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Abstract 

This work aimed to develop a straightforward method based on infrared spectroscopy for the 

estimation of solid pharmaceutical formulations compounds concentration in the context of the 

development of generic medicines. The proposed method can be extremely advantageous as 

the resources needed to obtain a first quantitative estimation of the formulation require only 

the knowledge of the infrared spectra of each formulation component (does not require a 

calibration procedure). It is based on the use of the pure components infrared spectra, the 

spectrum of the target pharmaceutical product and an especially designed algorithm based 

on the assumption of the Lambert-Beer’s law. The method was tested with a formulation 

(powder mixture) containing paracetamol and caffeine (the active substance), starch, talc, 

microcrystalline cellulose, magnesium stearate and lactose (excipients). The proposed 

method (calibration-free method) was compared with the multivariate curve resolution method 

(MCR), a supervised method that requires a calibration with standards. A series of 

formulations were produced according to an experimental design of the type D-optimal by 

changing within certain ranges the concentration of each component (only paracetamol was 

kept constant). Two independent sets of formulations were designed: one for calibration and 

one for testing. The implementation of the MCR and the calibration-free method were 

performed according to different scenarios, simulating more or less uncertainty in the initial 

guess of the component’s concentrations. Results for MCR showed that for this method it was 

fundamental that the pure components spectra were known and used as constrains, thus, 

estimating only the concentrations. Accuracy and precision of the estimations were highly 

related with the specific features of the infrared spectrum of each component. The calibration-

free method demonstrated that estimations of the formulation components concentrations 

were similar or even better than those obtained for the MCR method. The results also 

demonstrated that accuracy was somehow dependent on the allowed range for each 

component (initial guess). Initial guess of the concentration for each component must not 

deviate above 50% of its real value for an adequate estimation.  

As conclusion, the proposed method demonstrated to be an excellent method to obtain a first 

estimate of the composition of a solid formulation, that can be fined tuned afterwards using 

other complementary techniques. 

 

Keywords: Generic Medicines; Reverse Engineering; Design of Experiments; Chemometrics; 

Fourier Transform Infrared Spectroscopy.  
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Resumo 

Este trabalho visava desenvolver um método simples baseado na espectroscopia 

infravermelha para a estimativa da concentração de compostos sólidos de formulações 

farmacêuticas no contexto do desenvolvimento de medicamentos genéricos.  

O método proposto pode ser extremamente vantajoso uma vez que os recursos necessários 

para obter uma primeira estimativa quantitativa da formulação requerem apenas o 

conhecimento dos espectros infravermelhos de cada componente da formulação (não requer 

um procedimento de calibração). Baseia-se na utilização dos espectros de infravermelhos de 

componentes puros, no espectro do produto farmacêutico alvo e num algoritmo 

especialmente concebido com base no pressuposto da lei de Lambert-Beer. O método foi 

testado com uma formulação (mistura em pó) contendo paracetamol (a substância ativa), 

cafeína, amido, talco, celulose microcristalina, estearato de magnésio e lactose (o filler). O 

método proposto (método sem calibração) foi comparado com o método de resolução de 

curva multivariada (MCR), um método supervisionado que requer uma calibração, e, portanto, 

a existência de padrões. Portanto, foi produzida uma série de formulações de acordo com um 

desenho experimental do tipo D-optimal, alterando dentro de certos intervalos a concentração 

de cada componente (apenas o paracetamol foi mantido constante). Dois conjuntos 

independentes de formulações foram concebidos: um para calibração e outro para testes. A 

implementação do MCR e do método sem calibração foi realizada de acordo com diferentes 

cenários, simulando mais ou menos incerteza no palpite inicial das concentrações dos 

componentes.  

Os resultados para o MCR mostram que para este método é fundamental que os espectros 

dos componentes puros sejam conhecidos e utilizados como constrangimentos, estimando, 

portanto, apenas as concentrações. A exatidão e precisão das estimativas estava altamente 

relacionada com as características específicas do espectro de infravermelhos de cada 

componente. O método sem calibração demonstrou que as estimativas das concentrações 

dos componentes da formulação eram semelhantes ou mesmo melhores do que as obtidas 

para o método MCR. Os resultados também demonstraram que a precisão depende de 

alguma forma do intervalo permitido para cada componente (palpite inicial). A previsão da 

concentração para cada componente não deve desviar-se acima de 50% do seu valor real 

para uma estimativa adequada. Em resumo, o método proposto demonstrou ser um excelente 

método para obter uma primeira estimativa da composição de uma formulação sólida, que 

pode ser afinada posteriormente utilizando outras técnicas. 

Palavras-chave: Medicamentos Genéricos; Engenharia Inversa; Desenho de Experiências; 

Quimiometria; Espetroscopia de Infravermelhos por Transformada de Fourier. 
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Resumo Alargado  

Um medicamento genérico é um medicamento que deve ser equivalente ao medicamento de 

referência já estabelecido no mercado. A quota de mercado dos medicamentos genéricos 

para Portugal é aproximadamente de 47.35% (1). O aparecimento dos medicamentos 

genéricos no mercado começa quando a patente dos medicamentos de referência expira. 

Assim, a pesquisa por parte das empresas que produzem genéricos começa antes da patente 

expirar. A composição destes medicamentos que estão sobre patente não são 

completamento conhecidas, geralmente não se tem conhecimentos dos excipientes que são 

utilizados nem é conhecido os métodos de produção. Como consequência direta, as 

empresas têm de encontrar formas mais rápidas, eficazes e menos dispendiosas de descobrir 

as composições e os métodos de produção. Surgindo assim a necessidade de utilizar a 

engenharia reversa para o desenvolvimento de medicamentos genéricos. 

No desenvolvimento e produção de medicamentos genéricos, e para que estes sejam bem-

sucedidos, é esperado que estes apresentem a mesma bioequivalência farmacêutica que o 

medicamento de referência, a mesma quantidade substância ativa, com a expectativa de que 

o genérico tenha a mesma qualidade, segurança e eficácia (2–4). Isto já não é esperado para 

os medicamentos híbridos que são medicamentos baseados no medicamento de referência, 

aqui as diferenças esta na dosagem, via de administração, ou na indicação terapêutica (5,6). 

Como os medicamentos de referência estão protegidos sob patentes a informação sobre a 

fórmula e método de preparação é escassa. O que leva a necessidade de encontrar 

ferramentas que ultrapassem este problema. Assim, a engenharia reversa que é conhecida 

como o processo de inversão das etapas de engenharia para replicar um sistema e 

subsistemas quando há falta de informação (7). A engenharia reversa é então utilizada para 

descobrir os componentes de um produto desconhecido. Podendo levar a identificação, 

quantificação e caracterização das substâncias ativas e excipientes. Este é um processo que 

pode levar algum tempo de que pode ser dispendioso(7,8). 

A forma farmacêutica mais utilizada para os medicamentos genéricos é a sólida, assim a 

fórmula que foi realizada e analisada neste trabalho foi uma misturas de pós. Esta misturas 

foram realizadas no laboratório da Faculdade de Farmácia. Estas misturas contêm 

paracetamol, cafeína, amido, talco, celulose microcristalina, estearato de magnésio e lactose, 

as concentrações destes componentes variaram de acordo com um desenho experimental 

(DoE) do tipo D-optimal, sendo que o paracetamol tinha um valor fixo e a lactose foi usado 

como filler.   
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Os pós sólidos são preparações formadas por partículas sólidas secas, livre e finas ou não 

(9). Pode ter uma ou mais substâncias ativas, que neste caso é o paracetamol e a cafeína, e 

pode ter também diferentes excipientes. Neste trabalho foram utilizados como excipientes: o 

amido, talco, celulose, celulose microcristalina, estearato de magnésio e lactose.  

A engenharia reversa é utilizada na produção de formulações genérica sólidas, começa por 

descodificar a fórmula quantitativa no medicamento de referência, de seguida é feita a 

quantificação e identificação dos excipientes no medicamento de referência. O passo 

seguinte é a caracterização do estado sólido da substância ativa e, por último, é então a 

processo de fabrico da forma sólida (10). 

O método de espetroscopia utilizado foi espectroscopia de infravermelhos por transformada 

de refletância total atenuada (ATR-FTIR).  Este foi usado para a obtenção dos espetros das 

amostras e dos compostos. O espectro vibracional é único para cada composto, podendo 

assim ser utilizado como uma técnica de impressão digital para a identificação (11). A 

espetroscopia vibracional pode ser implementada para estudar diferentes compostos e 

misturas e passar por testes simples de identificação até uma análise mais profunda, de 

espetro total, qualitativa e quantitativa (12,13). O método é usado na engenharia reversa para 

a análise de produtos farmacêuticos e a análise dos resultados pode ser analisada através 

dos métodos quimiometria, como o partial lest-squares (PLS) e análise de curva multivariadas 

(MCR).  

A quimiometria é descrita como uma nova forma de análise de dados químicos onde os 

elementos estatísticos e químicos são combinados. Para isso são utilizados métodos 

matemáticos e estatísticos para a obtenção de informação. Há sempre três elementos que 

são utilizados na aplicação desta tecnologia: 1) modelação empírica, 2) modelação 

multivariada, e 3) dados químicos (14,15). 

A análise de quality by design (QbD) deve ser utilizada para se ter um desenvolvimento, uma 

otimização robusta e um método analítico rentável. Por isso, o objetivo do QbD é ter 

especificações significativas que se baseiem no desempenho clínico, aumentar a capacidade 

e reduzir a variabilidade e falhar do produto, melhorar o desenvolvimento do produto e eficácia 

de produção. Há algumas limitações que devem ser ultrapassadas como a condução 

inadequada do desenvolvimento e otimização, assim sendo que o desenho experimental 

(DoE) é utilizado para ultrapassar estes problemas (16). 

O pré-processamento dos dados é realizado para linearizar a resposta da análise das 

variáveis. Quando se tem dados de espectroscopia é importante que sejam pré-processados. 
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Os métodos utilizados neste trabalho e que foram aplicados foi a correção da baseline. Este 

método é normalmente utilizado para a espectroscopia. O outro foi o valor absoluto que é 

utilizado para remover a informação negativa dos dados, permitindo a utilização de restrições 

não negativas, visto que esta é uma das restrições da análise de curva multivariadas (MCR). 

Por último, foi também utilizado a normalização. Esta é realizada para corrigir as diferenças 

de escala, ajuda na forma em que dá a todas as amostras um impacto igual no modelo 

(17,18). 

Este trabalho teve como objetivo avaliar um método que não requeria calibração para a 

estimativa das concentrações dos componentes, em formulações sólidas, no contexto do 

desenvolvimento de medicamentos genéricos. A hipótese de trabalho foi de verificar se é 

possível ter estimativas adequadas da composição quantitativa de uma formulação sólida, 

uma mistura de pó, recorrendo a equipamento de laboratório e espectroscopia infravermelha.  

A análise de curvas multivariadas (MCR) foi o primeiro método realizado. Este necessita de 

calibração e utiliza um conjunto de formulações de calibração e outro de teste. Este é um 

método mais comum utilizada na engenharia reversa, que requer múltiplas reproduções do 

produto através de um DoE, procedimento de calibração e, por vezes, até é utilizado a escala 

de produção, sendo assim mais demorado e dispendioso. O DoE é utilizado neste método 

devido a necessidade da calibração e validação. Para este método foram realizados 4 

modelos distintos onde se usava pré-processamento ou não e onde se dava os espetros 

puros ou não. Também os intervalos usados variaram para que fosse possível analisar o 

melhor intervalo para a estimativa das concentrações. O MCR apresentou dificuldades na 

reconstrução dos espetros dos compostos das misturas quando não eram dados os espetros 

compostos puros. O método funciona embora tenha as suas limitações e seja necessário 

conhecer os espetros dos compostos da formulação analisada. 

O método proposto não tem a necessidade de qualquer procedimento de calibração ou 

reprodução de medicamentos, é um algoritmo simples de reconstrução espectral. Neste 

método foram fornecidos os espetros puros dos compostos e os espetros das misturas. Foi 

testado para estimar a composição de algumas das misturas de pós e foi também utilizado 

para a estimativa de todas as amostras. Para este método forma usados dois intervalos e foi 

executado considerando diferentes margens (concentrações) para cada composto. Foram 

testadas variações percentuais em torno da concentração conhecida de cada composto 

desde a melhor situação até a pior. A reconstrução das concentrações reais foi possível 

quando utilizo o algoritmo, e concluiu-se que as concentrações inicias para cada composição 
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não devem desviar-se acima de 50% do seu valor real para que se obtenha uma estimativa 

adequada. 

Uma comparação entre o método supervisionado (MCR) e o método calibration-free foi 

realizada. O design of experiments foi utilizado para avaliar o desempenho do método 

baseado em engenharia reversa (o algoritmo) com o método MCR. Ambos foram capazes de 

realizar as estimativas dos componentes, mas também mostram ter as suas limitações. O 

MCR apresentou dificuldades da estimativa da cafeína e do amido, e durante o período de 

trabalho destinado à realização desta dissertação não foi encontrada uma solução para 

ultrapassar o problema. No que respeita ao algoritmo, este não pode ter um grande desvio 

do valor real para alguns dos compostos, como se observou para o paracetamol e lactose. 
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1. Introduction 

The development of generic medicines, in general, is cheaper than the innovator drug product. 

The sales of generic drugs are a more affordable alternative with the same quality, safety, and 

effectiveness. The marketing authorization process for these medicines requires several 

steps. Herein, regulation plays a major part in this process ensuring that the approval of a 

generic must be subjected to the specific regulatory requirements as the reference drug 

product.  To be approved, an abbreviated new drug application (ANDA) report must be 

submitted to a regulatory agency. Generics must have the same active ingredient, but it can 

be with different salts, ensured bioequivalence, therapeutic indications, the same dosage 

form, and similar properties to the reference drug. The development of a generic usually 

begins before the innovative product patent expires. To address all requirements imposed by 

regulatory agencies for approval, pharma companies face some challenges in the 

development process. Identifying the appropriate formulation and manufacturing process to 

comply with bioequivalence constraints is very often a challenge and a time-consuming task. 

Reverse engineering is described as “the reversal of the engineering, starting with the 

replication of a prevailing component, subassembly, or product itself without the facilitation of 

drawings, documentation, or computer modeling” (19,20). Through reverse engineering is 

possible to uncover the compounds unknown in the reference drug product. The use of 

reverse engineering in the development of generics came with the necessity of overcoming 

issues related to the patenting process. Since the reference drug products are under patent 

the information about the excipients and manufacturing process is very scarce. 

To develop a generic medicine, the qualitative and quantitative formula must be similar to the 

reference drug product. This process can resource to multiple methods. The use of vibrational 

spectroscopy, for example, Fourier Transform Infrared (FTIR) spectroscopy is a possibility to 

unveil the compounds present in the drug product.  

Chemometrics and statistical methods are used to analyze infrared data and also for the 

process of identifying the formulation. Multivariate curve resolution is a method used for that 

purpose. This is a method based on the assumption that Beer’s Law stands in infrared and 

can be used to obtain qualitative and quantitative information about the formulations, through 

infrared analysis of the reference product and reproduction. In this context, and when there is 

a need to make reproductions of the reference drug product, experimental design (DoE) is 

normally a resource to use. It is used in the development process to unveil the formulation and 
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manufacturing process. Applying DoEs can provide better and faster results with the less 

experimental burden.   
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1.1. Main Goals 

The objective of this work is to evaluate the possibility of using a methodology based on 

infrared spectroscopy to obtain an estimation of the compositions of a solid pharmaceutical 

form in the context of reverse engineering in the development of generic. The hypothesis is to 

verify if it is possible to have adequate estimates of the quantitative composition of a finished 

drug product resourcing to laboratory equipment and infrared spectroscopy coupled to a 

simple spectral reconstruction algorithm, without the need for any calibration procedure or 

drug product reproductions. In this master thesis, this algorithm is designated as a “calibration-

free” algorithm. The performance of the proposed methodology will be compared with the more 

common methodology used in reverse engineering, which requires multiple reproductions of 

the product through an experimental design, calibration procedure, and sometimes even using 

the production scale, therefore more time-consuming and expensive. In this thesis, the 

estimations based on multivariate curve resolution will be compared. Both methods will 

resource on powder blends produced according to an experimental design.   
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2. Start of The Art 

2.1. Generic Medicines 

A generic drug product should be equivalent to a reference drug product already on the 

market. In the successful development and production of generic drugs, it is expected that 

they will have the same pharmaceutical bioequivalence, the active ingredient, dosage, 

strength, and route of administration as the reference drug (2–4). The active substance of a 

generic drug is considered the same if it consists of different salts, esters, ethers, isomers, 

mixtures of isomers, and complexes or derivatives of an active substance, only if the properties 

vary significantly concerning efficacy or safety (20). Generic drugs are also expected to have 

the same bioequivalence, therapeutic equivalence, and safety and efficacy as reference drugs 

(2–4). A generic company may manufacture a drug that is based on a reference drug, in this 

new drug what may be different from the reference drug is strength, route of administration, 

or indication. These are called hybrid medicines and are authorized medicines that depend in 

part on the test results of the reference medicine and in part on new clinical trial data (5,6). 

The approval of a generic must go through a regulator such as the U.S. Food and Drug 

Administration (FDA) or European Medicines Agency (EMA), among others. The abbreviated 

new drug application (ANDA) contains the data that will be submitted to the regulator. When 

the generic drugs are approved, the companies can produce and market them. After this, the 

market would have an alternative to the reference drug that is equally effective, safe, and more 

affordable (21,22). In general, this process usually does not require preclinical (animal) and 

clinical (human) data to establish safety and effectiveness, because of that is used the term 

“abbreviated” is for generic drug applications. On the other hand, generic companies must 

demonstrate that the product performs in the same way as the innovator product (21). The 

guideline on the investigation of bioequivalence describes the “specific requirements for the 

design, conduct, and evaluation of bioequivalence studies for immediate release dosage 

forms with systemic action” (20). The pre-clinical tests and clinical trials that are performed on 

the reference drugs are not performed for the generic drugs must be established 

bioequivalence being then demonstrated the equivalence in biopharmaceutical quality 

between the drugs (20). 

Since the generic companies should discover the excipients and the production method of the 

RLD. Being under patent means that the information’s available about the medicine is very 

scarce. So, the companies should find methods that are efficient and fast, due to the higher 

investments that are needed to develop the research (7). For the development of a potential 



 

 5 

generic, the steps that are involved are: 1) the characterization of reference product; 2) design 

of the generic product and process; 3) pivotal biobatch, 4) bioequivalence study; and 5) 

commercial product manufacture (23). Comparing to RLDs, generics have a lower risk of total 

failure, since the active substance have already been established as safe and efficient. The 

cost efficiency is more important, because of the lower profit margins and competitions with 

other generics (23). 

2.2. Reverse Engineering 

Reverse engineering can be applied in the medical field, pharmaceuticals, therapeutic peptide 

production, bioinformatics, biosystems, and other fields. This tool can be used or required in 

the pharmaceutical industry for various reasons such as patent infringement, analytical issues, 

stability problems, safety issues, and generic design and development. The method is used 

to reproduce and re-design an existing product. For the generic drug business, it is critical to 

be the first to profit the most, since several companies will be competing for the creation of a 

successful generic drug that will be off patent. In generic companies, obtaining bioequivalence 

is the most critical area and most generics are dosage forms (24). Bioequivalence is a 

prerequisite for applying for generic approval under ANDA to the FDA or other agencies (19). 

This means that the levels of the active substance in the blood over time must be the same 

as in the innovator product, one way to show this is through identical dissolution profiles. The 

same does not apply to biosimilars. In these, the similarity in composition must be high, and 

despite this requirement, the FDA does not disclose the innovator formulation (24). 

The reference product, as already mentioned, does not have prior information available about 

its components, manufacturing process, and documentation. Therefore, reverse engineering 

(RE) is a process known as reversing engineering steps to replicate a system and its 

subsystems or subassemblies when information is lacking (7). Reverse engineering or 

deformation is used to discover the components of an unknown product. This process can 

lead to the identification, quantification, and characterization of the active pharmaceutical 

ingredients (API) and all excipients in reference drugs in the reference product (7,8). The 

pharmaceutical deformulation can also be used to develop a reformulated product with greater 

bioequivalence. The RE development process begins with finding the qualitative formulation, 

then the quantitative formulation of excipients that may be critical to the stability or 

performance modification of the drug (7).  

According to the EMA, all drugs should be manufactured following the quality standards, 

therefore generic drugs are also included in this standard (22). To be able to launch the generic 

on the market, it must have essential properties, such as 1) having the same API (Q1 
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qualitative), 2) having the same quantities (Q2 quantitative), and 3) having the same physical 

and chemical properties (Q3) as the RLD. Through the application of reverse engineering, it 

is possible to investigate and obtain the necessary information about Q1, Q2, and Q3 that is 

required to obtain a generic (7). Generic drugs usually enter the market when the patent of 

the reference drug expires. Usually, the exclusivity time is 10 years, after this time the generic 

drugs start appearing on the market (22). 

2.3. Solid Forms 

The development of solid pharmaceutical forms requires various technical and regulatory 

challenges. Some of these include active ingredient properties, ensuring compatibility of 

excipients with active ingredients over the product shelf life, processing and manufacturing, 

quality controls, and compliance with regulatory agencies (25). The "guideline on manufacture 

of the finished dosage form" from EMA it describes guidance for the manufacture of a solid 

finished form. This guidance serves to clarify the type and level of information that is required 

(26). The development of solid pharmaceutical forms requires various technical and regulatory 

challenges. Some of these requirements include active ingredient properties, ensuring 

compatibility of excipients with active ingredients over the product shelf life, processing and 

manufacturing, quality controls, and compliance with regulatory agencies. The production of 

solid oral dosage forms has required some tests to manufacture generics. The following API 

and finished dosage form tests are required. The API test is performed to be able to select the 

raw material supplier and characterize the quality of the raw material in each batch. The API 

test is performed to verify the characteristics that can influence formulation development. 

Regarding the second test, this is performed to identify the formulation, in vitro dissolution 

screening for acceptable performance, and release of the dosage form (25). 

Solid powders are preparations formed by dry solid particles, free and fine or not. This can 

have one or more active substances, with different excipients, and if necessary, coloring and 

flavoring. The route of administration can be in water or with water, or other liquids. The 

powder can be presented as unit-dose or preparations multidose (9). The production of solid 

powders requires specific knowledge about appropriate particle size for the intended use (9).  

The production of generic solid formulations through reverse engineering starts by decoding 

the quantitative formula in the RLD. The excipients that affect the quality test should be the 

first to be identified. The next step is to perform the qualification and identification of the 

excipients in the RLD that will present a challenge by interfering with other excipients for the 

separation of excipients HPLC method used, and for the quantification, near-infrared 

spectroscopy (NIR) is used. Then, it is followed by the characterization of the solid-state of 
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active pharmaceutical ingredient (API). The solid state of API can be categorized by the 

following molecular, particle, or bulk properties. The manufacturing process corresponds to 

the next step in the production of solid form. It can be manufactured through wet granulation, 

dry granulation, or direct compression, depending on the stability profile of the API, the API-

total tablet weight ratio, and the physic-chemical properties. Figure 1 depicts the steps that 

must be followed to obtain a solid generic drug that complies with the regulatory agencies 

(10).  
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Figure 1: Protocol that can be applied for reverse engineering when making a solid formulation (10). 
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2.4. Vibrational Spectroscopy 

Several different vibrational spectroscopy techniques are implemented, the most important of 

which are mid-infrared (IR), near-IR, and Raman spectroscopy. These techniques use specific 

vibrations that characterize different molecular structures, and like all techniques, these have 

advantages and disadvantages concerning instrumentation, sample handling, and 

applications. Sample information can be obtained through the analysis of the absorbance 

profiles at different single characteristic wavenumbers (11–13). Each component has a 

specific intensity that will show in the vibrational spectrum (Figure 2) (12). 

 

Figure 2: Characteristic group frequencies for the regions of the fundamental spectrum. 

The vibrational spectrum is unique for each compound. Infrared (IR) can therefore be used as 

a fingerprint technique for the identification of compounds. Differences between the 

compounds can be small and sometimes more sophisticated approaches are needed to 

develop the analysis of the data (11). Vibrational spectroscopy is implemented to study a vast 

range of different compounds and mixtures and can be carried out from a simple identification 

test to an in-depth, full-spectrum, qualitative and quantitative analysis (12,13). 

2.4.1. Fourier-Transform Infrared Spectroscopy 

The Fourier Transform Infrared Spectroscopy (FTIR) allows the search of an infrared 

spectrum, either the emission or absorption of liquids, semi-solids, or solids. It detects different 

functional groups, and the range that can be obtained is between 4000 and 600 cm-1 (27). 

FTIR is a technique that is safer for the environment, reduces time and cost, is non-invasive, 

has a higher detection capability and is not necessary a prior preparation of the samples (28). 

Attenuated total reflectance (ATR) uses the phenomenon of total internal reflection. So, the 

technique is a method of contact that involves a crystal with a high refractive index that also 
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has good properties of IR transmitting (17). This instrument is an accessory used to quantify 

changes that happen to an internally reflected infrared beam when it gets in contact with the 

sample. Therefore, the infrared beam will focus on the crystal with a high refractive index at a 

set angle (28). 

FTIR-ATR spectroscopy has some advantages. The attenuate total reflectance has few optical 

parts and no slit to attenuate radiation. So, that means that the radiation power that reaches 

the detector is bigger when compare with other FTIR methods. Another advantage is the 

higher resolving power and wavelength reproducibility, allowing the analysis of complex 

spectra. The last one, is the fact that all the elements can reach the detector at the same time, 

and with this is possible to obtained data for an entire spectrum (29).  The use of this technique 

combined with the multivariate analysis can improve the quality of the results obtained. The 

most widely used is the partial least squares method (PLS). Therefore, since the PLS is one 

of the most used techniques, in this work, the multivariate curve resolution (MCR) method is 

used to analyze the donors and obtain the concentrations of each of the components in the 

samples (30). 

2.5. Chemometrics 

Chemometrics can be described as a new way of analyzing chemical data where the statistical 

and chemical elements are combined. That means mathematical and statistical methods are 

used to obtain information from physical and chemical phenomena. In this science, these three 

elements: empirical modeling, multivariate modeling, and chemical data, are always used 

(14,15).  

When a model is being built is likely that prior knowledge or theoretical relations concerning 

the chemistry of the sample, or the physics of the analyzer will be used. An example of this is 

the Lambert-Beer Law, Equation 1, which relates the intensity of the spectrum and the 

concentration (15): 

𝐴 = 𝜀 ∗ 𝑏 ∗ 𝐶                                                   Equation 1 

where A represents absorbance,  is the molar absorption coefficient in units L/(mol cm), b is 

the path length of the measurement in units of cm, and C is the concentration in the unit of 

mol/L (15). 

Chemometrics can be used to collect multivariate data and analysis protocols, calibration, 

process modeling, pattern recognition and classification, signal correction and compression, 

and statistical control. In the context of this work, chemometrics can help with the 
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determination of the different pharmaceutical properties in powders, granules, and tablets 

which means that this technique can be ideal for the extraction of quantitative information from 

the samples.(14). 

This technique can be used for various tasks, including experimental design, exploratory data 

analysis, and for the development of predictive models. In the area of analytical chemistry, the 

use of chemometrics has proven most effective for two functions: instrument specialization, 

for the construction of multivariate calibration models that provide selectivity for multivariate 

analytical instruments, or for information extraction, where the tools of chemometrics are used 

to obtain the unknown information that is present in information-rich multivariate analytical 

instruments (15). 

2.5.1. Quality-by-Design and Design of Experiments 

According to Yu et al., 2014 (16), Quality by Design (QbD) is a “systematic approach to 

development that begins with predefined objectives and emphasizes product and process 

understanding and control-based sound science and quality risk management” (16). The 

objectives of QbD are (16): 

1. To have significant specification that are based on clinical performance; 

2. To increase capability and reduce product variability and flaws through the 

improvement of the product and process design, understanding, and control of the 

product; 

3. To enhance product development and production effectiveness; 

4. To improve root cause analysis and post-approval change management. 

Having a development and robust optimization and cost-effective analytical method is 

beneficial for the use of the QbD analysis. This implementation allows a better solution to out-

of-specification (OOS) product results and reduces the risk of method failure (16). 

There are a few limitations that should be overcome. The limitation can be inadequate 

conduction of the development and optimization. So, the Design of experiments (DoE) is used 

to overcome these problems. DoE can offer better results with a smaller number of 

experiments (16). 

The design of experiments, DoE, is a structured and organized method to determine the 

associations between input factors (independent variables) affecting one or more output 

responses (dependent variables) by establishing mathematical models. So, this method 
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allows the incorporation of quality into the product. It also enables cost reduction, saves time, 

has reliable quality, and the formulation provided is robust. To have a proper DoE must be 

considered a few aspects. Therefore, the objectives should be defined, and the number of 

inputs factors and interactions, the statistical validity and effectiveness of each design should 

be studied (31). 

2.5.2. Pre-Processing Methods  

Spectrum manipulation usually is made to improve and help with the qualitative and 

quantitative interpretation of spectra. Therefore, several techniques are available to the user 

of infrared spectrometers. After the samples have been scanned with infrared spectroscopy, 

the data will be manipulated using different methods, such as baseline correction, smoothing, 

difference spectra, derivatives, deconvolution, and curve-fitting (17). 

Consequently, the preprocessing of data is performed to linearize the response of the analysis 

of the variables. Preprocessing will modify the data and is made before building the model. It 

has special importance when you have data obtained by spectroscopy, including infrared 

spectroscopy. 

Some pre-processing methods (18) used in this thesis were: 

• Baseline (Weighted Least Squares) 

In this method, the baseline offset is automatically removed from the data. The method 

is usually used in spectroscopy applications when the signal of variables is owed only 

to the baseline (background). 

• Normalization 

The normalization is made to correct the scaling differences that arise from path length 

effects, scattering effects, sources or detector variations, or other general instrumental 

sensitivity effects. This helps in the way that gives all the samples an equal impact on 

the model. 

• Absolute value 

This method is used to remove the negative information in the data and can be used 

after the derivative method or after other methods. The correction allows the use of 

non-negative constraints or improves the analysis of derivatized spectra. The use of 

this pre-processing can create a non-linear response and complicate modeling. 
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2.5.3. Multivariate Curve Resolution 

Multivariate Curve Resolution (MCR) is a bilinear model that offers simplified and 

understandable information of the process data under the principle that the multicomponent 

Beer’s law is valid. So, MCR is one of the most commonly used multivariate calibration models. 

The application of the method has proven successful in different types of data that came from 

distinct instruments, like IR, chromatography, hyperspectral imaging, nuclear magnetic 

resonance, and X-ray fluorescence (32–34). MCR is used to obtain additional information 

about the concentration profile or the spectra (identification) of the pure components of a 

mixture. Equation 2 describes, mathematically, the Multivariate Calibration Resolution (MCR) 

method (32,33): 

𝐷 = 𝐶𝑆𝑇 + 𝐸                                                      Equation 2 

In Equation 2, the D is the original data matrix (in this work matrix composed of multiple IR 

spectra), C is the concentration matrix (in this are the concentrations of the compounds), S is 

the non-augmented matrix (the pure spectra), and the E is the residual matrix. The alternating 

least squares algorithm is usually applied to estimate C and S matrices from D. Its application 

depends on the level of knowledge existing for the C and S (concentrations of compounds and 

pure spectra of compounds, respectively). This method typically does not need a lot of 

prerequisites or prior information about the chemical identity of the components, but it is 

convenient to know the number of pure components. There is not any “golden rule” in this 

method. A trial-and-error approach based on different estimations is recommended, and the 

residuals must be analyzed carefully. Adding the profiles of the components is an implicit 

assumption in the method, and since this is the case, this and other restrictions must be 

studied. Therefore, to have an optimized model that is the most appropriate, a trial-error 

method must be performed (33). Since this method uses different constraints like adding the 

profiles of the components this is an implicit assumption (33). Th Consequentially, the 

constraints that are more important in the multivariate calibration resolution alternating least 

squares (MCR-ALS) are the non-negative, equality, and closure. Non-negative means that 

negative values for C and/or S are not accepted when this model is applied. The equality 

constraint is imposed when there is knowledge (total or partial) about C or S, and the closure 

constraint limits the total concentration of the constituents (typically assumes that the total 

mass fraction of each sample is 1) (33). 

The validation of the methods can be made by resourcing to the equations provided below 

(34). As with any chemometric method, an independent validation data set should be 
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employed to appropriately validate the results. The validation is called the prediction (P) 

dataset. 

Root mean square error of prediction (RMSEP): 

𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑐𝑖−𝑐1𝑖)2𝑛

𝑖=1

𝑛
                                               Equation 3 

Bias: 

 𝑏𝑖𝑎𝑠 =
∑ (𝑐𝑖−𝑐1𝑖)𝑛

𝑖=1

𝑛
                                                               Equation 4 

Standard error of prediction (SEP): 

𝑆𝐸𝑃 = √
∑ (𝑐𝑖−𝑐1𝑖−𝑏𝑖𝑎𝑠)2𝑛

𝑖=1

𝑛−1
                                                  Equation 5 

Relative percentage error in the concentration predictions (RE, %): 

𝑅𝐸(%) = 100√
∑ (𝑐𝑖−𝑐1𝑖)2𝑛

𝑖=1

∑ 𝑐𝑖
2𝑛

𝑖=1

                                                 Equation 6 

The ci and c1i are the known and predicted analyte concentration in the sample i, respectively, 

and the n is the total number of samples used in the validation set. 

2.6. Literature Review 

In the review of Fakayode et al., 2020 it is said that Raman, NIR, and FTIR spectroscopies 

have been thoroughly applied to analytical method development, instrumentation calibration, 

chemical analysis, and quality control and assurance of consumable products especially since 

2007 (35). Capková et al., 2022, have applied reverse engineering in tablets using Raman 

and chemometrics. This paper investigated a manufacturing technology to obtain tablets and 

the particle size of the incoming API, and also the quantitative composition of each excipient 

was analyzed. The authors, through the use of chemometric methods, were able to identify 

the composition of the tablet, and based on their experiments and their analysis it can be 

applied in reverse engineering (36). Also, Shafaq and collaborators used Raman spectroscopy 

to do a quantitative analysis of solid dosage forms and use chemometrics tools the 

determination the concentration of the API (37). Different reviews are available for Raman, 

FTIR, and other spectroscopies. Deidda and colleagues published some data about 

vibrational spectroscopy and the utility of this method in the analysis of pharmaceutical 

materials (38). 
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ATR-FTIR spectroscopy that had been used in the pharmaceutical field and chemometrics is 

used to complement this technique. Custers et al., 2015 use the ATR-FTIR to describe how 

this can be useful for the screening of counterfeit medicines, so the author explains how this 

tool can help the customs to obtain the first evaluation of suspected samples. Custers used 

as a chemometric tool by the PCA to evaluate if the technique can result in a clustering of 

samples this can be useful for the creation of classification models (39). Other examples of 

the application of FTIR in the pharmaceutical fields are in the article of Mallah et al, 2015. 

These authors used the FTIR spectroscopy method for the quantification of paracetamol in a 

solid pharmaceutical formulation. The proposed of this work is to evaluate a simple model that 

uses Beer’s law calibration and used also a more common method the PLS a popular 

multivariate model. The two here are used to analyze the solid pharmaceutical samples. The 

results of this work were accurate according to the permissible limits of the pharmacopeia 

(40). In the review of Verma et al, 2021, FTIR is used in combination with a chemometric 

method in the quantitative approach. So here this technique is used for the quantitative study 

of varieties of analytes like API, adulterants, caffeine, cocaine, lipids, fats and oils, sugar, and 

others. In this study was possible to conclude that FTIR and chemometrics are beneficial 

methodologies for the quantitative study of the substances analyzed in the work (41). 
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3. Materials and Methods 

3.1. Active Substances  

3.1.1. Paracetamol  

Paracetamol is used to treat moderate pain, like headaches, menstrual periods, toothaches, 

backaches, and others, and is also used to reduce fever. This comes as a tablet, chewable 

tablet, capsule, suspension, or solution (liquid), extended-release tablet, and orally 

disintegrating tablet (42). It is a non-opioid analgesic and antipyretic agent, this can be used 

in combination with aspirin and caffeine (43). 

3.1.2. Caffeine  

Caffeine is a methylxanthine alkaloid found in coffee, tea, cola, cocoa, guarana, yerba mate 

and other products, can be administrated topically, orally, inhalation, or by injection. This 

substance is used in beverages, cardiac and respiratory stimulants, diuretics, cosmetics, can 

also be used pain relief and to combat drowsiness (44,45). 

3.2. Excipients  

3.2.1. Starch  

Starch is odorless and tasteless, fine, white to off-white powder. Consist of very small spherical 

or ovoid granules or grains. The functional category is tablet and capsule diluent; tablet and 

capsule disintegrant; tablet binder; thickening agent (46).  If used as diluent, ant adherent and 

lubricant the quantities are between 3-10% and when used as a disintegrant the 

concentrations can be in the range of 3-25%, and a typical concentration is 15% (46). 

3.2.2. Talc  

Talc is a fine, white to grayish-white, odorless, impalpable, unctuous, crystalline powder. The 

functional category of this excipient: anticaking agent, glidant, tablet and capsule diluent, 

tablet, and capsule lubricant (46). In oral solid formulations is widely used as a lubricant and 

diluent. If used as a glidant and tablet lubrification the concentration can vary between 1-10% 

and if used as diluent in a tablet or capsule the variation in concentration is in the range of 5-

30% (46). 

3.2.3. Microcrystalline Cellulose 

Microcrystalline cellulose (MCC) is a purified, partially depolymerized cellulose that occurs as 

a white, odorless, tasteless, crystalline powder of porous particles. The functional category is 
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absorbent; suspending agent; tablet and capsule diluent; tablet disintegrant (46). In 

pharmaceuticals it is used as a binder/diluent in oral tablets with a concentration between 20-

90% and of capsules between 20-90% and can also be used in tables as a disintegrant with 

a concentration in the range of 5-15% (46). 

3.2.4. Magnesium Stearate  

Magnesium Stearate (MgS) is fine, light white, precipitated or milled, impalpable powder of 

low bulk density, having a faint odor of stearic acid and a characteristic taste. It can be used 

in tablet and capsule as a lubricant (46). This is used in cosmetics, foods and pharmaceutical 

formulations and is mainly used as a lubricant in tablets and capsules with a concentration in 

the range of 0.25-5% (46). 

3.2.5. Lactose Monohydrate 

Lactose Monohydrate occurs as white to off-white crystalline particles or powder and is 

odorless. The functional category of lactose is a dry powder inhaler carrier; lyophilization aid; 

tablet binder; tablet and capsule diluent; and tablet and capsule filler (46). 

3.3. Formulations 

3.3.1. Experimental Design 

It was generated the calibration and validation formulations through an experimental design. 

For the calibration and testing formulation sets, it was selected a D-optimal design in the 

software that used. For each active/excipient, it was defined a range of potential compositions 

(typical compositions for each excipient) and used to produce the experimental designs. To 

build the experiments, MODDE® software (Sartorius Data Analytics) was used. A total of 23 

formulations for calibration (Table 1) and 13 formulations for testing the models were designed 

(Table 2).  

The DoE was used to evaluate the performance of the RE IR-based method with the MCR 

method. MCR requires calibration and validation, which is why it is necessary to produce the 

formulations using the DoE. On the other hand, the calibration-free method only needs pure 

spectra and does not require calibration and validation. This method was used to estimate the 

composition of some of the DoE powder mixtures. 

The experimental design considered seven formulation components. Paracetamol was fixed 

at 20% w/w, and lactose was considered the filler. The remaining components' mass fractions 

were defined as described below 
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• Caffeine: 0.5%, 3% or 6%. 

• MCC: 1%, 10% or 20%. 

• Starch: 1%, 5% or 10%. 

• Magnesium Stearate: 0.5%, 3% or 6%. 

• Talc: 0.5%, 3% or 6%. 

Table 1: Calibration powder mixtures. 

 

Samples 
Paracetamol 

(mg)  

Caffeine 

(mg) 

MCC 

(mg) 

Starch 

(mg) 

MgS 

(mg) 

Talc 

(mg) 

Lactose 

(mg) 

1 0.20 0.010 0.10 0.050 0.0050 0.0050 0.63 

2 0.20 0.010 0.20 0.010 0.030 0.06 0.49 

3 0.20 0.0010 0.010 0.10 0.0050 0.060 0.62 

4 0.20 0.0010 0.20 0.010 0.060 0.0050 0.52 

5 0.20 0.050 0.20 0.10 0.060 0.0050 0.36 

6 0.20 0.050 0.20 0.010 0.0050 0.0050 0.53 

7 0.20 0.050 0.010 0.010 0.060 0.0050 0.67 

8 0.20 0.0010 0.20 0.10 0.0050 0.0050 0.489 

9 0.20 0.0010 0.20 0.010 0.0050 0.060 0.52 

10 0.20 0.010 0.010 0.10 0.060 0.030 0.59 

11 0.20 0.0010 0.010 0.10 0.060 0.0050 0.62 

12 0.20 0.050 0.010 0.10 0.0050 0.0050 0.63 

13 0.2 0.0010 0.010 0.010 0.0050 0.0050 0.77 

14 0.20 0.050 0.20 0.10 0.0050 0.060 0.39 

15 0.20 0.010 0.10 0.050 0.030 0.030 0.58 

16 0.200 0.050 0.010 0.010 0.0050 0.060 0.67 

17 0.20 0.050 0.010 0.10 0.060 0.060 0.52 

18 0.20 0.050 0.20 0.010 0.060 0.060 0.42 

19 0.20 0.010 0.10 0.050 0.030 0.030 0.58 

20 0.20 0.0010 0.010 0.010 0.060 0.060 0.66 

21 0.20 0.010 0.10 0.050 0.030 0.030 0.58 

22 0.20 0.0010 0.20 0.10 0.060 0.060 0.38 

23 0.20 0.050 0.10 0.050 0.030 0.030 0.54 
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Table 2: Test powder mixtures. 

Samples 
Paracetamol 

(mg) 

Caffeine 

(mg) 

MCC 

(mg) 

Starch 

(mg) 

MgS 

(mg) 

Talc 

(mg) 

Lactose 

(mg) 

1 0.2 0.002 0.02 0.08 0.05 0.01 0.638 

2 0.2 0.002 0.15 0.02 0.05 0.05 0.528 

3 0.2 0.021 0.085 0.05 0.03 0.03 0.584 

4 0.2 0.04 0.02 0.08 0.01 0.01 0.64 

5 0.2 0.04 0.15 0.02 0.01 0.05 0.53 

6 0.2 0.021 0.085 0.05 0.03 0.03 0.584 

7 0.2 0.002 0.02 0.02 0.01 0.01 0.738 

8 0.2 0.04 0.15 0.08 0.05 0.05 0.43 

9 0.2 0.002 0.02 0.08 0.01 0.05 0.638 

10 0.2 0.021 0.085 0.05 0.03 0.03 0.584 

11 0.2 0.002 0.15 0.08 0.01 0.01 0.548 

12 0.2 0.04 0.15 0.02 0.05 0.01 0.53 

13 0.2 0.04 0.02 0.02 0.05 0.05 0.62 

 

Each formulation (a powder mix) was made using a mixer from Fisher-Kendall (lab scale 

orbital mixer). Each formulation was prepared considered a total mass of 30g. All components 

were weighed and mixed in the same container (a plastic bottle of 150 mL). After that, the 

container was placed in an orbital mixer to mix for 7 minutes at 25 rpm. 

3.4. FT-IR Spectral Measurements 

The mixtures were analyzed in an FT-IR spectrometer, model Nicolet™ iS™ 5, from 

ThermoFisher Scientific. The measurement conditions are explained in Table 3. Before each 

scan, the ATR crystal was clean with isopropanol then, after a few seconds, the sample was 

placed on the crystal to perform the reading. Because the compounds used were solid, there 

was necessary to use the punch (to compress the samples against the crystal). 
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Table 3: Parameters and conditions used in the FT-IR spectral acquisition. 

Parameters Condition applied 

Mode Attenuated Total Reflectance 

Accessory iD5 ATR 

Resolution 2 cm-1 

Scans 16 

Spectral Range 4000 – 600 cm-1 

Replicates Triplicates 

3.5. Chemometric Analysis 

3.5.1. Supervised Method (MCR) 

The Chemometric analysis was done using MATLAB version 9.1.0.441655 (R2016b) 

(MathWorks, Massachusetts) software using the PLS Toolbox version 8.2.1. The spectra of 

the mixtures used in the calibration/testing were analyzed with and without pre-processing. 

Additionally, MCR models were attempted to provide the spectra of the pure compounds or 

not. The pure components spectra were pre-processed using baseline correction and absolute 

value. Four attempts were tested to verify the best pre-processing option (Table 4). It also was 

tested at different wavenumber intervals (Table 4). In Table 4 are the Models that will be 

analyzed in the results, Model 1, Model 2, Model 3, Model 4-A, Model 4-B, Model 4-C, and 

Model 4-D, these were the names given to differentiate each of the Models. The pre-

processing was applied to the spectra of the samples and the pure spectra. In Model 4-A and 

4-B, the same preprocessing was used, for Model 4-C and Model 4-D the order of polynomials 

was changed from 2nd to 3rd, and in Model 4-D the second pre-processing was changed from 

absolute value to normalization to unit area. The pre-processing applied in the pure spectra, 

that was provided to the methods, had the same pre-processing applied to each of the models. 

In Model 2 was not used any pre-processing, but was provided pure spectra, and for this, was 

used the correction of the baseline and the absolute value. 
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Table 4: Conditions applied in the MCR. 

Model  
Spectra of pure 

components 
Pre-processing 

Wavenumber 

Range (cm-1) 

1  Not given None 
[3500-2750 1800-

800] 

2  Given None 
[3500-2750 1800-

800] 

3  Not Given 
Baseline correction (2nd order) 

and absolute value 

[3700-2320 1800-

800] 

4 

 

 

A 

Given 

Baseline correction (2nd order) 

and absolute value 

[3700-2320 1800-

800] 

B 
Baseline correction (2nd order) 

and absolute value 

[3700-2320 1800-

1100] 

C 
Baseline correction (3rd order) 

and absolute value 

[3700-2320 1800-

800] 

D 
Baseline correction (3rd order) 

and normalization by unit area 

[3700-2320 1800-

800] 

 

The pre-processing used in the different models was different. The identification of the best 

pre-processing for the method was done by trial and error. So, first, the baseline (Automatic 

Weighted Least Square) pre-processing was tried, which is predefined to use the 2nd order 

polynomial, then the 1st and 3rd order polynomials were also used to see if any significant 

change in the results occurred. Following this pre-processing, absolute value was used, since 

the spectra obtained had values below zero, and one of the restrictions of MCR is non-

negativity. Finally, the absolute value was replaced by normalization to the unit area, so that 

all samples had an equal impact on the model. This last pre-processing was used so that a 

comparison of the two methods with the same pre-processing could be made since the pre-

processing used in the second method is the baseline and then normalization to unit area.  

After obtaining the estimated mass, scores (C), a linear correction were performed, since the 

components may not all absorb in the same way. Once the values were corrected, these were 

used for the analysis of the MCR method. 
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3.5.2. Calibration-free Method 

The calibration free-method algorithm is fully described in Annex 1. 

In summary, the algorithm picks the FT-IR spectra of the active substances and the excipients 

and then resources to Lambert Beer’s law, similarly to MCR. However, the idea was to use a 

bootstrapping strategy to try to reach the “real” composition of some powder mix samples. The 

algorithm received the target powder mix of unknown quantitative composition and tried to 

reconstruct it using pure spectral profiles. This reconstruction was performed by combining 

the pure spectral profiles using the Lambert-Beer law. The concentrations were generated 

randomly for each constituent from a range provided by the user. For some components, that 

concentration may be fixed (paracetamol for example), and for other components, the user 

can postulate some possible mass fraction ranges. This is what the formulator in the generic 

drug product development will do. One starts from previous knowledge. There is normally an 

admissible range of concentration for each formulation component that can be used.  

The algorithm generates the spectrum of different potential mixtures picking values randomly 

from within the different ranges set for each compound. Typically, the algorithm will perform 

this process 10 000 times. Each spectrum is then compared to the spectrum of the target 

product, and a distance is calculated based on some metric (Euclidean distance in this case). 

The different simulations are then ranked, and the n simulations that best match the reference 

product are selected. The average and standard deviation calculated for each component 

considering the n best simulations gives the result of the algorithm. The average value gives 

the estimation of the concentration (mass fraction) of that component, while the standard 

deviation is a measure of the uncertainty in the estimation of that quantity. A confidence 

interval for the predicted mass fractions can be obtained by calculating the average +/- 2 

standard deviations (approximately a 95% confidence interval). Before applying the Lamber 

Beer law, the algorithm uses two spectral pre-processing methods: baseline removal and 

normalization to unit area. 

The script used to run the algorithm is provided in Annex 2. In the Figure 3 is described the 

algorithm through a scheme. 
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Figure 3: Algorithm application scheme. 

The application of the algorithm went through different stages an initial stage in which the 

algorithm was run so that it only performed the analysis for one sample at a time, and a second 

stage in which the algorithm analyzed all samples sequentially. Table 5 shows the wavelength 

intervals considered in the analyses. The algorithm considering was run with different margins 

for each compound. We tested percentage variations around the known concentration of each 
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compound from 0 (the best situation, that is fixed amount), 5, 25, 50, 75, 100 up to 1000% 

(worst scenario).  

Table 5: Conditions applied to the algorithm. 

Spectra components Wavelength Range (cm-1) Column Indexes 

 All components 
[3700:2320 1800:800] [1245:6970 9127:13275] 

[3700:2320 1800:1100] [1245:6970 9127:12445] 

The samples used to test the algorithm are in Table 6. These samples were chosen to have 

the maximum, minimum, and intermedium values of most compounds. All samples (Table 1) 

were also used to analyze the precision and accuracy of the algorithm. 

Table 6: Concentrations of each component of the samples used to apply the algorithm. 

 Sample 6 (mg) Sample 11 (mg) Sample 19 (mg) 

Starch 0.011 0.100 0.052 

Caffeine 0.051 0.001 0.010 

MgS 0.005 0.063 0.030 

Lactose 0.536 0.626 0.578 

Paracetamol 0.202 0.202 0.201 

Talc 0.005 0,006 0.030 

MCC 0.199 0.010 0.101 
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4. Results and Discussion 

4.1 Pure Components Spectra 

Figures 4 to 10 contain the pure spectrum of each component. Through a visual analysis is 

possible to see that the MCC, Starch, Lactose, and Talc have overlapping peaks in the range 

between 1300-800 cm-1. This can be a problem when estimating the mass using MCR. But, 

for the Talc, that is not a problem since this component has another peak that will make it 

possible to distinguish it from the other components between the 3700-3500 cm-1.  
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Figure 4: Pure spectrum of paracetamol. 
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Figure 5: Pure spectrum of caffeine. 
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Figure 6: Pure spectrum of MCC. 
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Figure 7: Pure spectrum of starch. 
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Figure 8: Pure spectrum of MgS. 
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Figure 9: Pure spectrum of talc. 
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Figure 10: Pure spectrum of lactose. 
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4.2 Supervised Method (MCR) 

The application of the MCR method started with an analysis of different models with 

conditions. For this supervised method, 7 different scenarios were analyzed. The differences 

in the models are presented in Table 4. The pre-processing was different, and the interval and 

pure spectra were given. For models 1 and 2, not all the conditions that were performed for 

model 4 were applied since the results of these were not acceptable, since these have higher 

residuals, as will be seen in Section 4.2.1. 

Figure 10 shows all samples, and raw data, without pre-processing. Figure 12 shows the data 

already pre-processed with baseline correction (order 2nd) and absolute values, and Figure 13 

shows the data pre-processed with baseline correction (order 3rd) and normalization by unit 

area.  
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Figure 11: Calibration data without pre-processing. 
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Figure 12: Calibration data with pre-processing (baseline correction and absolute value). 
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Figure 13: Calibration data with pre-processing (baseline correction and normalization to unit area). 
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4.2.1 Models analysis 

Table 7 shows the residuals of all samples for each of the models. The residuals can be used 

to evaluate the accuracy of the models. The residual will assess the error between the sample 

reconstructions and the experimental spectra. So, if the values are high, it means that the error 

between these two is higher and that the value of these reconstructions is far away from the 

value of the experimental spectra. Of all the models, Models 1 and 2 are the ones with high 

residuals. Since that these models have not been used again for other conditions with other 

pre-processes or intervals.  
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Table 7: Q Residual (%) for each MCR Model. 

Q Residuals (%) 

Samples Model 1 Model 2 Model 3 Model 4-A Model 4-B Model 4-C Model 4-D 

1 3.3 11 0.042 1.9 0.37 0.42 0.15 

1' 1.3 13 0.023 0.76 1.3 0.42 0.17 

1'' 1.9 13 0.02 0.72 1.8 0.33 0.17 

2 3.0 16 0.29 0.52 0.92 1.0 0.21 

3 3.1 14 0.063 1.3 1.8 0.63 0.17 

4 2.4 9.1 0.21 1.3 3.8 0.77 0.33 

5 2.3 8,2 0.035 2.7 1.5 0.64 0.45 

6 3.9 13 0.095 2.6 0.52 0.92 0.18 

7 3.3 11 0.18 1.8 0.6 0.51 0.21 

8 2.5 14 0.035 0.42 1.1 0.43 0.16 

9 4.4 21 0.013 0.32 0.44 1.0 0.15 

10 3.1 8,4 0.028 1.4 1.9 0.30 0.22 

11 4.1 11 0.026 1.4 1.2 0.37 0.22 

12 3.1 17 0.070 0.54 0.30 0.97 0.17 

13 4.0 17 0.047 0.13 0.45 0.37 0.16 

14 4.7 20 0.040 1.4 0.21 1.4 0.15 

15 5.9 33 0.067 4.4 1.9 2.0 0.17 

16 6.2 37 0.011 3.4 1.3 1.9 0.18 

17 4.1 13 0,027 0.58 0.82 0.71 0.19 

18 5.1 22 0.10 2.4 0.27 1.2 0.20 

19 4.3 17 0.055 0.21 0.75 0.64 0.16 

20 4.9 15 0.10 0.35 1.3 0.54 0.19 

21 4.0 21 0.013 2.9 0.52 1.0 0.18 

22 4.6 18 0.047 0.68 0.78 0.92 0.20 

23 5.1 12 0.15 1.3 0.83 0.32 0.18 

The figures of merit were used to analyze the results obtained using the MCR method. For 

paracetamol, R2 was not considered since this compound always had the same composition. 

Thus, starting with Model 1, which does not have any type of processing, only the spectra of 

the samples, it is observed in Table 8 that the conditions used were not the most effective for 

the reconstruction or estimation of concentrations. Since the pure spectra were not given, the 

order of the scores provided by the MCR may not have been the one that corresponded to the 
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actual compounds. A script was proposed to research the correspondence between the 

estimated loadings (pure spectra profiles) and the real compounds in the blend (Annex 3). The 

idea was to match one compound to each estimated loading.  

In Table 8 are the figures of merit corresponding to Model 1. It is possible to see that the R2 

is low for all components. This can also happen since the order used may have been the 

wrong order in the scores. The Q-Residual for this model was higher than 3 for all samples 

(Table 7). These high values mean that the model cannot accurately estimate the real 

concentrations. 
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Table 8: Figures of merit for the Model 1. 

Calibration Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEC 

(mg) 
0.0010 0.022 0.081 0.038 0.016 0.024 0.090 

bias 

(mg) 
-4.3E-05 3.5E-05 -3.1E-05 1.7E-05 -4.2E-06 -7.1E-06 -3.9E-05 

SEP 

(mg) 
0.00022 0.0023 0.034 0.0074 0.0013 0.0030 0.042 

RE (%) 0.10 20 16 14 10 16 3.2 

R2 ---- 0.0019 0.000020 0.018 0.58 0.058 0.11 

Validation Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEP 

(mg) 
0.00091 0.017 0.060 0.029 0.0060 0.016 0.091 

bias 

(mg) 
-4.1E-05 5.6E-06 -2.0E-02 -5.7E-04 4.6E-04 4.3E-03 3.5E-02 

SEP 

(mg) 
0.00016 0.0011 0.088 0.0052 0.0016 0.015 0.10 

RE (%) 0.12 22 20 15 5.5 14 4.3 

R2 ----- 0.000 0.0081 0.088 0.90 0.16 0.057 

Like Model 1, Model 2 (Table 9) also presents unsatisfactory results. In this model, unlike the 

first one, it was provided the component's pure spectra. So, the order of the scores was known 

and it can be evaluated through Table 9 that the coefficient of determinations did not improve. 

The residuals (Table 7) were also quite high for this model, with values above 8 for all samples, 

meaning that the conditions used for this model were not ideal. So next was performed 
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different model to see if the residuals had improved, to have better residuals this has to be 

lower (closest to zero). 

Table 9: Figures of merit for the Model 2. 

Calibration Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEC 

(mg) 
0.0010 0.017 0.052 0.039 0.022 0.017 0.081 

bias 

(mg) 
7.8E-06 -1.2E-05 3.5E-05 -4.6E-05 3.2E-05 -5.0E-06 4.3E-05 

SEP 

(mg) 
0.000035 0.0016 0.014 0.0079 0.0024 0.0014 0.033 

RE (%) 0.099 16 10 14 15 11 2.9 

R2 ---- 0.40 0.58 0.00090 0.18 0.56 0.28 

Validation Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEP 

(mg) 
0.00084 0.016 0.064 0.027 0.018 0.021 0.071 

bias 

(mg) 
1.4E-04 -9.5E-04 -2.8E-02 -1.9E-03 3.7E-03 -1.5E-02 -2.9E-02 

SEP 

(mg) 
0.00053 0.0046 0.12 0.010 0.013 0.056 0.13 

RE (%) 0.12 21 21 15 16 18 3.3 

R2 ---- 0.21 0.24 2.0E-16 4.0E-16 0.33 0.27 

 

In the construction of Model 3, the pure spectra of the compounds were not provided, but the 

calibration and validation samples were pre-processed as described in Table 4. The procedure 
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done in Model 1 was performed for this model. The script in Annex 2 was also used since the 

pure spectra were also not provided. 

Table 10 shows the figures of merit for the Model 3 and what can be seen is that the R2 is high 

for the MgS, but for the remaining the R2 is low. When comparing with Models 1 and 2, a 

better Q-Residual for all the samples was obtained. The problem with this model was not 

knowing the correct order of the compounds (scores), which led to an imprecise and 

inaccurate estimation of the concentration of the components. Due to this problem, no further 

scenarios were repeated with other pre-processing methods. 
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Table 10: Figures of merit for the Model 3. 

Calibration Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEC 

(mg) 
0.0010 0.020 0.076 0.038 0.010 0.022 0.095 

bias 

(mg) 
-4.8E-05 -4.9E-05 3.6E-05 2.5E-05 3.3E-05 3.1E-05 -1.6E-05 

SEP 

(mg) 
0.00025 0.0022 0.029 0.0073 0.00034 0.0023 0.046 

RE (%) 0.099 18 15 14 6.5 14 3.4 

R2 ---- 0.21 0.12 0.030 0.84 0.23 0.010 

Validation Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEP 

(mg) 
0.00085 0.020 0.075 0.028 0.0085 0.014 0.074 

bias 

(mg) 
-2.3E-05 -6.9E-03 -3.8E-02 -5.1E-03 6.5E-03 8.1E-03 2.1E-02 

SEP 

(mg) 
0.000090 0.027 0.16 0.022 0.024 0.029 0.059 

RE (%) 0.12 25 24 15 7.8 13 3.5 

R2 ---- 0.041 0.10 0.021 0.92 0.59 0.21 

Finally, Model 4 was carried out, where pre-processing was applied to the samples and pure 

spectra, in Table 4 the types of pre-processing applied can be seen.  

In Model 4-A, the baseline correction with the polynomial of the 2nd order was applied, and 

then the absolute value. Through the R2 (Table 11) and the Q-Residual (Table 7) was possible 

to evaluate that this was the path to a better model. Although not all components had an 

acceptable R-square but were possible to observe an improvement when compared to the 
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models previously performed. In this Model, the Q-Residual was lower than 3 for all the 

samples, and when compared with Model 3 the values in Model 4 were much higher. Which 

means that Model 4 can improve. That does not mean that Model 3 has a better estimation 

for the mass of the components since in the case of Model 4 the RMSEC is lower in almost all 

the components and the R2 is also higher. Also, the RE is lower for Model 4 when compared 

with Model 3, meaning that Model 4 is more precisel. 

Table 11: Figures of merit for the Model 4-A 

Calibration Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEC 

(mg) 
0.0010 0.022 0.064 0.038 0.011 0.018 0.068 

bias 

(mg) 
2.9E-06 -2.2E-05 9.4E-06 -4.8E-05 2.0E-05 1.1E-05 9.9E-06 

SEP 

(mg) 
0.000010 0.0025 0.021 0.0076 0.00047 0.0015 0.023 

RE (%) 0.10 20 12 14 6.9 12 2.4 

R2 ---- 0.030 0.38 0.033 0.81 0.50 0.50 

Validation Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEC 

(mg) 
0.00084 0.017 0.054 0.030 0.012 0.010 0.082 

bias 

(mg) 
1.1E-04 -6.9E-03 -2.1E-02 -7.1E-03 9.0E-03 2.1E-03 4.4E-02 

SEP 

(mg) 
0.00042 0.027 0.091 0.030 0.033 0.0075 0.14 

RE (%) 0.12 22 18 16 11 8.4 3.9 

R2 ---- 0.33 0.25 0.035 0.90 0.69 0,19 
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For the next Model 4-B, Table 12, the interval used was changed to assess whether the 

estimation of caffeine and starch improved. The interval used was [3700-2320 1800-1100] 

(cm-1). Since each component has a pure spectrum that distinguishes them, it should be 

possible to get good estimates for each, but when the peaks of different components overlap, 

getting good estimates is compromised. The most distinctive peak for starch is in the region 

of 1000 cm-1. In this region, other components also have peaks which makes it difficult to 

estimate the mass of starch in the samples. For this reason, this Model 4-B was performed to 

evaluate whether there was any improvement in the estimation. Concerning the residuals 

(Table 4), when comparing the values of Model 4-B with the values of Model 4-A, an 

improvement in the values for each of the samples can be seen, since the values of Model 4-

B in general are lower. So, in Table 12 are the figures of merit for this model. Analyzing Table 

12, R2 remains low for caffeine and starch. No improvement was observed for caffeine (Figure 

3) either, the peaks of which were similar to those of paracetamol (Figure 2), which may make 

it difficult to estimate these quantities. For the remaining components, the estimation was 

better when compared to the previous models. 
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Table 12: Figures of merit of the Model 4-B 

Calibration Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEC 

(mg) 
0.0010 0.021 0.049 0.039 0.0072 0.012 0.065 

bias 

(mg) 
-1.5E-05 3.7E-05 2.8E-05 1.4E-05 4.7E-05 -6.4E-03 1.7E-05 

SEP 

(mg) 
0.000084 0.0021 0.012 0.0076 0.000028 0.033 0.021 

RE (%) 0.10 19 9.4 14 4.7 8.0 2.3 

R2 ---- 0.084 0.63 0.00060 0.91 0.83 0.54 

Validation Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEP 

(mg) 
0.00089 0.017 0.039 0.029 0.0071 0.011 0.060 

bias 

(mg) 
6.8E-05 2.5E-03 2.0E-02 -8.8E-04 1.8E-03 -6.6E-03 -2.9E-02 

SEP 

(mg) 
0.00025 0.0084 0.069 0.0064 0.0066 0.025 0.12 

RE (%) 0.12 22 13 15 6.4 9.7 2.8 

R2 ---- 0.098 0.71 0.15 0.87 0.74 0.59 

The next two Models were Model 4-C and Model 4-D (Tables 13 and 14). In these two models, 

the differences were in the pre-processing (Table 4). Comparing these two models with the 

others (Model 4-A and Model 4-B), it was possible to observe the improvements, but not very 

significant. So, was not possible to solve the problem encountered in estimating the caffeine 

and starch concentrations.  
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This can mean that when using the MCR for estimating a similar composition of a drug, with 

paracetamol, caffeine, and starch, it is difficult to get a good estimate of all the components. 

Meaning that the MCR is not able to predict the right amounts for these components in the 

samples. Regarding the precision of the MCR, it can be accurate or precise when the pure 

spectra of the components are given, and when the pure spectra are not given, it becomes 

more complicated to estimate the concentrations, making it less precise. 

Table 13: Figures of merit for the Model 4-C 

Calibration Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEC 

(mg) 
0.0010 0.019 0.035 0.037 0.0085 0.012 0.057 

bias 

(mg) 
-1.3E-05 2.1E-05 -3.7E-05 7.3E-06 1.6E-06 -8.6E-06 2.5E-05 

SEP 

(mg) 
0.000071 0.0018 0.0064 0.0070 0.00036 0.00072 0.016 

RE (%) 0.099 18 6.7 14 5.6 7.6 2.0 

R2 ---- 0.24 0.82 0.079 0.88 0.79 0.65 

Validation Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEP 

(mg) 
0.00089 0.014 0.033 0.024 0.0054 0.013 0.047 

bias 

(mg) 
9.9E-05 -1.9E-03 4.1E-03 -5.3E-03 2.9E-03 5.8E-03 -9.7E-03 

SEP 

(mg) 
0.00037 0.0080 0.011 0.022 0.011 0.021 0.044 

RE (%) 0.12 18 11 13 4.9 11 2.2 

R2 ---- 0.43 0.69 0.26 0.93 0.59 0.63 
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Table 14: Figures of merit for the Model 4-D 

Calibration Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEC 

(mg) 
0.0010 0.022 0.047 0.036 0.012 0.014 0.054 

bias 

(mg) 
1.0E-05 -4.6E-05 4.5E-05 -1.5E-05 -3.7E-05 3.0E-05 -2.4E-06 

SEP 

(mg) 
0.000048 0.0027 0.011 0.0067 0,00087 0.00086 0.015 

RE (%) 0.10 20 9.0 13 7.5 9.3 1.9 

R2 ---- 0.0034 0.66 0.14 0.78 0.68 0.68 

Validation Set 

 Paracetamol Caffeine MCC Starch MgS Talc Lactose 

RMSEP 

(mg) 
0.00090 0.017 0.043 0.034 0.0058 0.012 0.048 

bias 

(mg) 
3.5E-05 5.6E-06 7.1E-03 -2.2E-02 1.2E-03 7.9E-03 -4.2E-03 

SEP 

(mg) 
0.00013 0.0011 0.020 0.088 0.0045 0.029 0.024 

RE (%) 0.12 22 14 18 5.3 11 2.3 

R2 ---- 0 0.45 0.14 0.90 0.69 0.58 
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4.3. Calibration-free Method 

This method resources only on the pure spectra of the components. In the Section 4.1. are 

the spectra of the pure components (Figure 4-10). The intervals used for the analysis with the 

calibration-free algorithm (Section 4.3.1) are in Table 5. For the Section 4.3.2. the interval 

used was [3700-2320 1800-800] (cm-1). 

4.3.1. Individual Samples 

Tables 15-17 are the Residuals obtained for the three samples used to test this algorithm. The 

Residuals represent the error between the experimental data and the estimated data. The 

three colors, red, yellow, and green mean if the values obtained were reasonable or not. If the 

error is less than 0.02, in green, that value is reasonable or acceptable; in yellow are the 

values between 0.02 and 0.05, and in red are the values higher than 0.05.  

Different scenarios were carried out with different initial uncertainties for the compounds' mass 

fraction. As the uncertainty increases, the prediction error should normally increase. Since the 

interval that is being given to the concentrations is getting larger, makes it more difficult to 

estimate concentrations and these are further away from the experimental concentrations. 

Tables 15-17 show that in some cases the error increase, but in others, the error decreases 

with increased uncertainty. Figures 14 and 15 are the estimated masses and the experimental 

masses. Figure 14 is the estimation for the 5% scenario for sample 6 and it can be seen that 

the estimate is very close to the experimental concentrations. Figure 15 represents the 50% 

scenario, the estimated masses are already farther from the experimental concentrations. 

Having a lower error for all or most all the scenarios means that the algorithm can estimate 

with some accuracy the concentrations of the compounds even when the uncertainty range 

for the concentrations is large. 
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Figure 14: Comparation between the estimated and experimental masses for sample 6 (5% uncertainty 

scenario). 
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Figure 15: Comparation between the estimated and experimental masses for sample 6 (50% uncertainty 
scenario). 
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Table 15: Residuals of sample 6. 

Interval 1 

Percentage Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0% 0 6.9E-18 0.00 0 0 0 0 

5% 0.000080 0.0026 0.00015 0.019 0.012 0.000011 0.0052 

25% 0.0000043 0.0029 0.00032 0.072 0.079 0.00092 0.021 

50% 0.0045 0.012 0.00045 0.17 0.17 0.0027 0.0079 

75% 0.00049 0.029 0.00029 0.23 0.22 0.00065 0.038 

100% 0.0023 0.044 0.0030 0.24 0.22 0.0013 0.056 

1000% 0.031 0.043 0.0046 0.27 0.21 0.00093 0.050 

R² 0.98 0.38 0.73 0.33 0.21 0.0024 0.30 

Interval 2 

Percentage Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0% 0 6.94E-18 0 0 0 0 0 

5% 0.00015 0.0023 0.000035 0.018 0.012 0.00015 0.0065 

25% 0.00073 0.0076 0.0012 0.079 0.081 0.00042 0.021 

50% 0.0018 0.010 0.0014 0.16 0.18 0.0014 0.030 

75% 0.0082 0.028 0.00013 0.20 0.22 0.00037 0.0073 

100% 0.0054 0.047 0.0019 0.18 0.23 0.00066 0.013 

1000% 0.014 0.040 0.00020 0.19 0.22 0.0030 0.010 

R² 0.74 0.32 0.048 0.23 0.22 0.85 0.0053 
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Table 16: Residuals of sample 11. 

Interval 1 

Percentage Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0% 1.4E-17 0 0 0 2.8E-17 0 0 

5% 0.0027 5.55E-07 0.0031 0.021 0.012 0.000010 0.000041 

25% 0.0093 0.00014 0.018 0.093 0.075 0.00053 0.00094 

50% 0.019 0.00052 0.052 0.21 0.17 0.00068 0.0038 

75% 0.040 0.00059 0.062 0.24 0.21 0.00092 0.0043 

100% 0.015 0.00019 0.055 0.25 0.21 0.0039 0.0066 

1000% 0.054 0.00090 0.055 0.23 0.21 0.0016 0.017 

R² 0.63 0.59 0.17 0.18 0.22 0.069 0.90 

Interval 2 

Percentage Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0% 1.4E-17 0 0 0 2.8E-17 0 0 

5% 0.0029 0.0000050 0.0033 0.020 0.012 0.00012 0.00026 

25% 0.010 0.00019 0.020 0.09 0.074 0.00033 0.00069 

50% 0.028 0.00034 0.048 0.20 0.17 0.00074 0.00062 

75% 0.051 0.00042 0.060 0.23 0.21 0.00073 0.00039 

100% 0.085 0.00027 0.060 0.19 0.22 0.0045 0.0036 

1000% 0.068 0.0016 0.068 0.22 0.21 0.0021 0.00027 

R² 0.27 0.95 0.32 0.21 0.22 0.10 0.015 
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Table 17: Residuals of sample 19. 

Interval 1 

Percentage Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0% 6.9E-18 0 0 0 2.8E-17 0 1.4E-17 

5% 0.0032 0.00033 0.00014 0.012 0.0034 0.0017 0.0072 

25% 0.021 0.0016 0.0016 0.066 0.0071 0.011 0.039 

50% 0.049 0.0015 0.00057 0.14 0.0010 0.026 0.055 

75% 0.085 0.0030 0.0070 0.21 0.012 0.016 0.10 

100% 0.10 0.0039 0.022 0.21 0.042 0.015 0.072 

1000% 0.16 0.0047 0.014 0.23 0.037 0.0080 0.053 

R² 0.68 0.50 0.20 0.33 0.40 0.0074 0.026 

Interval 2 

Percentage Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0% 
6.90E-

18 
0 0 0 2.8E-17 0 1.4E-17 

5% 0.0025 0.00023 0.00062 0.018 0.012 0.00015 0.0012 

25% 0.012 0.0016 0.0058 0.044 0.030 0.0038 0.010 

50% 0.026 0.0042 0.010 0.062 0.043 0.0034 0.0086 

75% 0.048 0.0042 0.011 0.044 0.040 0.0093 0.022 

100% 0.062 0.0079 0.013 0.023 0.036 0.0045 0.051 

1000% 0.12 0.0028 0.013 0.17 0.047 0.0058 0.018 

R² 0.80 0.0055 0.25 0.88 0.26 0.12 0.020 
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4.3.2. All Samples 

In Section 4.3.1., only one sample was used to estimate the mass. So, in this section, all 

samples were used for mass estimation. The same analysis that was performed for just one 

sample (Tables 15-17) was done in this section with all samples. The analysis of the scenarios 

was performed through the average of the residuals (Table 18) and the average of the 

standard deviation (Table 19) obtained, corresponding to the average of the residuals 

obtained for each of the samples. In this case, it was used just the interval 1 (3700-2320 1800-

800 cm-1).  

In Table 18, the algorithm was able to have a good estimate for all the compounds for the 

scenario of 0 and 5 %, and for the 25% was not able to have a good estimation for the Lactose, 

for the rest was made a reasonable estimation.  

 

Table 18: Average of the residuals using all the samples. 

Interval 1 

Percentage Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0% 3.6E-18 1.1E-18 1.1E-18 4.4E-18 8.9E-18 1.9E-18 4.4E-18 

5% 0.0018 0.00048 0.0011 0.017 0.010 0.0013 0.0035 

25% 0.013 0.0025 0.0062 0.070 0.041 0.0088 0.018 

50% 0.028 0.0054 0.014 0.12 0.058 0.019 0.032 

75% 0.047 0.011 0.020 0.15 0.063 0.021 0.045 

100% 0.063 0.017 0.023 0.16 0.065 0.022 0.051 

1000% 0.083 0.017 0.026 0.19 0.065 0.018 0.047 

R² 0.57 0.41 0.38 0.38 0.18 0.12 0.23 

 
Table 19: Stander deviation of the residuals for all the samples. 

Interval 1 

Percentage Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0% 6.9E-18 2.8E-18 2.5E-18 1.5E-17 1.6E-17 3.5E-18 9.5E-18 

5% 0.0023 0.00080 0.0014 0.0082 0.0087 0.0015 0.0050 

25% 0.014 0.0036 0.0086 0.029 0.041 0.011 0.026 

50% 0.033 0.0070 0.021 0.057 0.065 0.024 0.050 

75% 0.060 0.013 0.034 0.084 0.071 0.032 0.066 

100% 0.077 0.020 0.035 0.099 0.069 0.035 0.072 

1000% 0.081 0.020 0.039 0.081 0.066 0.033 0.068 

R² 0.39 0.43 0.35 0.18 0.15 0.22 0.22 
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The algorithm was run for the 50% scenario to do a more detailed evaluation since it can be 

observed that point is where the algorithm starts to have some difficulties in the estimation of 

the mass, and where the estimations begin to be more distant from the experimental masses. 

In the 50% scenario, it was assessing the mass estimation and the variation in the residuals. 

Figures 16-22 display the experimental mass and the estimated mass for each compound. It 

can be observed that the difference in the mass is higher in some samples. An example of 

that is samples 3 and 17 and others in Figure 16 (Starch), the samples 4, 7, and 10 in Figure 

18 (MgS). Figures 19 and 20, Lactose and Paracetamol, have an estimation similar to the 

experimental mass. What can be seen when analyzing the Figures is that the lowest 

experimental concentrations were the easiest to estimate for the algorithm, while the highest 

concentrations were difficult. This may be happening since what is varying is the experimental 

concentration and if that concentration was greater the variation will be greater, for lower 

concentrations although the variation range is high the variation in concentrations will not be 

as high which makes it easier to estimate concentrations for some components. This can be 

seen for example in Figure 16 (Starch) for samples 7, 13, and 18, and also in Figure 17 

(Caffeine) for samples 3, 4, 8, and others. The same can be observed for the remaining 

Figures 18-22 as well. 
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Figure 16: Comparison between the experimental and estimated mass for Starch. 

Figure 17: Comparison between the experimental and estimated mass for Caffeine. 
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Figure 18: Comparison between the experimental and estimated mass for MgS. 

 
Figure 19: Comparison between the experimental and estimated mass for Lactose. 
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Figure 20: Comparison between the experimental and estimated mass for Paracetamol. 

Figure 21: Comparison between the experimental and estimated mass for Talc. 
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Figure 22: Comparison between the experimental and estimated mass for MCC. 
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.  

Figure 23: Residuals of each sample for Starch. 
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Figure 24: Residuals of each sample for Caffeine. 

 

Figure 25: Residuals of each sample for MgS. 
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Figure 26: Residuals of each sample for Lactose. 

 
 

Figure 27: Residuals of each sample for Paracetamol. 
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Figure 28: Residuals of each sample for Talc. 

Figure 29: Residuals of each sample for MCC. 
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for lactose and paracetamol the values are not acceptable, since it has a residual above 0.05. 

Therefore, to have a good estimate or an acceptable estimate, it is not recommended to have 

an uncertainty range above 50%. 

Table 20: Average residuals and standard deviation of the residuals for the 50% scenario. 
Average of the Residual 

Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0.028 0.006 0.014 0.118 0.057 0.018 0.032 

Standard Deviation of Residual 

Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0.034 0.007 0.021 0.055 0.064 0.024 0.049 

 

4.4. Comparison between the Two Methods 

The comparison of both methods was performed through the analysis of the residuals. In Table 

21 are the results of the average of the residuals for each component and each model for the 

Supervised Method and in Table 22 are the results of the average for the Calibration-free 

Method. The same color scheme was used, with green corresponding to results with 

reasonable errors, yellow for intermediate values, and red for the not acceptable. 

If each component is compared individually, paracetamol had better residuals in the MCR than 

had on the Calibration-free method. Caffeine had better residuals in the Calibration-free (Table 

21). In both methods, lactose has poor results but has two reasonable results for the 0 and 

5% uncertainty intervals (Table 22). In the MCR, it has two intermediate values, which means 

that for paracetamol it is better to use the MCR to estimate the concentration, and for caffeine 

and lactose, the Calibration-free method is better. 

When comparing all components for the MCR, the best models were Model 4-C and Model 4-

D, as there were no residuals greater than 0.05. For the Calibration-free method, the best 

ones were 0 and 5%, where all components are below 0.02. Also, the 25% could be 

considered reasonable since only one component presents a value above 0.05 and an 

intermediate value. 

In general, neither method is 100% effective in estimating the concentration of all components, 

but for certain components, it is possible to have a better estimate of the concentration using 

one of the two methods. Caffeine, MCC, lactose, and starch are best estimated using the 

calibration-free method, with starch with up to 25% uncertainty. On the other hand, 

paracetamol has a better estimation using the MCR. Finally, both talc and MgS had better 

estimates using either method. 
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A limitation of the calibration-free method is that it is more convenient to have an estimate of 

the actual concentrations up to an uncertainty of 25% but is it possible to make a proper 

estimate of up to 50%. After 50%, it is no longer possible to have reliable estimates for all 

compounds. So, after that, the method becomes less precise and accurate in estimating the 

concentrations.  

Table 21: Average of residual for the Models used on MCR. 

Average of the Residual 

 Starch Caffeine MgS Lactose Paracetamol Talc MCC 

Model 1 0.034 0.021 0.012 0.076 0.00085 0.022 0.070 

Model 2 0.034 0.013 0.020 0.064 0.00082 0.013 0.048 

Model 3 0.033 0.018 0.0086 0.077 0.00082 0.020 0.066 

Model 4-A 0.034 0.020 0.0092 0.053 0.00084 0.015 0.051 

Model 4-B 0.034 0.019 0.0060 0.050 0.00083 0.010 0.038 

Model 4-C 0.032 0.016 0.0073 0.046 0.00081 0.010 0.028 

Model 4-D 0.032 0.021 0.010 0.045 0.00084 0.011 0.042 

R² 0.53 0.034 0.32 0.78 --- 0.61 0.61 

Table 22: Average of the residual for the Calibration-free method. 

Interval 1 

Percentage Starch Caffeine MgS Lactose Paracetamol Talc MCC 

0% 3.6E-18 1.1E-18 1.1E-18 4.4E-18 8.9E-18 1.9E-18 4.4E-18 

5% 0.0018 0.00048 0.0011 0.017 0.010 0.0013 0.0035 

25% 0.013 0.0025 0.0062 0.070 0.041 0.0088 0.018 

50% 0.028 0.0054 0.014 0.12 0.058 0.019 0.032 

75% 0.047 0.011 0.020 0.15 0.063 0.021 0.045 

100% 0.063 0.017 0.023 0.16 0.065 0.022 0.051 

1000% 0.083 0.017 0.026 0.19 0.065 0.018 0.047 

R² 0.57 0.41 0.38 0.38 0.18 0.12 0.23 
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5. Conclusions 

The purpose of this work was to evaluate the best or most efficient method to estimate the 

concentration of components of a solid formulation, using two distinct methods: one using 

calibration (MCR) and other calibration-free (in-house developed algorithm). In this work, 

methods of reverse engineering were performed to analyze a solid formulation that was 

intended to simulate a pharmaceutical formulation.  

To sum up: 

The supervised method (Multivariate Curve Resolution) needs a calibration of the method and 

then validation. So, two sets of formulations were needed for the use of this method, the 

calibration and validation formulations. The best MCR Model was built imposing the 

knowledge of the pure spectra and adequate pre-processing. This also presented limitations 

and was not possible to have a good estimation of the concentration for all the components. 

The limitations were with the estimation of the Starch, Caffeine, and MCC. 

The calibration-free method is an algorithm developed and optimized to be a faster and more 

cost-effective method. For this, no calibration was required, only the knowledge of the pure 

components’ spectra. In addition, for this method, different initial concentration uncertainty 

percentages were set to observe to what extent it can be used and still be precise and 

accurate. The conclusion was that the initial concentrations must not deviate by more than 

50% to obtain adequate estimates for all components. Making this a limitation of the method, 

meaning that the range of mass given to this method cannot be very different from the exact 

mass of the individual components of a target pharmaceutical product. 

Concluding, with this work, it was possible to evaluate two different methods and compare 

both to understand which method would be better to be a faster and more cost-effective 

reverse engineering method. Both can be used to support the development of generic drugs, 

but both have their limitations as discussed along this dissertation.  
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6. Future Perspectives 

This work focused on the development of solid formulations through reverse engineering using 

Chemometrics for the evaluation of the data obtained by FTIR. Following are some ideas for 

possible future work: 

• Improve the estimation of the concentration of some excipients using the Multivariate 

Curve Analysis. 

• Calibration-free method may require some improvements. 

• Collect the spectra using other infrared spectroscopy methods. 

• Validate using commercial products (solid). 

• Perform the analysis with different formulations: liquid and semi-solid. 
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Attachments 

Annex 1 

function 
Result=RE_CompositionEstimation_Alg1(Samples,Pure,Sample2Test,PureLabels,WRange,
CRange,flag) 
% 
%Result=RE_CompositionEstimation_Alg1(Samples,Pure,Sample2Test,PureLabels,WRang
e,CRange,flag) 
% 
%Algorithm to estimate mass fractions from a formulation based on IR 
%spectra 
% 
%Inputs:  
%Samples: the IR spectra of the formulations 
%Pure: the IR spectra of the pure compounds of the formulation 
%Sample2Test: an integer corresponding for the sample to be tested 
%PureLabels (optional): Labels of the pure compounds 
%WRange (optional): Indexes of the columns to use in the analysis 
%CRange (optional): A two row matrix with minimum (first row) and maximum (second row) 
mass fractions for the components 
%Flag: If set to 1 then results are displayed 
% 
%Outputs: 
%Result: a matrix with the mass fractions corresponding to the best estimation and confidence 
limits (95%) 
% 
%JAL, MEFARM, 2022 
% 
% 
  
  
%Change WRange and CRange according to the needs 
% WRange=[1245:6970 9527:12445]; 
% CRange=[ 
%  0 0.5    %Starch 
%  0 1    %Caffeine 
%  0 1    %MgSt 
%  0 1   %Lactose 
%  0 1   %Paracetamol     
%  0 1    %Talc 
%  0 1    %MCC 
%  ]'; 
  
  
N=10000;      
PureLabels={'Starch','Caffeine','MgSt','Lactose','Paracetamol','Talc','MCC'}; 
  
if flag==1 
disp(['Sample to test: ' Samples.label{1}(Sample2Test,:)]); 
end 
  
Sexc=wlsbaseline(Pure.data,3); 
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Sref=wlsbaseline(Samples.data(Sample2Test,:),3); 
  
Sexc=normaliz(Sexc,0,2); 
Sref=normaliz(Sref,0,2); 
  
Sexc=Sexc(:,WRange); 
Sref=Sref(:,WRange); 
  
for k=1:size(CRange,2) 
    R(:,k)=(CRange(2,k)-CRange(1,k)).*rand(N,1)+CRange(1,k); 
end 
Rold=R; 
  
ufix=find((CRange(2,:)-CRange(1,:))==0); 
uvar=find((CRange(2,:)-CRange(1,:))>0); 
  
for k=1:size(R,1) 
    Stot=1-sum(R(k,ufix)); 
    R(k,uvar)=R(k,uvar)./sum(R(k,uvar)).*Stot; 
end 
  
Srec=R*Sexc; 
E=repmat(Sref,N,1)-Srec; 
E=E.*E; 
E=sqrt(sum(E')); 
  
[u1,u2]=min(E);[u3,u4]=sort(E); 
  
  
if flag==1 
%figure;plot(sort(E)) 
figure 
subplot(2,1,1) 
plot(Samples.axisscale{2}(WRange),Srec(u2,:),'r');hold 
on;plot(Samples.axisscale{2}(WRange),Sref,'b');legend('Best Estimation','Test Sample'); 
title(['Sample ' Samples.label{1}(Sample2Test,:) ', RMSEP=' num2str(u1)]) 
xlabel('Wavenumbers (cm-1)');ylabel('Absorbance') 
end 
  
b=5;s=1; 
BestE=R(u4(1:b),:); 
AvgBestEst=mean(BestE); 
StdBestEst=std(BestE); 
  
if flag==1 
subplot(2,1,2) 
bar(AvgBestEst,'b');hold 
on;plot(AvgBestEst+s.*StdBestEst,'ok','markerfacecolor','r');plot(AvgBestEst-
s.*StdBestEst,'ok','markerfacecolor','r'); 
end 
  
u=find((CRange(2,:)-CRange(1,:))==0); 
  
if flag==1 
bar(u,AvgBestEst(u),'g') 
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for k=1:size(Pure,1) 
    line([k k],[AvgBestEst(k)+s.*StdBestEst(k) AvgBestEst(k)-s.*StdBestEst(k)],'color',[1 0 0]); 
end 
set(gca,'xticklabel',PureLabels) 
xtickangle(45) 
xlabel('Components');ylabel('Mass Fractions %m/m') 
disp(['Fitting Error (RMSE) = ' num2str(u1)]) 
disp('Estimation of mass fractions (%)') 
for k=1:size(Pure,1) 
    if StdBestEst(k)==0 
        u='FIX'; 
    else  
        u='VAR'; 
    end 
    disp([num2str(k) ' - ' PureLabels{k} ' ' u ' - ' num2str(AvgBestEst(k)*100) '%  (' 
num2str((AvgBestEst(k)-s.*StdBestEst(k))*100) ' - ' 
num2str((AvgBestEst(k)+s.*StdBestEst(k))*100) '%)']); 
end 
  
end 
  
Estimations=[AvgBestEst ; AvgBestEst+s.*StdBestEst ; AvgBestEst-s.*StdBestEst]';  
Result=array2table(Estimations,'VariableNames',{'Average_Mass_Fraction','Upper_95_Limit'
,'Lower_95_Limit'},'RowNames',PureLabels); 
 

Annex 2 

%% Script 1 
clear Erro ErrroR ConcEst 

  
WRange=[1245:6970 9127:12445]; 

  
CRange=[ 
 0.01 0.1    %Starch 
 0.001 0.05    %Caffeine 
 0.005 0.06    %MgSt 
 0.38 0.76    %Lactose 
 0.2 0.2    %Paracetamol     
 0.005 0.06    %Talc 
 0.01 0.2    %MCC 
 ]'; 

  
%% Script 1 - for analysing just just one sample 
    k=12; 
    disp(['Checking DoE Sample ' num2str(k)]); 
    C=RE_CompositionEstimation_Alg1(CalSet1,MPSet1,k,[],WRange,CRange,1);   
    ConcEst{k}=C; 
    Erro=table2array(C(:,1))'-table2array(Massa(k,:)); 
    ErroR=(table2array(C(:,1))'-

table2array(Massa(k,:)))./table2array(Massa(k,:)).*100; 

  
%% Script 2 - for running all 25 samples 

     
for k=1:25 
    disp(['Checking DoE Sample ' num2str(k)]); 
    C=RE_CompositionEstimation_Alg1(CalSet1,MPSet1,k,[],WRange,CRange,1);   
    Erro(k,:)=table2array(C(:,1))'-table2array(Massa(k,:)); 
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    ErroR(k,:)=(table2array(C(:,1))'-

table2array(Massa(k,:)))./table2array(Massa(k,:)).*100; 

  
end 

  
%% Script 3 - to browse through all samples based on a % of initial 

uncertainty 

  
%Click on <Run Section> to run this script 

  
clear CRange CPred Residual AvResidual StdResidual 

  
WRange=[1245:6970 9127:13275]; 
ExpMass=table2array(Massa); 

  
VarPercent=[0 5 25 50 75 100 1000]; 
VarPercent=[50]; 

  
for u=1:length(VarPercent) 
    disp(['Trying variance of ' num2str(VarPercent(u)) '% around 

average.']); 
for k=1:25 
    %Defines the CRange array based on the percentage of variation 
    for j=1:7 
        CRange(1,j)=max(0,ExpMass(k,j)-VarPercent(u)/100*ExpMass(k,j)); 
        CRange(2,j)=min(1,ExpMass(k,j)+VarPercent(u)/100*ExpMass(k,j)); 

         

          
    end 
    

CPred{k}=RE_CompositionEstimation_Alg1(CalSet1,MPSet1,k,[],WRange,CRange,0)

;   
    Residual(k,:)=table2array(CPred{k}(:,1))'-table2array(Massa(k,:)); 

  
end 

  
%Calculate average and standard deviation of residuals 
AvResidual(u,:)=mean(abs(Residual));StdResidual(u,:)=std(Residual); 

  

  
end 

  
%Plot Results 
PureLabels={'Starch','Caffeine','MgSt','Lactose','Paracetamol','Talc','MCC'

}; 
figure;imagesc(AvResidual);colorbar;set(gca,'yticklabel',num2str(VarPercent

'),'xticklabel',PureLabels);title('Average Absolute 

Residuals');xlabel('Components');ylabel('% of Initial Uncertainty') 
figure;plot(AvResidual,'o-');legend(PureLabels);ylabel('Average Absolute 

Residuals');xlabel('% of Initial Uncertainty') 
set(gca,'xtick',[1:length(VarPercent)],'xticklabel',num2str(VarPercent')); 
figure;plot(StdResidual,'o-');legend(PureLabels);ylabel('Residuals Standard 

Deviation');xlabel('% of Initial Uncertainty') 
set(gca,'xtick',[1:length(VarPercent)],'xticklabel',num2str(VarPercent')); 

  

  
% for k=1:25 
% figure;bar([ table2array(Massa(k,:))' table2array(CPred{k}(:,1)) ]) 
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% set(gca,'xticklabel',PureLabels);xlabel('Components');ylabel('Mass 

Fraction Predictions');legend('Experimental','Predicted');title(['For 

sample all']); 
% end 

  

  

  

   

  

  

  

  
%% Script 4 - Compare predictions for one sample considering one scenario 

  
%Click on <Run Section> to run this script 

  
clear CRange CPred Residual 
WRange=[1245:6970 9127:12445];ExpMass=table2array(Massa); 

  
%Set the scenario and the sample to test 
VarPercent=1000; %Set the scenario (% of variation around the real mass 

fraction) 
Sample2Test=4;  %Set sample to test the predictions on this scenario 

  
    disp(['Trying variance of ' num2str(VarPercent(u)) '% around 

average.']); 

  
    %Defines the CRange array based on the percentage of variation 
    for j=1:7 
        CRange(1,j)=max(0,ExpMass(Sample2Test,j)-

VarPercent(u)/100*ExpMass(Sample2Test,j)); 
        

CRange(2,j)=min(1,ExpMass(Sample2Test,j)+VarPercent(u)/100*ExpMass(Sample2T

est,j)); 
    end 
    

CPred=RE_CompositionEstimation_Alg1(CalSet1,MPSet1,Sample2Test,[],WRange,CR

ange,0);   
    Residual=table2array(CPred(:,1))'-table2array(Massa(Sample2Test,:)); 

  

  
figure;bar([CRange(1,:)' CRange(2,:)' table2array(Massa(Sample2Test,:))' 

table2array(CPred(:,1)) ]) 
set(gca,'xticklabel',PureLabels);xlabel('Components');ylabel('Mass Fraction 

Predictions');legend('Min Value','Max 

Value','Experimental','Predicted');title(['For sample ' 

num2str(Sample2Test)]); 

 

Annex 3  

function [R,BestMatch]=BC_CompareLoadings(Pure,Model) 
%Function to compare loadings estimated by MCR with pure spectra 
%JAL 2022 
ModelLoadings=Model.loads{2}'; 
ind=Model.detail.includ{2}; 
  
for k=1:size(ModelLoadings,1) 
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    S2=ModelLoadings(k,:)./max(ModelLoadings(k,:)); 
    for j=1:size(Pure) 
        S1=Pure.data(j,ind)./max(Pure.data(j,ind)); 
        R(j,k)=mean(sqrt((S2-S1).^2)); 
    end 
end 
R(8,:)=0;R(:,8)=0; 
  
 figure; 
 subplot(2,1,1); 
 pcolor(R);xlabel('Predicted');ylabel('Experimental');colorbar 
 set(gca,'xtick',[0.5:1:7.5]) 
set(gca,'ytick',[0.5:1:7.5]) 
set(gca,'xticklabel',{'','Pred1','Pred2','Pred3','Pred4','Pred5','Pred6','Pred7'}) 
set(gca,'yticklabel',{'','Exp1','Exp2','Exp3','Exp4','Exp5','Exp6','Exp7'}) 
title('RMSE Distance Matrix') 
  
R(8,:)=[];R(:,8)=[]; 
[u1,u2]=min(R); 
for k=1:7 
    disp(['Loading ' num2str(k) ' best matches pure compound ' num2str(u2(k))]) 
    BestMatch(k)=u2(k); 
end 
subplot(2,1,2) 
plot (R','s','linewidth',5) 
legend('Exp1','Exp2','Exp3','Exp4','Exp5','Exp6','Exp7'); 
set(gca,'xtick',[0:8],'xlim',[0 8]) 
set(gca,'xticklabel',{'','Pred1','Pred2','Pred3','Pred4','Pred5','Pred6','Pred7',''}) 
ylabel('Distance (RMSE)');xlabel('Predicted') 
 

 

 
 


