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1. Introduction 

 

A cellular automata (CA) model is characterized by phase transitions that can generate complex patterns 

through simple transition rules. As such, this technique seems suited to model the complexity of urban 

systems (Clarke and Gaydos, 1998; Batty, 1995). Unlike most conventional urban models that focus 

more or less on the spatial patterns of urban growth, cellular automata based urban models usually pay 

more attention to simulating the dynamic process of urban development and defining the factors or rules 

driving the development. By applying different transition rules, a model based on cellular automata 

seeks to explore how the urban system has been developing and how this system changes under certain 

rules or forces. 

 

The central component of a CA model is the transition rules that represent the logic of the process being 

modelled and, thus, determine the spatial dynamics of the system (White and Engelen, 2000). The 

transition rules define how changes the state of a cell in response to its current state and the states of its 

neighbours. This is the key component of CA because these rules represent the process of the system 

being modelled, and thus are essential to the success of a good modelling practice (White, 1998). For a 

restricted CA, the transitional rules are uniform and applied synchronously to all cells within the system. 

However, it has been pointed out a large number of different ways to define the transition rules. 

 

The several approaches used to define transition rules, based on the understanding of the urban system 

and its evolution from different perspectives, resulted in different types of urban CA models. These 

approaches range from very simple to extremely complex. For example, in the diffusion limited 

aggregation (DLA) model developed by Batty a vacant cell just changes state (to occupied) if in its 

neighbourhood there is a occupied cell (Batty, Longley and Fortheringham, 1989). However, other urban 

CA based models combine different rules in order to simulate the complex behaviour of the system.  

 

A popular approach used in cellular automata (CA) based urban modelling is to incorporate other 

modelling methodology into the model, especially for defining the transition rules for it. In the effort of 

using various mathematical approaches to configure the transition rules of a cellular automaton, it is 

obvious that the primary purpose of employing mathematical approaches in the modelling practice is to 

evaluate the adequability or probability of land for development. Therefore, this type of model is also 

regarded as a “adequability based CA model” (Li and Yeh, 2000).  

 

In our CA urban model, we simulate different scenarios of urban growth to 2021. Our approach is to 

use different trends (last 2, 8, 10 and 13 years) with and without restrictions and, most important, to 

apply several different methods for transition rules definition. The methods test site was the Almada 

municipality in the South bank of Tagus River, near Lisbon (Portugal).  

 

The mathematical models, i.e. submodels, used to define transition rules include artificial neural 

networks (supervised [MLP] and unsupervised [SOFM and ArtMap]), genetic algorithms (GARP and 

GARPOM), supported vector machines (SVM), decision trees (CRT and CHAID), generalized linear 

models (GLM), generalized additive models (GAM), maximum entropy (MaxEnt) and geometric 

distance models (Euclidian, Manhattan and Chebychev). 
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2. Material and methods 

 

The study area, use to test our methodology, is the Almada municipality (Figure 1), belonging to the 

Lisbon Metropolitan Area. The choice of this municipality is due to diverse factors of great importance, 

such as: is near the capital (Lisbon); enjoys of increased accessibility since the construction of the Tagus 

bridge; as the possibility of urban expansion and rare natural potentialities and, between 1967 and 1986, 

the territory attended to a unmeasured urban pressure, resulting in a irreversible ground occupation in 

areas of strong physical restrictions. Between 1991, 2001 and 2011 (dates corresponding to the 

population census) its population did not stop to grow, even that in differentiated rhythms. The outward 

job dependence is a reality that the in-out movements between Lisbon and Almada corroborate. 

 

 

Figure 1. Geographic location of Almada Municipality. 

 

The proposed evaluation method combines cellular automata, with Markov chain analysis and a wide 

set of submodels, relying on six phases: i) data pre-selection; ii) data normalization; iii) spatial 

autocorrelation and multicollinearity analysis; iv) transition rules integration; v) Markov time series 

trends allowing predict future uses; and vi) simulation of future scenarios. In this point we will discuss 

all points except vi), that will be further analysed in the discussions of the submodels simulation 

performance. 

 

2.1 Data pre-selection 

 

One of the first things to consider in a model is the selection of the variables to be used. The Geographic 

Information systems (GIS) allow generating and manipulating information in a way that would not be 

possible otherwise. As the acquisition methods used, 3 types of variables are produced: (i) variables that 

result from vectorization of simple themes, e.g. qualitative variables such as hydrological network, road 

network and land use/cover; (ii) variables resulting from spatial interpolation techniques, e.g. digital 

terrain model; and (iii) variables resulting from processes of local, focal and zonal operations e.g. slopes 

and densities. The first type is typically handled in a vector environment, whereas the latter are 

exclusively handled in raster environments. The proposed model is based on a raster structure, adjusting 

to the operational characteristics of classic CA models. 
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There have been developed important efforts to improve the understanding of the mechanisms of 

production and reproduction of the urban space, as in the case of differentiated development-related 

positions (Harvey, 1975; 1989), auto-organization (Holland, 1998; Portugali, 1997; 2000) and the study 

of complex systems (Allen, 1997; O'Sullivan, 2001). Following these experiments and the work of 

Rocha et al. (2007) we identify the factors of greater importance on explaining urban growth in Almada 

(Table 1). 

 

Table 1. Pre-selected variables. 

 
Variable Type 

Slope Quantitative (%) 

Road Network Intersections Quantitative (nº/km2) 

Road Network Density Quantitative (km/km2) 

Distance to Road Network  Quantitative (m) 

Distance to Urban Areas Quantitative (m) 

Accessibility to Lisbon Quantitative (m) 

Accessibility to Almada Quantitative (m) 

Accessibility to Caparica Quantitative (m) 

Territorial Attraction Index Quantitative (adimensional) 

Territorial Valorisation Index Quantitative (adimensional) 

Built Up Dynamics Quantitative (construction licences/ km2) 

National Ecological Reserve (REN) Qualitative 

National Agricultural Reserve (RAN) Qualitative 

Planning Master Plan (PDM) Qualitative 

 

2.2 Data normalization  

 

The input data is developed using a set of transition rules that quantify the spatial effects that prediction 

cells have on land use/cover changes (Pijanowski et al., 2000). During this conversion process, the cells 

are encoded to represent constraints (restrictions) or probability of occurrence (factors). In the first case 

represent binary masks, where the zero (0) represents the absence (or denial) and one (1) presence (or 

acceptance), and in the second case are continuous variables, normally ranging from 0 (0% of 

adequability) to 1 (100% of adequability). 

 

To make our data match this 0-1 scale we need normalize (standardise) it. We use fuzzy membership 

functions (Zadeh, 1965). on the standardisation of the variables. Identify exactly which function to use, 

depends on the knowledge and understanding of the relationship between the criteria and the set of 

decisions, as well as the availability of information to infer the degree of membership. In the vast 

majority of cases, the sigmoidal or linear functions are appropriate to the modelling of reality. The 

sigmoidal function was applied to the factors which constitute continuous (quantitative) variables and 

linear function to which correspond to discrete (qualitative or categorical) values.  

 

2.3. Spatial autocorrelation and multicollinearity 

 

Some of the common problems that models contain are the autocorrelation and multicollinearity. 

Statistically, the autocorrelation is a measure that reflects how much the value of a random variable is 

able to influence its neighbours. For example, how the existence of a higher value influences also high 

values in is neighbourhood. On the other hand, multicollinearity is a common problem in models where 

the independent variables have exact (or approximately exact) linear relationships. 

 

The spatial autocorrelation can be measured in different ways. The Moran index is the most widespread 

statistic and measures the spatial autocorrelation from the product of the standard deviations. This index 

is a measure of global autocorrelation, as it indicates the degree of spatial association present in the data 

set. 
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If the covariance between contiguous cells is null, the neighbourhood has no influence on the values of 

the variable. In this case, there is no spatial autocorrelation. If the neighbours resemble each other more 

than the distant cells, then there is a positive spatial autocorrelation, i.e. clustering. If the distant cells 

resemble more than the neighbours then there is a negative spatial autocorrelation, i.e. sprawl. 

 

In the present we choose to use two types of neighbourhood in the spatial autocorrelation calculation: 

Moore and Von Neuman (Table 2). Of this analysis, we conclude that all factors have acceptable values 

of autocorrelation, regardless of the type of neighbourhood adopted in calculations. 

 

Table 2. Spatial autocorrelation. 

 
Layer Moore Von Neuman 

Accessibility to Almada 0.9822 1.0133  

Accessibility to Caparica 0.9844  1.0313  

Accessibility to Lisbon 1.0055  1.0450  

Territorial Attraction Index 0.9195  0.9228  

Slope 0.8570  0.8736  

Distance to Urban Areas 0.9817 1.0227  

Distance to Road Network 0.9836  1.0194  

Territorial Valorisation Index 0.9532  1.0340  

Road Network Intersections 0.9949  1.0294  

Road Network Density 0.9937  1.0206  

Built Up Dynamics 0.9841  1.0043  

Planning Master Plan (PDM) 1.0049  1.0358  

National Agricultural Reserve (RAN) 1.0049  1.0382  

National Ecological Reserve (REN) 1.0049  1.0382  

 

The clearest indication of the existence of multicollinearity is when the R2 is quite high, but none of the 

coefficients are statistically significant according to conventional t-statistics. The consequence of 

multicollinearity is high standard errors in the case of moderate or severe multicollinearity and even the 

impossibility of any estimation if the multicollinearity is perfect. The absence of multicollinearity is one 

of the premises to establish a correct model. However, some authors state that it is not a serious problem 

if the objective of the model is the prediction. 

 

Thus, the choice of the variables to use in the model should take into consideration their possible 

multicollinearity (Guisan and Thuiller, 2005). This can be detected, among other ways, through the 

correlation matrix. Other techniques used are the tolerance value or its inverse, called the variance 

inflation factor (VIF), whose high values indicate the existence of collinearity: 

 

 


2

1

1
j

VIF
R

 (1) 

 

where j
R

 comes from j
x

 regression with the other variables, i.e. the coefficient of determination of the 

regression equation.  

 

It is suggested, when collinearity occurs, that those variables are removed from the analysis. In Table 3 

we can see that all the factors have values within acceptable parameters, and the only one that stands 

out for having a higher value is Accessibility to Lisbon. Crossing the values of R2 and VIF, we left out 

two factors: Accessibility to Almada and Road Network Density. In both cases there is a strong 

correlation with Accessibility to Lisbon and the Road Network Intersections, respectively. However, 
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despite the latter having higher values in relation to the first, they are chosen in virtue of the analysis of 

in out trips still emphasize the importance of movements to Lisbon and the nodes (intersections) 

represent a real access to road network which does not happen with the routes, e.g. highway access is 

only possible in some intersections. In addition, although with higher values, both parameters are within 

acceptable parameters. 

 

Table 3. Multicollinearity values. 

 

 Factor R2 VIF 

1 Accessibility to Almada 0.376923 1.604938 

2 Accessibility to Caparica 0.245495 1.325373 

3 Accessibility to Lisbon 0.761179 4.187239 

4 Territorial Attraction Index 0.077739 1.084292 

5 Slope 0.197143 1.245552 

6 Distance to Urban Areas 0.473995 1.901123 

7 Distance to Road Network 0.287069 1.402661 

8 Territorial Valorisation Index 0.262954 1.356768 

9 Road Network Intersections 0.588384 2.429452 

10 Road Network Density 0.321538 1.473923 

11 Built Up Dynamics 0.564097 2.294087 

12 Planning Master Plan (PDM) 0.234892 1.307005 

13 National Agricultural Reserve (RAN) 0.141907 1.165375 

14 National Ecological Reserve (REN) 0.445719 1.804140 

 

2.4. Transition rules integration 

 

A problem of CA models is determining the weights to assign to each factor. The solo simulation 

involves the use of several spatial variables. The contribution of each of these variables for the 

simulation is quantified by a weight, or parameter. The value of these parameters has a important effect 

on the results of the simulation, i.e. different combinations of values lead to totally different urban forms. 

 

In most situations it is necessary to calibrate the CA model in order to ensure that the simulation 

generates results close to reality. This calibration is extremely difficult to accomplish. There are two 

main types of calibration processes: those based on trial-and-error approaches and those based on 

mathematical/statistical methods. In the first case it is not necessary to use rigid mathematical methods. 

A simple method is comparing visually the results of simulations made with different combinations of 

weights. However, when there are many variables it is difficult to define the combinations and access 

the results visually, since the generated patterns can be very complex.  

 

In the second case, we refer to a fairly common approach in urban modelling with cellular automata, 

which is the incorporation of other modelling methodologies in the model, with a special focus on the 

integration of their transition rules, i.e. predictive submodels. The most used mathematical models 

include the multicriteria evaluation (Wu and Webster, 1998; Wu, 1995), in particular together with 

Analytic Hierarchy Process (AHP) developed by Saaty (1980, 1986), multiple regression (Sui and Zeng, 

2001) and principal component analysis (Li and Yeh, 2002). 

 

In an effort to use various mathematical approaches to configure CA transition rules, normally becomes 

obvious that the primary purpose of the application of these approaches is the evaluation of their 
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adjustment to urban develops adequability. Therefore, this type of model is also known as adequability 

CA model (Li and Yeh, 2000). From here we can see that there is a high and diverse number of statistical 

integration models can be used in modelling (Guisan and Zimermann, 2000). Their role is to obtain 

response values that translate the adequability through the combination of the independent variables 

values relating to the known distribution of the phenomenon. 

 

Taking into account this large variability, the choice of a single method implies the loss of several 

potentialities present in others. In addition, the holding of several methods simultaneously is suggested 

on modelling as a way to decrease the uncertainty of the process (Pearson et al., 2006). Considering 

these prerogatives and the potential gain in predictive performance, we opted for the use of several 

different models. 

 

The applied methods include maximum entropy (MAXENT) (Jaynes, 1957; Philips et al., 2006), 

generalized linear model (GLM) (Guisan et al. 2002), generalized additive model (GAM) (Hastie and 

Tibshirani, 1990), support vector machine (SVM) (Vapnik, 1995), Chi-squared Automatic Interaction 

Detection (CHAID) (Kass, 1980; Thuiller, 2003) and Classification and Regression Trees (CRT/CART) 

(Breiman et al., 1984; Thuiller, 2003), artificial neural networks (supervised [multilayer perceptron – 

MLP ((Rumelhart, Hinton and Williams, 1986)] and unsupervised [self organizing feature maps – 

SOFM (KOHONEN, 1993) and adaptive resonance theory – ARTMAP (Carpenter and Grossberg, 

1987)]), genetic algorithms (genetic algorithm for rule set production  - [GARP] and genetic algorithm 

for rule Set production open modeller [GARPOM]) (Stockwell and Peters, 1999) and geometric distance 

models (Euclidian, Manhattan and Chebychev) (Tsoar et al., 2007).  

 

2.5. Time series trends 

 

One of the key components of CA models is time, i.e. the change of a cell state at a given time is 

controlled by the state of the cell itself and the state of his neighbours in the previous step. Thus, the 

model needs to be configured not only spatially as well as temporally. However, the current practices 

of urban CA based modelling focus essentially the spatial dimension of urban land-use change. There 

is little concern with the temporal dimension of the model. 

 

The Markov chain is a mathematical model that describes a certain type of process that moves in a 

sequence of steps and through a set of States (Baker, 1989). The attractiveness of the Markov chain lies 

in the fact that the model parameters are easily estimated. The transition probabilities can be estimated 

statistically from a sample of transitions that occurred during a certain time interval. In this way, the 

Markov chain only requires the establishment of a finite number of states and that transition probabilities 

are known. Time steps correspond to land use/cover binary maps (urban/non-urban) obtained by 

photo-interpretation (Figure 2). Depict having a database from 1960 to 2008 we chose to use just the 

data from 1995 and later, because this maps were made over ortophotomaps and have a higher positional 

accuracy than the other (based on aerial photograph). 

 

The Markov chain analysis generated two tables with, respectively, the transition land use areas (Table 

4) and the transition probabilities (Table 5), for 4 periods. 

 

The 4 periods considered were of 13 (1995-2008), 10 (1998-2008), 8 (2000-2008) and 2 (2006-2008) 

years. Based on the values obtained we can then predict the probability of land use transitions to 2021 

based on different growth trends, i.e. different periods (4). 
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Figure 2. Land use/cover from 1960 to 2008. 

 

Table 4. Transition areas (km2). 

 

 1995 - 2008 1998 - 2008 2000 - 2008 2006 - 2008 

 Non-urban Urban Non-urban Urban Non-urban Urban Non-urban Urban 

Non-urban 25.9464 8.1779 25.2250 8.8993 25.0907 9.0335 32.1285 1.9957 

Urban 0.0000 34.4108 0.0000 34.4108 0.0000 34.4108 0.0000 34.4108 

 

Table 5. Transition probabilities. 

 
 
 

1995 - 2008 1998 - 2008 2000 - 2008 2006 - 2008 

 Non-urban Urban Non-urban Urban Non-urban Urban Non-urban Urban 

Non-urban 0.7604 0.2396 0.7392 0.2608 0.7353 0.2647 0.9415 0.0585 

Urban 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

 

3. Submodels Validation 

 

A receiver operating characteristic (ROC), or simply ROC curve, provides tools to select possibly 

optimal models and to discard suboptimal ones. Because ROC graphical plots dissociate classifiers 

performances through the asymmetry of class and cost errors, they have advantages over other 

evaluation measures.  

 

The usual approach is to establish a threshold or cut-off value in order to split the response variable in 

dichotomous classes. The value of the threshold is usually set equal to the a priori occurrence 

probabilities of the phenomenon under study. However, the definition of a threshold is more a matter of 

using the model than a feature of the model itself. For this reason, it is better to use threshold-

independent methods. 
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Usually ROC curves are used to generate summary statistics. One of the most commons is the area under 

the ROC curve (AUROC), or just area under curve (AUC). When using normalized fuzzy maps, the 

AUC is equal to the probability that a classifier will rank a randomly chosen high instance (e.g. 0.8) 

above a lower randomly chosen one (e.g. 0.2) (Fawcett, 2006). 

 

Table 6 shows the AUC values for all submodels tested against 2008 land use. The results are globally 

satisfactory ranging from 0.61 to 0.85. It is interesting to note that distance based models, despite being 

conceptually simpler, are among those who get the best results. This data can be important in a future 

dissemination by non-specialized users, where the simplification of procedures takes on greater 

importance.  

 

Understanding that all models have their virtues but also some drawbacks, but being unable   to work 

with all of them, we select those who demonstrated a performance rated as good. So, henceforth our 

analysis  will focus the generalized linear model (GLM), the generalized additive model (GAM), the 

model of maximum entropy (MaxEnt), the two genetic algorithms (GARP and GARPOM) and the 

model based on Manhattan distance (Manha). 

 

We should bear in mind that all considerations concerning the parameters obtained by the models are 

valid only for the range of values (presences and absences) used. As such, these relationships between 

variables can be widely different, arising from the use of different samples, e.g. for a more extensive 

study area. All selected submodels, including less performance ones (GARP and Manha), can be used 

in conjunction, in order to better characterize the potential existence of urban areas. This method consists 

in the addition of consistent areas of all the six models, using as a limit of adequability the AUC value 

that maximizes the results of each one, i.e. weighted average. This procedure is relatively similar to that 

proposed by Araujo and New (2006), for the reduction of uncertainty in predictive modelling.  

 

Table 6. Submodels AUC values. 

 
Submodel AUC Accuracy Submodel AUC Accuracy 

GLM 0.851 

Good 

MLP 1 hidden layer – 12 neurons 0.787 

Reasonable 

MAXENT 0.838 
MLP  
2 hidden layers – 12 neurons 

0.783 

GARPOM 0.820 MLP  2 hidden layers – 4 neurons 0.782 

GAM 0.816 MLP 1 hidden layer - 8 neurons 0.779 

GARP 0.811 ARTMAP 0.771 

MANHATTAN (MANHA) 0.802 CHAID 0.768 

CHEBYCHEV 0.792 

Reasonable 

CRT 0.767 

EUCLIDIAN 0.792 SVM100 0.757 

MLP 2 hidden layers -8 neurons 0.788 SVM200 0.725 

MLP 1 hidden layer – 4 neurons 0.787 SOFM 0.613 Weak 

 

4. Submodels Comparison 

 

Analysing submodel-by-submodel (Table 7), it may be noted that, on average, the GLM, GAM and 

Manha, favour the probability of occurrence of urban use. However, the Manha has a minimum 

adequability of 0.4941, which does not correspond to reality. This is due to the use of pseudo absences 

that may not be true negatives. The GAM and the genetic algorithms (GARP and GARPOM) have the 

higher standard deviation values. 
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Table 7. Submodels descriptive statistics. 

 
 N Average Minimum Maximum Standard deviation 

MANHA 2729908 0.8295 0.4941 0.9412 0.0653 

GAM 2729908 0.8336 0.0000 1.0000 0.2369 

GARP 2729908 0.5824 0.0000 1.0000 0.3683 

GARPOM 2729908 0.6716 0.0000 1.0000 0.3977 

GLM 2729908 0.8557 0.0000 1.0000 0.1870 

MAXENT 2729908 0.3292 0.0039 0.8510 0.1968 

AVG6M 2729908 0.6836 0.0000 0.9412 0.2180 

 

Comparing the submodels with each other (Table 8), we can find that they are relatively related, 

presenting correlation values that oscillate between 0.60 ( GLM GAM ) and 0.96       (
AVG6M GARPOM ). The AVG6M has the greater correlation with all the others (between 0.96 and 

0.79), which goes alongside the idea of its use.  

 

To compare the variances of the different submodels we used F-ratio statistic. The F-ratio is used to 

determine whether the variances in two independent submodels are equal. If the F-ratio is not 

statistically significant, we can assume that there is homogeneity of variance. This value is obtained by 

dividing the largest variance for the smallest. If the F-ratio exceeds the critical value, i.e. there is no 

difference between the variance of the submodels, the null hypothesis is rejected.  

 

Table 8. Pearson correlation coefficient between submodels. 

 
 MANHA GAM GARP GARPOM GLM MAXENT AVG6M 

MANHA 1.00       

GAM 0.76 1.00      

GARP 0.81 0.70 1.00     

GARPOM 0.87 0.66 0.86 1.00    

GLM 0.84 0.60 0.68 0.85 1.00   

MAXENT 0.77 0.61 0.80 0.83 0.79 1.00  

AVG6M 0.92 0.79 0.93 0.96 0.86 0.89 1.00 

 

In our case, because the degrees of freedom are always greater than 1000 (>>120), the sample is 

statistically regarded as  . Thus, regardless of the degree of confidence selected (0.10; 0.05; 0.25) the 

threshold corresponds to 1. The F-ratio values (Table 9) always exceed this value (1), so there is a 

statistically significant difference between the variances of the models. Despite all, the AVG6M is the 

one that presents values closer to the threshold, namely 1.36 (with GLM), 1.23 (with MaxEnt) and 1.18 

(with GAM). A visual comparison can give the notion of areas where the one submodel (column) has 

higher (green), equal (yellow), or lower (red) prediction values than another submodel (line). 

 

Table 9. F-ratio statistic for inter-model variances. 

 
 MANHA GAM GARP GARPOM GLM MAXENT 

GAM 13.146      

GARP 31.765 2.416     

GARPOM 37.052 2.818 1.166    

GLM 8.186 1.606 3.880 4.526   

MAXENT 9.072 1.449 3.501 4.084 1.108  

AVG6M 11.136 1.181 2.853 3.327 1.360 1.227 
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To quantify the relationship of each submodel with all others at the same time, we carry out a multiple 

linear regression (MLR). In table 10 we may find the results of MLR calculations. The diagonal values 

correspond to the value of the line intersection and the other values match the relationship of each 

submodel with the one that is being analysed. Here we can see that the AVG6M is a valid option, 

showing values of R and R2, near 0.999 (higher values among all submodels tested). The residuals, i.e. 

difference between the observed and expected values, for all the regressions carried out. The areas where 

the values are higher are those where the worst model represents all others (the green represents positive 

values and negative red). 

 

Table 10. Multiple linear regression parameters by comparing a submodel (dependente) with all 

others (independent). 

 
 MANHA GAM GARP GARPOM GLM MAXENT AVG6M R R2 

MANHA 91.7450 -0.3942 -0.4051 -0.4084 -0.3654 -0.4349 2.5813 0.9552 0.9125 

GAM -0.8427 -8.8040 -0.9466 -0.9514 -0.9878 -0.9449 5.7254 0.9928 0.9857 

GARP -0.8862 -0.9688 -4.6950 -0.9386 -1.0261 -0.9371 5.7939 0.9969 0.9939 

GARPOM -0.8965 -0.9770 -0.9417 -9.8620 -0.9590 -0.9455 5.7766 0.9974 0.9948 

GLM -0.6889 -0.8711 -0.8841 -0.8236 -9.1759 -0.8206 5.1604 0.9898 0.9798 

MAXENT -0.9189 -0.9339 -0.9050 -0.9101 -0.9198 1.0449 5.5463 0.9897 0.9796 

AVG6M 0.1623 0.1684 0.1665 0.1655 0.1721 0.1651 -0.3694 0.9997 0.9995 

 

5. Results Analysis 

 

The previously discussed 7 submodels calculated served as basis to simulate future scenarios of urban 

occupation using a 5x5 extended Von Neuman neighbourhood. As the largest gap between records of 

land use/cover  is 13 years, i.e. 1995 – 2008, it is not advisable to create simulations beyond 13 years 

into the future, which based on the year of the last record (2008), limits the time horizon to 2021. 

However, it is common knowledge that the simulation models perform better for small periods than for 

more extended ones. So what can be done to decrease the risk of developing a simulation so ahead in 

time? The solution can be easily explained by an analogy to golf training.  

 

The golfer shoots several times the ball toward the hole and the result will be a set of balls around the 

hole (assuming that it is difficult to get it right in the hole at the first time, as a model does not predict 

exactly a future situation). Some of those balls fall on left side of the hole, others on the right, still others 

ahead and so on, forming a cloud of balls. Statistically, there is a high probability of the hole location 

being in the geometric centre of the balls distribution.  This probability increases as the number of balls 

raises and, consequently, their density increases. 

 

With models the situation is the same. Despite very often the purpose of the model is not to accurately 

predict a situation, but rather to explain the influence of factors in a given system and make it possible 

to identify how the system reacts to changes in the parameters, its power of simulation can be greatly 

increased through the creation of several alternative scenarios. This means that creating various 

scenarios of evolution of urban area to 2021, assures that there is a much higher probability of find the 

future real situation between them.  

 

Hence, the importance of the time horizons considered (4 in total). As inferred from the land use/cover 

evolution changes in Almada municipality, the evolution of urban area did not happen always in the 

same way in space and, especially, in time. So, it was decided to adopt a set of four situations ranging 

from the overall trend of the last decade, e.g. last 13 years (1995-2008) and 10 years (1998-2008), to the 
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latest trends, e.g. 8 years (2000-2008) and 2 years (2006-2008). From the combination of all the 

elements, we have established 7 predictive submodels and 4 distinct trends of urban growth, originating 

a 7x4 matrix.  

 

This matrix was further subjected to two distinct approaches. First, the predictive submodels were 

introduced without changes, i.e. fully consisting of factors. Remember that in the elaboration of these 

submodels, factors such as REN and RAN, were considered as highly conditioning, but not restrictive 

of urban use. That leads to 28 urban occupation scenarios for 2021.In the second approach, REN and 

RAN were used as binary masks, where the existence of the factor would correspond to zero, i.e. 

inability to build and the absence of a factor, i.e. possibility to build. Therefore, these two sets of 

information were considered as constraints in all submodels by multiplying the firsts by the seconds. In 

this way, we fully prevent urban sprawl within areas of REN and/or RAN in the simulations carried out. 

This second approach resulted in another set of 28 scenarios of urban area in 2021. 

 

In a more quantitative analysis (Table 11) we can observe that the simulations follow the trends of land 

use/cover change. So, as the last two years (2006-2008) were of urban growth strong slowdown, the 

simulation based on this rate of growth is the one that generates less urban area for 2021, with values 

ranging between 35.866 km2 (AVG6M) and 35.869 km2 (Maxent). The most fruitful period is the 8 

years one, spanning from 2000 to 2008. The predicted urban are for 2021, according to the 8 years trend, 

oscillates between 42.74 km2 of GAM and AVG6M, and the 42.751 km2 of manha. As the simulation 

based on the growth of 2006 to 2008 predicts a small increase in the urban area, it is understood that the 

8 years dynamic is due essentially to the situation between 2000 and 2006. 

 

Table 11. Quantitative results of the simulations (UR means unrestricted and RE means restricted).  

 

 2 years trend 8 years trend 10 years trend 13 years trend 

 UR RE UR RE UR RE UR RE 

Edmanha 35.867 35.869 42.743 42.751 42.613 42.620 41.910 41.913 

GAM 35.868 35.868 42.740 42.744 42.608 42.613 41.905 41.908 

GARP 35.872 35.871 42.745 42.742 42.614 42.610 41.908 41.908 

GARPOM 35.869 35.869 42.744 42.746 42.612 42.615 41.908 41.912 

GLM 35.867 35.867 42.742 42.746 42.613 42.616 41.909 41.913 

Maxent 35.877 35.872 42.742 42.744 42.610 42.613 41.906 41.910 

AVG6M 35.866 35.870 42.740 42.743 42.609 42.613 41.903 41.911 

 

The two next simulations, give predictions of successively smaller urban area. Indeed, considering the 

trend of the last decade (1998-20008) the urban area in 2021 would oscillate between 42.608 km2 in the 

case of GAM and 42.62 km2 to the manha. Finally, following the trend of the last 13 years (1995-2008) 

we have a decrease in growth trend, standing just above the trend of the last two years, although with 

values much closer to the other two simulations (10 and 8 years)  than this last (2 years). The trend of 

the last 13 years varies between 41.903 km2 of urban area based on AVG6M and the 41.913 km2 

generated by manha. In short, we can build three groups of scenarios, one with a fairly moderate growth 

(trend of the last two years), a steep growth (trend of the past eight years), and an intermediate situation, 

although tending to be closer to the larger dynamic situations (the last ten and thirteen years). 

 

Still in a global analysis, immediate upraises the fact that, perhaps paradoxically at first glance, the 

simulations with restrictions predict greatest amount of urban area than the ones without restrictions 

(Figure 3). The only exception is the simulation based on biennial trend. This was due to the fact that 

with 2 years of trend, spatial relations are still dull and the time window is too small to model a complex 

system, as the urban. In this way, the linear functions prevail and the built-up area expands, in this 

context with logic, more easily than by the more restricted space.  
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In the simulations based on more years, the interactions between microelements increase, coming into 

sight non-linear behaviours and the emergence of new behaviours. This forced the urban sprawl to 

follow alternate routes, because of the restrictions imposed, finding new realities that encourage new 

behaviours, which in turn enables the discovery of new routes and so on. 

 

In a submodel level analysis it can be seen that in the simulation based on 2 years trend the submodel 

that more urban area generates is the maximum entropy (MAXENT). The entropy is a measure of the 

amount of uncertainty in a probability distribution or a system subject to constraints. Entropy measures 

the number of different microstates that may arise in a particular macrostate. The term has been used as 

the basis for the maximization of entropy models of spatial interaction.  

 

  

2 Years 8 Years 

  

10 Years 13 Years 

          

Figure 3. Quantitative results of the simulations.  
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The maximum entropy models are statistical models to identify the pattern of a spatial location, most 

likely a system subject to constraints. This approach was introduced in geographic modelling by Wilson 

in 1967, as the basis for a stricter interpretation of the gravity model. The model of maximum entropy 

make it possible to easily calculate the effects of new housing, and have been used in varied urban 

models, e.g. in the Lowry model. As in the situation of two years, there is a relatively small period to 

set the trend the system don't get auto-organized,   predominating, due to the many possible behaviours, 

the existence of microstates. 

 

In the remaining three simulations, based on 8, 10 and 13 years trends, the system tends to the 

auto-organization and the MAXENT begins to lose protagonism. In this context, the effect of distance 

gets predominance from what the model that stands out is the manha, which is based on Manhattan 

distance. At first (8 and 10 years trends), the manha is the more productive simulation in generating 

built space when the model is run with restrictions.  

 

With the absence of constraints, the urbanizing space available increases and, therefore, there is an 

increment of the possible paths to follow. This multiplicity of solutions comes from a competition for 

space, which favours the genetic algorithms, which duplicate by analogy from biology the competition 

between species (land uses in this case). Therefore, it is not surprising that when we face an unrestricted 

space, GARP is the simulation with highest performance. 

 

These claims can be confirmed by comparing the relationships between the simulations with and without 

restrictions. In the simulation based on two years trends, the two submodels generate more urban area 

with no restrictions than with restrictions, namely Maxent and GARP. Then, with 8 and 10 years trends, 

the only submodel that can create greater urban area without restrictions than with restrictions is GARP, 

for the reasons already pointed out. We cannot help to note, because it is interesting and reinforces our 

analysis, that GARP being more productive without restrictions, behaves in the opposite way when 

operating with restrictions.  

 

Finally, in the simulation based on the trend of the last 13 years, as the system is already auto-organized, 

neighbourhood and proximity relationships acquire particular emphasis, and the manha is the 

predominant submodel, both with as without restrictions. Once again, when it comes to simulate with 

restrictions, GARP is the one  that generates least urbanized area but, at the same time, is the one whose 

value are closest in the two simulations ( with and without restrictions). To reinforce the importance of 

the distance, we must also mention that with restrictions, manha performance is matched by the 

Generalized Linear Model (GLM). 

 

Analyzing the agreement between the simulations results, we can easily see that this is less when these 

are made without restriction. This situation is logic, to the extent that there are more possible states and 

the system can evolve in many different directions. Even so, in 8, 10 and 13 years trends, the number of 

cells assigned to urban use in all the seven models amounts to 75%. This value is higher, accounting for 

94% , in the biennial based simulation, which makes perfect sense, because if this is the least dynamic, 

when there are fewer state changes it will also be less error probability.  

 

When there is not total agreement, predominates the result presented by just one model (2%), which 

reflects the specificity of each submodel algorithm. All other combinations have equal distribution 

among themselves and between models, with the exception of the two-year simulation, whose 

intra-simulation as also equitable distribution, but in an inter-simulation comparison, their percentages 

present lower values. 

 

When we use restrictions, the situation is similar but with a slight change of scale. The unique solution 

continues to represent about 2% in all the simulations, as well as the common result to the seven 

submodels. However, the decline of the relative importance of the agreement of 6, 5, 4 and 3 submodels 

in detriment of the 7, allows expanding the percentage of perfect agreement good to 92%. As in the 
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previous situation, the particular case of simulation with 2 years presents spatially results slightly more 

consistent, with a value of 96% of total agreement. 

 

In spatial terms it may be noted that the highest degree of disagreement arises on the South side, in every 

simulation of 8, 10 and 13 years trend, This happens mainly because the South is, in part, a luxury gated 

community, which does not generate the same rules as the rest of the territory, suggesting that it should 

be the subject of further studied.  

 

The disagreement is also high in the northern part of the municipality, in the simulations with 8 and 10 

years and with restrictions. Here, essentially two zones fail, located at Northwest and Northeast, being 

created by excess by only one of the models. These areas although theoretically good for housing, are 

not valued by the population. This situation should have been guarded by the use of the valuation tax of 

the territory (IMI), but its weak predictive potential turned out to condition the result. 

 

One way to quantify the agreement is through the Kappa index. The Kappa Index of Agreement method 

(), KHAT or KIA is based on a simple cell-by-cell comparison, which checks for each cells pair on 

two maps if they are equal or not. This results in a comparison map that displays the spatial distribution 

of the agreement, without requiring any previous parameters. This method evaluates the agreement 

between the result of the simulation and a purely random assignment of classes to the cells (designated 

by agreement due to chance).  

 

Another simple cell-by-cell statistic is the correct fraction, also known for overall accuracy. This statistic 

is calculated by dividing the number of correct cells by the total number of cells. However, the overall 

accuracy is considered unreliable as a general measure of similarity. The reason is that the correct 

fraction is a biased method, i.e. tends to consider maps with few categories and/or unevenly distributed, 

more similar than the ones with many categories and/or equally distributed. 

 

The following (extreme) case illustrates the difference between the kappa statistic and the overall 

accuracy. Having a model to predict parks locations in an urban area, we have also a binary map of 

presences and absences. In reality, there is only one park per 100 cells. This means that a model that 

predicts wrongly parks in this place still gets an impressive result of proper fraction of 0.98 (absence on 

both maps). Another model predicts the presence of houses in the same area. These are found in 50% of 

all locations (i.e. cells). A model that predicted 80% of these locations would only achieve a overall 

accuracy of 0.8. Thus, even though the parks model is clearly worse than the model of the houses, the 

first produces a correct proportion much higher, simply because of the uneven distribution of absences 

and presences.  

 

The Kappa values are generally lower than those obtained for overall accuracy. This difference is 

expected, since each index use different types of information from the contingencies table. Overall 

accuracy only uses data that lie along the diagonal of the matrix, excluding the omission and commission 

errors. On the other hand, the Kappa index incorporates the diagonal elements of the matrix as a product 

of the marginal values of rows and columns. It is impossible to unequivocally point the measure that 

must be applied and when. Usually, it is desirable to calculate and evaluate the two. 

 

However, in order to obtain a more balanced similarity we often use the Kappa index. The Kappa 

statistic results from two types of similarities, the similarity of quantity and the similarity of location. In 

this case the amount refers to the total number of cells attached to each category found on the map, i.e. 

the histogram, and the location refers to the spatial distribution of the different categories of the map. 

To know to what extent the measures of of location and quantity similarity are represented in the Kappa 

statistic, we divided it into two statistics, the Kappa histogram (KHisto) and the Kappa location (KLoc). 

It can be found more information about the KHisto and KLoc in Hagen (2002). The relationship between 

the 3 statistics is given by: 

 
 Kappa KH isto KLoc

 (2) 
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These statistics were calculated for the simulations carried out without restrictions (Table 12). This 

option was taken because this is the actual situation, i.e. there has always been urban growth in areas of 

RAN and REN. In addition, the new legislation of the REN is more permissive in terms of use, 

establishing some activities compatible with the various levels of protection. These condition, associated 

with the fact that the management of both the REN and RAN, is made by the local authorities, points 

for this scenario as the most suitable to follow. For all the reasons already pointed out, we choose as 

final submodel the average of all models with good performance of AUC, weighted by its predictive 

power, i.e. submodel AVG6M. The kappa statistics were only calculated for this final submodel. 

 

In Table 12 we can observe the good agreement of the submodel AVG6M with all others, showing 

always values above 90% (0.9). The agreement of the histogram of the submodel AVG6M with the 

manha, GARP, GARPOM and the Maxent is always total. The overall accuracy and Kappa are very 

homogeneous, despite of using 8, 10 or 13 years trends, and increase a little when using only a 2 years 

trend. This demonstrates that in the first moments of expansion, transitions are more assertive. In all 

cases the Kappa is always less than the KHisto, due solely to lower values of Kloc, which indicates that 

even when evolution takes place in same quantity it not necessarily occurs in the same direction. 

 

Table 12. Agreement of submodel AVG6M without restrictions with all the others. 

 
AVG6M MANHA GAM GARP GARPOM GLM MAXENT 

2 
Years 
Trend 

Kappa 0.98107 0.98108 0.97771 0.98316 0.96754 0.96528 

KLoc 0.98107 0.98115 0.97771 0.98316 0.96757 0.96528 

KHisto 1.00000 0.99993 1, 00.000 1.00000 0.99996 1.00000 

Overall accuracy 0.99057 0.99058 0.98889 0.99161 0.98383 0.98270 

8 
Years 
Trend 

Kappa 0.92805 0.93366 0.91759 0.95260 0.93077 0.92910 

KLoc 0.92805 0.93410 0.91759 0.95260 0.93117 0.92910 

KHisto 1.00000 0.99952 1.00000 1.00000 0.99957 1.00000 

Overall accuracy 0.96661 0.96921 0.96176 0.97801 0.96787 0.96710 

10 
Years 
Trend 

Kappa 0.92874 0.93394 0.91894 0.95287 0.93022 0.92948 

KLoc 0.92874 0.93436 0.91894 0.95287 0.93061 0.92948 

KHisto 1.00000 0.99954 1.00000 1.00000 0.99958 1.00000 

Overall accuracy 0.96686 0.96928 0.96230 0.97808 0.96754 0.96721 

13 
Years 
Trend 

Kappa 0.92655 0.93564 0.92728 0.95848 0.92842 0.93444 

KLoc 0.92655 0.93603 0.92728 0.95848 0.92877 0.93444 

KHisto 1.00000 0.99959 1.00000 1.00000 0.99963 1.00000 

Overall accuracy 0.96545 0.96972 0.96579 0.98047 0.96632 0.96916 

 

6. Conclusions 

 

In our CA urban model, we simulate different scenarios of urban growth to 2021. Our approach is to 

use different trends (last 2, 8, 10 and 13 years) with and without restrictions and, most important, to 

apply several different methods for transition rules definition. The mathematical models used to define 

transition rules include artificial neural networks, genetic algorithms, supported vector machines, 

decision trees, generalized linear models, generalized additive models, maximum entropy and geometric 

distance models. 

 

In the second part of our work we select the 6 best performing submodels. In addition, another submodel 

(named AVG6M) was created through a weight mean of these six best submodels. Using the six selected 

methods and the newly created one, we simulate urban area growth scenarios to the year 2021. Overall, 

56 simulations were carry out, using 7 submodels, 4 tends, and 2 different approaches (with and without 

restrictions). All the simulations were compared in relation to the predicted amount of urban area, spatial 

distribution of predicted urban area and geographic agreement between them.  

 

In an effort to use different mathematical approaches to configure CA transition rules, it becomes 

obvious that the primary objective of the application of these approaches to modelling is the evaluation 
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of suitability or probability of the cell to develop, i.e. change of state. Therefore, we can see that the 

number of statistical integration models that can be used in correlative modelling of a phenomenon 

distribution of is high and diverse. Their role is to obtain response values that translate the suitability of 

the space by the combination of the values of the independent variables, concerning the known 

distribution of the phenomenon. 

 

Possibly the most important feature of the models, which has been the subject of several studies, relates 

to the comparison of their predictive performance (Brotons et al., 2004; Tsoar et al., 2007), yet these 

models differ in several other features that often influence or potentiate their use in modelling. Taking 

into account this high variability, the choice of a single method implies the loss of several advantages 

present in others. In addition, holding several methods simultaneously is suggested on modelling the 

distribution of a phenomenon, as a way to reduce the uncertainty of the process and the variability of 

the models. 
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