (Moremedi,

2015).

The next Chapter discusses the research design and methodology applicable to this

research based on the research process used in the research onion.

101

Chapter 4 Research Design and Methodology

4.1 Introduction

The previous Chapter presented a literature review of formal methods and Z notation. It
also described a brief case study elaborated as the requirements statement on the
appointment booking software system, where informal specifications were elicited from
the requirements statement and translated into formal specifications using Z notation. A
UML class diagram was also developed as an intermediate step between informal and
formal specifications to represent the requirements at the conceptual design level. Finally,

proof of obligations arising from the formal specification Z was provided.

Chapter 4 uses the research onion structure established by Saunders et al. (2019) to
explain how this research was conducted. The Chapter organization follows the sequence
of the layers in the research onion structure portrayed in Figure 4-1. Each layer will be
elucidated to show how it relates to this research. Figure 4-1 is essentially Figure 1-2

repeated here for ease of reference.

102

Positivism Philosophy

Approach to
theory development

Methodological
choice

Mono method

i
Deduction
quantitative

Critical

realism
Mono method

Survey
qualitative ~~ "N~~~ N T T

Experiment
Archival
research

Cross-sectional

Multi-method
quantitative

Data
collection Inter-

and data retivism .
analysis SN S il B L ’r—— Strategy(ies)

— Multi-method
Longitudinal qualitative

Case study

g
Action "~

research .~ ~-_______ /4 _/ _______J___ Time

Narrati
Araive Grounded horizon

quiry

Mixed method
simple Post-

modernism

Mixed method
complex

Induction

Technigues and
procedures

Pragmatism

Figure 4-1: The research onion (Saunders et al., 2019)

The research onion is a research design and methodology structure developed by
Saunders et al. (2019) to present the main stages through which research ought to pass by

to get a reliable research methodology for a research project.

In this Chapter, the discussion of the research methodology Starts with a research
philosophy overview presented in Section 4.2, followed by the research approach to
theory development in Section 4.3, and then the methodological choice of the research in
Section 4.4. After that, the research strategies and the time horizon of the study are
presented in Sections 4.5 and 4.6, respectively. Thereafter, Section 4.7 addresses the

techniques and procedures used with respect to the research methodology. The Chapter

103

concludes with Section 4.8, where the Chapter is summarized. The following Section

presents the philosophy layer of the research onion structure.
4.2 Research Philosophy

The research philosophy is viewed as a belief and presumptions system about knowledge
development (Saunders et al., 2019). It is also thought of as the philosophical paradigm
(Buthelezi, 2017). According to Saunders et al. (2019), three types of research
presumptions are considered to differentiate research philosophies: ontology,
epistemology and axiology. These three types or categories are beneficial to the

researcher in organizing and conducting the research (Nemathaga, 2020).

Different authors have given different definitions of these concepts. According to
Nemathaga (2020), the researcher’s ontology is defined as a group of concepts and
categories in a domain denoting their properties and relationships. In other words,
ontology is viewed as a belief about reality (Buthelezi, 2017). While the researcher’s
epistemology refers to the knowledge of what the researcher knows (Nemathaga, 2020),
the researcher’s axiology is mainly based on values and ethics (Saunders et al., 2019). Put
differently; the researchers can understand how the views and values inspire the research

gathering and analysis (Nemathaga, 2020).

Next we consider the first layer, namely, research philosophy in the onion. The research
philosophy embodies positivism, a philosophical paradigm with two presumptions to
investigate objectively (Nemathaga, 2020). In positivism, the reality is viewed as an

external goal that is independent of the social actors (Buthelezi, 2017).

104

Nemathaga (2020) posits that realism is similar to positivism because its methods and
conviction are such that social reality and the researcher are independent of one another
and will not create wrong results. In Information Systems, research being interpretive is
viewed as a means to comprehend the social context of information systems. That is to
say, interpretivism refers to the impact the social setting has on information systems

development by people.

Postmodernism seeks to give power to the other worldviews that have been put aside
and silenced by dominant perspectives by questioning the approved means of thinking.
It also deconstructs data to reveal the inconstancies and shortages within them (Saunders
et al., 2019). Save for postulating that reality exists in the world and sustains the objective
nature of science; pragmatism is used when the research philosophy is situated between

positivism and interpretivism (Al-Ababneh, 2020).

The research philosophies do not contend, yet they are selected based on the best
application to accomplish the research objectives (Buthelezi, 2017). However, the
category of the research philosophy that conducts this research is the axiology
philosophy. This is because this research is more theoretical in nature; no experiments in

the traditional sense were conducted in this research.

In addition, this research was conducted using the pragmatism philosophical paradigm
because the researcher adopted more than one research philosophy in an attempt to
establish the extent to which formal methods may help reduce failure within the
development of Data warehouse systems. Thus, on the one hand, this study seeks to
establish the best approach for obtaining the best set of requirements to model the system
in the specification or conceptual design phase. Such a design is expected to meet end-

users and decision-makers' expectations and is reminiscent of interpretivism. On the

105

other hand, the study uses formal methods for the specification of such systems to reduce

ambiguities that could lead the system to inconsistencies reminiscent of positivism.

The next Section discusses the second layer of the research onion involving the theory

development approach.

4.3 Research Approach

Buthelezi (2017) asserts that the research approach elucidates the relationship between
theory and reality. As depicted by Saunders et al. (2019) in Figure 4-1, the research
approach layer encompasses three components: deduction, abduction, and induction.
Inductive simply means the researcher is developing or building something, while

deductive means the researcher is validating or testing something.

Inductive reasoning is used when little or no research exists on a given subject, where the
researchers find a way to establish their theory or create a framework or model
(Nemathaga, 2020). Furthermore, inductive reasoning is more suitable for interpretive
research philosophy (Buthelezi, 2017; Al-Ababneh, 2020). In a nutshell, transitioning from
data to a theory involves using deductive reasoning or approach, and the reverse is the
inductive approach. Lastly, abduction reasoning is used when both deductive and

inductive reasoning are needed (Saunders et al., 2019).

This research employs the abductive approach to merge both approaches (deductive and
inductive). In this study, the researcher seeks to develop frameworks to address the
significant issues of neglecting the requirements analysis phase and chooses the suitable
model for the modelling reminiscent of inductive. Contrastingly, the researcher also
attempts to answer the question of how to facilitate the use of formal methods to reduce

106

failure in the development of Data warehouse systems. In the final analysis, the
researcher must validate the enhanced framework proposed in this research project. The

next Section addresses the methodological choice layer of the research onion structure.
4.4 Methodological Choices

The research method is how the analysis and collection of data are conducted. Two main
significant research choices exist, namely the quantitative and qualitative methods. In
addition, however, a possibility of mixing both methods to obtain a mixed method exists.
Different research methods are based on the research's context, objective, and nature
(Buthelezi, 2017; Al-Ababneh, 2020; Nemathaga, 2020). Therefore, the methodological
choices layer of our research onion embodies the following: a mono method (quantitative
or qualitative), multi methods (quantitative or qualitative) and mixed methods

(quantitative and qualitative).

A mono method research is applied when one of the data gathering methods is used, be
it quantitative or qualitative. The mixed-methods research invokes the use of both
research methods (quantitative and qualitative). The multi-methods research is generally
used when the researcher decides to use both data (quantitative and qualitative).
Nevertheless, the outlook of the researcher is embedded in one or the other method
(Nemathaga, 2020). Multi-methods research is important because it provides good
opportunities to answer research questions and interpret research findings (Al-Ababneh,

2020).

In this research work, the researcher applied multi-methods research. While the
qualitative research method was used in this study to collect and study documents and
case studies, a minimum quantitative research method was used when the researcher

107

evaluated and compared the two models for design. Quantitative work is related to real
numbers, and the researcher viewed specifics embedded in Table 5.4 as being
quantitative. Despite being focused on qualitative research, this research was aimed at
answering questions that were stipulated in Chapter 1, using existing steps to derive
answers to the questions (Nemathaga, 2020). The strategy layer of the research onion is

presented in the following Section.
4.5 Research Strategy

Generally, researchers address the research aim and objectives and answer the research
questions, which are part of the research strategy (Buthelezi, 2017). In addition, research
strategies are methods that are applied for gathering and analyzing data for the research
(Nemathaga, 2020). Various research strategies, such as experiments, surveys, case
studies, the use of grounded theory, ethnography, action research, archival research, and
narrative inquiry, exist within Information Systems research (Saunders et al., 2019).
Arguably, no specific research strategy is better; hence, selecting a research strategy relies

on research questions and objectives, research philosophy, and the extent of existing

knowledge (Al-Ababneh, 2020).

In this work, the case study research strategy was used to conduct this research. The

following strategy was used in this dissertation:

* Online Unisa Library (find e-resources | Electronic Theses and Dissertations) was
frequently used to collect data or information relating to this work. In addition,
relevant journal articles for collating information about this work were retrieved

through keyword searches on the Google Scholar electronic database.

108

* Research works that were already conducted on Data warehouse systems and
formal methods were gathered and studied. Various works belonging to different
types of Data warehouse systems and formal methods were used as input to this

dissertation.

* Case studies relating to Data warehouse systems and formal methods were
investigated, and conclusions were extricated. In addition, other case studies using

formal methods were used as input to this research.

The time horizon layer of the research onion is discussed next.

4.6 Time Horizon

The time horizon is the period in which the research unrolls. To rephrase it, it is the time
between the Start and desired completion of the research (Buthelezi, 2017). Two known
types of time horizons are cross-sectional and longitudinal time horizons (Saunders et al.,
2019). The cross-sectional type of time horizon is a positivistic method conceived to get

data from various contexts simultaneously.

The data gathered in this study covered a relatively short time span, which takes a
snapshot of a situation. In contrast, the longitudinal type examines the problem dynamics
several times (Al-Ababneh, 2020). Both types can apply quantitative, qualitative or both
research methods (Nemathaga, 2020). However, the extent to which formal methods may
mitigate failures within the research design of Data warehouse systems was to be
achieved in the medium term, which allowed the researcher to apply a cross-sectional

time horizon.

109

The following Section presents the techniques and procedures indicated in the research

onion.

4.7 Techniques and procedures

Buthelezi (2017) previously declared that the analysis and collection of data depend on
the methodological approach used by the researcher. Therefore, the researcher uses this
layer of the research onion to decide on all the data gathered that must be acceptable to
all the remaining layers, namely philosophy, strategies, approach, methodological choice

and time horizon.

A sample of documents on Data warehouse systems was gathered through the internet
for the inceptive analysis. Unisa library and Google scholar were used to collect
documents on Data warehouse systems and formal methods on the internet. The
inceptive analysis helped to deflect, evaluate and explore topics in the selected research

data sample.

Irrespective of the selected approach of the research, two types of data are to be gathered,
namely primary and secondary data. Primary data are gathered directly from the data
sources, and secondary data are data that drifted from previous research in the work of
others (Buthelezi, 2017). This research used secondary data as extant literature and

documents on Data warehouse systems and formal methods.
When all the layers of the research onion are used in line with the research objectives, the
next step involves the execution of the research process portrayed in Figure 4-2 and

discussed subsequently.

110

4.8 Research Process

The conceived framework illustrated in Figure 4-2 is used to perform the steps used in

the research process.

Content analysis

(Literature Review)

v

Developing Approach

(Framework for requirements definition)

v

Extended Framework

(Selection of the suitable design model)

\ 4

Enhanced Framework

(Formal specification of the model)

Figure 4-2: Research process structure (synthesized by the researcher)

111

4.8.1 Content Analysis

First and foremost, the researcher went through the documentation of Data warehouse
systems and formal methods separately. The content analysis encompassed online theses
and dissertations, books, articles, and journals written and published by other scholars
related to these two areas. Therefore, theories on Data warehouse systems and formal
methods previously presented in this research are based on related research works in the

literature.

4.8.2 Developing Approach

The researcher started the study with a literature review to address the first two research
sub-questions. In Chapter 2, the literature review was presented using an approach based
on prior research works, suggesting a framework that may help to address challenges
with the failure of Data warehouse systems during the design process. The framework
proposed reconciling requirements sets of unstructured and structured data to obtain a
set of requirements that could meet the expectations and needs of the decision-makers

and end-users.

4.8.3 Extended Framework

The suggested framework introduced in Chapter 2 was extended to address the research
sub-questions 3 and 4 in Chapter 5. However, modelling a system using natural language
and semi-formal notations remains susceptible to ambiguities. That is how formal
methods are used to reduce ambiguities that could otherwise lead to system

inconsistencies.

112

4.8.4 Enhanced Framework

The enhanced framework aims to facilitate the use of formal methods within the design
of the Data warehouse system using the more appropriate model of this system (Star
model in this case). The proposed framework was presented in Figure 1-1 and enhanced
in Figure 6-1 using the more appropriate Data warehouse systems model. This enhanced
framework considered all the previous suggested frameworks used to integrate formal
methods to develop formal specifications. The enhanced framework is used in Chapter 6

to address research sub-questions 5 and 6.
4.9 Chapter Summary

This Chapter provided the philosophical perspective of the research and the research
design and methodology relevant to the research based on the research onion structure
developed by Saunders et al. (2019). Each layer in the structure was elucidated, and its
relevance to this work was highlighted. Furthermore, a research process structure was
introduced to explain how the researcher could gather pertinent information for this

research.
The next Chapter is aimed at selecting the appropriate model as a standard model for the

development of Data warehouse systems by assessing and comparing main models

through a developed framework using a case study of the data mart.

113

Chapter 5 Models Evaluation and Comparison

5.1 Introduction

Previously in Chapter 2, a discussion on the design of Data warehouse systems and the
object-orientation paradigm using UML as the standard language of modelling was
presented. Furthermore, the primary reasons causing Data warehouse systems to fail and
the advantages and disadvantages related to the use of this paradigm were also
identified. Finally, a framework to address these challenges was suggested to acquire a
set of requirements that may meet the end-users and decision-makers' expectations and

needs.

The content of this Chapter stems from the work of Mbala and Van der Poll (2020a), which
was aimed at establishing a foundation to enable the assessment and selection of one
model over the others. Therefore, this Chapter suggests a framework through a case
study on a data mart to evaluate and compare Star and Snowflake models of Data
warehouse systems. Such a framework uses these systems based on the same set of
requirements to provide a means to select the most appropriate model for developing

such systems.

Extricating from the work addressed in Chapter 2, the current Chapter focuses on the
requirements elicitation for a medium-sized case study of a Data warehouse system using
a data mart to obtain the expected set of requirements to develop such systems. This

Chapter seeks to address the following questions, which were formulated in Section 1.4:

SRQ3: What are the main models used for the development of Data warehouse systems?

114

SRQ4: What is the most suitable model for the development of Data warehouse systems?

The challenges brought about by Data warehouse systems failure in the design phase
were addressed in Section 2.5. The framework that facilitates the requirements definition
and elicitation is designed to address the failure challenges of Data warehouse systems
(see Figure 2-5). From the framework depicted in Figure 2-5, we can propose a framework
for producing the two models from the same set of requirements. It is envisaged that a
comparative analysis of the two models would lead to a selection of the more appropriate

model for the development of Data warehouse systems.

Requirements definition

(Set of requirements)

’

< O

--------I---------‘

| Suitable Model |

Figure 5-1: Evaluation and Comparison Framework (Mbala & Van der Poll, 2020a)

The diagram depicted in Figure 5-1 embodies four (4) components: the requirements

definition, models 1 and 2, set of properties (P) 1 and 2, and suitable model. The

115

requirements definition is the component that contains the set of requirements obtained
from the reconciliation of unstructured and structured data. From the set of requirements
in the requirements definition component, two models, 1 and 2, are illustrated to
represent the problem statement in the conceptual design phase. A set of properties is the
component that elaborates properties for each model based on the semantical features to
compare both models. Finally, the last component involves a selection of a suitable model
that is deemed appropriate for the development of Data warehouse systems based on the

comparative analysis outcome of the two models.

This Chapter is structured as follows. Section 5.2 addresses the object-oriented
multidimensional model used to model systems. A brief discussion on the models used
in the logical design of the Data warehouse system is presented in Section 5.3, followed
by a presentation of the medium-sized case study defining the business requirements
and objectives in Section 5.4. Next, Section 5.5 represents Star and snowflake models in
the OOMD model constructed from the requirements definition of the given problem,
followed by an evaluation and a comparison of both models in Section 5.6. The Chapter
concludes with a presentation of the outcome of the comparative analysis of Star and

snowflake models (Section 5.7) and a chapter summary in Section 5.8.
5.2 Object-Oriented Multidimensional Model

The conceptual schemas facilitate communication between designers and decision
makers since they do not request any knowledge about the given characteristics of the
platform for the underlying implementation (Vaisman & Zimanyi, 2014). Conceptual
schemas are used for a complete, formal and abstract design leaning on the user
requirements without considering the implementation details (Oketunji & Omodara,

2011; Vaisman & Zimanyi, 2014). Using conceptual schemas in developing conventional

116

databases has the advantage of good support for following logical and physical schemas

(Vaisman & Ziméanyi, 2014).

For Data warehouse systems, the conceptual design is the phase intended to yield the
structural view of the system that is presented under the multidimensional form. The
multidimensional model development is realized through an analysis of the business
needs and objectives. It consists of facts, measures, dimensions and hierarchies

(Thenmozhi & Vivekanandan, 2014; Reddy & Suneetha, 2020).

The multidimensional model is considered to be the primary requirement for the analysis
of Data warehouse systems (Sarkar, 2012; Reddy & Suneetha, 2021), reflecting the
business and business needs of a target company because it has a major impact on the

success of such projects (Abai et al., 2013; El Mohajir & Jellouli, 2014).

UML is broadly accepted as a standard object-oriented modelling language for the design
of software (Adesina-Ojo, 2011; Shcherban et al, 2021). An object-oriented
multidimensional model is a modelling approach based on UML that represents facts and
dimension tables of the multidimensional model of a Data warehouse system in the form
of classes (Babar et al., 2020). A fact table is modelled as a composite class having shared-
aggregation relationships with the corresponding dimension tables in the diagram

(Mbala & Van der Poll, 2020a; Mbala & Van Der Poll, 2020b).

In this way, common associations are represented as relationships between dimension
classes and sub-dimension classes, also known as hierarchies (Mbala & Van der Poll,
2020a). One-to-many or many-to-many cardinality or multiplicity is represented in a
relationship between a fact class and a particular dimension. The fact class cardinality is

"y

specified by “*” to denote that a dimension object may be part of zero, one or more fact

object instances. While the minimum cardinality for dimension classes is specified by “1”

117

to denote that a fact object is usually associated with object instances from all dimensions,

“1.*” is used on the dimension class to indicate many-to-many cardinality (Gosain &

Mann, 2011; Mbala & Van Der Poll, 2020Db).

5.3 Logical Design Models

The conceptual design development is the logical design. Logical modelling represents
schemas that consist of Star schema, snowflake schema, and fact constellation schema
(Sekhar Reddy & Suneetha, 2020). The facts of the Data warehouse and the various
analytical dimensions are intended to be described by the multidimensional models

(Reddy & Suneetha, 2021)

The development of Data warehouse systems in the logical design phase uses
dimensional models to portray data structure. One of the dimensional models known is
called the “Star model”. The Star model is defined as a composition of one table called
fact and other smaller tables called dimension tables. A fact contains a composite primary
key, including other attributes called measures. A dimension table has a non-composite
primary key that precisely corresponds to one of the components of the composite

primary key in the fact table (Reddy & Suneetha, 2021).

Surrogate keys (SKs) are used to mitigate latency as Data warehouse systems are built for
performance enhancement. They serve to join the fact and dimension tables in the same
way a foreign key is a primary key in one table and an attribute in another. A surrogate

key is used for quick access and is usually an integer (Mbala & Van der Poll, 2020a).

118

According to Basaran (2005) and Mbala & Van der Poll (2020a), the following models are
aimed at representing the Data warehouse system with the emphasis being placed on

data structures:

* Flat model

» Terraced model

= Star model

* Snowflake model

= Fact Constellation model
= Star Cluster model

* Galaxy model

= Starflake model

This Chapter focuses on the Star and Snowflake models, the main models used to develop

Data warehouse systems (El Mohajir & Jellouli, 2014).

5.3.1 Star Model

A Star model is a relational database model that contains measures and dimensions in a
data mart (Oketunji & Omodara, 2011; Mbala & Van der Poll, 2020a). Measures are
numerical attributes stored in the fact table, and dimensions are textual attributes
maintained in dimension tables. A fact table is the subject analysis in the decision-making
process, and dimensions are axes of analysis (Golfarelli, 2010; Reddy & Suneetha, 2021).
A fact table is related to every single dimension table. It is called “Star” because the
representation shows the fact table surrounded by dimension tables (Mbala & Van der
Poll, 2017). For example, Figure 5-2 depicts a Star model with one fact and four
dimensions (Mbala & Van der Poll, 2020a).

119

Dimension 1

5.3.2 Snowflake Model

(dimensions)
Dimension 2 Fact Dimension 3
(dimensions) (measures) (dimensions)

Dimension 4

(dimensions)

Figure 5-2: Star Model

A snowflake model is defined as a relational database model that contains measures,

dimensions and sub-dimensions in a data mart by applying normalization on dimension

tables. A fact table is surrounded by dimension tables directly linked to sub-dimensions

(hierarchies) (Mbala & Van der Poll, 2020a). For example, Figure 5-3 shows a snowflake

with four dimension tables, one fact table and one sub-dimension table (Mbala & Van der

Poll, 2020a).

120

Dimension 1

(dimensions)
Dimension 2 Fact] Dimension 3
(dimensions) (measures) (dimensions)
Dimension 4 Sub-Dim 1
(dimensions) (dimensions)

Figure 5-3: Snowflake Model

The following section presents a medium-sized case study to illustrate the use of the two

models depicted in Figure 5-2 and Figure 5-4, respectively.
5.4 Case Study

We take a snapshot of a problem at a particular time to investigate static aspects of the

system at the conceptual level. The requirements definition is as follows:

Suppose a company is facing some challenges in studying the performance of its sales
department, and the company would like to develop a decision-making support system
to fulfil its business objective. First, however, the system designers need to identify the

objectives, scope and actors implicated in the project to accomplish its business objective.

* Business objective: We assume that the decision-makers and end-users would like
to monitor and analyze the performance of the sales department based on the
product sales in terms of revenue and quantity over a specific period at various

stores.

121

* Scope: The sales department

» Actors implicated: Sales employees (end-users) and decision-makers.

Moving to a requirements specification (Sommerville, 2011; Mbala & Van der Poll, 2020a;

Mbala & Van Der Poll, 2020b), we may assume that the Data warehouse designer has to:

1. Define all entities that may be implicated in the development of the above support system.

2. Describe all attributes for each entity as well as the relationships among them.

Suppose the designer decides on a semi-formal specification via a UML class diagram
containing attributes, relationships, and cardinalities to represent the static aspect of the
above decision-making support system. Next, we present the UML class diagrams
obtained from the business requirement and business objectives from the requirements
definition discussed above for each respective model (Star and Snowflake) using the
OOMD approach since it is based on UML and can provide a good solution for the

development of such systems.

5.5 Star and Snowflake models in OOMD

5.5.1 Star model using OOMD

As previously mentioned, the Star model consists of a fact table and dimension tables,
with all the dimension tables directly related to the fact table. Furthermore, this model
uses the de-normalization principles over all the tables” structures to allow the data

redundancy that facilities query complexity, query performance, and foreign keys join

122

(Mohammed, 2019); that is, none of the tables in a Star is normalized. The Star structure

for our case is depicted in Figure 5-4 (Mbala & Van der Poll, 2020a).

The Star representation from the requirements definition above yields five (5) classes as
dimension tables: Sale, Customer, Store, Date, and Product. Sale is modelled as a composite
class with shared-aggregation relationships with the corresponding dimension tables; the
relationship between the fact table and dimension tables is the aggregation relationship
with cardinalities. Referential integrity constraints are maintained via the surrogate keys

(Mbala & Van der Poll, 2020a).

123

Customer
CustSK Int
CustID Str
Name Str
Surname Str
City Str
Country Str

J>1..*

Store Sale Date
StoreSK Int SalelD Int DateSK Int
StorelD Str CustSK Int Date[D DTime
N.ame Str —<> StoreSK Int <>— Day Int
City Str | 1 Y| prodsK mt |[* 1| Week Int

DateSK Int Month Int
Quantity Int Year Int
1.

Product
ProdSK Int
ProdID Str
Name Str
Category Str

Figure 5-4: Model 1 (Mbala & Van der Poll, 2020a)

5.5.2 Snowflake model using OOMD

The Snowflake model consists of a fact table and dimension tables with sub-dimension
tables. This model adheres to normalization principles to reduce data redundancy.
However, only the dimension tables are affected by the principle to generate the derived

tables called sub-dimension. The fact table is not affected by the principle; all dimension

124

tables in a snowflake are normalized except the fact table (M. Golfarelli & Rizzi, 2018). A
Snowflake model for our case is portrayed in Figure 5-5 (Mbala & Van der Poll, 2020a).

Country
CountrylD Str
Name Str
Ll
Customer *,
i
CustSK Int City
CustID Str
Name Str | 1.* 1 CityID Str
Surname Str CountrylD Str
CityID Str Name Str
1.* —

Date Sale —
DateSK Int SaleID Int Store
DateD DTime |4 « | CustSK Int
Da mt ——<) StoreSK Int <>—* 1 StoreSK Int

y StorelD Str
Week Int ProdSK Int
Name Str
Month Int DateSK Int)
. CityID Str
Year Int Quantity Int
: :
1.*%
Product
Category
1 1 * ProdSK Int 1
CatlD Str ProdID Str
Desc Str Name Str
CatlD Str

Figure 5-5: Model 2 (Mbala & Van der Poll, 2020a)

125

The Snowflake representation in Figure 5-5 consists of eight (8) classes: Sale as the fact table
and Store, Customer, Product and Date as dimension tables and Country, City and Category
as sub-dimensions or hierarchies. A similar aggregation is defined as common
associations between dimension and sub-dimensions tables (Mbala & Van der Poll,
2020a). The fact table is modelled as a composite class having shared-aggregation
relationships with the corresponding dimension tables. The relationship between
dimension tables is common and also known as an association. This representation is
based on referential integrity, as discussed before (Mbala & Van der Poll, 2020a; Mbala &
Van Der Poll, 2020b). The following Section compares the two models - Star and Snowflake

- using items based on their semantical features.
5.6 Framework of Comparison

Model comparison is an endeavour which asks for designating semantic correlations
between items of the two models (Nikiforova et al., 2015; Al-khiaty & Ahmed, 2016;
Mbala & Van der Poll, 2020a). However, the qualitative model comparison is time-
consuming and error-prone owing to differences in design decisions (Al-khiaty &
Ahmed, 2016; Mbala & Van der Poll, 2020a). The requirements in the case study stipulate
that the proposed system should determine all the necessary elements to represent the
system. Therefore, the following semantical features are used to evaluate and compare
both models (refer to Sections 5.5.1 and 5.5.2 above) generated from the requirements

definition:

o Classes and interface distance
o Attributes of the class features

e Relations features

126

Next, a comparative analysis of the two models is performed. It is assumed that the items
needed for the modelling will be generated in light of the end-users and decision makers'
expectations and needs and adherence to software quality principles. Therefore, items
such as classes and interfaces, class attributes, and relations between classes are relevant

when describing these requirements based on their semantical features (Mbala & Van der

Poll, 2020a).

The comparison algorithm used by Mbala & Van der Poll (2020a) was extended to
evaluate and compare the two models. Items that are potentially relevant for detecting

any contradictions, missing or duplicates in the entire system are identified as follows:

As per the list of items identified for the evaluation and comparison, we have three (3)

tables containing respective semantical features for each item.

Table 5-1: Classes and interfaces distances

Criteria Value

When both semantically equivalent models have items with identical

0
names
When both models are semantically equivalent but have items with

0.5

different names
When any one of the models does not have a semantically equivalent

1
class in the other model

We assume a value representing the criteria in Table 5-1. The values assigned to the
distances of each criterion will be utilized in ALGORITHM 5.1. Next, the attributes of the

class features are determined. The features are indicated in Table 5-2 and are: a indicates

127

access (modifier), s indicates a static (modifier), n stands for name, and ¢ indicates the type

(of the attribute).

Table 5-2: Attributes of the class features

Features Criteria Value

Difference between access modifiers of Identical: 0

a .
relevant attributes of the class Different: 1
Identical: 0

s Static modifier flag i
Different: 1
Identical: 0

n Difference between attribute names)
Different: 1
Identical: 0

t Difference between attribute types)
Different: 1

The distances between the features of the attributes of the class are assigned to the first

vector, and the following function determines its length (Len):

Len<a|s|n|

>

Function (1) is defined in ALGORITHM 5.1.

The relation features are considered next as per Table 5-3.

128

Table 5-3: Relation features

Features Criteria Value

Relation source - whether relation into
Identical: O

s the semantically equal class is outgoing Different: 1
ifferent:

in both models

Relation target - whether relation into
Identical: 0

t the semantically equal class is incoming Different: 1
ifferent:

in both models

Identical: O

y Difference between relations)
Different: 1

Identical: 0

m Difference between multiplicities)
Different: 1

The distances between relation features are calculated as a second vector with different

parameters from ALGORITHM 5.1.

Function (2) is used to evaluate the length.

Len<s |t|y|m> (2)

Having compared the identified item pairs, the set of distances between them (to become
a set of values later on) is converted into an n-dimensional model difference vector where
n represents the number of the identified item pairs. However, the final model difference
estimation is a scalar representing the length of the model difference vector (Equation 3).

The calculation is performed in ALGORITHM 5.1.

129

= ?:1’52 3)

i

where x; represents the distance between item pairs.

Finally, a vector comprising the distances between relevant item pairs is constructed as a
function, and its length is evaluated as the resultant difference. Next, we present the

extended algorithm named ALGORITHM 5.1 used for calculating the different lengths.

BEGIN ALGORITHM 5.1

INITIALISATION sum equals O

INITIALISATION distance equals O

INITIALISATION length

/* We Start by checking the item type */

check item type

CASEWHERE item type 1is

/* If the item type is a class or interface then */

class or interface

/* The following loop determines the distance values of the class

or interface found between both models (refer to TABLE 5.1) */

WHILE item types are still available
CASEWHERE pair items is
both then value equals 0
sum = sum + value
half then value equals 0.5
sum = sum + value
diff then value equals 1

sum = sum + value

130

OTHERWISE then value equals 1
sum = sum + value
ENDCASE

/* Assign the distance values of each criterium */

distance = distance + sum
ENDWHILE
/* If the item type is an attribute, then */
attribute
/* Calculate the distances between class attributes of both models

(refer to TABLE 5.2) *x/

WHILE item types are still available
CASEWHERE attribute category is
access modifier
CASEWHERE pair items is
identical then value equals 0
sum = sum + value
different then value equals 1
sum = sum + value
OTHERWISE then value equals 1
sum = sum + value
ENDCASE
static modifier
CASEWHERE pair items is
identical then value equals 0
sum = sum + value
different then value equals 1
sum = sum + value

OTHERWISE then value equals 1

131

sum = sum + value
ENDCASE
name
CASEWHERE pair items 1is
identical then value equals 0
sum = sum + value
different then value equals 1
sum = sum + value

OTHERWISE then value equals 1

sum = sum + value
ENDCASE
type
CASEWHERE pair items 1is
identical then value equals O
sum = sum + value
different then value equals 1
sum = sum + value
OTHERWISE then value equals 1
sum = sum + value
ENDCASE
ENDCASE
/* Calculate function (1) */
distance = distance + sum
ENDWHILE

/* If the item type is a relation then */
relation
/* Calculate the distances between class attributes of both models

(refer to TABLE 5.2) */

132

WHILE item types are still available

CASEWHERE relation category is

relation source

CASEWHERE pair items 1is

identical then value equals 0

sum =

different then value equals 1

sum =

sum + value

sum + value

OTHERWISE then value equals 1

sum =
ENDCASE

relation target

CASEWHERE pair items 1is

sum + value

identical then value equals O

sum =

different then value equals 1

sum =

sum + value

sum + value

OTHERWISE then value equals 1

sum =
ENDCASE

relation name

CASEWHERE pair items is

sum + value

identical then value equals O

sSum

sum +

different then

sSum

sum +

OTHERWISE then

sSum

sum +

value
value
value
value

value

equals 1

equals 1

133

ENDCASE
multiplicity or cardinality
CASEWHERE pair items is
identical then value equals 0
sum = sum + value
different then value equals 1
sum = sum + value
OTHERWISE then value equals 1
sum = sum + value
ENDCASE
/* This 1line below performs the calculation of the

function (2) */

distance = distance + sum
ENDCASE
ENDWHILE
/* Calculate formula (3) which is the square root of the sum of

all squared distances */

do length = (U(distance ** 2))~2
ENDCASE

END ALGORITHM 5.1

ALGORITHM 5.1 calculates the distance between the two models being compared. The
algorithm started with the initialization of some variables. Thereafter, the first loop in
ALGORITHM 5.1 calculates the distance between the type of items of the two classes or
interfaces based on the criteria list (refer to Table 5.1). For example, suppose both items
of class or interface type are identical, then the distance between both items is zero (0).
However, if both class or interface type items are not identical (i.e., they have the same

name but the components have different names), the distance between them is 0.5. Lastly,

134

in the case where both items of class or interface type are entirely different from the name

of the entity or the names of the components, the distance between the items is one (1).

Next, the second loop calculates the distance between the type of items of the two class
attributes according to the list of criteria in Table 5.2. Firstly, the categorization of the
class attribute type items is performed. The comparative analysis process Starts by
checking if the category is the access modifier. If both type items of class attributes are
similar, then the distance is zero (0). On the other hand, if both types of items of class
attributes are different, then the distance between the items is one (1). Finally, the same

principles are applied to the remaining categories.

The third loop calculates the distance between the type of items of the relation based on
the criteria listed in Table 5.3. Similar to the class attributes, the categorization is first
performed to launch the comparison process. For instance, if the category is the relation
source and both types of items of the relation are similar, then the distance between them
is zero (0). In other cases, the distance is one (1). For the rest of the categories, the same
principles are used. Finally, the length is calculated to obtain the number representing

the difference between both models.

The following section presents the results having compared both models after applying

ALGORITHM 5.1.

5.7 Outcome of Comparison

Should any of the class diagram's attributes be absent or an entire class diagram is
missing, all the features of the class's attributes will be set at one (1) and access- and static

modifiers are omitted. In addition, the distance between them is set at zero (0).

135

Formula (4) is used to calculate the length for each item pair using the model difference

of both schemas.

22 x? =,/(307) =17.521~18 (4)

A comparative analysis of the two models is performed on the strength of the items and

features in Table 5-4. The results derived from Formula (4) are shown in Table 5.4.

Table 5-4: Comparison of Item pairs using Model 1 (Star) and Model 2 (Snowflake)

Model 1 Items Model 2 Items Length

Customer Customer 0
Customer.CustSK Customer.CustSK Len((0|0]0|0))=0
Customer.CustID Customer.CustID Len((0|0]0|0))=0
Customer.Name Customer.Name Len((0|0]0|0))=0
Customer.Surname Customer.Surname Len((0|0]0|0))=0
Customer.City - Len((1]1]1|1))=4
Customer.Country - Len((1|1]1|1))=4
- Customer.CityID Len((1|1]1|1))=4

Sale Sale 0
Sale.SalelD Sale.SalelD Len((0|0]0|0))=0

136

Model 1 Items Model 2 Items Length
Sale.CustSK Sale.CustSK Len((0|0]0|0))=0
Sale.ProdSK Sale.ProdSK Len((0|0]0]0)) =0
Sale.DateSK Sale.DateSK Len((0|0]0|0))=0
Sale.StoreSK Sale.StoreSK Len((0|0]0]0)) =0
Sale.Quantity Sale.Quantity Len((0|0]0|0))=0

Date Date 0
Date.DateSK Date.DateSK Len((0|0]0|0))=0
Date.DatelD Date.DatelD Len((0|0]0|0))=0

Date.Day Date.Day Len((0|0]0|0))=0
Date.Week Date.Week Len((0|0]0|0))=0
Date.Month Date.Month Len((0|0]0|0))=0
Date.Year Date.Year Len((0|0]0|0))=0

Product Product 0

Product.ProdSK Product.ProdSK Len((0|0]0|0))=0
Product.ProdID Product.ProdID Len((0|0]0|0))=0
Product.Name Product.Name Len((0|0]0|0))=0

137

Model 1 Items Model 2 Items Length

Product.Category - Len((1|1]1|1))=4
- Product.CatID Len((1|1]1|1)) =4

Store Store 0
Store.StoreSK Store.StoreSK Len((0|0]0]0)) =0
Store.StorelD Store.StorelD Len((0|0]0|0))=0
Store.Name Store.Name Len((0|0]0]0)) =0
Store.City - Len((1|1]1|1))=4
- Store.CityID Len((1|1]1|1))=4

- City 1
- City.CityID Len((1|1]1|1))=4
- City.CountryID Len((1|1]1|1))=4
- City.Name Len((1|1]1|1))=4

- Category 1
- Category.CatID Len((1|1]1|1))=4
- Category.Desc Len((1|1]1|1))=4

- Country 1

138

Model 1 Items Model 2 Items Length
- Country.CountryID Len((1|1]1|1))=4
- Country.Name Len((1|1]1|1))=4
Aggregation(Customer =
Aggregation(Customer = Fact) Len((0]0]0|0))=0
Fact)
Aggregation(Store = Fact) Aggregation(Store = Fact) | Len({(0|0|0]0))=0
Aggregation(Date = Fact) Aggregation(Date = Fact) Len((0|0]0|0))=0
Aggregation(Product = Fact) | Aggregation(Product = Fact) | Len((0[0]0]0))=0
- Association(City & Country) | Len((1|1]1|1)) =4
- Association(Store < Product) | Len((1|1]1]|1)) =4
Association(City &
- Len((1]|1]|1|1)) =4
Customer)
- Association(City & Store) Len((1|1]1|1))=4
Association(Category &
- Len((1]|1]|1|1))=4
Product)

The Star and Snowflake models were modelled as model 1 and model 2, respectively. Table
5-4 shows that the Star model has some missing items with respect to the Snowflake model
in the sense of classes, attributes of the class and relationships features. But, the Star

model has no item contradictions or duplications compared to the Snowflake model. This

139

makes the Star model more appropriate than the Snowflake model for Data warehouse
systems development in terms of complexity and understanding (Mbala & Van der Poll,
2020a). Hence, the Star model resulted in fewer constituents that may reduce complexity;
this is essential, especially when considering a human designer's manual generation of

Data warehouse models (Mbala & Van der Poll, 2020a).

5.8 Chapter Summary

This Chapter focused on selecting the more suitable model between two Data warehouse
models used in the conceptual design phase. We compared the two models on the
strength of an example through an extended framework proposed that uses an algorithm
for comparative analysis. Each model represents an instantiation of the example used.
The set of requirements from the requirements definition used in this Chapter was
derived from a data mart case study of a Data warehouse system for a company's sales
department performance, based on the product sales in terms of revenue and quantity

for a certain period.

The framework devised and used in this Chapter went through two main phases to reach
the primary purpose of this Chapter. The first phase required the representation of the
defined requirements using OOMD models to better understand the use of UML class
diagrams. Then, both models generated in OOMD models were used to evaluate and
compare them to select the more appropriate one for developing Data warehouse

systems.

The evaluation and comparison of the two models identified a list of items needed from
a satisfactory model and related them to the system requirements. These items were
subsequently compared to determine the model more suitable for developing Data

warehouse systems. The Star model was found to be the more appropriate model for

140

developing Data warehouse systems (Mohammed, 2019) because this model results in
fewer components, which in turn promotes ease of use and understanding and, therefore,

facilitate user experience (UX).
The following Chapter addresses the formal modelling of the development of Data

warehouse systems by attempting to formalize the model selected in this Chapter to

investigate the formal specification of the appropriate model.

141

Chapter 6 Formalizing the Star Schema

6.1 Introduction

Previously in this dissertation, we discussed some basic concepts of Data warehouse
systems, object orientation and formal methods paradigms for modelling systems.
Chapter 2 introduces the design of Data warehouse systems and the object orientation
paradigm using UML as the standard modelling language. The challenges that cause
Data warehouse systems to fail and the advantages and disadvantages related to the use
of this paradigm were also identified. Finally, an extended framework was proposed to
address these challenges. In Chapter 3, background literature on formal methods and Z
was provided as an example of formal methods proposing an enhanced framework. The
benefits of using formal methods in specifying software requirements in terms of

precision and safety were also addressed.

We noticed that both object orientation and formal methods have challenges. For
example, the diagrammatic object-oriented method lacks precision (Babar et al., 2020) in
its notations' semantics, which is an essential obstacle in developing critical systems. In
contrast, formal methods are considered arcane, requiring more effort and skills from the
developer. Consequently, most developers are not ready to commit themselves to the use

of FMs (Adesina-Ojo, 2011; Moremedi, 2015).
The integration of both paradigms may be a solution since the limitations of one notation
may be substituted by the other’s notation to obtain an accurate and unambiguous model

of the proposed system (Adesina-Ojo, 2011; Singh et al., 2016). Therefore, besides

142

focusing on producing the formal specifications of the case study used in Section 5.4, this

Chapter seeks to address the following research question raised in Section 1.4.2:

SRQ5: To what extent may formal specification facilitate the development of Data warehouse

systems?

Figure 6-1 below, repeated from Chapter 1 (see Figure 1-1), schematically depicts the

question elaborated above:

Formal Transformation | Static Aspect

Requirements Definition

UML Constructs

DW Star Model

r
|
|
|
|
|
|
|
|
|
|

Formal Model

Formal Specification

Figure 6-1: An Enhanced Framework

The enhanced framework is developed to achieve the integration of both paradigms by
using the appropriate model (Star model) selected in Chapter 5, followed by formal
modelling of the development of Data warehouse systems. This Chapter Starts with a

quick revisit of UML in Section 6.2 and the formal Z specification in Section 6.3. A

143

discussion on the Star model selected as the suitable model for developing such systems
is addressed in Section 6.4. In Section 6.5, the formalization of the Star model is discussed.

The Chapter ends with a summary in Section 6.6.

6.2 A Revisit of UML

Various notations can be used to model a system, and the OMG recognizes UML as a
standard language that is broadly used for object-oriented software development
(Nikiforova et al., 2015; Moura et al., 2015; Reddy & Suneetha, 2021; Shcherban et al.,
2021). The UML class diagram was selected in this work as the best representation of the
static aspects of the system. The OOMD model based on UML semantics is used to
portray the static aspects of Data warehouse systems since UML is viewed as being more

suitable for the system's design (Babar et al., 2020).

As stated by Moura et al. (2015), a class diagram presents a system's static view. In
addition, a class diagram is one of the most used diagrams for the object-oriented
environment to describe structural properties such as classes (Figures 5-4) and objects

(Figure 5-5) (Babar et al., 2020).

6.3 A Revisit of Z

Z is a formal specification language based on a strongly typed fragment of Zermelo-
Fraenkel set theory and first-order logic (Steyn, 2009). Its set-theoretic roots embed
numerous discrete mathematical structures (Bakri et al., 2013; Rodano & Giammarco,
2013). As a result, Z is arguably one of the most successful and widely used formal
specification languages to describe and model computing systems. Furthermore, Z has

formal (denotational) semantics (Bakri et al., 2013).

144

Consequently, in this Chapter, Z is used to specify the static structures of a Star schema
formally and denote a data mart of a Data warehouse system. Based on the discussion in
Section 3.3, the following example shows the declaration of a state schema for a rental

database.

[CUSTOMER, CAR]

_RentalDB
clients : P CUSTOMER

renting : CUSTOMER «— CAR

dom renting < clients

CUSTOMER and CAR are the two given system sets. Rental DB describes the system state,
and for this example, the state consists of two groups, namely clients (set of renters) and
renting (set of pairs that represents the relation existing between customers and their
cars). The predicate part declares that only clients (the renters) may be renting in the
system. The following Section introduces the medium-sized case study, the same one

used in the previous Chapter.
6.4 Case Study

Figure 6-2 repeated from the previous Chapter (refer to Section 5.5.1) represents the Star
model that utilizes constructs familiar to a UML class diagram in terms of classes,
relationships among classes and constraints on the relationships. Figure 6-2 portrays a
selection of the notation available in the Star model of a Data warehouse system, for
example, the use of aggregation (hollow diamond). However, being the definition of a
Data warehouse and not an underlying operational database, the Star model typically
would not utilize simple relationships like association (binary or otherwise) (Mbala &

Van der Poll, 2020b).

145

Next, a discussion of the Star model and its inherent differences with a standard UML

class diagram is presented for one of the underlying operational databases (a data mart).

1. Anadditional class, Sale to maintain the store's various operations, has been added
to the four (4) classes. These are stores, customers, sales at the stores, and the dates
of transactions (sales, etc.) alluded to in the requirements definition described in
Section 5.4.1. In Star-based terminology, a class-like Sale in Figure 6-2 is a fact table,
while the other four are known as dimension tables. It is customary for fact classes
to participate with corresponding dimension classes in aggregation relationships,

as indicated in Figure 6-2 (Mbala & Van der Poll, 2020b).

2. In every dimension class, the Star model defines two special attributes, loosely
indicated by “SK” and “ID”. In traditional (relational or operational) database
terminology, the “ID” attribute would serve as the primary key for the relation
and this requirement is upheld in the four (4) dimension classes (stores, customers,
products, and dates). However, in a data warehousing context, the “SK” attribute
is a system-generated identifier, which is usually defined as an integer by the
system described in Figure 6-2. It is noteworthy that a Data warehouse includes
some data marts or operational databases, and it is possible that, for example, a
specific customer with a unique primary key occurs multiple times in various sales
on the same day. Consequently, the “SK” attribute keeps track of these customer
occurrences, even those that have been deleted, since a Data warehouse also keeps
historical data for business intelligence considerations (Mohammed, 2019). Thus,
the “ID” primary key in the underlying database becomes a common attribute in

the dimension classes from a Data warehouse perspective.

146

3. The Sale class has an aggregation (hollow diamond) relationship with each of the
four (4) dimension classes. In the underlying database(s), such relationships would
mostly be compositions (filled diamonds), e.g., there would be a composition
between Store and Sale, indicating that if a store is destroyed, the sales record for
the such store would be removed from the database. However, since the Data
warehouse also records historical information, the relationship between Store and

Sale is an aggregation (hollow diamond).

147

Customer

Store
StoreSK Int
StorelD Str
Name Str
City Str

CustSK Int
CustID Str
Name Str
Surname Str
City Str
Country Str
1..*
Sale Date
SalelD Int DateSK Int
CustSK Int DatelD DTime
<> StoreSK Int Day Int
* | ProdSK Int Week Int
DateSK Int Month Int
Quantity Int Year Int
1.*
Product
ProdSK Int
ProdID Str
Name Str
Category Str

Figure 6-2: Star Model (Mbala & Van der Poll, 2020b)

In the next subsection, we introduce the case study for which a Star model and

corresponding formal specifications are constructed.

148

6.5 Formalization of the Star model in Z

The following section presents a Z specification in the data mart case study represented
by the system described in Section 5.4.1, leaning toward the established strategy for
constructing a Z specification. In the process of translating a Star model into a Z
specification, the classes in the diagram essentially become Z schemas with additional
restrictions as indicated in the generic version (refer to Section 3.3). However, for the UX,
it is customary to use the same class names for schema names with some change in the

letter face or font.

Similarly, the attribute names are used in the corresponding schema. In line with the
abstract characteristics, the specifier has the freedom to define the attribute types in a
schema as deemed appropriate. The specification below follows the established strategy
for constructing a Z specification (Steyn, 2009; Nemathaga, 2020; Mbala & Van der Poll,
2020b) and the structure suggested by (Nemathaga, 2020) for the combination of Z and
UML.

Following the established strategy for constructing a Z specification, the first step is to
define the basic types used in the specification. Initially, we define six (6) basic types for

the Product class, which are indicated in Figure 6-3.

[PRODSK, PRODID, NAME, PRICE, TYPE, CATEGORY]

149

_Product
id!: PRODSK

prodid: PRODID
name: NAME

price: PRICE

type: TYPE

category: CATEGORY

sales: P Sale /* Set of sales for a product to provide historical information */

Vij:sales «i.id! = j.id! & i=]

Figure 6-3: Z schema representing the Product class

The attributes in the Product class in the Star model are indicated in Figure 6-3. As
discussed in Section 6.4, unique identifiers are generated by the system to distinguish
multiple historical occurrences of an object. In Z, the output is indicated by a “!”
decoration added to the variable name. An additional component, sales, is defined as a
set of Sale instances for a particular product. That has enabled historical information to
be maintained in the Data warehouse. The predicate in the schema specifies that sale

identifiers generated by the system are unique (generating a proof obligation (PO), of

course, for a specification of the such process).

Some information, which is not readily evident in the Product class in the Star model
depicted in Figure 6-2, is explicit in the schema Product in Figure 6-3. For example, it is
not evident that the denotation of attribute PRODSK of an object of type Product in Figure
6-3 is system generated. But since Z explicitly allows for the decoration of variables (a
system-generated output in this case), it is evident that id! in Figure 6-3 is system-

generated and not assigned by the user.

Standard Z has no notation for documentation (comments) inside a schema. However, to
improve the user experience of a schema, we suggest adding documentation as indicated

in the last schema declaration above. Likewise, while it is not customary in Z to provide

150

a (figure) caption for a schema, this may improve the user experience. The Store class in

the Star model necessitates the introduction of further basic types, viz:

The Z schema for the Store class is specified in Figure 6-4.

[STORESK, STOREID, NAME, ADDRESS, QUANTITY, PRODUCT, CITY, COUNTRY]

_Store
id!: STORESK

storeid: STOREID
name: NAME
product: PRODUCT
quantity: QUANTITY
address: ADDRESS
city: CITY

country: COUNTRY

sales: P Sale

7i,j: sales «i.id! = J.id! i =]

Figure 6-4: Z schema representing the Store class

The system generates a unique id! and store sales history is maintained. Some absent
information from the description of the store class in Figure 6-2 was well specified in the
schema (e.g., product, quantity, address, and country).

The Date class in the Star model has the following basic types for its specification:

[DATESK, DATEID, DAY, WEEK, MONTH, YEAR]

The Z schema for the Date class is depicted in Figure 6-5.

151

_Date
id!: DATESK
dateid: DATEID
day: DAY

week: WEEK
month: MONTH
year: YEAR

sales: P Sale

Vi,j:sales eiid! =j.id! & i=]

Figure 6-5: Z schema representing the Date class

The basic types for schema Customer are given below, followed by the schema for

Customer (see Figure 6-6).

[CUSTSK, CUSTID, NAME, SURNAME, GENDER, BIRTHDAY, ADDRESS,
TELEPHONE, EMAIL, CITY, COUNTRY]

_Customer
id!: CUSTSK

custid: CUSTID
name: NAME

sname: SURNAME
gender: GENDER
birthday: BIRTHDAY
addr: ADDRESS
phone: TELEPHONE
email: EMAIL

cit: CITY

cntry: COUNTRY

sales: P Sale

Vi,j:sales eiidl = j.id! & i=]

Figure 6-6: Z schema representing the Customer class

152

The system generates a unique Customer id! and customer sales history is maintained.
Some absent information from the description of the store class in
Figure 6-2 was well specified in the schema (e.g., gender, birthday, address, telephone

and email).

The Z schemas in Figures 6-3, 6-4, 6-5, and 6-6, respectively, show the formalization of
the four (4) dimension classes and the single fact table portrayed in Figure 6-2. In each
case, the system generates a unique identifier for multiple occurrences of objects
maintained for historical purposes. Next, we define the fact table Sale depicted in Figure

6-2 in Z (see Figure 6-7).

_Sale
id!: SALEID

custsk: CUSTSK
datesk: DATESK
prodsk: PRODSK
storesk: STORESK
quantity: QUANTITY

amount: AMOUNT /* Refer to English prose discussion below schema */

customers: P Customer

products: P Product /* A customer may simultaneously buy more than one product */
date: Date

store: Store /* Assuming we are considering one (1) store only */

customers > 1 I* At least one (1) customer is involved in a sale */

products > 1 [* At least one (1) product is involved in a sale */

Vij:sales «i.idl =j.id! &i=]

Figure 6-7: Z schema representing the Sale class

153

Schema Sale represents the formalization of the aggregate object structure, which is the
Sale class depicted in Figure 6-2. As before, the fact table formalized as Sale embeds a
unique identifier generated by the system for the dimension classes. The fact that at least
one product or one customer has to participate in a sale transaction is explicitly specified
in the Z schema by #product 21 and #customer 21, a requirement that could be viewed as
merely implicit in the Star model in Figure 6-2 (the 1...* requirement between Product and
Sale as well as Customer and Sale). Further explanation of the schema content is as

indicated in the documentation.

Next, we turn to the formalization representing the constraint between the sale and
product classes as specified in the schema StarViewStruct (see Figure 6-8). The predicate
constraints depict the view of historical information maintained by the warehouse and
instances that were created in the system but not yet destroyed. For example, the
formalization of the view for the Sale aggregation in Figure 6-2 consists of schema

definitions for Sale, Customer, Store, Date and Product previously specified.

The following paragraphs address the description of Figure 6-8, representing the Z
schema for the class diagram. Figure 6-2 shows that the Sale class forms aggregations with
all four (4) dimension classes. This requirement is captured in the declarations Section in
schema StarViewStruct. The first predicate states that at least one Product instance and one

Customer instance participate in the system.

The second predicate specifies that all valid sales link to the corresponding store, customer,
product, and date objects (i.e., any two sales items are the same Sale instance should they
have at least one part in common). Finally, as per the third predicate, all valid sales (s:
sales) have these as elements of the defined sets (stores, customers, products, and dates) in

the system, i.e., all parts of the Sale instance come from the sets of existing instances.

154

The fourth predicate specifies that the Product instance may be shared among instances
of Sale owing to the many-to-many relationships between the classes and their
multiplicities. Included in this predicate set are constraints: all created instances of the

part of classes should be parts of created aggregate instances.

The uniqueness predicates state that identifiers previously generated by the system for
each dimension class object and each object in the fact class are unique. The Sale schema
provides additional and more explicit information than inferred from the Star model in
Figure 6-2 (e.g., hidden information in class attributes). The specification described in the
schema below may help clarify ambiguities that may lead a system to inconsistencies

during its development.

155

_StarViewStruct
sales: P Sale

customers: P Customer
prodcuts: P Product
stores: PP Store

dates: P Date

[* 1% predicate */
products + D A customers + O
[* 2" predicate */
51,52 : sales | (S1.customers = sp.customers) vV
(si.store = sp.store) Vv
(si1.date = sp.date) Vv
(s1.products = sp.products) = s1 =Sz
/* 3" predicate */
¥ : sales e (s.store €stores A
s.date €dates A
s.customers C customers A
s.products C products)
[* 4™ set of predicates */
V p: products ® (7s:sales ® p &s.products)
V ¢ :customers ® (Fs:sales ® ¢ &s.customers)
V ss:stores ® (Fs:sales ® s.store = ss)
Vv dt: dates ® (Fs:sales ® s.date = dt)
/* Uniqueness predicates */
V $81,552 : stores ® ssi.id = SSp.id < SS1 = SS2
V dty,dty : dates ® dty.id = dto.id < dty = dt>
V C1,C2: customers ® ciid=caid & c1=0C
V p1,p2 : products ® pi.id = p2.id < p1=p2
V S1,52: sales ® si.id =s.id & 51 =57

Figure 6-8: Z schema representing the Star model

The Z specifications, which are written for all the Star model classes, aim to unveil the
hidden information needed by the designer during the system development to clarify

possible ambiguities that could lead to system inconsistencies. For example, it would

156

have been challenging for the company to generate reporting of products per type and
analyze the product sales based on revenue without the declaration or definition of the
amount attribute, which is calculated as the sum of the total prices of all products sold.
Therefore, during the specification, we specified the essential attributes (e.g. Price and
Type attributes for Product class, and Amount attribute for Sale class) that will be needed

to achieve the business purpose and requirements.
6.6 Chapter Summary

This Chapter presented a brief discussion of the Star model of a data warehouse system
to validate the enhanced framework proposed in this dissertation. First, the Star schema
was selected for specifying a Data warehouse case study owing to its straightforward
structure. Thereafter, an enhanced framework was proposed for moving from an
informal specification to an OOMD model using UML structures to a Star model, and
eventually, a Z specification was suggested. Finally, the major purpose of formal methods
(as captured in a formal specification) when assisting designers in specifying and
designing more reliable systems was unpacked. Chief among these is the elicited possible
ambiguities and inconsistencies in non-formal specifications, especially during the

requirements gathering and early specification phases.

Z specification of the static structures captured in the Star model around a data mart was
then presented. Some amendments to the formal specification to facilitate the user
experience of the specification were put forward. Aspects relating to the aggregation of
four (4) dimension classes and one fact class formed part of the formalism. In addition,
implicit (or absent) information, e.g., hidden information in the Star model, was elicited

in the Z schemas, thereby revealing hidden information and eliminating ambiguity.

157

A dissertation summary is provided in the next Chapter, and the research questions
raised in Chapter 1 are addressed. Finally, the Chapter concludes with recommendations

before an outline of future works.

158

Chapter 7 Conclusion

7.1 Introduction

The previous Chapter validated the enhanced framework using a medium-sized case
study for Data warehouse systems. The framework was put into practice, and each item
was implemented. It is envisaged that the enhanced framework would facilitate the

successful development of a Data warehouse system in the conceptual design phase.

This Chapter presents a conclusion of the study, and it discusses the specification
formalisms for Data warehouse systems development as addressed in this dissertation.
Furthermore, a summary of the contribution of this research project is also provided.
Finally, the extent to which the research questions (refer to Section 1.4) have been

answered is considered, followed by opportunities for future work in this area.
7.2 Research Questions and Findings

This research has established that the Star model was preferred over the Snowflake model
owing to its simplicity. In addition, the extent to which formal methods for Data
warehouse systems may mitigate failures within the development of such systems was
also evaluated. This was done to facilitate formal methods within the development of
Data warehouse systems to provide formal modelling of such systems. The following

Section presents the research questions and how they were addressed in this research.

159

SRQ1: What are the requirements elicitation approaches for Data warehouse systems

development?

Chapter 2 discussed various approaches usually used during the design phase of Data
warehouse systems. Three different approaches, namely, the data-driven approach, goal-
driven approach, and user-driven approach, were identified as the major requirements
elicitation approaches to be used while developing such systems. Furthermore, a
description of each approach was provided and the technique that each approach is based
on was identified. As a result, it was established that all these approaches are aimed at
documenting the requirements specification. This work was published in the International
Journal of Digital Information and Wireless Communications (I[DWIC) (Mbala & Van der Poll,
2017).

SRQ2: How may the two (2) prominent requirements elicitation approaches be combined?

In Chapter 2, the goal-driven, user-driven, and data-driven approaches were categorized
into two approach groups, namely the requirement-driven approach group and the
supply-driven approach group. The goal-driven and user-driven approaches were
combined to form the requirement-driven approach group, and the data-driven approach
was used to create the supply-driven approach group. The frameworks of these two
groups were provided, and a hybrid-driven approach was suggested. Work emanating
from this research question was also published in the International Journal of Digital

Information and Wireless Communications (I[DWIC) (Mbala & Van der Poll, 2017).

Therefore, SRQ1 and SRQ2 were answered through the work presented in Chapter 2.

160

The challenge is that the requirements definition obtained from the requirements
elicitation and analysis usually do not model a system satisfactorily owing to their
inherent natural language use, which is susceptible to ambiguities. Hence, the following

questions are posed:

SRQ3: What are the main models used in the development of Data warehouse systems?

In Chapter 5, the requirements definition obtained in Chapter 2 helped to define the
requirements that match the expectations and needs of end-users and decision-makers.
Such a set of requirements was used to model the Data warehouse system in the design
phase through the two most used models, Star and Snowflake, in the specification phase
during development. Finally, a conference paper was synthesized from Chapter 5 and
published at the 18% Johannesburg International Conference on Science, Engineering,

Technology and Waste Management (SETWM) (Mbala & Van der Poll, 2020a).

SRQ4: What is the most suitable model for the development of Data warehouse systems?

The Star and Snowflake models are based on dimensional structure. The OOMD model
was used to transform the dimensional structure used by Data warehouse systems into
UML constructs to represent both models in the conceptual design phase. A medium-
sized case study was used to produce a set of requirements, which were then transformed
into Star and Snowflake conceptual models. Finally, both models were compared, and an
appropriate model was selected by considering the following list of elements of system

requirements:

= (lasses and interface distances

= Attributes of the class features

161

= Relations features

As a result, the Star model emerged as the more appropriate model for developing the
Data warehouse system because it resulted in fewer components, facilitating the use and
understanding of the system. Furthermore, results emanating from Chapter 5 were
incorporated in a conference proceeding of the 18% Johannesburg International
Conference on Science, Engineering, Technology and Waste Management (Mbala & Van

der Poll, 2020a). Therefore, SRQ3 and SRQ4 were answered.

A further specification challenge was identified. Although the requirements definition is
modelled using diagrams (semi-formal notation), such notation is still susceptible to
ambiguities owing to a lack of accuracy in the semantics. For this reason, the following

question was posed:

SRQ5: To what extent may formal specification facilitate the development of Data warehouse

systems?

Regarding SRQ5, a medium-sized case study was used in Chapter 5 to transform the
requirements definition to the Star model (diagrams), thereby providing an opportunity
for formal methods. The specific patterns used to represent the static aspects of the Data
warehouse system were represented in smaller constructs illustrating the use of Z
schemas and schema calculus. Finally, a paper was developed from Chapter 6 and
published at the 18t Johannesburg International Conference on Science, Engineering,
Technology and Waste Management (Mbala & Van Der Poll, 2020b). SRQ5 is, therefore,

answered.

The last research question posed is:

162

SRQ6: How do formal proofs increase confidence in a formal specification?

In Chapter 3, a small real-world case study was used to demonstrate the general use of
Z. A requirements statement was defined to describe the given problem, and Z was used
to specify the static and dynamic aspects of the case. Some typical proof obligations that
arose during the specification of the system's operations were addressed (see Section
3.4.8). The earlier paper published in the International Journal of Digital Information and
Wireless Communications (I[DIWC) (Mbala & Van der Poll, 2017) addressed some proof
obligations, thereby addressing SRQ6. The following Section presents an analysis of the

findings of this research.
7.3 Analysis of Findings

This research investigated the challenges underlying the development of Data warehouse
systems. It explored how possible ambiguities that may lead to system inconsistencies
are clarified by unveiling the hidden information in the requirements during the
specification. The requirement-driven approach and supply-driven approach were
merged to form one approach, called the hybrid approach. The hybrid approach was
used in Chapter 2 to define requirements that meet the end-users” and decision makers’

expectations and demands using an algorithm.

Chapter 5 indicated that the Star and Snowflake models were the leading models
preferred for developing Data warehouse systems. Initially elaborated in natural
language (requirements definition), the case study was successfully translated from
informal notation (natural language) into semi-formal notation modelled with diagrams.
Furthermore, the comparative analysis of both models was successfully performed based
on the semantical features identified. Thus, the Star model was successfully established

163

as the more appropriate model for developing Data warehouse systems in the conceptual

design phase.

Chapters 3 and 6 have also demonstrated that the formal language Z can specify a
proposed system's static and dynamic aspects. Initially elaborated in natural language,
the case studies were successfully transformed from informal notation into semi-formal
and further translated into a specification modelled with schemas. The Z notation
successfully presented the states and operations of the system that were originally

modelled in diagrams.

This research confirmed that diagrams facilitate ease-of-use and understandability of a
specification of Data warehouse systems. However, diagrams often lack accuracy. In
contrast, system designers still experience difficulties in using the Z notation owing to

the mathematical language used in the notation.

7.4 Contributions

The results of this research ought to augment practices in the area of data warehousing
such that the designers would use the presented frameworks when developing their
systems. As a result, designers possessing technical skills in Information Systems can use
the frameworks proposed in this research. However, some knowledge of mathematical
set theory and first-order predicate logic is required for the underlying analyses. The
main user targeted in the area is the designer in the process of developing the Data

warehouse system.

164

7.5 Future work

This dissertation does not address all the problems relating to Data warehouse systems.
Instead, this dissertation focuses on how formal methods can mitigate the failures of Data

warehouse systems in development. Proposals for future work include the following;:

* Data warehouse systems should be investigated and specified for dynamic aspects

(e.g., the extract-transform-load process).

* An opportunity also exists for the non-functional requirements (e.g., the security)

for Data warehouse systems to be investigated and specified.

165

References

Abai, N. H. Z., Yahaya, J. H., & Deraman, A. (2013). User Requirement Analysis in Data
Warehouse Design: A Review. Procedia Technology, 11, 801-806.
https:/ /doi.org/10.1016/j.protcy.2013.12.261

Adesina-Ojo, A. A. (2011). Towards the Formalisation of Object-Oriented Methodologies. MSc

Dissertation, University of South Africa.

Al-Ababneh, M. M. (2020). Linking Ontology, Epistemology and Research
Methodology. Science & Philosophy, 8(1), 75-91.
https:/ /doi.org/10.23756 / sp.v8i1.500

Al-Fedaghi, S. (2021). UML Modeling to TM Modeling and Back. IJCSNS International
Journal of Computer Science and Network Security, 21(1), 84-96.

Al-khiaty, M. A., & Ahmed, M. (2016). UML Class Diagrams : Similarity Aspects and
Matching. Lecture Notes on Software Engineering, 4(1), 41-47.
https:/ /doi.org/10.7763 / LNSE.2016.V4.221

Babar, M., Khattak, A., Arif, F., & Tariq, M. (2020). An improved framework for
modelling data warehouse systems using uml profile. International Arab Journal of

Information Technology, 17(4), 562-571. https:/ /doi.org/10.34028 /iajit/17/4/15

Bakri, S. H., Harun, H., Alzoubi, A., & Ibrahim, R. (2013). the Formal Specification for
the Inventory System Using Z Language. The 4th International Conference on Cloud
Computing and Informatics, 064, 419-425.

Basaran, B. P. (2005). A Comparison of Data Warehouse Design Models. MSc Dissertation,

Atilim University.

Buthelezi, M. P. (2017). Addressing ambiguity within Information Security Policies in Higher

Education to Improve Compliance. MSc Dissertation, University of South Africa.

166

Dahlan, A., & Wibowo, F. W. (2016). Design of Library Data Warehouse Using
SnowFlake Scheme Method: Case Study: Library Database of Campus XYZ.

Proceedings - International Conference on Intelligent Systems, Modelling and Simulation,

ISMS, 0(October 2017), 318-322. https:/ /doi.org/10.1109/I1SMS.2016.71

Di Tria, F., Lefons, E., & Tangorra, F. (2011). GrHyMM: A Graph-Oriented Hybrid
Multidimensional Model. Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6999 LNCS,
86-97. https:/ /doi.org/10.1007 /978-3-642-24574-9_12

Dongmo, C. (2016). Formalising Non-Functional Requirements Embedded in User
Requirements Notation (URN) Models. PhD Dissertation, University of South Africa.

Dos Santos Soares, M., & Cioquetta, D. S. (2012). Analysis of Techniques for
Documenting User Requirements. International Conference on Computational Science
and Its Applications, 16-28. http:/ /link.springer.com/Chapter/10.1007 / 978-3-642-
31128-4_2

El Mohajir, M., & Jellouli, I. (2014). Towards a Framework Incorporating Functional and
Non Functional Requirements for Data Warehouse Conceptual Design. IADIS
International Journal on Computer Science and Information Systems, 9(1), 43-54.

http:/ / citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.640.5590&rep=repl &t
ype=pdf

Elamin, E., Alshomrani, S., & Feki, J. (2017). SSReq: A method for designing Star
Schemas from decisional requirements. Proceedings - 2017 International Conference on

Communication, Control, Computing and Electronics Engineering, ICCCCEE 2017.
https://doi.org/10.1109/ICCCCEE.2017.7867645

Espinasse, B. (2013). Data Warehouse / Data Mart Conceptual Modeling and Design. 4.
Friedrich, W. R., & Van Der Poll, J. A. (2007). Towards a Methodology to Elicit Tacit

Domain Knowledge from Users. Interdisciplinary Journal of Information, Knowledge,

167

and Management, 2(1996), 179-193.

Geer, P. A. (2011). Formal Methods in Practice: Analysis and Application of Formal

Modeling To Information Systems. Business, December, 349.

Giorgini, P., Rizzi, S., & Garzetti, M. (2008). GRAnD: A Goal-oriented Approach to
Requirements Analysis in Data Warehouses. Decision Support Systems, 45(1), 4-21.
https:/ /doi.org/10.1016/j.dss.2006.12.001

Golfarelli, M., & Rizzi, S. (2018). From Star schemas to big data: 20+ years of data
warehouse research. Studies in Big Data, 31(May), 93-107.
https:/ /doi.org/10.1007 /978-3-319-61893-7_6

Golfarelli, Matteo. (2010). From User Requirements to Conceptual Design in Data
Warehouse Design. Data Warehousing Design and Advanced Engineering, 15.
https:/ /doi.org/10.4018/978-1-60566-756-0.ch001

Gosain, A., & Mann, S. (2011). An object-oriented multidimensional model for data
warehouse. Fourth International Conference on Machine Vision (ICMV 2011): Computer
Vision and Image Analysis; Pattern Recognition and Basic Technologies, 8350(March
2020), 835001I. https:/ /doi.org/10.1117 /12.920388

Grant, E. S. (2016). Towards an Approach to Formally Define Requirements for a Health
& Status Monitoring for Safety-Critical Software Systems. Lecture Notes on Software

Engineering, 4(3). https:/ /doi.org/10.18178 /Inse.2016.4.3.244

Gulati, M., & Singh, M. (2012). Analysis of Three Formal Methods-Z, B and VDM.
International Journal of Engineering, 1(4), 1-5. http:/ /www.ijert.org/browse/june-
2012-edition?download=297:analysis-of-three-formal-methods-z-b-and-

vdmé&Start=120

Han, S. A., & Jamshed, H. (2016). Analysis of Formal Methods for Specification of E-
Commerce Applications. 35(1), 19-28.

Hoang, D. T. A. (2011). Impact Analysis for On-Demand Data Warehousing Evolution.

168

{ADBIS} (2), 280-285.
https:/ / pdfs.semanticscholar.org/ae5c/a847a8afc046951e34653fcbd3ade06322cb.p
df

Jindal, R., & Shweta, T. (2012). Comparative Study of Data Warehouse Design
Approaches : A Survey. International Journal of Database Management Systems, 4(1),
33-45. https:/ /doi.org/10.5121/ijdms.2012.4104

Kog, H., Erdogan, A. M., Barjakly, Y., & Peker, S. (2021). UML Diagrams in Software
Engineering Research: A Systematic Literature Review. Proceedings, 74(1), 13.

https:/ /doi.org/10.3390/ proceedings2021074013

Larson, D. (2019). A Review and Future Direction of Business Analytics Project Delivery. 95-
114. https:/ /doi.org/10.1007/978-3-319-93299-6_7

Mbala, I. N., & Van der Poll, J. A. (2017). Towards a Framework Embedding Formalisms
for Data Warehouse Specification and Design. International Journal of Digital

Information and Wireless Communications, 7(4), 200-214.

Mbala, I. N., & Van der Poll, J. A. (2020a). Evaluation of Data Warehouse Systems by
Models Comparison. 18th JOHANNESBURG Int’l Conference on Science, Engineering,
Technology & Waste Management (SETWM-20) Nov. 16-17, 2020 Johannesburg (SA),
316-322. https:/ /doi.org/10.17758 / eares10.eap1120285

Mbala, I. N., & Van Der Poll, J. A. (2020b). Towards a Formal Modelling of Data
Warehouse Systems Design. 18th JOHANNESBURG Int’l Conference on Science,
Engineering, Technology & Waste Management (SETWM-20) Nov. 16-17, 2020
Johannesburg (SA).

Mohammed, K. I. (2019). Data Warehouse Design and Implementation Based on Star
Schema vs Snowflake Schema. International Journal of Academic Research in Business
and Social Sciences, 9(14), 25-38., 9(14), 25-38.
https:/ /doi.org/10.6007 /IJJARBSS /v9-i14 /6502

169

Moremedi, K. (2015). Towards a Comparative Evaluation of Text-Based Specification
Formalisms and Diagrammatic Notations. MSc Dissertation, University of South

Africa.

Moukhi, N. El, Azami, I. El, Mouloudi, A., & Elmounadi, A. (2019). Requirements-based
approach for multidimensional design. Procedia Computer Science, 148, 333-342.

https:/ /doi.org/10.1016/j.procs.2019.01.041

Moura, P., Borges, R., & Mota, A. (2015). Experimenting Formal Methods through UML
(Issue January 2015, pp. 1-13).

Nasiri, A., Zimanyi, E., & Wrembel, R. (2015). Requirements Engineering for Data
Warehouses. 49-64. http:/ /code.ulb.ac.be/dbfiles/NasZimWre2015incollection.pdf

Nemathaga, A. (2020). Formal Methods Adoption in the Commercial World (Issue October).

MSc Dissertation, University of South Africa.

Nikiforova, O., Gusarovs, K., Kozacenko, L., Ahilcenoka, D., & Ungurs, D. (2015). An
Approach to Compare UML Class Diagrams Based on Semantical Features of Their
Elements An Approach to Compare UML Class Diagrams Based on Semantical
Features of Their Elements. ICSEA 2015 : The Tenth International Conference on
Software Engineering Advances, 342, 147-152.
https:/ /doi.org/10.13140/RG.2.1.3104.4889

Oketunji, T., & Omodara, O. (2011). Design of Data Warehouse and Business Intelligence
System (Issue June) [Blekinge Institute of Technology]. http:/ /www.diva-
portal.org/smash/record.jst?pid=diva2:831050

Pandey, S., & Batra, M. (2013). Formal Methods in Requirements Phase of SDLC.
International Journal of Computer Applications, 70(13), 7-14.
http:/ / citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.478.2438&rep=repl&t

ype=pdf

Pandey, T., & Srivastava, S. (2015). Comparative Analysis of Formal Specification

170

Languages Z, VDM and B. International Journal of Current Engineering and
Technology, 5(3), 2277-4106. http:/ /inpressco.com/wp-
content/uploads/2015/06/Paper1082086-2091.pdf

Prakash, N., & Prakash, D. (2018). Requirements Engineering for Data Warehousing.
Data Warehouse Requirements Engineering, May 2003, 19-50.
https:/ /doi.org/10.1007 /978-981-10-7019-8_2

Reddy, G. S., & Suneetha, C. (2021). a Review of Data Warehouses Multidimensional Model
and Data Mining. 9(3), 310-320.

Rizvi, S. W. A, Khan, R. A., & Asthana, R. (2013). Improving Software Requirements
through Formal Methods : A Review. 3(11), 1217-1224.

Rodano, M., & Giammarco, K. (2013). A Formal Method for Evaluation of a Modeled
System Architecture. Procedia - Procedia Computer Science, 20, 210-215.
https:/ /doi.org/10.1016/j.procs.2013.09.263

Saddad, E., El-Bastawissy, A., Mokhtar, H. M. O., & Hazman, M. (2020). Lake data
warehouse architecture for big data solutions. International Journal of Advanced
Computer Science and Applications, 11(8), 417-424.
https:/ /doi.org/10.14569/1JACSA.2020.0110854

Sarkar, A. (2012). Data Warehouse Requirements Analysis Framework: Business-Object
Based Approach. International Journal of Advanced Computer Science and Applications,

3(1), 25-34. https:/ /doi.org/10.14569/1JACSA.2012.030104

Saunders, M. N. K., Lewis, P., & Thornhill, A. (2019). Research Methods for Business

Students. In Researchgate.Net (Issue January). www.pearson.com/ uk

Sekhar Reddy, G., & Suneetha, C. (2020). Conceptual design of data warehouse using
hybrid methodology. International Journal of Advanced Trends in Computer Science and

Engineering, 9(3), 2567-2673. https:/ / doi.org/10.30534/ ijatcse,/ 2020/ 13932020

Shcherban, S., Liang, P., Li, Z., & Yang, C. (2021). Multiclass classification of four types

171

of UML diagrams from images using deep learning. Proceedings of the International
Conference on Software Engineering and Knowledge Engineering, SEKE, 2021-July(May),
57-62. https:/ /doi.org/10.18293 /SEKE2021-185

Singh, M., Sharma, A. K., & Saxena, R. (2016). An UML + Z Framework for Validating
and Verifying the Static Aspect of Safety Critical System. International Conference on
Computational Modeling and Security (CMS 2016), 85(CMS 2016), 352-361.
https:/ /doi.org/10.1016/j.procs.2016.05.243

Sommerville, I. (2011). Software Engineering. In A Brief History of Computing (9th ed,
Issue i). Pearson. https:/ /doi.org/10.1111/j.1365-2362.2005.01463.x

Spivey, J. M. (1998). The Z Notation : A Reference Manual.

Steyn, P. S. (2009). Validating Reasoning Heuristics Using Next Generation Theorem Provers

(Issue January). MSc Dissertation, University of South Africa.

Thenmozhi, M., & Vivekanandan, K. (2014). Data Warehouse Schema Evolution and
Adaptation Framework Using Ontology. International Journal on Computer Science

and Engineering (IJCSE), 6(07), 232-246.

Utami, A., Pratama, B. R., & Widianto, S. R. (2020). Data Mart Design in Bkpp Bandung
Using From Enterprise Models To Dimensional Models Method. JITK (Jurnal Ilmu
Pengetahuan Dan Teknologi Komputer), 5(2), 279-284.
https:/ /doi.org/10.33480/jitk.v5i2.1219

Vaisman, A., & Ziményi, E. (2014). Data Warehouse Systems: Design and
Implementation. In Data Warehouse Systems: Design and Implementation (pp. 1-625).
https:/ /doi.org/10.1007 /978-3-642-54655-6

Yulianto, A. A., & Kasahara, Y. (2020). Data warehouse system for multidimensional
analysis of tuition fee level in higher education institutions in Indonesia.
International Journal of Advanced Computer Science and Applications, 11(6), 541-550.
https:/ /doi.org/10.14569/IJACSA.2020.0110666

172

Zafar, N. A., & Alhumaidan, F. (2011). Transformation of Class Diagrams into Formal
Specification. International Journal Computer Science, 11(5), 289-295.
http:/ / paper.ijcsns.org/07_book/201105/20110542.pdf

Zimanyi, E. (2006). Requirements Specification and Conceptual Modeling for Spatial Data
Warehouses. 4278(October 2017). https:/ /doi.org/10.1007 /11915072

173

Appendix A. Ethical Clearance Certificate

The following ethical clearance certificate was obtained as part of non-human-subjects

research.

174

A e

(O T
w’ sauth alrics

UNISA

UNISA COLLEGE OF SCIENCE, ENGINEERING AND TECHNOLOGY'S
(CSET) ETHICS REVIEW COMMITTEE

11 Novemnber 2021 ERC Reference #: 2021/CSET/SOC/078

MName: Isaac Nkongolo Mbala
Dear Mr Mbala Student =: 58533044
Staff =:

Decision: Ethics Approval from
2021 to 2024

{Mo humans involved)

Researcher(s): Mr Isaac Nkongolo Mbala
2852304 mmylife unisg.ac.za. 061-415-1753

Supervisor [s): Prof John Andrew van der Poll
vdpolja @unisa.ac.za, 084-35830-4008

Working title of research:

Towards specification formalisms for data warehouse systems design

Qualification: MSc in Computing

Thank you for the application for research ethics clearance by the Unisa College of Science,
Engineering and Technology's (CSET) Ethics Review Committee for the abowe mentioned
research. Ethics approval is granted for 3 years for Masters study.

The negligible risk application was expedited by the Collage of Science, Engineering and
Technolegy's (CSET) Ethics Review Committes on 11 November 2021 in compliance with the
Unisa Policy on Research Ethics and the Standard Operating Procedure on Research Ethics
Risk Assessment. The decision will be tabled at the next Committee meeting for ratification.

The proposed research may now commence with the provisions that:
1. The researcher will ensure that the research project adheres to the relevant
guidelines set out in the Unisa COVID-19 position statement on research ethics
attached.

Foele: Seu) W
Teephore: 427 712

175

2. The researchens) will easu-e that the research project adheres to the waluss and
principlas expressed in Lhe LMISAS Policy on Research ELhics.

3. Any adverse pirpumslance drising in Jhe underlakiro of Lhe research projecl thal is
relevart to the ethicality o the study should Be communicaied in writing to the
Ccllege of Science, Engineering and Technalogy's (C3ET} Ethics Review Committee,

4., The researcher{s) will conduct the sTudy according to the methods aid Jrocedures
st aut In the appravead appl catlon.

5. Any changes that can sffert the study-related rsks for the research participants,
particularly in tenns of assurances made with regards to the protection of
participants” privacy and the confidentiality of the data, should be ~sported to the
Committes in writing, accompanied by a progress repor.

B. The rescarcher will ersure Lhal Lhe mesearch arajecl adacres Lo any apaicable
natipnal lagiglztion, professignal codes of conduct, institutional guidelines and
scientific standards relevant to the spedfic fisld of study. Adherence to the fellowing
Saulh Alfcan legislalion is imparlanl, if applicable: Procleclian of Persanal
In‘orrmalion Acl, na 4 of 2003; Childrens acl ne 38 af 2005 and Lhe Nalional Hzallh
Mct, no 61 of 2003,

7. Only de-identifed reseasch data mav be used far seccrdary research purpases in
future on condition that the rescarch objectives are similar to these of the o-iginal
research. Secondary use al idenLliligble human resezrch dala -equire addilional elyics

clearance.

MNote
The refarance romber 2021/C5CT/500078 shauld Be clearly indicafed on all forms of

communicabion with ERe intendsd research participanes, as well 3z witn the Commitize.

Yours sincerely,

= i

{:E?E_h T v
[G- r

Mirs SR Varster
Depuby-Chair o School of Computing Ethics Review Subococmmittes
Ccllege of Science, Engineering and Technology (CSETD

C-rneil: ~worsberid o cise . =cze

125 (0111 4,1 22y

CIERG 25,04, 14 - Decision Lemplale (2] - Spprove ' it L
WOARALLNSIIC T

176

AEN—

Prof. £ Mhkandla

Di-eclor: Schaal of Compuling
Ccllege of Science Engingering and
Technolagy (CSET)

E-mazil: Mransstunisa. ac.ca

Tz (LLL) 670 9103

URLRC 25.04,1 7 - Dedision Lernplale (V2] - Approve

Prof. B Mamba

Execulive Dean

Callege of Science Engineering and
Technelegy (CSET)

E-mail: Mmambzaboit_~ 33.2C.ca

Tal: (4113 670 D230

L wers

& Muckbnsck B
0 392 UNIS:

1 Fazsierie:

WAALLUTYEDLAC Z

177

Appendix B. Language Editing Certificate

This dissertation has been professionally language edited as indicated below.

178

THeEDmnaDocTor!

Pringipal Research Editor & Managing Director TJ Malefetze - PhD, MSc (Wits); BSo Hons (Eszex, UK); HND (Kingston, UK)
COMPANY REGISTRATION NO.: 2017/053873/07; ADDRESS: 48 Acacia Glen, Trefnant Road, Ormonde, 2091, Republio of South Africa;
TEL: « 27 (0) 61 544 2641; E-MAIL: info@TheEditingDoctor.com OR Editing_Doctor®yahoo.com

EDITORIAL CERTIFICATE

This certificate serves to confirm that the manuscript listed below was
edited by one or more professional scientific editors with a PhD. The
University or the student’s supervisor(s) can contact us for a copy of
the edited document that was submitted to theauthor(s).

NManuscript Title:

Towards specification formalisms for data warehouse systems design

Authors:

Isaac Nkongolo Mbala

Date Issued:
03 June 2022

Certificate Number:
04-032022 PVT

TheEditingDoctor™¥** works with researchers from academic and research organizations in the fields
of science, engineering and technology to get their work ready for examination and/or publication in
internationally acclaimed English journals. Our areas of specialization include Editing (i.e., editing
poor syntax, poor general structure, repetition, redundancy, contradiction, or inconsistency) and
Rewriting (i.e., rewriting of phrases, sentences, paragraphs or sections to achieve better flow, more
coherence clearer logic, and more appropriate vocabulary).

179

Appendix C. Turnitin Report

NOTE: The Turnitin report indicates three (3) percentages of 5%, 4%, and 3%
contributing to the overall similarity index of 19%. These three percentages account for
the three conference papers published by the researchers. As may be observed, the other

percentages are all at 1% or lower.

180

TOWARDS S5PECIFICATION FORMALISMS FOR DATA

WAREHOUSE SYSTEMS DESIGN
UGN LITY REPORT
21« 19 64 Ay,
SIMILARITY INDEX INTERNET S2LIRCES PUBLKATIONS STUDENT PAPERS
PRIMARY SOURCES
wWww. adres.Q
InberTyet Saurce rg 5 %

ulr.unisa.ac.za
Intermeet Source

4y

sdiwc.net
Intermeet Source

3%

hdl.handle.net

Internet Source

1%

www.studymode.com

Interret Saurce

<14

"Advanced Data Warehouse Design", Springer

Science and Business Media LLC, 2008
Publlcadon

<1y

B B8 80Aafa

Submitted to University of South Africa

Studant Faper

<1y

it-In-industry.org

Intermet Saurce

<1y

repository.up.ac.za

181

Appendix D. Towards a Formal Modelling

of a Data warehouse Systems Design

The following is one of the publications emanated from the research described in this

dissertation:

* Isaac Nkongolo Mbala and John Andrew van der Poll (2020b): Towards a Formal
Modelling of Data Warehouse Systems Design. 18t Johannesburg Int'l Conference

on Science, Engineering, Technology & Waste Management (SETWM-20) Nov. 16-
17, 2020, Johannesburg (SA).

182

18th JOHANMESBURG Int1 Confesence on Sclence, Engineering, Technology & Waste Management (SETWM-20) Nov. 15-17, 2020 Johannasourg {SA)

Towards a Formal Modelling of Data Warehouse
Systems Design

Isaac Nkongolo Mbala and John Andrew van der Poll

Ahnuc:—ﬁomrmthiutshmm[mpn&dahﬁud—m
appmach that combines the dam-driven approach and
mwnmmmm@ﬁ
mmmmmmmu-udm

warehouse star schema in . We show bow possible ambiputes that
could kead to inconsistencies are clarified m the formal specification.

Egwortdse— Case study, Daia mart, Data warchouse, Formal
methods, Star medel, ML class diazam, Z notations

I INTRODUCTION

The use of dats warehousing implies the development of a
data warehowse built of data mars (Diis) or operatonal
databases with tusiness imellipence (BI) embedded in the
resmltant struchore. Similar to 3 wiew in &n operstions] datsbase
8 data mart may correspondingly be looked upon &= a subset of a
data warehouse, ie it could be one or more of the mndertying
operational datsbases [1]. The design of a data warehouse is
rather different from that of transsctional systems since it s
based on the decision-making support process of 8 company [2]
= [5] and as confirmed by [6], the design process s arguably the
most significant operation in the swocessfol constaction of a
data warshouse system.

Some awhors have suggested UML as a standard approach
for the design of data warehouse systems in order to represent
the nmitidimensional model, made op of entities such as s,
dimensions and sub-dimensions or hierarchies [7] — [9]. UML
has been wsed at the smalysis and desizm phases of system
development and it has been usefil for the desiem of data
warehonse systems using class diaprams. More specific to data
warehonsing the star schems and the snowilake schems (and the
galaxy struchme &5 4 combination of these two) have been used
o mdel the comesponding static aspects of a data warehouse.
Like UML, the star- smd snowflake specifications are
susceptible to smbiguities (cf. nanral langmage) owing to their

Miammscript recaived Octobor 16, 2020, The Univenity of South Afica
{Ufnisa) Fending sspported this work. Eaac Mkomgolo Mbals is am MSc
Candidats in the School of Computing, Usisa, Flosida, South Africa.

Jole Andrew van der Poll is a Ressarch Profssar at the Graduate School of
Busizoss Leadamship (SBLY), Unisa, Midond Scuth Afhica

inherent senvi-formal (disprammatic, graphical eic.) motations
[10].

In an attempt to address some of the ambipuities of
semi-formal notatons, the nse of formal methods (Fhs) has
formal methods do not ensure absolute system comecmess [10],
they assist in enhancing confidence in the cormecmess of the
system by providing foomsl nDotsfions using disces
mathematics based on set theory and formsl logic [11] [12].
These formalisms allow for stong, mambiznous desipns and
consistent models [13], and may be uwsed for amslyzing
specifying and checling the behavior and properties of a system.
that is viewed as a collection of mathematical objects [14]. Fivs
can assist o discover, and thereby reduce ermors that may not be
readily evident in semi-formal specifications [10]. Therefore,
by modelling a dats warehouse star- or snowflake schems
formally, possible concems of ambignities, incomsistencies and
shoricomings may be addressed to swoid Gme-consummineg
proofieading afterwards and costly reworks after system
implementation. Owing to the populsr wse of star- and
snowilake stuchmwes for data warehouse schems desizm the
anthors experimented with both these strochres, and opted for
the uwse of the simpler star soachme to specify a data warehonse
schems This observation agrees with the wodk by [15], in which
the star schema is sugzgested as the better approach to the
smowilake schems fior data warehouse desizn We return to this
aspect in Section I A in this paper.

Mummerous formal-method notations have been developed to
address challenges in soffware specification and desizm amd
some of the prominent ones have been A5M VDR C5P, CC5,
Z and B, {h‘nﬂiﬁmZ[lb] Accordingty, nnﬂm-chbgluﬁr

stmactures to the Z specification lsnemage i proposed.
Consequently, in this paper we adapt the [17] methodology to
formally specify a data warehouse schems sroumd 4 data mart,
msing 3 star notation. The formal notation used is Z [18], based
fmstorder logic and a soongly-ped fegment of
Zermelo—Fraenkel set theory [19].

Following the above infroduction, the remainder of the paper
is organized as follows: A brief litershure review on related
wﬂ: in formalizing UML-based strochures and Z-related

i is given im Section IL followed by the
methodolopy that idenfifies the steps of transforming a data
warehouse star schema to a £ specification in Section I In
Secton IV, the application of a £ specification on a case smdy

Itipes-idiol_orgri0L 1 TPSE/EARESIDEAPT 120268 323

183

1Eth JOHANNESBURG Intl Conference on Scence, Engineering, Technology & Waste Management (SETWM-20) Mov. 16-17, 2020 Joharnesourg {SA)

throuzh a data mart is presented. Conclosions and fiuture work in
this area are presented in Section V.

IOI. LITERATURE REVIEW

Belated work on TML as a disgranmatic modelling notation
to define semi-fiormal specifications to create abstract models of
specific systems is given in [20]. The combination of UML with
Z has been discussed in the literatare by momerous researchers,
ammongst others [21] [11] [22] [10] [23].

[11] report on the specification of an inventory system by
combining UML and E to investizate possible inconsistencies,
improve the melishility of the system =nd dowmscale
shortcomings in the subsequent system development A
systematic process belping to transform and wverifying TML

mmmzwmmammmmm
capiuring hidden semantics of the said sequence diagram is
addressed im [22]. In [10] an enhsnced framework has been
pmoposed for the verification and validation of static aspects of
safety cotical systems for the analysis of UML class diagrams
and the relationships amongz them using Z. In [24] an approach
hasz been smzgested to facilitate the consistency between class-
and sequence dizgrams in 3 mmlt-view modelling context.

Following a comprehensive litersnure survey, we determined
that some suthors have investipated om the one hand | the use of
only formal methods for data warehouse systems [16], while on
the other hand others hawe considered the wse of UML as a
standard approach for the design of data warshouse systems
[25] [7] [8] and recommended the use of 3 methodologzy that
may facilitate the formalization of the class disgram for
dats-warehouse desizn at the concepmal level As indicated
gbove, however, in this paper we Suggest a
star-schems-formal-methods methodology to fadlitate the
desipn of dats marts in dsta warehouse systems, aimed at

eliciting possible ambignities and nconsistencies.

IO METHODOLOGEY

Besearch work om the combinstion of technigues or
approaches has always been an interesting and major ares of
research owing to the inroduction of new technologies and
development of msmtomated soffware tools [22]). Following
[26]"s Exscarch Camom,, tho rossoch philosaphy in this pepar s
both interpretive and positvist - the qualitative Literamome has
een imbterpreted during a8 swreey, and the £ schemss ame
positivist in nature; the spproach to theory development is
inductive since a formal specification is to be developed; the
research choice may be classified as simple mixed (qualitative
star disgram and quamsitstive £ specifications); the stratesy
followed is that of a case smdy (Tefer Section IVY); the time
horizom is cross sectional —a specific period (snapshot) n ime;
and the data collection technigue is that of a Lteranme review.
The overall meta process for developing a Z specification from
3 data warehouse star schemas is given in the following saction.
4 Dara Warehowse Star Schema

According to [27], there exist several models or approaches
applied for the design of data warehouse systems based on
muost often used for the desipn of a data warehouse. These are

hittps:isdolongi 10,1 TTSE EARES 10. EAP1 120253 324

the star schems snowflake schems and galsxy or fact
constellation schems (3 combination of the star and snowflake)
‘it most research conour that the star schema and snowflake
schema are the two most prominent approaches for data
warehouse design, owing to their infloence, andior the
advantages they offer to desigmers. A comparison of the two
approaches (star schema and snowflake schems) has been made
‘based on some parameters and a choice has been made on the
star schema as the preferred one [15]. However, since the star
schema also employs semi-formal notations throwsgh graphical
scmres to describe requirements it is susceptible o
ambipwities. Consequently we define 3 simple methodology to
provide formal notations to star schems specifications in order
‘o address possible ambipuities, leading to Inconsistencies.

Formal Tranybrmation | Strtc dspect

| |

s I "
1R i .5
RN EMJEE.
THHENER 158§
HHEE .y .
Iy — I -
I I

Fig 1 specifies the methodological steps for specifying a data
with a customer requesting the development of a bespoke
sysiem throngh a requirements definition which is wswally in the

sermi-stuciured specification in the form of a set of UML (or
similar notation) disgrams. The static part would then be
‘ranslated into a snowflake- or star schems for the data mans of
‘the warehouse. For this paper the star schems will be used. The
star schems constmcts are next ranslated imbo 3 formal (Z)
B. Formal Z Specification

Z is a formal specification lanzuaze based on a strongly
typed fragment of Zermelo-Fraenkel set theory [19] amd
first-order logic. Owing to its set-theoretic roots, it embeds
mmerons discrete mathematical stoctures [11] [12]. It is
arpuably one of the most successfinl and widely nsed formesl
specification languages to describe and model computing
systems. It furthermore has 3 formal (denotationsl) semamtics
[11]. In the opinicon of the aathors it is, compared to other formal
motations, & simple and elepant specification formalism
Consequently, in this paper, £ is used for the pmpose of
formally specifying the static stochores of & star schems
denoting data warehouss marts.

184

1Eth JOHANMESEURG Irt Conference on Science, Engineering, Technalogy & Waste Management (SETVWM-20) Mov. 16-17, 2020 Johannashurg [SA4)

The basic constuct in a £ dooEment is a
schema its generic format illusirated in Fig 2 [18]:

_ SrhemaName,
Declarations

Prodicates
Fig. 2: Z Schema [18]

A Fschema penerally comsist of three parts: the mame of the
schema imdicated st the top and two pars, neamely, the
declaration part contmining the smate wvarsbles (called
components in ¥ terminology) and a predicate part that contains
a set of predicates which consoains the wariables amd
Ccomponents mentioned in the declaration part [28].

Mext, we imirednce the case stdy for wiich a star schema
and correspondineg formal specification will be constmocted.
IV. (CASE STUDY

A Reguirements Dgfinition

Consider a compamy using 4 data warehouse system that
offers car rental o customers from its different apencies at
wanious locatons. Information on the differemt apencies,
ustomers, cars at the apencies, amd the date at which
ransactions (Teservations, eic) tske place should be
interested in the monetary value of a renting.

Suppose the data warehouse desizner has to specify a data
mart for the above system wutilizring a star schems ss per the

. Dgffe all entities/ofjects that would be imohved in the

dasien qff the aboae car rental support fysrem.

2. Dascribe all attributes for each entifyobiect and the

relationships batwean entities‘oljects.

B. A4 Car Rental System

Fig 3 shows the data warehouse star diagram that may be
generated from the requirements of the case shady I Section
IV.1. The dizpram comsists of five (5) major star classes,
namely, Apency, Car, Costomer, Diate and Fenting, all in line:
with the requirements. Class Fenting is fimther defined as a
(tferminology bormowed from a UML class dispram) with the
other comesponding classes [25]. It should be noted that a data
warehouse star schema utilizes constrocts familiar @0 a UML
class diagram in terms of objects/classes, relationships amons
the star classes, and constraints on the relationships.

The diapram in Fig 3 porrays a selection of the notation
available in a data warehouse star comstuct, eg. the use of
aggrepation (hollow dismond). Being the definition of a data
warehonse and mot an umderiying operations]l dats base, it
typically would mot wiilize simple relationships ke association
(binary or otherwise). This aspect is addressed firther in this
Paper.

Car Agency
CarSK AZSE
Cardly S AzD g:
Modal So Hame: Sir
Type Hr City Sir
Brand S Comtry Sir
i1+ 1
L] L]
Fenting
CustSE Imt
CarsK Imt
AgSE Tt
DateSEK Tt
Amoumi float
. -
Y T
Ciastomer Dats
CustSE It Dia=SE Tt
CustID Sir Datelll Date
Hame 5 Day Tt
Gender 5 Week ot
City Sir Moath Int
Conmiry 5 Viear Tt

Fig. 3: UML Class Diagram for Car Fental System [15]

Further discussion of the star disgram and is inherent
differences with a standard UL class dispram that woold (eg.)
be constmacted for one of the imderlying operstional databases
((diata mart) are in order.

1. An additional class, namely, Fenting to maintsin the
warions operations of the agency has been added to the
fiour (F) classes. These are @Eemcies, CUITOMEFS, Gars 3t
the agencies, and the danes of transactions (reservations,
i) allnded to in the requirements definition above. In
star-hased terminology, a class like Renting in Fig 3 is
Imown as a fact table while the other four classes are
Inown a5 dimension tables. A fact is defined as a
composite class having shared-azsrepation relationships
with the comesponding dimension classes. It s
oustomary for fact classes to participate with

% s . 1 in -
relationships as indicated in the diagram [25].

2. The star schema defines two special atiributes, loosely
Iralicwind by "AK™ xrd "10F in ooy dimorsion cles. [n
traditional (relational) database terminology, the “I0F
atiribate would serve as the primary key for the relation
and this requirement is upheld in the foor (4) dimension
damses. The “SK" stolbute o 2 dam warshousing
conbext is @ system-penerated identifier, nsually defined
a5 an infeger by the system described in Fig 3. Becall that
1 data warehowse inchodes a mumber of data marts ar
operationsl databases and it is possible that, for exanple,

Ivttpesiiod ong/ 1 0L 1 7756/ EARESIDEAP 120285 325

185

18th JOHAMMESEURS Int1 Confesence on Science, Enginessing, Technology & Waste Managament (SETWM-20) Mov. 16-17, 2020 Johannesourg {S4)

a specific customer with 3 unique primary key oooors
nmltple tmes in vanous reorings on the same day.
Comsgountty, fhe “BE™ witribats ieeps. track of thase
Custiomer ocOETences, even those who hawve been
deleted, since a data warehouse also keeps histories for
business imtellipence considerations [15]. From a data
warchouss panpenthe, the “IDM poimery low o the
undertying datsbase then becomes fust 3 nonmal attribute
in the dimencion classes

3. 5till with Fig 3, the Fenfing class has an aggregation
{(hollow dismond) relationchip with each of the four (4)
dimension classes In the mwmderlying database(s), soch
dismomds) e g there would be a8 composition betwesn
Customer and Fenting, indicating that if a astomer
demises, the renting record for soch costomer would be
removed from the datsbase Bwmr since the data

Mext, we present a 7 specification of the star diagram in Fig 3.
. Formally Specifiing the Star Schema in Z

In the process of t g & star diagram into a Z
specification, the classes in the dispram essentially become
schemas with additional restrictions as indicated in the generic
wversion in Fig 2 For the sake of the user experience (IUTX) for the
user of the specification it is customary to use the same class
names for schems names with some change in the letter face or
foot. Simdlarty, the aftfbote names are wsed in the
comesponding schema. In line with the shstract characteristics
of a specification the specifier has the feedom o define the
aftribiges types in a schema as deemed approprate. The
specification below follows the established sirategy (ES) for
constrecting a Z specification [30] as well as the stachme
sugzested by [21] for combining 7 and UL

Following the established stratezy (ES) for constrocting a £
specification, the first step is to define the basic types to bensed
in the specification Initially we define five (5) basic fypes for
the Car class.

These are:

[CARSE, C4RID, MODEL, TYPE, ERANT)

_ O

il : CARSE

carid | CARID

mads © MODET

e . TEPE

frand : BRAND

remtings - P Renting /* Sat of rentings for a car o
provide for historical information */

Wi joremtimgs e fid =jad! B i=j
Fig 4: Z Schena representing the Car Class

Intipes-iidiol orgi 0L 177SEAEARES10.EAPT 120288

The atiributes in the Car class in the star schema are indicated
in Fig 4. As discussed in Section IV B, unique identifiers are
zenerated by the system fo distinguish mmitiple, historical
oonurences of s obdect In Z oolput ia indloshed by o “"
decoration added to the varable name An additional
conmponent, namely, remiings is defined as a set of renting
instances for the particular car. This is done o allow historic
information to be maintained in the data warehouse. The
predicate in the schems specifies that renting identifiers
senerated by system are umigue (Eenersting a PO — proof
obligation of course for a specification of such process).

Some information not readily evident in the Car class in the
star dimpram in Fiz 3, is now explict in schems Car in Fig 4
abowve: Itis not evident that the denotation of atiritnre 4 REE of
an object of type Car in Fig 3 is system generated. B since £
explicitty allows for the decoration of wanables (a
system-generated output in this case) it is evident that id! in Fig
4 is systemr-generated and mot assigned by the wser. This has
Mhammmmgﬂtgﬂmm
of identifiers.

Stamdard Z has no notation for deoumentation {Comments)
inside a schema yet to improve on the user experience of a
schems we suggest adding docomentation as iwdicated in the
last schemes predicate shove. Likewise while it is not costormary
in Z to provide a fizure caption for 3 schema we have done 50,
again to improve on the T for the reader.

The Apency class in the star schems necessitates the
intredinction of fimther basic types, viz:

[4GEE AGID, NAME, CITT, OOUNIRY]
The Z schema for the Agency class is specified belowr

_Agamcy,
id! AGEE

WL joreumes « 0id! =) id! s i=j
Fig. 5 Z Schema representing the Azency Class

T]:E-E}'Siﬂnm a.m:l.qm}aga!:]{ld_ amd hissory for

[DATESE, DATEITD, DAY, WEEE, MONTH, TEAR]
The schema fior Dhade follows next:

WL jorentings « fid!=j id! & i=j
Fig. §: Z Schema representing the: Diate Class

186

The hasic types for schems Cuss
followed by the schems for Customer.

[CUSTSE, CUSTID, NAME, GENDER. CTTY, COUNTRT]

P
are given 3

couniry - COUNTRY

rentings - Remoing

Wi joremimgse Fidl=j id!&i=j

Fig 7: Z Schema represanting the Castomer Class

The Z schemas above show the formslization of the four (4)
dimension classes and the single fact mhle in Fig 3. In each case,
a2 mnique identifier iz genersted by the system to identify
PuIposas.

Mext, we define the fact table Benting in Fig 3 m Z.

Mt ANOTINT ‘th>imﬁmmhﬂrw

cars - Car | ‘Anmmymlhmmﬂyme
maore than ons (1) car *f

custommer | Crestomar

agancy - Agency ™ Assuming we are considering one (1)

agency anly *f

date - Dt

foarrz 1 Ar learr one (1) cor &5 fmvoived i a rentimg */

Wi j:remmere fidl=j id! =)

Fig 8: Z Schema representing the Renting Class

agsregate object strochore which in our case is the the renting
class in Fig 3. As before for the dimension dlasses, the fact table
fommalized as Rermg embeds 8 mmique identifier senerated by
the system The fact that at least one car has fo participate in 8
Tenfing ransation is explicithy specified in the Z schema by #
cars @ 1, respudteionwst Bhat oonald be vidmd il aewely Sinpdiett
in the star disgram in Fig 3 m11..'wmm
and Fenting). Further explanation of the schems confent is as
indicted in the docomentation.

Mext, we b to the formalization representing the constraint
between the renting class and the car class ac specified in the
schems RentaiFewStruc? below. The predicate constraimes
portray the view of historical information maintsined by the
warehonse, bt also instances that were crested in the system bt
not yet destroyed. The formalization of the view for the Bentins

18ih JOHANMESBURS Int1 Confierence on Sclence, Enginessing, Technology & Waste Management (SETWM-20) Mov. 15-17, 2020 Johannesburg (SA)

agsrepation in Fig 3 consists of schema definitions for Rentng,

Agency, Car, Crustormer and Dare previously specified
Schemns Rewmial FiewStruet is specified as:

RanraiFine 5o
renrings (P Remting
cars P Car
customers - P Curiomer
dates - P Dare
agecies - dgency
cars# @ ™ 1® predicate */

* 2= preducate */

Wy, Pz D g | [5 cunomer = ry cfomar) W
{ v, agency =r; agency | v
| ry.date =rp.dase)W
{ 7 £ =r.cms) = r,=7r;

* 3™ predicate */
W TenimgD = (FAOgEnCy & OEeNCiE A
TCRSTONNS & CRSTOMNTS A
r.diare B gdares A
F.CarT i Sars)

* 4% ot of predicates */

Woooars s [reningT = O Fears)

¥ apencies s (@ r - rentings wrasmog=a)

W T CusTomerT e [8 7D rentiES - FCUSTOmE = 05)
W o dmtes w (3 - renmgs »rdme=a)

* Uniguensss predicates */

¥a,. o, dJgemcies e« 3 id=a,0d e 0=
WS, 63 1 CUSIOMRET & oFydd = o5 dd e o =05
¥, d, : dres = d,id=d,d e d,=d;
¥r,,rormianes e rid=r.0d e r=ry

Wi Cxlems w id=cid e =0

Fig 9: Z Schema representing the Class Diagram

As captred in Fig 3, the Renfing class forms azgrepations
‘with all four () dimension classes_ This requirement is captumed
in the daclarations section in schema RewrtalFiewSouct. The 1%
predicate states that at least one Car participates in the system.
The ¥ predicate specifies that all walid rentimgs link to
commesponding agency; customar; car; and daie objects (Le. amy
have at lesst one part in ConmTmon).

Az per the ¥ predicate all wvalid rentings (r - rentings) have
these as elements of the defined sets (apencies, customers, dates
and cars) in the system ., ie. dll parts of the Remfing instance
come from the sets of existing, instances. The 4% predicate sat
specifies that Cor instances may be shared amone instances of
Renting owing to the mamy-to-mamy relationships existing
‘between the classes and their nmitplicities. Incinded in this
predicate set are constraints that all created instances of the
‘part-of classes should be parts of created agpregate instances.
each ohject in the fact class e wigue.

It is evident that schema provides addifonal, and also more
explicit information than mey be infred from the star schema

Ihittpes-iidol_ong/10. 177 58/EARES10.EAP 1120268 32T

187

m Fig 3 This reduces ambimmty that may lead to
inconsistencies fimther on in the desipn of such system

W COMCLUSIONS AMD FUTURE WORE

In this paper, we presemted an overview of a data
warshousing systern. Two prominent stmchmres, namely, the
soowilske and the star schemss were triefly addressed. Owing
1o its simpler stroctore, the star schena was salacted to specify a
dams-warehouse case snxdy. A brief methodology fior movine
from an informsl specification to UML stooctures to a star
schema amd uitimately a £ specification was defined. The major
purpose of formal methods (35 capioed im a formeal
mm)mmdammmmmm

relisble systems was unpacked (Chief among these were
elidting possible ambizuities and inconsistencies in non-formal
specifications, especially during the requirements gathering and
early specification phasas

Mext a spedification of the static stroctures as captured in
the star schems sroumd a3 dats mert was presented Some
amendments o the formal specification to facilismwe T2 for
users of the specification was put foremard. Aspects around the
aggrepation of four () dimension clssses and ome fact class
formed part of the formalizm Tmplicit (or sbsent) information in
the star disgram was elicited o the £ schemas | thereby revealine

Future work in this area may be pursued along 8 mumber of
avemnes: Dhynannc aspects around 3 star schema should be
warehounse snowilske schema as well. It would pronce insighifinl
1o see whether the relative sinoplicity of 3 star schems translates
into a comespondingly simpler Z specification than for a
snowilske strocture The specfication of a view (schems
Remtal FiewSruct) leads to 8 complex schems amnd tool suppont
o investipate simmpler schemas that are logically equivalent to
the said schema shouald be considersd.

REFEREMHCES

m IHM-‘JA.MMMMWFME
Dats Warsd b = The Ird
anmuffdg&nmm(‘ Tuch '_nmd‘ ,"'
Adanagemerss (FCCTI 20471, (1),-1-5—53. 207,

[¥] 5. Maflor, & Shorms and A E Sonl, "Esgeirement Fhcitabion
Tochnimmo: for Dixta Wanhoess Rovioor Papar™ deernariomsl fowrnal af
Emergping Teckmslogy and Adwanced Engincering, (11}, 4364359,
X Eainoved from
biips:fworw essarchgin net'profle’Girish. Sharmordpublicaion/T5582
TRO7_IETAE_1212_B4Timke 010075 100d-300211 000000 pdf

Fl N H'.Z.Ahm,.'l'I'l.TlhlplndA. Dn:—n.ﬂ.'l'lr
in Diata Warshouse Design: A Beview®™. Frooedio T

1, BOL_504, 2013. hitps:! -ﬂm.mg-lﬂ.lﬂ'l&j.p‘nh:y.’ll}l:‘l 12261
& Fl Mohajir and T Jallouli, "Towards a Framowodk

Fonctiomal amd Mom Femctional Baquirossomts

Diesign™. LIS Inrermanional Zowmal on Compuner Scfence

Comcapiaal
vl .rlg'bmu'n'm .S).nm :{I]\. 43—54 RH- Batmowed from
Rt ist pen ndn’ 0.1 1 640 5 550dms

rep litype—pdf
[¥] A Nasio, E. Zimaayi and B Wrembal, “Requircmens I'Mﬁ)f
e Warchoures®. Al 2, ot T8 Eameved
Itp:fi mnhnhmmmﬂlimﬁ
Sysremer, 4{1:1. 3343, 2012, hi]:u;'.':lﬁ.up'lﬂjl!l-‘:ﬁﬂm:liﬂl‘t.‘“ﬂ

[# Incarporating
for Dats Warnboma

hittpes- ol ong 0. 1775 EARES 10 EAPT 1265 328

1Bth JOHANNESBURG Int1 Conference on Science, Enginessing, Technalogy & Waste Management (SETWM-20) Nov. 16-17, 2020 Johannasburg {54

[71 5 Mann "t Orosed Afcdedimenstona! Adfodel
Warehosre with Operarors = 305, 3540, 2000,

[E] WTmWB—,A.K:&—lI{H Ghorals, "™Coml Auromsass
Fnim s dnlroh Ah-qp"' J@MEIS\.

[¥] ¥ Thanouoski md. E W
Evolation and Adaptation Framooemk T Chmbg"'
o an O Sctemoe and Eng: 'ﬂtgrlnl'_".ill__;l MM
2004

[10] M. Singh A E Sharea and R Sazana, ™An UML + Z Framewerk for
Validating

for a Danx

o ol om0
352351, 2016 hitps:Ydof org/10.1016 precs. 201505 243

[11] 5 H Bakri H Iarem, A Alvoubi and K Beakim, "the Formal
Specification for the Syuiem Uhing I Langmage™. The 4ok
Intermanionn Comference on Clowd Compunng amd deformancs, ML
419425, 213,

[1Z] M. Endano and K. Ciammarco A Formal Method for Evahmtion of a
Mﬁyﬁ-w rocadla - Procedie Comgpeser Solence,
20, 200215, 2013, hops:¥dei org10. 10155 procs 201309 b3

[13] F. Vallos-barajas, Liing Liphneciphr Formua Methods fo Model Class
and Ofjecr Dvagrams, 2012, mmlﬂ.ﬂ?&-mllmlmﬂ

[14] A Adecima-Ofm, mf Cijamt-Crrianizad

‘Iﬂi%ﬂ.!ﬂll

", Unlhvareity
Tttpaciiod ong1 0.1 1452072221 207X
N xL 'nuwr
- Biwr

n-ip-nwl-u

Amdﬂm!r Mnh mmmmsms.:ua 1L 253, 2009
‘hitpa-ded cog10.600 NV IAEBS S 0-11 476500
[16] T. Q. Zhao, =Formsn! Deripre of Dars Worchouse and OLAF Syseems =,
. Btrioved from hitpo . massey.ac mxondle 101 TR TIE

Thniversity of South Afiica (Unisa), Soeth Africa, 2013
[1E] L ML Bpdwey. “Thw I Molitide . S Egfeees bt~ Fraotice-thll
i 1992

[19] B “Elhyescmty et Thepory™, Secuicemiby Pavyy Ky, 1977

ritpacded ool 0. 10 16/S009-23 TREDET1114-5

[20] X Duzhie and K. Thahbie, ~Semastic Bnles of UML Specification™.
Froceedings of MUCEET00, 3740, 2008,

[21] M. Shrodf and B E. Francn, "Towands a Forpmaliextion of UML Class
Structeres I ZT. Provecdings Tweane-Fisr deassl Infermanonad

Compuibr Suheary and dpelicatons Comfrance ¥7-
G6-631. 1997, hitps. hqlﬂllmmlmmﬁ?
[ﬂ]N.A.Z:ﬁ' Farmal Specification and Vanfication of Few Comluned
af UML & Dizgrans Sprivger - Arab J 5o Eng, 44,
Tﬂi—m;‘mn‘.\.m ‘ol org/10. 100721336501 5-1559-5
[23] 5. A Han and H Jamshed, =Ansiysin of Formal Mothods for
&)ﬂﬁﬂde—Cﬁm’ml‘nﬁsﬂm F5(1), 1928, 2018,
[25] E EL BMilouds, Y. FL. Anmani and A Iﬂm]n-."ﬂhzh

Specification for Eosoring Comsistemcy in Tiow hwhiicy™
mgwmmaﬂm Teckmodogy, 33
A07-411, 313
[25] & Lojén-msors, "o Werchouse Design with DAL PRD Thesis®.
svarsity of Alicamss, 2007

[26] i Saendors, P Lows, A Thombill and A Bristoor, *Research Methoc
Jor Business Srudenrs™, Poamon, 6% ediiom, 3019, Panon ISEM
OTELISEMETET

ﬂﬂnkmﬂ.mdhwnﬂpm
Anadymer,

[2E] Eamw-wnmmmn
s Heoalth & Stxns Momitonag for Safety-Cotical Soffoar Systams.
lecure Nows on Sofware Engineering, 4(3), MI&

*dod orgy'10. 161 7B/ insa 2006.4.3.244

[28] E ElMElondi, “A Multhvies Formal Modal of The Case Diagrams Using
E Maixtan: Towerds Inprarieg Ponchicmsl Baguimeas Coaliy™-
Journal aff Engincering, Ho, 3018
‘Titpso! dm.-clgh:lpl Yidoiong/10.1 1357201 8/SEH920

[30] B. Potmr, . Sixclair and D0 Til “An Inoodnction o Formal
Specification and Z=, (2! adition), Prantics Hall, 1996,

ricra! Jowmal af

188

16ih JOHANMESBURG Int1 Conference on Science, Engineesing, Technology & Waste Management {SETWIM-20] Nov. 16-17, 2020 Johannesburg {S4)

I'.n.ll: M. lﬂdl i am hﬁcwm(}m
South Africa (UNISA), South Africa. He obixined his
Einshasa [LI'H]EH}. Ha has wodced for 2 slecomes
. fon Sysbam (RIS}
wmmunmu-&-mmmm
charge of Busines: Inteligence, Devslopmant and
Roporting Ha also worked for T Capital Parnars
congpamy s IT Specialist — Sofiwans Enginesr from
2019 to 2020. Ho was in charge of Coding, Testing and deploymant of tho
s coremt focus area s to deberoming the sxbent o witch the use of formmal
methods for dats warshows: nyntens may allecxs Gilews within the decgn.
precess. He is Jocking foraard to do kis PhD in Comprotor scisnos.

Prof Johs A van der Poll chixined a BSc from
the Univenity of Swllenbosch, Sowth Aftica in
1980 and & oo BSc (Compuier Science) n
152, alwo fom Stellevbosch He cbtained an
M5c (Computer Science) Som Unisa (Unihserity
of Sonth Africa) in 1987 mnd 2 PhID im Compratar
Science fom Unisa in 2001, He was smployed in
the Timiza Schonl dcmﬁmn Imm-
il b a £ull B

m#mwmmmt

of tha po
mhhtmﬂmn-lmafh#w

Haiza at tho SHL, an MEF iz rescanchar,
caChioetty 1] Snporringd BeSebied bbsabers acel Diottaiml sttty i

Intipes ol ong/ 1 0L 17758/ EARES10LEAP1 120265 329

189

Appendix E. Permission to Submit

Dear Student

I acknowledge receipt of your recent correspondence and have noted that you intend
submitting your research output for examination. Regarding submission dates the
following rules apply:

If submission takes place after 15 June, the successful student might only graduate
in Autumn of the following year.

e If submission takes place after 15 November, the successful student might only
graduate in Spring of the following year.

e If submission takes place after the 31 January, the successful student will graduate
in Spring, and will have to re-register and pay the full tuition fees.

e If you are not currently a registered student, examination will be delayed until
proof of registration had been submitted by you

Your request for submission has been referred, inter alia, for the appointment of a
panel of examiners and it could take some time. You will be informed of approval of
submission in due course.

In order to avoid any possible delay in having your dissertation examined, kindly
ensure that you comply with all the requirements regarding the following:

. the dissertation and the submission thereof

e the exact wording of the approved title in the correct format on the title page as
indicated in the example attached hereto

e thelimitation of the summary to a maximum of 150 words, as well as at least ten
key terms listed at the end of the summary

e the submission of a declaration, signed and dated by you, including your student
number on the statement, indicating that the dissertation is your own work

Yours faithfully

for THE EXECUTIVE DEAN: COLLEGE OF GRADUATE STUDIES

190

