

TOWARDS SPECIFICATION FORMALISMS FOR DATA WAREHOUSE

SYSTEMS DESIGN

by

ISAAC NKONGOLO MBALA

submitted in accordance with the requirements for the degree of

MASTER OF SCIENCE

in the subject

COMPUTING

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF JOHN ANDREW VAN DER POLL

July 2022

ii

Declaration

Name: __

Student number: __

Degree: __

Exact wording of the title of the dissertation as appearing on the electronic copy

submitted for examination:

I declare that the above dissertation is my own work and that all the sources that I have

used or quoted have been indicated and acknowledged by means of complete

references.

I further declare that I submitted the dissertation to originality checking software and that
it falls within the accepted requirements for originality.

I further declare that I have not previously submitted this work, or part of it, for
examination at Unisa for another qualification or at any other higher education
institution.

(The dissertation will not be examined unless this statement has been submitted.)

____________________ _____________________

SIGNATURE DATE

Isaac Nkongolo Mbala

58533044

MSc Computing

Towards Specification Formalisms for Data Warehouse Systems Design

20 July 2022

iii

Abstract

Several studies have been conducted on formal methods; however, few of these studies

have used formal methods in the data warehousing area, specifically system

development. Many reasons may be linked to that, such as that few experts know how to

use them. Formal methods have been used in software development using mathematical

notations. Despite the advantages of using formal methods in software development,

their application in the data warehousing area has been restricted when compared with

the use of informal (natural language) and semi-formal notations.

This research aims to determine the extent to which formal methods may mitigate failures

that mostly occur in the development of data warehouse systems. As part of this research,

an enhanced framework was proposed to facilitate the usage of formal methods in the

development of such systems. The enhanced framework focuses mainly on the

requirements definition, the Unified Modelling Language (UML) constructs, the Star

model and formal specification. A medium-sized case study of a data mart was

considered to validate the enhanced framework. This dissertation also discusses the

object-orientation paradigm and UML notations.

The requirements specification of a data warehouse system is presented in natural

language and formal notation to show how a formal specification may be drifted from

natural language to UML structures and thereafter to the Z specification using an

established strategy as a guideline to construct a Z specification.

iv

Keywords: case study, data warehouse systems, formal methods, multidimensional

model, object-oriented models, Snowflake model, Star model, UML class diagram, Z

notation.

v

Opsomming

Alhoewel verskeie studies oor formele metodes gedoen is, het min hiervan formele

metodes in die databergingarea, spesifiek stelselontwerp, gebruik. Dit kan aan baie redes

toegeskryf word, soos dat min kundiges weet hoe om dit te gebruik. Formele metodes is

in sagtewareontwikkeling gebruik wat wiskundige notasies gebruik. Ten spyte van die

voordele van formele metodes in sagtewareontwikkeling, is die toepassing daarvan in

die databergingarea beperk wanneer dit met die gebruik van informele (natuurlike taal)

en semiformele notasies vergelyk word.

Hierdie navorsing beoog om te bepaal tot watter mate formele metodes foute kan

uitskakel wat hoofsaaklik in die ontwikkeling van databeringstelsels voorkom. As deel

van hierdie navorsing is 'n beter raamwerk voorgestel om die gebruik van formele

metodes in die ontwikkeling van sulke stelsels te fasiliteer. Die beter raamwerk fokus

hoofsaaklik op die definisie van vereistes, die Unified Modelling Language (UML) -

konstukte, die Star-model en formele spesifikasies. Die mediumgrootte gevallestudie van

'n datamark is oorweeg om die beter raamwerk geldig te verklaar. Hierdie verhandeling

bespreek ook die voorwerpgeoriënteerde paradigma en die UML-notasies.

Die vereiste spesifikasie van 'n databergingstelsel word in natuurlike taal en formele

notasie voorgehou om aan te dui hoe 'n formele spesifikasie van natuurlik taal na UML-

strukture kan verskuif en daarna na die Z-spesifiekasie deur 'n gevestigde strategie as 'n

riglyn te gebruik om 'n Z-spesifikasie te konstrueer.

vi

Sleutelwoorde: gevallestudie, databergingstelsels, formele metodes, multidimensionele

model, voorwerpgeoriënteerde modelle, Snowflake-model, Star-model, UML-

klasdiagram, Z-notasie.

vii

Tshobokanyo

Go nnile le dithutopatlisiso di le mmalwa ka mekgwa e e fomale, fela ga se

dithutopatlisiso tse dintsi tsa tseno tse di dirisitseng mekgwa e e fomale mo karolong ya

bobolokelobogolo jwa data, bogolo segolo mo ntlheng ya thadiso ya ditsamaiso tsa

dikhomphiutha. Go ka nna le mabaka a le mantsi a a ka golaganngwang le seno, go

tshwana le gore ga se baitseanape ba le kalo ba ba itseng go e dirisa. Mekgwa e e fomale

e e dirisitswe mo tlhabololong ya dirweboleta go dirisiwa matshwao a dipalo. Le fa go

na le melemo ya go dirisa mekgwa e e fomale mo tlhabololong ya dirweboleta, tiriso ya

yona mo bobolokelobogolong jwa data e lekanyeditswe fa e tshwantshanngwa le tiriso ya

matshwao a a seng fomale (puo ya tlwaelo) le a a batlang a le fomale.

Patlisiso eno e ikaelela go bona gore a mekgwa e e fomale e ka fokotsa go retelelwa go go

diragalang gantsi mo tlhabololong ya ditsamaiso tsa bobolokelobogolo jwa data. Jaaka

karolo ya patlisiso eno, go tshitshintswe letlhomeso le le tokafaditsweng go bebofatsa

tiriso ya mekgwa e e fomale mo tlhabololong ya ditsamaiso tse di jalo. Letlhomeso le le

tokafaditsweng le tota ditlhokego tsa tlhaloso, megopolo ya Unified Modelling Language

(UML), sekao sa Star le ditlhokego tse di rulaganeng. Go dirisitswe patlisiso ya tobiso e e

magareng ya data mart go tlhomamisa letlhomeso le le tokafaditsweng. Tlhotlhomisi eno

gape e lebelela pharataeme e e totileng sedirwa/selo le matshwao a UML.

Ditlhokego tsa tsamaiso ya polokelokgolo ya data di tlhagisiwa ka puo ya tlholego le

matshwao a a fomale go bontsha ka moo tlhagiso e e fomale e ka lebisiwang go tswa kwa

puong ya tlholego go ya kwa dipopegong tsa UML mme morago e lebe kwa tlhalosong

ya ditlhokego ya Z go dirisiwa togamaano e e ntseng e le gona jaaka kaedi ya go aga

tlhaloso ya ditlhokego ya Z.

viii

Keywords: thutopatlisiso ya tobiso, ditsamaiso tsa polokelokgolo ya data, mekgwa e e

fomale, sekao sa maphatamantsi, dikao tse di totileng sedirwa/selo, sekao sa Snowflake,

sekao sa Star, setshwantsho sa maemo sa UML, tlhaloso ya ditlhokego ya Z.

ix

Acknowledgement

First and foremost, I would like to return all the glory and be grateful to the God

Almighty, the one who allowed all of this to happen, for the strength to keep pushing

and the wisdom to accomplish this project.

I want to express my gratitude to my supervisor, Professor John Andrew van der Poll,

for his advice, guidance, and support in completing this research work dissertation.

Without his aid, this research work would have been too arduous a task for me to

undertake.

I would like to thank the Council for Scientific and Industrial Research (CSIR) and the

Unisa Division of Student Funding (DSF) for providing financial assistance to carry out

this research project.

Lastly, I would like to express my deepest gratitude to the following people: Mrs

Henriette Mufumbi, Saddat Kitengie, Athou Lumami, Clovis Mulala, Innocentia Moleko,

Emmanuel Muzeu, Heritier Akpata, Lebrice Kapenga, Mitterand Bahindwa, Fabrice

Kitengie, Ernelly Nsimba, Felly Kaniki, Christian Kimbobe, Gulith Mboma, Gloire

Monika, Erick Kabakanyi, Mandy Ada, Grace Mayombo, Patricia Mukaramur and others.

Thank you for the encouragement, love and unconditional support.

x

Dedication

This thesis is dedicated to the memory of my lovely dearest father, Ph. D. Elie Donatien

Mulamba (June 1945 – January 2013) and to the memory of my lovely dearest uncle, the

pharmacist Justin Joad Mukendi (1942 – February 2002).

To my dear lovely mother, Mrs Marthe Ntanga, and my lovely dearest brothers and

sisters – Pepin Kapena, Abel Mutombo, Jordan Muanza, Naomie Mpemba and Priska

Ngalula, thank you for the continued support, love and prayers. My special thanks go to

my girlfriend for her patience, unconditional love, and support.

Mukalenga Yepowa nzambi atumbi shibua.

xi

List of Publications

The following publications emanated from this research:

▪ Mbala, Isaac N. and Van der Poll, John A. (2018): Towards a Framework

Embedding Formalisms for Data Warehouse Specification and Design.

International Journal of Digital Information and Wireless Communications (IJDIWC)

7(4), pp. 200 – 214, The Society of Digital Information and Wireless

Communications, 2017 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print).

▪ Isaac Nkongolo Mbala and John Andrew van der Poll (2020a): Evaluation of Data

Warehouse Systems by Models Comparison. 18th Johannesburg International

Conference on Science, Engineering, Technology & Waste Management (SETWM-

20) Nov. 16-17, 2020 Johannesburg (SA).

▪ Isaac Nkongolo Mbala and John Andrew van der Poll (2020b): Towards a Formal

Modelling of Data Warehouse Systems Design. 18th Johannesburg International

Conference on Science, Engineering, Technology & Waste Management (SETWM-

20) Nov. 16-17, 2020 Johannesburg (SA).

xii

List of Acronyms

Term Description

BI Business Intelligence

CSIR Council for Scientific and Industrial Research

CSV Comma-Separated Values

DB Database

DM Data Mart

DSF Division of Student Funding

DW Data Warehouse

ER Entity Relationship

ES Established Strategy

ETL Extract-Transform-Load

FM Formal Method

IoT Internet of Things

JAD Joint Application Design

KPI Key Performance Indicator

MD Multidimensional

MRQ Main Research Question

OCL Object Constraint Language

xiii

Term Description

OLAP Online Analytical Processing

OMG Object Modelling Group

OMT Object Modelling Technique

OOMD Object-Oriented Multidimensional

PO Proof Obligation

RO Research Objective

RQ Research Question

SK Surrogate Key

SRQ Sub Research Question

UML Unified Modelling Language

UX User experience

xiv

List of Figures

Figure 1-1: Problem Statement ... 7

Figure 1-2: The research onion (Saunders et al., 2019) ... 8

Figure 1-3: The structure of the dissertation .. 12

Figure 2-1: DW System Architecture (Oketunji & Omodara, 2011: page 43) 20

Figure 2-2: Data warehouse partitioned by four databases ... 22

Figure 2-3: Complementary Top-down & Bottom-up .. 27

Figure 2-4: Requirement-driven approach ... 29

Figure 2-5: Supply-driven approach ... 30

Figure 2-6: Hybrid-driven approach ... 31

Figure 2-7: A Multidimensional Model (Mbala & Van der Poll, 2017) 34

Figure 2-8: A multidimensional Star schema ... 36

Figure 2-9: A multidimensional snowflake schema .. 37

Figure 2-10: A UML Class representation .. 43

Figure 2-11: A unidirectional association ... 45

Figure 2-12: A bidirectional association .. 46

Figure 2-13: An aggregation association ... 46

Figure 2-14: A generalization association ... 47

Figure 3-1: A UML class diagram of an appointment booking system 67

Figure 4-1: The research onion (Saunders et al., 2019) ... 103

Figure 4-2: Research Process Structure (Summarized by the researcher)........................ 111

Figure 5-1: Evaluation and Comparison Framework (Mbala & Van der Poll, 2020a) ... 115

Figure 5-2: Star Model ... 120

Figure 5-3: Snowflake model .. 121

Figure 5-4: Model 1 (Mbala & Van der Poll, 2020a) .. 124

file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598526
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598527
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598528
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598529
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598530
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598531
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598532
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598533
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598534
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598535
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598536
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598537
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598538
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598539
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598540
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598541
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598542
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598543
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598544
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598545
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598546
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598547
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598548
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598549

xv

Figure 5-5: Model 2 (Mbala & Van der Poll, 2020a) .. 125

Figure 6-1: Enhanced Framework.. 143

Figure 6-2: Star Model (Mbala & Van der Poll, 2020b) ... 148

Figure 6-3: Z schema representing the Product class ... 150

Figure 6-4: Z schema representing the Store class .. 151

Figure 6-5: Z schema representing the Date class ... 152

Figure 6-6: Z schema representing the Customer class .. 152

Figure 6-7: Z schema representing the Sale class .. 153

Figure 6-8: Z schema representing the Star model .. 156

file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598550
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598551
file:///F:/My%20Data/Unisa%202020/Submission%20Files/IN%20Mbala%20-%2058533044%20-%20Dissertation%20v2.1.docx%23_Toc91598552

xvi

List of Tables

Table 2-1: Advantages and disadvantages of techniques .. 27

Table 2-2: UML diagrams types per category .. 41

Table 2-3: Various multiplicities of an association (Adesina-Ojo, 2011) 45

Table 3-1: Descriptions of the given sets of the appointment booking system 68

Table 3-2: Partial operations summary of the appointment booking system 92

Table 5-1: Classes and interfaces distances .. 127

Table 5-2: Attributes of the class features ... 128

Table 5-3: Relation features ... 129

Table 5-4: Items pair’s comparison for Model 1 and Model 2 ... 136

xvii

Table of Contents

Abstract... iii

Opsomming .. v

Tshobokanyo... vii

Acknowledgement .. ix

Dedication ... x

List of Publications .. xi

List of Acronyms .. xii

List of Figures ... xiv

List of Tables ... xvi

Chapter 1 Introduction .. 1

1.1 Background ... 1

1.2 Context and Motivation .. 2

1.3 Problem Statement ... 4

1.4 Research Questions .. 5

1.5 Research Aim and Objectives ... 6

1.6 Research Methodology .. 8

1.7 Significance of the Research ... 9

1.8 Limitations and Delineations ... 10

1.9 Dissertation Structure .. 11

1.10 Chapter Summary .. 14

Chapter 2 Literature Review .. 15

2.1 Introduction .. 15

2.2 Definitions ... 16

2.3 Data Warehouse Systems Concepts .. 18

2.4 Data Warehouse Systems Fundamentals ... 19

2.5 Data Warehouse Systems Design .. 21

2.5.1 Requirements Analysis Phase ... 24

2.5.2 Conceptual Design Phase ... 33

2.6 Object-Orientation Model ... 38

xviii

2.7 Object-Orientation Properties .. 38

2.8 A short history of the Unified Modelling Language ... 40

2.9 Unified Modelling Language Artefacts .. 40

2.10 UML Class Diagrams ... 42

2.10.1 Classes ... 43

2.10.2 Relationships .. 43

2.11 Advantages and Disadvantages of the Object-Orientation Model 47

2.11.1 Advantages of Modelling with UML ... 47

2.11.2 Disadvantages of Modelling with UML .. 48

2.12 Chapter Summary .. 48

Chapter 3 Formal Methods and Z notations .. 50

3.1 Introduction .. 50

3.2 Formal Methods Overview ... 51

3.3 An Overview of Z .. 52

3.3.1 Requirements Statement .. 53

3.3.2 Summary .. 64

3.4 An Appointment Booking System in Z ... 65

3.4.1 Requirements of the Case Study ... 65

3.4.2 Conceptual Model ... 66

3.4.3 Specification Approach .. 68

3.4.4 Operations of the system ... 73

3.4.5 Specification of the System State ... 90

3.4.6 Specification of the Initial State ... 91

3.4.7 Specification Summary ... 92

3.4.8 Occurred Proof Obligations from the Specification ... 94

3.5 Chapter Summary .. 100

Chapter 4 Research Design and Methodology .. 102

4.1 Introduction .. 102

4.2 Research Philosophy .. 104

4.3 Research Approach .. 106

4.4 Methodological Choices .. 107

4.5 Research Strategy ... 108

4.6 Time Horizon .. 109

xix

4.7 Techniques and procedures .. 110

4.8 Research Process .. 111

4.8.1 Content Analysis ... 112

4.8.2 Developing Approach .. 112

4.8.3 Extended Framework ... 112

4.8.4 Enhanced Framework... 113

4.9 Chapter Summary .. 113

Chapter 5 Models Evaluation and Comparison .. 114

5.1 Introduction .. 114

5.2 Object-Oriented Multidimensional Model ... 116

5.3 Logical Design Models .. 118

5.3.1 Star Model .. 119

5.3.2 Snowflake Model ... 120

5.4 Case Study ... 121

5.5 Star and Snowflake models in OOMD .. 122

5.5.1 Star model using OOMD ... 122

5.5.2 Snowflake model using OOMD .. 124

5.6 Framework of Comparison ... 126

5.7 Outcome of Comparison ... 135

5.8 Chapter Summary .. 140

Chapter 6 Formalizing the Star Schema .. 142

6.1 Introduction .. 142

6.2 A Revisit of UML ... 144

6.3 A Revisit of Z .. 144

6.4 Case Study ... 145

6.5 Formalization of the Star model in Z .. 149

6.6 Chapter Summary .. 157

Chapter 7 Conclusion .. 159

7.1 Introduction .. 159

7.2 Research Questions and Findings .. 159

7.3 Analysis of Findings .. 163

7.4 Contributions .. 164

7.5 Future work .. 165

xx

References ... 166

Appendix A. Ethical Clearance Certificate ... 174

Appendix B. Language Editing Certificate .. 178

Appendix C. Turnitin Report ... 180

Appendix D. Towards a Formal Modelling of a Data warehouse Systems Design 182

Appendix E. Permission to Submit.. 190

Chapter 1 Introduction

1.1 Background

The main purpose of this research study is to determine the extent to which formal

methods for data warehouse (DW) systems may mitigate failures that usually occur in

the development of such systems. Furthermore, this study has two secondary purposes.

Firstly, it seeks to facilitate the requirements elicitation and analysis to obtain a set of

requirements, which are presented in Chapter 2. Secondly, it seeks to assist designers to

compare the two main design models and thereafter select the most appropriate model

to be used during the development. This aspect is discussed in Chapter 5.

The formal method specification language used is Z language. Various models are used

to develop data warehouse systems at both the conceptual and logical design phases.

Among the most accepted conceptual design models, the object-oriented

multidimensional (OOMD) model is used to portray the static aspects of data warehouse

systems because it is based on UML semantics, and the use of UML semantics in the

representation of the static aspects of DW systems makes the OOMD model more suitable

for the development of such systems (Babar et al., 2020).

UML constructs are adopted to represent the OOMD models of DW systems as diagrams

at the conceptual design phase. The multidimensional (MD) models that use UML

constructs are translated into Z schemas to clarify possible ambiguities that could lead to

system inconsistencies. The specification formalism is also enhanced by considering

aspects related to user experience. A case study modelled in OOMD is also presented to

strengthen the representation of MD models of DW systems. This Chapter provides an

2

overview of this dissertation's formal methods (FMs) and data warehouse systems. In

addition, the problem statement that incited this research is discussed. Finally, the

research questions that were formulated to address the research problems are outlined.

1.2 Context and Motivation

World technologies are continuously developing, including computer networking, social

media, and the internet of things (IoT) (Reddy & Suneetha, 2021). As a result, information

systems now play a role in almost all areas of human lives. At the same time, databases

supporting these information systems have grown in scale to petabytes (1015 bytes) of

billions of records. These records may be modelled and fashioned to generate useful

information and knowledge that enables and contributes to a seamless business decision-

making process (Babar et al., 2020). However, traditional databases do not meet the

requirements for data analysis intended to support day-to-day operations, and these

limitations may only be overcome by using data warehouse systems (Reddy and

Suneetha, 2021). The role of a data warehouse is to provide strategic information to

decision-makers based on the historical data stored in the system.

Unfortunately, many data warehouse projects fail to meet the business purpose and

requirements because the importance of entire requirements elicitation and subsequent

specification phases are often overlooked (Mbala & Van der Poll, 2017; Moukhi et al.,

2019). Furthermore, the requirements that need to be met during these definition phases

are often inadequate or inconsistent, thus leading to erroneous specifications (Elamin et

al., 2017; Mbala & Van der Poll, 2017).

FMs embody a mathematical approach for facilitating specifications' correctness,

completeness and consistency (Pandey & Batra, 2013; Pandey & Srivastava, 2015). They

3

also assist with the early detection of shortcoming densities in specification, design and

code and thus reduce proofreading costs during the development of systems (Pandey &

Batra, 2013). Using formal methods for specification in the development of data

warehouse systems may provide a precise and unambiguous description of such systems

at the conceptual design phase.

An increasing need for and growth of formal methods for specification has ensured the

creation of many formal method specification languages. Formal method specification

languages rely on set theory and first-order predicate calculus (S. Pandey & Batra, 2013).

Z is one of the formal method specification languages based on set theory and first-order

predicate calculus (Zafar & Alhumaidan, 2011; Pandey & Batra, 2013; Moremedi, 2015).

Z has previously been successfully used to provide unambiguous specifications and

define safety-critical systems (Moremedi, 2015).

UML is an object-modelling language that uses different diagrams to model systems.

UML uses various diagrams at various phases to portray systems. For instance, the

interaction between users and a system is described using use-case diagrams. Class

diagrams are used to represent the static aspect of systems. UML is a high-level

specification language. This research focuses on the lower level that is limited to the use

of class diagrams to represent the static aspect of data warehouse systems.

This research aims to determine the extent to which formal methods may alleviate the

failure that occurs in the development of data warehouse systems using Z notations.

These notations are used for translating the object-oriented multidimensional models into

Z schemas to reduce ambiguities that could lead to inconsistencies during development.

To accomplish this goal, a medium-sized case study modelled in an object-oriented

4

multidimensional model will be used to represent the static aspect of data warehouse

systems.

1.3 Problem Statement

Using the formal specification language Z to develop data warehouse systems can assist

in alleviating failures that occur during development. This is because Z has the potential

to reduce the shortcomings in a system. However, although Z can structure large

specifications for systems with a sequence of operations using schemas (Moremedi, 2015),

it may be arduous to manage specifications for a large system that can generate

correspondingly large specifications (Adesina-Ojo, 2011; Dongmo, 2016). Similarly,

object-oriented multidimensional models may steer to a better understanding and enable

decision-makers to play a significant role in the specification. Still, object-oriented

multidimensional models may also have disadvantages as they allow ambiguities owing

to their inherent use of semi-formal notations that could lead to inconsistencies.

As a result, a need exists for integrating both OMD models and formal methods to obtain

an accurate and clear model of data warehouse systems that would match the business

purpose and requirements expressed by decision-makers. For this goal to be achieved,

we advocate for a notation that can define the described specification problem. This

problem statement can be considered the main research question for developing data

warehouse systems based on the research objectives. To this end, the following Section

outlines the research questions that are aimed at addressing the research objectives.

5

1.4 Research Questions

The following research questions (RQs) have been formulated to define and accomplish

the objectives of this research. In an attempt to define and accomplish the objectives of

this research, a set of research questions (RQs) were formulated. To this end, the main

research question that this research study seeks to answer is:

MRQ: To what extent may formal methods be used to model a data warehouse system in the

conceptual design phase?

The following sub-research questions (SRQs), which are designed to answer the MRQ in

detail, were also formulated:

SRQ1: What are the requirements elicitation approaches for data warehouse systems development?

SRQ2: How may the two (2) prominent requirements elicitation approaches be combined?

SRQ3: What are the main models used in the development of data warehouse systems?

SRQ4: What is the most suitable model for the development of data warehouse systems?

SRQ5: To what extent does formal specification facilitate the development of data warehouse

systems?

SRQ6: How do formal proofs increase confidence in a formal specification?

6

1.5 Research Aim and Objectives

The aim of this research work is to determine the extent to which formal methods may

mitigate failures that occur during the development of data warehouse systems. It is

envisaged that such information will be used to develop a framework for assisting system

designers in developing a conceptual framework model that will help to meet end-users'

and decision makers’ expectations and needs.

To accomplishing the research aim, the following research objectives (ROs) were

developed:

RO1: Examine the literature on data warehouse systems concepts;

RO2: Identify the critical issues that face DW systems during the development;

RO3: Identify the significant problems related to the failures of DW systems during the

development;

RO4: Recommend a framework that may help clarify ambiguities that could lead to system

inconsistencies;

Following the above-detailed research questions, Figure 1.1 schematically portrays what

is further addressed in this dissertation.

7

Figure 1-1 embodies two processes. The first process is the formal transformation process

that represents the static aspects of the system to be developed. It involves requirements

definition, UML constructs, and data warehouse models to achieve representation. The

formal model is the second process, and it formally specifies the system's static aspects

to be developed using formal specification notations.

The following Section introduces the research methodology to elucidate the methodology

used by the researcher to conduct this research.

Figure 1-1: A Proposed Framework

Formal Specification

Formal Model

Formal Transformation | Static Aspect

Requirements Definition

UML Constructs

Data Warehouse Model

8

1.6 Research Methodology

This research used a combination of positivism and interpretive philosophical

paradigms. A mixed research method simple with a case study research strategy, was

applied. A research approach combining the inductive and deductive approaches was

adopted, and a cross-sectional time horizon was used, as depicted in Figure 1-2.

Figure 1-2 presents the research onion developed by Saunders et al. (2019) to portray the

research process. In the case of this research project, the process of the research was as

follows:

Figure 1-2: The research onion (Saunders et al., 2019)

9

To accomplish the aim of this research study, the researcher first needed to identify and

examine the existing ambiguities within the development of data warehouse systems

with a view to determining how these ambiguities occur and how they are becoming a

problem in the development of data warehouse systems. The research onion depicted in

Figure 1-2 is discussed in more detail in Chapter 4.

The researcher has conducted a literature review to identify the major challenges that

contribute to the failure of data warehouse systems during their development. The

process of identifying the challenges included the requirements elicitation and analysis

for erroneous prone. A framework to assist with the requirements elicitation and analysis

is presented in Chapter 2.

The most significant contributor to the failure of data warehouse systems was discussed

further when reviewing data warehouse systems concepts in Chapter 6. Therefore, this

study aimed to develop a framework that may help clarify ambiguities that can lead to

system inconsistencies in the development of data warehouse systems.

The research data were gathered through analyses of academic literature. The researcher

first Started with a literature search to collect background literature on the work achieved

in data warehouse systems development to identify other aspects that this research

project may address. The following Section presents the significance of the research.

1.7 Significance of the Research

The object-oriented multidimensional models portray data warehouse systems at the

conceptual design phase using UML as the standard language (Gosain & Mann, 2011).

The DW system specifications should be accessible to all designers continuously in the

10

data warehouse project. The OOMD models can deliver the specification in a

comprehensible manner, but they are not considered rigorous enough, and may generate

lengthy specifications when used in large projects (Gosain & Mann, 2011; Moremedi,

2015).

The Z language can yield a specification that is concise and unambiguous. The schema

notation is utilized to decompose large specifications into smaller pieces and portrays

each piece individually. However, the Z language requires rigorous training and practical

experience before achieving the benefits (Moremedi, 2015).

It is for this reason that this research is intended to determine the extent to which formal

methods may mitigate failures that occur during the development of data warehouse

systems by helping clarify ambiguities that can lead to inconsistencies in such systems.

Multidimensional models specified in class diagrams using UML constructs will be

transformed into Z notations to indicate to what extent a Z language may depict a UML

specification. The Z notation also specifies a medium-sized case study modelled in

OOMD.

1.8 Limitations and Delineations

The researcher found some ambiguities that designers faced during the development of

data warehouse systems that needed some attention to be improved and anticipated

devising a way to alleviate those ambiguities. The researcher noted that the creation of

data warehouse systems depended on the choice of the development technique or

approach selected by a designer, which is based on either user requirements or data

requirements that is either in natural language or diagrams (or tables), both of which are

susceptible to multiple interpretations leading to inconsistencies.

11

The above led the researcher to further investigate these inconsistencies due to

ambiguities. After determining the extent to which ambiguities existing in the

development can be alleviated, a framework was suggested to address the existing

ambiguities. The ambiguities comprised inadequate or inconsistent requirements in the

specification of DW systems requirements that could lead to the diminution of clarity of

the system. However, one of the research's limitations is that a single researcher has

conducted the study owing to the study being a dissertation.

The scope of this research is limited to the design of data warehouse systems in the

conceptual design phase. Hence, other levels such as the extraction-transformation-

loading (ETL) (Dahlan & Wibowo, 2016; Reddy & Suneetha, 2021) are not discussed in

this dissertation. The following Section provides the dissertation structure.

1.9 Dissertation Structure

This dissertation consists of seven (7) Chapters, including this Chapter. The main

contributions of the dissertation are in Chapters 2, 5 and 6. Each Chapter, excluding this

one, Starts with an introductory Section and concludes with a Chapter summary. The

structure of the dissertation is summarized in Figure 1-3.

12

Chapter 1 presents the introduction and background of the study, which is the basis upon

which this study is grounded. This Chapter also presents the research problem, research

questions, aim and objectives, methodology, limitations and delineations, and the

significance of the research.

Chapter 2 introduces the background literature on concepts related to data warehouse

systems before presenting a framework for requirements elicitation and definition of data

warehouse systems development.

Chapter 1: Introduction of the Study

Chapter 2: Literature Review

Chapter 3: Formal Methods and Z notation

Chapter 4: Research Design and Methodology

Chapter 7: Conclusion and Future Works

References

Appendices

Chapter 5: Models Evaluation and Comparison

Chapter 6: Formalizing the Star Schema

Figure 1-3: The structure of the dissertation

13

Chapter 3 is a literature study on formal methods and Z notation. This Chapter also

presents a small case study that shows how Z works in the general case of a system

specification. Lastly, typical proof obligations that arise from Z specifications are

presented.

Chapter 4 delivers the research methodology applied in this research project, namely the

research approach, strategy, design, and data collection and analysis techniques.

Chapter 5 represents a medium-sized case study modelled in object-oriented

multidimensional models to illustrate Star and snowflake schemas mostly used to design

DW systems based on the same set of requirements at the logical design phase.

Furthermore, the Chapter evaluates data warehouse system models through a model

comparison approach to select a suitable model based on semantical features for

developing a DW system.

Chapter 6 illustrates how UML constructs adopted to represent the object-oriented

multidimensional models are translated into Z structures using schemas to specify the

system. Finally, it is worth noting that this Chapter shows how to define data warehouse

systems in the conceptual design phase.

Chapter 7 answers the research questions outlined at the beginning of the dissertation.

In addition, this Chapter shows the extent to which the research questions denoted in

Chapter 1 are answered. Furthermore, the Chapter outlines the direction for future works

and concludes the research study.

14

1.10 Chapter Summary

This Chapter addressed the background of the study, the research problem, aim and

objectives. It also highlighted the significance of the research before outlining the

questions of the research as well as the limitations and delineations.

The study's focus area was presented with a declaration of the problem details, and the

research significance supports the necessity to conduct this research. Furthermore, the

research methodology was discussed to show the methods adopted by the researcher to

conduct this research.

The following Chapter presents the literature review on the concept of data warehouse

systems development as well as the framework that lays the foundation for eliciting and

analyzing the business purpose and requirements.

15

Chapter 2 Literature Review

2.1 Introduction

The previous Chapter provided the background and the motivation for this research, the

problem statement, research questions, research aim and objectives, the research

significance, research methodology, limitations and delineations, as well as the layout of

the dissertation.

This Chapter reviews the literature related to Data warehouse systems. Further, a

discussion on object orientation and UML is introduced. The following research

objectives (ROs), which were initially listed in Section 1.5, are also discussed in detail:

RO1: Examine the literature on Data warehouse systems concepts;

RO2: Identify the critical problems that face DW systems during the development; and

RO3: Identify the significant issues related to the failures of DW systems during the development.

Furthermore, this Chapter seeks to address the following research questions, which

appear for the first time in Section 1.4:

SRQ1: What are the requirements elicitation approaches for Data warehouse systems

development?

SRQ2: How may the two (2) prominent requirements elicitation approaches be combined?

16

The layout of this Chapter is as follows. This Section provides essential information about

the relevant literature related to this research. In addition, it gives theories about Data

warehouse systems that cover the research objectives. Some key terms and Data

warehouse systems concepts are defined in Sections 2.2 and 2.3, respectively. After

presenting the Data warehouse systems fundamentals in Section 2.4, Section 2.5 is

focused on Data warehouse systems design. The model and properties of object-

orientation are discussed in Sections 2.6 and 2.7, respectively. Following a brief discussion

on the history of UML in Section 2.8, Section 2.9 discusses the UML artefacts relevant to

the software specification. Section 2.10 presents the UML class diagram. Before

concluding the Chapter with a summary in Section 2.12, the advantages and

disadvantages of the object-orientation model are highlighted in Section 2.11.

2.2 Definitions

Definition 2.2.1

A Data warehouse is a system that collects and merges data periodically from various

sources within a dimensional or normalized data store. It is made available to end-users

so they may comprehend and use it. In addition, it keeps historical data for many years

for business intelligence or other analytical activities (Oketunji & Omodara, 2011; Dahlan

& Wibowo, 2016; Mohammed, 2019). A Data warehouse is considered the core

constituent of business intelligence (BI) that describes the information analysis to enhance

and optimize business decisions and performance (Yulianto & Kasahara, 2020).

17

Definition 2.2.2

Business intelligence is the distribution of precise critical information to the relevant

decision-makers within an essential timeframe to sustain efficient decision-making

(Oketunji & Omodara, 2011). It is a data-driven process that amalgamates data storage

and collection with knowledge management to supply input into the business decision-

making process to allow organizations to improve their decision-making process (Larson,

2019).

Definition 2.2.3

A Data mart (DM) is a subset of a Data warehouse that stores historical data in an

electronic repository that does not involve the organization's daily operations. Instead,

the historical data used in the Data mart are usually applied to a specific area of the

organization (Oketunji & Omodara, 2011; Larson, 2019; Utami et al., 2020).

Definition 2.2.4

A fact table is the main table thought of as the focus of interest for the decision-making

process used in a dimensional model to store the numerical performance measurements

of the business resulting from a business process within a single Data mart (Oketunji &

Omodara, 2011; Espinasse, 2013; Mbala & Van der Poll, 2017).

Definition 2.2.5

Dimension tables are axes of analysis for the decision-making process. Dimensions

contain many attributes of textual type to describe the business. Dimensions are always

18

related to the fact table. They are the entry points into the fact table (Oketunji & Omodara,

2011; Mbala & Van der Poll, 2017).

The following Section examines and addresses the literature on Data warehouse systems

concepts.

2.3 Data Warehouse Systems Concepts

Data warehousing is the process of gathering data intended to be stored in a managed

database in which data are subject-oriented and integrated, time-variant and non-volatile

for decision-making support (Dahlan & Wibowo, 2016; Larson, 2019; Mohammed, 2019;

Babar et al., 2020; Reddy & Suneetha, 2021). Data warehousing is a good approach for

transforming operational data into essential and reliable information to sustain decision-

making. The process of Data warehousing consists of extracting data from various

heterogeneous data sources to clean, filter, transform and store these into a common

structure that is easy to access and use for BI and other analytical activities (Oketunji &

Omodara, 2011).

In the world of Data warehouse systems development, Bill Inmon and Ralph Kimball are

the two great known authors who created different techniques to address the

development of Data warehouse systems. Bill Inmon suggested a top-down technique

that tackled the development of Data warehouse systems, starting with the extraction-

transformation-loading (ETL) process, which works from external data sources to build

a Data warehouse (Mbala & Van der Poll, 2017). In contrast, Ralph Kimball tackled the

development of Data warehouse systems by applying the well-established bottom-up

technique that commences with the same process (ETL) but this time for one or more

Data marts separately (Mbala & Van der Poll, 2017). Most practitioners of DW systems

19

usually apply one of the two techniques to devise their DW systems. (Mbala & Van der

Poll, 2017; Reddy & Suneetha, 2021).

Reddy and Suneetha (2021) stated that a Data warehouse is a large repository of

integrated data obtained from multiple sources in an organization for the specific

purpose of data analysis (Reddy & Suneetha, 2021). On the other hand, a Data warehouse

is defined as “a subject-oriented, integrated, time-variant and non-volatile collection of

data in support of management’s decisions” (Dahlan & Wibowo, 2016; Larson, 2019;

Mohammed, 2019; Babar et al., 2020; Reddy & Suneetha, 2021).

By “subject-oriented”, a Data warehouse focuses on analyzing and modelling data for

decision-makers rather than concentrating on an organization’s day-to-day transaction

processing operation. By “integrated”, a Data warehouse is modelled using data from

varied, heterogeneous databases such as relational flat files and databases. By “time-

variant”, the Data warehouse aims to store data for historical purposes. The time-variant

requests save several copies of the basic details of different timeframes. Finally, “non-

volatile” means that changes, insertions, or deletions are no longer made after loading

data into a Data warehouse. Consequently, a Data warehouse is recognized as one of the

most complex information systems, and numerous complexity coefficients describe its

maintenance and design (Oketunji & Omodara, 2011; Sekhar Reddy & Suneetha, 2020).

The following Section presents the fundamentals of Data warehouse systems.

2.4 Data Warehouse Systems Fundamentals

One of the main functions of Data warehouse systems is to conduct concise analyses to

assist decision-makers with strategic information and improve organizational

20

performance (Abai et al., 2013; Reddy & Suneetha, 2021). Building a conventional

operational system requires considering not only the requirements for performing the

company operations automatically but the analytical requirements carrying the decision-

making process must also be considered (Nasiri et al., 2015; Mbala & Van der Poll, 2017).

According to Saddad et al. (2020) and Utami et al. (2020), a Data warehouse system

comprises data marts. All components utilised for the access, development and

maintenance of this system are presented in Figure 2-1.

The architecture of a Data warehouse is portrayed in Figure 2-1, showing the main

components involved in constructing such a system. The above architecture

encompasses four (4) main components: data sources, staging, Data warehouse, and

end-users. The data sources component involves the collection of data from different

Data Sources

Operational

system

Operational

system

Flat files

Staging area

DM1

DM2

DM3

Data Warehouse End Users

Analysis

Reporting

Mining

Figure 2-1: DW System Architecture (Oketunji & Omodara, 2011: page 43)

21

sources (traditional databases, comma-separated values (CSV) files, and others). The

staging component is the process that extracts, transforms and loads the data into the

warehouse. The Data warehouse component contains different small Data warehouses

called data marts that are individually seen as subsets of a Data warehouse put together

to compose a DW system. Finally, the end-users component allows access to the

information stored in the warehouse using online analytical processing (OLAP)

applications.

In a data warehousing project, numerous metadata types exist, for example, information

about the data sources, the structure and semantics of the Data warehouse, the tasks

executed in the construction, and the maintenance and access of a Data warehouse. Two

main phases are mostly involved in implementing a Data warehouse system: conceptual

design and requirements analysis (El Mohajir & Jellouli, 2014; Mohammed, 2019).

A conceptual view of the system is firstly defined based on the user requirements,

followed by the ETL process for data acquisition using the related data sources and,

eventually, the decision-making process using the database technology and other ways

of accessing data for analysis purposes (Oketunji & Omodara, 2011). The following

Section introduces the design of Data warehouse systems.

2.5 Data Warehouse Systems Design

A Data warehouse may also be defined as linking some operational databases with the

decision-making process added to the resultant structure. Since a data mart is viewed as

a subset of a Data warehouse, which is faster to build than a full DW (Utami et al., 2020),

a data mart is considered one of the operational databases within the Data warehouse.

Subsequently, the following notation in Definition 2.5.1 is used to define a Data

22

warehouse, assuming that various databases do not include common elements when

correctly normalized, apart from foreign-keys matching (Mbala & Van der Poll, 2017):

Definition 2.5.1

 𝑛
 𝐿𝑖𝑛𝑘 𝐷𝐵𝑖 , where
 i = 1

 (∀i)(∀j) (1 ≤ i, j ≤ n ⦁ i ≠ j ⇒ 𝐷𝐵𝑖 ⋂ 𝐷𝐵𝑗 = ∅)

The following example illustrates Definition 2.5.1.

EXAMPLE 2.5.1

Suppose a Data warehouse includes four (4) linked databases (DB1, DB2, DB3, and DB4).

Since a Data warehouse is viewed as a partition of individual databases, it may be

represented diagrammatically, as indicated in Figure 2-2 (Mbala & Van der Poll, 2017):

Although Data warehouse systems are similar in various phases to any software

DB1

DB2

DB3

DB4

Figure 2-2: Data warehouse partitioned by four databases

23

development system, a declaration of different activities that ought to be performed

related to the requirements collection, design and implementation within an operational

platform, among other activities, are demanded.

The development process of a Data warehouse system commences by identifying and

gathering user requirements, followed by the design of the dimensional model and,

finally, the testing and maintenance. This development process requires the analytical

requirements supporting the decision-making process to be captured, and such

requirements are not easy to elicit and define.

El Mohajir and Jellouli (2014) and Mbala and Van der Poll (2017) have stated that the

requirements analysis and the conceptual design phases are major phases within such a

system's design. According to Jindal and Shweta (2012) and Mbala and Van der Poll

(2017), the most important stage in developing a Data warehouse is the design phase.

The Data warehouse systems design is essentially based on supporting the company's

decision-making process to facilitate the analytical activities (El Mohajir & Jellouli, 2014;

Nasiri et al., 2015). However, the design of these systems remains different from the

conventional or traditional operational systems that provide data to the Data warehouse

(El Mohajir & Jellouli, 2014; Nasiri et al., 2015; Reddy & Suneetha, 2020).

The challenges that used to cause the failure of many Data warehouse systems in the past

were that these systems attempted to provide strategic information from operational

systems, and the requirements analysis phase was often overlooked in the design process

(Mbala & Van der Poll, 2017; Moukhi et al., 2019). Based on these reasons, over 80% of

Data warehouse systems do not meet the end-users and decision-makers' expectations

and needs (Elamin et al., 2017; Mbala & Van der Poll, 2017).

24

A realisation of a set of stages is claimed to develop a Data warehouse system, namely

the requirements analysis phase, conceptual design phase, logical design phase and

physical design phase (El Mohajir & Jellouli, 2014; Reddy & Suneetha, 2021). The

following Sections elucidate the context of requirements analysis and conceptual design

that is taken into account as the two main phases in the design of DW systems (Mbala &

Van der Poll, 2017).

2.5.1 Requirements Analysis Phase

Requirements analysis plays a significant role in Data warehouse systems design, having

a major influence on making decisions throughout the implementation of Data

warehouse systems (Abai et al., 2013; Moukhi et al., 2019; Reddy & Suneetha, 2020).

However, the analysis phase of user requirements still lacks a standard approach on

which designers can rely to Start the design of their systems, making the design of such

systems very complex (Soares & Cioquetta, 2012; Moukhi et al., 2019). The purpose of

requirements analysis is to detect which knowledge is helpful for decision-making by

exploring the user requirements and expectations in user-driven and goal-driven

approaches and by checking the validity of operational data sources in a data-driven

approach (El Mohajir & Jellouli, 2014; Sekhar Reddy & Suneetha, 2020).

The requirements analysis phase guides designers and other practitioners to disclose the

necessary elements of the multidimensional model (facts, measures and dimensions)

required to assist in calculating and manipulating future data. The multidimensional

model has an essential effect on the success of Data warehouse systems (Abai et al., 2013;

Mbala & Van der Poll, 2017).

25

Various approaches have been used in the course of Data warehouse systems design,

leaning on both (Top-down and Bottom-up) techniques aforementioned, namely the

data-driven approach, goal-driven approach, user-driven approach and mixed-driven

approach (Hoang, 2011; Jindal & Shweta, 2012; Abai et al., 2013; El Mohajir & Jellouli,

2014; Nasiri et al., 2015; Reddy & Suneetha, 2020). These approaches are described briefly

below.

✓ The data-driven approach, called the supply-driven approach, uses the bottom-up

technique and generates subject-oriented business data schemas by only leaning on

the operational data sources and disregarding business goals and decision-makers'

requirements.

✓ The goal-driven approach that leans on a top-down technique enables information

generation, such as Key Performance Indicators (KPIs) of principal business areas

based only on business objectives and processes by overlooking data sources and

user requirements.

✓ The user-driven approach is similar to the goal-driven approach because it leans on

the top-down technique. However, this approach allows for yielding analytical

requirements translated by the dimensions and measures of each subject by

neglecting business purposes and data sources.

However, these three primary above-mentioned approaches have their advantages and

disadvantages (Mbala & Van der Poll, 2017). The user-driven approach begins with a

detailed agreement of the requirements and expectations of the users, which gives it

numerous advantages, such as enhancing productivity, improving the work quality,

26

support and training costs, and increasing general user satisfaction (Mbala & Van der

Poll, 2017).

The correct elicitation of user requirements remains a primary challenge, and many

techniques, such as the use of Joint Application Design (JAD) sessions (Friedrich & Van

Der Poll, 2007; Mbala & Van der Poll, 2017), were put forward. Hence, a mixed-driven

approach that combines two or all three main approaches was proposed by Sekhar Reddy

& Suneetha (2020). They aim to obtain the “best result” that may meet the requirements

and expectations of end-users and decision-makers (Mbala & Van der Poll, 2017).

The Data warehouse systems design is fundamentally based on requirement-driven and

data-driven approaches. The requirement-driven approach is also known as the demand-

driven or analysis-driven approach. The data-driven approach is also named the supply-

driven or source-driven approach. The data-driven approach aims to produce a

conceptual schema through a re-engineering process of the data sources by neglecting

the contribution of the end-users.

In contrast, the requirement-driven approach aims to yield a conceptual schema solely

based on requirements formulated by the end-users and decision-makers (Di Tria et al.,

2011; Mbala & Van der Poll, 2017; Sekhar Reddy & Suneetha, 2020). Eventually,

combining the requirement-driven and data-driven approaches gives an

analysis/source-driven approach (refer to Figure 2-3) (Mbala & Van der Poll, 2017):

27

Table 2-1 introduces the advantages and disadvantages of approaches grouped by

technique (Mbala & Van der Poll, 2017).

Table 2-1: Advantages and disadvantages of techniques

Technique Approach Advantages Disadvantages

Top-down User-driven

Goal-driven

Demand-
driven

Analysis-
driven

Requirement-
driven

The DW provides

coherent

dimensional data

seen through the

data mart.

It is accessible

from a Data

warehouse to

It is not flexible to the

requirements change

during the

implementation.

It is highly exposed to the

risk of failure.

Figure 2-3: Complementary Top-down & Bottom-up

 DW

 Source-driven

 Supply-driven

 Data-driven

 Bottom-up

Top-down

 Requirement-driven

 User-driven

 Demand-driven

 Goal-driven

 Analysis-driven

 DW

28

Technique Approach Advantages Disadvantages

reproduce a data

mart.

Bottom-up Data-driven

Source-driven

Supply-driven

Data Mart is less

exposed to the

risk of failure.

It facilitates the

return on

investment and

leads to concrete

results quickly.

The data view for each

data mart is narrowed.

The redundant data

penetration within each

data mart.

2.5.1.1 Requirements-driven Approach

The development of the conceptual schema within the requirement-driven approach is

based on user requirements and business requirements. The organizational objectives

and requirements, which systems of a Data warehouse are expected to address, sustain

the decision-making process that comprises the requirements needed for the conceptual

schema. Therefore, the information gathered serves as a basis for the initial Data

warehouse design development (Zimanyi, 2006; Mbala & Van der Poll, 2017).

Figure 2-4 portrays the analysis-driven approach framework with all the relevant phases.

29

2.5.1.2 Supply-driven Approach

The conceptual schema development in the supply-driven approach leans on the data

available in the operational systems. This approach aims to identify multidimensional

models that may be conveniently implemented over legacy operational databases (data

marts). However, an exhaustive analysis of these databases is conducted to extract the

necessary elements to represent facts, measures, and dimensions. The unveiling of these

elements conveyed to an initial Data warehouse schema can correspond to various

analysis objectives (Zimanyi, 2006; Mbala & Van der Poll, 2017).

Figure 2-5 depicts the supply-driven approach framework with all the considered steps.

Document requirements specification

Model business processes

Determine

processes for

accomplishment of

goals

Specify services

or activities

Identify users

Define, refine and prioritize goals

Determine analysis demands

Detail user needs

Figure 2-4: Requirement-driven Approach

30

2.5.1.3 Hybrid-driven Approach

The hybrid-driven approach is the approach that amalgamates the two approaches

mentioned above that can be used in parallel to get the best set of requirements that may

meet the expectations and needs of end-users and decision-makers (Zimanyi, 2006;

Mbala & Van der Poll, 2017). The requirements mapping operation occurs while facts,

measures and dimensions are identified during the decisional modelling and mapped

over entities within the source schema (Giorgini et al., 2008; Mbala & Van der Poll, 2017).

The framework of the hybrid-driven approach is presented in Figure 2-6.

Identify

operational

systems

Apply derivation

process

Document

requirements

specification

Figure 2-5: Supply-driven Approach

31

From all the above-discussed approaches, the critical step to be considered is the

requirements definition step, which allows the documentation of all the information

obtained from the previous step. This step includes the business purposes and

requirements expressed in more detail by the end-users and decision-makers. Before

reaching this last step, a crucial step called the matching process needs to be performed

to match the two sets of requirements obtained through the top-down and the bottom-

up approaches. The extended ALGORITHM 2.1 (Mbala and Van der Poll, 2017) executes

the matching process by merging the two data sets of requirements that address a

software requirements elicitation (SRE).

Supply-driven

Identify operational

systems

Apply derivation

process

Requirement-driven

Identify users

Determine demands

analysis

Matching process

Requirements definition

Figure 2-6: Hybrid-driven Approach

32

BEGIN ALGORITHM 2.1

INITIALISATION

structured data index (i) is set to 1

unstructured data index (j) is set to 1

structured data length is set to m

unstructured data length is set to n

structured data set (S) is set to ∅

unstructured data set (U) is set to ∅

END INITIALISATION

BEGIN

/* Structured data set is the arbitrary union of all the individual

structured data sets */

END

BEGIN

/* Unstructured data set is the arbitrary union of all the

individual unstructured data sets */

END

/* Merge the two data sets into two separate sets, S and U. The

operator ⋂ denotes a distributed set-theoretic intersection. */

 m

 S = ⋃ Si

 i = 1

 n

 U = ⋃ Uj

 j = 1

33

C = S ⋂ U

END ALGORITHM 2.1

The purpose of ALGORITHM 2.1 is to execute the matching process that helps to

reconcile the two sets of requirements to obtain a set of requirements that meets the

expectations and needs of the decision-makers and end-users. The reconciliation of the

two sets of requirements, S and U, is obtained by merging the requirement- and supply-

driven approaches by matching common information between unstructured and

structured data. These requirements sets are non-homogenous and in different formats.

For example, one may contain structured data (supply-driven approach), and the other

set may contain unstructured data (requirement-driven approach) obtained through

incomplete and often inconsistent requirements expressed by end-users and decision-

makers.

The following Section presents the conceptual design phase, which is the other major

phase within the design of Data warehouse systems.

2.5.2 Conceptual Design Phase

Although various research works on the design of Data warehouse systems consider

mostly the logical and physical designs of these systems, the essential foundation of

building a Data warehouse is to develop a formal, complete, abstract design that is well

documented and thoroughly achieves the requirements. This phase helps represent the

essential elements within the multidimensional model after defining or specifying

requirements (Mbala & Van der Poll, 2017).

34

The conceptual design phase assists in developing a conceptual schema that meets the

functional requirements documented and gathered from the requirements analysis phase

to achieve the end-users and decision-makers’ needs and expectations (El Mohajir and

Jellouli, 2014; Mbala & Van der Poll, 2017). There are many accepted models in the

conceptual design phase, namely the dimensional fact model, multidimensional entity-

relationship (ER) model, Star ER model and object-oriented multidimensional model

(Sekhar Reddy & Suneetha, 2020). In addition, in the logical design phase, snowflake,

Star, and fact constellation schemas are known (Reddy & Suneetha, 2021).

According to Reddy and Suneetha (2021), the multidimensional model is proposed as the

dimensional modelling technique to store historical data that requires a huge data space

in facts, measures, and dimensions form. Figure 2-7 depicts the multidimensional model

for the Data warehouse systems.

Figure 2-7 indicates that there might be many facts containing measures linked to several

dimensions containing different attributes. For example, according to Mbala and Van der

Poll (2017; 2020a), a Star model is a multidimensional model with one fact table in the

middle and linked to other dimension tables. On the other hand, a snowflake model is a

multidimensional model where one fact table is centered and linked to other dimension

tables related to sub-dimension tables or hierarchies.

Figure 2-7: A Multidimensional Model (Mbala & Van der Poll, 2017)

Facts – table

1… n

Measures

Dimensions – table

1… n

Attributes

35

The following car rental company example illustrates the generic multidimensional Star

and snowflake model in the logical design phase:

EXAMPLE 2.5.2

Suppose a car rental company wants to study the performance of a rental department by

analyzing the fact renting in terms of the amount measure. Figures 2-8 and 2-9 represent

the current case study into the multidimensional Star and snowflake models,

respectively.

36

Figure 2-8: A Multidimensional Star Schema

Fact - Renting

CarSK

AgencySK

DateSK

ClientSK

Amount

Dim - Date

Year

Month

Week

Day

DateSK

Dim - Cars

CarSK

idCar

Price

Type

Brand

Dim - Agency

AgencySK

idAgency

Country

City

Dim - Client

ClientSK

idClient

Name

Country

37

This research focuses on the object-oriented multidimensional model in the conceptual

design phase, as the object-oriented model provides a good solution for designing

systems at the conceptual design level (Gosain & Mann, 2011). Moreover, the OOMD

model is more suitable to model such systems as it is based on UML semantics (Babar et

al., 2020). The following Section introduces the object orientation model that a system

may apply for the modelling.

Figure 2-9: A Multidimensional Snowflake Schema

Fact - Renting

CarSK

AgSK

DateSK

ClientSK

Amount

Dim - Date

Year

Month

Week

Day

DateSK

Dim - Agency

AgSK

idAgency

idCountry

City

Dim - Client

ClientSK

idClient

Name

idCountry

SubDim - Country

idCountry

name

Dim - Cars

CarSK

idCar

Price

Type

idBrand

SubDim - Brand

idBrand

Name

38

2.6 Object-Orientation Model

Object orientation is a model of software development that sees a system as a collection

of collaborating objects that models a real-world entity and captures the system's

feedback on its environment (Adesina-Ojo, 2011). The Unified Modelling Language was

broadly approved as a standard object-oriented modelling language for the design of

software (Moura et al., 2015; Singh et al., 2016; Al-Fedaghi, 2021; Koç et al., 2021). As

recognised by Al-Fedaghi (2021) and Shcherban et al. (2021), UML is a standard

modelling language for depicting software systems design.

The primary construct in object-oriented modelling is the object, which puts together the

data and behaviour. Adesina-Ojo (2011) indicates that an object is an abstraction of a

system component that comprises states and behaviours or methods. States of an object

are descriptive characteristics defined by the current values of its attributes. Behaviours

of an object are actions performed on attributes to change the state.

A group of objects sharing the same attributes, behaviours and semantics is called a class.

A class is used to represent a type of object (what it will include, how it will be created

and how it will work) by capturing the system's glossary. Two or more classes in the same

system may collaborate, sending and receiving messages. The object-orientation

properties that a system may abide by are presented in the next Section.

2.7 Object-Orientation Properties

It is essential to follow good software engineering practice in the course of the system

implementation for the system design's traceability and the system's flexibility and

39

extensibility. As observed by Adesina Ojo (2011), the following number of attributes

characterized below may differentiate other models from a model that has been

modelled, devised and implemented within the object-oriented model:

• Inheritance is an important concept used to apply the idea of the reusability of

objects. A new class type can be specified or defined by extending a previously

existing class description with some new features. For example, a class person

(also known as the parent) can be defined with essential functionalities of a person,

and a new class named client (also known as a child) can be derived from it with

a few modifications. The major interest of the inheritance is the ability to extend a

class to access and use its parent's data and functionalities by assuring that one

copy of data and behaviours exists.

• Abstraction is a concept that usually focuses on essential aspects of the system

while overlooking details by declaring any behaviours of a class without

providing any definitions of the behaviours’ functionality. However, this concept

requires any classes with an abstract method to be extended to a new class that can

implement the method declared abstract.

• Encapsulation, also called information hiding, is the concept that isolates the

external aspects of an object accessible to other objects from the internal

implementation details. This concept requires that access to attributes be allowed

only through the behaviours of the class to reach a high level of data

independence. The access levels to attributes or behaviours can be classified as

private, protected, and public. Any aspects of a class with a private level of access

are not visible to other classes with which it is communicating. On the other hand,

any aspects of a class marked with the public as the level of access are visible to

40

other classes they are collaborating with. Eventually, any aspects of a class with a

protected level of access are only visible to the derived class that extended it.

• Polymorphism also means the same method that may behave differently on

different objects. Other objects can use the same method in different ways. A class

(parent) method must be declared abstract, and derived classes (child) can define

this method differently, keeping the same name as in the parent class to implement

this concept.

The following Section presents a brief history of UML approved as the de-facto

modelling language for object-oriented systems (Shcherban et al., 2021).

2.8 A short history of the Unified Modelling Language

The object modelling technique (OMT) is an object modelling language for the modelling

and devising software developed by a group of individuals (Rambaugh, Booch and

Jacobson) to develop object-oriented systems and support object-oriented programming.

The UML has been released to standardize object-oriented modelling notations (Reddy

& Suneetha, 2021). Further contributions have been made by large companies such as

IBM, Microsoft, and Unisys with release version 1.0 (Adesina-Ojo, 2011; Moura et al.,

2015). The UML depicts the unification of the Booch and OMT methodologies.

2.9 Unified Modelling Language Artefacts

Many notations may be utilized to model the system. One of them is UML, which the

object management group (OMG) acknowledged as an industry standard, and is also

regarded as the most famous and pervasive graphical modelling notation for object-

41

oriented software development (Nikiforova et al., 2015; Moura et al., 2015; Reddy &

Suneetha, 2021).

UML is a language used for visualizing, defining, organizing, and documenting a system

to be created. Many diagrams are used to model a system with UML and there exist 12

types of diagrams that may be used to perform the documentation, allowing each of them

to model a system in different views. These diagrams are clustered into three categories:

structural, behavioural, and model management (Koç et al., 2021). Table 2-2 lists all the

UML diagrams according to their category (Koç et al., 2021).

Table 2-2: Types of UML diagrams per category

Structural Diagram Behavioural Diagram
Model Management

Diagram

1. Object Diagram

2. Class Diagram

3. Component

Diagram

4. Deployment

Diagram

5. Use Case Diagram

6. Activity Diagram

7. Communication

Diagram

8. Sequence Diagram

9. State Machine Diagram

10. Models Diagram

11. Package Diagram

12. Subsystems Diagram

UML diagrams are utilized to model business processes and systems specifically; class

diagrams play a prominent role in the design phase, for example, mission-critical systems

(Singh et al., 2016; Sekhar Reddy & Suneetha, 2020; Babar et al., 2020). However, since

this research focuses on the design of systems, which in this case is the Data warehouse

at their conceptual and logical phases, this work explicitly explores class diagrams as the

42

suitable diagrams to be used for the representation of Data warehouse systems at these

phases.

Class diagrams are the most common diagrams used in software development projects

for modelling the application domain and structural aspects using classifiers and

relationships as their building blocks (Moura et al., 2015; Babar et al., 2020). Further

discussions about other diagrams are omitted from this research because they are beyond

the scope of this research work.

Although UML has the most popular and expanded graphical modelling notation for

object-oriented software development, practically all the UML diagrams still do not have

formal semantics for modelling a system (Moura et al., 2015; Reddy & Suneetha, 2021).

Furthermore, UML introduced the object constraint language (OCL) invented by IBM to

express the rules and semantics of a UML model that combines the natural language and

logic to overcome some UML limitations in terms of accurately defining detailed aspects

of a system design (Adesina-Ojo, 2011; Reddy & Suneetha, 2021).

However, although the use of OCL provides the improvement of formalism for UML

models, OCL is still criticized for being more weighty than the traditional formal methods

(Adesina-Ojo, 2011; Reddy & Suneetha, 2021).

2.10 UML Class Diagrams

A UML class diagram is a structural diagram that represents the group of identified

classes with relationships between them that fashion a system. A relationship is a

semantic linking between classes (Adesina-Ojo, 2011; Moura et al., 2015; Mbala & Van

der Poll, 2020a). A structural diagram defines the static aspects of a system (Babar et al.,

43

2020). Class diagrams are UML diagrams that can be directly mapped with

object-oriented languages. The specifier mostly looks at classes, interfaces, collaborations,

and relationships (Moura et al., 2015).

2.10.1 Classes

A UML class is a representation of a set of objects of a system in the form of a rectangle

with three cells containing the name of the class at the top, a list of fields or attributes in

the middle, and a list of operations in the last cell to depict methods (Mbala & Van der

Poll, 2020a). For example, Figure 2-10 illustrates a UML class diagram.

An interface is defined as an operation or method set that specifies the responsibility of a

class. Finally, collaborations represent the communication between objects.

2.10.2 Relationships

The lines between the boxes (classes) in a UML class diagram represent relationships,

also called associations (Mbala & Van der Poll, 2020a). Moura et al. (2015) stated that

UML class diagrams provide associations to capture relationships among objects. The

Name

Attributes

Operations

Figure 2-10: A UML class representation

44

relationships among classes are numerous, for example, association, aggregation,

composition, dependency, and generalization (Mbala & Van der Poll, 2020a).

Adesina-Ojo (2011) observed that the association is an organizational relationship between

two classes decorated with an association name, end names, multiplicities and

navigability symbols. These decorations can be made explicitly to characterize the nature

and constraints of the association.

Association Name is just an etiquette that can include verb or verb phrases to designate

that an origin class is executing an action on a target class or to characterize the nature of

the relationship between classes.

End names, also known as role names, are alternative methods for tagging an association.

They are mostly used to characterize the specific role that one class plays in a relationship

or to merely detect one end of an association. End names are represented by etiquettes

used at one end of an association where the association links to a class. Thus, an

association is presumed to have an association name “has” if and only if both the

association name and end names are absent.

Association multiplicity is defined as the number of times that instances of a class may be

associated with an instance of another class, represented by a range of non-negative

integer values (lower value … upper value) but also represented by the character “*”

indicating an “unlimited” number of instances (Mbala & Van der Poll, 2020a). These are

some ranges of the multiplicity of an association: one-to-one, one-to-many, and many-to-

many (Adesina-Ojo, 2011; Mbala & Van der Poll, 2020a). Table 2-3 portrays the various

ranges of association multiplicities.

45

Table 2-3: Various multiplicities of an association (Adesina-Ojo, 2011)

Informal Description Multiplicity Indicator

Zero or one 0..1

Exactly one 1

Zero or more 0..*

One or more 1..*

Many (with n > 1) n

Zero to many (with n ≥ 1) 0..n

One to many (with n > 1) 1..n

Arrowheads designate association navigability to refer to the traversal direction between

classes that can either be unidirectional or bidirectional. Figures 2-11 and 2-12 depict the

unidirectional and bidirectional associations, respectively.

Figure 2-11: A unidirectional association

Customer

name

Add()

Account

amount

Deposit()

1…*

1 have

46

Aggregation association is a form of association represented by an empty diamond as an

indicator at the association end attached to the whole object of the whole-part relationship

to describe the whole-part relationship between objects (Mbala & Van der Poll, 2020a).

Figure 2-13 represents the aggregation association.

Generalization association is a multi-level association where objects are classified

hierarchically represented by an empty triangle as an indicator at the association end

attached to the parent object with child objects connected to the parent object to represent

the inheritance of child objects from the parent object. Figure 2-14 illustrates the

generalization association (researchers’ own construction).

Figure 2-12: A bidirectional association

Customer

name

Add()

Account

amount

Deposit()

1

1…*

have

Figure 2-13: An aggregation association

Customer

name

Add()

Account

amount

Deposit()

1

1…*

47

The following Section addresses the advantages and disadvantages of the object-

orientation model.

2.11 Advantages and Disadvantages of the Object-

Orientation Model

2.11.1 Advantages of Modelling with UML

One of the advantages of modelling with UML is that UML models can be used in the

analysis and definition phases where requirements persistently change. Another

advantage of UML is that it is a language that can be extended (Adesina-Ojo, 2011). UML

is considered more appropriate and considerable for the system’s design (Babar et al.,

2020). According to Al-Fedaghi (2021), the flexibility of UML for software development

Person

name

phone

Add()

Agent

Update()

Client

Update()

Figure 2-14: A generalization association

48

makes it well-suited for the design of a system. The use of UML steers to an enhancement

in collaboration between technical and non-technical skills. UML helps mitigate the

ambiguity and questions concerning the design if the absence of design documentation

becomes a problem in the long run.

2.11.2 Disadvantages of Modelling with UML

UML lacks more precision (Adesina-Ojo, 2011; Babar et al., 2020). According to Adesina-

Ojo (2011), UML also lacks accuracy for rigorous analysis in its semantics due to the

inherent use of natural language (e.g. English), which is susceptible to ambiguity.

Al-Fedaghi (2021) observed that UML has grown in complexity, making people feel better

off without it.

2.12 Chapter Summary

This Chapter discusses the theories about Data warehouse systems that cover the

research objectives and the properties of the object-oriented method. The focus of this

Chapter was twofold: on the one hand, the approaches for requirements elicitation and

definition in the design of Data warehouse systems and, on the other hand, the object-

oriented model used for modelling systems.

The two (2) main approaches available for the design of Data warehouse systems were

presented. Furthermore, amalgamating the two main approaches to obtain a good set of

requirements was also introduced. Finally, UML, the standard language used for object-

oriented systems, was discussed.

49

The first main approach discussed in the requirements analysis phase was the

requirement-driven approach. A requirement-driven approach is typically used to

develop a conceptual schema based on user and business requirements. The information

collected while using this approach is used for the initial development of Data warehouse

design. Afterwards, the supply-driven approach was presented, which is similar to the

approach used to extract essential elements, such as facts, measures and dimensions,

which may lead to an initial Data warehouse schema. Finally, a third approach addressed

was a hybrid approach that assists in obtaining a good set of requirements that meet the

expectations and needs of the end-users and decision makers.

The advantages and disadvantages of using UML for modelling a system to specify and

analyze were also presented. One of the advantages given for UML is the ability to be

used in the specification and analysis phases where requirements persistently change. On

the other hand, the main disadvantage of using UML is the absence of accuracy in the

semantics.

In the following Chapter, formal methods and Z notations viewed as a means to generate

a concise and clear model of the proposed system are introduced.

50

Chapter 3 Formal Methods and Z notations

3.1 Introduction

In Chapter 2, a literature review was conducted to address the failure of data

warehousing projects that usually occur in developing Data warehouse systems. In

addition, some advantages and disadvantages of the object-oriented methodology were

discussed. One such shortcoming was the lack of precision in the UML semantics because

these semantics are partially in natural language (English), which is susceptible to

ambiguity. Formal methods mentioned in this chapter aim at reducing mistakes that may

not be evident in requirements specifications by providing an alternative way to provide

a formal model of the proposed system with more precision and reduced ambiguity.

The purpose of the current Chapter is twofold. Firstly, we discuss some concepts defined

in Z by specifying the requirements stated in the descriptive case study into Z notations.

Secondly, UML is used as an intermediate step to translate the requirements defined in

natural language into class diagrams. Finally, we translate the class diagrams into Z

specifications and provide typical proof of obligations arising from specifications.

An example is used as a descriptive case study for the understandability of some concepts

defined in Z. This Chapter seeks to address the following question, which was initially

raised in Section 1.4.2:

SRQ6: How do formal proofs increase confidence in a formal specification?

51

The structure of the Chapter is as follows: a brief introduction to formal methods is

presented in Section 3.2, followed by a discussion on one of the formal method

specification languages, which in this case is Z in Section 3.3. After that, the Z

specifications applied in a small real-world case study to provide more precision in the

specification of the proposed system are presented in Section 3.4. Finally, Section 3.5

concludes the Chapter with a summary of what was presented in this Chapter.

In the next Section, formal methods are addressed.

3.2 Formal Methods Overview

Formal methods are mathematical and logical techniques which may be used for

analyzing, specifying and checking the behaviour and properties of a system viewed as

a collection of mathematical objects (Adesina Ojo, 2011; Zafar & Alhumaidan, 2011;

Pandey & Srivastava, 2015). Han and Jamshed (2016) declared that formal methods assist

in reducing errors at earlier phases of software development.

The use of formal methods as a commutation to natural language (English) specification

requires the use of formalisms (set theory and first-order predicate calculus), a concept in

software engineering (Rodano & Giammarco, 2013). However, formal methods may still

be applied to provide a consistent and concise complement to natural language

specification (Gulati & Singh, 2012).

Formal methods use discrete mathematics to accurately formulate the requirements

specification (Bakri et al., 2013). Mathematics and logic used by formal methods shape

the ground for developing efficient software for critical systems (Rizvi et al., 2013).

However, the advantage of using formal methods in the software development cycle

52

would be its accuracy and clearness in providing a precisely defining description,

minimizing misconception (Han & Jamshed, 2016).

According to Pandey and Srivastava (2015), formal methods lean on three methods:

formal specification, formal checking and refinement. In this Chapter, the researcher

leans towards the model-based language Z (Spivey, 1992; Steyn, 2009; Nemathaga, 2020)

as a means to formally specify a system. The following section presents Z.

3.3 An Overview of Z

Z was invented by a French researcher, Jean Raymond Abrial and was then developed

further by the Oxford Programming Research Group in the 1970s at the University of

Oxford (Geer, 2011; S. Pandey & Batra, 2013; Dongmo, 2016; Nemathaga, 2020). Z is a set

of conventions used to describe and model computing systems and present mathematical

text (Bakri et al., 2013). In addition, Z is a model-based language utilized in the

requirements specification and verification stage, relying on the concept of Zermelo-

Fraenkel set theory, lambda-calculus and first-order predicate logic (Zafar &

Alhumaidan, 2011; S. Pandey & Batra, 2013; Nemathaga, 2020).

According to Steyn (2009) and Nemathaga (2020), set theory is the basic mathematics

theory because numerous mathematic theorems embodying Euclidian geometry and

arithmetic can be expressed as theorems in set theory, and the representation of set-

theoretic problems is allowed by the Zermelo-Fraenkel set theory axiomatization.

Therefore, the system's abstraction is provided by using set theory and first-order logic

(Adesina-Ojo, 2011; Nemathaga, 2020).

53

A Z specification is constructed by the definition of schemas (or schemata), which are

very useful at the design level for managing the system. Schemas are used to describe

static and dynamic aspects of a proposed system. A Z schema comprises a name,

declaration, and predicate (Zafar & Alhumaidan, 2011; Dongmo, 2016; Grant, 2016). A Z

schema is depicted as follows:

 SchemaName

declaration part

predicate part

The SchemaName represents the name of the schema. The declaration part comprises the

form declarations x: T, where x is a variable of type T, which means that a value of x is a

member of set T (knowing that types are set in Z). The predicate part comprises

expressions of predicate logic that specify the relationships between variables. The

description of a system in Z is defined by modelling the states in which the system may

be and the operations that provoke the change of these states.

To illustrate Z constructs, next, an explanatory real-world case study as the requirements

statement for ease-of-understandability of some concepts defined in Z is introduced.

3.3.1 Requirements Statement

The case describes the specification of an appointment booking system for a clinic. The

system enables a patient to book an appointment to meet up with a doctor and cancel an

appointment when there is no more need. On the other hand, a doctor should schedule

an appointment and delete a date (schedule) when there is no need anymore.

54

3.3.1.1 Z Data Types (Given Sets)

Z has an established strategy for constructing a specification, and every specification

ought to follow such a strategy. Types in Z may be basic or composite. The basic types (also

called given sets) elements are utilized like building blocks for more complex composite

types and for the purpose of describing objects of interest within the system (Dongmo,

2016). An example of two basic types extracted from the requirements statement in the

preceding Section to portray the given sets of all possible PATIENTs who could book an

appointment to see a doctor on a specific DATE of their schedule is as follows:

[PATIENT, DATE]

Variables specify the data maintaining the system state, and they are either local or global.

Variables in Z are also referred to as components. A variable that is declared into a

schema and only used within that schema is called local. In contrast, a variable is called

global when it is stated outside of a schema and can be used in the entire specification by

all the schemas. For example, the axiomatic definition introduces a global variable as

follows:

declaration part

predicate part

The following example describes the axiomatic definition of a global variable:

55

min: ℤ

min ≤ - 20

A type called a free type in Z is used for determining the finite detailed list containing an

enumeration of values that can have the type. The following is an example of a free type,

Status used to indicate explicitly three distinct states that an appointment may be in

during the course of its lifetime:

Status ::= requested | approved | cancelled

The following declaration is used to present the variable of type Status:

appointmentStatus: Status

The following Section addresses the concept of Z schemas.

3.3.1.2 Z Schemas

The schema’s form depicted in Section 3.3 is vertical, and the epitomized notation used

below is the horizontal form of a schema (Dongmo, 2016):

 SchemaName == [Declaration Section | Predicate or Constraint Section]

A schema is used to organize and arrange mathematical notations describing the states

and operations of the system to be specified. There are two types of schemas in Z: state

schemas that capture the static aspect of a system and operation schemas that capture the

56

dynamic aspect of the system. The following example of a booking system from the

requirements statement in Section 3.3.1 illustrates a state schema:

State Schema

A state schema, also known as system state schema or abstract state, is used to define the

static behaviour of the system. The components of the system’s state are declared in the

declaration part, and constraints are specified in the predicate part in a state schema.

[Patient, Date]

 BookingDB

members : ℙ Patient

dates : ℙ Date

bookings : Patient ↔ Date

dom bookings ⊆ members

Schema BookingDB shown above represents the state of the system. Members describe the

set of patients, dates represent the set of dates, and bookings depict the set of pairs

describing the relationship between patients and their dates. The predicate part declares

that only patients in members can be associated with dates in the system.

Schema as types

There are three kinds of composite types in Z: schema, set, and Cartesian. Examples of

the different kinds of composite types referred to in the preceding paragraph are:

x: ℙ Patient /* set type */

57

y: A × B /* Cartesian type */

z: Schema /* schema type */

Where x is a set of elements from Student, y is a set of all possible pairs in which the first

element is an element from A and the second element is an element from B. The

declaration z: Schema indicates that a value called z is of type Schema.

Initial State Schema

An initial state schema defines the different states that a system may initially Start with.

The initial state schema has an identical signature to the state schema (i.e., the initial state

schema resembles the state schema) apart from the fact that all states or variables

enumerated in the schema have a decoration using an apostrophe or prime (′). This

decoration is used to indicate that the values of variables have been changed after the

execution of an operation on them, and variables without decoration indicate that no

operation has been performed on them. More than one initial state schema can be defined

based on the need (Adesina-Ojo, 2011).

It can be assumed that initially, the patients list in the list of members is empty, and the

list of available dates that patients must book is also empty. In this case, the state of the

BookingDB is represented as follows:

 InitBookingDB

BookingDB′

members′ = ∅

dates′ = ∅

bookings′ = ∅

58

Schema InitBookingDB shows that there exists an state BookingDB′ of the state schema

BookingDB whose the components members′ = ∅, dates′ = ∅ and bookings′ = ∅, which implies

the realization of the initial state schema. However, the initialization theorem is used as:

⊢ ∃ BookingDB′ ⦁ InitBookingDB

Following the turnstile symbol (⊢) we state that there exists an after state BookingDB′such

that InitBookingDB holds (Steyn, 2009).

Operation Schema

An operation schema specifies an operation in terms of relationships between the state

before and after the operation has been performed. Variables contained in the declaration

part of the schema represent the before and after state, or input- and output variables.

The relationship between the states of the operation before and after is defined in the

predicate part of the schema.

The following conventions are used: a question mark (?) is added to the variable name to

indicate the input variable, and an exclamation mark (!) is suffixed to the output variable.

In addition, the Δ symbol is used to indicate that there can be a change in the state when

an operation is executed, and the Ξ symbol is used to denote no change in the state

(Adesina-Ojo, 2011).

To illustrate the concept of a Z operation, consider the following schema that allows a

patient to book a date to consult a doctor:

59

 BookAppointment

ΔBookingDB

patient?: Patient

date?: Date

msg!: MESSAGE

patient? ∈ members

date? ∈ dates

patient? ↦ date? ∉ bookings

bookings′ = bookings ∪ { patient? ↦ date? }

dates′ = dates ∖ { date? }

msg! = OK

The first precondition patient? ∈ members in the schema BookAppointment specifies that the

patient must belong to the list of existing members before making any bookings. The

second line date? ∈ dates states that a date used as input must be in the list of available

dates of the doctor. The third line patient? ↦ date? ∉ bookings is the second precondition

that indicates that the patient cannot book a date twice. We use the notation x ↦ y to

express the ordered pair (x, y) to show how the functions members and dates extend to be

mapped with the new patient and date values to the given booking. At the end of the

operation, a new booking was added to the list of appointments, and a booked date was

removed from the list of available dates.

Since the precondition of each operation can be calculated, an error may likely be yielded,

and additional operations may then be needed to handle the error. However, as

BookAppointment may need further operations to specify error conditions that may occur,

it is called a partial operation (Dongmo, 2016).

60

Error condition

As mentioned in the previous Section, the first three lines in the predicate part of the

BookAppointment schema specify a partial view (i.e., it may generate errors). Therefore,

the following schemas are used to specify the different errors that may arise for each case.

 UnknownPatient

ΞBookingDB

patient?: Patient

msg!: MESSAGE

patient? ∉ members

msg! = UNKNOWN_PATIENT

The first predicate patient? ∉ members in the schema UnknownPatient indicates that the

patient identity is not present in the set of patients, and, as a result, the system returns

UnknownPatient as the error message.

 UnavailableDate

ΞBookingDB

date?: Date

msg!: MESSAGE

date? ∉ dates

msg! = UNAVAILABLE_DATE

The first predicate date? ∉ dates in the schema UnavailableDate above indicates that the

date is not available in the set of available dates, and, as a result, the system returns

UnavailableDate as the error message.

61

 AlreadyBooked

ΞBookingDB

patient?: Patient

date?: Date

msg!: MESSAGE

patient? ↦ date? ∈ bookings

msg! = ALREADY_BOOKED_DATE

The first predicate patient? ↦ date? ∈ bookings in the schema AlreadyBooked above

indicates that a patient identity has already booked the given date, and, as a result, the

system returns AlreadyBooked as an error message.

Total Operation

A full version of the operation that allows the mapping of each patient to an exact date

can be established by merging the operation schema under normal conditions and those

managing errors. The following schema includes a complete operation for booking an

appointment:

62

 RobustBookingDB

ΔBookingDB

ΞBookingDB

patient? : Patient

date? : Date

msg!: MESSAGE

(patient? ∈ members

date? ∈ dates

patient? ↦ date? ∉ bookings

bookings′ = bookings ∪ { patient? ↦ date? }

dates′ = dates ∖ { date? }

msg! = OK) ∨

(patient? ∉ members

msg! = UNKNOWN_PATIENT) ∨

(date? ∉ dates

msg! = UNAVAILABLE_DATE) ∨

(patient? ↦ date? ∈ bookings

msg! = ALREADY_BOOKED_DATE)

The following abbreviated Z schema-calculus notation is used to represent the total

operation:

RobustBookingDB ≙ BookingAppointment ∨

 UnknownPatient ∨

 UnavailableDate ∨

 AlreadyBooked

The operation’s semantics are as follows: the declaration part of the forming operation is

acquired by combining the declarations of every single operation, and the predicates of

each of the individual schemas are segregated or disjoined. Operation RobustBookingDB

denotes a total operation, usually defined via Z’s schema calculus. In this case it is an

63

expression that utilizes the Z disjunction operator (∨) to amalgamate two or several

schemas. Other schema operators are available to support the construction of schema

expressions.

Schema Calculus (≙)

A Z schema calculus is used to merge two or more schemas specified for a given

operation using the disjunction (∨) and conjunction (∧) operators between the combined

schemas to specify a complete operation. An example of a Z total operation is used in the

illustration of RobustBookingDB schema above. Other schema operators provided in Z are

schema composition (⨾), schema conjunction (∧), schema negation (¬) and schema

inclusion (Dongmo, 2016).

1. Schema negation (¬): The negation of a schema S is a schema indicated by ¬S that

introduces the same set of components by negating the predicate part.

2. Schema conjunction (∧): The conjunction of two schemas is a schema that presents

both variable sets and imposes both sets of constraints by specifying different aspects of

a specification individually and then amalgamating them to compose a complete

representation.

3. Schema composition (⨾): Let M and N be two operation schemas and X, an operation

defined as X = M ⨾ N. The semantics of X is as follows: if the state of the system S can be

changed from S to S1 by the operation schema M and the operation schema N can also

change S1 to S2, then X is an operation that allows changing the state of the system from

S to S2.

64

4. Schema inclusion: The inclusion of a schema name S1 in the declaration part of another

state schema S2 introduces a combination of components that allows referring to that

combination as a unique entity. The declarations of S1 are embodied within those of S2,

and the predicates of S1 are added to those of S2. The operation and total schema

discussed above are examples of schema inclusion.

The use of Z does not necessarily ensure that the end product of the developed system

will not have flaws. Some limitations of the schema calculus have been identified, and an

analysis of the use of schemas as types has been conducted (Dongmo, 2016). However,

the major drawback of using Z is that it is hard to yield state and operation schemas for

a large system that yields a correspondingly large specification (refer to RobustBookingDB

schema) due to the absence of object-oriented structures. To this end, Z has been

expanded to Z++ and Object-Z to admit object orientation. The discussion of object-

oriented variations of Z is beyond the scope of this dissertation.

3.3.2 Summary

In this Section, we specified directly from the requirements statement (see Section 3.3.1),

the structures, functions and operators used in Z to represent some concepts defined in

Z.

The following Section presents the case study introduced in Section 3.3.1 to show how

UML constructs can be used as an intermediate step to specify the static and dynamic

aspects of a given system.

65

3.4 An Appointment Booking System in Z

We present in more detail a case study of the simplified appointment booking system

stated in Section 3.3.1 that caters for booking capturing and processing as well as patient

and doctor information. An introduction of the case study problem statement is first

made, followed by the illustration of a high-level conceptual model of the given problem

highlighting the different entities needed to be captured by the case study.

The purpose of this Section is neither to address the processing of an object-oriented

development methodology nor to use it as an exercise in requirement elicitation. Instead,

a simple case of a Z specification is presented in the following Sections, and some typical

proof obligations that arise from such a Z specification are highlighted.

The following section introduces the problem statement of the given problem and shows

how Z specifies a given system's operations.

3.4.1 Requirements of the Case Study

An appointment booking system assists in capturing and processing appointments. The

system may contain various subsystems for manipulating different phases of the

appointment achievement process, such as appointment booking, including member and

schedule information.

The appointment booking system records different booked appointments done by

patients based on dates available in the schedule. Each schedule's date, time, day and

status are kept. A new schedule can be added. A schedule may also be deleted or removed

66

from the system. A schedule’s status can be updated to unavailable when the time has

expired or when the date and time have been booked. A list of all dates available in the

schedule can be obtained.

The system has two types of members, namely patients and doctors. No two members

may have the same phone number. The name, phone number, email and birthday are

maintained for each member. New members may be added to the system. Amongst

members, only a patient can be removed from the system if they have not booked any

appointments in a month. All the information about a member may be updated.

An appointment for a member can be booked, and the information attached to an

appointment includes the member, schedule, reason and status. A new appointment has

a status of “requested” at the booking. While in requested status, an appointment may be

rejected or approved. A doctor is allowed to reject or approve an appointment, while a

patient can only request or reject an appointment.

Therefore, an appointment may change to “rejected” if it has been rejected or “approved”

if it has been accepted. When an appointment is rejected, the status of the specific booked

date from the schedule becomes available again if the specific date is still available in the

calendar and remains the same if the appointment has been approved.

3.4.2 Conceptual Model

The following UML class diagram is used to represent the object-oriented aspect of the

given problem (Moura et al., 2015). The UML class diagram depicted in Figure 3-1

contains the principal classes of the given problem: Appointment, Schedule, Member,

Doctor and Patient. It also contains the classes like Appointments, Members and

67

Schedules to provide operations that may handle the collective states of Member,

Appointment and Schedule.

Appointments

Add()

Cancel()

+appointments
1

*

Appointment

status

reason

Cancel()

Approve()

Appointments

*

1 Schedule

Schedules

Add()

Update()

Delete()

DisplayAll()

+schedules

1 *

Schedule

date

day

time

status

Update()

Member

name

email

phone

birthday

Update()

Patient

Doctor

Members

AddPatient()

AddDoctor()

DeletePatient()

+members
1

*

Appointments Member

* 1

Figure 3-1: A UML class diagram of an appointment booking system

68

The following Sections examine the patterns used to translate the high-level conceptual

model concepts, representing the system's static aspects into Z.

3.4.3 Specification Approach

The following is the modelling of the static aspects of the appointment booking system.

The specifications below follow the established strategy (ES) for modelling a system in Z

(see Section 3.3.1.2).

3.4.3.1 Given Sets

The clinic doctor accesses the system to create a schedule of their availability defined by

the date, time and day. On the other hand, the patient accesses the system to create a

profile to book an appointment with the doctor. The following basic types are the given

sets of a given problem described in the problem statement:

[APPOINTMENT, MEMBER, SCHEDULE, DOCTOR, PATIENT]

[STRING, DATE, TIME]

STATUS::= requested | approved | rejected | available | unavailable

The descriptions of the sets above are given in Table 3-1.

Table 3-1: Descriptions of the given sets of the appointment booking system

Given Sets Description

APPOINTMENT Appointments approved or cancelled are stored there

69

Given Sets Description

MEMBER Accesses the system to create an availability schedule and book

appointments

PATIENT Accesses the system to create a profile to be able to book

appointments

DOCTOR Accesses the system to create a schedule of their availability

SCHEDULE A patient accesses it to check the availability of the doctor

STRING Attribute type for all attributes containing alphanumeric values

DATE Dates on which appointments are booked

TIME Time of the day on which appointments are booked

STATUS Status of each schedule and appointment before and after the

booking

The following Section shows how the Member class and its attributes can be specified in

Z.

3.4.3.2 Member Class

Member below specifies the details of the existing member in the system. The schema's

name has been selected to be the same as the one in the class. The component members: ℙ

MEMBER depicts the identities of all available members in the system. A given set

STRING is defined to specify all attributes that intend to contain a set of characters. For

example, no two members can have the same phone number, using the partial injective

70

function memPhone: MEMBER ⤔ STRING. Such declaration of a component is a function

from a domain to a range.

 Member

members: ℙ MEMBER

memName, memPhone, memEmail: MEMBER ⇸ STRING

memBirthday: MEMBER ⇸ DATE

dom memName = members

dom memPhone = members

dom memEmail = members

dom memBirthday = members

∀𝑝1, 𝑝2: members ⦁ 𝑝1 ≠ 𝑝2 ⇒ memPhone(𝑝1) ≠ memPhone(𝑝2)

∀i, 𝑗: members ⦁ i = 𝑗 ⇔ i.members = j.members

In the predicate part of the schema above, the domain of each attribute is equal to the

identities. For example, dom memPhone = members. Lastly, to illustrate the constraint that

no two members may have the same phone number, the following is used to specify the

constraint in the predicate part: ∀𝑝, 𝑝2: members ⦁ 𝑝1 ≠ 𝑝2 ⇒ memPhone(𝑝1) ≠ memPhone(𝑝2)

and the predicate ∀i, j: members ⦁ i.members = j.members ⇔ i = j, is used to state that the

identities used in the system are unique.

The Member class is the parent class of doctor and patient classes (child). The identity

sets of the child classes are stated as subsets of the member identity set in the following

Z axiomatic definition:

DOCTOR: ℙ MEMBER

PATIENT: ℙ MEMBER

⟨DOCTOR, PATIENT⟩ partition MEMBER

71

The Doctor, Patient and Member represent the different specification approaches for

inheritance. Doctor and Patient are specifications of Member.

The remaining classes, Schedule, Appointment, Doctor and Patient for this case study are

specified in the following subsection.

3.4.3.3 Schedule Class

The Schedule schema specifies the availability schedule of the doctor. The schema’s name

is the same as the class. SCHEDULE depicts the identities of all available schedules in the

system. A schedule has two status types (available and unavailable), defined before and

after the booking’s operation.

 Schedule

schedules: ℙ SCHEDULE

schDate: SCHEDULE ⇸ DATE

schDay: SCHEDULE ⇸ DAY

schTime: SCHEDULE ⇸ TIME

schStatus: SCHEDULE ⇸ STATUS

dom schDate = schedules

dom schDay = schedules

dom schTime = schedules

dom SchStatus = schedules

∀i, 𝑗: schedules ⦁ i = 𝑗 ⇔ i.schedules= j.schedules

The following Section presents the Appointment class specification in Z.

72

3.4.3.4 Appointment Class

The Appointment schema defines the tracking of dates booked by using the

APPOINTMENT as the identities of all available appointments in the system. The name

of the schema is still the same as the class. Three status types are defined before and after

the booking operation for an appointment: requested, approved and cancelled.

 Appointment

appointments : ℙ APPOINTMENT

appMember : APPOINTMENT ⇸ MEMBER

appSchedule : APPOINTMENT ⇸ SCHEDULE

appStatus : APPOINTMENT ⇸ STATUS

appReason : APPOINTMENT ⇸ STRING

dom appMember = appointments

dom appSchedule = appointments

dom appStatus = appointments

dom appReason = appointments

∀i, 𝑗: appointments ⦁ i = 𝑗 ⇔ i.appointments = j.appointments

The Appointment schema declares two attributes appMember and appSchedule, that assist

in mapping the APPOINTMENT identity to their associated MEMBER and SCHEDULE

identities, respectively, due to the one-to-many bidirectional relationship so that a

member can navigate between appointment and schedule as well as between

appointment and member. So, for example, from an appointment identity, one can find

the related member identity of the member who booked the appointment and the

schedule identity of the date that has been booked by a member using appMember and

appSchedule functions.

The following Sections illustrate the Doctor and Patient classes’ specifications in Z.

73

3.4.3.5 Doctor and Patient Class

The doctor accesses the system to schedule an appointment and the patient to book the

appointment. To specify that doctor and patient are child classes of the member class

(parent) because of the relationship (generalization) that exists between them, the

following two constraints (doctors ⊆ members and patients ⊆ members) have been declared

in the predicate Section of the doctor schema and patient schema, respectively as below.

 Doctor

Member

doctors: ℙ DOCTOR

doctors ⊆ members

As shown in the schema Doctor above, the predicate part states that doctors are

included among members in the system.

 Patient

Member

patients: ℙ PATIENT

patients ⊆ members

The predicate in schema Patient specifies that patients are included among members in

the system.

3.4.4 Operations of the system

Following the discussion of modelling the system's static aspects in Section 3.4.3, we now

want to model the dynamic aspects of the system. The modelling of each effective

operation of the system is made separately. The modelling of the error message for each

operation is specified following the partial operation. The modelling Starts with the

74

operations that do not alter the system's state, followed later by those that modify the

system's state. The construction for the Z specifications of the dynamic aspects also

follows Z’s Established Strategy (ES).

3.4.4.1 Finding appointments of a member

It is possible to find the appointments of a member through an operation.

DisplayAppsForMember is an operation that returns all the appointment identities for a

given member identity. However, a member identity (representing a member) must have

booked an appointment to obtain the result from the given operation. The operation

below queried the details of appointments made by a member. The use of the decorations

“?” denoting an input variable and “!” designating an output variable as well as “Ξ” have

been explained in more detail before (refer to Section 3.3.1.2).

 DisplayAppsForMember

Ξ Appointment

member?: MEMBER

appointments!: ℙ APPOINTMENT

message!: MESSAGE

∀m: appointments ⦁ appMember(m) = member?

appointments! = {a : appointments | appMember(a) = member?}

message! = EXIST_MEMBER

The first predicate in DisplayAppsForMember indicates that the member identity must be

present in the set of members’ appointments. The output of this operation (appointment!)

is a subset of appointment identities of which the member is equal to the specified input

(member?). We use the notation {x: S | P} with S as set and P as a predicate to mean that

the values set of x taken from S satisfies P (Steyn, 2009).

75

If the member does not exist in the domain, then the schema DisplayAppsForMember has

to specify feedback of no appointment yet. The following schema models the feedback

through the operation called NoAppointment. The use of Ξ Appointment specifies that the

Appointment schema has been included in NoAppointment and is not changed. Therefore,

this operation does not change the Appointment schema.

 NoAppointment

Ξ Appointment

member?: MEMBER

appointments!: ℙ APPOINTMENT

message!: MESSAGE

∀m: appointments ⦁ appMember(m) ≠ member?

message! = NO_APPOINTMENT_YET

The first predicate in NoAppointment indicates that the member identity is not present in

the set of members’ appointments. To this end, the system returns NoAppointment as the

error message.

3.4.4.2 Adding a member

The following schema models an operation named AddMember to add a new member to

the system. The precondition of the operation is that the member should not exist in the

system. In addition, the phone number is checked to ensure that no two members have

the same phone number when adding a new member. Once the precondition is met, then

the new member can be successfully added to the system.

76

 AddMember

ΔMember

member?: MEMBER

name?, phone?, email?: STRING

birthday?: DATE

message!: MESSAGE

member? ∉ members

phone? ∉ ran memPhone

members′ = members ∪ member?

memName′ = memName ∪ {member? ↦ name?}

memPhone′ = memPhone ∪ {member? ↦ phone?}

memEmail′ = memEmail ∪ {member? ↦ email?}

memBirthday′ = memBirthday ∪ {member? ↦ birthday?}

message! = MEMBER_SUCCESSFULLY_ADDED

The declaration of ΔMember denotes that the schema inclusion of the Member schema into

AddMember schema and the Member state can be changed due to the specified operations.

Finally, the dash symbol of decoration (′) distinguishes the after-state instance

components from the corresponding before-state instance components.

If a new member in the system has the same member identity as one of the existing

members, an error message such as ExistingIDMember is displayed to the system's

member.

 ExistingIDMember

Ξ Member

member?: MEMBER

message!: MESSAGE

member? ∈ members

message! = ID_MEMBER_ALREADY_EXIST

77

The schema ExistingIDMember above illustrates that the error message must be displayed

to the member trying to add an existing member identity to the system. The precondition

that verifies this constraint is member? ∈ members.

Suppose there is a new member trying to be added with a phone number that already

exists in the system. In that case, the system should display to the member an error

message such as ExistingPhoneNumber.

 _ExistingPhoneNumber

Ξ Member

member?: MEMBER

message!: MESSAGE

member? ∉ members

phone? ∈ ran memPhone

message! = PHONE_NUMBER_ALREADY_EXIST

The schema ExistingPhoneNumber above specifies that the error message is displayed to

the member trying to add an existing phone number in the system. The precondition that

verifies this constraint is phone? ∈ ran memPhone. Note that this may in real life not be a

realistic restriction, since a new member who lives in the same household as an existing

member may indeed have the same phone number.

3.4.4.3 Deleting a member

A member, specifically a patient, can be deleted from the system. However, the business

rule is that not all the records related to the specific patient should be removed from the

system.

78

The schema DeleteMember is the operation used to delete a member in the system. The

precondition of the operation is that the member should exist in the system, which means

the member identity must be found in the system. If the precondition is met, then the

existing member can be successfully deleted from the system. Otherwise, an error

message is displayed to the member using the system.

 DeleteMember

Δ Member

member?: MEMBER

message!: MESSAGE

member? ∈ members

members′ = members ∖ {member?}

memName′ = {member?} ⩤ memName

memEmail′ = {member?} ⩤ memEmail

memPhone′ = {member?} ⩤ memPhone

memBirthday′ = {member?} ⩤ memBirthday

message! = MEMBER_SUCCESSFULLY_DELETED

The declaration of ΔMember indicates the inclusion of the schema Member into the schema

DeleteMember above. The use of Δ denotes that the state of the schema Member included

in the DeleteMember schema can be changed due to the specified operations. The first

predicate is the first precondition that requires the specified member to be present in the

system.

The remaining predicates declare that the functions memName, memEmail, memPhone and

memBirthday are modified by the removal of the mapping for the specified member

(member?), and the state of the members set has been modified to reflect the removal of the

member identity by using the predicate members′ = members ∖ {member?}. We use the anti-

restriction operator ⩤ in the relation S ⩤ V, defined as the set of all tuples (x, y) in V,

where x does not belong to the domain S (Steyn, 2009).

79

If there is no member with that member identity in the system, an error message such as

NotExistsMember is specified. For example, the following schema portrays the

NotExistsMember error message displayed for a user trying to delete a non-existing

member identity. The precondition that verifies this constraint is member? ∉ members.

 NotExistsMember

Ξ Member

member?: MEMBER

message!: MESSAGE

member? ∉ members

message! = NOT_EXISTING_MEMBER

The first predicate in the schema NotExistsMember indicates that the member identity

should exist in the system to allow the system’s member to perform the operation.

3.4.4.4 Updating a Member

For this case, we would like to consider all the possibilities when a system user wants to

update a piece of information concerning a member. Hence, the idea of updating each

member’s attribute follows the different schemas handling each operation.

 UpdateMemberName

Δ Member

member?: MEMBER

name?: STRING

message!: MESSAGE

member? ∈ members

members′ = members

memName′ = memName ⊕ {member? ↦ name?}

message! = MEMBER_NAME_UPDATED

80

The first predicate in the schema UpdateMemberName verifies that the member exists in

the system. The second predicate means the member identity of the specific member

remains invariant. Finally, the third predicate declares that the function memName is

changed by the remapping operation to associate the new value of the name for the given

member (member?), and the message is displayed after the operation has been

successfully performed.

 UpdateMemberPhone

Δ Member

member?: MEMBER

phone?: STRING

message!: MESSAGE

member? ∈ members

members′ = members

memPhone′ = memPhone ⊕ {member? ↦ phone?}

message! = MEMBER_PHONE_UPDATED

The first predicate in the schema UpdateMemberPhone verifies that the member exists in

the system. The second predicate means the member identity of the specific member

remains unchanged. The third predicate declares that the function memPhone is changed

by the remapping operation to associate the new value of the phone for the given member

(member?) and finally, the message MEMBER_PHONE_UPDATED is displayed after the

operation has been successfully executed.

81

 UpdateMemberEmail

Δ Member

member?: MEMBER

email?: STRING

message!: MESSAGE

member? ∈ members

members′ = members

memEmail′ = memEmail ⊕ {member? ↦ email?}

message! = MEMBER_EMAIL_UPDATED

The first predicate in the schema UpdateMemberEmail verifies that the member exists in

the system. The second predicate means the member identity of the specific member

remains unchanged. The third predicate declares that the function memEmail is changed

by the remapping operation to associate the new value of the email for the given member

(member?) and finally, the message MEMBER_EMAIL_UPDATED is displayed after the

operation has been successfully performed.

 UpdateMemberBirthday

Δ Member

member?: MEMBER

birthday?: STRING

message!: MESSAGE

member? ∈ members

members′ = members

memBirthday′ = memBirthday ⊕ {member? ↦ birthday?}

message! = MEMBER_BIRTHDAY_UPDATED

The first predicate in the schema UpdateMemberBirthday verifies that the member exists in

the system. The second predicate means the member identity of the specific member

remains unchanged. The third predicate declares that the following function memBirthday

82

is changed by the remapping operation to associate the new birthday value for the given

member (member?) and finally, the message MEMBER_BIRTHDAY_UPDATED is

displayed after the operation has been successfully executed.

Suppose the system user would like to update all member’s attributes. In this case, the

UpdateMember schema is the schema operation used to update all attributes of the

instance of a member in the system. The operation’s precondition is the same as the

DeleteMember operation schema in that the member should exist in the system to proceed

with the operation. In addition, it means that the member identity must be found among

the members. If the precondition is met, the existing member can be successfully updated

in the system. Otherwise, an error message is displayed to the member using the system.

 UpdateMember

Δ Member

member?: MEMBER

name?, phone?, email?: STRING

birthday?: DATE

message!: MESSAGE

member? ∈ members

members′ = members

memName′ = memName ⊕ {member? ↦ name?}

memEmail′ = memEmail ⊕ {member? ↦ email?}

memPhone′ = memPhone ⊕ {member? ↦ phone?}

memBirthday′ = memBirthday ⊕ {member? ↦ birthday?}

message! = MEMBER_SUCCESSFULLY_UPDATED

The first predicate in the schema UpdateMember above is the first precondition that

requires the specified member to be present in the system. The remaining predicates

declare that the functions memName, memEmail, memPhone and memBirthday are changed

83

by the remapping operation to associate the new name, email, phone and birthday values

respectively to the given member (member?). To perform the remapping operation, the

overriding operator ⊕ into the relation S ⊕ T (S is overridden by T) means everything in

the domain of T is related to the same objects as T and everything in the domain of S to

the mappings S (Steyn, 2009). Finally, the predicate members′ = members indicates that the

state of the members set does not change.

The above-defined UpdateMember operation schema may also be obtained through the

schema calculus using the total operation as follows:

RobustUpdateMember ≙ UpdateMemberName ∨

 UpdateMemberPhone ∨

 UpdateMemberEmail ∨

 UpdateMemberBirthday

The schema calculus formula above defines schema RobustUpdateMember below:

84

 RobustUpdateMember

Δ Member

member?: MEMBER

name?, phone?, email?: STRING

birthday?: DATE

message!: MESSAGE

(member? ∈ members

members′ = members

memName′ = memName ⊕ {member? ↦ name?}

message! = MEMBER_NAME_UPDATED) ∨

(member? ∈ members

members′ = members

memPhone′ = memPhone ⊕ {member? ↦ phone?}

message! = MEMBER_PHONE_UPDATED) ∨

(member? ∈ members

members′ = members

memEmail′ = memEmail ⊕ {member? ↦ email?}

message! = MEMBER_EMAIL_UPDATED) ∨

(member? ∈ members

members′ = members

memBirthday′ = memBirthday ⊕ {member? ↦ birthday?}

message! = MEMBER_BIRTHDAY_UPDATED)

3.4.4.5 Adding a Schedule

The following schema models the AddSchedule operation, which consists of adding a new

schedule to the system. The precondition of the operation is that the schedule should not

exist in the system. Once the precondition is met, the new schedule may be successfully

added to the system.

85

 AddSchedule

Δ Schedule

schedule?: SCHEDULE

date?: DATE

time?: TIME

day?: DAY

status?: STATUS

message!: MESSAGE

schedule? ∉ schedules

schedules′ = schedules ∪ {schedule?}

schDate′ = schDate ∪ {schedule? ↦ date?}

schTime′ = schTime ∪ {schedule? ↦ time?}

schDay′ = schDay ∪ {schedule? ↦ day?}

schStatus′ = available

message! = SCHEDULE_ADDED

The first predicate in the schema AddSchedule checks that the schedule identity is not yet

present in the system. The remaining predicates state that the schedules, schDate, schDay

and schTime functions are extended to map the new schedule, date, day and time values

to the given schedule identity. Since all the schedule status values are initialized to

“available” for the first time, the value of the status attribute has already been defined in

the predicate part of the schema, i.e., schStatus = available. If a schedule identity already

exists in the system, an error message ExistingIDSchedule is displayed to the member

using the system.

 ExistingIDSchedule

Ξ Schedule

schedule?: SCHEDULE

message!: MESSAGE

schedule? ∈ schedules

message! = EXISTING_ID_SCHEDULE

86

The first predicate in the schema ExistingIDSchedule indicates that the schedule identity

should not exist in the system to allow the member using the system to book a new

appointment.

3.4.4.6 Booking an Appointment

Booking an appointment with the doctor is allowed if and only if there is an available

date and time in the system to enable a patient to book an appointment. Booking an

appointment changes the status of the schedule for the specific date and time in the

system, and a new appointment has the status of “requested” for the first time. The status

of a booked appointment can be changed later to “approved” or “rejected” based on the

doctor’s final decision. A booked appointment is available as long as the date and time

specified in the system are valid.

87

 BookAppointment

ΔAppointment

ΔSchedule

ΞMember

member?: MEMBER

schedule?: SCHEDULE

appointment?: APPOINTMENT

status?: STATUS

reason?: STRING

message!: MESSAGE

member? ∈ members

schedule? ∈ schedules

appointment? ∉ appointments

appointments′ = appointments ∪ appointment?

appMember′ = appMember ∪ {appointment? ↦ member?}

appSchedule′ = appSchedule ∪ {appointment? ↦ schedule?}

appStatus′ = requested

appReason′ = appReason ∪ {appointment? ↦ reason?}

message! = APPOINTMENT_BOOKED

In the schema BookAppointment above, the three schema inclusions in the declaration part

indicate that we intend to make some changes in the two schemas, Schedule and

Appointment, and we use the Member schema to verify that the member who is booking

an appointment in the system is an existing member. The first two predicates are the

preconditions to check if the specified member and schedule (date and time) really exist

in the system. The third predicate is the precondition to ensure that the appointment

identity is not in the system.

The remaining predicates state that the appointments, appMember, appStatus, appSchedule

and appReason functions are expanded to map the new member, schedule, status and

reason values to the given appointment identity. Since all the appointment status values

88

are initialized to “requested” for the first time, the value of the status attribute has already

been defined in the predicate part of the schema, i.e., appStatus′ = requested. If an

appointment identity already exists in the system, an error message

ExistingIDAppointment is displayed to the member using the system.

 ExistingIDAppointment

Ξ Appointment

appointment?: APPOINTMENT

message!: MESSAGE

appointment? ∈ appointments

message! = EXISTING_ID_APPOINTMENT

The first predicate in the schema ExistingIDAppointment indicates that the appointment

identity already exists in the system. Consequently, the member should not be allowed

to book a new appointment.

3.4.4.7 Approving an Appointment

An approval operation updates an appointment from the system. The approval operation

for Appointment is specified as follows:

89

 ApproveAppointment

ΔAppointment

ΔSchedule

appointment?: APPOINTMENT

status?: STATUS

schedule?: SCHEDULE

message!: MESSAGE

appointment? ∈ appointments

appointments′ = appointments

∀s: appointments ⦁ appSchedule(s) = schedule?

schStatus′ = unavailable

appStatus′ = approved

message! = APPOINTMENT_APPROVED

Again, the first predicate of the above-mentioned schema ApproveAppointment is the

typical precondition of an update operation that requires the specified appointment

identity to be present in the system. The remaining predicates declare that the statuses of

the schedule and appointment have been updated with these new values since they are

free type variables. Finally, the predicate appointments′ = appointments indicates that the

appointments' state does not change.

3.4.4.8 Cancelling an appointment

The operation of cancelling updates an appointment in the system. The cancelling

operation for Appointment is specified as follows:

90

 CancelAppointment

ΔAppointment

ΔSchedule

appointment?: APPOINTMENT

status?: STATUS

schedule?: SCHEDULE

message!: MESSAGE

appointment? ∈ appointments

appointments′ = appointments

∀s: appointments ⦁ appSchedule(s) = schedule?

if appSchedule(s) = schedule? then /* Checking if the date is still valid */

schStatus′ = available

appStatus′ = rejected

message! = SUCCESSFULLY_REJECTED

else

schStatus′ = unavailable

appStatus′ = approved

message! = SUCCESSFULLY_APPROVED

endif

The first predicate of the above-mentioned schema CancelAppointment is the typical

precondition of an update operation that requires the specified appointment identity to

be present in the system. The remaining predicates declare that the statuses of the

schedule and appointment have been updated with these new values since they are free

type variables. Finally, the predicate appointments′ = appointments indicates that the state

of the appointments set does not change.

3.4.5 Specification of the System State

Following the ES, it is required to specify the schema that depicts the whole system state.

All the operations are specified on the whole state to capture all errors and that the full

91

invariant may be proved to hold after the operation. The system state for this case study

is given below:

 MySystem

Appointment

Schedule

Member

Doctor

Patient

3.4.6 Specification of the Initial State

The initial state of the whole system is obtained by combining all the initial states of

different classes that constitute this whole system. For example, the initial state of the

member class is specified by the operation schema that contains only the after-state

components. Let us assume that the initial state of the Appointment schema is called

InitAppointment, and it is specified as follows:

 InitAppointment

Appointment

appointments = ∅

appMember = ∅

appSchedule = ∅

appStatus = ∅

appReason = ∅

The initial state of the schedule schema can also be specified as follows:

92

 InitSchedule

Schedule

schedules = ∅

schDate = ∅

schDay = ∅

schTime = ∅

schStatus = ∅

Consequently, the initial state of the whole system is specified as:

 InitSystem

InitAppointment

InitSchedule

InitMember

InitDoctor

InitPatient

3.4.7 Specification Summary

Table 3-2 provides a specification summary operation of the appointment booking

system enumerating the operation and denoting the input and output variables and the

preconditions of each operation. As per Z’s Established Strategy, only the partial

operations are displayed in Table 3-2.

Table 3-2: Partial operations summary of the appointment booking system

Operations Inputs and Outputs Preconditions

DisplayAppsForMember member? : MEMBER

appointments! : ℙ

APPOINTMENT

∀m: appointments ⦁

appMember (m) =

member?

93

Operations Inputs and Outputs Preconditions

AddMember member? : MEMBER

name? : STRING

email? : STRING

phone? : STRING

birthday? : STRING

message! : MESSAGE

member? ∉

members

phone? ∉ ran

memPhone

UpdateMember member?: MEMBER

name?: STRING

email?: STRING

phone?: STRING

birthday?: STRING

message! : MESSAGE

member? ∈

members

DeleteMember member?: MEMBER

message! : MESSAGE

member? ∈

members

AddSchedule schedule?: SCHEDULE

date?: DATE

day?: DAY

time?: TIME

status?: STATUS

message! : MESSAGE

schedule? ∉

schedules

BookAppointment member?: MEMBER

schedule?: SCHEDULE

appointment?: APPOINTMENT

reason?: STRING

status?: STATUS

message! : MESSAGE

member? ∈

members

schedule? ∈

schedules

appointment? ∉

appointments

94

Operations Inputs and Outputs Preconditions

ApproveAppointment appointment?: APPOINTMENT

status?: STATUS

schedule?: SCHEDULE

message! : MESSAGE

appointment? ∈

appointments

∀s: appointments ⦁

appSchedule (s) =

schedule?

CancelAppointment appointment?: APPOINTMENT

status?: STATUS

schedule?: SCHEDULE

message! : MESSAGE

appointment? ∈

appointments

∀s: appointments ⦁

appSchedule (s) =

schedule?

Other operations’ schemas can be found in the Appendix A of this dissertation. Finally,

in the next Section, we highlight a selection of proof obligations from Z specifications.

3.4.8 Occurred Proof Obligations from the Specification

As Steyn (2009) observed, most proof obligations arise when there is a change in the

system's state. In this Section, we identify and address some proof obligations that

occurred from Z specifications.

3.4.8.1 Initialization Theorem

It has been shown that every time an initial state schema is defined or specified, a proof

obligation occurs to demonstrate that such a state can be produced. For example, the

proof obligation for the InitSchedule initial state schema (refer to Section 3.4.6) can be

specified as follows:

95

 ⊢ ∃ Schedule′ ⦁ InitSchedule

That means that we need to prove there is an after state such that the initial state schema

predicate is applicable.

3.4.8.2 Simplification of the Precondition

According to Steyn (2009), the precondition of an operation is acquired by concealing the

after state components using the existential quantifier in the predicate part of the schema.

Hence, the precondition for the AddSchedule operation is defined as:

 PreAddSchedule

Schedule

schedule?: SCHEDULE

date?: DATE

time?: TIME

day?: DAY

status?: STATUS

∃ Schedule′ ⦁

 schedule? ∉ schedules

 schedules′ = schedules ∪ schedule?

 schDate′ = schDate ∪ {schedule? ↦ date?}

 schTime′ = schTime ∪ {schedule? ↦ time?}

 schDay′ = schDay ∪ {schedule? ↦ day?}

 schStatus′ = available

As per Steyn (2009), we can make the precondition illustrated above simpler by using the

one-point-rule (⦁) as follows:

96

 PreAddSchedule

Schedule

schedule?: SCHEDULE

date?: DATE

time?: TIME

day?: DAY

status?: STATUS

schedule? ∉ schedules

However, every time a precondition has been simplified, proof of its equivalence to the

original version is needed (Steyn, 2009). In this case, the schema PreAddSchedule above is

the precondition of the AddSchedule operation:

 ⊢ pre AddSchedule =

 [Schedule

 schedule?: SCHEDULE

 date?: DATE

 day?: DAY

 time?: TIME

 status?: STATUS

 |

 schedule? ∉ schedules]

In Z, the “pre” prefix operator denotes the precondition of a schema (Steyn, 2009). The

right side of the equality (=) used above is the horizontal or linear form of schema

definition (refer to Section 3.3.1.2).

97

3.4.8.3 Type of After State

A specification is provided for every component of a schema that may be subjected to a

possible state change. In this case, a proof obligation occurs to show that the

corresponding after state component is the correct type (Steyn, 2009). Let us consider the

schema UpdateMember (refer Section 3.4.4.4) to show the successful completion of the

operation by proving that components memEmail and memPhone (i.e., memEmail′ =

Member ⤔STRING and memPhone′ = Member ⤔STRING) are more limited than their

underlying carrier type.

However, to prove that the after state of a component is more limited as expected, the

proof obligations for the UpdateMember are required to be discharged (Steyn, 2009).

Specifically, the following proof obligations are required to be discharged for

UpdateMember:

Member

members′: ℙ MEMBER

memName′: MEMBER ↔ STRING

memPhone′: MEMBER ↔ STRING

memEmail′: MEMBER ↔ STRING

memBirthday′: MEMBER ↔ STRING

member?: MEMBER

name?: STRING

email?: STRING

phone?: STRING

birthday?: STRING

|

dom memName′ = members′

98

dom memPhone′ = members′

dom memEmail′ = members′

dom memBirthday′ = members′

member? ∈ members

email? ∉ ran memEmail

phone? ∉ ran memPhone

members′ = members

memName′ = memName ⊕ {member? ↦ name?}

memPhone′ = memPhone ⊕ {member? ↦ phone?}

memEmail′ = memEmail ⊕ {member? ↦ email?}

memBirthday′ = memBirthday ⊕ {member? ↦ birthday?}

⊢

memName′ ∈ MEMBER ⇸ STRING

memPhone′ ∈ MEMBER ⤔ STRING

memEmail′ ∈ MEMBER ⤔ STRING

memBirthday′ ∈ MEMBER ⇸ STRING

The aforementioned notation declares a proof obligation that stems from Steyn (2009).

3.4.8.4 Total Operations

A proof obligation arises to prove that it is indeed a total one every time a total operation

is specified (Steyn, 2009). A precondition must be a partition to make an operation a total

one. The precondition needs to be proved total, and any two-component preconditions

are pairwise disjoint (see the above UpdateMember schema). Let us consider the schema

calculus AddMemberTotal for the AddMember operation:

99

⊢ pre AddMember ∨

 pre ExistingIDMember ∨

 pre ExistingEmailAddress ∨

 pre ExistingPhoneNumber

Another way to specify that the precondition is total is when the disjunction of all the

component preconditions is a tautology, which is a clause that is valid under all

interpretations as follows (Steyn, 2009):

⊢ pre AddMemberTotal =

 [Member

 member?: MEMBER

 name?: STRING

 email?: STRING

 phone?: STRING

 birthday?: STRING

 |

 true]

In addition, it is required that all the component preconditions are pairwise disjoint, and

this is demonstrated by the following predicate using the conjunction operator:

⊢ (pre AddMember ∧ pre ExistingIDMember) = ∅ ∧

 (pre AddMember ∧ pre ExistingEmailAddress) = ∅ ∧

 (pre AddMember ∧ pre ExistingPhoneNumber) = ∅

100

3.4.8.5 Operation Interaction

A number of proof obligations arises from the composition (⨾) of operations (Steyn, 2009).

For instance, a composition of an add operation followed by a delete operation of the

same element produces no change of state (Steyn, 2009). Let us consider AddMember

followed by DeleteMember:

 AddMember ⨾ DeleteMember ⊢ Ξ Member

As expected, the deletion of an element followed by its creation keeps the state unaltered:

 DeleteMember ⨾ AddMember ⊢ Ξ Member

The discussion on the proof obligations concludes our discussion of Z. The following

Section provides a summary of the current Chapter.

3.5 Chapter Summary

In this Chapter, the purpose was not to compare two Z specifications. However, we first

modelled the small case study of a simple appointment booking system directly from the

requirements statement described in Section 3.3.1 to illustrate some concepts defined in

Z. On the other hand, we demonstrated how to specify the static and dynamic aspects of

the proposed system by first translating the requirements statement into the high-level

conceptual model concepts using specific patterns followed by the specification of these

patterns in Z. We described the structures, functions and operators used in Z specification

by breaking down the specified system into smaller pieces to represent the Z schemas

individually.

101

Z has been successfully used in this small case study to provide the specification where

precision, quality and safety are needed. In addition, a selection of typical proof

obligations that arise from Z specification has also been presented using mathematical

theorems to verify the correctness of the specification and mitigate errors.

Notwithstanding, Z does still not ensure that the final product software never has flaws;

if it is correctly used, it may reduce the global cost of the software project (Moremedi,

2015).

The next Chapter discusses the research design and methodology applicable to this

research based on the research process used in the research onion.

102

Chapter 4 Research Design and Methodology

4.1 Introduction

The previous Chapter presented a literature review of formal methods and Z notation. It

also described a brief case study elaborated as the requirements statement on the

appointment booking software system, where informal specifications were elicited from

the requirements statement and translated into formal specifications using Z notation. A

UML class diagram was also developed as an intermediate step between informal and

formal specifications to represent the requirements at the conceptual design level. Finally,

proof of obligations arising from the formal specification Z was provided.

Chapter 4 uses the research onion structure established by Saunders et al. (2019) to

explain how this research was conducted. The Chapter organization follows the sequence

of the layers in the research onion structure portrayed in Figure 4-1. Each layer will be

elucidated to show how it relates to this research. Figure 4-1 is essentially Figure 1-2

repeated here for ease of reference.

103

The research onion is a research design and methodology structure developed by

Saunders et al. (2019) to present the main stages through which research ought to pass by

to get a reliable research methodology for a research project.

In this Chapter, the discussion of the research methodology Starts with a research

philosophy overview presented in Section 4.2, followed by the research approach to

theory development in Section 4.3, and then the methodological choice of the research in

Section 4.4. After that, the research strategies and the time horizon of the study are

presented in Sections 4.5 and 4.6, respectively. Thereafter, Section 4.7 addresses the

techniques and procedures used with respect to the research methodology. The Chapter

Figure 4-1: The research onion (Saunders et al., 2019)

104

concludes with Section 4.8, where the Chapter is summarized. The following Section

presents the philosophy layer of the research onion structure.

4.2 Research Philosophy

The research philosophy is viewed as a belief and presumptions system about knowledge

development (Saunders et al., 2019). It is also thought of as the philosophical paradigm

(Buthelezi, 2017). According to Saunders et al. (2019), three types of research

presumptions are considered to differentiate research philosophies: ontology,

epistemology and axiology. These three types or categories are beneficial to the

researcher in organizing and conducting the research (Nemathaga, 2020).

Different authors have given different definitions of these concepts. According to

Nemathaga (2020), the researcher’s ontology is defined as a group of concepts and

categories in a domain denoting their properties and relationships. In other words,

ontology is viewed as a belief about reality (Buthelezi, 2017). While the researcher’s

epistemology refers to the knowledge of what the researcher knows (Nemathaga, 2020),

the researcher’s axiology is mainly based on values and ethics (Saunders et al., 2019). Put

differently; the researchers can understand how the views and values inspire the research

gathering and analysis (Nemathaga, 2020).

Next we consider the first layer, namely, research philosophy in the onion. The research

philosophy embodies positivism, a philosophical paradigm with two presumptions to

investigate objectively (Nemathaga, 2020). In positivism, the reality is viewed as an

external goal that is independent of the social actors (Buthelezi, 2017).

105

Nemathaga (2020) posits that realism is similar to positivism because its methods and

conviction are such that social reality and the researcher are independent of one another

and will not create wrong results. In Information Systems, research being interpretive is

viewed as a means to comprehend the social context of information systems. That is to

say, interpretivism refers to the impact the social setting has on information systems

development by people.

Postmodernism seeks to give power to the other worldviews that have been put aside

and silenced by dominant perspectives by questioning the approved means of thinking.

It also deconstructs data to reveal the inconstancies and shortages within them (Saunders

et al., 2019). Save for postulating that reality exists in the world and sustains the objective

nature of science; pragmatism is used when the research philosophy is situated between

positivism and interpretivism (Al-Ababneh, 2020).

The research philosophies do not contend, yet they are selected based on the best

application to accomplish the research objectives (Buthelezi, 2017). However, the

category of the research philosophy that conducts this research is the axiology

philosophy. This is because this research is more theoretical in nature; no experiments in

the traditional sense were conducted in this research.

In addition, this research was conducted using the pragmatism philosophical paradigm

because the researcher adopted more than one research philosophy in an attempt to

establish the extent to which formal methods may help reduce failure within the

development of Data warehouse systems. Thus, on the one hand, this study seeks to

establish the best approach for obtaining the best set of requirements to model the system

in the specification or conceptual design phase. Such a design is expected to meet end-

users and decision-makers' expectations and is reminiscent of interpretivism. On the

106

other hand, the study uses formal methods for the specification of such systems to reduce

ambiguities that could lead the system to inconsistencies reminiscent of positivism.

The next Section discusses the second layer of the research onion involving the theory

development approach.

4.3 Research Approach

Buthelezi (2017) asserts that the research approach elucidates the relationship between

theory and reality. As depicted by Saunders et al. (2019) in Figure 4-1, the research

approach layer encompasses three components: deduction, abduction, and induction.

Inductive simply means the researcher is developing or building something, while

deductive means the researcher is validating or testing something.

Inductive reasoning is used when little or no research exists on a given subject, where the

researchers find a way to establish their theory or create a framework or model

(Nemathaga, 2020). Furthermore, inductive reasoning is more suitable for interpretive

research philosophy (Buthelezi, 2017; Al-Ababneh, 2020). In a nutshell, transitioning from

data to a theory involves using deductive reasoning or approach, and the reverse is the

inductive approach. Lastly, abduction reasoning is used when both deductive and

inductive reasoning are needed (Saunders et al., 2019).

This research employs the abductive approach to merge both approaches (deductive and

inductive). In this study, the researcher seeks to develop frameworks to address the

significant issues of neglecting the requirements analysis phase and chooses the suitable

model for the modelling reminiscent of inductive. Contrastingly, the researcher also

attempts to answer the question of how to facilitate the use of formal methods to reduce

107

failure in the development of Data warehouse systems. In the final analysis, the

researcher must validate the enhanced framework proposed in this research project. The

next Section addresses the methodological choice layer of the research onion structure.

4.4 Methodological Choices

The research method is how the analysis and collection of data are conducted. Two main

significant research choices exist, namely the quantitative and qualitative methods. In

addition, however, a possibility of mixing both methods to obtain a mixed method exists.

Different research methods are based on the research's context, objective, and nature

(Buthelezi, 2017; Al-Ababneh, 2020; Nemathaga, 2020). Therefore, the methodological

choices layer of our research onion embodies the following: a mono method (quantitative

or qualitative), multi methods (quantitative or qualitative) and mixed methods

(quantitative and qualitative).

A mono method research is applied when one of the data gathering methods is used, be

it quantitative or qualitative. The mixed-methods research invokes the use of both

research methods (quantitative and qualitative). The multi-methods research is generally

used when the researcher decides to use both data (quantitative and qualitative).

Nevertheless, the outlook of the researcher is embedded in one or the other method

(Nemathaga, 2020). Multi-methods research is important because it provides good

opportunities to answer research questions and interpret research findings (Al-Ababneh,

2020).

In this research work, the researcher applied multi-methods research. While the

qualitative research method was used in this study to collect and study documents and

case studies, a minimum quantitative research method was used when the researcher

108

evaluated and compared the two models for design. Quantitative work is related to real

numbers, and the researcher viewed specifics embedded in Table 5.4 as being

quantitative. Despite being focused on qualitative research, this research was aimed at

answering questions that were stipulated in Chapter 1, using existing steps to derive

answers to the questions (Nemathaga, 2020). The strategy layer of the research onion is

presented in the following Section.

4.5 Research Strategy

Generally, researchers address the research aim and objectives and answer the research

questions, which are part of the research strategy (Buthelezi, 2017). In addition, research

strategies are methods that are applied for gathering and analyzing data for the research

(Nemathaga, 2020). Various research strategies, such as experiments, surveys, case

studies, the use of grounded theory, ethnography, action research, archival research, and

narrative inquiry, exist within Information Systems research (Saunders et al., 2019).

Arguably, no specific research strategy is better; hence, selecting a research strategy relies

on research questions and objectives, research philosophy, and the extent of existing

knowledge (Al-Ababneh, 2020).

In this work, the case study research strategy was used to conduct this research. The

following strategy was used in this dissertation:

▪ Online Unisa Library (find e-resources | Electronic Theses and Dissertations) was

frequently used to collect data or information relating to this work. In addition,

relevant journal articles for collating information about this work were retrieved

through keyword searches on the Google Scholar electronic database.

109

▪ Research works that were already conducted on Data warehouse systems and

formal methods were gathered and studied. Various works belonging to different

types of Data warehouse systems and formal methods were used as input to this

dissertation.

▪ Case studies relating to Data warehouse systems and formal methods were

investigated, and conclusions were extricated. In addition, other case studies using

formal methods were used as input to this research.

The time horizon layer of the research onion is discussed next.

4.6 Time Horizon

The time horizon is the period in which the research unrolls. To rephrase it, it is the time

between the Start and desired completion of the research (Buthelezi, 2017). Two known

types of time horizons are cross-sectional and longitudinal time horizons (Saunders et al.,

2019). The cross-sectional type of time horizon is a positivistic method conceived to get

data from various contexts simultaneously.

The data gathered in this study covered a relatively short time span, which takes a

snapshot of a situation. In contrast, the longitudinal type examines the problem dynamics

several times (Al-Ababneh, 2020). Both types can apply quantitative, qualitative or both

research methods (Nemathaga, 2020). However, the extent to which formal methods may

mitigate failures within the research design of Data warehouse systems was to be

achieved in the medium term, which allowed the researcher to apply a cross-sectional

time horizon.

110

The following Section presents the techniques and procedures indicated in the research

onion.

4.7 Techniques and procedures

Buthelezi (2017) previously declared that the analysis and collection of data depend on

the methodological approach used by the researcher. Therefore, the researcher uses this

layer of the research onion to decide on all the data gathered that must be acceptable to

all the remaining layers, namely philosophy, strategies, approach, methodological choice

and time horizon.

A sample of documents on Data warehouse systems was gathered through the internet

for the inceptive analysis. Unisa library and Google scholar were used to collect

documents on Data warehouse systems and formal methods on the internet. The

inceptive analysis helped to deflect, evaluate and explore topics in the selected research

data sample.

Irrespective of the selected approach of the research, two types of data are to be gathered,

namely primary and secondary data. Primary data are gathered directly from the data

sources, and secondary data are data that drifted from previous research in the work of

others (Buthelezi, 2017). This research used secondary data as extant literature and

documents on Data warehouse systems and formal methods.

When all the layers of the research onion are used in line with the research objectives, the

next step involves the execution of the research process portrayed in Figure 4-2 and

discussed subsequently.

111

4.8 Research Process

The conceived framework illustrated in Figure 4-2 is used to perform the steps used in

the research process.

Extended Framework

(Selection of the suitable design model)

Developing Approach

(Framework for requirements definition)

Enhanced Framework

(Formal specification of the model)

Content analysis

(Literature Review)

Figure 4-2: Research process structure (synthesized by the researcher)

112

4.8.1 Content Analysis

First and foremost, the researcher went through the documentation of Data warehouse

systems and formal methods separately. The content analysis encompassed online theses

and dissertations, books, articles, and journals written and published by other scholars

related to these two areas. Therefore, theories on Data warehouse systems and formal

methods previously presented in this research are based on related research works in the

literature.

4.8.2 Developing Approach

The researcher started the study with a literature review to address the first two research

sub-questions. In Chapter 2, the literature review was presented using an approach based

on prior research works, suggesting a framework that may help to address challenges

with the failure of Data warehouse systems during the design process. The framework

proposed reconciling requirements sets of unstructured and structured data to obtain a

set of requirements that could meet the expectations and needs of the decision-makers

and end-users.

4.8.3 Extended Framework

The suggested framework introduced in Chapter 2 was extended to address the research

sub-questions 3 and 4 in Chapter 5. However, modelling a system using natural language

and semi-formal notations remains susceptible to ambiguities. That is how formal

methods are used to reduce ambiguities that could otherwise lead to system

inconsistencies.

113

4.8.4 Enhanced Framework

The enhanced framework aims to facilitate the use of formal methods within the design

of the Data warehouse system using the more appropriate model of this system (Star

model in this case). The proposed framework was presented in Figure 1-1 and enhanced

in Figure 6-1 using the more appropriate Data warehouse systems model. This enhanced

framework considered all the previous suggested frameworks used to integrate formal

methods to develop formal specifications. The enhanced framework is used in Chapter 6

to address research sub-questions 5 and 6.

4.9 Chapter Summary

This Chapter provided the philosophical perspective of the research and the research

design and methodology relevant to the research based on the research onion structure

developed by Saunders et al. (2019). Each layer in the structure was elucidated, and its

relevance to this work was highlighted. Furthermore, a research process structure was

introduced to explain how the researcher could gather pertinent information for this

research.

The next Chapter is aimed at selecting the appropriate model as a standard model for the

development of Data warehouse systems by assessing and comparing main models

through a developed framework using a case study of the data mart.

114

Chapter 5 Models Evaluation and Comparison

5.1 Introduction

Previously in Chapter 2, a discussion on the design of Data warehouse systems and the

object-orientation paradigm using UML as the standard language of modelling was

presented. Furthermore, the primary reasons causing Data warehouse systems to fail and

the advantages and disadvantages related to the use of this paradigm were also

identified. Finally, a framework to address these challenges was suggested to acquire a

set of requirements that may meet the end-users and decision-makers' expectations and

needs.

The content of this Chapter stems from the work of Mbala and Van der Poll (2020a), which

was aimed at establishing a foundation to enable the assessment and selection of one

model over the others. Therefore, this Chapter suggests a framework through a case

study on a data mart to evaluate and compare Star and Snowflake models of Data

warehouse systems. Such a framework uses these systems based on the same set of

requirements to provide a means to select the most appropriate model for developing

such systems.

Extricating from the work addressed in Chapter 2, the current Chapter focuses on the

requirements elicitation for a medium-sized case study of a Data warehouse system using

a data mart to obtain the expected set of requirements to develop such systems. This

Chapter seeks to address the following questions, which were formulated in Section 1.4:

SRQ3: What are the main models used for the development of Data warehouse systems?

115

SRQ4: What is the most suitable model for the development of Data warehouse systems?

The challenges brought about by Data warehouse systems failure in the design phase

were addressed in Section 2.5. The framework that facilitates the requirements definition

and elicitation is designed to address the failure challenges of Data warehouse systems

(see Figure 2-5). From the framework depicted in Figure 2-5, we can propose a framework

for producing the two models from the same set of requirements. It is envisaged that a

comparative analysis of the two models would lead to a selection of the more appropriate

model for the development of Data warehouse systems.

The diagram depicted in Figure 5-1 embodies four (4) components: the requirements

definition, models 1 and 2, set of properties (P) 1 and 2, and suitable model. The

Requirements definition

(Set of requirements)

Model 1 Model 2

Compare

P1 P2

Suitable Model

Figure 5-1: Evaluation and Comparison Framework (Mbala & Van der Poll, 2020a)

116

requirements definition is the component that contains the set of requirements obtained

from the reconciliation of unstructured and structured data. From the set of requirements

in the requirements definition component, two models, 1 and 2, are illustrated to

represent the problem statement in the conceptual design phase. A set of properties is the

component that elaborates properties for each model based on the semantical features to

compare both models. Finally, the last component involves a selection of a suitable model

that is deemed appropriate for the development of Data warehouse systems based on the

comparative analysis outcome of the two models.

This Chapter is structured as follows. Section 5.2 addresses the object-oriented

multidimensional model used to model systems. A brief discussion on the models used

in the logical design of the Data warehouse system is presented in Section 5.3, followed

by a presentation of the medium-sized case study defining the business requirements

and objectives in Section 5.4. Next, Section 5.5 represents Star and snowflake models in

the OOMD model constructed from the requirements definition of the given problem,

followed by an evaluation and a comparison of both models in Section 5.6. The Chapter

concludes with a presentation of the outcome of the comparative analysis of Star and

snowflake models (Section 5.7) and a chapter summary in Section 5.8.

5.2 Object-Oriented Multidimensional Model

The conceptual schemas facilitate communication between designers and decision

makers since they do not request any knowledge about the given characteristics of the

platform for the underlying implementation (Vaisman & Zimányi, 2014). Conceptual

schemas are used for a complete, formal and abstract design leaning on the user

requirements without considering the implementation details (Oketunji & Omodara,

2011; Vaisman & Zimányi, 2014). Using conceptual schemas in developing conventional

117

databases has the advantage of good support for following logical and physical schemas

(Vaisman & Zimányi, 2014).

For Data warehouse systems, the conceptual design is the phase intended to yield the

structural view of the system that is presented under the multidimensional form. The

multidimensional model development is realized through an analysis of the business

needs and objectives. It consists of facts, measures, dimensions and hierarchies

(Thenmozhi & Vivekanandan, 2014; Reddy & Suneetha, 2020).

The multidimensional model is considered to be the primary requirement for the analysis

of Data warehouse systems (Sarkar, 2012; Reddy & Suneetha, 2021), reflecting the

business and business needs of a target company because it has a major impact on the

success of such projects (Abai et al., 2013; El Mohajir & Jellouli, 2014).

UML is broadly accepted as a standard object-oriented modelling language for the design

of software (Adesina-Ojo, 2011; Shcherban et al., 2021). An object-oriented

multidimensional model is a modelling approach based on UML that represents facts and

dimension tables of the multidimensional model of a Data warehouse system in the form

of classes (Babar et al., 2020). A fact table is modelled as a composite class having shared-

aggregation relationships with the corresponding dimension tables in the diagram

(Mbala & Van der Poll, 2020a; Mbala & Van Der Poll, 2020b).

In this way, common associations are represented as relationships between dimension

classes and sub-dimension classes, also known as hierarchies (Mbala & Van der Poll,

2020a). One-to-many or many-to-many cardinality or multiplicity is represented in a

relationship between a fact class and a particular dimension. The fact class cardinality is

specified by “*” to denote that a dimension object may be part of zero, one or more fact

object instances. While the minimum cardinality for dimension classes is specified by “1”

118

to denote that a fact object is usually associated with object instances from all dimensions,

“1..*” is used on the dimension class to indicate many-to-many cardinality (Gosain &

Mann, 2011; Mbala & Van Der Poll, 2020b).

5.3 Logical Design Models

The conceptual design development is the logical design. Logical modelling represents

schemas that consist of Star schema, snowflake schema, and fact constellation schema

(Sekhar Reddy & Suneetha, 2020). The facts of the Data warehouse and the various

analytical dimensions are intended to be described by the multidimensional models

(Reddy & Suneetha, 2021)

The development of Data warehouse systems in the logical design phase uses

dimensional models to portray data structure. One of the dimensional models known is

called the “Star model”. The Star model is defined as a composition of one table called

fact and other smaller tables called dimension tables. A fact contains a composite primary

key, including other attributes called measures. A dimension table has a non-composite

primary key that precisely corresponds to one of the components of the composite

primary key in the fact table (Reddy & Suneetha, 2021).

Surrogate keys (SKs) are used to mitigate latency as Data warehouse systems are built for

performance enhancement. They serve to join the fact and dimension tables in the same

way a foreign key is a primary key in one table and an attribute in another. A surrogate

key is used for quick access and is usually an integer (Mbala & Van der Poll, 2020a).

119

According to Basaran (2005) and Mbala & Van der Poll (2020a), the following models are

aimed at representing the Data warehouse system with the emphasis being placed on

data structures:

▪ Flat model

▪ Terraced model

▪ Star model

▪ Snowflake model

▪ Fact Constellation model

▪ Star Cluster model

▪ Galaxy model

▪ Starflake model

This Chapter focuses on the Star and Snowflake models, the main models used to develop

Data warehouse systems (El Mohajir & Jellouli, 2014).

5.3.1 Star Model

A Star model is a relational database model that contains measures and dimensions in a

data mart (Oketunji & Omodara, 2011; Mbala & Van der Poll, 2020a). Measures are

numerical attributes stored in the fact table, and dimensions are textual attributes

maintained in dimension tables. A fact table is the subject analysis in the decision-making

process, and dimensions are axes of analysis (Golfarelli, 2010; Reddy & Suneetha, 2021).

A fact table is related to every single dimension table. It is called “Star” because the

representation shows the fact table surrounded by dimension tables (Mbala & Van der

Poll, 2017). For example, Figure 5-2 depicts a Star model with one fact and four

dimensions (Mbala & Van der Poll, 2020a).

120

5.3.2 Snowflake Model

A snowflake model is defined as a relational database model that contains measures,

dimensions and sub-dimensions in a data mart by applying normalization on dimension

tables. A fact table is surrounded by dimension tables directly linked to sub-dimensions

(hierarchies) (Mbala & Van der Poll, 2020a). For example, Figure 5-3 shows a snowflake

with four dimension tables, one fact table and one sub-dimension table (Mbala & Van der

Poll, 2020a).

Dimension 1

(dimensions)

Fact

(measures)

Dimension 2

(dimensions)

Dimension 4

(dimensions)

Dimension 3

(dimensions)

Figure 5-2: Star Model

121

The following section presents a medium-sized case study to illustrate the use of the two

models depicted in Figure 5-2 and Figure 5-4, respectively.

5.4 Case Study

We take a snapshot of a problem at a particular time to investigate static aspects of the

system at the conceptual level. The requirements definition is as follows:

Suppose a company is facing some challenges in studying the performance of its sales

department, and the company would like to develop a decision-making support system

to fulfil its business objective. First, however, the system designers need to identify the

objectives, scope and actors implicated in the project to accomplish its business objective.

▪ Business objective: We assume that the decision-makers and end-users would like

to monitor and analyze the performance of the sales department based on the

product sales in terms of revenue and quantity over a specific period at various

stores.

Figure 5-3: Snowflake Model

Dimension 1

(dimensions)

Fact

(measures)

Dimension 2

(dimensions)

Dimension 3

(dimensions)

Dimension 4

(dimensions)

Sub-Dim 1

(dimensions)

122

▪ Scope: The sales department

▪ Actors implicated: Sales employees (end-users) and decision-makers.

Moving to a requirements specification (Sommerville, 2011; Mbala & Van der Poll, 2020a;

Mbala & Van Der Poll, 2020b), we may assume that the Data warehouse designer has to:

1. Define all entities that may be implicated in the development of the above support system.

2. Describe all attributes for each entity as well as the relationships among them.

Suppose the designer decides on a semi-formal specification via a UML class diagram

containing attributes, relationships, and cardinalities to represent the static aspect of the

above decision-making support system. Next, we present the UML class diagrams

obtained from the business requirement and business objectives from the requirements

definition discussed above for each respective model (Star and Snowflake) using the

OOMD approach since it is based on UML and can provide a good solution for the

development of such systems.

5.5 Star and Snowflake models in OOMD

5.5.1 Star model using OOMD

As previously mentioned, the Star model consists of a fact table and dimension tables,

with all the dimension tables directly related to the fact table. Furthermore, this model

uses the de-normalization principles over all the tables’ structures to allow the data

redundancy that facilities query complexity, query performance, and foreign keys join

123

(Mohammed, 2019); that is, none of the tables in a Star is normalized. The Star structure

for our case is depicted in Figure 5-4 (Mbala & Van der Poll, 2020a).

The Star representation from the requirements definition above yields five (5) classes as

dimension tables: Sale, Customer, Store, Date, and Product. Sale is modelled as a composite

class with shared-aggregation relationships with the corresponding dimension tables; the

relationship between the fact table and dimension tables is the aggregation relationship

with cardinalities. Referential integrity constraints are maintained via the surrogate keys

(Mbala & Van der Poll, 2020a).

124

5.5.2 Snowflake model using OOMD

The Snowflake model consists of a fact table and dimension tables with sub-dimension

tables. This model adheres to normalization principles to reduce data redundancy.

However, only the dimension tables are affected by the principle to generate the derived

tables called sub-dimension. The fact table is not affected by the principle; all dimension

Figure 5-4: Model 1 (Mbala & Van der Poll, 2020a)

Customer

CustSK Int

CustID Str

Name Str

Surname Str

City Str

Country Str

*

1..*

Sale

SaleID Int

CustSK Int

StoreSK Int

ProdSK Int

DateSK Int

Quantity Int

Amount

Store

StoreSK Int

StoreID Str

Name Str

City Str

1 *

Date

DateSK Int

DateID DTime

Day Int

Week Int

Month Int

Year Int

1 *

*

1..*

Product

ProdSK Int

ProdID Str

Name Str

Category Str

125

tables in a snowflake are normalized except the fact table (M. Golfarelli & Rizzi, 2018). A

Snowflake model for our case is portrayed in Figure 5-5 (Mbala & Van der Poll, 2020a).

Figure 5-5: Model 2 (Mbala & Van der Poll, 2020a)

Country

CountryID Str

Name Str

1

1
..*

City

CityID Str

CountryID Str

Name Str

1 1..*

Customer

CustSK Int

CustID Str

Name Str

Surname Str

CityID Str

1..*

*

1

1
..*

Store

StoreSK Int

StoreID Str

Name Str

CityID Str

1 *

Sale

SaleID Int

CustSK Int

StoreSK Int

ProdSK Int

DateSK Int

Quantity Int

* 1

Date

DateSK Int

DateID DTime

Day Int

Week Int

Month Int

Year Int

*

1..*

 Product

ProdSK Int

ProdID Str

Name Str

CatID Str

1

1
..*

Category

CatID Str

Desc Str

1..* 1

126

The Snowflake representation in Figure 5-5 consists of eight (8) classes: Sale as the fact table

and Store, Customer, Product and Date as dimension tables and Country, City and Category

as sub-dimensions or hierarchies. A similar aggregation is defined as common

associations between dimension and sub-dimensions tables (Mbala & Van der Poll,

2020a). The fact table is modelled as a composite class having shared-aggregation

relationships with the corresponding dimension tables. The relationship between

dimension tables is common and also known as an association. This representation is

based on referential integrity, as discussed before (Mbala & Van der Poll, 2020a; Mbala &

Van Der Poll, 2020b). The following Section compares the two models – Star and Snowflake

– using items based on their semantical features.

5.6 Framework of Comparison

Model comparison is an endeavour which asks for designating semantic correlations

between items of the two models (Nikiforova et al., 2015; Al-khiaty & Ahmed, 2016;

Mbala & Van der Poll, 2020a). However, the qualitative model comparison is time-

consuming and error-prone owing to differences in design decisions (Al-khiaty &

Ahmed, 2016; Mbala & Van der Poll, 2020a). The requirements in the case study stipulate

that the proposed system should determine all the necessary elements to represent the

system. Therefore, the following semantical features are used to evaluate and compare

both models (refer to Sections 5.5.1 and 5.5.2 above) generated from the requirements

definition:

• Classes and interface distance

• Attributes of the class features

• Relations features

127

Next, a comparative analysis of the two models is performed. It is assumed that the items

needed for the modelling will be generated in light of the end-users and decision makers'

expectations and needs and adherence to software quality principles. Therefore, items

such as classes and interfaces, class attributes, and relations between classes are relevant

when describing these requirements based on their semantical features (Mbala & Van der

Poll, 2020a).

The comparison algorithm used by Mbala & Van der Poll (2020a) was extended to

evaluate and compare the two models. Items that are potentially relevant for detecting

any contradictions, missing or duplicates in the entire system are identified as follows:

As per the list of items identified for the evaluation and comparison, we have three (3)

tables containing respective semantical features for each item.

Table 5-1: Classes and interfaces distances

Criteria Value

When both semantically equivalent models have items with identical

names
0

When both models are semantically equivalent but have items with

different names
0.5

When any one of the models does not have a semantically equivalent

class in the other model
1

We assume a value representing the criteria in Table 5-1. The values assigned to the

distances of each criterion will be utilized in ALGORITHM 5.1. Next, the attributes of the

class features are determined. The features are indicated in Table 5-2 and are: a indicates

128

access (modifier), s indicates a static (modifier), n stands for name, and t indicates the type

(of the attribute).

Table 5-2: Attributes of the class features

The distances between the features of the attributes of the class are assigned to the first

vector, and the following function determines its length (Len):

Len < a | s | n | t > (1)

Function (1) is defined in ALGORITHM 5.1.

The relation features are considered next as per Table 5-3.

Features Criteria Value

a
Difference between access modifiers of

relevant attributes of the class

Identical: 0

Different: 1

s Static modifier flag
Identical: 0

Different: 1

n Difference between attribute names
Identical: 0

Different: 1

t Difference between attribute types
Identical: 0

Different: 1

129

Table 5-3: Relation features

The distances between relation features are calculated as a second vector with different

parameters from ALGORITHM 5.1.

Function (2) is used to evaluate the length.

Len < s | t | y | m > (2)

Having compared the identified item pairs, the set of distances between them (to become

a set of values later on) is converted into an n-dimensional model difference vector where

n represents the number of the identified item pairs. However, the final model difference

estimation is a scalar representing the length of the model difference vector (Equation 3).

The calculation is performed in ALGORITHM 5.1.

Features Criteria Value

s

Relation source – whether relation into

the semantically equal class is outgoing

in both models

Identical: 0

Different: 1

t

Relation target – whether relation into

the semantically equal class is incoming

in both models

Identical: 0

Different: 1

y Difference between relations
Identical: 0

Different: 1

m Difference between multiplicities
Identical: 0

Different: 1

130

l =√∑ 𝑥𝑖
2𝑛

𝑖=1 (3)

where 𝑥𝑖 represents the distance between item pairs.

Finally, a vector comprising the distances between relevant item pairs is constructed as a

function, and its length is evaluated as the resultant difference. Next, we present the

extended algorithm named ALGORITHM 5.1 used for calculating the different lengths.

BEGIN ALGORITHM 5.1

INITIALISATION sum equals 0

INITIALISATION distance equals 0

INITIALISATION length

/* We Start by checking the item type */

check item type

CASEWHERE item type is

/* If the item type is a class or interface then */

class or interface

/* The following loop determines the distance values of the class

or interface found between both models (refer to TABLE 5.1) */

 WHILE item types are still available

 CASEWHERE pair items is

 both then value equals 0

 sum = sum + value

 half then value equals 0.5

 sum = sum + value

 diff then value equals 1

 sum = sum + value

131

 OTHERWISE then value equals 1

 sum = sum + value

 ENDCASE

/* Assign the distance values of each criterium */

 distance = distance + sum

 ENDWHILE

/* If the item type is an attribute, then */

attribute

/* Calculate the distances between class attributes of both models

(refer to TABLE 5.2) */

 WHILE item types are still available

 CASEWHERE attribute category is

 access modifier

 CASEWHERE pair items is

 identical then value equals 0

 sum = sum + value

 different then value equals 1

 sum = sum + value

 OTHERWISE then value equals 1

 sum = sum + value

 ENDCASE

 static modifier

 CASEWHERE pair items is

 identical then value equals 0

 sum = sum + value

 different then value equals 1

 sum = sum + value

 OTHERWISE then value equals 1

132

 sum = sum + value

 ENDCASE

 name

 CASEWHERE pair items is

 identical then value equals 0

 sum = sum + value

 different then value equals 1

 sum = sum + value

 OTHERWISE then value equals 1

 sum = sum + value

 ENDCASE

 type

 CASEWHERE pair items is

 identical then value equals 0

 sum = sum + value

 different then value equals 1

 sum = sum + value

 OTHERWISE then value equals 1

 sum = sum + value

 ENDCASE

 ENDCASE

/* Calculate function (1) */

distance = distance + sum

 ENDWHILE

/* If the item type is a relation then */

relation

/* Calculate the distances between class attributes of both models

(refer to TABLE 5.2) */

133

 WHILE item types are still available

 CASEWHERE relation category is

 relation source

 CASEWHERE pair items is

 identical then value equals 0

 sum = sum + value

 different then value equals 1

 sum = sum + value

 OTHERWISE then value equals 1

 sum = sum + value

 ENDCASE

 relation target

 CASEWHERE pair items is

 identical then value equals 0

 sum = sum + value

 different then value equals 1

 sum = sum + value

 OTHERWISE then value equals 1

 sum = sum + value

 ENDCASE

 relation name

 CASEWHERE pair items is

 identical then value equals 0

 sum = sum + value

 different then value equals 1

 sum = sum + value

 OTHERWISE then value equals 1

 sum = sum + value

134

 ENDCASE

 multiplicity or cardinality

 CASEWHERE pair items is

 identical then value equals 0

 sum = sum + value

 different then value equals 1

 sum = sum + value

 OTHERWISE then value equals 1

 sum = sum + value

 ENDCASE

 /* This line below performs the calculation of the

function (2) */

distance = distance + sum

 ENDCASE

ENDWHILE

/* Calculate formula (3) which is the square root of the sum of

all squared distances */

do length = (⋃(distance ** 2))^2

ENDCASE

END ALGORITHM 5.1

ALGORITHM 5.1 calculates the distance between the two models being compared. The

algorithm started with the initialization of some variables. Thereafter, the first loop in

ALGORITHM 5.1 calculates the distance between the type of items of the two classes or

interfaces based on the criteria list (refer to Table 5.1). For example, suppose both items

of class or interface type are identical, then the distance between both items is zero (0).

However, if both class or interface type items are not identical (i.e., they have the same

name but the components have different names), the distance between them is 0.5. Lastly,

135

in the case where both items of class or interface type are entirely different from the name

of the entity or the names of the components, the distance between the items is one (1).

Next, the second loop calculates the distance between the type of items of the two class

attributes according to the list of criteria in Table 5.2. Firstly, the categorization of the

class attribute type items is performed. The comparative analysis process Starts by

checking if the category is the access modifier. If both type items of class attributes are

similar, then the distance is zero (0). On the other hand, if both types of items of class

attributes are different, then the distance between the items is one (1). Finally, the same

principles are applied to the remaining categories.

The third loop calculates the distance between the type of items of the relation based on

the criteria listed in Table 5.3. Similar to the class attributes, the categorization is first

performed to launch the comparison process. For instance, if the category is the relation

source and both types of items of the relation are similar, then the distance between them

is zero (0). In other cases, the distance is one (1). For the rest of the categories, the same

principles are used. Finally, the length is calculated to obtain the number representing

the difference between both models.

The following section presents the results having compared both models after applying

ALGORITHM 5.1.

5.7 Outcome of Comparison

Should any of the class diagram's attributes be absent or an entire class diagram is

missing, all the features of the class's attributes will be set at one (1) and access- and static

modifiers are omitted. In addition, the distance between them is set at zero (0).

136

Formula (4) is used to calculate the length for each item pair using the model difference

of both schemas.

√∑ 𝑥𝑖
2 52

𝑖=1 = √(307) = 17.521 ≈ 18 (4)

A comparative analysis of the two models is performed on the strength of the items and

features in Table 5-4. The results derived from Formula (4) are shown in Table 5.4.

Table 5-4: Comparison of Item pairs using Model 1 (Star) and Model 2 (Snowflake)

Model 1 Items Model 2 Items Length

Customer Customer 0

Customer.CustSK Customer.CustSK Len(⟨0|0|0|0⟩) = 0

Customer.CustID Customer.CustID Len(⟨0|0|0|0⟩) = 0

Customer.Name Customer.Name Len(⟨0|0|0|0⟩) = 0

Customer.Surname Customer.Surname Len(⟨0|0|0|0⟩) = 0

Customer.City - Len(⟨1|1|1|1⟩) = 4

Customer.Country - Len(⟨1|1|1|1⟩) = 4

- Customer.CityID Len(⟨1|1|1|1⟩) = 4

Sale Sale 0

Sale.SaleID Sale.SaleID Len(⟨0|0|0|0⟩) = 0

137

Model 1 Items Model 2 Items Length

Sale.CustSK Sale.CustSK Len(⟨0|0|0|0⟩) = 0

Sale.ProdSK Sale.ProdSK Len(⟨0|0|0|0⟩) = 0

Sale.DateSK Sale.DateSK Len(⟨0|0|0|0⟩) = 0

Sale.StoreSK Sale.StoreSK Len(⟨0|0|0|0⟩) = 0

Sale.Quantity Sale.Quantity Len(⟨0|0|0|0⟩) = 0

Date Date 0

Date.DateSK Date.DateSK Len(⟨0|0|0|0⟩) = 0

Date.DateID Date.DateID Len(⟨0|0|0|0⟩) = 0

Date.Day Date.Day Len(⟨0|0|0|0⟩) = 0

Date.Week Date.Week Len(⟨0|0|0|0⟩) = 0

Date.Month Date.Month Len(⟨0|0|0|0⟩) = 0

Date.Year Date.Year Len(⟨0|0|0|0⟩) = 0

Product Product 0

Product.ProdSK Product.ProdSK Len(⟨0|0|0|0⟩) = 0

Product.ProdID Product.ProdID Len(⟨0|0|0|0⟩) = 0

Product.Name Product.Name Len(⟨0|0|0|0⟩) = 0

138

Model 1 Items Model 2 Items Length

Product.Category - Len(⟨1|1|1|1⟩) = 4

- Product.CatID Len(⟨1|1|1|1⟩) = 4

Store Store 0

Store.StoreSK Store.StoreSK Len(⟨0|0|0|0⟩) = 0

Store.StoreID Store.StoreID Len(⟨0|0|0|0⟩) = 0

Store.Name Store.Name Len(⟨0|0|0|0⟩) = 0

Store.City - Len(⟨1|1|1|1⟩) = 4

- Store.CityID Len(⟨1|1|1|1⟩) = 4

- City 1

- City.CityID Len(⟨1|1|1|1⟩) = 4

- City.CountryID Len(⟨1|1|1|1⟩) = 4

- City.Name Len(⟨1|1|1|1⟩) = 4

- Category 1

- Category.CatID Len(⟨1|1|1|1⟩) = 4

- Category.Desc Len(⟨1|1|1|1⟩) = 4

- Country 1

139

Model 1 Items Model 2 Items Length

- Country.CountryID Len(⟨1|1|1|1⟩) = 4

- Country.Name Len(⟨1|1|1|1⟩) = 4

Aggregation(Customer ⇒ Fact)
Aggregation(Customer ⇒

Fact)
Len(⟨0|0|0|0⟩) = 0

Aggregation(Store ⇒ Fact) Aggregation(Store ⇒ Fact) Len(⟨0|0|0|0⟩) = 0

Aggregation(Date ⇒ Fact) Aggregation(Date ⇒ Fact) Len(⟨0|0|0|0⟩) = 0

Aggregation(Product ⇒ Fact) Aggregation(Product ⇒ Fact) Len(⟨0|0|0|0⟩) = 0

- Association(City ⇔ Country) Len(⟨1|1|1|1⟩) = 4

- Association(Store ⇔ Product) Len(⟨1|1|1|1⟩) = 4

-
Association(City ⇔

Customer)
Len(⟨1|1|1|1⟩) = 4

- Association(City ⇔ Store) Len(⟨1|1|1|1⟩) = 4

-
Association(Category ⇔

Product)
Len(⟨1|1|1|1⟩) = 4

The Star and Snowflake models were modelled as model 1 and model 2, respectively. Table

5-4 shows that the Star model has some missing items with respect to the Snowflake model

in the sense of classes, attributes of the class and relationships features. But, the Star

model has no item contradictions or duplications compared to the Snowflake model. This

140

makes the Star model more appropriate than the Snowflake model for Data warehouse

systems development in terms of complexity and understanding (Mbala & Van der Poll,

2020a). Hence, the Star model resulted in fewer constituents that may reduce complexity;

this is essential, especially when considering a human designer's manual generation of

Data warehouse models (Mbala & Van der Poll, 2020a).

5.8 Chapter Summary

This Chapter focused on selecting the more suitable model between two Data warehouse

models used in the conceptual design phase. We compared the two models on the

strength of an example through an extended framework proposed that uses an algorithm

for comparative analysis. Each model represents an instantiation of the example used.

The set of requirements from the requirements definition used in this Chapter was

derived from a data mart case study of a Data warehouse system for a company's sales

department performance, based on the product sales in terms of revenue and quantity

for a certain period.

The framework devised and used in this Chapter went through two main phases to reach

the primary purpose of this Chapter. The first phase required the representation of the

defined requirements using OOMD models to better understand the use of UML class

diagrams. Then, both models generated in OOMD models were used to evaluate and

compare them to select the more appropriate one for developing Data warehouse

systems.

The evaluation and comparison of the two models identified a list of items needed from

a satisfactory model and related them to the system requirements. These items were

subsequently compared to determine the model more suitable for developing Data

warehouse systems. The Star model was found to be the more appropriate model for

141

developing Data warehouse systems (Mohammed, 2019) because this model results in

fewer components, which in turn promotes ease of use and understanding and, therefore,

facilitate user experience (UX).

The following Chapter addresses the formal modelling of the development of Data

warehouse systems by attempting to formalize the model selected in this Chapter to

investigate the formal specification of the appropriate model.

142

Chapter 6 Formalizing the Star Schema

6.1 Introduction

Previously in this dissertation, we discussed some basic concepts of Data warehouse

systems, object orientation and formal methods paradigms for modelling systems.

Chapter 2 introduces the design of Data warehouse systems and the object orientation

paradigm using UML as the standard modelling language. The challenges that cause

Data warehouse systems to fail and the advantages and disadvantages related to the use

of this paradigm were also identified. Finally, an extended framework was proposed to

address these challenges. In Chapter 3, background literature on formal methods and Z

was provided as an example of formal methods proposing an enhanced framework. The

benefits of using formal methods in specifying software requirements in terms of

precision and safety were also addressed.

We noticed that both object orientation and formal methods have challenges. For

example, the diagrammatic object-oriented method lacks precision (Babar et al., 2020) in

its notations' semantics, which is an essential obstacle in developing critical systems. In

contrast, formal methods are considered arcane, requiring more effort and skills from the

developer. Consequently, most developers are not ready to commit themselves to the use

of FMs (Adesina-Ojo, 2011; Moremedi, 2015).

The integration of both paradigms may be a solution since the limitations of one notation

may be substituted by the other’s notation to obtain an accurate and unambiguous model

of the proposed system (Adesina-Ojo, 2011; Singh et al., 2016). Therefore, besides

143

focusing on producing the formal specifications of the case study used in Section 5.4, this

Chapter seeks to address the following research question raised in Section 1.4.2:

SRQ5: To what extent may formal specification facilitate the development of Data warehouse

systems?

Figure 6-1 below, repeated from Chapter 1 (see Figure 1-1), schematically depicts the

question elaborated above:

The enhanced framework is developed to achieve the integration of both paradigms by

using the appropriate model (Star model) selected in Chapter 5, followed by formal

modelling of the development of Data warehouse systems. This Chapter Starts with a

quick revisit of UML in Section 6.2 and the formal Z specification in Section 6.3. A

Figure 6-1: An Enhanced Framework

Formal Specification

Formal Model

Formal Transformation | Static Aspect

Requirements Definition

UML Constructs

DW Star Model

144

discussion on the Star model selected as the suitable model for developing such systems

is addressed in Section 6.4. In Section 6.5, the formalization of the Star model is discussed.

The Chapter ends with a summary in Section 6.6.

6.2 A Revisit of UML

Various notations can be used to model a system, and the OMG recognizes UML as a

standard language that is broadly used for object-oriented software development

(Nikiforova et al., 2015; Moura et al., 2015; Reddy & Suneetha, 2021; Shcherban et al.,

2021). The UML class diagram was selected in this work as the best representation of the

static aspects of the system. The OOMD model based on UML semantics is used to

portray the static aspects of Data warehouse systems since UML is viewed as being more

suitable for the system's design (Babar et al., 2020).

As stated by Moura et al. (2015), a class diagram presents a system's static view. In

addition, a class diagram is one of the most used diagrams for the object-oriented

environment to describe structural properties such as classes (Figures 5-4) and objects

(Figure 5-5) (Babar et al., 2020).

6.3 A Revisit of Z

Z is a formal specification language based on a strongly typed fragment of Zermelo-

Fraenkel set theory and first-order logic (Steyn, 2009). Its set-theoretic roots embed

numerous discrete mathematical structures (Bakri et al., 2013; Rodano & Giammarco,

2013). As a result, Z is arguably one of the most successful and widely used formal

specification languages to describe and model computing systems. Furthermore, Z has

formal (denotational) semantics (Bakri et al., 2013).

145

Consequently, in this Chapter, Z is used to specify the static structures of a Star schema

formally and denote a data mart of a Data warehouse system. Based on the discussion in

Section 3.3, the following example shows the declaration of a state schema for a rental

database.

[CUSTOMER, CAR]

 RentalDB

clients : ℙ CUSTOMER

renting : CUSTOMER ↔ CAR

dom renting ⊆ clients

CUSTOMER and CAR are the two given system sets. RentalDB describes the system state,

and for this example, the state consists of two groups, namely clients (set of renters) and

renting (set of pairs that represents the relation existing between customers and their

cars). The predicate part declares that only clients (the renters) may be renting in the

system. The following Section introduces the medium-sized case study, the same one

used in the previous Chapter.

6.4 Case Study

Figure 6-2 repeated from the previous Chapter (refer to Section 5.5.1) represents the Star

model that utilizes constructs familiar to a UML class diagram in terms of classes,

relationships among classes and constraints on the relationships. Figure 6-2 portrays a

selection of the notation available in the Star model of a Data warehouse system, for

example, the use of aggregation (hollow diamond). However, being the definition of a

Data warehouse and not an underlying operational database, the Star model typically

would not utilize simple relationships like association (binary or otherwise) (Mbala &

Van der Poll, 2020b).

146

Next, a discussion of the Star model and its inherent differences with a standard UML

class diagram is presented for one of the underlying operational databases (a data mart).

1. An additional class, Sale to maintain the store's various operations, has been added

to the four (4) classes. These are stores, customers, sales at the stores, and the dates

of transactions (sales, etc.) alluded to in the requirements definition described in

Section 5.4.1. In Star-based terminology, a class-like Sale in Figure 6-2 is a fact table,

while the other four are known as dimension tables. It is customary for fact classes

to participate with corresponding dimension classes in aggregation relationships,

as indicated in Figure 6-2 (Mbala & Van der Poll, 2020b).

2. In every dimension class, the Star model defines two special attributes, loosely

indicated by “SK” and “ID”. In traditional (relational or operational) database

terminology, the “ID” attribute would serve as the primary key for the relation

and this requirement is upheld in the four (4) dimension classes (stores, customers,

products, and dates). However, in a data warehousing context, the “SK” attribute

is a system-generated identifier, which is usually defined as an integer by the

system described in Figure 6-2. It is noteworthy that a Data warehouse includes

some data marts or operational databases, and it is possible that, for example, a

specific customer with a unique primary key occurs multiple times in various sales

on the same day. Consequently, the “SK” attribute keeps track of these customer

occurrences, even those that have been deleted, since a Data warehouse also keeps

historical data for business intelligence considerations (Mohammed, 2019). Thus,

the “ID” primary key in the underlying database becomes a common attribute in

the dimension classes from a Data warehouse perspective.

147

3. The Sale class has an aggregation (hollow diamond) relationship with each of the

four (4) dimension classes. In the underlying database(s), such relationships would

mostly be compositions (filled diamonds), e.g., there would be a composition

between Store and Sale, indicating that if a store is destroyed, the sales record for

the such store would be removed from the database. However, since the Data

warehouse also records historical information, the relationship between Store and

Sale is an aggregation (hollow diamond).

148

In the next subsection, we introduce the case study for which a Star model and

corresponding formal specifications are constructed.

Figure 6-2: Star Model (Mbala & Van der Poll, 2020b)

Customer

CustSK Int

CustID Str

Name Str

Surname Str

City Str

Country Str

*

1..*

Sale

SaleID Int

CustSK Int

StoreSK Int

ProdSK Int

DateSK Int

Quantity Int

Amount

Store

StoreSK Int

StoreID Str

Name Str

City Str

1 *

Date

DateSK Int

DateID DTime

Day Int

Week Int

Month Int

Year Int

1 *

*

1..*

Product

ProdSK Int

ProdID Str

Name Str

Category Str

149

6.5 Formalization of the Star model in Z

The following section presents a Z specification in the data mart case study represented

by the system described in Section 5.4.1, leaning toward the established strategy for

constructing a Z specification. In the process of translating a Star model into a Z

specification, the classes in the diagram essentially become Z schemas with additional

restrictions as indicated in the generic version (refer to Section 3.3). However, for the UX,

it is customary to use the same class names for schema names with some change in the

letter face or font.

Similarly, the attribute names are used in the corresponding schema. In line with the

abstract characteristics, the specifier has the freedom to define the attribute types in a

schema as deemed appropriate. The specification below follows the established strategy

for constructing a Z specification (Steyn, 2009; Nemathaga, 2020; Mbala & Van der Poll,

2020b) and the structure suggested by (Nemathaga, 2020) for the combination of Z and

UML.

Following the established strategy for constructing a Z specification, the first step is to

define the basic types used in the specification. Initially, we define six (6) basic types for

the Product class, which are indicated in Figure 6-3.

[PRODSK, PRODID, NAME, PRICE, TYPE, CATEGORY]

150

 Product

id!: PRODSK

prodid: PRODID

name: NAME

price: PRICE

type: TYPE

category: CATEGORY

sales: ℙ Sale /* Set of sales for a product to provide historical information */

∀ i,j: sales ⦁ i.id! = j.id! ⇔ i = j

Figure 6-3: Z schema representing the Product class

The attributes in the Product class in the Star model are indicated in Figure 6-3. As

discussed in Section 6.4, unique identifiers are generated by the system to distinguish

multiple historical occurrences of an object. In Z, the output is indicated by a “!”

decoration added to the variable name. An additional component, sales, is defined as a

set of Sale instances for a particular product. That has enabled historical information to

be maintained in the Data warehouse. The predicate in the schema specifies that sale

identifiers generated by the system are unique (generating a proof obligation (PO), of

course, for a specification of the such process).

Some information, which is not readily evident in the Product class in the Star model

depicted in Figure 6-2, is explicit in the schema Product in Figure 6-3. For example, it is

not evident that the denotation of attribute PRODSK of an object of type Product in Figure

6-3 is system generated. But since Z explicitly allows for the decoration of variables (a

system-generated output in this case), it is evident that id! in Figure 6-3 is system-

generated and not assigned by the user.

Standard Z has no notation for documentation (comments) inside a schema. However, to

improve the user experience of a schema, we suggest adding documentation as indicated

in the last schema declaration above. Likewise, while it is not customary in Z to provide

151

a (figure) caption for a schema, this may improve the user experience. The Store class in

the Star model necessitates the introduction of further basic types, viz:

The Z schema for the Store class is specified in Figure 6-4.

[STORESK, STOREID, NAME, ADDRESS, QUANTITY, PRODUCT, CITY, COUNTRY]

 Store

id!: STORESK

storeid: STOREID

name: NAME

product: PRODUCT

quantity: QUANTITY

address: ADDRESS

city: CITY

country: COUNTRY

sales: ℙ Sale

∀ i,j: sales ⦁ i.id! = j.id! ⇔ i = j

Figure 6-4: Z schema representing the Store class

The system generates a unique id! and store sales history is maintained. Some absent

information from the description of the store class in Figure 6-2 was well specified in the

schema (e.g., product, quantity, address, and country).

The Date class in the Star model has the following basic types for its specification:

[DATESK, DATEID, DAY, WEEK, MONTH, YEAR]

The Z schema for the Date class is depicted in Figure 6-5.

152

 Date

id!: DATESK

dateid: DATEID

day: DAY

week: WEEK

month: MONTH

year: YEAR

sales: ℙ Sale

∀ i,j : sales ⦁ i.id! = j.id! ⇔ i = j

Figure 6-5: Z schema representing the Date class

The basic types for schema Customer are given below, followed by the schema for

Customer (see Figure 6-6).

[CUSTSK, CUSTID, NAME, SURNAME, GENDER, BIRTHDAY, ADDRESS,

TELEPHONE, EMAIL, CITY, COUNTRY]

 Customer

id!: CUSTSK

custid: CUSTID

name: NAME

sname: SURNAME

gender: GENDER

birthday: BIRTHDAY

addr: ADDRESS

phone: TELEPHONE

email: EMAIL

cit: CITY

cntry: COUNTRY

sales: ℙ Sale

∀ i,j : sales ⦁ i.id! = j.id! ⇔ i = j

Figure 6-6: Z schema representing the Customer class

153

The system generates a unique Customer id! and customer sales history is maintained.

Some absent information from the description of the store class in

Figure 6-2 was well specified in the schema (e.g., gender, birthday, address, telephone

and email).

The Z schemas in Figures 6-3, 6-4, 6-5, and 6-6, respectively, show the formalization of

the four (4) dimension classes and the single fact table portrayed in Figure 6-2. In each

case, the system generates a unique identifier for multiple occurrences of objects

maintained for historical purposes. Next, we define the fact table Sale depicted in Figure

6-2 in Z (see Figure 6-7).

 Sale

id!: SALEID

custsk: CUSTSK

datesk: DATESK

prodsk: PRODSK

storesk: STORESK

quantity: QUANTITY

amount: AMOUNT /* Refer to English prose discussion below schema */

customers: ℙ Customer

products: ℙ Product /* A customer may simultaneously buy more than one product */

date: Date

store: Store /* Assuming we are considering one (1) store only */

customers ≥ 1 /* At least one (1) customer is involved in a sale */

products ≥ 1 /* At least one (1) product is involved in a sale */

∀ i,j: sales ⦁ i.id! = j.id! ⇔ i = j

Figure 6-7: Z schema representing the Sale class

154

Schema Sale represents the formalization of the aggregate object structure, which is the

Sale class depicted in Figure 6-2. As before, the fact table formalized as Sale embeds a

unique identifier generated by the system for the dimension classes. The fact that at least

one product or one customer has to participate in a sale transaction is explicitly specified

in the Z schema by ♯product ≥ 1 and ♯customer ≥ 1, a requirement that could be viewed as

merely implicit in the Star model in Figure 6-2 (the 1…* requirement between Product and

Sale as well as Customer and Sale). Further explanation of the schema content is as

indicated in the documentation.

Next, we turn to the formalization representing the constraint between the sale and

product classes as specified in the schema StarViewStruct (see Figure 6-8). The predicate

constraints depict the view of historical information maintained by the warehouse and

instances that were created in the system but not yet destroyed. For example, the

formalization of the view for the Sale aggregation in Figure 6-2 consists of schema

definitions for Sale, Customer, Store, Date and Product previously specified.

The following paragraphs address the description of Figure 6-8, representing the Z

schema for the class diagram. Figure 6-2 shows that the Sale class forms aggregations with

all four (4) dimension classes. This requirement is captured in the declarations Section in

schema StarViewStruct. The first predicate states that at least one Product instance and one

Customer instance participate in the system.

The second predicate specifies that all valid sales link to the corresponding store, customer,

product, and date objects (i.e., any two sales items are the same Sale instance should they

have at least one part in common). Finally, as per the third predicate, all valid sales (s:

sales) have these as elements of the defined sets (stores, customers, products, and dates) in

the system, i.e., all parts of the Sale instance come from the sets of existing instances.

155

The fourth predicate specifies that the Product instance may be shared among instances

of Sale owing to the many-to-many relationships between the classes and their

multiplicities. Included in this predicate set are constraints: all created instances of the

part of classes should be parts of created aggregate instances.

The uniqueness predicates state that identifiers previously generated by the system for

each dimension class object and each object in the fact class are unique. The Sale schema

provides additional and more explicit information than inferred from the Star model in

Figure 6-2 (e.g., hidden information in class attributes). The specification described in the

schema below may help clarify ambiguities that may lead a system to inconsistencies

during its development.

156

 StarViewStruct

sales: ℙ Sale

customers: ℙ Customer

prodcuts: ℙ Product

stores: ℙ Store

dates: ℙ Date

/* 1st predicate */

products ≠ ∅ ∧ customers ≠ ∅

/* 2nd predicate */

∀s1,s2 : sales | (s1.customers = s2.customers) ∨

 (s1.store = s2.store) ∨

 (s1.date = s2.date) ∨

 (s1.products = s2.products) ⇒ s1 = s2

/* 3rd predicate */

∀s : sales ⦁ (s.store ∈ stores ∧

 s.date ∈ dates ∧

 s.customers ⊆ customers ∧

 s.products ⊆ products)

/* 4th set of predicates */

∀ p : products ⦁ (∃ s : sales ⦁ p ∈ s.products)

∀ c : customers ⦁ (∃ s : sales ⦁ c ∈ s.customers)

∀ ss : stores ⦁ (∃ s : sales ⦁ s.store = ss)

∀ dt : dates ⦁ (∃ s : sales ⦁ s.date = dt)

/* Uniqueness predicates */

∀ ss1,ss2 : stores ⦁ ss1.id = ss2.id ⇔ ss1 = ss2

∀ dt1,dt2 : dates ⦁ dt1.id = dt2.id ⇔ dt1 = dt2

∀ c1,c2 : customers ⦁ c1.id = c2.id ⇔ c1 = c2

∀ p1,p2 : products ⦁ p1.id = p2.id ⇔ p1 = p2

∀ s1,s2 : sales ⦁ s1.id = s2.id ⇔ s1 = s2

Figure 6-8: Z schema representing the Star model

The Z specifications, which are written for all the Star model classes, aim to unveil the

hidden information needed by the designer during the system development to clarify

possible ambiguities that could lead to system inconsistencies. For example, it would

157

have been challenging for the company to generate reporting of products per type and

analyze the product sales based on revenue without the declaration or definition of the

amount attribute, which is calculated as the sum of the total prices of all products sold.

Therefore, during the specification, we specified the essential attributes (e.g. Price and

Type attributes for Product class, and Amount attribute for Sale class) that will be needed

to achieve the business purpose and requirements.

6.6 Chapter Summary

This Chapter presented a brief discussion of the Star model of a data warehouse system

to validate the enhanced framework proposed in this dissertation. First, the Star schema

was selected for specifying a Data warehouse case study owing to its straightforward

structure. Thereafter, an enhanced framework was proposed for moving from an

informal specification to an OOMD model using UML structures to a Star model, and

eventually, a Z specification was suggested. Finally, the major purpose of formal methods

(as captured in a formal specification) when assisting designers in specifying and

designing more reliable systems was unpacked. Chief among these is the elicited possible

ambiguities and inconsistencies in non-formal specifications, especially during the

requirements gathering and early specification phases.

Z specification of the static structures captured in the Star model around a data mart was

then presented. Some amendments to the formal specification to facilitate the user

experience of the specification were put forward. Aspects relating to the aggregation of

four (4) dimension classes and one fact class formed part of the formalism. In addition,

implicit (or absent) information, e.g., hidden information in the Star model, was elicited

in the Z schemas, thereby revealing hidden information and eliminating ambiguity.

158

A dissertation summary is provided in the next Chapter, and the research questions

raised in Chapter 1 are addressed. Finally, the Chapter concludes with recommendations

before an outline of future works.

159

Chapter 7 Conclusion

7.1 Introduction

The previous Chapter validated the enhanced framework using a medium-sized case

study for Data warehouse systems. The framework was put into practice, and each item

was implemented. It is envisaged that the enhanced framework would facilitate the

successful development of a Data warehouse system in the conceptual design phase.

This Chapter presents a conclusion of the study, and it discusses the specification

formalisms for Data warehouse systems development as addressed in this dissertation.

Furthermore, a summary of the contribution of this research project is also provided.

Finally, the extent to which the research questions (refer to Section 1.4) have been

answered is considered, followed by opportunities for future work in this area.

7.2 Research Questions and Findings

This research has established that the Star model was preferred over the Snowflake model

owing to its simplicity. In addition, the extent to which formal methods for Data

warehouse systems may mitigate failures within the development of such systems was

also evaluated. This was done to facilitate formal methods within the development of

Data warehouse systems to provide formal modelling of such systems. The following

Section presents the research questions and how they were addressed in this research.

160

SRQ1: What are the requirements elicitation approaches for Data warehouse systems

development?

Chapter 2 discussed various approaches usually used during the design phase of Data

warehouse systems. Three different approaches, namely, the data-driven approach, goal-

driven approach, and user-driven approach, were identified as the major requirements

elicitation approaches to be used while developing such systems. Furthermore, a

description of each approach was provided and the technique that each approach is based

on was identified. As a result, it was established that all these approaches are aimed at

documenting the requirements specification. This work was published in the International

Journal of Digital Information and Wireless Communications (IJDWIC) (Mbala & Van der Poll,

2017).

SRQ2: How may the two (2) prominent requirements elicitation approaches be combined?

In Chapter 2, the goal-driven, user-driven, and data-driven approaches were categorized

into two approach groups, namely the requirement-driven approach group and the

supply-driven approach group. The goal-driven and user-driven approaches were

combined to form the requirement-driven approach group, and the data-driven approach

was used to create the supply-driven approach group. The frameworks of these two

groups were provided, and a hybrid-driven approach was suggested. Work emanating

from this research question was also published in the International Journal of Digital

Information and Wireless Communications (IJDWIC) (Mbala & Van der Poll, 2017).

Therefore, SRQ1 and SRQ2 were answered through the work presented in Chapter 2.

161

The challenge is that the requirements definition obtained from the requirements

elicitation and analysis usually do not model a system satisfactorily owing to their

inherent natural language use, which is susceptible to ambiguities. Hence, the following

questions are posed:

SRQ3: What are the main models used in the development of Data warehouse systems?

In Chapter 5, the requirements definition obtained in Chapter 2 helped to define the

requirements that match the expectations and needs of end-users and decision-makers.

Such a set of requirements was used to model the Data warehouse system in the design

phase through the two most used models, Star and Snowflake, in the specification phase

during development. Finally, a conference paper was synthesized from Chapter 5 and

published at the 18th Johannesburg International Conference on Science, Engineering,

Technology and Waste Management (SETWM) (Mbala & Van der Poll, 2020a).

SRQ4: What is the most suitable model for the development of Data warehouse systems?

The Star and Snowflake models are based on dimensional structure. The OOMD model

was used to transform the dimensional structure used by Data warehouse systems into

UML constructs to represent both models in the conceptual design phase. A medium-

sized case study was used to produce a set of requirements, which were then transformed

into Star and Snowflake conceptual models. Finally, both models were compared, and an

appropriate model was selected by considering the following list of elements of system

requirements:

▪ Classes and interface distances

▪ Attributes of the class features

162

▪ Relations features

As a result, the Star model emerged as the more appropriate model for developing the

Data warehouse system because it resulted in fewer components, facilitating the use and

understanding of the system. Furthermore, results emanating from Chapter 5 were

incorporated in a conference proceeding of the 18th Johannesburg International

Conference on Science, Engineering, Technology and Waste Management (Mbala & Van

der Poll, 2020a). Therefore, SRQ3 and SRQ4 were answered.

A further specification challenge was identified. Although the requirements definition is

modelled using diagrams (semi-formal notation), such notation is still susceptible to

ambiguities owing to a lack of accuracy in the semantics. For this reason, the following

question was posed:

SRQ5: To what extent may formal specification facilitate the development of Data warehouse

systems?

Regarding SRQ5, a medium-sized case study was used in Chapter 5 to transform the

requirements definition to the Star model (diagrams), thereby providing an opportunity

for formal methods. The specific patterns used to represent the static aspects of the Data

warehouse system were represented in smaller constructs illustrating the use of Z

schemas and schema calculus. Finally, a paper was developed from Chapter 6 and

published at the 18th Johannesburg International Conference on Science, Engineering,

Technology and Waste Management (Mbala & Van Der Poll, 2020b). SRQ5 is, therefore,

answered.

The last research question posed is:

163

SRQ6: How do formal proofs increase confidence in a formal specification?

In Chapter 3, a small real-world case study was used to demonstrate the general use of

Z. A requirements statement was defined to describe the given problem, and Z was used

to specify the static and dynamic aspects of the case. Some typical proof obligations that

arose during the specification of the system's operations were addressed (see Section

3.4.8). The earlier paper published in the International Journal of Digital Information and

Wireless Communications (IJDIWC) (Mbala & Van der Poll, 2017) addressed some proof

obligations, thereby addressing SRQ6. The following Section presents an analysis of the

findings of this research.

7.3 Analysis of Findings

This research investigated the challenges underlying the development of Data warehouse

systems. It explored how possible ambiguities that may lead to system inconsistencies

are clarified by unveiling the hidden information in the requirements during the

specification. The requirement-driven approach and supply-driven approach were

merged to form one approach, called the hybrid approach. The hybrid approach was

used in Chapter 2 to define requirements that meet the end-users’ and decision makers’

expectations and demands using an algorithm.

Chapter 5 indicated that the Star and Snowflake models were the leading models

preferred for developing Data warehouse systems. Initially elaborated in natural

language (requirements definition), the case study was successfully translated from

informal notation (natural language) into semi-formal notation modelled with diagrams.

Furthermore, the comparative analysis of both models was successfully performed based

on the semantical features identified. Thus, the Star model was successfully established

164

as the more appropriate model for developing Data warehouse systems in the conceptual

design phase.

Chapters 3 and 6 have also demonstrated that the formal language Z can specify a

proposed system's static and dynamic aspects. Initially elaborated in natural language,

the case studies were successfully transformed from informal notation into semi-formal

and further translated into a specification modelled with schemas. The Z notation

successfully presented the states and operations of the system that were originally

modelled in diagrams.

This research confirmed that diagrams facilitate ease-of-use and understandability of a

specification of Data warehouse systems. However, diagrams often lack accuracy. In

contrast, system designers still experience difficulties in using the Z notation owing to

the mathematical language used in the notation.

7.4 Contributions

The results of this research ought to augment practices in the area of data warehousing

such that the designers would use the presented frameworks when developing their

systems. As a result, designers possessing technical skills in Information Systems can use

the frameworks proposed in this research. However, some knowledge of mathematical

set theory and first-order predicate logic is required for the underlying analyses. The

main user targeted in the area is the designer in the process of developing the Data

warehouse system.

165

7.5 Future work

This dissertation does not address all the problems relating to Data warehouse systems.

Instead, this dissertation focuses on how formal methods can mitigate the failures of Data

warehouse systems in development. Proposals for future work include the following:

▪ Data warehouse systems should be investigated and specified for dynamic aspects

(e.g., the extract-transform-load process).

▪ An opportunity also exists for the non-functional requirements (e.g., the security)

for Data warehouse systems to be investigated and specified.

166

References

Abai, N. H. Z., Yahaya, J. H., & Deraman, A. (2013). User Requirement Analysis in Data

Warehouse Design: A Review. Procedia Technology, 11, 801–806.

https://doi.org/10.1016/j.protcy.2013.12.261

Adesina-Ojo, A. A. (2011). Towards the Formalisation of Object-Oriented Methodologies. MSc

Dissertation, University of South Africa.

Al-Ababneh, M. M. (2020). Linking Ontology, Epistemology and Research

Methodology. Science & Philosophy, 8(1), 75–91.

https://doi.org/10.23756/sp.v8i1.500

Al-Fedaghi, S. (2021). UML Modeling to TM Modeling and Back. IJCSNS International

Journal of Computer Science and Network Security, 21(1), 84–96.

Al-khiaty, M. A., & Ahmed, M. (2016). UML Class Diagrams : Similarity Aspects and

Matching. Lecture Notes on Software Engineering, 4(1), 41–47.

https://doi.org/10.7763/LNSE.2016.V4.221

Babar, M., Khattak, A., Arif, F., & Tariq, M. (2020). An improved framework for

modelling data warehouse systems using uml profile. International Arab Journal of

Information Technology, 17(4), 562–571. https://doi.org/10.34028/iajit/17/4/15

Bakri, S. H., Harun, H., Alzoubi, A., & Ibrahim, R. (2013). the Formal Specification for

the Inventory System Using Z Language. The 4th International Conference on Cloud

Computing and Informatics, 064, 419–425.

Basaran, B. P. (2005). A Comparison of Data Warehouse Design Models. MSc Dissertation,

Atilim University.

Buthelezi, M. P. (2017). Addressing ambiguity within Information Security Policies in Higher

Education to Improve Compliance. MSc Dissertation, University of South Africa.

167

Dahlan, A., & Wibowo, F. W. (2016). Design of Library Data Warehouse Using

SnowFlake Scheme Method: Case Study: Library Database of Campus XYZ.

Proceedings - International Conference on Intelligent Systems, Modelling and Simulation,

ISMS, 0(October 2017), 318–322. https://doi.org/10.1109/ISMS.2016.71

Di Tria, F., Lefons, E., & Tangorra, F. (2011). GrHyMM: A Graph-Oriented Hybrid

Multidimensional Model. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6999 LNCS,

86–97. https://doi.org/10.1007/978-3-642-24574-9_12

Dongmo, C. (2016). Formalising Non-Functional Requirements Embedded in User

Requirements Notation (URN) Models. PhD Dissertation, University of South Africa.

Dos Santos Soares, M., & Cioquetta, D. S. (2012). Analysis of Techniques for

Documenting User Requirements. International Conference on Computational Science

and Its Applications, 16–28. http://link.springer.com/Chapter/10.1007/978-3-642-

31128-4_2

El Mohajir, M., & Jellouli, I. (2014). Towards a Framework Incorporating Functional and

Non Functional Requirements for Data Warehouse Conceptual Design. IADIS

International Journal on Computer Science and Information Systems, 9(1), 43–54.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.640.5590&rep=rep1&t

ype=pdf

Elamin, E., Alshomrani, S., & Feki, J. (2017). SSReq: A method for designing Star

Schemas from decisional requirements. Proceedings - 2017 International Conference on

Communication, Control, Computing and Electronics Engineering, ICCCCEE 2017.

https://doi.org/10.1109/ICCCCEE.2017.7867645

Espinasse, B. (2013). Data Warehouse / Data Mart Conceptual Modeling and Design. 4.

Friedrich, W. R., & Van Der Poll, J. A. (2007). Towards a Methodology to Elicit Tacit

Domain Knowledge from Users. Interdisciplinary Journal of Information, Knowledge,

168

and Management, 2(1996), 179–193.

Geer, P. A. (2011). Formal Methods in Practice: Analysis and Application of Formal

Modeling To Information Systems. Business, December, 349.

Giorgini, P., Rizzi, S., & Garzetti, M. (2008). GRAnD: A Goal-oriented Approach to

Requirements Analysis in Data Warehouses. Decision Support Systems, 45(1), 4–21.

https://doi.org/10.1016/j.dss.2006.12.001

Golfarelli, M., & Rizzi, S. (2018). From Star schemas to big data: 20+ years of data

warehouse research. Studies in Big Data, 31(May), 93–107.

https://doi.org/10.1007/978-3-319-61893-7_6

Golfarelli, Matteo. (2010). From User Requirements to Conceptual Design in Data

Warehouse Design. Data Warehousing Design and Advanced Engineering, 15.

https://doi.org/10.4018/978-1-60566-756-0.ch001

Gosain, A., & Mann, S. (2011). An object-oriented multidimensional model for data

warehouse. Fourth International Conference on Machine Vision (ICMV 2011): Computer

Vision and Image Analysis; Pattern Recognition and Basic Technologies, 8350(March

2020), 83500I. https://doi.org/10.1117/12.920388

Grant, E. S. (2016). Towards an Approach to Formally Define Requirements for a Health

& Status Monitoring for Safety-Critical Software Systems. Lecture Notes on Software

Engineering, 4(3). https://doi.org/10.18178/lnse.2016.4.3.244

Gulati, M., & Singh, M. (2012). Analysis of Three Formal Methods-Z, B and VDM.

International Journal of Engineering, 1(4), 1–5. http://www.ijert.org/browse/june-

2012-edition?download=297:analysis-of-three-formal-methods-z-b-and-

vdm&Start=120

Han, S. A., & Jamshed, H. (2016). Analysis of Formal Methods for Specification of E-

Commerce Applications. 35(1), 19–28.

Hoang, D. T. A. (2011). Impact Analysis for On-Demand Data Warehousing Evolution.

169

{ADBIS} (2), 280–285.

https://pdfs.semanticscholar.org/ae5c/a847a8afc046951e34653fcbd3ade06322cb.p

df

Jindal, R., & Shweta, T. (2012). Comparative Study of Data Warehouse Design

Approaches : A Survey. International Journal of Database Management Systems, 4(1),

33–45. https://doi.org/10.5121/ijdms.2012.4104

Koç, H., Erdoğan, A. M., Barjakly, Y., & Peker, S. (2021). UML Diagrams in Software

Engineering Research: A Systematic Literature Review. Proceedings, 74(1), 13.

https://doi.org/10.3390/proceedings2021074013

Larson, D. (2019). A Review and Future Direction of Business Analytics Project Delivery. 95–

114. https://doi.org/10.1007/978-3-319-93299-6_7

Mbala, I. N., & Van der Poll, J. A. (2017). Towards a Framework Embedding Formalisms

for Data Warehouse Specification and Design. International Journal of Digital

Information and Wireless Communications, 7(4), 200–214.

Mbala, I. N., & Van der Poll, J. A. (2020a). Evaluation of Data Warehouse Systems by

Models Comparison. 18th JOHANNESBURG Int’l Conference on Science, Engineering,

Technology & Waste Management (SETWM-20) Nov. 16-17, 2020 Johannesburg (SA),

316–322. https://doi.org/10.17758/eares10.eap1120285

Mbala, I. N., & Van Der Poll, J. A. (2020b). Towards a Formal Modelling of Data

Warehouse Systems Design. 18th JOHANNESBURG Int’l Conference on Science,

Engineering, Technology & Waste Management (SETWM-20) Nov. 16-17, 2020

Johannesburg (SA).

Mohammed, K. I. (2019). Data Warehouse Design and Implementation Based on Star

Schema vs Snowflake Schema. International Journal of Academic Research in Business

and Social Sciences, 9(14), 25–38., 9(14), 25–38.

https://doi.org/10.6007/IJARBSS/v9-i14/6502

170

Moremedi, K. (2015). Towards a Comparative Evaluation of Text-Based Specification

Formalisms and Diagrammatic Notations. MSc Dissertation, University of South

Africa.

Moukhi, N. El, Azami, I. El, Mouloudi, A., & Elmounadi, A. (2019). Requirements-based

approach for multidimensional design. Procedia Computer Science, 148, 333–342.

https://doi.org/10.1016/j.procs.2019.01.041

Moura, P., Borges, R., & Mota, A. (2015). Experimenting Formal Methods through UML

(Issue January 2015, pp. 1–13).

Nasiri, A., Zimányi, E., & Wrembel, R. (2015). Requirements Engineering for Data

Warehouses. 49–64. http://code.ulb.ac.be/dbfiles/NasZimWre2015incollection.pdf

Nemathaga, A. (2020). Formal Methods Adoption in the Commercial World (Issue October).

MSc Dissertation, University of South Africa.

Nikiforova, O., Gusarovs, K., Kozacenko, L., Ahilcenoka, D., & Ungurs, D. (2015). An

Approach to Compare UML Class Diagrams Based on Semantical Features of Their

Elements An Approach to Compare UML Class Diagrams Based on Semantical

Features of Their Elements. ICSEA 2015 : The Tenth International Conference on

Software Engineering Advances, 342, 147–152.

https://doi.org/10.13140/RG.2.1.3104.4889

Oketunji, T., & Omodara, O. (2011). Design of Data Warehouse and Business Intelligence

System (Issue June) [Blekinge Institute of Technology]. http://www.diva-

portal.org/smash/record.jsf?pid=diva2:831050

Pandey, S., & Batra, M. (2013). Formal Methods in Requirements Phase of SDLC.

International Journal of Computer Applications, 70(13), 7–14.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.478.2438&rep=rep1&t

ype=pdf

Pandey, T., & Srivastava, S. (2015). Comparative Analysis of Formal Specification

171

Languages Z, VDM and B. International Journal of Current Engineering and

Technology, 5(3), 2277–4106. http://inpressco.com/wp-

content/uploads/2015/06/Paper1082086-2091.pdf

Prakash, N., & Prakash, D. (2018). Requirements Engineering for Data Warehousing.

Data Warehouse Requirements Engineering, May 2003, 19–50.

https://doi.org/10.1007/978-981-10-7019-8_2

Reddy, G. S., & Suneetha, C. (2021). a Review of Data Warehouses Multidimensional Model

and Data Mining. 9(3), 310–320.

Rizvi, S. W. A., Khan, R. A., & Asthana, R. (2013). Improving Software Requirements

through Formal Methods : A Review. 3(11), 1217–1224.

Rodano, M., & Giammarco, K. (2013). A Formal Method for Evaluation of a Modeled

System Architecture. Procedia - Procedia Computer Science, 20, 210–215.

https://doi.org/10.1016/j.procs.2013.09.263

Saddad, E., El-Bastawissy, A., Mokhtar, H. M. O., & Hazman, M. (2020). Lake data

warehouse architecture for big data solutions. International Journal of Advanced

Computer Science and Applications, 11(8), 417–424.

https://doi.org/10.14569/IJACSA.2020.0110854

Sarkar, A. (2012). Data Warehouse Requirements Analysis Framework: Business-Object

Based Approach. International Journal of Advanced Computer Science and Applications,

3(1), 25–34. https://doi.org/10.14569/IJACSA.2012.030104

Saunders, M. N. K., Lewis, P., & Thornhill, A. (2019). Research Methods for Business

Students. In Researchgate.Net (Issue January). www.pearson.com/uk

Sekhar Reddy, G., & Suneetha, C. (2020). Conceptual design of data warehouse using

hybrid methodology. International Journal of Advanced Trends in Computer Science and

Engineering, 9(3), 2567–2673. https://doi.org/10.30534/ijatcse/2020/13932020

Shcherban, S., Liang, P., Li, Z., & Yang, C. (2021). Multiclass classification of four types

172

of UML diagrams from images using deep learning. Proceedings of the International

Conference on Software Engineering and Knowledge Engineering, SEKE, 2021-July(May),

57–62. https://doi.org/10.18293/SEKE2021-185

Singh, M., Sharma, A. K., & Saxena, R. (2016). An UML + Z Framework for Validating

and Verifying the Static Aspect of Safety Critical System. International Conference on

Computational Modeling and Security (CMS 2016), 85(CMS 2016), 352–361.

https://doi.org/10.1016/j.procs.2016.05.243

Sommerville, I. (2011). Software Engineering. In A Brief History of Computing (9th ed,

Issue i). Pearson. https://doi.org/10.1111/j.1365-2362.2005.01463.x

Spivey, J. M. (1998). The Z Notation : A Reference Manual.

Steyn, P. S. (2009). Validating Reasoning Heuristics Using Next Generation Theorem Provers

(Issue January). MSc Dissertation, University of South Africa.

Thenmozhi, M., & Vivekanandan, K. (2014). Data Warehouse Schema Evolution and

Adaptation Framework Using Ontology. International Journal on Computer Science

and Engineering (IJCSE), 6(07), 232–246.

Utami, A., Pratama, B. R., & Widianto, S. R. (2020). Data Mart Design in Bkpp Bandung

Using From Enterprise Models To Dimensional Models Method. JITK (Jurnal Ilmu

Pengetahuan Dan Teknologi Komputer), 5(2), 279–284.

https://doi.org/10.33480/jitk.v5i2.1219

Vaisman, A., & Zimányi, E. (2014). Data Warehouse Systems: Design and

Implementation. In Data Warehouse Systems: Design and Implementation (pp. 1–625).

https://doi.org/10.1007/978-3-642-54655-6

Yulianto, A. A., & Kasahara, Y. (2020). Data warehouse system for multidimensional

analysis of tuition fee level in higher education institutions in Indonesia.

International Journal of Advanced Computer Science and Applications, 11(6), 541–550.

https://doi.org/10.14569/IJACSA.2020.0110666

173

Zafar, N. A., & Alhumaidan, F. (2011). Transformation of Class Diagrams into Formal

Specification. International Journal Computer Science, 11(5), 289–295.

http://paper.ijcsns.org/07_book/201105/20110542.pdf

Zimanyi, E. (2006). Requirements Specification and Conceptual Modeling for Spatial Data

Warehouses. 4278(October 2017). https://doi.org/10.1007/11915072

174

Appendix A. Ethical Clearance Certificate

The following ethical clearance certificate was obtained as part of non-human-subjects

research.

175

176

177

178

Appendix B. Language Editing Certificate

This dissertation has been professionally language edited as indicated below.

179

180

Appendix C. Turnitin Report

NOTE: The Turnitin report indicates three (3) percentages of 5%, 4%, and 3%

contributing to the overall similarity index of 19%. These three percentages account for

the three conference papers published by the researchers. As may be observed, the other

percentages are all at 1% or lower.

181

182

Appendix D. Towards a Formal Modelling

of a Data warehouse Systems Design

The following is one of the publications emanated from the research described in this

dissertation:

▪ Isaac Nkongolo Mbala and John Andrew van der Poll (2020b): Towards a Formal

Modelling of Data Warehouse Systems Design. 18th Johannesburg Int’l Conference

on Science, Engineering, Technology & Waste Management (SETWM-20) Nov. 16-

17, 2020, Johannesburg (SA).

183

184

185

186

187

188

189

190

Appendix E. Permission to Submit

Dear Student

I acknowledge receipt of your recent correspondence and have noted that you intend

submitting your research output for examination. Regarding submission dates the

following rules apply:

• If submission takes place after 15 June, the successful student might only graduate
in Autumn of the following year.

• If submission takes place after 15 November, the successful student might only
graduate in Spring of the following year.

• If submission takes place after the 31 January, the successful student will graduate
in Spring, and will have to re-register and pay the full tuition fees.

• If you are not currently a registered student, examination will be delayed until
proof of registration had been submitted by you

Your request for submission has been referred, inter alia, for the appointment of a

panel of examiners and it could take some time. You will be informed of approval of

submission in due course.

In order to avoid any possible delay in having your dissertation examined, kindly

ensure that you comply with all the requirements regarding the following:

• the dissertation and the submission thereof

• the exact wording of the approved title in the correct format on the title page as
indicated in the example attached hereto

• the limitation of the summary to a maximum of 150 words, as well as at least ten

key terms listed at the end of the summary

• the submission of a declaration, signed and dated by you, including your student

number on the statement, indicating that the dissertation is your own work

Yours faithfully

for THE EXECUTIVE DEAN: COLLEGE OF GRADUATE STUDIES

