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Resumo

O Neurofeedback (NF) é uma técnica de biofeedback não invasiva que visa a auto-regulação da ativi-
dade cerebral. Usado juntamente com técnicas como a eletroencefalografia, por meio de uma interface
cérebro-computador esta técnica é capaz de transmitir, em tempo real, os dados fisiológicos que estão
a ser recolhidos. Estes dados podem ser apresentados de várias formas, sendo que estı́mulos visuais
ou auditivos são as formas mais comuns. Esta técnica tem sido objeto de vários estudos durante várias
décadas e foi popularizada na finais dos anos 50. Desde então, o NF tem vindo a ganhar populari-
dade por ser uma técnica não invasiva, que não utiliza atividade elétrica ou magnética externa, não
recorre a produtos farmacológicos e não tem efeitos secundários conhecidos. Atualmente, o NF pode
ser utilizado em, pelo menos três ramos principais: (i) a nı́vel clı́nico, como um método terapêutico para
normalizar a atividade cerebral de pacientes que sofram de condições associadas a atividade cerebral
irregular (como por exemplo, défice de atenção e epilepsia), a fim de atenuar os sintomas. (ii) treino de
peak performance, para melhorar o desempenho cognitivo de participantes saudáveis; (iii) como uma
ferramenta experimental que permite explorar a causa de eventos neurais, como oscilações neuronais.
Com o crescimento do número de estudos que envolvem NF, o interesse pela criação de protocolos
experimentais standard tem vindo a surgir. Apesar de isto ainda não ter sido alcançado, existem alguns
elementos chave que estão presentes em praticamente todas as experiências da NF: (i) os participantes
(ii) aquisição de dados, (iii) pré-processamento de dados, (iv) seleção do tipo sinal de feedback, ou seja a
forma que queremos que a ativade cerebral seja apresentada aos participantes e (v) extração da feature
de interesse, ou seja o que queremos que seja modulado durante a experiência.

Apesar de todas as aplicações e o elevado número de estudos que argumentam sobre a utilidade
desta técnica, existem ainda algumas incertezas acerca do qual será o método mais eficiente para o
treino de neurofeedback. Por exemplo, ainda não existe nenhum protocolo pré-definido que refira como
o feedback deve ser apresentado (através de estı́mulos visuais, auditivos ou ambos) Ainda assim, a forma
como o estı́mulo é apresentado pode fortemente influenciar o protocolo de treino e, consequentemente,
o resultado da experiência. Por esta causa, é necessário testar as várias formas possı́veis de apresentar
os estı́mulos de forma a que se possa fazer uma comparação.

Nesta tese, foi efetuada uma comparação sistemática entre dois tipos de modalidades sensoriais
visuais: (i) estı́mulo visual em 2-D (ii) estı́mulo visual na forma de realidade virtual imersiva. Esta
análise foi feita com o objetivo de comparar a eficácia que cada modalidade teria sobre os resultados do
treino de NF. Foram utilizados dados de dois estudos anteriores: (i) Estudo I - no qual foi desenvolvido
e implementado um sistema de NF e de forma a comparar a eficácia de duas modalidades sensoriais:
visual e auditiva; (ii) Estudo II - no qual foram implementados algoritmos de conectividade funcional
e posteriormente integrados num software opensource de processamento de EEG (OpenViBE),o qual foi
utilizado num procedimento experimental numa experiência de NF em realidade virtual.

Ambos os protocolos experimentais tinham como alvo o aumento da banda alfa superior (upper
alpha), medida no elétrodo Cz através de eletroencefalografia. A organização temporal dos protocolos
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experimentais foi equivalente em ambos os estudos. Cada sessão de treino foi dividida em quatro partes,
começando com uma aquisição de dados inicial (pre-baseline) de 4 minutos durante a qual, os partic-
ipantes não iniciavam nenhuma tarefa. Esta fase permitia determinar a banda alfa individual (IAB)
Depois de isto, iniciava-se a sessão de treino, que foi dividida em 5 sets, em que cada set continha 3 blo-
cos que, individualmente, consistiam em aquisições de 1 minuto. Entre cada set, faziam-se pausas de 10
ou 15 minutos, a pausa era mais longa entre blocos. O tempo total de treino daria cerca de 37 minutos,
por sessão. Em ambos os estudos, cada participante participou em 4 sessões que foram conduzidas em
dias consecutivos, em aproximadamente na mesma altura do dia.

Os dados experimentais foram posteriormente divididos em dois grupos, consoante cada modali-
dade: o grupo de modalidade Screen-Based (4 F ; 4 M) e o grupo Immersive-VR (2 F ; 2 M). Foi escolhido
e aplicado um critério para seleção de participantes considerados non-learners, ou seja participantes
incapazes de regular a sua atividade cerebral durante a experiência. No grupo da modalidade Screen-
Based foram encontrados quatro non-learners, enquanto que no grupo de Immersive-VR foi encontrado
um. Foi aplicado um extenso protocolo de tratamento e limpeza de dados, destacando a Análise Inde-
pendente de Componentes (ICA) como o principal método de remoção de artefactos. Este é baseado
na divisão do sinal de EEG em componentes independentes, através de métodos estatı́sticos. Após esta
separação é possı́vel analisar componente a componente de forma a remover os mais ruidosos. Por fim,
eficácia do treino foi medida através do cálculo da amplitude relativa da banda de interesse (UA), pela
definição de ı́ndices que medem a capacidade de aprendizagem e aplicação de testes estatı́sticos.

Os resultados demonstram uma evolução positiva ao longo do treino, para ambas as modalidades,
exclusivamente dentro de cada sessão de treino. Ou seja, em cada sessão, ambos os grupos mostraram a
capacidade de aumentar a sua amplitude da banda alfa superior (upper alpha). No entanto, comparando
sessões, os resultados mostraram ser inconclusivos e não apresentam indı́cios deste aumento. O efeito
do treino não se limitouo à análise do intervalo de frequência de interesse, foram também analisadas as
restantes bandas de frequência. Tais se revelaram, irrelevantes na banda Beta, mas mais evidentes nas
bandas Theta e LA. Embora o tamanho da amostra não fosse suficiente para tirar conclusões estatı́sticas
relevantes e embora seja necessária uma investigação mais aprofundada, o trabalho apresentado nesta
tese mostrou que modalidade Immersive- foi mais eficaz em aumentar o parâmetro de feedback (RAUA)
dentro das sessões.

A maior limitação a ser destacada neste estudo foi tamanho da amostra. Uma vez que um grupo
continha dados de 8 sujeitos e o outro de 4 e após a análise das capacidades de aprendizagem, estes
número ficou ainda mais reduzido (VR = 3; VIS = 4). Pelo que determinar de forma precisa o efeito do
treino de NF tornou-se uma tarefa impraticável. Na verdade, um tamanho de amostra limitado reduz
efetivamente o poder estatı́stico do estudo e aumenta a margem de erro. Dado isto, uma coisa a ter em
conta em estudos futuros seria realizar mais sessões de treino com ambas as modalidades de sensoriais,
para aumentar o tamanho da amostra.

Palavras-chave: Neurofeedback; Modalidade sensorial; Realidade Virtual Imersiva; Banda Alfa
Superior Individual; EEG
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Abstract

Neurofeedback (NF) can be defined as a form of biofeedback that trains subjects to have self-control
over brain their functions, by providing real-time feedback of their own cerebral activity. This activity
can be presented in various forms, with auditory and visual feedback being the most common. Re-
cently, NF has been investigated as a potential treatment for various clinical conditions associated with
abnormal brain activity or cognitive capacities. However, the greater research focus is not discussing
how the feedback should be presented. The chosen modality for any NF training system may strongly
influence the training protocol and consequently the outcome of the experiment.

In this thesis, a systematical comparison between two different type of visual modalities (Screen-
Based vs. immersive-virtual reality (VR) ) was performed with the goal to evaluate the effectiveness of
each modality on the NF training results. Data from two previous studies, recorded on healthy partici-
pants, in protocols that targeted the increase in the upper alpha (UA) band power measured at the EEG
electrode Cz was used. This was then divided into two modality groups: Screen-Based modality group
(N = 8) and the Immersive-VR group (N = 4). An extensive data processing and cleaning protocol was
applied to both groups and the training effectiveness was measured through band power calculation,
the definition of learning ability indexes and the application of statistical tests. Results showed that,
both groups had a generally positive training effect within sessions, however data regarding different
sessions is inconclusive and does not show clear evidence of up-regulation of the target feature. Addi-
tionally, when only considering within-session evolution, only the Immersive-VR modality group was
able to maintain an increasing trend in all sessions.

One of the main limitations of this study was the sample size, which was too small to determine
the precise effect of NF training. Future work requires, not only an increase in sample size but also, the
definition and incorporation of learning predictors that allow the pre-selection of subjects before the
training sessions, in order to prevent high number of non-learners.

Keywords: Neurofeedback; feedback modality; virtual reality; individual upper alpha; EEG
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Chapter 1

Introduction

1.1 Context and Motivation

Neurofeedback (NF) represents a form of monitoring brain activity, which by providing a closed
feedback signal and measuring brain waves simultaneously, trains the participant to self-regulate the
targetted brain activity (Marzbani et al., 2016). The feedback signal can be presented in various forms be-
ing auditory and visual feedback the most common. The neural activity may be acquired through Elec-
troencephalography (EEG), Magnetoencephalography (MEG), functional Magnetic Resonance Imaging
(fMRI) or Functional Near Infrared Spectroscopy (fNIRS).

Neurofeedback has been the object of various studies for several decades, and it was popularized in
the late 1950s and early ’60s through Joe Kamyia and Barry Sterman’s work (?). Dr. Kamyia experiment
aimed to train human subjects to discriminate alpha from non-alpha states (Frederick, 2012) and, by
using a simple reward system, he discovered that people could learn to alter their brain activity. Dr
Barry Sterman’s ran several experiments to assess if cats could increase their sensory motor rhythm.

Since then, NF it has been growing in popularity, specifically among those who study methods for
influencing brain activity, on account that, NF is a non-invasive technique that does not introduce any
external electrical or magnetic activity, or pharmacological products into the brain and that there are
no known side-effects (Niv et al., 2013). Recently, NF has been investigated as a potential treatment for
some diseases or disorders, such as attention deficit hyperactivity disorder (ADHD) and epilepsy, as a
way to normalize brain activity and enhance cognitive capacities (Enriquez-Geppert et al., 2017).

Despite the fact that a high number of studies have indicated NF to be beneficial for several clinical
applications, in the current literature there is still some uncertainty about methodological factors that
may affect the effectiveness of Neurofeedback training (NFT) procedures. One such example is the
lack of guidance to how the feedback should be presented (visual feedback, auditory, combined, etc.).
Some authors argue that the chosen modality for any NFT system may strongly influence the training
protocol and consequently the outcome of the experiment. Despite this, only few studies within the
last few years, have compared the effects of different feedback modalities (Bucho et al., 2019; Berhanu
et al., 2019; Accoto et al., 2021).

In this thesis, we aim to compare the EEG-NFT responses to the standard 2-D visual and the
immersive-virtual reality (VR) visual modalities. We will use data from two data sets previously
recorded on healthy participants, in protocols that targeted the increase in the upper alpha (UA) power
band: i) the first, being an EEG-NFT training protocol using visual and auditory modalities, and ii) the
second, an EEG-NFT training protocol using VR. We aim to understand if the type of visual modality
(2-D vs. immersive-VR) affects the learning outcome for EEG-based NF traning.
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1.2 Thesis Outline

This thesis is divided into five chapters. The first and current chapter gives a theoretical introduction
to concepts that are relevant to this study, i.e. EEG, NF and, VR as well as presents a summary of the
pertinent literature. Chapter 2 gives an insight into the work methodology, starting with a description of
the data, the training protocol, and feedback modality and ending with a full description of all methods
used to clean and analyze the data. The results are shown in chapter 3 and discussed in chapter 4.
Finally, the last chapter contains the overall conclusions as well as this work’s limitations and possible
subjects that could be addressed more in-depth in future studies.

1.3 Electroencephalography

EEG can be described as the electrical activity produced by human brain neurons firing, which is
typically measured at the brain scalp (Hu and Zhang, 2019). Hans Berger, a German psychiatrist, who
in 1924 recorded the very first EEG in the scalp of a human head, is considered to be the father of
EEG (Louis et al., 2016; Schomer and Lopes da Silva, 2010). During an EEG recording, electrodes are
positioned on the scalp to detect electrical signals that are produced as a result of the brain’s synchro-
nized neuronal activity. Each individual EEG electrode’s voltage can be thought of as a change in the
potential between the active electrode and the reference electrode over time.

1.3.1 Neurophysiology

Physiologically, EEG measures voltage fluctuations resulting from ionic current within the neurons
and reflects correlated synaptic activity caused by post-synaptic potentials (Purves et al., 2018). These
voltage fluctuations are measured by a set of electrodes placed along the scalp and given its low spatial
resolution, the main utility of EEG is in the evaluation of dynamic cerebral functioning. (St. Louis et al.,
2016). Furthermore, considering the fact that it is a non-invasive method, simple to use, and with a
high temporal resolution, this makes it one of the most popular neuroimaging techniques.

The majority of the electrical activity recorded on the scalp is generated by pyramidal neurons
(Louis et al., 2016), which are characterized by their apical and basal dendrites that are oriented per-
pendicular to the cortical surface (Murakami and Okada, 2006).

Electrical currents are generated, at the brain level, during two types of neural activity: action
potentials and post-synaptic activity. The first, results from changes in the membrane potential of the
neurons, which is caused by the flux of ions and the latter arises from the communication between two
different neurons. Despite its large intracellular amplitude, action potentials, exhibit a low extracellular
amplitude. Additionally they do not last long enough to produce changes that are measurable on the
scalp. This means, that post-synaptic activity is responsible for most of the signal in EEG.

During synaptic activity, the electrical potential generated by a single neuron is too low to be de-
tected by EEG (Nunez et al., 2006), consequently the activity recorded by the electrodes represents the
summation of the inhibitory or excitatory postsynaptic potentials (PSPs). These potentials alone are too
small, hence only a large number of PSPs that are simultaneous and in the same direction will generate
EEG waves on the scalp (Kirschstein and Köhling, 2009). To summarize, the EEG signal represents the
activity that arises from all PSPs that are synchronized and similarly oriented, as for cortical pyramidal
neurons.
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1.3.2 Brain Waves

During an EEG analysis it is possible to detect patterns of the electrical activity of the brain, usually
referred to as brain waves. Electrical voltages in the brain scalp oscillate at a few microvolts, forming
brain waves, which are characterized by their amplitudes and frequency (Abhang et al., 2016).

There are five widely recognized brain waves and their frequencies vary by which state (e.g., alert
wakefulness, drowsiness, sleep) the individual is in. The main frequencies of human EEG waves are
listed below, along with their characteristics.

• Deltawaves δ (0.5–4 Hz): Physiologically seen in deep sleep or normally in children, and promi-
nent in the frontal-central head regions. Pathologically, this type of rhythm can appear in awake
states in cases of encephalopathy and focal brain dysfunction. (Nayak and Anilkumar, 2019)

• Theta waves θ (4–8 Hz) This rhythm can be seen in drowsiness or in the early stages of sleep be-
ing most notable in the fronto-central head regions. Enhanced frontal theta activity is presented
during heightened emotional states in children or young adults. Focal theta activity during awake
states can be a sign of focal cerebral dysfunction. (Nayak and Anilkumar, 2019)

• Alpha waves α (8–12 Hz): Present in normal awake EEG recordings in the occipital region,
best identified when the eyes are closed or during mental relaxation and, on the other hand, it is
usually attenuated by eye-opening or mental effort (Nayak and Anilkumar, 2019). Clinically, the
slowing of the background alpha rhythm may be a sign of cerebral dysfunction.

Some studies argue that there is an evident subdivision within the alpha band, into lower and
upper alpha band, and that each sub-band reflects different cognitive processes. Klimesch et al.
(1990) used the term individual alpha frequency (IAF), which presents the maximum power in the
alpha band in individual subjects, and stated that lower and upper alpha were defined according
to this frequency spectrum - lower alpha range can be defined as [IAF - 2, IAF] and upper alpha
as [IAF, IAF + 2], but other definitions can also be found in the literature.

• Beta waves β (12–35 Hz): The most frequently seen rhythm in normal adults and children, it
is most prominent in the frontal and parietal head regions. It usually occurs in an alert state or
when individuals present direct attention toward external stimuli. It often increases in amplitude
during drowsiness and right after you fall asleep. Most of the sedative medications increase the
amplitude and quantity of beta activity in individuals.

• Gamma waves γ (> 35 Hz): It is distributed throughout several cerebral structures and it par-
ticipates in various cerebral functions, such as perception, attention, memory, consciousness,
synaptic plasticity, and motor control (Amo et al., 2017).

1.3.3 Electrode Placement

To record an EEG signal, several electrodes are placed on the scalp. These electrodes act as a bridge
between lead wires, which conduct electrical current through the flow of electrons, and the human
tissues (Schomer and Lopes da Silva, 2010). Similar to what happens with other types of imaging tech-
niques, a standard electrode positioning method was created in order to ensure consistency among
studies.

The most common electrode placement system is the international 10/20 system, which consists
of 21 electrodes plus one ground electrode in which a system of lines is created and the electrodes are
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Figure 1.1: Electrode locations of International 10-20 system for EEG recordings (Commons, 2010).

placed at either 10% or 20% of the total front–back or right–left distance of the skull, which corresponds
to the length of these lines (Figure 1.1). Each electrode is identified by letter and a number. The let-
ters give out information about the area of the brain from which the electrode is reading the signal:
frontalpolar (Fp), frontal (F), temporal (T), parietal (P), occipital (O), and central (C). Additionally the
”A”, that can also be indicated as ”M” (mastoid process) refers to the prominent bone process usually
found behind the ear. Even numbers refer to the right brain hemisphere, whereas odd numbers refer
to the left brain hemisphere and these increase with their distance from the midline. Finally, electrode
sites labeled with ”z” (zero) refer to the sagittal midline of the brain.

In order to diminish ground-related noise, EEG uses online reference electrodes. This means that
the signal in each electrode is given by the difference between the electric potential in its location and
the signal of a reference electrode, such as Fz, Pz, Cz, mastoids, or earlobes. However, after the data has
been recorded it is possible to change its reference, i.e. to express the voltage in each electrode with
respect to another reference - this technique is called re-referencing. The optimal reference always
depends on the signal of interest, however, the two most commonly used re-referencing techniques
include the average mastoids or the average of all scalp channels (Leuchs et al., 2019).

1.3.4 Artifacts

Like any other kind of signal, cerebral activity recorded by an EEG system is often affected by
other electrical activity of non-neural origin, these are called artifacts. On both clinical and research
applications, artifacts are a major obstacle in the interpretation of any EEG signal (Seok et al., 2021). The
most common origin of an EEG artifact is usually internal, this means that it is caused by physiologic
functions, some examples include:

• Ocular Artifacts: These artifacts are seen in nearly every conscious individual during an EEG
and are crucial to correctly identify different stages of sleep. Ocular artifacts are noticeable in
the frontal region of the head and are a result of eye movements or blinks, in which the eye acts
as an electric dipole. In fact, the cornea is electropositive relatively to the retina and that will
generate a difference in the current potential that can be measured in both the horizontal and
vertical plane (Tatum et al., 2011).

Vertical eye movements are most commonly presented in form of a blink. During blinks, the
eyes create an upwards movement (ie, Bell phenomenon), which causes the cornea (that acts like
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a positive pole) to move closer to the frontopolar electrodes (Fp1-Fp2), resulting in a downward
deflection (Figure 1.2). Logically during the opposite movement, an upward deflection will be
generated (Louis et al., 2016). Saccades are described by the small movements made while reading
or even larger movements made while gazing around a room and in an EEG recording they may
appear as small and rapid deflections in the frontal areas. Finally, lateral eye movements affect
mostly electrodes F7 and F8.

• Muscle Artifacts: Another common artifact during EEG recordings is caused by any type of
myogenic (muscle) movement. The temporalis and frontalis muscles are the main source for this
type of artifact by participating in simple movements like swallowing or the related movement of
the tongue. Muscle artifacts are seen as high-frequency and fast bursts of activity (Tatum et al.,
2011), as depicted in Figure 1.3.

• Cardiac Artifacts: Also referred to as pulse artifact, this type of artifact arises from the effect
that cardiac activity has on an EEG signal. Despite the amplitude of an ECG (Electrocardiogram)
signal being low when observed on the scalp, some electrodes might detect heartbeats which
would be seen as rhythmic pattern distortion overlapping the EEG signal (Bitbrain, 2020).

Figure 1.2: Representation of an EEG recording time series,
per channel. The high amplitude voltage peaks present in
frontal electrodes (F7, Fpz, F8) correspond to blink artifacts
(Bitbrain, 2020).

Figure 1.3: Representation of an EEG recording time series,
per channel. The high-frequency portions present in the sig-
nal occur during jaw movements (Bitbrain, 2020).

The EEG recording can also be contaminated by external factors, i.e., by non-physiological artifacts.
Mostcommon non-physiological artifacts include noise generated by monitoring devices, movement of
the cables connecting the electrodes and the amplification system or incorrect placement/bad contact
of reference channels (Bitbrain, 2020).

Considering this, it is mandatory to apply methods that effectively detect and eliminate any arti-
facts from EEG recordings. To this day, several methods have been developed and can be split into
two categories: i) the estimation of the artifactual signals using reference channels and, ii) the other
through decomposition of the EEG signal into other domains (Jiang et al., 2019). Some examples of these
techniques include Regression Methods, Wavelet Transform (WT), Blind Source Separation (BSS), and
Independent Component Analysis (ICA). Figure 1.4, represents a chart of the percentage of the number
of artifact removal methods referred in literature in the past five years. It shows that the BSS-based
methods and especially ICA are the most commonly used algorithms.
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Figure 1.4: Percentage of the number of artifact removal methods referred in literature in the past five years; Independent
Component Analysis (ICA), Canonical Correlation Analysis (CCA), Wavelet Transform (WT), Empirical mode decomposition
(EMD) (Jiang et al., 2019).

1.4 Neurofeedback

NF can be defined as a biofeedback technique that helps individuals to gain control over their brain
activity, by making them respond to a display of their own brainwaves or other electrical activity of the
nervous system in real-time (Niv et al., 2013; Ros et al., 2014). The first NF experiment took place in mid-
1960s through Joe Kamyia’s work (?), which showed that voluntary control of human brain oscillations
was possible with sensory feedback from a brain-computer interface (BCI). Since then, this technique
has gained in popularity and to this day, it is seen not only as a method for cognitive enhancement in
healthy subjects but also as a therapeutic tool (Enriquez-Geppert et al., 2017).

1.4.1 Neurofeedback Mechanisms

Neurofeedback is based on two facts, the first is that the state of the brain is reflected in parameters
of any EEG recording, and the second fact is, that the human brain is capable of ”learning” new cognitive
states (Kropotov et al., 2010). However, to this day, one current limitation in the literature is the lack
of research and consensus about the underlying mechanisms of neurofeedback, i.e. there are still some
arguments on how this technique really work.

Niv et al. (2013), published a review that summarizes different perspectives about the mechanisms
underlying NF. First of all, the authors define neuroplasticity as the ability of the brain to reorga-
nize and form new synaptic connections, mainly in response to learning or experience. The authors
suggested that NF may be effective by enhancing the strength between synapses through repeated fir-
ing, this means that by causing a long-lasting increase in signal transmission between two neurons,
NF will induce brain plasticity. This supports the fact that NF experiments generally involve several
training sessions. Furthermore, several studies show evidence of this premise by taking advantage of
NF protocols to make electrical changes in the brain, together with cognitive improvements (Ros et al.,
2014; Kober et al., 2017). Niv et al. (2013), suggest that this factor could be investigated with a fMRI
connectivity analysis before and after treatment with NF.

Secondly, it is proposed that NF may be strengthening and regulating connectivity within and be-
tween networks of neurons present in the cortex. Several studies present the brain as a model, i.e.
a network model that is characterized by high-density local connectivity of neurons that are hierar-
chically connected with surrounding neurons. For example, in the cortex, there is dense connectivity
inside each cluster of neurons but this connectivity is diminished between clusters. Some studies sug-
gest that psychopathologies, such as Alzheimer’s disease or schizophrenia could be a consequence of
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Figure 1.5: Neurofeedback experiment - The key elements.

dysfunctions in these networks (Zoefel et al., 2011; Menon et al., 2011). If this was true, NF methods
would be effective in improving various symptoms of psychopathologies. This premise is supported by
some studies that show that NF is capable of tuning brain pathological oscillations towards homeostasis
(Ros et al., 2014; Marzbani et al., 2016)

Finally, in this review three neurocognitive networks are identified as responsible for brain self-
regulation and are suggested to be regulated by NF: (i) the Default Mode Network (DMN), which
comprises several portions of the cortex and serves as a regulatory function of the brain, being usu-
ally strengthened by meditation, (ii) the Central Executive Network (CEN), which is involved in all
kinds of executive functions, and (iii) the Salience Network (SN), that manages emotional, somatic
and autonomic information. Deficits found in any of these three networks are commonly associated
with pathologies that are characterized by abnormal oscillatory brain activity (e.g. Alzheimer’s disease,
autism or ADHD). The fact that these networks oscillate at low cortical frequencies is the bridge that
connects them to NF methods, considering that such frequencies are used in recent neurofeedback pro-
tocols. Hence, NF may be directly affecting these networks serving as a potential successful therapeutic
tool.

1.4.2 EEG neurofeedback experiment

Neurofeedack research is evolving and with that comes the creation of several experimental proto-
cols. Although these experiments present some differences, generally there are some key elements that
are coincident in almost every NF experiment. In this section, based on the work by Enriquez-Geppert
et al. (2017) , five of those elements are identified and further explored: (i) participants (learner) (ii)
data acquisition, (iii) pre-processing, (v) feature extraction (iv) feedback signal.

Participants

Any NF experiment requires participants, whose brain’s activity is measured and processed. The
feature of interest is extracted from the acquired data and is then transformed so it can be presented
to the participants in a form of instant feedback that allows them to modulate their own brain activity.
Unfortunately, not all participants respond in the same way to a NF training session, some individuals
are not as capable to learn how to regulate their brain patterns, i.e.they present less learning ability, or
some might even be identified as non-learners (participants who cannot achieve self-regulation of their
own brain activity) (Nan et al., 2015). The learning ability of a group of participants in a NF experiment
will highly affect the success of the session and because of this, few recent studies (Ninaus et al., 2015;
Reichert et al., 2015; Witte et al., 2013; Weber et al., 2011) have been conducted with the purpose of iden-
tifying factors that predict the success of the training. Such factors include the characteristics of EEG
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activity in the resting state, along with specific neuroanatomical structures’ volume and concentration
or even intrinsic aspects related to the brain’s structural properties.

Learners vs. Non-learners

In the current literature, there are several studies on the effectiveness of neurofeedback however,
there is a lack of information and data to explain the failure of neurofeedback, and therefore it is im-
portant to explore the learning ability as a factor that affects neurofeedback results. Reiner et al. (2018),
reflect on the need for finding methods that can successfully differentiate learners and non-learners,
since this is the most relevant way to measure the impact of the learning process on the effectiveness
of neurofeedback.

Some studies recognize different types of non-learners identification criteria. Okumura et al. (2019),
explores predictive training assessment indices that could predict learners, prior to training. Learners
were classified based on cognitive and neurophysiological measures taken during a series of Stroop
tasks. Wan et al. (2014), found higher alpha activity at a resting state before training a significant
predictor for better learning indices for alpha NFT. Nan et al. (2015), aimed to predict the learning
ability in training that involved beta/theta ratio training. They encountered that low beta in eyes-open
resting state measured before NF and the beta-1 amplitude in the first training block could predict the
learning ability across training sessions.

Data acquisition

Acquiring data for a NF experiment can be achieved by using any type of technique that records
brain signals. Some examples include EEG, MEG, fMRI and NIRS.

EEG was the first modality to be used in a NF environment and characteristics such as high temporal
resolution, inexpensiveness, safety, and straight forward usability make it, to this day, the most popular
method for recording electrophysiological brain activity in research.

Similarly to EEG, MEG is an optimal technique for real-time feedback of brain processes, that mea-
sures the magnetic fields generated by electric currents in the brain (Enriquez-Geppert et al., 2017). It
has a high temporal and a good spatial resolution and comparatively to EEG is less sensitive to signal
distortion caused by the conductivity of the head tissues. Despite this, the fact that this technique re-
quires extensive funding and is not in any way portable makes it a less popular data acquisition method
than EEG in NF experiments.

Besides those two, high spatial-resolution fMRI and the NIRS are two additional ways of collecting
data for NF experiments. The fMRI technique provides a spatial resolution of the order of the millimeter,
and the blood-oxygen-level dependent signal (BOLD) method enables to estimate the feedback signal
successful for the successful regulation of brain activity by fMRI-NF. Unlike NF withEEG, fMRI-NF
protocols do not require an extensive number of training sessions (Thibault et al., 2018).

Near Infrared Spectroscopy (NIRS), similarly to fMRI, measures hemodynamic changes in
hemoglobin, associated with neural activity, with the help of a portable cap that may have up to 50
channels. To detect changes in the attenuation of radiated light, it uses infrared emitting diodes and
light detectors (Mihara et al., 2012). Furthermore, NIRS is relatively resistant to subject motion and
requires less time for attachment without the use of paste, resulting in fewer limitations. While func-
tional NIRS is less expensive, more artifact-resistant, and more portable than fMRI, its spatial resolution
is lower, in the order of centimeters (Thibault et al., 2018).
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To summarize, nowadays neurofeedback employs a variety of imaging techniques to guide volun-
tary control over both electromagnetic and hemodynamic changes in brain activity and each imaging
modality has been used in various neurofeedback protocols that target different brain signals (Thibault
et al., 2016).

Pre-processing

As described in Section1.3.4, all cerebral activity recordings can be affected by artifacts, which
included EEG. Thus, to improve the efficiency of any neurofeedback system, strategies for eliminating
artifacts from the signal must be developed. Enriquez-Geppert et al. (2017) mentions in his review that
not treating eye artifacts in a NF training environment may result in participants falsely learning to
modulate their eye movements rather than their brain activity.

As it is shown in Figure 1.4, ICA is the most popular method for artifact removal in current literature,
and this is also true for NF training. This method includes extracting and separating statistically the
components present in the signal in question. ICA algorithms emerged during the 1980s and ten years
later became a very popular method not only, in biomedical signal analysis but also, in the financial and
economic fields (Vullings et al., 2009). Figure 1.6 illustrates the ICA analysis procedure and its ability
to filter out artifacts from the signal. Let’s say we have an EEG recording with several channels and
name it matrix X, when we apply the ICA the algorithm finds a decomposing matrix (W) that isolates
the data and transforms it into a sum of temporally independent and spatially fixed components (Jung
et al., 2000). After this, it is possible to look at each independent component and filter those which
are thought to be artifactual, and in the end, the algorithm subtracts those chosen components and
forms the new and corrected EEG data. ICA can easily isolate variations of potential due to blinks, eye
movements or muscle contractions. However, the algorithm also finds components that do not fit into
any of these categories and because of this any ICA analysis must avoid not only, under-correction but
also the over-correction, which may lead to the loss of important data information.

Figure 1.6: schematic illustration of the procedure
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Feature extraction

Feature extraction is also a key element of NF experiments, and consists of selecting, from brain
activity, the desired feature to be modulated and consequently, extracting it. Most therapeutic NF
training protocols aim to modulate one specific frequency band, like theta, alpha, and beta which are
linked to particular cognitive processes (Enriquez-Geppert et al., 2017; Marzbani et al., 2016) or the
brain activity in the desired frequency range can also be determined by relative relation between two
frequency bands (e.g., theta/beta ratio training).

Extracting the target feature is the last step before the feedback parameter is computed. After this,
the computed feedback parameter is converted into a sensory stimulus that is fed to the participant via
the chosen feedback modality.

Feedback signal

This element involves the conversion of the target feature into a sensory stimulus that is then
introduced and presented to the subject (learner). The feedback is most commonly obtained through
external stimulis, visual and auditory being the most common modalities (Davelaar, 2018). While the
stimulis are being presented, the learner becomes aware of the changes taking place throughout the
session and is then able not only, to modulate the desired brain patterns but also to memorize the
current neural state.

Enriquez-Geppert et al. (2017) highlights the fact that they aren’t many studies addressing differ-
ent feedback modalities in the current literature, despite the fact that many authors argue the chosen
feedback modality can strongly influence the outcome of any NF experiment (Accoto et al., 2021; Bucho
et al., 2019; Huster et al., 2014). Due to these uncertainties in the literature, the choosing of the feedback
modality is usually based on the participants’ characteristics and the type of study being developed.

1.4.3 Neurofeedback Applications

Enriquez-Geppert et al. (2017) review’s identifies three main fields of application for neurofeedback:
(i) clinical field, as a therapeutic tool specifically for conditions related to deviating brain activity in
patients, (ii) peak-performance training field and (iii) investigation field, as a tool to study the relation
between brain neural events and cognitive functions. Evidently, NF can be applied in various situations
apart from the ones mentioned above, but for the current work, the most relevant application is without
a doubt at a clinical level, examples of this are explored below.

ADHD

Attention deficit disorder is one of the most common neurobehavioral disorders, it is usually chronic
and with notable symptoms that can persist into adulthood (Wilens and Spencer, 2010). Currently
accepted and more often applied treatments for this condition consist of pharmacotherapy combined
with behavioral therapy, both have been proven to present serious limitations in this context (Enriquez-
Geppert et al., 2019).

Thibault et al. (2016) points out that treatment for ADHD is the most researched application of
neurofeedback. Studies show that slower brain activity (theta) and less beta activity is associated with
the diagnosis of this disorder (Marzbani et al., 2016). Because of this, standard training protocols with
ADHD attempt to decrease theta and/or increase beta power. Additionally, some studies also take
advantage of NF to help diagnose this condition (Gnecchi et al., 2007).
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Epilepsy

Epilepsy is a neurobiological disorder characterized by sudden bursts of electrical activity in the
brain, called seizures. Treatment of epilepsy through neurofeedback was perhaps the first clinical ap-
plication to be registered (Egner and Sterman, 2006). To this day, NF is known to effectively and reliably
reduce epileptic seizures by means of sensorimotor rhythm (SMR) (12-15 Hz) training. For instance,
Sterman et al. (1974) and Lubar and Bahler (1976) both conducted an SMR neurofeedback protocol and
successfully were able to reduce seizure frequency.

Schizophrenia

Schizophrenia is a severe long-term mental health condition. It severely affects and interferes with
a person’s ability to think clearly, manage emotions, make decisions and relate to others (Marzbani
et al., 2016). Current treatment methods have proved to not be sufficient to treat all symptoms and can
also cause problems such as medication adherence, metabolic side effects, and comorbid mood disorders
(Surmeli et al., 2012). This shows great necessity to explore better therapy methods for this condition. To
this day, NF has also been proven to help improve the life of patient’s with schizophrenia, for example,
Surmeli et al. (2012), studied the effect of quantitative EEG-guided neurofeedback (NF) treatment in
a population with this condition and out of 48 participants 47 showed clinical improvement after NF
treatment.

11



1.5 Virtual Reality (VR)

virtual reality (VR) can be defined as ”an artificial environment which is experienced through sen-
sory stimuli (as sights and sounds) provided by a computer and in which one’s actions partially de-
termine what happens in the environment” (vr, 2022). Sherman and B (2019), identifies different key
elements in experiencing VR: (1) the people involved not only in designing and implementing the en-
vironments but also the participants who experience them; (2) the virtual world, which is is defined as
an imaginary space often manifested through a computer interface; (3) immersion, the idea of being
physically present in a non-physical world and (4) interactivity, for any VR system to seem genuine,
while the user is interacting with the environment, it should interact back by responding to the user’s
actions. In fact, since the concept of VR, as we know today was first formed in 1968, several types of
different formats have been created: (i) Non-Immersive VR; (ii) Semi-Immersive VR; (iii) Immersive VR;
(iv) Augmented Reality; (v) Collaborative VR.

In the scope of this work, Immersive VR is the most relevant for the current work. The concept of
”immersion” refers to intense participation in an activity on an intellectual and emotional level and in
VR technology is a measurable feature used in several research works (Accoto et al., 2021). There are
two types of Immersive VR:

• Cave Automatic Virtual Environments (CAVE), in which the user is put in a room, usually
squared, where projectors may be used on the floor and ceiling to create a highly immersive
environment (Figure 1.7).

• Head-mounted display VR, used with the classic VR glasses and can be complemented with head-
phones and produce the immersive feeling of being in a simulated world (Figure 1.8).

Because the brain recognizes the virtual world as real, the ability to train and acquire knowledge
or abilities in various contexts or environments is possible. For this reason, when it comes to the
development of several skills, virtual environments are allegedly more successful than other digital
methods.

Figure 1.7: Example of a CAVE VR environment (ST Engi-
neering Antycip, 2022).

Figure 1.8: Example of a Virtual Reality Headset (Kiyoshi
Ota, 2016)

1.5.1 Neurofeedback in Virtual-Reality

The improvement of software and hardware of computer leads to developing and improving VR
technology and its applications. Contrary to popular belief, applications for virtual reality go way be-

12



yond media and entertainment, and nowadays this technology is being used in fields such as healthcare,
aerospace, military, sports, and education.

More recently, VR started growing in popularity among neurofeedback researchers, who started to
hypothesize if the illusions induced by a VR environment, would activate the brain areas of interest
and therefore enhance the training procedure Accoto et al. (2021). Vourvopoulos et al. (2019), explored
the effect of a VR EEG-neurofeedback could have in helping chronic stroke patients in motor recovery
and movement re-learning. Accoto et al. (2021) investigated the effects of vividness on neurofeedback
training with a CAVE-VR environment and concluded that increased performance was related to higher
vividness during training.

Any NF training protocol aims to modulate a specific brain feature and it is plausible to assume
that this modulation would be better achieved if the brain was being fed with a realistic feedback
signal. Even though there are some limitations in the current literature on how the feedback should
be presented, considering VR technology is based on the creation of close-to-reality environments, it
ought to be considered as a strong candidate for a suitable feedback modality.

1.6 Previous works

This section presents a brief contextualization of the work carried out in this area, specifically stud-
ies that conduct NF experiments that either compared two different modalities or used VR as feedback.
Tables 1.1, 1.2 and 1.3 summarize all the information presented below.

The present work has as reference two previous main works. Firstly, Bucho et al. (2019) de-
veloped and implemented a NF-training with the goal to compare the effectiveness of feedback
provided via two different sensory modalities, visual and auditory respectively. An EEG-based
NF protocol was implemented, targeting the individual UA band and working memory enhancement.
The sample size consisted of 16 healthy participants, hence 8 individuals for each modality. The results
revealed that both groups showed significant improvements in training sessions, but no significant
improvements regarding working memory nor differences between groups. Hence, regarding the com-
parison of sensory modalities, the authors indicate that the sample size was small and that further
investigation is required. The second most relevant work is by Berhanu et al. (2019), which consisted
in implementing/validating a real-time computation algorithm for functional-connectivity-based EEG-
NF while using immersive-VR for feedback, also compared to the standard UA-based EEG-NF protocol
implemented by Bucho et al. (2019) but adapted to immersive-VR. The aim was to modulate the ampli-
tude of the weighted-node-degree Functional Connectivity (FC) in the individual UA band and for the
electrode Cz. The sample consisted of 8 healthy subjects, 4 who performed the standard UA EEG-NF
protocol with immersive-VR, and 4 who performed the functional-connectivity-based EEG-NF experi-
ment. The results showed an increase of the upper alpha and FC along training and that alpha training
has an effect in FC. Moreover, a VR environment was revealed to be efficient as a stimulus delivery
mechanism. Yet again, it is a very small sample size to draw definitive conclusions from.

To date, only a few studies compared different types of feedback modalities. Fernández et al. (2016),
compared the efficacy of visual versus auditory modalities in a NF study with disabled children. The
sample consisted of 20 learning-disabled children with an abnormally high theta/alpha ratio. During
training, the target was to reduce the theta/alpha ratio. The results showed that auditory stimuli were
more effective than visual.

Although they did not compare different types of modalities, Plerou et al. (2017) and Nazer et al.
(2018), conducted relevant studies that evaluated the effectiveness of NFT. The first evaluated the brain
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activity and activation differences between participants enrolled in NFT and controls and then inferred
that the effect of NF therapy was significant. The latter aimed to determine the effects of NF training
on verbal and visual memory and results showed that this type of procedure can be used to improve
the memory of individuals.

Regarding the effect of UA training, Kober et al. (2017) investigated the effects of UA-based NFT
on electrical brain activity and cognitive functions in stroke survivors and observed positive effects on
memory functions and cortical “normalization” in a stroke patient. Additionally, Zoefel et al. (2011)
aimed to evaluate the trainability of UA and its effects on cognitive performance. The sample consisted
of 14 participants who were trained in five sessions within 1 week. Eleven out of fourteen participants
showed significant training success. This means that, the UA was increased and the enhancement of
cognitive performance was significantly larger for the NF group than for the control group.

Similarly to Berhanu et al. (2019), few authors have used an immersive VR environment as feed-
back modality. Yan et al. (2008) used VR to create a piece of immersive feedback information, with
results suggesting that the attention of subjects had been strengthened after 20 training sessions, thus
hypothesizing that a NF system could be an effective tool for treating children with ADHD.

Additionally, the authors studied the role of alpha oscillations in attentional control with a sample of
22 participants. Half of the individuals were presented with a 3D-VR environment while the other half
received feedback in a 2D-VR environment. Results showed a larger learning rate in the 3D environment
compared with the 2D group.

Finally, Accoto et al. (2021) investigated the effects of vividness in a Cave Automatic Virtual Envi-
ronment (CAVE-VR) on neurofeedback training outcome and assessed the effect on working memory
performance, with a sample of 21 participants, subdivided into 3 groups. Each group performed - in
one of three versions of the same living room, presented at different levels of vividness in a CAVE-VR
environment. Results showed that the most vivid feedback corresponded to a higher increase in neu-
rofeedback performance and had a more positive effect on the subjects’ motivation, concentration and
reduced boredom and also improved working memory performance.

1.7 Objectives

In this thesis, we aim to explore if the type of visual modality (Screen-Based vs. Immersive-VR)
affects the effectiveness of a NF training results. The main motivation for this thesis is: (i) the fact that
NF has been growing in popularity, not only as a tool to better understand the brain functions, but also
as potential method to treat few conditions related with stress, anxiety or difficulty to focus; (ii) the lack
of studies in current literature that compare different types of feedback modalities and consequently
their impact of the training effectiveness. This was achieved by:

• Using two data sets from previous studies and applying pre-processing tools and artifact removal
algorithms to it.

• Systematically comparing the use of Immersive-VR with conventional visual reinforcement sig-
nals by identifying the training effect for both groups of subjects.
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Chapter 2

Methods

This chapter is divided into two sections, the first half covers the characteristics of the data re-
trieved from previous works (Bucho et al., 2019; Berhanu et al., 2019), starting with details about the
participants, followed by the equipment and signal acquisition elements and finally, the neurofeed-
back training protocol. The second section includes a detailed description of the data pre-processing
and data analysis steps, that allowed the comparison of the effectiveness of the two different visual
feedback modalities.

2.1 Data and Training Description

2.1.1 Participants

Study I (Visual vs Auditory)
As previously described in Table 1.1, the aim of this study was to compare the effectiveness of two

sensory modalities (visual and auditory) in the context of an EEG-based NF protocol that aimed at the
increase of the individual UA. The experiment counted with a total of 16 healthy participants, between
19 and 28 years old and who also completed self-assessment health-related surveys. Two groups were
created by randomly allocating participants while trying to keep an equal number of females and males
in both groups, which were named after the modality being tested - the visual group and the auditory
group. The demographic information is presented in Table 2.1 as, adapted from Bucho et al. (2019).

Group Visual Auditory

Age (years; mean ± SD) 22.5 ± 2.73 22.88 ± 1.25
Gender (F/M) 4 F ; 4 M 5 F ; 3 M
Dominant Hand (L/R) 0 L ; 8 R 0 L ; 8 R

Table 2.1: Demographic characteristics of the visual and the auditory groups, respectively (adapted from Bucho et al. (2019))
.

Study II (Head-Mounted VR)
Within the scope of this study, as stated in Table 1.1, a pipeline for an EEG-NF experiment in virtual

reality was designed and implemented. In total, 8 healthy subjects took part in this study, with ages
ranging from 18 to 50 years. The aim of the experiment was to study EEG-NF learning outcome for both
the individual UA and the estimated weighted-node-degree FC for the imaginary part of coherency
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in the UA. Study participants were randomly distributed between the two groups, with demographic
information described in Table 2.2.

Group Alpha FC

Age (years; mean ± SD) 34 ± 12 27.5 ± 5.5
Gender (F/M) 2 F ; 2 M 1 F ; 3 M

Table 2.2: Demographic characteristics of UA and FC groups (adapted from Berhanu et al. (2019)).

2.1.2 Equipment and Signal Acquisition

Bucho et al. (2019) and Berhanu et al. (2019) used similar protocols and equipment for signal acquisi-
tion. For both, the signal acquisition took place in Neurolab of the Evolutionary Systems and Biomed-
ical Engineering Lab (LaSEEB), of the Institute for Systems and Robotics (ISR), at Instituto Superior
Técnico (IST). The room provided the necessary sound and light conditions for an EEG acquisition and
experiment. Additionally, the EEG amplifier LiveAmp (Brain Products GmbH, Gilching, Germany) was
used for EEG acquisitions, the open source software OpenViBE (Renard et al., 2010) was utilized for
the EEG-NF protocol and the display of the visual, auditory, and VR feedbacks was performed with
the software Unity. The signals were sampled at 500 Hz from the ActiCap’s system with 32ch active
electrodes (Figure 2.1), with the ground electrode located at the forehead and the reference placed over
the left mastoid (channel TP9).

In the study Bucho et al. (2019), the feedback was presented on a computer monitor from which the
participants sat one meter away while using headphones.

In Berhanu et al. (2019) study, Oculus Rift Virtual reality Head-mounted display (HMD) were used
for feedback presentation.

Figure 2.1: Electrode locations for the experimental protocols.
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Figure 2.2: Temporal organization of a training session. Between trials there was a 10 seconds long pause, 15 seconds long
between blocks and at least 15 seconds between sets (EO = Eyes Open ; EC = Eyes Closed).

2.1.3 Neurofeedback Training protocol

2.1.3.1 Session Design

The temporal organization of the training session is equivalent for both studies (Bucho et al., 2019;
Berhanu et al., 2019) and it is illustrated in Figure 2.2. Each training session was split into four parts,
it started with a 4-minute baseline acquisition, that consisted of alternate 1-minute periods with eyes
open and eyes closed, during which the subjects did not perform any task. This pre-baseline period
was fundamental, since it was used to calculate the minimum, maximum and threshold values of the
feedback parameter and to determine the individual alpha band (IAB), which are both described in
2.1.3.2. After this, the NF training session began, which was divided into 5 sets, with each set containing
3 blocks, that individually, consisted of two 1-minute trials. Between each trial, there were pauses of 10
long or 15 seconds if it was between blocks. Between sets, the subjects were given a longer break of at
least 15 seconds long. At the end of the EEG-NF, a pos-baseline period was acquired The total training
time was around 37 minutes, per session. In the end, similarly to what was done before, a baseline was
acquired and participants were asked to fill a mental state survey.

In both studies, each participant took part in 4 sessions that were conducted on consecutive days,
at approximately the same time.

2.1.3.2 Feedback parameters

As it is referred in 2.1.3.1, the IAB is calculated during the pre-baseline period and it is measured
again during the pos-baseline period of the last session to identify possible changes. This variable can
be defined as the maximum power value in the EEG frequency spectrum between the lowest and
higher transition frequencies, which are called lower transition frequency (LTF) and higher transition
frequency (HTF). These boundary values are obtained through the intersection in a power spectral
density (PSD) between eyes open (EO) and eyes closed (EC) signals (see figure 2.3)
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Figure 2.3: Illustration of the IAF, LTF, and HTF measurement (adapted from Bucho et al. (2019)).

In Bucho et al. (2019), the feature used for EEG-NF training was the relative amplitude of the upper
alpha (RAUA), with the UA defined from the individual alpha peak to higher transition frequency (HTF).
In Berhanu et al. (2019) the alpha group has the RAUA feature, whereas for the FC group the feature
consisted on the weighted-node-degree for the imaginary part of coherency in the individual UA band.

This parameter was explicitly defined by Wan et al. (2014) and it was adapted for the UA band.
The RAUA is determined by the sum of amplitude spectra in the UA band divided by the total sum of
amplitude spectra when considering the signal from value 4 Hz to value 30 Hz, as defined by:

RAUA =
∑

HT F/∆ f
k=IAF/∆ f X(k)

HT F − IAF
/

∑
30/∆ f
k=4/∆ f X(k)

30−4
(2.1)

where X(k) is the amplitude spectrum at frequency k and ∆ f the frequency resolution. This parameter
was, in both studies, computed in real-time within the OpenViBE software.

2.1.3.3 Display of feedback

Bucho et al. (2019) presents two different feedback displays: auditory and visual, however only the
visual feedback is relevant for the present work. The visual feedback was presented in a computer
monitor and it consisted on a sphere, that varied in size and was located over a horizon background
(see Figure 2.4). The radius of the sphere changed linearly with the feedback parameter (RAUA) that
was collected at the electrode location Cz. Likewise, the sphere’s color altered between red and white,
whether RAUA was below or above a predefined threshold, respectively. During the training session,
participants were told to maintain the sphere as large as possible and keep it white for as long as
possible.
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Figure 2.4: Visual feedback display from Bucho et al. (2019).

Berhanu et al. (2019), delivered the feedback using VR-HMD in the form of a spherical group of
particles that changed size, rotated, and moved closer to the subject (see Figure 2.5), these movements
corresponded to a distinct paradigm for every training session. For the first paradigm, participants were
told to increase the size of a rotating sphere that was standing in front of a planet. The sphere equaled
the size of the planet when RAUA = 1 . For the Rotation Speed paradigm, the sphere maintained a
fixed size, and subjects were instructed to increase its velocity. Finally, in the last paradigm, the sphere
started further back in the virtual world and the participants aimed to get the particle as close as possible
and whenever they reached the center of the particle system, they were returned to the initial position.

Figure 2.5: Feedback display in Berhanu et al. (2019). Top: the sphere of particles changed in size, Bottom: sphere gets closer
to the participant.

2.2 Data Analysis

Throughout this section, all the processing, as well as analysis steps, will be described in detail,
along with screenshots of the code created for this purpose. All the steps of data processing, which go
from extracting the raw data to data cleaning, along with analysis, were executed in a developed Python
script, with the help of MNE-Python library (Gramfort et al., 2013) . This script was built so that it
could take any EEG data file (in .gdf format) and run all of the stages involved in the data processing.
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Figure 2.6: Frequency spectrum across channels before and after filtering, of a selected data file. Each channel is represented
by a different color, as shown in the topographic image.

2.2.1 Data cleaning

In Bucho et al. (2019), it was pointed out that explicit and direct artifact removal was not performed,
since it aimed at being closer to the true experimental conditions, however, if it had been it could have
had a big impact on the study conclusions. With this in mind, all the data extracted from previous
work was in its raw form. In other words, data processing was performed from scratch which aims to
improve results.

Data Loading was the first step, each file was uploaded and read individually. After this, the EEG
montage was collected in order to associate each channel with its correct name, additionally, an image
that showed each channel location on the scalp was created (Figure 2.1).

Filtering is a crucial part of any data cleaning procedure, the idea is to remove any electrical noise
or artifacts from the signal. Brainwaves occur at various frequencies that can go up to 200 Hz, however
in an EEG spectrum low frequencies are the most identifiable. Usually, EEG filters are made to reject
both very low and high frequency activities, with high-pass filters being applied at 0.1 or 1 Hz and
low-pass filters above 40 or 50 HZ. In the current work, a band-pass filter of 1-45 Hz was applied to
all data files. Figure 2.6 shows the frequency spectrum that was plotted before and after applying the
band-pass filter.

After filtering, the data was re-referenced. In this study, the reference electrode was channel TP9,
which means that all channels were expressed as the difference in electrical potential to this chan-
nel. This referencing is usually performed during recording, however offline referencing can also be
achieved, which is called re-referencing. For this study, a re-reference to average was applied, which
means that the voltage at each channel is now with respect to the average of all channels.
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Artifact removal

The importance of artifact removal was already covered in section 1.4.2, therefore this section out-
lines how the artifacts present in this data were handled. At this point, the data was already filtered and
while this is a key step of preprocessing it is not sufficient to remove artifacts that arise from eye move-
ment, muscle activity or other external noise sources (Klug and Gramann, 2021). As described in 1.4.2,
ICA is a very popular method to address this type of artifacts since it allows for isolation of independent
components in the signal and consequently their removal (Chaumon et al., 2015). Considering this, ICA
was applied to all data files with the goal to find and remove any non-cerebral activity from the signal.
This was accomplished by using the MNE-Python function mne.ICA(), which requires as input not
only the number of components (n components) that is passed to the algorithm during fitting (ranged
between 1 and the number of existing channels) but also, the fit method. In order to maintain coherence
throughout the analysis the same number was applied to all files when running ICA: n components
= 19, additionally the chosen fit method was FastICA.

This algorithm was applied to the filtered raw data and after this a series of images were generated.
The next step was to reject the components thought to be artifactual, which is accomplished by a careful
examination of this images. Figure 2.7 and 2.8 show the time series and the scalp topography of each
individual component, after visualizing them and learn to interpret them it is relatively simple to find
what components should be removed. The process of removing components from the signal was kept as
conservative as possible, i.e. components were rejected only when there was a very clear noise pattern
(e.g. ocular movements or heart beats). Then, the chosen components were subtracted from the original
raw data and a new cleaned data file was created.

Figure 2.7: Time series of each component. Plot generated from a data file from Bucho et al. (2019) study (Sub14, Session 3)
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Figure 2.8: Scalp topography of each component. Plot generated from a data file from Bucho et al. (2019) study (Sub14,
Session 3).

Figure 2.9: Individual component properties, which include - topographic epochs image, ERP/ERF, power spectrum, and
epoch variance (Sub14, Session 3).
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Epoching

Epoching can be defined as extracting specific time-windows from a continuous signal. From
epoching we obtain epochs, which are chunks of data with equal duration, that usually represent ex-
perimental events, like the response in a certain time window after the onset of the stimulus. Because
of this, epoching EEG data is a recurrent technique used in data analysis. As it was described in section
2.1.3.1, the experimental sessions consisted of 5 sets, each set containing 6 trials in them (two trials
per block). After filtering, the data was epoched in two different ways: (1) Epoching by sets - which
resulted in 5 epochs and (2) Epoching by trials, which resulted in 30 epochs.

Inside an epochs object, the data comes in the form of an array, that contains the shape - [epoch,
channel, time]. For both studies, each epoch was created based on the markers present on the EEG data
and using the MNE-Python function mne.Epochs(). The data was epoched before and after artifact
removal and the epochs were stored in .fif format files and then used for analysis.

With the epochs generated from the new data it was possible to assess the cleaning effect through
topomaps of the power spectral density across epochs in Figure 2.10.

Figure 2.10: Topomaps of the power spectral density across epochs before (Top) and after (Bottom) applying ICA.

2.2.2 Data processing

After cleaning and epoching the data, the next step consisted in performing a time-frequency anal-
ysis, which provides an overview of the spectral influence of the NF training. To achieve this, it was
necessary to decompose the signal into frequency bands of interest, which were adapted to each sub-
ject’s IAB. Considering that LTF = IAF - 2 Hz and HTF = IAF + 2 Hz:

• Theta: 4Hz to LTF

• Lower Alpha (LA): LTF to IAF

• Upper Alpha (UA): IAF to HTF

• Beta: HTF to 30Hz

Each subject data file was uploaded and the previously created trial epochs were put together to
form all five sets. By using trial epochs instead of set epochs, it was guaranteed that each set only
contained data that corresponded to training periods (all pauses were removed).

Afterward, in order to calculate the relative amplitude (RA) of each band, equation 2.1 was adapted
for all frequencies of interest. For this to work, a python function was created and implemented.
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This function started by computing an estimate of the PSD using the Multitaper method, which un-
like Welch’s method does not require a time window to be selected, and proceeded to calculate the
selected band power by averaging the PSD in the selected set and channel and normalizing within the
frequency range (see figure B.5). Each band RA was computed for all training data, for every subject
and stored in a .csv file.

2.2.3 Assessing Training Effect

Calculating the power of each band assesses the questions: 1) How well did each participant was
able to up-regulate the target feature, with respect to each feedback modality. 2) Is this regulation
limited to the target frequency band. Then, to assess the training effect and similarly to what was
done in previous studies (Berhanu et al., 2019; Bucho et al., 2019), three learning indices that have in
consideration the variation of a feedback parameter were defined:

• IntraS: calculates, for each session (i), the slope (mi) obtained by linear regression of the learning
parameter along all 5 sets in that session, while averaging across sessions:

IntraS =
∑

nsessions
i=1 mi

nsessions
(2.2)

• IntraA1: calculates, for each session (i), the mean difference between the mean of the first set
and the mean of each set ( j), while averaging across sessions:

IntraA1 =
∑

nsessions
i=1 ∑

nsets
j=2 ( ¯set j − ¯set1)i

nsessions(nsets−1)
(2.3)

• IntraA2: calculates, for each session (i), the difference between the mean of the last and the first
sets, always relative to the mean of the first, while averaging across sessions:

IntraA2 =
∑

nsessions
i=1 (

¯set5− ¯set1
¯set1

)i

nsessions
(2.4)

• InterS: calculates the slope (m) of the evolution along the four sessions:

InterS = m (2.5)

• InterA1: calculates the difference between the mean of the last two sessions and the mean of the
first two, while averaging across the first two sessions:

InterA1 =
(S̄4 + S̄5)− (S̄1 + S̄2)

S̄1 + S̄2
(2.6)

• InterA2: calculates the difference between the means of the last two sets of the last session and
the means of the first two sets of the first session, relative to the first two:

InterA2 =
( ¯set4 + ¯set5)S4 − ( ¯set1 + ¯set2)S1

( ¯set1 + ¯set2)S1
(2.7)
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Identification of non-learners

As it is mentioned in 1.4.2 there is no clear definition that separates learners from non-learners.
However, practically all studies involving NF, take into account the fact that there are some partici-
pants who are not capable of self regulating brain activity. As revealed by Reiner et al. (2018), there
is an evident necessity to differentiate between learners and non-learners, since this is the only way
to quantify the effect of the analysis of the learning process on the effectiveness of neurofeedback.
Because of this and based on what was taken into account by Bucho et al. (2019), IntraS was chosen
as a criteria for identifying non-learners. Meaning, whenever this index presents a negative value the
participant is classified as non-learner. Evidently, from this section on, learners will be subjects whose
slope (mi) obtained by linear regression of the evolution of the feedback feature (RAUA) is positive.

2.2.4 Statistical Analysis

Visual inspection is not sufficient to fully understand and analyze the results obtained. A statistical
approach can provide valuable and quantifiable information about the data. For this reason, a statistical
analysis in order to evaluate differences between modalities was performed.

The first step in any statistical analysis is to assess the sample size. Parametric tests can analyze
only continuous data and require sample data big enough to approximate normality. Whenever the
sample size requirements are not met and there is no information on the normality of the data, non-
parametric tests must be used. This work consisted of two different data samples, both were small (4
subjects in the Immersive-VR group and 8 subjects in the Screen-Based) and did not grant normality.
Because of this, a non-parametric Wilcoxon Signed-Rank test was used.

The Wilcoxon Signed-Rank test is the non-parametric equivalent to the Student’s t-test. It examines
the differences between one pair (a,b) of data that are non-normally distributed. The null hypothesis is
that the distribution of a−b has a median equal to zero, i.e. there are no significant differences between
sample a and b. The test results must be compared to our significance value: when the p-value is less
than or equal to your significance level the null hypothesis is rejected.

In the present work, the Wilcoxon Signed-Rank test was used to compare sets within the same
session and evaluate differences between learning indexes.
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Chapter 3

Results

In this chapter, the results are presented and divided into four sections. First, the target feature
is explored for both modalities by means of the individual evolution of the RAUA within and across
modalities and also by a boxplot representation of this feature’s distribution (3.1). Then in the next sec-
tion, the remaining EEG bands are explored mostly by showing the group median evolution (3.2). The
results concerning the learning indexes are shown in the third section through tables and boxplot dis-
tributions (3.3). To simplify the results, the subjects from each group had a letter and number assigned
to it: Screen-Based group - subjects V1 to V8 and Immersive-VR group - subjects A1 to A4.

3.1 Target Feature Evolution within sessions

In figures 3.1 3.2, it is presented the evolution of the RAUA at Cz along sets and for all sessions, for
each participant in Screen-Based and Immersive-VR modalities, respectively. Each blue point represents
the mean of each set in that session.

Regarding the Screen-Based modality, we observe several different distributions for each subject:
some show a direct growing trend, while others show the opposite (figure 3.1). When analyzing the data
per individual subject, subject V1 shows a positive trend within each session, however the RAUA of the
last session is substantially lower than the first. Similarly to subject V1, subject V4 shows a growing
trend over all sessions. Subjects V2 and V5 show a considerable decrease in the target feature over time,
as well as subject V8 who of all subjects presents the higher values of RAUA and shows a more sharp
decrease in the data. V3 and V6 values remain roughly constant, although the latter shows a slight
increase only during the first two sessions. Finally, subject V7 shows in the first two sessions a gentle
decrease, however that changes in sessions 3 and 4, show an evident growth. For the Immersive-VR
group, it is clear that there is an increasing tendency for all subjects, with the exception of subject A4.
In general, the data from the Screen-Based modality group appears to have more fluctuations within
sessions and consequently, are harder to take visual conclusions.

Figure 3.3 provides an overall vision of the target feature evolution throughout different sessions,
for all participants. To achieve this, the mean RAUA for each session was calculated for subjects in the
Screen-Based modality (left) and the Immersive-VR (right) groups. In the first image, subjects V6 and
V8 show a noticeable drop from the first session to the second and third. On the other hand, subject
V4 reveals a slight increase starting in session 2. In the Immersive-VR group, it seems that only subject
A3 had a positive increment through sessions. Besides that, subject A1 shows a very sharp drop when
compared with subjects A2 and A4.
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Figure 3.1: Evolution of RAUA at Cz, for each participant (V1 to V8), along sets (1 to 5) in all four sessions for the Screen-
Based modality. Each point represents the mean RAUA of that set.
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Figure 3.2: Evolution of RAUA at Cz, for each participant (A1 to A4), along sets (1 to 5) in all four sessions for the Immersive-
VR modality. Each point represents the mean RAUA of that set.

Figure 3.3: Evolution of RAUA at Cz for each subject, across sessions for both modalities. Each point represents the mean
RAUA for each session (S).

Figure 3.4 illustrates, for each session, the distribution of values of the target feature at Cz, across
all participants for both modality groups. In the first session, the medians of the Screen-Based modality
are consistently higher than the Immersive-VR. However, only the median of the Immersive-VR group
increases during the session as well as the maximum value. Looking at the range of the boxes it is
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possible to tell that the distribution of the values from the first session to the second differs significantly.
Moreover, while the median for the Screen-Based group stays approximately constant, the Immersive-
VR group median continues to increase throughout the session and this time presents higher values.
However, Session 3 does not show any particular trend regarding the median values, nevertheless, the
maximum values seem to decrease for both modalities. During the last session, the median behavior
does not look very different from the previous session, however, it is possible to say that the medians
for both modalities present very similar values.

Figure 3.4: Boxplot representation of the distribution of RAUA at Cz along sets and sessions across all participants from both
modalities.

The distribution of values of the target frequency band across learners is represented in Figure 3.5
and further analyzed on tables 3.1, 3.2, 3.3 and 3.4. When considering only the learners we see that there
is a major shift in the data from the Immersive-VR group, for instance, the median for the last session
of each set increased by 41% (S1), 84% (S2), 19% (S3) and 29% (S4). Furthermore, the descriptive tables
confirm that in the Immersive-VR group there is a positive growth in the relative amplitude of upper
alpha in all sessions. Additionally, one thing to notice is that IQR values are much lower in the Screen-
Based modality group, i.e. the data for this group has a smaller spread and consequent less variability.
However, this variability seems to decrease throughout sessions for the Immersive-VR group, by 50 %.
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Figure 3.5: Boxplot representation of the distribution of RAUA at Cz along sets and sessions across participants classified as
learners from both modalities.

Session 1
Screen-Based (learners) Immersive-VR (learners)

Min Max IQR Median Min Max IQR Median
Set 1 0.884 1.999 0.391 1.519 1.114 3.559 1.222 1.648
Set 2 0.951 2.498 0.699 1.416 1.1783 3.481 1.151 1.808
Set 3 0.970 2.308 0.591 1.705 1.202 3.839 1.318 1.983
Set 4 0.959 2.733 0.586 1.272 1.383 4.243 1.430 2.200
Set 5 0.880 2.929 1.374 1.714 1.090 4.468 1.689 2.606

Table 3.1: Descriptive statistical values of the distribution of RAUA for learners in Session 1.

Session 2
Screen-Based (learners) Immersive-VR (learners)

Min Max IQR Median Min Max IQR Median
Set 1 0.960 1.719 0.388 1.261 1.281 4.132 1.426 1.482
Set 2 0.930 2.107 0.851 1.711 1.399 4.139 1.370 1.610
Set 3 0.920 1.671 0.320 1.102 1.600 3.968 1.185 1.643
Set 4 0.909 1.401 0.286 1.064 1.614 3.977 1.181 1.853
Set 5 0.604 1.485 0.576 1.186 1.770 4.023 1.126 1.974

Table 3.2: Descriptive statistical values of the distribution of RAUA for learners in Session 2.
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Session 3

Screen-Based (learners) Immersive-VR (learners)

Min Max IQR Median Min Max IQR Median
Set 1 0.753 2.283 0.763 1.062 1.415 3.749 1.167 1.614
Set 2 0.780 2.304 0.455 1.201 1.706 3.755 1.024 2.250
Set 3 0.767 2.146 0.484 1.318 1.626 3.650 1.012 2.123
Set 4 0.798 2.500 0.790 1.553 1.361 3.650 1.144 2.253
Set 5 0.874 2.694 0.955 1.471 1.569 3.650 1.040 2.280

Table 3.3: Descriptive statistical values of the distribution of RAUA for learners in Session 3.

Session 4

Screen-Based (learners) Immersive-VR (learners)

Min Max IQR Median Min Max IQR Median
Set 1 0.624 2.207 0.747 1.011 1.520 2.771 0.625 1.574
Set 2 0.831 1.938 0.368 1.346 1.673 2.788 0.558 1.690
Set 3 0.854 1.889 0.411 1.474 1.324 3.263 0.969 1.690
Set 4 0.792 2.212 0.870 1.144 1.710 3.396 0.843 1.768
Set 5 0.821 2.611 0.672 1.693 1.729 3.307 0.789 1.809

Table 3.4: Descriptive statistical values of the distribution of RAUA for learners in Session 4.

Figure 3.6 gives us a clear view of the disparities between modality groups and also between learn-
ers and non-learners by showing the medians’ evolution over the four training sessions. There is a
noticeable positive growth tendency, which is more evident for the Immersive-VR modality. However,
despite the fact that some sessions do not show a constant upwards tendency, the median of the last
set is always higher than the first set of that session, for both modalities with all subjects included.
Additionally, when comparing the medians’ first value in each session, there is an evident increase,
exclusively in the Immersive-VR group. Removing the data from the non-learners had more impact in
the Screen-Based modality data. In fact, this group’s medians significantly decreased in all sessions. On
the other hand, the data from the Immersive-VR group presents higher values and even more evident
growth in each session when only considering the learners.
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Figure 3.6: Evolution of the group median relative amplitude of upper alpha at Cz with and without non-learners.

Tables 3.5 and 3.9 show the results of the statistical tests performed on the data, which are described
in section 2.2.4.

In the table 3.5 the results from the Wilcoxon Signed-Rank test that compares the RAUA of the first
and last set of each session for all participants are shown. There is no significant p-value, which means
that the null hypothesis must not be rejected, considering that the null hypothesis is that there are no
significant differences between the pair of sample distributions.

Screen-Based Immersive-VR

Session 1 1.0 0.25
Session 2 0.383 0.625
Session 3 0.844 0.25
Session 4 0.945 0.25

Table 3.5: p-values resulted from the Wilcoxon Signed-Rank test that compares the RAUA of the first and last set of each
session for all participants.

3.2 EEG bands evolution within sessions

In order to assess the training effect aside from the target feature, the relative amplitude of the
remaining frequency bands (Lower-Alpha, Beta and Theta) was calculated at the target electrode Cz.
Figures 3.8, 3.9 and 3.7, similarly to figure 3.6, show the median relative amplitude for each band during
the four training sessions. Note that, as it is described in section 2.2.2 the frequency bands were adapted
to each subject, based on their IAB.

Starting with the Theta band, we see that, contrary to what happens with the UA band, the relative
amplitude appears to have, for the most part, a negative evolution (slopes below zero) for both modali-
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ties. However, this is not true for the Screen-Based modality during session 3. Additionally, we see that
removing the data from the non-learners did not have such an evident impact as it did in figure 3.6.
Nonetheless, it is noticeable that the data drifts slightly apart, with the exception of session 1. Regarding
the evolution of the Lower Alpha band, it becomes apparent that the modality groups present an oppo-
site behavior to one another, in fact while the Immersive-VR modality group appears to have a generally
positive trend, the Screen-Based shows a decrease in the relative amplitude for all sessions. Moreover,
the removal of the non-learners had a significantly greater impact on the Immersive-VR group. Lastly,
the results for the Beta band show that the values for the learner of the Screen-Based group are at least
30% higher than the Immersive-VR group, for all sessions, which does not happen with any other fre-
quency band. Furthermore, we see that during the first two sessions, while the Screen-based modality
learners show an increase in amplitude by 16 %, the Immersive-VR shows a decrease by 12 %, and they
switch behaviors during the last two sessions.

Figure 3.7: Evolution of the group median relative amplitude of theta at Cz with and without non-learners.
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Figure 3.8: Evolution of the group median relative amplitude of lower alpha at Cz with and without non-learners.

Figure 3.9: Evolution of the group median relative amplitude of beta at Cz with and without non-learners.

Tables 3.6 and 3.7, show the results of the Spearman correlation computed between the set number
and the RAUA of that set for each session, for all participants and learners only, respectively. Signif-
icant p values show a relevant correlation between set number and the RAUA. The table only shows
significant values for the Theta band, in the Screen-Based modality group. By looking at those results,

37



one can assume that the RA of Theta has a negative correlation with set number, i.e. throughout Session
1 and Session 2 learners of the Screen-Based group evidently decrease their band power in the Theta
frequency range. Additionally, we see that for target frequency band there is no significant correlation
with the set number.

Screen-Based
Theta LA UA Beta

correlation p value correlation p value correlation p value correlation p value
Session 1 -0.302 0.058 0.021 0.895 -0.047 0.771 0.142 0.380
Session 2 -0.349 0.027 -0.119 0.463 -0.132 0.418 0.260 0.105
Session 3 0.091 0.572 0.029 0.859 0.037 0.822 0.031 0.851
Session 4 -0.150 0.355 -0.039 0.807 0.135 0.407 0.018 0.910

Immersive-VR
Theta LA UA Beta

correlation p value correlation p value correlation p value correlation p value
Session 1 -0.466 0.038 0.012 0.959 0.153 0.519 0.024 0.918
Session 2 -0.147 0.536 0.276 0.239 0.165 0.485 -0.153 0.519
Session 3 -0.132 0.579 -0.082 0.728 -0.009 0.969 0.088 0.709
Session 4 -0.343 0.138 0.110 0.643 0.233 0.323 0.245 0.297

Table 3.6: Spearman correlation between set number and mean RA of the studied frequency bands, for all participants.

Screen-Based (learners)
Theta LA UA Beta

correlation p value correlation p value correlation p value correlation p value
Session 1 -0.472 0.036 -0.061 0.797 0.031 0.898 0.276 0.239
Session 2 -0.497 0.026 -0.208 0.378 -0.264 0.261 0.374 0.104
Session 3 0.135 0.571 0.086 0.719 0.215 0.364 -0.080 0.738
Session 4 -0.178 0.453 0.049 0.837 0.264 0.261 -0.006 0.980

Immersive-VR (learners)
Theta LA UA Beta

correlation p value correlation p value correlation p value correlation p value
Session 1 -0.349 0.202 0.033 0.908 0.207 0.458 -0.153 0.587
Session 2 -0.185 0.508 0.436 0.104 0.338 0.218 -0.349 0.202
Session 3 -0.169 0.546 0.027 0.923 0.016 0.954 0.082 0.772
Session 4 -0.415 0.124 0.218 0.435 0.458 0.086 0.426 0.114

Table 3.7: Spearman correlation between set number and mean RA of the studied frequency bands, for participants classified
as learners.
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3.3 Learning Indexes

As previously mentioned in section 2.2.3, the index IntraS was calculated and then used for identi-
fying and then classifying subjects as either learners or non-learners. Table 3.8 shows the index values
calculated for the target frequency band for all subjects of both groups, with subjects considered non-
learners highlighted in red. In the Screen-Based group, four subjects were classified as non-learners
(V2, V3, V5 and V8) and one subject (V4) in the Immersive-VR group.

Screen-Based Immersive-VR

V1 V2 V3 V4 V5 V6 V7 V8 A1 A2 A3 A4
IntraS 0.005 -0.025 -0.011 0.033 -0.069 0.068 0.056 -0.213 0.085 0.130 0.049 -0.034
IntraA1 0.020 -0.097 -0.087 -0.098 -0.032 0.317 0.340 -0.456 0.185 0.379 0.176 -0.06
IntraA2 0.030 -0.048 -0.121 0.118 -0.084 0.646 0.931 -0.172 0.099 0.356 0.165 -0.038
InterS -0.047 -0.188 0.021 0.220 -0.014 -0.352 ≈ 0 -0.430 -0.277 -0.072 0.128 -0.079
InterA1 -0.133 -0.159 0.091 0.469 0.105 -0.344 0.067 -0.173 -0.143 ≈ 0 0.154 -0.256
InterA2 -0.116 -0.236 0.050 0.447 -0.125 -0.326 0.109 -0.275 -0.048 -0.444 -0.169 -0.147

Table 3.8: Indexes for the UA band at location Cz for all subjects of both groups.

In figure 3.10, the distribution of each learning index across all participants is represented for the
four frequency bands. As it is mentioned in previous sections, if these indexes have positive values, it
means that there is a general increase in the measured features. We see that for the Immersive-VR group,
the median of the learning indexes is above zero for all bands with the exception of theta. We also see
that the target frequency band (UA), not only has the highest medians ( ¯IntraA1 = 0.18; ¯IntraA2= 0.13;

¯IntraS= 0.07;), but also shows more data variance. What happens in the other modality group is quite
different. The indexes relative to the UA band show median values very close to zero or even below
(Intra A1). Theta is the band that shows a higher variance, and Beta has both the highest median and
lowest variance. Figure 3.11, shows the distribution of these same exact learning indexes but restricted
to the learners. A clear effect is noticed, more evidently in the Screen-Based modality group where the
median of all indexes goes from being very close to zero to growing to a positive value. This is expected,
since non-learners were classified based on the signal on the index IntraS and this group presented a
considerably higher number of non-learners.
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Figure 3.10: Distribution across all participants of learning indexes corresponding to within session evolution, at Cz for all
bands, for each modality.

Figure 3.11: Distribution across participants classified as learners of learning indexes corresponding to within session evo-
lution, at Cz for all bands, for each modality.

Across session indexes are represented in Figures 3.12 and 3.13. These appear to have an irregular

40



distribution among participants and modality groups, which makes it harder to take visual conclusions
from. Contrarily to what happens with the indexes calculated for within sessions results, the target
frequency band is the most negative of all band, while LA behaves contrarily by presenting the most
positive median.

Figure 3.12: Distribution across all participants of learning indexes corresponding to the evolution between sessions, at Cz
for all bands, for each modality.
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Figure 3.13: Distribuition across participants classified as learners, of learning indexes corresponding to the evolution be-
tween sessions, at Cz for all bands, for each modality.

The table below displays the results of the Wilcoxon Signed-Rank test for the distribution of each
learning index for all bands. For this test, the null hypothesis would be that the median value for each
index is zero. The table shows significant two p-values (< 0.05), in the IntraS and Intra A1 calculated for
the Beta frequency range for the Screen-Based modality. Additionally, we see that for the Immersive-
VR group, in each band there is no difference in the p-value, in fact, all values happen to be significantly
higher than 0.05, which indicates strong evidence for the null hypothesis. However, similarly to what
is indicated before, the sample size for the Immersive-VR is quite small, which may affect the results.

Screen-Based Immersive-VR
Theta LA UA Beta Theta LA UA Beta

IntraS 0.3125 0.742 0.629 0.039 0.125 0.375 0.125 0.625
IntraA1 0.078 0.641 0.727 0.039 0.125 0.375 0.125 0.625
IntraA2 0.383 0.547 0.422 0.195 0.125 0.375 0.125 0.625

Table 3.9: p-values resulted from the Wilcoxon Signed-Rank statistical test for the distribution of the learning indexes for all
participants. The null hypothesis would be that the median value of the distribution for each frequency band is zero, with 5%
level of significance. Relevant pvalues (< 0.05) are highlighted in color.
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Screen-Based Immersive-VR
Theta LA UA Beta Theta LA UA Beta

InterS 0.844 0.641 0.902 0.547 0.125 0.625 0.8125 0.625
InterA1 0.844 0.547 0.727 0.945 0.625 0.625 0.6875 0.625
InterA2 0.844 0.547 0.844 0.844 0.875 0.625 1.0 0.625

Table 3.10: p-values resulted from the Wilcoxon Signed-Rank statistical test for the distribution of the learning indexes for
all participants. The null hypothesis would be that the median value of the distribution for each frequency band is zero, with
5% level of significance.

43



Chapter 4

Discussion

In this chapter the discussion is presented, divided into two parts: (i) training effect on target feature;
(ii) training effect on other frequency bands.

4.1 Training Effect on Target Feature

In general, a training effect was observed for both modalities, more evidently within each session.
As Figure 3.6 and Tables 3.1, 3.2, 3.3 and 3.4 demonstrate the median of the target feature corresponding
to the last set is consistently higher than the first set of that session, for both modalities. This shows that,
in each training session subjects from both groups were able to increase their RAUA willingly. Despite
this, the Wilcoxon Signed-Rank test comparing the first and last set of each session did not show any
significant difference (Table 3.5). It is, however, important to take into account that this statistical
test was performed with a very small data sample (n = 4 for the Immersive-VR; n = 8 for the Screen-
Based), and if the assumptions of any statistical test are not met, then the results could be unreliable.
Similarly, the statistical test performed on the across sessions indexes (IntraS, Intra A1 and A2), in the
UA range showed no significant difference (p value > 0.05), see Table 3.9. Furthermore, results from
the Spearman correlation between the set number and mean RAUA across all the corresponding sets
of the four sessions (Table 3.6) showed no significance in the UA band.

Comparing with within session performance, in between session results are harder to draw conclu-
sions from. As revealed by the Wilcoxon Signed-Rank test for these learning indexes, InterS, Inter A1
or A2, none were found to be significantly different from zero (Table 3.10). Moreover, results from Table
3.8 and Figure 3.12, show that these learning indices seem to have an irregular distribution among par-
ticipants and modality groups, which gives very little information about the evolution of the feedback
parameter over different the four different sessions. One thing to take into account is that, the metrics
chosen to evaluate across sessions results are the same used within session analysis. But in reality,
because different session were recorded on different days, one can assume that the participants might
have had their training abilities affected by external factors such as their mood or level of tiredness on
that day. This suggests that, metrics to compare results from different sessions could have been further
investigated. Furthermore, even from session to session most experimental conditions stay constant, i.e.
session design, display of feedback, equipment etc., there may exist differences between recordings that
be overlooked even after normalization. Another thing to take into account is inter and intra-subject
variability, for example Fasanya et al. (2013) highlights the need of taking into account participants’
unique characteristics, given the limited number of training procedures that support training and anal-
ysis individualization. Finally, Gruzelier (2014) argues that in order to increase the odds of success in

44



a NF training experience, the number of sessions advised is eight to ten, which is double the amount
used in this study (four), this may also have affected the across session training performance.

In the Screen-Based modality group 50% of the subjects were classified as non learners (V2, V3 V4,
V8), while only one was considered in the Immersive-VR group (A4). Visually, these subjects appear to
have a general decrease in the RAUA within each session. However in Table 3.8, we can see that some
values, despite their sign, are relatively close to zero, i.e. the learning slope might be negative but that
could be disregarded since the value is ≈ 0.01. The Wilcoxon Signed-Rank test confirms this, by not
finding values of IntraS, in the UA band significantly different from zero (Table 3.9). For this reason,
the criteria used to classify participants (sign of IntraS) as learners or non-learners, could have been
further investigated. Regarding IntraA1 and IntraA2, Table 3.9 shows that non-learners consistently
have negative values for these indexes as well. This confirms that in some way, learners present an
evolution during training within each session. During the analysis of the group median RAUA (Fig-
ure 3.6, we notice that the data from the non-learners had more impact in the Screen-Based modality
data, which is logical since this group has a higher number of non-learners. In fact, Figures 3.10 and
3.11, show this exactly - when the non-learners are removed there is noticeably more evident shift in
the interquartil range of the UA box for the Screen-Based modality group than for the Immersive-VR
group. In addition, 3.3 shows that in both modality groups, subjects that were classified as non-learners
show considerably higher values of RAUA, which may suggest that greater values are more difficult to
increase.

4.2 Training Effect on Other Frequency Bands

The evolution of the relative amplitude of other frequency bands as well as their learning indexes
was assessed in order to evaluate training specificity. Furthermore, the statistical tests were extended
to frequency bands other than UA and the results are discussed below. Regarding the relative amplitude
of the theta band, it appears to have, for the most part, a negative progression for both modalities, in
contrast to what happens with the UA band. In fact, in this frequency range, the within session learning
indexes were the most negative of all bands, in both modalities. Figures 3.10 and 3.11 highlight the fact
that the theta band has a strong negative correlation with the target frequency band, by showing the
boxes of these two bands always on opposite sides. Additionally, the Spearman test found a significant
negative correlation in the first 2 sessions of the Screen-Based modality group as well as in the first
session of the Immersive-VR group, which loses this significance after the non learners are removed. In
fact, decreased theta activity is believed to be an indicator of cognitive performance (Cao et al., 2022;
Hanslmayr et al., 2005). Similarly to what happened with the UA band, no significant differences from
zero were seen for none of the learning indexes in any group. Additionally, no notable correlation was
found between the set number and the relative amplitude of this band. Looking at the distribution of
the within session indexes, there is not a noticeable difference between this band and UA, both present
similar median values and distribution ranges. As for InterS, InterA1 and InterA2, we see that for both
groups, while the target frequency band is mostly negative, LA stays consistently above zero, which is
more evident among learners.

Concerning the Beta band, we see that the values are significantly higher for the Screen-Based
group. In fact, the Wilcoxon Signed-Rank test found that IntraS and IntraA1 were significantly different
from zero for this modality group. But looking at the other results, one can assume that this band was
not affected by training neither within, nor across sessions.
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Chapter 5

Conclusions

To this day, NF training has been successfully used to not only, normalize irregular brain activity
related with several neurological and psychiatric conditions (such as epilepsy, schizophrenia or ADHD),
but also to enhance cognitive function (such as working memory) in healthy individuals. In the current
literature, the majority of NF studies focus on data acquisition and pre-processing as well as learning
strategies. In fact, very few studies have compared the effect that different feedback modalities have on
training success. The current work consisted on a systematical analysis on the influence of two different
type of visual modalities (2-D vs. immersive-VR ) in the effectiveness of the NF training results. Data
from two previous studies, recorded on healthy participants, in protocols that targeted the increase
in the upper alpha (UA) power band was used. An extensive data processing and cleaning protocol
was applied and the training effectiveness was measured through band power calculation, definition of
learning ability indexes and application of statistical tests.

Results show that a general training effect was observed for both modalities, exclusively within
sessions. In each session, both groups showed the ability to increase their RAUA. However, across ses-
sions, results are inconclusive and do not show clear evidence of up-regulation of the target feature.
The training effect aside from the target frequency was also assessed and these effects were irrelevant
in the Beta band but quite evident in Theta and LA bands. Although the sample size wasn’t sufficient
to take relevant statistical conclusions when considering only within-session evolution, only the re-
sults from the Immersive-VR group showed an increase in the relative amplitude of upper alpha in
all sessions. Whereas further investigation is required, the work presented in this thesis showed that
the Immersive-VR modality was more effective in increasing the feedback parameter (RAUA) within
sessions.

5.1 Limitations and Future Work

Evidently, this study major limitation was the sample size. One group had data from 8 subjects
while the other had 4 and after analysing learning abilities this number was count down even more
(VR = 3; VIS = 4). Because of this, determining the precise effect of NF training was an unfeasible task.
In fact, a limited sample size actually reduces the study’s statistical power and increases the margin of
error, which decreases the power of the study. Given this, one thing to take into account in future work
would be conducting more training sessions with both feedback modalities, to increase the sample size.

As is the case, the learning ability of the experimental group of participants in a NF training session
highly affect the effectiveness of training. In the present work, there were non-learners in both modality
groups, more so in the Screen-Based group, this together with sample size precluded the analysis and
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therefore the results. To prevent this, future studies could incorporate a pre-selection of subjects before
the actual training. This could consist on one trial training session in which pre-defined predictors of
training success would be measured.

Subject variability was not taken into account on this study. The elements of feedback display, data
analysis and processing remained unchanged for all participants. In the future, to improve effectiveness
of training, the experimental protocol could be adapted to each participant regarding the feedback
display and even individualization in frequency ranges before and after analysis.

Finally, the data cleaning protocol applied in this study was extensive and most certainly had impact
in the results. One thing to be added to future work could be assessing the effect of the data cleaning
in the effectiveness of training. Questions such as ”How does it affect the learning ability?” and ”Does
it have the same effect on both modalities?” would be interesting to answer.
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Appendix A

Learning indexes
Table A.1: All band-specific learning indexes for all the participants of the Screen-based modality group.

Subject Band IntraS IntraA1 IntraA2 InterA1 InterA2 InterS

V1 0,005 0,020 0,030 -0,133 -0,116 -0,047
V2 -0,025 -0,097 -0,048 -0,159 -0,236 -0,188
V3 -0,011 -0,087 -0,121 0,091 0,050 0,022
V5 -0,069 -0,032 -0,085 0,105 -0,125 -0,014
V6 0,068 0,317 0,646 -0,344 -0,326 -0,352
V7 0,056 0,340 0,931 0,067 0,109 0,000
V8 -0,213 -0,456 -0,172 -0,173 -0,275 -0,430
V4

UA

0,033 -0,098 0,118 0,469 0,447 0,220

V1 -0,105 -0,296 -0,189 0,069 -0,182 0,014
V2 0,002 -0,019 -0,026 -0,041 0,221 0,018
V3 -0,065 -0,283 -0,093 0,197 0,111 0,175
V5 -0,082 -0,331 -0,228 -0,138 -0,124 -0,035
V6 -0,082 -0,331 -0,228 0,096 -0,059 -0,005
V7 0,109 0,145 2,211 -0,114 -0,528 -0,084
V8 -0,138 -0,386 -0,284 0,480 0,536 0,235
V4

THETA

0,031 0,073 0,095 -0,138 -0,124 -0,035

V1 0,002 -0,009 0,026 -0,045 -0,084 -0,019
V2 -0,010 -0,199 -0,044 -0,037 0,354 0,087
V3 -0,034 -0,101 -0,106 0,189 -0,016 0,091
V5 0,022 0,015 0,133 0,213 0,352 0,106
V6 0,022 0,015 0,133 0,561 0,610 0,900
V7 -0,255 -0,186 -0,635 -0,270 -0,415 -0,135
V8 -0,037 0,019 0,368 -0,173 -0,018 -0,145
V4

LA

0,096 0,085 0,168 0,213 0,352 0,106

V1 0,024 0,068 0,116 -0,011 0,142 0,004
V2 0,005 0,043 0,126 0,108 -0,110 0,007
V3 0,023 0,093 0,153 -0,100 -0,027 -0,031
V5 0,011 0,077 0,063 -0,071 -0,098 -0,029
V6 0,011 0,077 0,063 -0,231 -0,285 -0,049
V7 -0,009 -0,049 -0,335 0,085 0,396 0,036
V8 0,032 0,056 0,235 0,121 0,334 0,018
V4

BETA

0,008 0,041 0,127 -0,071 -0,098 -0,029
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Table A.2: All band-specific learning indexes for all the participants of the Immersive-VR modality group.

Subject Band IntraS IntraA1 IntraA2 InterA1 InterA2 InterS

A1 0,085 0,185 0,099 -0,143 -0,048 -0,277
A2 0,130 0,379 0,356 0,007 -0,444 -0,072
A3 0,049 0,176 0,165 0,154 -0,169 0,128
A4

UA

-0,034 -0,060 -0,038 -0,256 -0,147 -0,079

A1 -0,072 -0,160 -0,175 0,198 -0,141 0,085
A2 -0,078 -0,193 -0,145 -0,055 -0,032 0,013
A3 -0,078 -0,210 -0,174 0,103 0,180 0,143
A4

THETA

-0,034 -0,060 -0,038 -0,020 -0,095 0,027

A1 -0,031 0,004 -0,041 0,171 0,043 0,101
A2 0,080 0,180 0,218 0,008 0,079 -0,006
A3 0,048 0,154 0,140 0,163 0,613 0,140
A4

LA

0,022 -0,052 0,041 -0,166 -0,093 -0,078

A1 -0,005 -0,013 -0,063 0,322 0,452 0,073
A2 -0,007 -0,021 -0,051 0,038 0,003 0,006
A3 0,013 0,032 0,096 -0,095 -0,160 -0,052
A4

BETA

0,059 0,070 0,080 0,057 0,071 0,012
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Appendix B

Data processing and analysis code

1 file = #INSERT FILE NAME HERE
2 raw = readrawgdf(file, preload=True)
3 chnames = raw.chnames
4 montage = readcustommontage( #LOCATION FILE )
5 montage.plot(kind=’topomap’)
6 chloc = montage.chnames
7 c = dict(zip(chnames, chloc)) #Combines names with electroded locations
8 raw.renamechannels(c)
9 raw.setmontage(montage)

10 print(’Number of channels marked as bad:’, len(raw.info[’bads’]))

Listing B.1: Code: data uploading and montage file reading.

1 # Apply band-pass filter (1-45 Hz) and re-reference to average
2 lofreq = 1.
3 hifreq = 45.
4 filtered = raw.filter(lofreq, hifreq, firdesign=’firwin’, skipbyannotation=’

edge’)
5 filtered.seteegreference(refchannels=’average’, projection = True).applyproj()

Listing B.2: Code: data filtering and re-referencing to average.

1 #EPOCHING
2 trialsid=–’33282’:6
3 eventstrials, = eventsfromannotations(raw, eventid=trialsid)
4 tmin2=0
5 tmax2=60
6 croppedtrials = raw.copy()
7

8 pickstrials = picktypes(croppedtrials.info, meg=False, eeg=True, stim=False,
9 eog=False,

10 exclude=’bads’)
11

12 epochstrials = Epochs(croppedtrials, eventstrials, trialsid, tmin2,
13 tmax2, proj=True,picks=pickstrials, preload=True,
14 baseline=None,eventrepeated=’merge’)

Listing B.3: Code: Epoching.

1
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2 # Applying ICA for noise removal
3

4 #RUN ICA on Raw cropped
5 icaraw = ICA(ncomponents=19,method=’fastica’).fit(croppedsets) #Applies ICA to

the epoched data
6 icaraw.plotsources(croppedsets) # Shows the time series of the ICs (SHOW ONLY 1st

SET)
7 components = icaraw.plotcomponents(cmap=’jet’) # plot components
8 components.save(curdir, ’JPEG’)
9

10 #VISUALIZING ICA AND CHOOSE AT LEAST ONE COMPONENT
11 see = int(input(”Choose ICA components to see:”))
12 icaraw.plotproperties(croppedsets,picks=see)
13 icaraw.plotoverlay(croppedsets, exclude=[see], picks=’eeg’)
14

15 # Removing components based on plots and comparison
16 #lista = []
17 #remove = [int(input(”Choose ICA components to remove:”))]
18 icaraw.exclude = [0,1]
19 reconstepochs = croppedsets.copy()
20 icaraw.apply(reconstepochs)
21 reconstepochs.plot()
22

23 #Generating new Epochs (after ICA)
24 newepochssets = Epochs(reconstepochs, eventssets, setsid, tmin1, tmax1, proj=

True,picks=pickssets, preload=True,baseline=None)

Listing B.4: Code: Applying ICA.

1

2 #textfile = open(’’) # HERE THE INPUT IS A .TXT FILE WITH EACH SUBJECT’S IAF
3 iaf = textfile.read().split(’,’)
4 iaf = np.array(iaf, dtype=float) #IAF CHANGES ACCORDING TO THE SUBJECT IN QUESTION

1-7
5 subject =int(input(”Subject number minus 1:”))
6

7 IAF = iaf[subject]
8 LTF = IAF - 2
9 HTF = IAF + 2

10

11

12

13 FREQBANDS = –”theta”: [4, LTF],
14 ”alpha”: [LTF,HTF],
15 ”upper alpha”: [IAF,HTF],
16 ”lower alpha”: [LTF,IAF],
17 ”beta”: [HTF, 30],
18 ”normal”:[4,30]
19

20

21 set1 = slice(0,6)
22 set2 = slice(6,12)
23 set3 = slice(12,18)
24 set4 = slice(18,24)
25 set5 = slice(24,30)
26
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27

28 sets = [set1,set2,set3,set4,set5]
29

30 bpstotal=[]
31 bpsband=[]
32 bpsrelative=[]
33

34 def psdcz(epochs,setnum,band,db=False): #CURRENTLY WORKING FOR CZ CHANNEL
35 #CALCULATE TOTAL PSD FOR ALL EPOCHS BETWEEN 4-30 HZ
36 psds,freqs = psdmultitaper(epochs,fmin=4,fmax=30)
37

38 # DEFINE OUR BP ACCORDING TO THE SET + AVERAGING THE PSD + CALCULATE TOTAL BP
39 bp = psds[setnum,24,:].mean(0)
40 bp = (sum(bp))/(30-4)
41 bpstotal.append(bp)
42

43 # DEFINE HERE OUR BAND FREQ VECTOR AND GET PSD IN THAT RANGE
44 idxband = np.logicaland(freqs ¿= min(band), freqs ¡= max(band))
45 bpband = psds[setnum,24,idxband].mean(0) #24 BECAUSE Cz = ch.24
46 bpband = (sum(bpband))/(max(band)-min(band))
47 bpsband.append(bpband)
48

49 if db:
50 psds = 10. * np.log10(psds)
51 bp = psds[setnum,24,:].mean(0)
52 bp = (sum(bp))/(30-4)
53 idxband = np.logicaland(freqs ¿= min(band), freqs ¡= max(band))
54 bpband = psds[setnum,24,idxband].mean(0)
55 bpband = (sum(bpband))/(max(band)-min(band))
56 bpsband.append(bpband)
57

58 #GATHER RELATIVE VALUES AND PRINT THEM
59 bprelative= bpband/bp
60 bpsrelative.append(bprelative)
61 print(’UA Band power: ’, bpband)
62 print(’Relative UA power: ’, bprelative)
63

64

65 for i in sets:
66 psdcz(epochstrials,i,FREQBANDS[”upper alpha”])
67 #psdcz(epochstrials,i,FREQBANDS[”theta”])
68 #psdcz(epochstrials,i,FREQBANDS[”lower alpha”])
69 #psdcz(epochstrials,i,FREQBANDS[”beta”])

Listing B.5: Code: Calculating Band Power

53



References

Merriam-Webster.com dictionary. Merriam-Webster., 2022. Virtual Reality.

P. A. Abhang, B. W. Gawali, and S. C. Mehrotra. Introduction to EEG-and speech-based emotion recogni-
tion. Academic Press, 2016.
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C. Amo, L. De Santiago, R. Barea, A. López-Dorado, and L. Boquete. Analysis of gamma-band activity
from human eeg using empirical mode decomposition. Sensors, 17(5):989, 2017.

C. Berhanu et al. Connectivity-based eeg-neurofeedback in vr. Master’s thesis, Instituto Superior
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E. Weber, A. Köberl, S. Frank, and M. Doppelmayr. Predicting successful learning of smr neurofeedback
in healthy participants: methodological considerations. Applied Psychophysiology and Biofeedback,
36(1):37–45, 2011.

T. E. Wilens and T. J. Spencer. Understanding attention-deficit/hyperactivity disorder from childhood
to adulthood. Postgraduate medicine, 122(5):97–109, 2010.

M. Witte, S. E. Kober, M. Ninaus, C. Neuper, and G. Wood. Control beliefs can predict the ability to
up-regulate sensorimotor rhythm during neurofeedback training. Frontiers in human neuroscience,
7:478, 2013.

N. Yan, J. Wang, M. Liu, L. Zong, Y. Jiao, J. Yue, Y. Lv, Q. Yang, H. Lan, and Z. Liu. Designing a brain-
computer interface device for neurofeedback using virtual environments. Journal of Medical and
Biological Engineering, 28(3):167–172, 2008.

B. Zoefel, R. J. Huster, and C. S. Herrmann. Neurofeedback training of the upper alpha frequency band
in eeg improves cognitive performance. Neuroimage, 54(2):1427–1431, 2011.

58


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Context and Motivation
	Thesis Outline
	Electroencephalography
	Neurophysiology
	Brain Waves
	Electrode Placement
	Artifacts

	Neurofeedback
	Neurofeedback Mechanisms
	EEG neurofeedback experiment
	Neurofeedback Applications

	Virtual Reality (VR)
	Neurofeedback in Virtual-Reality

	Previous works
	Objectives

	Methods
	Data and Training Description
	Participants
	Equipment and Signal Acquisition
	Neurofeedback Training protocol
	Session Design 
	Feedback parameters 
	Display of feedback


	Data Analysis
	Data cleaning
	Data processing 
	Assessing Training Effect 
	Statistical Analysis 


	Results 
	Target Feature Evolution within sessions 
	EEG bands evolution within sessions 
	Learning Indexes 

	Discussion
	Training Effect on Target Feature
	Training Effect on Other Frequency Bands

	Conclusions 
	Limitations and Future Work

	Appendices
	Learning indexes
	Data processing and analysis code
	References

