
1 Introduction 

For image classification approaches, p ixel-based techniques 

(unsup ervised and sup ervised) have been largely p referred in 

Landsat p roducts (Huang et al., 2015; Lu, Ma & Xia, 2017). 

For case studies at a regional scale, Landsat TM/ETM+ is the 

most frequently used p roduct. With medium/high sp atial 

resolution, this p roduct is often classified as p ixel-based 

because it p rovides high-accuracy values (Lu & Weng, 2007). 

However, the p erformance of the sup ervised classification 

technique is highly dep endent on the quality and quantity of the 

training set used to train the classification model, which may 

affect the accuracy of the image classification (Lippitt et al., 

2008; Brodley & Friedl, 1999). For most sup ervised classifiers, 

such as maximum likelihood classification (MLC), multi-layer 

percep tron (MLP), support vector machine (SVM), or random 

forest (RF), not having sufficient and rep resentative training 

data can be detrimental to the image classification results (Lu 

& Weng, 2007). 

Training samp les are usually acquired from exp ert 

knowledge, field surveys, or through the visual interp retation 

of other p roducts, e.g., high-resolution images from Google 

Earth and aerial p hotograp hs (Lu & Weng, 2007). However, 

collecting training samp les from fieldwork has high associated 

costs in terms of money and time, and collecting training 

samp les through visual interp retation can be difficult and cause 

bias in the rep resentativeness of the samp les (Usman, 2013). 

Nevertheless, various approaches have been used to overcome 

the insufficient training samp les, such as semi-sup ervised 

learning or, more recently, active learning (Lu, Ma & Xia, 

2017; Huang et al., 2015). However, both approaches are 

dep endent on p re-existing labelled samp les, which requires 

user exp ertise and p rop rietary software. 

Furthermore, in heterogeneous biop hysical environments, the 

rep resentativeness of each land use/land cover (LULC) class 

may not exist in the training set because of the sp ectral 

confusion among LULC classes (Lu & Weng, 2007).  

Accordingly, it is essential to exp lore ways to obtain numerous, 

high-quality training samp les to allow remote sensing 

applications in such environments. 

Therefore, the p resent study attemp ts to exp lore the p op ular 

technique of K-means clustering in order to select the most 

rep resentative training samp les by class for satellite imagery 

classification. We investigate the potential of this technique for 

LULC classification in a predominantly rural region 

characterized by a mixed agro-silvo-p astoral environment, 

which means there is a broad range of sp ectral signatures for 

each LULC class. Landsat-8 data based on the Normalized 
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Abstract 

To create a land use/land cover (LULC) map from a satellite image, we can follow a supervised classification approach if we know what 

classes exist in the study area and if we have representative training samples for each class. However, in heterogeneous biophysical 

environments, the wide range of spectral signatures among LULC classes can bias the classification results. In this study, we generated training 
samples from the official 2015 Portuguese Land Cover Map (COS). In spite of the viability of this source of information (official reference 

data), we faced some problems with corrupted data and an unbalanced number of training samples per class. As such, we explored the K-

means clustering technique in order to understand whether the data had critical issues and to select the most representative training samples 
by class for satellite imagery classification. We investigated the potential of this technique for LULC classification in a predominantly rural 

region characterized by a mixed agro-silvo-pastoral environment, which means there is a broad range of spectral signatures for each LULC 

class. Two image classifications for 2015 were performed using the random forest classifier. The first was done by using the most 

representative training samples selected from the statistical analysis, and the other was done by using the full generated training set (original 

training set). Ultimately, the present study demonstrates the improvements in overall accuracy between both image classifications (+8%), 

showing that the applied methodology has a positive impact on the results. 
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Table 1:  Formulas to derive NDVI, NDBI and NDWI indices 

Vegetation 

index name 

Formula 

NDVI 
𝑁𝐷𝑉𝐼 =  

𝑇𝑀 𝐵𝑎𝑛𝑑 5 − 𝑇𝑀 𝐵𝑎𝑛𝑑 4

𝑇𝑀 𝐵𝑎𝑛𝑑 5 + 𝑇𝑀 𝐵𝑎𝑛𝑑 4
 

NDBI 
𝑁𝐷𝐵𝐼 =  

𝑇𝑀 𝐵𝑎𝑛𝑑 6 − 𝑇𝑀 𝐵𝑎𝑛𝑑 5

𝑇𝑀 𝐵𝑎𝑛𝑑 6 + 𝑇𝑀 𝐵𝑎𝑛𝑑 5
 

NDWI 
𝑁𝐷𝑊𝐼 =  

𝑇𝑀 𝐵𝑎𝑛𝑑 3 − 𝑇𝑀 𝐵𝑎𝑛𝑑 5

𝑇𝑀 𝐵𝑎𝑛𝑑 3 + 𝑇𝑀 𝐵𝑎𝑛𝑑 5
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Difference Vegetation Index (NDVI), the Normalized 

Difference Built-up  Index (NDBI), and the Normalized 

Difference Water Index (NDWI) were used. The official, op en 

data Portuguese Land Cover Map (COS) from 2015 was used 

to generate the training sets to train the RF classifier. Finally, 

two image classifications for 2015 were p erformed; for one of 

them, the most rep resentative training samp les selected from 

the statistical analysis were used and for the other, the full 

generated training set (original training set) was used. The 

classification results were later validated by p erforming 

classification accuracy assessment (confusion matrix). 

 

2 Study area and data 

2.1 Study area 

To apply the methodology, we chose Baixo Alentejo region, 

located in the southeast of Portugal, with about 8,505 km² 

(Figure 1). This region is characterized by a vast landscap e of 

wheat, cork oaks, and olive trees, where the dominant land use 

is mixed agro-silvo-p astoral. The landscap e of this region is 

distinctive, with both fragmented p arcels and more comp act 

parcels of land due to the different cropping calendars and field 

geometries. Disp ersed settlements are the p redominant urban 

form in this region. 

 

2.2 Satellite Image selection and Pre-Processing 

Landsat-8 satellite image located on p ath 203 and row 34 from 

2015/03/31 was downloaded from the official website of the 

United States Geological Survey (USGS). All the images are at 

Landsat Surface Reflectance Level-2; therefore, no 

atmosp heric correction was needed. 

Since we are applying this methodology to a heterogeneous 

rural area to imp rove the identification of differences between 

different LULC classes with similar sp ectral signatures we 

comp uted three indices:  (1) NDVI, (2) NDBI, and (3) NDWI. 

To derive these indices, we used the formulas shown in Table 

1.  

 

2.3 Reference dataset 

The official Portuguese Land Cover Map  (COS) of 2015 is 

produced by the Portuguese General Directorate for Territorial 

Develop ment (DGT). The dataset is freely available for 

download from the DGT website. The sp atial rep resentation of 

COS is in p olygons with a sp atial resolution of 0.5 meters, a 

minimum mapping unit (MMU) of 1 hectare and is p roduction 

method is by visual interp retation (i.e., air-p hoto map s). COS 

uses hierarchical and a priori nomenclature system (5 levels - 

225 classes) and, in fact, the COS’s first three levels are similar 

to the three CORINE Land Cover (CLC) map  levels. 

 

2.4 Training and validation test 

Following COS nomenclature levels 1, 2 and 3, and based on 

our exp ert knowledge, we identified seven major LULC classes 

as the most rep resentative of the selected study area:  1) Non-

vegetated surfaces; 2) Herbaceous temp orary; 3) Herbaceous 

permanent; 4) Vineyards; 5) Olive Orchards; 6) Forest and 

semi-natural surfaces; 7) Water bodies (Table 2). 

To generate the training set, we first converted the COS map  

to raster with a 30-meter resolution (sp atial resolution of 

Landsat-8 satellite image); then, we created a p oint for each 

pixel centroid. 

Finally, we randomly selected one thousand p oints p er LULC 

class and used them as the training set for the analysis – we 

used the remaining p oints to validate the classification. 

  

3 Methods 

The clustering p rocess is schematically described in Figure 2 

and is essentially divided into three distinct p rocesses:  1) 

Figure 1:  Location of study area. 

 

Table 1:  Formulas to derive NDVI, NDBI and NDWI indices 

 

Vegetation 

index name 

Formula 

NDVI 𝑁𝐷𝑉𝐼 =  
𝑇𝑀 𝐵𝑎𝑛𝑑 5 − 𝑇𝑀 𝐵𝑎𝑛𝑑 4

𝑇𝑀 𝐵𝑎𝑛𝑑 5 + 𝑇𝑀 𝐵𝑎𝑛𝑑 4
 

NDBI 𝑁𝐷𝐵𝐼 =  
𝑇𝑀 𝐵𝑎𝑛𝑑 6 − 𝑇𝑀 𝐵𝑎𝑛𝑑 5

𝑇𝑀 𝐵𝑎𝑛𝑑 6 + 𝑇𝑀 𝐵𝑎𝑛𝑑 5
 

NDWI 𝑁𝐷𝑊𝐼 =  
𝑇𝑀 𝐵𝑎𝑛𝑑 3 − 𝑇𝑀 𝐵𝑎𝑛𝑑 5

𝑇𝑀 𝐵𝑎𝑛𝑑 3 + 𝑇𝑀 𝐵𝑎𝑛𝑑 5
 

 

Table 2:  LULC class corresp ondence 

 

LULC classes COS nomenclature code 

Non-Vegetated surfaces 1.1.1, 1.1.2., 1.2.1., 1.2.2., 

1.2.4., 3.3.2 

Herbaceous Periodic 2.1.0., 2.1.3. 

Herbaceous Permanent 2.3.1. 

Vineyards 2.2.1. 

Olive groves 2.2.3. 

Forest and semi-natural 

surfaces 

3.1.1., 3.1.2., 3.2.2. 

Water bodies 5.1.1., 5.1.2. 
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classification-trimmed likelihoods calculation (ctlcurves); 2) 

cluster comp utation; and 3) mean discriminant factor value 

calculation (DiscrFact). The variables used for the creation of 

clusters were NDVI and NDWI indices (the same variables that 

will be used for the image classification). 

 

3.1 K-means clustering 

We used the K-means clustering algorithm to select the most 

rep resentative training samp les for each LULC class. We 

performed this technique in the R environment using the tclust 

package (Fritz, García-Escudero & Mayo-Iscar, 2012). This 

package enabled us to apply a clustering method, and p rior to 

the creation of clusters, to determine the most suitable 

parameters regarding the op timal number of clusters and the 

number of samp le p oints to be trimmed. The tclust p ackage 

handles various typ es of clustering methods. For this study, we 

used the trimmed k-means method that Cuesta-Albertos et al. 

(1997) introduced. This method is a simp le algorithm that uses 

unsup ervised learning to solve known clustering issues; it 

works well with large datasets. 

To create the clusters, as mentioned before, we used NDVI, 

NDWI, NDBI as well as band two to band five (Landsat-8) as 

variables in the attemp t to sp ectrally characterize each selected 

LULC class. After we extracted this information, we calculated 

the op timal number of clusters using the silhouette method 

technique (Figure 3A), defining the number of samp les that 

should be trimmed out using the correlated trait locus (CTL) 

(Arends et al., 2016) curves technique (Figure 3B). In this way, 

we were not blindly choosing the best value for the p arameters 

that constituted the clustering method. 

Thereafter, we imp lemented the trimmed k-means clustering 

technique by setting the p arameters, in tclust function, of rest 

to “eigen” to simultaneously control the relative group  sizes 

and the deviation from sp hericity in each cluster. Also, equal 

weights was set to “TRUE”, to avoid the creation of one cluster 

that is really well-determined but that actually does not 

rep resent the LULC class, and to achieve, as much as p ossible, 

heterogeneous clusters since no LULC has a p ure and unique 

sp ectral signatures. For a correct classification, we needed 

some variability in the range of values to avoid eliminating 

potentially imp ortant information (Fritz, García-Escudero & 

Mayo-Iscar, 2012). 

 The first step  after app lying the method was to observe the 

discriminant factor value for each cluster, in each class, in order 

to select the most rep resentative cluster(s) to use in the 

classification. To analyse these values, we used the tclust 

package as well as the DiscrFact function, creating a grap hical 

disp lay that allowed us to know which cluster p resented the 

value for discriminant factor further from zero, and therefore 

this should be selected (Fritz, García-Escudero & Mayo-Iscar, 

2012). 

 

3.2 Random forest classifier 

We selected random forest method as our image classifier, 

since it is very well-known within the remote sensing 

community, esp ecially because of the high accuracy 

assessment values achieved in these satellite image 

classifications (Belgiu & Drăguţ, 2016). We p erformed this 

classification in the R environment using the RandomForest 

package. We fixed the number of trees at 500. 

 

3.3 Classification accuracy assessment 

We p erformed the accuracy assessment using the remaining 

points as described in Section 2.4. We p hoto-interp reted 50 

points p er class to ensure they really rep resented the LULC 

class. We then validated the classification results with these 

points. We evaluated the accuracy of the classifications in 

terms of user and p roducer accuracy metrics (Congalton, 1991). 

We also used the R software to derive omission and 

commission errors. 

 

4. Results 

4.1 Classfication accuracy assessment  

Figure 2:  Workflow rep resenting the p rop osed methodology 
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For the first stage of our study, we comp uted a confusion matrix 

for each image classification to evaluate classification 

accuracy. Table 3 p resents the accuracy assessment for the 

original generated training set. The results showed that the 

overall accuracy was 65.5%; however, there was wide variation 

among the accuracy values for each LULC class.  

In p articular, 1) water bodies and forests, and 2) semi-natural 

surface classes were highly accurate (90% and 74% user 

accuracy, resp ectively), suggesting that the areas that we 

classified as those classes closely matched those in the 

reference datasets (COS). While the p roducer’s accuracy rates 

were not quite as high (77% and 70%, resp ectively), they were 

Figure 3:  Grap hical rep resentation of silhouette method and ctl curves and summary of these comp onents for each LUCL 

class  

 

Table 3:  Confusion matrix with the validation p oints (classification with original training samp les) 

 
 

Table 4:  Confusion matrix with the validation p oints (classification with cleaned training samp les) 

 

  COS 2015 

 
 

Non-

Vegetated 

surfaces 

Herbaceous 

temporary  

Herbaceous 

permanent 
Vineyards 

Olive 

groves 

Forest and semi-

natural surfaces 

Water 

bodies 

User 

accuracy 

C
la

ss
if

ie
d
 m

ap
 

Non-Vegetated surfaces 30 3 1 13 2 0 1 60 

Herbaceous  temporary 5 28 11 4 0 1 1 56 

Herbaceous Permanent 4 3 29 0 3 9 2 58 

Vineyards 12 2 0 31 4 0 1 62 

Olive groves 4 1 3 5 30 5 2 60 

Forest and semi-natural 

surfaces 
0 1 3 2 1 37 6 74 

Water bodies 1 0 2 1 0 1 43 90 

Producer accuracy 54 74 59 55 75 70 77 65.5 

 

  COS 2015 

 

 
Non-

Vegetated 
surfaces 

Herbaceous  

temporary  

Herbaceous 

permanent 
Vineyards 

Olive 

groves 

Forest and 

semi-

natural 

surfaces 

Water 

bodies 

User 

accuracy 

C
la

ss
if

ie
d
 m

ap
 

Non-Vegetated surfaces 42 1 0 3 3 0 1 84 

Herbaceous temporary  0 37 7 3 1 2 0 74 

Herbaceous Permanent 1 7 29 1 3 9 0 58 

Vineyards 6 2 1 33 4 4 0 66 

Olive groves 2 3 5 1 34 5 0 68 

Forest and semi-natural 

surfaces 
3 0 3 1 1 42 0 84 

Water bodies 1 1 2 2 0 4 40 79 

Producer accuracy 76 73 62 75 74 64 97 73.3 
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still high enough to suggest that these classes were correctly 

shown on the image classification. All the remaining classes 

had user accuracy values below 62%; however, the p roducer 

accuracies for herbaceous temporary and olive groves were 

74% and 75%, resp ectively. 

Table 4 p resents the accuracy assessment for the most 

rep resentative training samp les selected from the statistical 

analysis; the results showed a high agreement (73.3%). The 

increase of user accuracy values for most of the classes is 

noteworthy. In p articular, non-vegetated surfaces were highly 

accurate, with user and p roducer accuracy rates of 84% and 

76%, resp ectively. Forest and semi-natural surfaces also had 

high user accuracy values (84%), while the p roducer accuracy 

rates were lower, at 64%. User accuracy for water bodies 

decreased to 79%, while the p roducer accuracy increased to 

97%.  Figure 4 p resents the LULC map  with the highest 

classification results. 

 

Discussion and conclusions 

To create a LULC map  from a satellite image, we can follow a 

sup ervised classification approach if we know what classes 

exist in the study area and if we have rep resentative training 

samp les for each class. However, even resp ecting these two 

“rules” in such heterogeneous biop hysical environments, the 

wide range of sp ectral signatures among LULC classes can bias 

the classification results (Lu & Weng, 2007). 

Generating training samp les from a LULC map  (such as the 

COS) from a governmental institution that we considered a 

reliable source of information can still have associated 

problems, including an unbalanced number of training samp les 

per class or corrup ted data. In such cases, some interp retation 

and selection (based on exp ert knowledge and statistical 

analysis, among others) should be done in order to understand 

if the data have critical issues (Lippitt et al., 2008; Brodley & 

Friedl, 1999). 

Our p urp ose was to demonstrate how the p re-cleaning of 

training samp les can have a p ositive imp act on the 

classification results, esp ecially when there is a wide range of 

sp ectral signatures for each class. For examp le, in p ast years in 

Alentejo, one olive grove area has increased substantially, 

suggesting a change in emp hasis to intensive farming without 

fallow (Viana & Rocha, 2018). This sup er-intensive olive 

grove is a p articular typ e of p roduction with its own sp ectral 

signature characteristics that differ from the “usual” olive grove 

since the trees are small and have less sp ace between them. As 

such, the same LULC class can have different sp ectral 

signatures, so it is difficult to discern the difference between 

the olive grove class and the forest and semi-natural surface 

class (Table 4). 

Additionally, some of the errors identified in the calculation 

of the confusion matrix can actually be help ful in understanding 

certain dynamics. As an example, we have some locations 

where some p ixels were classified as herbaceous temp orary, 

and we observed a p erfectly opposite shap e classified as a body 

of water, meaning that the field was actually being heavily 

irrigated during the time that the image was cap tured. In 

addition, the vineyard class p resents some confusion with the 

non-vegetated surfaces class, mainly due to how vineyard 

planting is organised—in lines with sp aces of bare soil between 

them. 

One other issue is that crop lands have different behaviours 

throughout the year; some may mature during sp ring and others 

in summer, autumn, or winter, so it is exp ected that different 

classes will be easier to identify during different times of the 

year. Based on our results, we argue that using only an image 

for a sp ecific date may be not be the best approach; it would be 

interesting to use images for the whole year to see if it help s the 

classifier to outp ut better classifications. 

For future studies, it would be interesting to see if we have 

good results in case we use the obtained training samp les to 

classify other images of the same area but in a different time 

(e.g. same month but in 2016). Ultimately, our study 

Figure 4:  LULC map  classification 
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demonstrates the imp rovement of the overall accuracy between 

both image classifications (+8%), showing that the applied 

methodology had a p ositive imp act on the results. The cluster 

analysis we p erformed on R was efficient and straightforward, 

proving itself to be p romising approach. 
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