

2022

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Automatic Binary Patching for Flaws Repairing using Static

Rewriting and Reverse Dataflow Analysis

Diogo Tomás Ferreira

Mestrado em Segurança Informática

Dissertação orientada por:

Prof. Doutora Ibéria Vitória de Sousa Medeiros

Acknowledgments

Firstly, I would like to thank my advisor, Prof. Ibéria Medeiros for all the support, gui-
dance and time invested in me and this dissertation.
To my wife Sónia for all the support she has given me throughout the years. For helping
me stay motivated and focused on my goal while taking care of our newborn baby girl,
Matilde.
To my mother, Conceição, father, Álvaro, and sister, Joana, for all the unconditional sup-
port over the years, I could not have made it without you all.
Finally, a special appreciation to my grandmother, Isabel, who raised me to be who I am
today and to whom I had promised that I would finish this dissertation.
This work was partially supported by the national funds through P2020 with reference
to the ITEA3 European through the XIVT project (I3C4-17039/FEDER-039238), and th-
rough FCT with reference to LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/
2020).

i

I hope you are up there, proud of your grandson. Thank you.

Resumo

O desenvolvimento de software cresceu significativamente nos últimos anos, tendo
este sido também acompanhado pelo aumento do código fonte produzido, não só em ta-
manho mas também em complexidade. O aparecimento de novas evoluções digitais, tal
como a indústria 4.0 e o aumento do número de dispositivos utilizados no nosso dia a dia,
contribuı́ram para a constante necessidade de novas funcionalidades e desenvolvimentos
mais rápidos e capazes de acompanhar a procura, aumentando assim a complexidade do
software produzido e favorecendo o aparecimento de vulnerabilidades e falhas nos pro-
dutos finais das empresas. Ao longo dos anos foram surgindo diversas vulnerabilidades
que, quando exploradas, causaram impactos negativos significantes. Por outro lado, a
sua exploração despoletou o aumento da sensibilização para a necessidade de olhar seria-
mente para segurança implementada no código do software que corre nestes dispositivos,
tornando-se importante não só detetar, mas também mitigar atempadamente as vulnerabi-
lidades.
A linguagem de programação C é muito utilizada na construção de sistemas computaci-
onais e sistemas embebidos, seja na programação do kernel ou dos programas que nestes
correm, fazendo desta linguagem uma das linguagens mais utilizadas e, por isso, também,
a que tem mais vulnerabilidades reportadas nos últimos dez anos. Devido à sua natureza
de baixo nı́vel e reduzida abstração para o programador, as vulnerabilidades de corrupção
de memória são um dos tipos mais comuns em C, especificamente as relacionadas com
buffers que ocorrem quando uma aplicação falha em assegurar que uma operação de es-
crita ou leitura não excede a fronteira limite de um buffer. Este tipo de vulnerabilida-
des, quando exploradas, podem ter consequências severas, sendo por isso de extrema
importância a sua deteção e mitigação.
Existem diversas ferramentas capazes de detetar vulnerabilidades e possı́veis buffer over-
flows que recorrem ao uso de análise estática ou análise dinâmica. A análise estática de
código, apesar de conseguir detetar pontos de entrada destas vulnerabilidades, tem uma
baixa eficácia e pode produzir um elevado volume de falsos positivos. A análise dinâmica
consegue identificar os pontos resultantes da exploração (i.e., pontos sensı́veis) destas vul-
nerabilidades, mas falha na obtenção da sua origem (i.e., pontos de entrada). Também, a
mitigação automática de vulnerabilidades é um tópico que tem recebido bastante atenção,
no entanto, tal como acontece com as ferramentas de deteção de vulnerabilidades, a maio-

v

ria destas requer o acesso ao código fonte da aplicação e/ou que esta seja compilada com o
seu código instrumentalizado de modo que as ferramentas possam ser executadas com su-
cesso. As poucas ferramentas de reparação de código que conseguem lidar somente com
o código binário (código fonte compilado, originando assim o código do objeto) dos pro-
gramas, compilados sem qualquer instrumentalização de código, requerem normalmente
elevados recursos do sistema, sendo a sua utilização incompatı́vel com um ambiente de
sistema embebido, onde os recursos são limitados.
O principal foco desta dissertação é o desenvolvimento de uma ferramenta capaz de au-
tomaticamente detetar e corrigir vulnerabilidades de stack overflow, assim como verifi-
car a eficácia da correção, sem que para isso seja necessário aceder ao código fonte da
aplicação ou qualquer forma prévia de instrumentalização do código binário da aplicação
em análise. Recorrendo a técnicas de fuzzing, ao código binário não instrumentalizado,
e a um conjunto de casos de teste, a ferramenta gera novos inputs na tentativa de expor
novos caminhos de execução no código binário para encontrar/explorar vulnerabilidades,
guardando para cada uma, o exploit que permitiu a sua exploração. Após esta primeira
fase, a ferramenta para cada vulnerabilidade encontrada e explorada com sucesso, utiliza
o respetivo exploit e executa uma análise dinâmica na execução do código binário num
ambiente de debug que possibilita a regressão na execução da aplicação, desde o mo-
mento em que aplicação quebra até à origem, i.e., o ponto sensı́vel (sensitive sink). Numa
terceira fase, e após identificada a origem da vulnerabilidade, esta ferramenta irá proceder
à correção da mesma recorrendo à técnica de reescrita estática de código (static re-writer)
com trampolins, que permite a adição segura de código em zonas de memória livres, as-
segurando a integridade do código binário sem a necessidade de recuperar o control flow
original. A correção é feita recorrendo a templates escritos em C e previamente compila-
dos, produzidos especificamente para a mitigação de funções vulneráveis, substituindo-as
pelas respetivas versões seguras ou limitando os parâmetros de entrada destas funções
de modo a assegurar que os limites dos buffers são respeitados, e produzindo um novo
ficheiro binário isento das vulnerabilidades encontradas. Numa quarta fase, a ferramenta
testa o novo ficheiro binário de modo a garantir que o código inserido não adicionou no-
vas vulnerabilidades. Para tal, a ferramenta recorre à técnica de fuzzing, aos exploits que
despoletaram as vulnerabilidades agora corrigidas, e a novos casos de teste gerados a par-
tir desses exploits. Caso não sejam encontradas quaisquer vulnerabilidades no final desta
sessão, o ficheiro binário é considerado corrigido com sucesso.
A ferramenta foi testada com um conjunto de pequenos programas criados para o efeito,
bem como um conjunto de aplicações reais. Os resultados das experiências mostraram
que a ferramenta é eficaz na deteção e correções de vulnerabilidades de stack overflow.

Palavras-chave: Vulnerabilidades de Stack Overflow, Correção de Código Binário,
Engenharia Reversa, Análise Dinâmica, Segurança de Software

vi

Abstract

The C programming language is widely used in embedded systems, kernel and hard-
ware programming, making it one of the most commonly used programming languages.
However, C lacks of boundary verification of variables, making it one of the most vul-
nerable languages. Because of this and associated with its high usability, it is also the
language with most reported vulnerabilities in the past ten years, being the memory cor-
ruption the most common type of vulnerabilities, specifically buffer overflows. These
vulnerabilities when exploited can produce critical consequences, being thus extremely
important not only to correctly identify these vulnerabilities but also to properly fix them.
This work aims to study buffer overflow vulnerabilities in C binary programs by identi-
fying possible malicious inputs that can trigger such vulnerabilities and finding their root
cause in order to mitigate the vulnerabilities by rewriting the binary assembly code and
thus generating a new binary without the original flaw.
The main focus of this thesis is the use of binary patching to automatically fix stack over-
flow vulnerabilities and validate its effectiveness while ensuring that these do not add new
vulnerabilities. Working with the binary code of applications and without accessing their
source code is a challenge because any required change to its binary code (i.e, assembly)
needs to take into consideration that new instructions must be allocated, and this typically
means that existing instructions will need to be moved to create room for new ones and
recover the control flow information, otherwise the application would be compromised.
The approach we propose to address this problem was successfully implemented in a tool
and evaluated with a set of test cases and real applications. The evaluation results showed
that the tool was effective in finding vulnerabilities, as well as in patching them.

Keywords: Stack Overflow Vulnerabilities, Binary Patching, Reverse Engineering,
Dynamic Analysis, Software Security

viii

x

Contents

Lista de Figuras xv

Lista de Tabelas xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Document structure . 3

2 Context and Related Work 5
2.1 Software vulnerabilities . 5

2.1.1 Buffer overflows in C . 5
2.2 Vulnerability detection . 9

2.2.1 Fuzzing . 9
2.2.2 American Fuzzy Lop (AFL) . 12

2.3 GNU Project Debugger (GDB) . 13
2.4 Binary instrumentation . 13
2.5 Security mechanisms . 14
2.6 Automatic Software Repair . 15

3 Proposed Solution 17
3.1 Challenges . 17

3.1.1 How to find vulnerabilities by fuzzing without instrumentalizing
the application binary? . 17

3.1.2 How to find a vulnerability sensitive sink without access to the
application source code? . 17

3.1.3 How to remove vulnerabilities by only patching the binary code
directly? . 18

3.1.4 How to validate the effectiveness of the patch? 18
3.2 Approach Overview . 18
3.3 Main Modules . 20

xi

3.3.1 User Interface . 21
3.3.2 Vulnerability Exploitation . 21
3.3.3 Vulnerability Debugger . 22
3.3.4 Binary Patching . 26
3.3.5 Patch Validation . 29

4 Implementation 31
4.1 Tools used . 31

4.1.1 AFL++ . 31
4.1.2 GDB . 31
4.1.3 Pygdbmi . 32
4.1.4 E9Tool . 32

4.2 Implementation design . 32
4.2.1 Setup configuration . 32
4.2.2 Vulnerability Exploitation . 34
4.2.3 Exploit Iteration . 35
4.2.4 Stack overflow confirmation . 36
4.2.5 Finding Sensitive Sinks . 37
4.2.6 Getting call details . 38
4.2.7 Patching a binary . 40
4.2.8 Patch . 41

5 Evaluation 43
5.1 Evaluation setup . 43
5.2 Evaluation with synthetic applications 45
5.3 Evaluation with Real Applications . 46

6 Conclusion 49
6.1 Future Work . 50

A Patch Templates 51
A.1 Strcpy With size . 51
A.2 Strcpy truncate rsi . 51
A.3 Strcat . 52
A.4 Scanf . 52
A.5 Gets . 53
A.6 Sprintf . 53

Bibliografia 59

xii

xiv

List of Figures

2.1 Stack overview. 8
2.2 Register values when crashing . 8
2.3 Stack overflow result . 8
2.4 AFL control flow . 12

3.1 Architecture overview . 19
3.2 User Interface Overview . 21
3.3 Vulnerability Exploitation Overview . 22
3.4 Vulnerability Debugger Overview . 23
3.5 Debug Session Overview . 25
3.6 Binary PLT section example . 26
3.7 Simplistic view of a trampoline . 27
3.8 Auto-patch overview . 29
3.9 Patch validation overview . 30

4.1 Natural execution order . 34
4.2 Exploit dictionary structure . 36
4.3 Sensitive sink information output . 39

xv

List of Tables

5.1 Summary of synthetic test cases from SARD and created for testing pur-
poses . 45

5.2 Average results for synthetic applications without canaries 45
5.3 Average results for synthetic applications with canaries 45
5.4 Performance overhead of multiple vulnerable calls being patched (without

canaries) . 46
5.5 Summary of modifications introduced in the real applications 47
5.6 Test results for real applications without canaries 47

xvii

Chapter 1

Introduction

Software development has grown significantly in recent years and, as often occurs with
fast pacing industries, in most cases it has looked at security as an afterthought. The
emergence of new digital evolution, such as Industry 4.0 [8], and the increase of the num-
ber of devices in our everyday life, has pushed for a constant need of new features and
faster developments, and as a result, software has become more complex which favors the
appearance of bugs and vulnerabilities. Over the years, the appearance of such vulnera-
bilities [17][19] has raised awareness of the need to take security seriously when it comes
to the software running on these devices.
Vulnerabilities and bugs in the source code of applications occur during the development
phase and, in the case of embedded systems, they are mostly inserted due to the usage
of low level programming languages that are more prone to emergence of unintentional
errors introduced by programmers and the lack of safe programming principles. Compa-
nies have limited budgets and resources for any given software project and usually neglect
software security for the implementation of new features and functionalities, and security
assessments occur after the software is already in production, leaving it exposed and vul-
nerable to attacks.
Given the high demand for new applications and their faster availability in the market,
there is a need for tools that are capable of finding vulnerabilities in software, either by
analyzing its source code or the produced binary. However, finding a vulnerability is only
half of the work, since it also have to be mitigated, i.e., moved, requiring either more code
development or another set of tools that are able to automatically patch the code to remove
the vulnerability. Although there are already several tools that can help with the detec-
tion task, there are fewer tools for vulnerability repairing. For these last, most of them
are focused on source code repairing, and very few are able to handle binary patching.
Those that are able, they have several limitations such as high system requirements and
resources, incompatibility with the limited environment that usually exists for embedded
systems, and the necessity of code instrumentation to proceed with binary code analysis,
but, for this, it is necessary to access the source of the program, something that is not

1

Chapter 1. Introduction 2

always available or allowed for software testing.

1.1 Motivation

The demand for software development over the last two decades have been steadily grow-
ing, increasing the source code not only in size and complexity, but also in the number of
weaknesses and flaws that will most likely be present in the final product. These weak-
nesses are commonly known as vulnerabilities and if not detected and fixed can usually
impact performance and more importantly the security of the software.
C language is one of the most commonly used programming language in the development
of software, specially key elements of embedded systems, kernel and hardware program-
ming are built using C as the primary language, which is one of the reasons why C is
the language with most reported vulnerabilities in the past 10 years [10]. Due to its low
level nature and the ability of allowing the programmer to be responsible for managing
and allocating memory, memory corruption is the most common type of vulnerabilities in
C [22], specifically buffer errors and overflows. These vulnerabilities when exploited can
cause critical consequences, which makes the identification and mitigation of these type
of vulnerabilities extremely important.
There are several tools that can detect the possible existing buffer overflows in programs,
either by static analysis [16], which can detect possible entry points for vulnerabilities but
has low precision since it can generate a high number of false positives, or by dynamic
analysis [9], which can identify the point where a crash occurred, but it fails to pinpoint
the root cause of the problem - the sensitive sink point. The automatic repairing of a vul-
nerability is also a topic that has received attention, but most of the existing tools require
access to the source code or binary instrumentation in order to the repair task takes place,
which is not always available specially for production closed source binaries.

1.2 Objectives

The focus of this dissertation is the development of a tool that is capable of detecting and
repairing buffer overflow vulnerabilities in C programs and verify the effectiveness of the
applied corrections, without accessing their source code and without any form of code
instrumentation prior to its compilation. To pursuit with such tool and main goal, we can
divide this goal into the following five:

• The first objective is to study some of the most common stack overflow vulnerabilities
in C language, specifically the different function that are considered insecure against these
type of vulnerabilities. Also, their safe versions (if exist) will be studied.

Chapter 1. Introduction 3

• The second objective is to study different techniques and determine the best one to
search for vulnerabilities in a non-instrumentalized binary of a program.

• The third objective is to dynamically explore an application during its execution, deter-
mining the best techniques to obtain the vulnerability sensitive sink.

• The fourth objective is to study different techniques for performing binary patching that
do not require neither prior binary instrumentation nor access to the source code, and that
are able to effectively fix a vulnerability.

• The fifth objective is to design and implement a tool based on the information obtained
in the previously mentioned studies, evaluating its performance and effectiveness.

1.3 Contributions

The main contributions of this dissertation are the following:

• A study of stack overflow vulnerabilities in C language and the different insecure func-
tions that are associated with these type of vulnerabilities.

• An approach to search for vulnerabilities, obtaining its exploits and determining their
sensitive sink by analyzing a non-instrumentalized binary application during its execution
and without accessing the source code. Perform a binary patch, able to effectively fix
a vulnerability on a non-instrumentalized binary and without accessing the application
source code. This approach also needs to be able to validate the effectiveness of an applied
patch, confirming that a vulnerability is fixed.

• A code repair approach that is able to modify the assembly code of a binary without
changing the application internal logic, resorting for that the trampoline concept and the
static re-write technique.

• A tool that implements the proposed approach.

• An experimental evaluation of the tool, using synthetic test cases and real applications,
to assess its performance and its effectiveness.

1.4 Document structure

This document is organized as follows:

• Chapter 2 defines key concepts that are relevant for this project, such as software vul-
nerabilities, buffer overflows and fuzzing. It also presents several existing tools like AFL
and GDB that will be used in this project.

Chapter 1. Introduction 4

• Chapter 3 presents the proposed solution and details the components that integrate it.

• Chapter 4 details the implementation of the proposed solution.

• Chapter 5 evaluates the proposed solution.

Chapter 2

Context and Related Work

This chapter presents the necessary context to support the goal of this dissertation and
discusses relevant related work, more specifically it gives an overview of the vulnerabil-
ities we focused (Section 2.1), the current techniques for their detection (Section 2.2),
how to track and instrumentalize the binary code (Sections 2.3 and 2.4) and the security
mechanisms that can be employed in binary code (Section 2.5). This chapter ends with
the discussion of the related work for detection and repairing over binary code (Section
2.6)

2.1 Software vulnerabilities

During the development of software, one of the phases of its development cycle is testing,
which aims to find weaknesses or flaws in the source code. According to Microsoft Secu-
rity Response Center [43], these weaknesses, also known as vulnerabilities, could allow
an attacker to compromise the integrity, availability or confidentiality of the software.
Vulnerabilities can be a direct result of a wide variety of factors, such as importing a vul-
nerable third-party library or poorly implemented application logic, which makes the task
of finding these very difficult, even with manual code reviews and proper testing solu-
tions.
Although there is a wide array of vulnerabilities, the range of categories in which they can
fall into is quite limited but extremely important to allow for quick understanding of its
impact in the software when exploited. The categories can range from memory corruption
to input validation errors or race conditions, among others.

2.1.1 Buffer overflows in C

One of the most common and oldest software vulnerability is the buffer overflow, which
happens when an application fails to bound check a writing/reading operation to a buffer,
allowing it to overwrite/read outside its boundaries. It is considered the most common
and impactful vulnerability.

5

Chapter 2. Context and Related Work 6

Buffer overflows can happen either in the heap [31], a memory region used to store dy-
namic values, or in the stack [31], a special memory region used to store local variables
as well as function parameters and their return addresses. Depending on the region where
the buffer overflow occurs, it can be referred to as Heap Overflow or Stack Overflow[29],
respectively. Younan et al. did a survey on implementation errors in C and C++ [52],
focused on those errors that allow an attacker to break memory safety and execute code.
The authors analyzed five types of vulnerabilities - dangling pointer references, heap-
based and stack-based buffer overflows, format string and integer errors, as well as ex-
isting proposed countermeasures that try to mitigate these vulnerabilities, examining its
effectiveness against the exploitation of these common implementation errors. In order
to better study the effectiveness of such mitigations, all countermeasures were divided
into several categories based on the vulnerabilities they address and the type of protec-
tion they offer, their limitations in terms of applicability and protection and the type of
response once the problem is detected. This division allowed the authors to conclude that
most of the analyzed countermeasures take an ad-hoc approach when it comes to miti-
gate or prevent the impact of specific vulnerabilities and the need of designing a model
that would describe key abstractions that the compiler can rely on to generate the program.

1
2 # i n c l u d e < s t d i o . h>
3 # i n c l u d e < s t r i n g . h>
4 # i n c l u d e < s t d l i b . h>
5
6 void s e c r e t () {
7 p r i n t f (” S t a c k o v e r f l o w d e t e c t e d !\ n ”) ;
8 e x i t (0) ;
9 }

10
11 void t e s t (char * s) {
12 char buf [1 0] ;
13 s t r c p y (buf , s) ;
14 }
15
16 i n t main (i n t argc , char ** a rgv) {
17 t e s t (a rgv [1]) ;
18 p r i n t f (”No s t a c k o v e r f l o w d e t e c t e d !\ n ”) ;
19 re turn 0 ;
20 }

Listing 2.1: Stack overflow example

The C code above (Listing 2.1) demonstrates a simple stack overflow, where the test
function creates a 10 byte buf array and performs a strcpy operation on that array without
any kind of boundary check. This means an attacker can exploit this code to overwrite

Chapter 2. Context and Related Work 7

a memory register in order to execute other functions that are not in the scope. In this
example, the goal is to execute the secret function by overwriting the return address of the
test function.

1 t e s t :
2
3 endbr64
4 pushq %rbp
5 movq %rsp , %rbp
6 subq $32 , %r s p
7 movq %r d i , −24(% rbp)
8 movq −24(% rbp) , %rdx
9 l e a q −10(% rbp) , %r a x

10 movq %rdx , %r s i
11 movq %rax , %r d i
12 c a l l strcpy@PLT
13 nop
14 l e a v e
15 r e t
16 . s i z e t e s t , . − t e s t
17 . s e c t i o n . r o d a t a

Listing 2.2: Test function assembly code

Converting the C code to assembly, a low level programming language that is con-
verted to machine machine code by the assembler, we can see how the test function is
built and its memory representation, as seen in code in Listing 2.2.

After the RBP value is saved in the stack and assigned to it the RSP registers (lines
4 and 5), 32 bytes are allocated for this function (line 6) and the buf variable is given
a 10 bytes allocation right bellow the base pointer register - RBP (line 9), which points
to the base of the current stack frame. Each register has a size of 8 bytes and above the
RBP is the rip, the instruction pointer, containing the address of the next instruction to be
processed. A stack overview can be seen in Figure 2.1.

This can be verified using a debugger, in this case GDB [35], to get the register value
at the time the application crashes given the input ”AAAAAAAAAABBBBBBBBCC-
CCCC”, which will fill the buf with A’s, then the register RBP with B’s and finally the
register rip with C’s (Figure 2.2). Note that although x86-64 registers are 64 bits, because
of the range of the virtual address space only 48 bits are actually used, the low half of
the 48 bit, leaving the top 2 bytes of a return address set to zero, and this is why the rip
register is only overwritten with 6 C’s, which is 6 bytes (48 bits).

Chapter 2. Context and Related Work 8

Figure 2.1: Stack overview.

Figure 2.2: Register values when crashing

This example of code is vulnerable to stack overflow and an exploitation path can be to
overwrite the the rip register with the secret function address in order to get this function to
run. For that to happen an attacker would have to know the address of the function secret,
which in this case we will assume it is 00x555555555189. Using this address and modi-
fying the initial input argument to ”AAAAAAAAAABBBBBBBB\x89\x51\x55\x55\
x55\x55” as shown in Figure 2.3 - Note the fact that the address is in reverse order be-
cause this was performed on a little-endian machine [44].

Figure 2.3: Stack overflow result

Chapter 2. Context and Related Work 9

2.2 Vulnerability detection

There are several security techniques that can be implemented in order to detect software
vulnerabilities, and two of the most widely used are static and dynamic analysis.c Static
analysis [46] is commonly used in software development because it allows for a fast code
auditing with a certain degree of abstraction, making it very useful in software devel-
opment, specifically when it involves millions of code lines which makes manual code
review impractical. This type of analysis is performed in a non-runtime environment,
testing and evaluating an application source code by looking for code patterns that may
indicate a vulnerability. This is why this type of analysis is heavily dependent on an up-
dated set of patterns and rules in order for it to work, otherwise the resulting accuracy and
precision will suffer with a high level of false positives and negatives. Dynamic analysis
[46] on the other hand is performed at runtime, evaluating the application running state
and manipulating it in order to discover new vulnerabilities.Dynamic analysis, although
capable of exposing complex vulnerabilities that would not be found with static analysis,
it will only be able to analyze parts of the code that are actually executed. In order to en-
sure that most of the code is executed, it is important to have the maximum code coverage
possible, and so having the right input tests cases is a necessity.
Vadayath et al. [51] studied current state-of-the-art binary program analysis approaches
and have identified a set of vulnerability properties that allow to improve the precision
of static vulnerability detection and the scalability of dynamic vulnerability detection.
The authors created a prototype called ARBITRER, an hybrid analysis technique that
is able to analyze large amounts of binary code, with high precision, even for complex
vulnerabilities such as intricate occurrences of integer overflows or privilege escalation
bugs. ARBITRER was evaluated on 76,516 binary programs and its effectivess was suc-
cessfully demonstrated on four common vulnerability classes, CWE-131 (Incorrect Cal-
culation of Buffer Size), CWE-252 (Unchecked Return Value), CWE-134 (Uncontrolled
Format String) and CWE-337 (Predictable Seed in Pseudo-Random Number Generator).

2.2.1 Fuzzing

One the most widely used techniques in quality assurance and security testing is fuzzing,
which tries to achieve maximum code coverage by generating new test cases that aim to
find and explore new code paths, constantly monitoring the application in order to find
errors and possible crashes. In general, all fuzzers commonly implement at least three
main components:

1. Generator - Responsible for generating test cases/inputs that will be used to test the
system. This generators can either be grammar based or mutational based.

2. Delivery Mechanism - Responsible to deliver the generated inputs/test cases to the

Chapter 2. Context and Related Work 10

system.

3. Monitoring System - Responsible for monitoring the system while it runs in order
to detect errors or crashes, that might indicate a vulnerability.

Although there are many different fuzzers, we can categorized them all into three main
types:

• Blackbox fuzzers have no prior knowledge about the testing environment and are able
to generate random inputs that are then used against the system. Although this type
of fuzzers are extremely quick to run and required almost no setup due to its random
generated inputs they can take a lot of time to find new bugs.

•Whitebox fuzzers are the complete opposite of Blackbox fuzzers, requiring well-formed
test cases that will be used against the system leveraging program analysis to find
and explore new paths. This allows white fuzzers to be very effective at finding
new bugs and issues deep within the code but at the cost of the time needed in the
analysis phase, which can sometimes be prohibitive.

• Greybox fuzzers are in between both Whitebox and Blackbox fuzzers. Rather than
have to perform program analysis, these type of fuzzers require lightweight instru-
mentation in order to glean information about a system internal structure, allowing
it to be more effective than blackbox fuzzing and more efficient than whitebox
fuzzing.

Below is some related work that uses fuzzing to find vulnerabilities. Fioraldi et al. [33]
have identified a big gap between fuzzing frameworks and cutting edge techniques be-
cause of the lack of an API that would allow for a smooth integration. This problem
impacts not only the industry since there is no easy way of setting up a new research and
so it is hard to evaluate which one is worth the attention, but it also impacts the researchers
themselves because of how hard it is to evaluate their tools and to combine functional-
ity with with compatible techniques. This is why AFL++ was developed, to provide a
fuzzing framework that gives researchers access to an extensive API to build upon and
so allowing them to evaluate combinations of their proposals with a highly reduced im-
plementation effort, but also to allow the industry access to a set of easy-to-use features
that came straight from cutting-edge research which can greatly benefit the outcome of a
fuzzing campaign.
Lyu et al.[42] present a novel mutation scheduling scheme MOPT, which enables muta-
tion based fuzzers to discover vulnerabilities more efficiently. Mutation-based fuzzing is
one of the most popular vulnerability discovery solutions, and although its performance of
generating interesting test cases highly depends on the mutation strategy, fuzzers usually

Chapter 2. Context and Related Work 11

follow a specific distribution to select mutation operators, which is inefficient in find-
ing vulnerabilities on general programs. MOPT utilizes a customized Particle Swarm
Optimization (PSO) algorithm to find the optimal selection probability distribution of op-
erators with respect to fuzzing effectiveness, and provides a pacemaker fuzzing mode to
accelerate the convergence speed of PSO. Being one of the most cutting-edge mutation
scheduling schemes, MOPT is also the one used by default in AFL++.
Although genetic algorithm-based fuzzing is able to mutate the seed files provided by the
users to create several new inputs that will later be used to test the target application in
order to try to trigger potential crashes, the current seed selection strategies do not seem to
be better than randomly picking seed files. In this paper [41], Lyu et al. propose a generic
system, named SmartSeed, to generate seed files towards efficient fuzzing, leveraging
machine learning model to learn and generate high value binary seeds. SmartSeed was
evaluated along with AFL against 12 open-source applications and was able discovered
more than twice unique crashes when compared to other existing seed selection strategies,
which resulted in a total of 16 new vulnerabilities that have received CVE IDs [1].
Ispoglou et al. presented FuzzGen [38], a new tool for fuzzing libraries. Because libraries
cannot run as standalone programs, and instead are invoked through another application,
which means that triggering code deep in a library remains challenging, since a specific
sequence of API calls are required to build up the necessary state. FuzzGen goal is to
automatically synthesizing fuzzers for complex libraries in a given environment, leverag-
ing a whole system analysis to infer the library’s interface and thus synthesizing specific
fuzzers for the given library without human interaction. This generated fuzzers are able
not only to achieve better code coverage but also to expose bugs that reside deep in the
library.
Rustamov et al. have designed a hybrid fuzzing tool, DeepDiver [49], that aims to dis-
cover vulnerabilities deep within the code while negating roadblock checks, a limitation
found in other existing hybrid fuzzing frameworks, and thus allowing the fuzzer to explore
new execution paths that can trigger vulnerabilities deep withing the binary. DeepDiver
combines AFL++[32], which is the newer version of AFL, with concolic execution engine
to perform its job. It detects a roadblock check by leveraging a trace analysis approach
and building a tree for each input, negating it in the next stage using one of the various
methods available - Stelix, which leverages Dynamic Binary Instrumentation or Static
Binary Translation which is used to change the control flow graph structure. DeepDiver
was tested with the LAVA-M dataset and eight large real-world programs, and showed
promising result, outperforming existing software testing tools.

Chapter 2. Context and Related Work 12

2.2.2 American Fuzzy Lop (AFL)

American Fuzzy Lop - AFL [53], is one the best well known security greybox fuzzers,
and it uses a compile-time instrumentation along with a genetic algorithm to discover
new tests cases that could trigger new internal states, and thus improving the code func-
tional coverage. AFL was design to be practical, using a highly effective variety of ef-
fort minimization tricks and fuzzing techniques, with a decent performance overhead.
Radamsa[13].

Figure 2.4: AFL control flow

AFL work as described in Figure [2.4] where it starts by loading the initial test cases
into a queue (1). Once this first step is completed, it takes one of the input files from
the queue (2) and attempts to trim it to the smallest size possible, without altering the

Chapter 2. Context and Related Work 13

measured behaviour of the program (3). It then repeatedly mutates the input file using a
variety of fuzzing strategies and mutators (4) and if any of the mutations results in a new
program state (5), it is added to the queue (6). A new input is once again taken from the
queue and the cycle repeats. Throughout the years, new features and improvements were
developed but since no updates were made to the AFL, a new fork emerged - AFL++ [32],
that is being maintained and updated with the latest, tested, techniques that improve on
the original version. AFL++ supports faster instrumentation modules such as LLVM [36]
and QEMU [25], as well as new and better mutators like MOpt[42] and

2.3 GNU Project Debugger (GDB)

Monitoring an application in runtime allows for an opportunity to halt and analyze its
execution state in specific points, such as memory contents and CPU registers values.
To accomplish this task a debugger tool is needed in order to run the application in a
controlled environment and under controlled conditions. The GNU Debugger (GDB)
[35] is one of the most well established debugging tools, first written in 1986 by Richard
Stallman and maintained nowadays by the Free Software Foundation, it is supported in
most Unix-like systems and supports many programming languages such as C, C++, Go,
etc. GDB uses ptrace system call (abbreviation of ”process trace”) commonly found in
Unix and Unix-like systems, and that allows a process to control another, enabling it to
manipulate and inspect the target internal state. This allows GDB to offers a wide variety
of facilities for altering and tracing the execution of applications, allowing one not only to
monitor the application behavior but also to modify its internal variables values and thus
changing its internal state of execution. GDB main features are:

• Python support: GDB supports Python scripting, which allows for the automation of
GDB debugging tasks.

• Reversible debugging: [6] This feature provides the ability to perform ”backward steps”
in a debug session. It requires the session the be record [5] before it can be used, so
that GDB can track all changes from each executed machine instruction.

•Watch points: This gives the ability to set GDB to stop in watch points, when a value
is changed. This value can be an address, a variable or a register and allows users
to analyze the execution of a program.

2.4 Binary instrumentation

As seen in the Section 2.2.2, in order to work as intended, fuzzers like AFL need pre-
viously instrumentalized binaries which almost always requires access to the original
source code, so the application can be properly compiled. But what if the source code

Chapter 2. Context and Related Work 14

is not available? For these cases, there are binary rewriting techniques that can modify
the original binary in order to add instrumentation support, and these techniques can be
either dynamic [23] and static [30].
Common dynamic rewriting techniques, like the usage of QEMU, usually involves sitting
in between the system and the application and acting as a proxy and monitoring all in-
teraction. These techniques are heavier on the system, requiring much more resources to
be able to run either the application and the emulator, but are also simpler to implement
since they do not involve actually binary modification.
Static binary rewriting techniques, on the other hand, actually create a new binary with
the modifications in place. For this, it needs to disassemble the original binary followed
by the recovery of the control flow information, the actual transformation that modifies
the binary e finally the creation of the new modified binary. The control flow informa-
tion, however, is a hard problem to solve, specifically for larger applications and one that
have been studied with several new techniques emerging to tackle this issue. One of those
techniques is instruction punning [27] where a jump instruction is inserted in the binary
with the relative jumping address, serving either data and as an instruction sequence and
allowing not only for the new code to be added in other places of memory acting as a
trampoline, but also requiring no control flow information since the code follows is not
affected because after the trampoline code executes it resumes its execution. Instruction
punning opened the door for more developments on the binary rewriting and tools like
e9patch [30] emerged, where instruction padding and eviction were also used to improve
the rewriting performance and reliability on large binaries, as well as patch programming
language that allows for an easy patch design and binary instrumentation.

2.5 Security mechanisms

When compiling a C program, there are several security mechanisms that can be used or
activated that will hardened overall security of the compiled binary, protecting it against
not only buffer overflows but also against code execution. Techniques such as Address
Space Layout Randomization (ASLR) [34] that randomizes the location where system
executables are loaded into memory, and Data Execution Prevention (DEP) [2] which
prevents certain pages or regions of memory from executing code, are offered by the op-
erating system itself in order to prevent memory corruption attacks from executing code,
and can be turned on or off independent on the binary.
Other type of security mechanism are the binary techniques, which need to be activated
when the application is compiled and can help protect the binary against code execution
like Position Independent Executable (PIE) which loads the binary and its dependencies
into random locations in the virtual memory every time the applications is executed. Stack
canaries [28] are another binary technique that can be used to detect stack smashing, and

Chapter 2. Context and Related Work 15

it works by generating a value that is placed on the stack between a buffer and control
data, i.e, RBP register, which is then monitored and validated in order to detect changes
to its original value since it will be the first data to be corrupted when a stack overflow
occurs, thus triggering a stack smashing alert and interrupting the execution.
Richarte et al. [47] studied stackshield and stackguard protections, stack shielding tech-
nologies that protect programs against stack overflow exploitation by altering the way
programs are compiled. These stack protections only protect against return address over-
writes and not generic stack smashing, and the authors have identified two design limita-
tions, the fact these only protect data located in higher memory and that these only check
for attacks right before a function returns. The authors also identify a technical flaw,
which is the fact that they leave the saved frame pointer unprotected. In this paper, the
authors described four different tricks to bypass stackshield and stackguard protections,
one being a direct consequence of the design limitation and the other three a result of the
technical problem.

2.6 Automatic Software Repair

Automatic software repair is considered a hot topic and consists of automatically fixing
a software flaw without human intervention. As software becomes more complex and
more vulnerabilities are being disclosed, this subject is of great importance since it can
help solve these issues. It is however a challenging task since it first needs to correctly
identify the right repair and then apply the fix in a way that it does not create new flaws
as a result. In the last few years, several techniques have been studied and proposed to
address this issue and efficiently repair and maintain software. Below are some works
related to automatic software repair.
Shahriar et al. [20] proposed a rule-based approach to identify and mitigate buffer over-
flows in C/C++ programs, addressing both simple and complex forms of code and ranging
from unsafe library function calls to pointer usage in control flow structures. A total of 12
patching rules were proposed by the authors to replace vulnerable code and thus removing
vulnerabilities with results showing that these rules were not only able to identify previ-
ously known buffer overflow vulnerabilities but also new ones, as well as patch those with
a negligible overhead to the application. Schulte et al. [50] proposed a technique for re-
pairing binary programs directly, using evolutionary computation algorithms. The authors
focused their efforts on embedded and mobile systems because of its resource constraints
and tight coupling with its execution environment, which makes existing techniques and
tools insufficient. They were able to demonstrate that assembly and binary repairing was
capable of producing the same level of results as source-statement-level repairs, but in a
more efficient way, showing that not only it was the repairing faster, but it also needed
much smaller disk and memory requirements.

Chapter 2. Context and Related Work 16

Klieber et al. [40] presented a technique to repair a C program, at the source code level,
against potential violations of spatial memory safety, differing from other traditional pro-
gram repair techniques by focusing on preventing a security vulnerability from being
exploited by an attacker. Although many techniques already exist that can harden soft-
ware against memory related vulnerabilities, many of those create dependencies on the
compilers, making it difficult to inspect to fine-tune the repair itself.
The analysis and transformation needed to repair a vulnerability at the source code level
is most easily done at an intermediate representation, but existing approaches have fun-
damental limitations when it comes to translating changes back to source code. This is
why the technique presented by the authors tackles this challenge by first translating the
intermediate representation to an abstract syntax tree level, using a carefully designed
set of transformation rules and repair transformations, where changes can then be trans-
lated back to source code level with the help of a modified clang. This approach was
implemented in a tool called ACR and tested against programs with spatial memory bugs
from the SPEC CPU2006 benchmarks and the Software Verification Competition, show-
ing good results but at the cost of a performance overhead.
Bader et al. [24] addresses the issue of automatic fixing common bugs by learning from
past fixes. The authors present Getafix, an approach that is able to propose corrections in
time proportional to what it would take to obtain static analysis results while producing
human-like fixes. Getafix is based on a hierarchical clustering algorithm that summa-
rizes fix patterns into a hierarchy, and it uses a simple ranking technique to select the
most appropriate fix for a given bug. The results showed that the tool can perform well
and accurately predicts fixes for several bugs, reducing the time developers spend fixing
recurring bugs

Chapter 3

Proposed Solution

3.1 Challenges

3.1.1 How to find vulnerabilities by fuzzing without instrumentaliz-
ing the application binary?

One challenge that we encounter related to the usage of traditional fuzzers was the fact
that the binary of real world production applications, including the ones running in em-
bedded system, are not instrumentalized when compiled, a feature which fuzzers require
in order to trigger new internal states to improve the code functional coverage. Moreover,
without accessing the application source code, it is not possible to generate an instrumen-
talized binary. However, our goal is to find vulnerabilities in binary applications without
accessing its source code. Our idea to overcome this issue and reach our goal is to use
new binary-only fuzzing approaches that have been developed and, at the cost of perfor-
mance, can perform a fuzzing session on a non-intrumentalized binary. From all those
approaches, the one that uses QEMU was chosen, and in addition, it is the one with less
performance cost.

3.1.2 How to find a vulnerability sensitive sink without access to the
application source code?

One of the challenges of our approach was how to find the vulnerability sensitive sink
associated with a buffer overflow, without accessing the source code and only using the
non-instrumentalized binary. Our idea to overcome this problem is to use a debugger with
recording functionality that enables us not to only follow the expected flow of execution,
but also to go back over the flow. This allows us to perform a reverse data-flow analysis
from the point that the application crashes (result of a stack overflow vulnerability) to the
point that cause that crash, its sensitive sink.

17

Chapter 3. Proposed Solution 18

3.1.3 How to remove vulnerabilities by only patching the binary code
directly?

One of the main challenges we faced is how to remove a vulnerability by patching the
binary code and only have access to it, a requirement not compatible with most common
patching techniques. Binary rewriting exists and is a common practice for binary-only
applications, but for instrumentation. The current techniques can be either dynamic and
static. Dynamic techniques, such as QEMU, requires an external component like an emu-
lator to analyze all interaction with the application at the cost of performance and system
requirements. On the other hand, static technique is not feasible for large binaries since
the rewriting process will move instructions making it dependent on recovering the con-
trol flow information, which is a hard problem by itself.
Because embedded systems are usually extremely optimized and do not have a lot of free
resources available, dynamic rewriting was ruled out, leaving static rewriting as the only
viable option. But how to overcome its complexity? Our idea to address this issue is
to look into instruction punning and the usage of binary trampolines that allow for static
binary rewriting to occur without the need for control flow recovery.

3.1.4 How to validate the effectiveness of the patch?

One of the challenges of our approach is how to validate that a patch have successfully
mitigated a vulnerability and also, how to ensure that the patch did not break the applica-
tion logic nor created new vulnerabilities? Our idea to overcome this problem is to add all
previously found exploits to our good initial test cases and once again perform a fuzzing
session on the patched binary in order to ensure that the already known vulnerabilities
have been successfully patched, and no new vulnerabilities have been added.

3.2 Approach Overview

This section describes our proposal for finding and confirming stack overflow vulnerabil-
ities, as well as patching them and validate its effectiveness.
Our approach makes use of a fuzzer on a non-instrumentalized binary in order to find pos-
sible vulnerabilities and correspondent exploits. The exploits will then be used to confirm
the presence of stack overflow vulnerabilities by means of examining its behaviour and
CPU registers in runtime and using a bottom-up data flow analysis approach to determine
their sensitive sink. All collected data will then be used to identify the correct patch tem-
plate on a template database, using it directly on the binary to fix the vulnerability.
The validation process will once again use the exploit(s) that were found to be true posi-
tives, to confirm that the patch process was successful, i.e, if the program does not crash
or hang anymore, then the patch was successful.

Chapter 3. Proposed Solution 19

Figure 3.1 illustrates an overview of the approach architecture and its main modules. The
approach was designed in such a way that all modules could be used independently, which
means the execution flow can also be started from any of the main modules.

Figure 3.1: Architecture overview

Overall, the approach starts with a JSON setup file, containing all the setup informa-
tion needed to run the application, that will be consumed and parsed by the User Interface
module, the start point of our approach. This module will create a workspace for the cur-
rent session and call the module(s) that match the setup definition. Next, we give an
overview of all the components, modules and their interactions.

• Original binary - This is the original, non-instrumented, binary that we want to test
and patch. It will be used in three different modules.

1. Vulnerability Exploitation module to find vulnerabilities and their exploits.

Chapter 3. Proposed Solution 20

2. Vulnerability Debugger module in order to confirm the vulnerabilities found
and get the information of their sensitive sink.

3. Binary Patching module to patch one or more vulnerabilities found and con-
firmed and thus generating a new, patched, binary.

• Test cases - Good examples of an expected input data that would allow the targeted
binary to run normally and have a correct and expected behaviour.

• Vulnerability Exploitation - This module will perform blackbox fuzzing to the given
non-instrumentalized binary file, mutating the available test cases in order to gen-
erate new ones and thus try to increase the code coverage, and finding the ones that
are able to generate a crash/hang.

• Exploits - This is the database that contains one or more exploits that were either dis-
covered during the fuzzing session or given by the user.

• Vulnerability Debugger - This module is responsible for confirming that a stack over-
flow vulnerability occurred, as well as finding its sensitive sink point and detailed
information through memory analysis.

• Function mapping - This is the database that contains detailed information about sen-
sitive sinks, such as the number of arguments, where these are declared in the as-
sembly and how to get their values and sizes.

• Patch templates - This is the database that contains a set of templates for specific sen-
sitive sinks. These templates contain information about the patch file location as
well as its arguments.

• Binary patching - This module will patch the binary file to remove the vulnerabilities,
using for this a static binary re-writer which will generate a new, patched, binary
file.

• Patch Validation - This module will use the patched binary, generated by the binary
patching module along with the exploits that were confirmed by the vulnerability
debugger, and it will validate if the mitigation process works correctly and the vul-
nerability was indeed fixed.

3.3 Main Modules

This section describes in details how the main modules in our approach work and how to
interact with them.

Chapter 3. Proposed Solution 21

3.3.1 User Interface

This module acts as the interface with the user, preparing the session workspace and
parsing the given setup file to determine the correct execution that follows the options
made by the user. It will also determine the binary security, checking for the presence of
stack canaries in order to inform the other modules, so they can adjust their execution to
these security mechanisms (Figure 3.2)

Figure 3.2: User Interface Overview

3.3.2 Vulnerability Exploitation

Our approach main goal relies on the existence of vulnerabilities that can be later con-
firmed with the exploits that exploited them, and patched accordingly. If there are no
known exploits, the Vulnerability Exploitation module (Figure 3.3) can be used to try to
find those and pass them along to the following modules.
It starts by receiving a standard binary, without any form of instrumentation, and a set
of test cases with expected benign input data that allows the binary to run normally. The
module will then prepare a workspace by creating two directories, one for the exploits
that will be discovered during the fuzzing session and another for a copy of the initial
benign tests cases and where all new test cases generated by the fuzzer will be stored, and
with the information provided set all the necessary environment variables that the fuzzer
needs to operate. Also, from the setup file, this module will set a target number of crashes
and a timeout that will act as a safeguard to prevent the fuzzing session from running
indefinitely.

Chapter 3. Proposed Solution 22

Figure 3.3: Vulnerability Exploitation Overview

Once everything is set up, this module will initiate the fuzzing activity, generating
new test cases from the initial test cases and increasing the test coverage in order to find
vulnerabilities and saving its exploits. When the fuzzing session starts, this module will
monitor its activity in order to stop the current session when the target number of crashes
is reached or if there are no new crash discovered during a specific time window, i.e,
timeout.

3.3.3 Vulnerability Debugger

One of the main goals of our approach is to confirm and find the sensitive sink of a found
vulnerability, collecting as much information as possible about it, such as the number
of arguments of a vulnerable call and their size. The Vulnerability Debugger module is
the one responsible for these actions, where its workflow is illustrated in Figure 3.4 and
Figure 3.5.
The module starts by receiving a list of one or more exploits that crashed the application
and so triggering a vulnerability, as well as the vulnerable binary and a set of specifications
defined by the user in the setup file that allows this module to know how to interact with
the binary, i.e, how to use the exploit inputs.

Chapter 3. Proposed Solution 23

Figure 3.4: Vulnerability Debugger Overview

After loading all the information, it will first extract all the function names from the
binary .text section, which contains the program’s actual code, and it will open the binary
in a debugger, which allows it to closely monitor its execution, setting breakpoints in all
the extracted functions and activating the possibility of reverse debugging. Next it will
iterate over the exploit list and for each exploit this module will run the application, skip-
ping all breakpoints until it detects a crash, at which at this point it tries to confirm the
presence of a stack overflow vulnerability. Figure 3.4 gives an overview of the workflow
explained so far, while Figure 3.5 focuses on detail the workflow within the Debug Ses-
sion.
Because a stack overflow vulnerability occurs when an application fails to bound check a
writing operation to the buffer, and the debug session takes place in runtime, the module
will have access to the following CPU registers RSP, RBP and RIP. These registers are
usually overwritten in this type of vulnerability, therefore, a form to verify the occurrence
of such vulnerability is to check their values are pointing to a valid memory address within
the current session.
If any value of those registers is found as being invalid, we can confirm that a stack over-
flow vulnerability occurred. At this point the Vulnerability Debugger module starts the
reverse data-flow analysis, using for that the previously set breakpoints as anchors which

Chapter 3. Proposed Solution 24

will allow jumping to the beginning of those functions and re-checking the RSP, RBP and
RIP values for each of those functions, until no trace of stack overflow is detected. When
the stack overflow vulnerability is no longer detected, the Vulnerability Debugger knows
that the vulnerability resides in the current function under analysis, and so it deletes all
other previously set breakpoints except the one of the current function. Afterwards, it
starts a step-by-step analysis on each assembly line, searching for known vulnerable calls
belonging to the Function Mapping database. When it finds such a call, it sets a break-
point on it and checks the same CPU registers after that call has been executed. If that
call triggered a stack overflow, it means the module have found the sensitive sink point,
and it can now start the final phase of the debugging session to gather all the information
about the vulnerable call.

Chapter 3. Proposed Solution 25

Figure 3.5: Debug Session Overview

At this stage the module will once again delete all breakpoints except the one in the
call that triggered the vulnerability, the sensitive sink, checking the Function Mapping
database to obtain the details on what information can it retrieve from that call and how
can that information be obtained. Afterwards and starting from the sensitive sink call, this
module will perform the reverse step-by-step analysis through each assembly line until it
is able to obtain the information it needs. When the information is obtained, the module
resumes the execution in order to return to the sensitive sink where it had previously set a
breakpoint. However, if there is more information to be obtained, it repeats the previous
step until no more information is needed (Figure 3.5).

Chapter 3. Proposed Solution 26

Figure 3.6: Binary PLT section example

When all the information is gathered, this module will search the PLT section of the
vulnerable binary to get the offset address of the sensitive sink call. Figure 3.6 shows an
example of the PLT section with four functions, and for the function puts, for instance, the
offset address it will return would be 0x10b0. Finally, it will compile all the information
in a JSON format, for such information to be easily interpreted and consumed by other
modules.

3.3.4 Binary Patching

This module receives the vulnerability sensitive sink information, which can be gathered
and compiled by the user through the setup file or by the Vulnerability Debugger module.
After analyzing the sensitive sink information, this module will extract the vulnerable
call name, using it to choose the appropriate patch template from the Patch Template
database along with the respective input arguments associated with the sensitive sink and
necessary to the patch and then apply the patch to fix the current vulnerability. Each
supported vulnerable function call (i.e, a sensitive sink) has at least one patch template,
depending on the way the vulnerability is expressed in the code and the information of
the sink associated with it. A template is a small pre-compiled C application that receives
the CPU registers values as arguments and other relevant information, as the indicative
of the presence of stack canaries. The template will be added to the vulnerable binary
through the usage of instruction punning, where an e9 jump instruction opcode is encoded
as a relative jump in order to redirect the application control flow to a trampoline. The
trampoline is the area where the patch can run a safe code before returning the control
flow to the main application. Figure 3.7 presents a simplistic view of this idea.

Chapter 3. Proposed Solution 27

Figure 3.7: Simplistic view of a trampoline

The trampoline is placed at the address where the vulnerable call is located, hence
the correct sensitive sink information is crucial and is used to try to pinpoint its location.
In our binary patching approach, two types of patches are proposed, one that replaces
vulnerable calls with their safe version and another that will run before the vulnerable
call, limiting the input maximum size to match the destination buffer length, avoiding
thus an overflow.

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t r i n g . h>
3 # i n c l u d e < s t d l i b . h>
4
5
6 void o v e r f l o w () {
7 char buf [1 0] ;
8 p r i n t f (” User i n p u t : \n ”) ;
9 g e t s (buf) ;

10 p r i n t f (” User i n p u t i s %s \n ” , buf) ;
11 }
12
13 i n t main (i n t argc , char ** a rgv) {
14 o v e r f l o w () ;
15 p r i n t f (”No s t a c k o v e r f l o w d e t e c t e d !\ n ”) ;
16 re turn 0 ;
17 }

Listing 3.1: Vulnerable usage of gets call

For example, Listing 3.1 shows a vulnerability in line 9. Our approach will replace
the gets function with its safe version, fgets. Another example is Listing 3.2 that shows a
vulnerability in line 11. Our approach can patch it by either replacing the strcpy function
with strncpy, its safe version, or taking the input that will be copied to the buffer and limit
its size if it exceeds the buffer length.

Chapter 3. Proposed Solution 28

1
2 # i n c l u d e < s t d i o . h>
3 # i n c l u d e < s t r i n g . h>
4 # i n c l u d e < s t d l i b . h>
5
6 # d e f i n e MAXLINE 100
7
8
9 void o v e r f l o w (char * s) {

10 char buf [1 0] ;
11 s t r c p y (buf , s) ;
12 }
13
14 i n t main (i n t argc , char ** a rgv) {
15 char l i n e [MAXLINE] ;
16 FILE * fp = fopen (a rgv [1] , ” r ”) ;
17 i f (! fp){
18 f p r i n t f (s t d e r r , ”Can ’ t open f i l e \n ”) ;
19 re turn 0 ;
20 }
21
22 f r e a d (l i n e , s i z e o f (l i n e) , 1 , fp) ;
23 f c l o s e (fp) ;
24 o v e r f l o w (l i n e) ;
25 p r i n t f (”No s t a c k o v e r f l o w d e t e c t e d !\ n ”) ;
26 re turn 0 ;
27 }

Listing 3.2: Vulnerable usage of strcpy

Since most safe calls need information about the maximum amount of bytes that can
be read or write, the patch can receive this information or calculate it dynamically, de-
pending on the case. One possible and common scenario to obtain this amount is by
calculating the distance between the values of RBP and the RDI registers. Listing 3.3
illustrates the gets function call, where 0xa bytes, are allocated from the RBP to the RAX
that will be then copied to RDI. In this case, if we calculate the difference between the
values of RDI and RBP, we will obtain the 10 bytes buffer size.
If a stack canary exists, we also need to take that into consideration and subtract 8 bytes
to the previous calculated size, since the canary will be placed after the RBP.

1 l e a −0xa(% rbp) ,% r a x
2 mov %rax ,% r d i
3 mov $0x0 ,% eax
4 c a l l q 1080 <ge t s@pl t>

Listing 3.3: Assembly code before the call gets

Chapter 3. Proposed Solution 29

Figure 3.8: Auto-patch overview

Because functions like scanf and gets have their sensitive sink occurring inside an
external library, in this case the glibc, and are almost always vulnerable and should not be
used, this module also implements an optional auto-patch functionality that can search the
PLT section of the given binary for the presence of these functions, thus gathering their
offset address and applying the generic patch template, replaces the vulnerable call with
the safe alternative, Figure 3.8 presents an overview of this auto-patch process. These
functions can be set by the user in the setup file, along with the ability to turn this feature
on or off.

3.3.5 Patch Validation

This module will validate if a patch was successfully applied and will consider that the
vulnerability is fixed if none of the exploits from the database, which, were able to exploit
the vulnerability and trigger a stack overflow upon execution. Figure 3.9 depicts the
workflow of the Patch Validation module.

Chapter 3. Proposed Solution 30

Figure 3.9: Patch validation overview

At a first instance, the use of the exploits can be enough to consider that the patch was
successful, but to ensure its validation this module can copy all database’s exploits to the
initial set of test cases and start the Vulnerability Exploitation module once again in order
to initialize a new fuzzing session that will mutate the previously found exploits, trying to
find new vulnerable paths and new exploits, i.e, attempt to break the patch or find a new
vulnerability that might have been introduced by the patch.

Chapter 4

Implementation

This chapter describes the implementation of the proposed solution presented in Chapter
3. The developed tool was implemented in Python 3.10 and integrates parts of some
tools existing in the literature. Section 4.1 describe the tools that were used to build
our prototype and Section 4.2 contains detailed information about the implementation of
prototype itself.

4.1 Tools used

This section presents the tools that were used in the implementation of some modules of
our prototype.

4.1.1 AFL++

AFL++ [32] is considered an evolution of American Fuzzy Lop, AFL [53]. It forked from
the original AFL project, incorporating all of its best features, and implementing a lot of
optimizations, new and better mutators and source and binary instrumentation modules
and new features. This tool was used in the Vulnerability Exploitation module (Section
3.3.2) in order to perform the fuzzing session, using QEMU as the main binary instru-
mentation. From the binary instrumentation modules available in AFL++, QEMU was
chosen because it was the one with the least amount of performance loss when compared
with source instrumentation.

4.1.2 GDB

The GNU Debugger (GDB) [35] is one of the most well established debugging tools that
allows not only to monitor an application in runtime but also changing its internal state of
execution. It was chosen to be used in the Vulnerability Debugger module (Section 3.3.3),
and the main reasons to chose GDB were:

31

Chapter 4. Implementation 32

1. It supports machine interface (MI), a line based machine oriented text interface
intended to allow for a better integration with tools which use the debugger, like the
proposed prototype;

2. It allows to record a debugging session, a feature that is extremely important in the
context of our approach since it is needed to perform the reverse data flow analysis
from the crash point until the sensitive sink.

4.1.3 Pygdbmi

Pygdbmi [12] is a python library that allows to control GDB, as a sub-process, parsing its
machine interface output into a structured python dictionary, JSON serializable. This tool
was chosen for its programmatic control over GDB, a feature that allows to interact with
GDB using any GDB command

4.1.4 E9Tool

E9Tool [7] is a static binary rewriting tool for Linux ELF binaries that uses low level
techniques like instruction punning, padding and eviction to replace or insert binary code
without having to worry about recovering the control flow information, which is one of
the main reasons it was chosen as the patching tool for the proposed solution. Another
reason was the fact that E9Tool is highly programmable, intended to be easily integrated
into projects and allowing C language to be used to produce patch templates as well as
CPU registers to be used and modified in runtime.

4.2 Implementation design

This section presents the implementation design, including the algorithms in pseudocode,
with examples of inputs and outputs, that describes the implementation of the modules of
the proposed tool, giving thus a better explanation on how it works.

4.2.1 Setup configuration

The setup configuration file illustrated in Listing 4.1 is defined by the user upon starting
the tool, containing all the necessary information that it needs to work and allowing the
user to fine tune it to its liking.
In the file generic section (lines 2 to 5) the user defines whether the binary was previously
instrumentalized or not in order to tool decide if the QEMU module is need or not. Also,
he defines the binary path and its input arguments, taking into consideration that the tool
will replace the string %CUSTOM ARG HERE% with the test cases or exploits input.
All other sections are directly related to the correspondent module and can be skipped if

Chapter 4. Implementation 33

the user decides, allowing any module of the tool to be used separately.

1 {
2 ” i s a f l c o m p i l e d ” : BOOLEAN,
3 ” b i n a r y p a t h ” : ”FULL PATH TO BINARY” ,
4 ” r u n a r g u m e n t s ” : ”%CUSTOM ARG HERE%”,
5 ” a r g i s f i l e ” : BOOLEAN,
6 ” f u z z i n g ” : {
7 ” s k i p f u z z i n g ” : BOOLEAN,
8 ” t e s t c a s e p a t h ” : ”PATH TO TEST CASES”
9 } ,

10 ” debugg ing ” : {
11 ” s k i p d e b u g g i n g ” : BOOLEAN,
12 ” e x p l o i t p a t h ” : ”PATH TO EXPLOITS”
13 } ,
14 ” p a t c h i n g ” : {
15 ” s k i p p a t c h i n g ” : BOOLEAN,
16 ” t e m p l a t e r o o t ” : ”PATH TO PATCH TEMPLATES” ,
17 ” c a l l n a m e ” : ”CALL NAME” ,
18 ” f u n c t i o n n a m e ” : ”FUNCTION NAME” ,
19 ” m a x s i z e ” : SIZE ,
20 ” r e a l a d d r e s s ” : ”ADDRESS IN THE PLT SECTION” ,
21 ” h a s c a n a r y ” : BOOLEAN
22 } ,
23 ” a u t o p a t c h i n g ” : {
24 ” s k i p a u t o p a t c h i n g ” : BOOLEAN,
25 ” a u t o p a t c h f u n c t i o n s ” : [” g e t s ” , ” s c a n f ”]
26 } ,
27 ” v a l i d a t e ” : {
28 ” s k i p p a t c h i n g ” : BOOLEAN,
29 ” e x p l o i t p a t h ” : ”PATH TO EXPLOITS ” ,
30 ” p a t c h e d b i n a r y p a t h ” : ”PATH TO PATCHED BINARY”
31 }
32 }

Listing 4.1: Setup configuration file example

After the user interface module digests and parses the configuration file, it will de-
termine the correct order in which the modules need to be executed, and it will create
the workspace for the current session with the name of the binary file concatenated with
a random string, allowing this way the creation of multiple sessions for the same binary
without overwriting any previous session.

Chapter 4. Implementation 34

Figure 4.1: Natural execution order

The natural order of execution, if no modules are skipped, is the one described in Fig-
ure 4.1. In the beginning of the execution, an empty object is created, so each module can
later add information to it, which will be used as the input for the following modules. If a
module is skipped, the information in the configuration file of the next module to be run
will be appended by the User Interface module before it is called.
Once the fuzzing session finishes, this module will append to the output object all infor-
mation related to the session, such as the exploit location path and the number of exploits
that were found.

4.2.2 Vulnerability Exploitation

The Algorithm 1 is responsible for executing a fuzzing session to a given binary. It starts
by receiving, from the configuration file, the values of the timeout and target number of
crashes for the current session, as well as the paths for the binary, test cases and exploit
directory where the exploits are going to be saved. After everything is set, the fuzzing
session starts along with a monitoring process that will constantly check the session in or-
der to determine whether the target number of crashes or the defined timeout was reached,
and if so the fuzzing session is stopped

Chapter 4. Implementation 35

Algorithm 1 Vulnerability exploitation algorithm
Input:

timeout > 0
num of crashes > 0
binary path ̸= ””
test cases ̸= {}
exploit path directory is empty

Output:
exploit list

1: pid← start fuzzing(binary path, test cases, exploit path)
2: monitor ← start monitor(pid)
3: stop← false
4: while stop is false do
5: num of crashes← get current crashes(monitor)
6: timeout← time since last crash(monitor)
7: if num of crashes is reached OR timeout < time since last crash(monitor)

then
8: stop← true
9: end if

10: end while

4.2.3 Exploit Iteration

The main goal of the exploit iteration (Algorithm 2) is to iterate over a list of raw ex-
ploits that were either gathered by the Vulnerability Exploitation module (Section 3.3.2)
or provided by the user, calling the debug session for each of these in order to confirm the
vulnerability and collect its sensitive sink.

Algorithm 2 Vulnerability exploitation algorithm
Input:

raw exploit list ̸= {}
binary path ̸= ””

Output:
exploit dict

1: for each exploit ∈ raw exploit list do
2: sensitive sink ← debug session(exploit, binary path)
3: if sensitive sink ̸= ∅ AND hashed(sensitive sink) /∈ keys(exploit dict)

then
4: exploit dict[hashed(sensitive sink), sensitive sink]
5: end if
6: end for

Because different exploits can trigger the same vulnerability and thus have the same

Chapter 4. Implementation 36

sensitive sink information, after a debug session was successfully executed and returned,
this algorithm will calculate a hash composed by the sensitive sink information which
will be compared with all the existing keys in the exploit dictionary structure, as shown
in Figure 4.2. If no match found, a new vulnerability is detected, and so the sensitive sink
information will be added to the exploit dictionary along with its hash as the key.

Figure 4.2: Exploit dictionary structure

4.2.4 Stack overflow confirmation

The Algorithm 3 illustrates how a stack overflow vulnerability is confirmed by the vul-
nerability debugger module.
Advanced Vector Extensions 2 (AVX2), a vectorization extension that expands most inte-
ger commands to 256 bits and introduces new instructions, is used by most modern CPUs
but is not yet fully supported by GDB recording feature due to it being poorly main-
tained. Because of this and to avoid the debug session to fail, specially on Intel CPUs,
before the algorithm starts AVX2 support needs to be turned off by using the GDB flags
glibc.cpu.hwcaps=-AVX2 Usable,-AVX Fast Unaligned Load. Afterwards, the algorithm
starts by getting all function names and the places they reside in the binary file, issuing
for this the system command objdump to look for them at the Procedure Linkage Table
(PLT) section. Next, it uses the places of the functions to set break points, so it is easier
to jump between functions during the debugging session.

Chapter 4. Implementation 37

Algorithm 3 Finding vulnerability crash point
Input:

binary path

Output:
crash point

1: function names← get functions from binary(binary path)
2: gdb← start gdb session(binary path)
3: for each function ∈ function names do
4: gdb.write(”break function”)
5: end for
6: gdb.run(exploit)
7: gdb.write(”record”)
8: while detected crash() is false do
9: gdb.continue()

10: end while
11:
12: if detected overflow(RIP, RBP, RSP) is true then
13: continue ▷ Stack overflow confirmed
14: else
15: breaks
16: end if

At this point, everything is set, and the debug session is initialized with the potential
exploit as input. Because break points were set for all functions, after the session starts
the algorithm will hit the first breakpoint (usually the main function) and a record instruc-
tion is issued so GDB starts recording the current session and enables the reverse data
flow analysis. It will then continue, skipping all breakpoints until it detects a crash, i.e, a
segmentation fault, which indicates that the exploit input have worked as expected.

At this point, because we are monitoring the application in runtime, the algorithm
issues several GDB commands to get the CPU registers RIP, RBP and RSP where their
values are smashed when a stack overflow vulnerability occurs, and so the algorithm will
evaluate these in order to assess if they are invalid or point to an invalid memory address,
confirming the vulnerability.

4.2.5 Finding Sensitive Sinks

The Algorithm 4 demonstrates how a vulnerability sensitive sink point is found after a
stack overflow is confirmed (Section 4.2.4).
Having the current debug session recorded, and break points set in all functions, this al-
gorithm, from the crash point, will start a loop by issuing the command reverse continue

Chapter 4. Implementation 38

that allows to jump backwards to the previous called functions and get the values of the
CPU registers, to be analyzed to confirm if the vulnerability is still detected.

Algorithm 4 Find sensitive sink
Input:

stack overflow is confirmed
Output:

sensitive sink information

1: while detected overflow(RIP, RBP, RSP) is true do
2: gdb.write(”reverse continue”)
3: end while
4: ▷ Found function with sensitive sink.
5: while detected overflow(RIP, RBP, RSP) is false do
6: gdb.write(”next instruction”)
7: end while
8:
9: gdb.write(”delete breakpoints”)

10: gdb.write(”break here”) ▷ Found sensitive sink.

If the vulnerability is still detected, the loop continues, otherwise it stops because it
found the last known function before the vulnerability has occurred, which means this
function is most likely to be the one where the sensitive sink will be found. At this point,
with the exception of the current breakpoint, all existing breakpoints are deleted, and the
algorithm shifts its focus to the current function, stepping into it and iterating over all its
assembly instructions, setting break points whenever a call is identified and analyzing the
CPU registers after the call is executed to detect an overflow.
When an overflow is detected, it means the algorithm found the sensitive sink. At this
point, it will delete all other breakpoint except the one associated with the call that have
originated the vulnerability. This breakpoint is used by the algorithm as a hook, allowing
it to quickly return to this point when it needs to.

4.2.6 Getting call details

Once the sensitive sink point is discovered, the Algorithm 5 starts to look in the assembly
code for the current C library function call and, using an auxiliary function mapping
database, determines how to obtain all possible details about the function itself. This
database contains information about the following vulnerable function calls - gets, strcpy,
strcat, sprintf or scanf. The function mapping database, represented in Listing 4.2, is a
JSON structure that contains information and instructions for each argument of a given
function call.

Chapter 4. Implementation 39

Algorithm 5 Getting sensitive sink call details
Input:

sensitive sink is confirmed

Output:
sensitive sink details

1: call name← gdb.write(”get call name”)
2: argument instructions← get call instructions(call name)
3: for each instruction ∈ argument instructions do
4: steps← instruction.get step number()
5: gdb.write(”reverse steps instructions”)
6: info← gdb.write(”get information”)
7: sensitive sink append info
8: gdb.write(”continue”) ▷ go back to sensitive sink
9: end for

The information in the database includes:

• The argument type. This will determine what information will be retrieved and how
it will be retrieved, i.e, if type string, the Algorithm will get its value.

• Number of reverse steps needed, from the sensitive sink, to get access to the argument

• The position this argument takes in the call. This is important so during patching
we know what register we will need to modify, i.e. if it is first position, we need to
modify RDI (RDI is the register that contains the first argument).

• If this argument is (or not) the cause of the vulnerability.

Figure 4.3: Sensitive sink information output

Chapter 4. Implementation 40

For each argument the algorithm will, from the sensitive sink, reverse the number of
steps it retrieved from the function mapping and according to the argument type it will
either get its value or allocated size.
Once everything is done, it compiles all the gathered information and generates a JSON
formatted string as output (Figure 4.3) that can be easily consumed by other modules as
well as interpreted by a human.

1 {
2 ” s t r c p y ” :{
3 ” a r g s ” :{
4 ” d s t ” :{
5 ” t y p e ” : ” b u f f e r ” ,
6 ” r e v e r s e s t e p s ” : 3 ,
7 ” c a l l p o s ” : 1 ,
8 ” t a i n t a b l e ” : t r u e
9 } ,

10 ” s r c ” :{
11 ” t y p e ” : ” s t r i n g ” ,
12 ” r e v e r s e s t e p s ” : 4 ,
13 ” c a l l p o s ” : 2 ,
14 ” t a i n t a b l e ” : f a l s e
15 }
16 }
17 }
18 }

Listing 4.2: Function mapping example for strcpy function

4.2.7 Patching a binary

The Algorithm 6 details how the patching process works from the moment it receives a
sensitive sink object, containing all previously collected information about a vulnerability,
to the moment a patch is issued using the e9patch command from the e9tool toolkit.

Algorithm 6 Get sensitive sink call details
Input:

sensitive sink ̸= {}
Output:

patched binary

1: call name← sensitive sink.get call()
2: if get template(call name) exists then
3: template← get template(call name)
4: fill template
5: issue 9epatch command
6: end if

Chapter 4. Implementation 41

First, it will get the patch template, from the database, that is associated with the sen-
sitive sink function name. A patch template is a JSON a structure (Listing 4.3) containing
an e9patch command string with certain flags (easy to spot since they are all capital let-
ters) that need to be replaced by the data collected from the sensitive sink in order to call
a compiled patch for the given call, which was generated previously and automatically.
The data needed to be replaced in a patch may vary from template to template, and it
mostly depends on the arguments that the patch requires to work properly.

1 {
2 ” s t r c p y ” :{
3 ”command ” : ” r e p l a c e a p p l y p a t c h (\”{HAS CANARY}\” , RBP ,

RDI , RSI)@{TEMPLATES ROOT} / s t r c p y p a t c h ”
4 }
5 }

Listing 4.3: patch template for strcpy function

The command itself can be interpreted has:
[REPLACE|BEFORE|AFTER]FUNCTION EXECUTE(ARG1, ..., ARGN)

@PATH TO PATCH BINARY

When the placeholders in the template are filled with the collected data, the patch
template is converted into a system command in order for the e9patch to be invoked to
patch the vulnerable binary, creating a new binary file with the same name and with the
word PATCHED appended to it.

4.2.8 Patch

A patch is a compiled C file that respects the e9tool syntax [3], with one or more functions
that are used to patch a given vulnerability (Listing 4.4).

1 # i n c l u d e ” s t d l i b . c ”
2 # i n c l u d e <s t d i o . h>
3
4 void a p p l y p a t c h (char * h a s c a n a r y , void * rbp , void * r d i , char

* r s i) {
5 long o f f s e t = 0 ;
6 i f (s t r c mp (” True ” , h a s c a n a r y) == 0) {
7 o f f s e t = 8 ;
8 }
9 long s i z e = (long) rbp − (long) r d i − o f f s e t ;

10 s t r n c p y (r d i , r s i , s i z e −1) ;
11 }

Listing 4.4: strcpy patch example

In our solution, the function to be called is always named apply patch, and it receives
information about the existence or not of a canary, as well as the specific register values

Chapter 4. Implementation 42

that depend on the call that is being patched. In our solution, the patch tries to calculate
the buffer size given the offset of the specific register to the RBP, using it to define the
maximum allowed buffer size. It will then replace the vulnerable call with the safer alter-
native, keeping the execution flow as close to the original as possible. Full list of patch
templates available in Appendix A

Chapter 5

Evaluation

This chapter describes the evaluation process that was performed to assess our tool and
discusses its results. Section 5.1 details the evaluation setup and the metrics that were
used to evaluate the tool. Sections 5.2 and 5.3 detail the evaluation with synthetic datasets
and real applications, respectively, both comprising C programs and compiled with and
without necessary protection, i.e, canaries.
Considering the challenges identified in Section 3.1 and their respective solutions pro-
posed to solve them, a set of key elements were needed to evaluate these tool: the ability
to find the sensitive sink, the ability to fix vulnerabilities in a binary and the effectiveness
of such fixes.Based on this key elements, we defined the following questions:

Q1: Can the tool detect a sensitive sink given an exploit?

Q2: Is the tool capable of fixing a vulnerability in binaries with and without security
necessary protections?

Q3: Does the patch introduce new vulnerabilities?

Q4: How does the patch affect the overall performance?

Q5: By how much does the patch increase the final size of the binary?

Q6: Is the tool capable of debugging and fixing vulnerabilities in real applications?

In order to answer these questions, the evaluation process was conducted, and its
details are described in the upcoming sections.

5.1 Evaluation setup

To better evaluate our tool, the evaluation process was divided in two parts. In the first
part, we used a synthetic dataset of small vulnerable C programs (some containing very
few code execution paths), either designed specifically to test this project or downloaded

43

Chapter 5. Evaluation 44

from Software Assurance Reference Dataset (SARD) [11]. For the second part, we used
real applications, which we modified in order to add a vulnerable call that would allow
us to test our tool in a scenario with applications containing multiple code paths. Our
modifications were very minor, where we either replaced a safe call for its vulnerable
alternative or we added a vulnerable call before an output was returned.
All the programs were compiled twice, with and without security necessary protection
canaries, so we could evaluate the effectiveness of the patching module and the patch
templates we created for this tool. In order to test the performance overhead introduced
by the patch, we designed a small script, illustrated in Listing 5.1, that will run both the
patched and the vulnerable binaries 5 times with valid, good inputs, that would not trigger
an overflow (otherwise the vulnerable binary would crash). For each binary, we collected
the execution time, and measured the average time of the 5 runs.

1 p a t c h e d b i n p a t h = ” /PATH/TO/PATCHED/ BINARY”
2 b i n p a t h = ” /PATH/TO/VULNERABLE/ BINARY”
3 i n p u t p a t h = ” /PATH/TO/ INPUT / FILE ”
4 / / True i f t h e b i n a r y r e c e i v e s t h e input from s t d i n
5 n e e d s t d i n = F a l s e
6
7 f o r i in range (0 , 5) :
8 p r i n t (” Running %d ” % (i + 1))
9 o r i g i n a l t i m e = 0

10 p a t c h e d t i m e = 0
11 i f n e e d s t d i n :
12 o r i g i n a l t i m e = r u n t e s t w i t h s t d i n (b i n p a t h)
13 t ime . s l e e p (1)
14 p a t c h e d t i m e = r u n t e s t w i t h s t d i n (p a t c h e d b i n p a t h)
15 e l s e :
16 o r i g i n a l t i m e = r u n t e s t (b i n p a t h , i n p u t p a t h)
17 t ime . s l e e p (1)
18 p a t c h e d t i m e = r u n t e s t (p a t c h e d b i n p a t h , i n p u t p a t h)
19
20
21 o r i g i n a l b i n r u n t i m e . append (o r i g i n a l t i m e)
22 p a t c h e d b i n r u n t i m e . append (p a t c h e d t i m e)
23
24 a v e r a g e r u n t i m e o r i g i n a l = sum (o r i g i n a l b i n r u n t i m e) /
25 l e n (o r i g i n a l b i n r u n t i m e)
26 a v e r a g e r u n t i m e p a t c h e d = sum (p a t c h e d b i n r u n t i m e) /
27 l e n (p a t c h e d b i n r u n t i m e)
28 a v e r a g e o v e r h e a d p e r c e n t a g e = (a v e r a g e r u n t i m e p a t c h e d /
29 a v e r a g e r u n t i m e o r i g i n a l)*100

Listing 5.1: Performance script snippet

Chapter 5. Evaluation 45

5.2 Evaluation with synthetic applications

We created 10 applications for testing purposes, namely two for each vulnerable supported
call, and we tried to cover the most common programming practices seen by real appli-
cations. To increase the dataset of synthetic applications, we added 8 applications from
SARD database that contained at least one vulnerable supported call. Table 5.1 shows
the total amount of synthetic applications, downloaded from SARD or created, that were
used during this evaluation process.

Table 5.1: Summary of synthetic test cases from SARD and created for testing purposes

Vulnerable functions Num. of applications

gets 3
strcpy 4
strcat 5
sprintf 3
scanf 3

The average testing results, grouped by vulnerable function, of all synthetic applica-
tions, compiled without canaries are shown in Table 5.2. Table 5.3 shows the results for
these applications but compiled with canaries.

Table 5.2: Average results for synthetic applications without canaries

gets strcpy strcat sprintf scanf

Debug successful? No Yes Yes Yes No
Debug time (s) N/A 141 185 128 N/A
Patch successful? Yes Yes Yes Yes Yes
% File size increase 182.79% 181.39% 180.47% 181.60% 182.65%
% Execution time overhead 26.36% 44.83% 38.59% 35.34% 16.01%
Patch validated successfully? Yes Yes Yes Yes Yes

Table 5.3: Average results for synthetic applications with canaries

gets strcpy strcat sprintf scanf

Debug successful? No Yes Yes Yes No
Debug time (s) N/A 146 192 147 N/A
Patch successful? Yes Yes Yes Yes Yes
% File size increase 181.03% 178.46% 178.29% 178.46% 181.71%
% Execution time overhead 28.76% 57.12% 42.64% 51.55% 30.86%
Patch validated successfully? Yes Yes Yes Yes Yes

Based on the results above we can see that only the vulnerable calls gets and scanf
were not able to be processed by the Vulnerability Debug module because the vulnera-

Chapter 5. Evaluation 46

bility takes place inside the glibc library where the user input is requested triggering the
overflow, and this module does not consider these type of system libraries for debugging.
All the other vulnerable calls were successfully debugged their sensitive sink found, and
on average the ones that were compiled with canaries took more time to be debugged than
the ones that were not. This answers the question Q1 affirmatively, except for the cases
where the sensitive sink takes place inside an external library, i.e, glibc. Therefore, the
tool is capable of detecting the vulnerable calls associated with buffer overflows.
Regarding the Binary Patch module, all applications, with and without canaries, were
patched successfully with a patch template that replaced the vulnerable call for its safe
alternative. Based on this information, we can answer affirmatively to the question Q2.
All patches produced a binary with 47576 bytes, regardless of the sensitive sink or the
binary initial size. This is due to the way that e9patch allocates space for the trampolines,
in which it divides the virtual address space into sets of blocks with fixed length. In fact,
this is why the file size increase percentage is less on the binaries with canaries than the
ones without canaries, since the former have a greater initial size due to the canary infor-
mation. These facts and observations allows us to answer the question Q5.
We also analyzed the patched binaries runtime performance by measuring the overhead
when compared to the original binary. We found that on average, each patched binary
took around 40% more time to execute. This happens even when a binary have the same
vulnerable call being patched in multiple locations, where for each vulnerability we no-
tice an increase of around 13% in runtime performance as illustrated in Table 5.4. This
information answers the question Q4

Table 5.4: Performance overhead of multiple vulnerable calls being patched (without
canaries)

strcpy
one vulnerable call two vulnerable calls

% Execution time overhead 44.80% 57.94%

All the patched binaries were successfully validated, by adding the previously found
exploits to the current test case database and letting the Vulnerability Exploitation module
run for 6 hours without any vulnerability being found. Base on this, we can answer the
question Q3, stating that the applied patches did not introduce any new vulnerability.

5.3 Evaluation with Real Applications

We downloaded two applications from GitHub, so we could test our tool on a more robust
environment. Since we need specific vulnerable functions to be available in the appli-
cation and for testing both the Vulnerability Debugger module and the Binary Patching

Chapter 5. Evaluation 47

module, we decided to modify these applications. To do so, we replaced the safe func-
tions they contained with their vulnerable alternative, creating thus new sensitive sinks
that could be exploited, debugged and patched by our tool. Table 5.5 gives an overview
of these modifications

Table 5.5: Summary of modifications introduced in the real applications

Application Modifications

TicTacToe [18] Replaced fgets with gets (line 33 of main.c)
Simple Password Generator [15] Added strcpy before the return instruction (line 105)

Details about the modified source code for the TicTacToe application is showed in
Listing 5.2 and for the Simple Password Generator in Listing 5.3.

1 p r i n t f (”\n (t u r n #%i) To which s q u a r e
2 would you (p l a y e r %c) l i k e t o move? ” , t u r n , p l a y e r) ;
3
4 g e t s (i n p u t) ; / / o r i g i n a l was f g e t s (i n p u t , 3 , s t d i n)
5 moveTo = a t o i (i n p u t) ;
6
7 i f (mv(board , moveTo , p l a y e r))
8 t u r n ++;

Listing 5.2: TicTacToe added vulnerability

1 pw = gen pw (l e n g t h) ;
2 char buf [1 0] ; / / added
3 s t r c p y (buf , pw) ; / / added
4 p r i n t f (”%s \n ” , buf) ; / / added
5 re turn 0 ;

Listing 5.3: Simple Password Generator added vulnerability

Both applications were compiled with and without canaries, and all tests followed the
same methodology as the ones in Section 5.2.

Table 5.6: Test results for real applications without canaries

TicTacToe Simple Password Generator

Lines of Code 126 160
Debug successful? No Yes

Debug time (s) N/A 6191
Patch successful? Yes Yes

% File size increase 176.48% 179.60%
% Execution time overhead 46.50% 62.36%

Patch validated successfully? Yes Yes

The results presented in Table 5.6 are very similar to the ones obtained with synthetic
applications. All applications were successfully patched and validated, answering the

Chapter 5. Evaluation 48

question Q6 and demonstrating the ability of our tool on discovering and patching vul-
nerabilities even in more robust environments.
It is important to note that the Simple Password Generator application took more than one
hour to be debugged successfully in order to find the sensitive sink due to the way it is
programmed. Before the vulnerability is triggered, the application has to iterate over a
given length value, generating each character, one by one, and ensuring that the security
best practices are followed, as illustrated in the code snippet in Listing 5.4. Because the
initial length value was 35 and each step of this iteration (including all security valida-
tions) had to be analyzed by the Vulnerability Debugger module, it took more time to find
the vulnerability sensitive sink when compared with the other applications under analysis.

1 f o r (i = 0 ; i < l e n g t h ; i ++) {
2 nrand = rand () % 100 ;
3 i f (n rand > 50)
4 pw [i] = s l a t i n [r and () % s i z e o f (s l a t i n)] ;
5 e l s e
6 i f (n rand > 20 && nrand <= 50)
7 pw [i] = s g l a t i n [r and () % s i z e o f (s g l a t i n)] ;
8 e l s e
9 pw [i] = s e s c [r and () % s i z e o f (s e s c)] ;

10 }
11 re turn pw ;

Listing 5.4: Simple Password Generator snippet

Chapter 6

Conclusion

In this dissertation we focused on the problem of buffer overflow vulnerabilities in C, and
proposed a solution to mitigate them, by repairing programs with such vulnerabilities. To
pursuit with this goal, we analyzed some examples of stack overflow vulnerabilities in
C, and we have also examined some functions that are considered insecure for this class
of vulnerabilities and their secure versions. In addition, we analyzed several tools and
previous work made on the topic of vulnerability detection and automatic software repair,
without requiring access to the source code. Our analysis showed that modern fuzzers
already support binary-only fuzzing, allowing for non-instrumentalized binaries to be
fuzzed at the cost of performance. The analysis showed that some existing debuggers,
with the ability of recording a session, could be used on a binary along with a possible ex-
ploit, to perform a reverse data-flow analysis to confirm the presence of a stack overflow
vulnerability and find its sensitive sink. In addition, we have concluded that some binary
rewriting tools, mainly used for binary instrumentation in software functionality testing,
could also be used in software security, to patch a binary vulnerability without having
access to the program source code. Thus, we proposed a fully automated tool, capable of
detecting, confirming and patching vulnerabilities directly on the binary code without it
being instrumentalized and without accessing to the source code of the program.
We implemented a prototype of the proposed solution by the combination of three open-
source tools, AFL++, GDB and E9Patch, which were the key elements of the implemen-
tation of three modules, Vulnerability Exploitation, Vulnerability Debugger and Binary
Patching.
The prototype was evaluated using a dataset of vulnerable applications collected from
SARD and real applications collected from GitHub. The experimental results showed that
the tool was able to successfully detect and confirm vulnerabilities related with buffer
overflows, with the exception of those whose vulnerability happens inside a system li-
brary, i.e, glibc. The results also showed that all vulnerabilities were successfully patched,
even those associated with system libraries, and that the tool was able to operate on bina-
ries that were compiled with or without security mechanisms, as the canaries.

49

Chapter 6. Conclusion 50

Based on these results, we conclude that our solution satisfies the objectives proposed for
this thesis and can be a valuable asset for work related to binary patching.

6.1 Future Work

In this section, we present some aspects that could be used to improve the tool and future
directions for continuing this work.
GDB record feature proved to be very immature and so, one of the improvements that can
be made is replacing GDB with Mozilla Record&Replay tool [14]. This last executes an
application and collects traces of its execution, allowing it to be replayed in GDB and fully
supporting AVX. Since it uses GDB for its replay feature, it can be seamlessly integrated
in our Vulnerability Debug module. Another aspect that can be improved is the creation
of more patch templates, for covering more functions associated with buffer overflows
vulnerabilities.
For future work, we believe that more vulnerable functions should be mapped, and patch
templates created in order for the tool to be able to fix more vulnerabilities. We also
believe that in the future, this tool should also consider heap overflows vulnerabilities.

Appendix A

Patch Templates

A.1 Strcpy With size

1 # i n c l u d e ” s t d l i b . c ”
2 # i n c l u d e < s t d i o . h>
3
4 void a p p l y p a t c h (char * h a s c a n a r y , void * rbp , void * r d i , char * r s i , long s i z e){
5 long o f f s e t = 0 ;
6 s t r n c p y (r d i , r s i , s i z e − 1) ;
7 }

A.2 Strcpy truncate rsi

1 # i n c l u d e ” s t d l i b . c ”
2 # i n c l u d e < s t d i o . h>
3
4 void a p p l y p a t c h (char * h a s c a n a r y , u i n t * rbp , u i n t * r d i , char * r s i){
5 long o f f s e t = 0 ;
6 i f (s t r c mp (” True ” , h a s c a n a r y) == 0){
7 o f f s e t = 8 ;
8 }
9 long s i z e = (long) rbp − (long) r d i − o f f s e t ;

10
11 i f (s t r l e n (r s i) > s i z e){
12 char * n e w r s i = ” ” ;
13 s t r n c p y (n e w r s i , r s i , s i z e − 1) ;
14 n e w r s i [s i z e −1] = 0 ;
15 * r s i = * n e w r s i ;
16 }
17
18 }

51

Appendix A. Patch Templates 52

A.3 Strcat

1 # i n c l u d e ” s t d l i b . c ”
2 # i n c l u d e <s t d a r g . h>
3 # i n c l u d e < s t d i o . h>
4
5 void a p p l y p a t c h (char * h a s c a n a r y , void * rbp , void * r d i , void * r s i){
6 long o f f s e t = 0 ;
7 i f (s t r c mp (” True ” , h a s c a n a r y) == 0){
8 o f f s e t = 8 ;
9 }

10
11 / / s t r l e n (r d i) t o a c c o u n t f o r t h e f a c t
12 / / t h e i n i t i a l b u f f e r migh t a l r e a d y have c o n t e n t
13 long s i z e = (long) rbp − (long) r d i − o f f s e t ;
14 s t r n c a t (r d i , r s i , s i z e − s t r l e n (r d i) − 1) ;
15 }

A.4 Scanf

1 # i n c l u d e ” s t d l i b . c ”
2 # i n c l u d e <s t d a r g . h>
3 # i n c l u d e < s t d i o . h>
4 # d e f i n e MAX 255
5
6 void a p p l y p a t c h (char * h a s c a n a r y , void * rbp , void * r d i , void * r s i , . . .) {
7 long o f f s e t = 0 ;
8 i f (s t r c mp (” True ” , h a s c a n a r y) == 0){
9 o f f s e t = 8 ;

10 }
11
12 long s i z e = (long) rbp − (long) r s i − o f f s e t ;
13 char * buf [s i z e] ;
14 f g e t s (buf , s i z e −1 , s t d i n) ;
15
16 v a l i s t a p t r ;
17 v a s t a r t (a p t r , r s i) ;
18 s n p r i n t f (r s i , s i z e −1 , r d i , buf) ;
19 va end (a p t r) ;
20
21 va end (a p t r) ;
22 }

Appendix A. Patch Templates 53

A.5 Gets

1 # i n c l u d e ” s t d l i b . c ”
2 # i n c l u d e < s t d i o . h>
3
4 void a p p l y p a t c h (char * h a s c a n a r y , u i n t * rbp , u i n t * r d i){
5 long o f f s e t = 0 ;
6 i f (s t r c mp (” True ” , h a s c a n a r y) == 0){
7 o f f s e t = 8 ;
8 }
9 long s i z e = (long) rbp − (long) r d i − o f f s e t ;

10 f g e t s (r d i , s i z e , s t d i n) ;
11 }

A.6 Sprintf

1 # i n c l u d e ” s t d l i b . c ”
2 # i n c l u d e <s t d a r g . h>
3 # i n c l u d e < s t d i o . h>
4 # d e f i n e MAX 255
5
6 void a p p l y p a t c h (char * h a s c a n a r y , void * rbp , void * r d i , void * r s i , . . .) {
7 long o f f s e t = 0 ;
8 i f (s t r c mp (” True ” , h a s c a n a r y) == 0){
9 o f f s e t = 8 ;

10 }
11
12 long s i z e = (long) rbp − (long) r d i − o f f s e t ;
13
14 v a l i s t a p t r ;
15 v a s t a r t (a p t r , r s i) ;
16 v s n p r i n t f (r d i , s i z e −1 , r s i , a p t r) ;
17 va end (a p t r) ;
18
19 }

Appendix A. Patch Templates 54

Bibliography

[1] Cve. https://www.cve.org/About/Overview [Accessed on 14.12.2021].

[2] Data execution prevention. https://docs.microsoft.com/en-
us/windows/win32/memory/data-execution-prevention [Accessed on 03.03.2022].

[3] E9tool user-guide. https://github.com/GJDuck/e9patch/blob/master/doc/e9tool-
user-guide.md2-patch-language [Accessed on 21.03.2022].

[4] Format of executable binary files. https://pierrelib.pagesperso-
orange.fr/exec formats/a.out freebsd.html [Accessed on 12.06.2022].

[5] Gdb - process record. https://sourceware.org/gdb/wiki/ProcessRecord [Accessed on
18.12.2021],.

[6] Gdb reverse debug. https://sourceware.org/gdb/wiki/ReverseDebug [Accessed on
18.12.2021].

[7] Gjduck/e9patch: A powerful static binary rewriting tool.
https://github.com/GJDuck/e9patch [Accessed on 15.04.2022].

[8] Ibm - what is industry 4.0. https://www.ibm.com/topics/industry-4-0 [Accessed on
17.01.2022].

[9] Intel® inspector. https://www.intel.com/content/www/us/en/developer/tools/oneapi/
inspector.html [Accessed on 02.01.2022].

[10] Most secure programming languages. https://www.whitesourcesoftware.com/
resources/research-reports/what-are-the-most-secure-programming-languages/ [Ac-
cessed on 18.12.2021].

[11] Nist software assurance reference dataset. https://samate.nist.gov/SARD/ [Accessed
on 07.01.2022].

[12] Pygdbmi. https://cs01.github.io/pygdbmi/ [Accessed on 21.03.2022].

[13] Radamsa. https://gitlab.com/akihe/radamsa [Accessed on 07.01.2022].

55

Bibliography 56

[14] Record&replay - lightweight recording deterministic debugging. https://rr-
project.org/ [Accessed on 21.05.2022].

[15] Simple password generator. https://github.com/codeliveru/pgen [Accessed on
07.04.2022].

[16] Sonarqube. https://www.sonarqube.org/ [Accessed on 02.01.2022].

[17] Threatpost - vulnerable cardiac devices. https://threatpost.com/st-jude-medical-
patches-vulnerable-cardiac-devices/122955/ [Accessed on 25.01.2022].

[18] Tictactoe. https://github.com/emacdona/tictactoe [Accessed on 07.04.2022].

[19] Wired - jeep remote vulnerability. https://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway/ [Accessed on 25.01.2022].

[20] Buffer overflow patching for c and c++ programs: Rule-based approach. In Pro-
ceedings of the ACM SIGAPP Applied Computing Review, 13:8–19, 6 2013.

[21] Prioritizing alerts from multiple static analysis tools, using classification models.
In Proceedings of the 1st International Workshop on Software Qualities and Their
Dependencies, pages 13–20. Association for Computing Machinery, 2018.

[22] Cwe - top 25 most dangerous software weaknesses 2021, 2021.
https://cwe.mitre.org/top25/archive/2021/2021 cwe top25.html [Accessed on
03.12.2021].

[23] Mj Muhammad Aslam. Binary instrumentation with qemu. 2016.

[24] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. Getafix: Learn-
ing to fix bugs automatically. In Proceedings of the ACM on Programming Lan-
guages, 2019.

[25] Fabrice Bellard. Qemu. https://www.qemu.org/ [Accessed on 10.12.2021].

[26] Muhammad Arif Butt, Zarafshan Ajmal, Zafar Iqbal Khan, Muhammad Idrees, and
Yasir Javed. An in-depth survey of bypassing buffer overflow mitigation techniques.
In Proceedings of Journal Applied Sciences, 2022, 12, 2022.

[27] Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro, and Ryan R Newton. In-
struction punning: Lightweight instrumentation for x86-64. In Proceeding of SIG-
PLAN, 2017, 52:320–332, 6 2017.

Bibliography 57

[28] C Cowan, F Wagle, Calton Pu, S Beattie, and J Walpole. Buffer overflows: attacks
and defenses for the vulnerability of the decade. In Proceeding of DARPA Infor-
mation Survivability Conference and Exposition, volume 2, pages 119–129 vol.2,
2000.

[29] Jason Deckard. Buffer Overflow Attacks: Detect, Exploit, Prevent. In Proceeding of
the Journal Elsevier Science, 2005, 2005.

[30] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. Binary rewriting without
control flow recovery. In Proceeding of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 151–163. Association
for Computing Machinery, 2020.

[31] Jon Erickson. Hacking: The Art of Exploitation, 2nd Edition. No Starch Press, 2008.

[32] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. The afl++
fuzzing framework. https://aflplus.plus/ [Accessed on 11.12.2021].

[33] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. Afl++ : Com-
bining incremental steps of fuzzing research. In Proceedings of the 14th USENIX
Workshop on Offensive Technologies. USENIX Association, 8 2020.

[34] Jonathan Ganz and Sean Peisert. Aslr: How robust is the randomness. In Proceeding
of IEEE Cybersecurity Development, pages 34–41, 2017.

[35] GNU and Fee Software Foundation. Gdb: The gnu project debugger, 1986.
https://sourceware.org/gdb/ [Accessed on 10.12.2021].

[36] LLVM Developer Group. The llvm compiler infrastructure project, 2003.
https://llvm.org/ [Accessed on 10.12.2021].

[37] Eric Haugh and Matt Bishop. Testing c programs for buffer overflow vulnerabilities,
2003.

[38] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. Fuzzgen:
Automatic fuzzer generation. In Proceedings of the 29th USENIX Security Sympo-
sium, pages 2271–2287. USENIX Association, 8 2020.

[39] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: The-
ory and Practice. CRC Press, Inc., 1st edition, 2009.

[40] William Klieber, Ruben Martins, Ryan Steele, Matt Churilla, Mike McCall, and
David Svoboda. Automated code repair to ensure spatial memory safety. In Proceed-
ing of IEEE/ACM International Workshop on Automated Program Repair, pages
23–30. Institute of Electrical and Electronics Engineers Inc., 6 2021.

Bibliography 58

[41] Chenyang Lyu, Shouling Ji, Yuwei Li, Junfeng Zhou, Jianhai Chen, and Jing Chen.
Smart seed generation for efficient fuzzing. arXiv, 2018.

[42] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. Mopt: Optimized mutation scheduling for fuzzers. In Proceedings
of the 28th USENIX Security Symposium, pages 1949–1966. USENIX Association,
8 2019.

[43] Microsoft. Definition of a security vulnerability,
2014. https://docs.microsoft.com/en-us/previous-versions/tn-
archive/cc751383(v=technet.10) [Accessed on 18.12.2021].

[44] Linda Null and Julia Lobur. The Essentials of Computer Organization and Architec-
ture. Jones and Bartlett Publishers, 2006.

[45] P. Oehlert. Violating assumptions with fuzzing. IEEE Security and Privacy, 3(2):58–
62, 2005.

[46] James Ransome and Anmol Misra. Core Software Security: Security at the Source.
CRC Press, 2018.

[47] Gerardo Richarte. Four different tricks to bypass stackshield and stackguard protec-
tion [accessed on 16.04.2022]. 9 2002.

[48] Rebecca L Russell, Louis Kim, Lei H Hamilton, Tomo Lazovich, Jacob A Harer,
Onur Ozdemir, Paul M Ellingwood, and Marc W McConley. Automated vulnerabil-
ity detection in source code using deep representation learning. arXiv, 2018.

[49] Fayozbek Rustamov and Joobeom Yun. Deepdiver: Diving into abysmal depth of
the binary for hunting deeply hidden software vulnerabilities. In Proceeding of the
Future Internet, 2020, 12:74, 1 2020.

[50] Eric Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie Forrest. Auto-
mated repair of binary and assembly programs for cooperating embedded devices.
In Proceeding of the Journal SIGARCH Computer Architecture, 2013, 41:317–328,
3 2013.

[51] Jayakrishna Vadayath, Moritz Eckert, Kyle Zeng, Nicolaas Weideman, Gokulkr-
ishna Praveen Menon, Yanick Fratantonio, Davide Balzarotti, Adam Doupé, Tiffany
Bao, Ruoyu Wang, Christophe Hauser, and Yan Shoshitaishvili. Arbiter: Bridging
the static and dynamic divide in vulnerability discovery on binary programs. In Pro-
ceedings of the USENIX Security Symposium, pages 413–430, Boston, MA, August
2022. USENIX Association.

Bibliography 59

[52] Yves Younan, Wouter Joosen, and Frank Piessens. Code injection in c and c++: A
survey of vulnerabilities and countermeasures. technical report, departement com-
puterwetenschappen, katholieke universiteit leuven, 2004.

[53] Michal Zalewski. American fuzzy loop (afl). https://lcamtuf.coredump.cx/afl/ [Ac-
cessed on 11.12.2021].

