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Abstract 

In Portugal, soil mapping remains incomplete, and there are also significant 
problems with the existing cartography. Digital Soil Mapping uses advanced computer-
based techniques such as Artificial Neural Networks (ANN) for mapping soil classes in 
a cheaper, more consistent and flexible way, using surrogate landscape data. This work 
used five different training sets to evaluate the impact that sampling has on the 
predictive accuracy of ANNs. The testes were carried out in IDRISI Taiga for two 
catchments in northern Portugal, using an ANN method known as multi-layer 
perceptron. Results show that sampling design is very important for the accuracy of soil 
mapping with ANNs. 
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Resumo 
A IMPORTÂNCIA DA AMOSTRAGEM NA EFICIÊNCIA DE REDES 
NEURONAIS ARTIFICIAIS EM CARTOGRAFIA DIGITAL DE SOLOS. 

Portugal não dispõe ainda de uma cobertura completa e harmonizada de cartas de 
solos. A cartografia automática de solos utiliza técnicas digitais avançadas como as 
Redes Neuronais Artificiais (RNA) para prever a distribuição espacial de tipos de solos 
de forma mais económica e consistente, usando variáveis responsáveis pela formação e 
desenvolvimento dos solos. Neste trabalho são usadas cinco amostras para avaliar o 
impacto que diferentes métodos de amostragem têm na exactidão da modelação por uma 
RNA. O teste realizou-se em IDRISI Taiga para duas bacias no Norte de Portugal, com 
recurso ao método multi-layer perceptron. Verificou-se que a amostragem é 
determinante para a performance da RNA. 
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1. INTRODUCTION 

 
Soils are an important non-renewable resource crucial for human activities 

(POTOCNIK & DIMAS, 2005). By supporting valuable services, such as food 
production, biodiversity, and pollution buffering, soils play a fundamental role in 
sustainable land use. The simple absence of soil information adds to the uncertainties of 
predicting food production, and lack of reliable and harmonized soil data has 
considerably hampered land degradation assessments, environmental impact studies and 
adapted sustainable land management interventions (MULLER & NILSSON, 2009).  

Although soil surveys have been carried out in many countries, the scale and area 
coverage of resulting soil maps are not ideal for planning applications at national level 
(DOBOS et al., 2006). Additionally, there is a lack of consistency between soil 
classifications and legends across countries, which contributes towards a slow 
progression in integrating soil datasets, even in Europe (ESBN, 2005). 

Portugal, like most European Union member states, only has a fraction of its 
territory covered with soil maps at semi-detailed or reconnaissance scales 
(MCBRATNEY et al., 2003). While 55% of continental Portugal has soil maps at 
1:50000 produced by traditional methods of soil survey before the 1970s, only about 
40% of the territory has more recent soil map coverage at 1:100000 with some degree 
of overlap (Figure 1). Thus, not only the published coverage remains incomplete, but 
there are also significant problems with the existing cartography. There is a lack of 
cartographic uniformity between the different regions: (1) scales are different, (2) four 
different taxonomic systems were used, and (3) the framework behind the mapping of 
soil units at the two scales is different: the 1:100000 maps have a physiographic basis 
whereas the 1:50000 maps have a taxonomic basis. Moreover, using taxonomy as the 
basis of map design often results in high intra-unit variability of soil properties 
(MULLA & MCBRATNEY, 2000) and limited correlation between soil type and soil 
hydrologic parameters (WESTERN & GRAYSON, 2000). Therefore, only 43% of the 
area of Portugal has high standards of soil cartography. 
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Figure 1. Scale and legends of regional soil maps of continental Portugal. 
 

 
 
In order to bridge the gap between existing soil maps based on traditional soil 

survey and the increasing demand for soil information, the technique of Digital Soil 
Mapping (DSM) has been developed for mapping soil classes and/or soil properties 
(DOBOS et al., 2006). By combining computer-based technologies such as 
Geographical Information Systems (GIS) with advanced techniques such as Artificial 
Neural Networks (ANN) and Fuzzy Logic (FL), DSM has enabled mapping the spatial 
distribution of soils in a cheaper, more consistent and flexible way, using surrogate 
landscape data. Thus, ANN models provide the means to predict soil types at locations 
without soil spatial data by combining existing soil maps with landscape features known 
to be responsible for the spatial variation of soils (MCBRATNEY et al., 2003). The 
process uses a set of variables related to soil forming factors and the respective soil type 
as training data for the ANN, which constructs rules (TSO & MATHER, 2001) that can 
be extended to the unmapped areas.  

Whilst the literature provides a number of examples where DSM is presented as 
an efficient mapping technique (e.g., ZHU, 2000; BEHRENS et al., 2005; CARVALHO 
JÚNIOR et al., 2011) and soil spatial variation is shown to be induced by a limited 
number of soil forming factors (MORA-VALLEJO et al., 2008), still little is known 
about the impact that the training sites have on the predictive accuracy of the models. 

The sampling method and location of training sites appears particularly important 
for ANNs because their rate of learning, convergence to a solution, network 
performance and ability to generalize depend on the efficiency of the layout of the 
sampling pattern which, in turn, depends on the presence of spatial periodicity of the 
phenomena. Despite the fact that all environmental variables exhibit spatial 
autocorrelation at some scale (ENGLUND, 1988), high values found in the spatial 
distribution of the variables used to train an ANN is likely to affect is performance. 
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Therefore, in applying ANN for DSM, the likelihood that the sampling design used to 
select training areas has a relevant effect on the classification effectiveness is our main 
hypothesis. Hence, some of the main objectives of AutoMAPticS (Automatic Mapping 
of Soils), a research project carried out at national level and based on the development 
of artificial neural network (ANN) models, are to (i) predict soil classes in currently 
unmapped areas of mainland Portugal, and (ii) harmonize soil legends across regions 
with distinct soil mapping classifications, using Portuguese and Spanish soil spatial 
datasets to a) improve the level of transnational data integration and b) assess existing 
data. 

The present work aims at evaluating the impact that different sampling 
approaches used to select training areas for an ANN have on their predictive accuracy.  
 
 
2. STUDY AREA 
 

In order to assess the impact of sampling, two study areas in northern Portugal 
were selected: a catchment in Mondim de Basto (Rio Tâmega), in the Douro-Minho 
region (911 km2), and another in Vila Real (Rio Corgo) in the Northeast region (468 
km2) as shown in Figure 2. 

These catchments were chosen because they present diverse geomorphological 
and ecological characteristics and include soil types that are well representative of those 
found in each respective region. Soil types occurring in Mondim include Anthrosols, 
Fluvisols, Leptosols, and Regosols, while those in Vila Real include Anthrosols, 
Cambisols, Fluvisols, and Leptosols. 
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Figure 2. Location and Digital Elevation Model (DEM) of the study areas. 
 

 
3. DATA AND METHODS 
 

Independent variables used for training the ANN included both continuous terrain 
data and categorical (thematic) maps. The terrain surrogate data were derived from the 
Shuttle Radar Topography Mission (SRTM) digital elevation data 
(www2.jpl.nasa.gov/srtm) with a 90 m resolution and selected after multicollinearity 
tests showed little data redundancy. Seven morphometric variables, which are 
frequently used in DSM, were extracted from the terrain data: slope steepness, plan and 
profile curvatures, upslope catchment area, dispersal area, wetness index and potential 
solar radiation. These continuous variables were rescaled to a 0-255 value range. 

In addition to altitude, land use from Corine Land Cover 2006 (CLC2006) and 
geological data were also included, as well as digital soil data at 1:100000 provided by 
DRAEM, the regional agriculture department of Northwest Portugal. All layers were 
clipped to the study area and converted to a raster structure with a 90-m cell size, using 
the ETRS1989-TM06 projection system. 

In order to account for the possible effects of autocorrelation, the coordinates 
(latitude and longitude) were also included in the input set to indicate location. A formal 
assessment of spatial autocorrelation of variables was performed for both catchments. 
Measured through Moran´s I, the test indicated that both in Mondim and Vila Real 
autocorrelation is significantly high for slope steepness (0.76/0.82) and very high for 
potential solar radiation (0.88/0.88) and altitude (0.99/0.98). 

An even number of training sites (500 pixels) were selected, whenever possible, 
for each soil type. However, not all soil types covered areas sufficiently large to allow 
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the selection of the same number of pixels. Thus, 1689 pixels (out of 112 416) were 
selected in Mondim and 2040 (out of 57 788) were selected in Vila Real. For their 
selection, two different sampling strategies were implemented. The ANN was trained by 
presenting it a number of different examples of the same soil type drawn either (i) 
randomly (RS), or (ii) in a stratified fashion (SS). For the latter, training pixel vectors 
were located by choosing (a) random coordinates within soil types strata (SRS), (b) 
random coordinates within soil types and chosen evenly in the frequency space (SRPS), 
(c) nearest coordinates within soil types and chosen evenly in the frequency space 
(SNPS), and (d) farthest coordinates within soil types and chosen evenly in the 
frequency space (SFPS).  

The neural network was trained in IDRISI Taiga (Clark Labs), using a highly 
popular supervised method known as multi-layer perceptron (MLP), run in hard 
classification mode. The MLP classifier is based on the back-propagation algorithm 
(HAYKIN, 1999). The experimental setup for each training set used the default 
specifications presented in Table 1 as initial values.  
 
Table 1. Characteristics and parameters of the ANN MLP in IDRISI Taiga. 
 

MLP parameters 
Group Parameter Default value 

Input specifications Avrg. training pixels per class 200 / 250 
 Avrg. testing pixels per class 200 / 250 
Network topology Hidden layers 1 
 Layer 1 nodes 7 
Training parameters Automatic training no 
 Dynamic learning rate no 
 Learning rate 0.01 
 End learning rate 0.001 
 Momentum factor 0.5 
 Sigmoid constant “a” 1 
Stopping criteria RMS 0.01 
 Iterations 10000 
 Accuracy rate 100% 

 
In the Mondim catchment, an average of 200 pixels per class were used for 

training and testing, while 250 were used for Vila Real, due to constraints in the total 
area covered by some soil types. Some of these parameters were progressively changed 
and the network performance monitored, namely: number of layer 1 nodes, use of 
automatic training, use of dynamic learning rate, and number of iterations (maximum of 
100 000). Training ended when one of the stopping criteria was achieved: either a 
RMSE ≤ 0.01, an accuracy of 100%, or the defined maximum number of iterations. 
Therefore the default neural network included 12 input layer nodes, 4 output layer 
nodes, and one hidden layer with 7 nodes (see Figure 3). 

In a study area, for a given combination of sampling method and parameters, 
results of different runs can vary due to different seeding of training pixels. Thus, five 
model runs were performed for each combination, in order to average their accuracies, 
as calculated by IDRISI. 
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Figure 3. View of MLP interface and initial training parameters used in IDRISI Taiga. 
 

 
 
4. RESULTS AND DISCUSSION 
 

The results of ANN training for both catchments are presented in Table 2, where 
for each sampling method, the main parameters and respective values are shown only 
for the combination obtaining the highest averaged accuracy, as computed by IDRISI. 

In Mondim, the best performance of the ANN was obtained with SRS (73%), by 
adding one node to the hidden layer. This result was closely followed by SNPS (72%), 
with SFPS showing the worst performance (51%). Whilst random sampling did not 
achieve as good predictive accuracy results as the one possible to obtain with stratified 
sampling (65% vs. 73%), it is clear that spatial autocorrelation causes an outstanding 
drop-off in the number of iterations required to achieve similar levels of accuracy (72% 
and 73%). Thus, accounting for spatial autocorrelation by choosing pixels that are as 
close as possible to each other (SNPS) resulted in only 5000 iterations being required 
(as opposed to 50 000) to achieve similar accuracy levels. This effect was also observed 
in the results obtained for Vila Real. Here SNPS clearly performed better (87%) and 
SRS, SRPS, and SFPS the worst (66%), with accuracies being generally higher than in 
Mondim. While in Mondim best performances in all sampling methods are obtained 
using dynamic learning rate, in Vila Real highest accuracy was reached with automatic 
training and without dynamic learning rate. The difference being that automatic training 
automatically adjusts the learning rate during training, re-starting the iteration process 
with new random beginning weights, whilst in dynamic learning rate, the rate is lowered 
progressively.  
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Table 2. Impact of sampling method on the performance of ANN models. 
 

Sampling Method Iterations 
Layer 1 
nodes 

Automatic 
training 

Dynamic 
learning rate 

Accuracy 
(%) 

Mondim de Basto 

RS 100000 8 N Y 64.9 

SRS 50000 8 N Y 73.3 

SRPS 100000 7 N Y 58.9 

SNPS 5000 7 N Y 71.8 

SFPS 90000 7 N Y 51.3 

Vila Real 

RS 90000 7 N N 74.4 

SRS 90000 7 N N 65.5 

SRPS 50000 7 N Y 65.7 

SNPS 30000 7 Y N 86.9 

SFPS 90000 8 N Y 66.4 

 
Although results are slightly different for each catchment, they show that the 

predictive accuracy of the ANN models in supervised mode is highly dependent on the 
sampling method used to select training sites. 
 
5. CONCLUSIONS 
 

There is a growing demand for high-resolution spatial soil information for 
environmental planning and modelling. Portugal does not have complete soil-map 
coverage because soil surveys are field and labour intensive, and therefore very 
expensive.  

Digital Soil Mapping approaches are based on emerging powerful techniques such 
as ANN which can provide high-quality digital soil maps in a fast and cost-effective 
way. However, not much is known about the impact that the selection of training sites 
have on the accuracy of the models. This work evaluated that impact for two catchments 
in northern Portugal, and conclusions are that (1) sampling strategy has a very important 
impact on the accuracy of soil predictive maps developed using ANNs and (2) sampling 
strategy benefits from reflecting high autocorrelation of factors of soil formation 
because the ANN learns faster that close neighbouring positions are more likely to have 
similar soil types, allowing the model to converge faster to a better solution. Therefore 
different sampling strategies should be assessed and tested prior to using ANN for 
modeling the spatial distribution of soils classes. 

Subsequent work will involve the testing of different types of ANNs applied in the 
same catchment areas and the comparison with the MLP results presented here. 
Classification of soils using ANNs will also be tested at different spatial resolutions, 
and additional study areas will be included.  

Future work will also explore the hybridization power of using Fuzzy Logic for 
DSM, and results obtained using both methodologies will be compared and validated 
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using existing maps and soil profile data. The best model will be used to map soil 
classes across areas which are currently lacking spatial soil data, ultimately enabling the 
completion of the Portuguese soil map coverage at 1:100000. 
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