
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

A DATABASE FOR APPLIANCES REAL-LIFE
ENERGY PERFORMANCE AND CONSUMPTION

ASSESSMENT

Alexandre Santos Nascimento

Mestrado em Informática

Trabalho de projeto orientado por:
Prof. Doutor Pedro Miguel Frazão Fernandes Ferreira

Prof. Doutor Ana Paula Pereira Afonso

2021

Acknowledgments

First of all, I want to thank my mother and grandparents as they were a main pillar
during this journey. They gave me all the support and motivation when I needed it and
helped me overcome all the difficulties faced during this thesis.

Secondly, I would also want to thank the professors Dr. Pedro Miguel Ferreira and
Dr. Ana Paula Afonso for their dedication, support and guidance during the completion
of this thesis.

Finally, I want to thank all my friends for the friendship and support showed in the
moments spent together. They helped me overcome the barriers and difficult moments, as
well as being present in the best moments.

i

To my family and friends

Resumo

Um dos objetivos da União Europeia para 2030 é aumentar a eficiência energética
em pelo menos 32.5%, tornando assim evidente que a redução do consumo energético é
atualmente uma das suas das prioridades [7].

Uma das razões para a ineficiência energética atual nos edifı́cios é a falta de informação
sobre o consumo energético dos eletrodomésticos e outros dispositivos, num cenário de
utilização normal. Atualmente a obtenção do desempenho energético de um dispositivo
é realizado através de previsões de consumo, que são obtidas durante a fase de design e
seguidamente disponibilizadas, pelos fabricantes. No entanto, estas previsões não são su-
ficientes para saber o consumo real, pois já foi provado que o consumo durante a utilização
normal tende a ultrapassar as previsões [32].

Existe assim a necessidade de explorar soluções que disponibilizem avaliações do con-
sumo energético num cenário real para um edifı́cio e para os dispositivos elétricos dentro
do mesmo. O projeto SATO (Self Assessment Towards Optimization) visa desenvolver
ferramentas para autoavaliação e otimização energética de edifı́cios e seus equipamen-
tos / eletrodomésticos. Este objetivo é atingido através da recolha de dados do consumo
energético durante a utilização real, permitindo assim avaliações e otimização do desem-
penho energético.

Esta tese está integrada no projeto SATO, e tem como um dos objetivos a conceção do
modelo de dados para representar os dados recolhidos através de sensores e as avaliações
energéticas. Outro objetivo é a implementação das bases de dados, para organizar, arma-
zenar e visualizar dados sobre o consumo de energia. É também possı́vel atribuir a classe
energética a cada dispositivo, tendo em conta os consumos durante a utilização real.

Para concretizar estes objetivos foi necessário compreender os requisitos para a avaliação
de energia de aparelhos reais, deteção de falhas, armazenamento de dados de sensores e,
seguidamente, a revisão e comparação dos sistemas de gestão de base de dados apropri-
ados. Adicionalmente foi recolhida informação sobre a base de dados EPREL (EU Pro-
duct Register for Energy Labelling) que armazena a informação dos rótulos energéticos
dos produtos à venda no mercado europeu. Finalmente, também foi recolhida informação
sobre o processo de rotulagem energética utilizado nos rótulos energéticos da União Eu-
ropeia.

v

De modo a realizar uma análise aos diversos sistemas existentes, foi necessário es-
tabelecer quais os requisitos para a gestão de dados de sensores. Os requisitos refletem
as diferenças deste tipo de dados em comparação a outros. Alguns dos requisitos reco-
lhidos são o suporte de um elevado e em expansão volume de dados, a possibilidade de
visualização em tempo real, conexão em simultâneo de vários dispositivos e a proteção
dos dados contra falhas.

Após a análise dos requisitos, foram explorados diversos sistemas de gestão de bases
de dados, tais como os sistemas de gestão de séries temporais (do inglês Time series da-
tabase (TSDB)) que são desenhados e desenvolvidos com o objetivo de serem utilizados
para armazenar e realizar operações com dados de séries temporais, como é o caso dos da-
dos provenientes dos sensores. Foi realizada uma análise aos sistemas InfluxDB, Timesca-
leDB, CrateDB, Prometheus e VictoriaMetrics, com base em casos de uso, documentação
e artigos. Também foram estudadas algumas comparações já realizadas.

Os requisitos acima enumerados juntamente com os requisitos recolhidos de proje-
tos anteriores, que envolviam dados provenientes de sensores, benchmarks realizados,
documentação técnica e reuniões feitas com os restantes membros do projeto SATO, fo-
ram utilizados como critérios de comparação entre as várias bases de dados de modo a
fazer a saber qual o sistema mais adequado. Esta comparação permitiu concluir que o
sistema mais adequado para os critérios enunciados é o InfluxDB.

Como referido anteriormente, foi realizada uma análise à bases de dados EPREL na
medida em que armazena a informação sobre a eficiência energética dos dispositivos a
quem foi atribuı́do um rótulo energético da União Europeia. O propósito destes rótulos
é indicar a eficiência energética dos dispositivos, permitindo assim que os consumido-
res façam a escolhas informadas no momento de comprar um dispositivo, levando assim
a uma redução das emissões de gases com efeito de estufa. Quando um dispositivo é
colocado no mercado europeu deve obrigatoriamente ser acompanhado por este rótulo.

A base de dados EPREL é constituı́da por uma parte pública, uma parte de verificação
e um portal online. Este portal permite aceder a ambas as partes e aceder a informação
de um modelo especı́fico de um dispositivo, que foi previamente inserido pelo fornece-
dor. Nem todos os tipos de dispositivos estão disponı́veis na EPREL, uma vez que é
necessário terem o novo rótulo energético que tem algumas diferenças em comparação
com o anterior. Este novo rótulo energético tem uma nova escala para a classe energética
do dispositivo, um código QR que será utilizado para aceder à página web correspondente,
e possivelmente métricas diferentes. Atualmente os tipos de dispositivos suportados são
as máquinas de lavar louça, máquinas de lavar roupa, máquinas de lavar e secar roupa,
frigorı́ficos e ecrãs eletrónicos.

Tendo em conta que o trabalho desenvolvido é uma das componentes da plataforma
SATO, foi necessário efetuar o planeamento e desenho do sistema e fluxo de dados, de
modo a compreender a interação entre os diversos componentes. A arquitetura da pla-

vi

taforma é composta por três blocos principais, o SATO middleware onde é realizada a
ingestão, organização e preparação de dados, de modo a estes poderem ser consumi-
dos pelas tarefas de processamento. O SATO Self-Assessment framework é o principal
bloco de processamento, onde se realiza o processamento dos dados recebidos de modo
a obter avaliações do desempenho energético dos edifı́cios. Finalmente, no bloco Self-
optimization services são tomadas decisões relativas à gestão de energia. As bases de da-
dos desenvolvidas nesta tese fazem parte da secção da self-assessment framework. Uma
das alterações feitas para este propósito foi, a utilização da plataforma Kafka implemen-
tada para uso no projeto SATO, para o envio e receção de dados.

Chegou-se à conclusão que seria necessário existir duas bases de dados, uma para
armazenar os dados dos sensores e outra as métricas e meta dados dos dispositivos. Em
termos de visualização de dados, foram construı́dos dois dashboards, um para visualizar
os consumos do dispositivo em tempo real e os cálculos necessários para obter as métricas
e um segundo para visualizar a comparação entre as métricas da EPREL e as métricas
obtidas dos dados de sensores.

Adicionalmente, foi desenvolvida uma API REST que permite aceder aos dados ar-
mazenados sem ter que recorrer aos dashboards e utilização de queries. Existem quatro
chamadas que permitem acesso às métricas e meta dados dos dispositivos, e uma chamada
para aceder aos dados provenientes do sensor de corrente na última semana.

A inserção dos dados nas bases de dados é realizada recorrendo a scripts Python, en-
quanto o cálculo de métricas e os dashboards são desenvolvidos utilizando Flux, a lingua-
gem de scripts utilizada no InfluxDB. A conecção e interação entre as duas bases de dados
é realizada recorrendo à biblioteca Flux SQL. Os dados da base de dados EPREL, são re-
colhidos recorrendo a uma API REST disponibilizada também pela EPREL, enquanto os
dados dos sensores são obtidos através de um ficheiro de texto no formato CSV.

Devido a algumas limitações, como o número de dispositivos dos quais foi possı́vel re-
colher dados, apenas foi possı́vel implementar e testar o cálculo e comparação de métricas
para ecrãs eletrónicos e frigorı́ficos. O cálculo das métricas foi implementado seguindo os
procedimentos estabelecidos pelo regulamento de rotulagem da União Europeia, podendo
assim serem diretamente comparadas com métricas do rótulo energético.

De modo a suportar dispositivos não presentes na EPREL, como um computador ou
um micro-ondas, logo sem um rótulo energético, foram recolhidas as métricas mais co-
muns de todos estes tipos de dispositivos. Com esta informação é possı́vel ter informação
sobre os consumos, mas não é possı́vel comparar com o rótulo energético.

Devido à pouca quantidade de dados provenientes dos sensores, não foi possı́vel im-
plementar a deteção de falhas, no entanto no relatório estão descritos quais os passos para
concretizar esta funcionalidade.

Para os dispositivos para os quais foi possı́vel realizar os cálculos das métricas e
comparação, os resultados não foram os esperados devido a apresentarem um consumo

vii

real menor do que o retratado no rótulo energético. Estes resultados podem ser justifica-
dos devido ao volume reduzido de dados ou algumas definições dos aparelhos, como o
brilho do ecrã, no momento da recolha de dados.

Palavras-chave: Base de dados de séries temporais, Rótulo energético, Metricas de
consumo, Dados de sensores

viii

Abstract

Nowadays, the reduction of energy consumption is a pressing matter for the European
Union and one field that remains a large part of this energy contribution is the EU build-
ings and the energy consuming equipment inside. The use of energy labels, in order to
assess the energy efficiency on European buildings, has proven to not be enough due to
the difference between prediction consumption and real life energy consumption.

The SATO platform aims to provide cloud-based self-assessment and optimization
of buildings and equipment/appliances energy. It achieves this goal by collecting data
about the energy performance of various devices, both legacy and new, through the use
of sensors. One of the objectives of this platform is to develop the databases and its
dashboards to store and visualize data on the energy consumption of building appliances.
With this goal in mind, this thesis will be able to provide the users a comparison between
the design predictions and the real live consumption.

This comparison is done resorting to the EU energy label metrics, that are stored on
the EPREL database. This database contains the energy efficiency information about the
devices covered by the Energy labelling regulation, and it was created with the goal of pro-
viding the public with this information. The sensor data metrics are obtained by applying
the formulas in the regulation on energy labelling for the respective device type. Addi-
tionally, since this thesis is meant to be integrated in the SATO platform, this databases
and metrics will be used in the assessment and development of optimization algorithms
for devices and buildings.

The current implementation makes available two databases, one to store sensor data
and another for metadata and metrics, as well as two different dashboards, one to show
device real time consumption’s, consumption metrics and device meta-data, and another
to provide the users with a simple comparison between the expected consumption and the
real live consumption.

Testing was done with two different device types, electronic displays and household
refrigerators, with the expectations in mind of the real life consumption being above the
displayed the EU energy label. The results ended up being different from the predicted,
with the real live consumption obtained from the sensor data being the highest. This may
be due to the low amount of collected data.

Keywords: Time series Databases, Energy label, Consumption metrics, Sensor data

x

xii

Contents

List of Figures xviii

Lista of Tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Structure of the document . 3

2 Related work 5
2.1 Databases for storing sensor data . 5

2.1.1 InfluxDB . 6
2.1.2 TimescaleDB . 8
2.1.3 CrateDB . 8
2.1.4 Prometheus . 8
2.1.5 VictoriaMetrics . 9
2.1.6 Database comparison . 9

2.2 EPREL and energy labels . 11
2.3 Summary . 18

3 Database system design 19
3.1 Database requirements for storing sensor data 19
3.2 Database engines comparison for sensor data 20
3.3 Database engines for storing metrics and metadata 22
3.4 Overview of the SATO architecture . 22
3.5 Database components . 24

3.5.1 Sensor data . 27
3.5.2 EPREL data . 28
3.5.3 Sensor DB . 29
3.5.4 Metrics and metadata device DB 30
3.5.5 Dashboards . 33

xiii

3.6 Summary . 35

4 Database system implementation 37
4.1 Databases implementation . 37

4.1.1 Sensor DB . 37
4.1.2 Metrics and metadata DB . 37

4.2 Data insertion . 38
4.2.1 EPREL data insertion . 38
4.2.2 Sensor data insertion . 40

4.3 Consumption metrics calculation . 41
4.3.1 Device metrics . 41
4.3.2 Cycle metrics . 48

4.4 External API . 50
4.5 Failure detection . 52
4.6 Validation . 53

4.6.1 Monitor AOC 27B1H . 53
4.6.2 Fridge Beko TS190030N . 54

4.7 Summary . 55

5 Conclusion and future work 57
5.1 Conclusion . 57
5.2 Future work . 58

References 63

A ER model for the Metrics and metadata device DB 65

B Scripts 67
B.1 tables creation script.sql . 67
B.2 eprel kafka producer.py . 71
B.3 eprel kafka consumer.py . 72
B.4 insert sensor data.py . 77
B.5 load device cycle.flux . 79
B.6 external api.py . 82

xiv

xvi

List of Figures

2.1 InfluxDB diagram [24] . 6
2.2 Database for sensor data comparison table [16] 9
2.3 Example of the past energy label (left) and new label (right) for a fridge [1] 12

3.1 SATO architecture . 23
3.2 Detailed SATO platform: Sensor DB and EPREL 25
3.3 System dataflow . 26
3.4 XML file with sensor data for the monitor AOC 27B1H 29
3.5 Database block diagram . 30
3.6 ER model related with the Device and Building 30
3.7 ER model related with the Device and Sensor 31
3.8 ER model related with the Device and Failure 31
3.9 ER model related with the Device and Cycle metrics 32
3.10 ER model related with the Device and Device type metrics 33
3.11 Consumption and metrics dashboard . 34
3.12 Metrics comparison dashboard . 35

4.1 Example output of an EPREL database API call. Left: assessment data of
the washer drier. Right: the corresponding EU energy label 39

4.2 Energy class for electronic displays . 42
4.3 Flux code for the assignment of the energy class for electronic display . . 42
4.4 Flux code for the calculation of the power demand for electronic display . 43
4.5 Flux code for the calculation of the power demand in standby mode for

electronic display . 44
4.6 Flux code for the calculation of the power demand in off mode for elec-

tronic display . 44
4.7 Energy class for fridges and refrigerators devices 45
4.8 Variable assignment table for fridges and refrigerators [42] 46
4.9 Variable assignment table for fridges and refrigerators [42] 46
4.10 Flux code for the assignment of the energy class for fridges and refrigerators 47
4.11 Flux code for the calculation of the SAE for fridges and refrigerators . . . 47
4.12 Flux code for the calculation of the AE for fridges and refrigerators . . . 48

xvii

4.13 Flux code for the calculation of the max value for untyped devices 49
4.14 Flux code for the calculation of the min value for untyped devices 49
4.15 Flux code for the calculation of the average value for untyped devices . . 50
4.16 Flux code for the calculation of the standard deviation value for untyped

devices . 50

xviii

List of Tables

3.1 Database comparison table . 21

xix

Chapter 1

Introduction

This chapter presents the motivation for the SATO project and therefore this thesis, more
specifically the gaps in the current solutions, for example the lack of knowledge about a
device consumption. The objectives and contributions of this work are also detailed as
well as the structure of the document.

1.1 Motivation

The reduction of energy consumption has become a number one priority for the European
Union, as it can be seen by the European Union goals for 2030, more specifically, to in-
crease the energy efficiency by at least 32.5% [7]. In the European Union the consumption
of buildings makes up for 40% of the final energy consumption [6]. This high percentage
can be explained by the fact that the buildings remain largely inefficient [13], partially
due to a deficit in knowledge about the real-life energy consumption and performance of
buildings and their energy consuming devices.

Currently the only way for a consumer to discover the real-life energy performance of
appliances and buildings is by resorting to their design predictions, that have proven not to
be a reliable source of knowledge to understand the real-life energy efficiency since they
tend to exceed the design predictions by more than 100% [32]. Due to this fact, reducing
the disparities between the designed and the measured energy use has become a number
one priority to increase energy efficiency.

An increase in the consumer knowledge about the real energy consumption of their
device or house, will help them make better decisions about what to acquire to reduce
their personal energy consumption.

Due to the limitations of the solutions currently used for managing energy consump-
tion, the opportunity appears for a new solution to provide an assessment of real-life
energy use of electrical devices including the energy consuming equipment in each build-
ing. This assessment will facilitate a better management of the energy resources by the
building owner or manager since they will be able to identify what areas of the building

1

Chapter 1. Introduction 2

and at what time can, and maybe need to be optimized. The SATO (Self Assessment
Towards Optimization of Building Energy) project [45] overcomes the limitations of cur-
rent solutions in the market by collecting real-life data in order to provide cloud-based
self-assessment and optimization of buildings and equipment/appliances energy.

With the SATO platform it will be possible to collect energy consumption information
at the building, technical equipment and appliance level. Additionally, it will be possible
to assess building energy related features, perform optimal control of both legacy and
smart systems in most buildings and provide interfaces for the analysis of the assessments.
Finally, it will promote the creation of independent scalable building energy resource
assessment and management services [10].

This work is integrated in the SATO project by implementing the databases that will
store and allow the visualization of the data on the energy consumption of building ap-
pliances. This database gives the possibility of assigning energy labels to each electrical
device based on their real-life consumption and detect, preemptively, device failures. It
is also possible to compare the real-life consumption with the design predictions on the
EU energy labels inside the platform, obtained from the EPREL (EU Product Register for
Energy Labelling) database [15].

1.2 Objectives

The main objective of this project is to design and develop a database and corresponding
dashboards, to organize, store and visualize data on the energy consumption and operating
environment of building appliances. This database will enable the comparison between
the real-time energy performance and the design prediction and consequently give the
right energy label to the appliance. Another objective is to detect appliance failures and
provide, when available, reparation steps that help mitigate the problem.

To achieve these objectives the project goals are:

• Review and compare the available and appropriate database engines;

• Collect requirements for real-life appliance energy assessment and failure detection
database;

• Design of the data model to represent the data collected, the real-life assessments,
and failure detection models;

• Implement the database to collect sensor data and its corresponding dashboards;

• Relate real-life assessment of devices to the European Union energy labelling data
in EPREL database;

• Perform testing and validation of data collection in real-life use-case scenarios;

Chapter 1. Introduction 3

• Development and testing of assessments and failure detection algorithms;

• Integration of the work in the SATO platform through the development of an API
to access the data.

1.3 Contributions

The main contributions of this thesis are as follows:

• Study and discussion of database engines for storing sensor data, by providing a
detailed list of the requirements that were used as a comparison criteria and a com-
parison of the database engines.

• Implementation of two databases, a time series database (Sensor DB) to store the
real-life energy consumption and a relational database (Metrics and metadata device
DB) to store the consumption metrics and metadata.

• Development of two different dashboards. One has the purpose of providing a de-
tailed view of device real time consumption’s, the calculations done to obtain the
consumption metrics and the device meta-data. The second dashboard provides a
comparison between the expected consumption metrics and the real-life consump-
tion metrics.

• Development of an API REST to access data stored in both databases. This API
makes available five separated calls, that can return the device metrics, metadata
and consumption signatures from the last week.

1.4 Structure of the document

The structure of the document is organized in 6 chapters. This chapter contained the in-
troduction, objectives and contributions. The following chapters are organized as follows:

• Chapter 2 - Presents the current state of the art in database engines that are suitable
to store sensor data. Additionally, it also presents the EPREL database and the EU
labelling process.

• Chapter 3 - Begins with the collection of requirements for the databases, that are
then used as a comparison criterion to choose the adequate database engine for this
work. Then, it is presented a detailed description of the integration of the work done
in this thesis in the SATO project, the dataflow and a description of components of
the solution that was developed.

Chapter 1. Introduction 4

• Chapter 4 - Presents the formulas used for the calculation of metrics and their
implementation in the system. It also describes how the failure detection can be
implemented. Finally, there is also the implementation of the external API.

• Chapter 5 - Presents a comparison between the design predictions and the real-life
consumption’s into two real-life use case scenarios.

• Chapter 6 - Presents the conclusion and the future work that can be done.

Chapter 2

Related work

This chapter presents the databases for storing sensor data, time series databases, specific
database engines and the comparison of various databases. The research done on the
EPREL database, and the energy labelling process is also described in this chapter.

2.1 Databases for storing sensor data

The data provided by the sensors is in the time series format, that can be defined as a
sequence of data points indexed in time order. In the case of the sensors these consist of
successive measurements made from the same source at regular time intervals. The main
difference of this data type with regular data is that all the operations are done using time
[12].

Some database requirements to store the sensor data are the large and increasing
amount of data that needs to be stored, a large number of connected devices simulta-
neously and the possibility of adding new types of sensors, as stated in [16]. It should
also support the possibility of an expansion in the future with minimal downtime. Ad-
ditionally, the data should be protected against failures, so the database should support
backups and restorations. These requirements are used in the comparison done in the
Section 3.2, together with other ones that are more specific to this work.

There are many database engines, each one made to serve a different purpose and with
their own advantages and disadvantages. Time series databases are different from other
models, like relational and noSQL databases, since they are designed and developed with
the goal of providing the best performance and experience when working with time series
data [36].

According to [16], to obtain the best performance, when performing tasks that involve
handling metrics, events or measurements that are time-stamped, time series databases
have some specific characteristics, like the association of a timestamp to each data point,
to signal the inserted time, and the automatic sorting of data points by this timestamp.
The data in this type of database is primarily inserted, usually there are no updates and

5

Chapter 2. Related work 6

the deleting of records are mainly done in bulk data. The automatic sorting allows a better
performance when inserting the data at the end, with the latest timestamp, but worst when
doing inserts of data with random and dispersed timestamps since the data needs to be
sorted again. The operations done with time series type data tend to be over a range of
values, with timestamps close to each other, instead of dispersed data points with distant
timestamps.

2.1.1 InfluxDB

Figure 2.1: InfluxDB diagram [24]

InfluxDB is currently the most popular time series database according to DB-Engines
Rankings [36]. It is an open source schemaless time series database that has its own query
language called Flux. Since it is a schemaless database, it provides great flexibility and
scalability which is essential when working with sensor data. It can also be considered as
the essential time series toolkit since it makes available dashboards, querying, tasks and
agents in one single platform, as it can be seen in Figure 2.1.

All the data is stored in a bucket, that combines the concept of a database with a re-
tention period. Inside this bucket, the data is organized in data points that have multiple
columns. The “ time” column stores the timestamp, the “ measurement” has the measure-
ment name, the “ field” has the field key and “ value” the value of the associated field.
The data points structure can also contain tags, that differentiate themselves from fields
since they are indexed. This means that queries on tags are faster than queries on fields,

Chapter 2. Related work 7

so they are ideal for storing metadata that is often queried. Additionally, there are also
series keys that are a collection of points that share a measurement, a tag set and a field
set. The collection of timestamps and field values for a series key is called a serie.

Since performance is important, especially when working with large volumes of data
that are provided by the sensors, it became a main goal when making design decisions for
InfluxDB. Some of these decisions are storing data in a time-ascending order, since most
of the operations are done over data aggregated by time, and restricting both update and
delete permissions, since time series data is predominantly new data that is not updated.
Another design decision that improves the write performance is the assumption that data
sent multiple data is duplicate data, therefore if a new field value is submitted for a point,
this point will be updated with the most recent value [22].

There are many ways to insert data into InfluxDB, namely using Telegraf. Telegraf is
a plugin-driven agent that can used to collect and send metrics, events or logs to InfluxDB.
Another option for inserting data is to use one of the client libraries that exist for multiple
programming languages like Python, Java and JavaScript.

A visualization component is also included in InfluxDB which allows the development
of web-based dashboards to visualize the stored data. Each dashboard can have multiple
cells, each showing the result of a query. Each cell can show the data using multiple visu-
alization types like a graph, histogram, heatmap, a single value or a table. Additionally,
with the use of dashboard variables, it is possible to easily alter a query without the need
to edit the code, therefore simplifying the interaction with the dashboard and exploration
of data by the user.

In terms of security options, it is possible to set up access control using authentication
tokens, that allow the management of permissions for the different organizations. In the
context of InfluxDB, an organization is a workspace for a group of users [22].

Unlike some of the other time-series database engines, InfluxDB developed its own
querying language called Flux. It was developed with the goal of being a functional data
scripting language that can be used for querying, analysing and acting on data. One ma-
jor advantage of Flux is the support for multiple data sources, for example, it is possible
to retrieve data from a InfluxDB bucket and then join it with data stored on a relational
database. InfluxDB also makes available a task engine that can be used to process and
analyse data. This is done using tasks, that are basically Flux queries that can be sched-
uled, for example, running every week.

Using the tools available in Influx, it is also possible to monitor the data stored and
alert accordingly. To implement this feature, a check is used to read the data and assign
a status code, with the possibilities being crit, info, warn or ok, that is then stored and
possibly sent to a user either by a third-party service or email.

Chapter 2. Related work 8

2.1.2 TimescaleDB

TimescaleDB is an open-source relational time-series database that is built as an extension
to PostgreSQL [50]. Therefore the query language used is SQL and it is also compatible
with the current PostgreSQL ecosystem and tooling. It provides the full power and usabil-
ity of traditional relational databases while having a single node architecture. The way
TimescaleDB organizes the data is by storing the data in individual tables, called chunks,
that are exposed to the user as a single table.

Some design decisions made specifically for time-series data are:

• Automated time partitioning, where the tables are automatically and continuously
partitioned into smaller intervals in order to improve performance and unlock data-
management capabilities.

• Native columnar compression, providing a datatype specific compression allowing
for storage reduction and faster queries to compressed data.

• Automated time-series data management features, providing data retention policies,
data reordering policies, aggregation and compression policies and downsampling
policies.

• In-database job-scheduling framework, supporting native policies and user-defined
actions

2.1.3 CrateDB

CrateDB is an open-source distributed SQL database with a dynamic schema and that
allows for simple scaling and high data availability [9]. The architecture combines the
familiarity of SQL with the scalability and data flexibility of NoSQL and was built for In-
dustrial internet of things workloads that work with mixed data types and frequent query-
ing and ingestion of data.

This database engine automatically deals with distributes sharding, partitioning, repli-
cation, and indexing. It also spreads data processing across a cluster of identical, shared-
nothing nodes. Additionally, it offers real-time performance receiving and querying high
volumes of complex data in real-time, via parallel processing, in-memory columnar in-
dexes.

2.1.4 Prometheus

Prometheus is an open-source system monitoring and alerting application that provides no
reliance on distributed storage since it follows a single node architecture [39]. The query
language used is PromQL and is supported by Grafana, that provides the visualization.

Chapter 2. Related work 9

Despite being built with the main goal of being used system monitoring, there are multiple
cases of it being used for IoT.

2.1.5 VictoriaMetrics

VictoriaMectrics is an open-source monitoring solution that was designed based on the
principles of being fast, cost-effective and scalable [51]. This solution can also be used
as a long-term storage for Prometheus since it provides the scalability that is missing in
Prometheus. It provides both single node and cluster versions.

2.1.6 Database comparison

In [16], multiple databases are compared using information available in research papers
and documentation with the final objective of finding the best solution for storing and
handling sensor data. The comparison was done based on the properties of scalability,
backups, maintenance, support for new types, query language and long-term storage. The
table with the comparison results can be seen in Figure 2.2.

The criteria used are the scalability due to the increasing amount of data, the possi-
bility of backups to protect the data against failures, the query language to know how to
access the data, the possibility of adding new data types is needed due to the need to store
data from new sensor types. Finally, the long term storage is needed to keep historical
data in the storage [16].

Figure 2.2: Database for sensor data comparison table [16]

The author of [16], reached the conclusion that InfluxDB was the best choice.
In the article [48], a tool called SimpleMetric was developed for measuring the per-

formance of time series databases. The authors then performed a comparative study,
using this tool, between InfluxDB [24], KDB+ [30], Graphite [21], TimescaleDB [49],

Chapter 2. Related work 10

KairosDB [29] and CrateDB [8]. Considering the experimental comparison results, the
authors reached the conclusion that there is no single ”best” solution. While InfluxDB
provides the best performance in a monitoring scenario, other solutions provide better
performance when inserting data (i.e. Graphite) or performing data aggregation opera-
tions (i.e. TimescaleDB).

In the article [26], the authors identify software quality attributes that can be used
when evaluating time-series databases. They divided the attributes into different cate-
gories of performance, usability, maintainability and security and then performed an eval-
uation of InfluxDB, MariaDB, Redis and TimescaleDB.

In terms of performance, the databases were ranked in this order: InfluxDB - MariaDB
- TimescaleDB - Redis. Based on usability attributes, they were ranked as MariaDB
- InfluxDB - TimescaleDB - Redis. Based on the maintainability attributes, they were
ranked as InfluxDB - MariaDB - Redis - TimescaleDB. Based on the security attributes,
they were ranked as MariaDB - TimescaleDB - InfluxDB - Redis.

In the survey [5] the authors perform a comparison between the 12 most prominent
time-series databases based on 27 criteria. The criteria were divided in the following
groups:

1. Distribution/Clusterability: High Availability, scalability and load balancing

2. Functions: Availability of INS, UPD, READ, SCAN, AVG, SUM, CNT, DEL,
MAX and MIN functions

3. Tags, Continuous Calculation and Long-term storage: Continuous calculation,
tags, long-term storage, and the support of matrix time series

4. Granularity: Granularity, downsampling, smallest possible granularities for oper-
ations/storage

5. Interfaces and Extensible: Application Programming Interfaces, interfaces, client
libraries

6. Support and License: Availability of a stable version, Commercial support and
License.

They reached the conclusion that no database supports all features from any of the
criteria. However, the best choice in all criteria is Apache Druid [4], which is a analytics
database designed for large datasets that has been previously used as a time series database
for device metrics. However, it does not yet have a stable version. If a stable version is
needed the best choices are InfluxDB or MonetDB.

Chapter 2. Related work 11

2.2 EPREL and energy labels

The European Product Database for Energy Labelling (EPREL) [34] is an online product
registration database managed by the European Commission that contains energy effi-
ciency information about the devices covered by the Energy Labelling regulation (EU)
2017/1369 [40]. This regulation replaces Directive 2010/30/EU maintaining essentially
the same scope but updating the energy labelling framework taking into account the tech-
nological progress for energy efficiency in products achieved over recent years.

Since 1 January of 2019, all the EU suppliers are legally required to register the new
models covered by this Energy Labelling regulation (including second hand imported
models) in the EPREL database before they are placed on the EU market for the first
time.

The main proposes of the EPREL database are among others: to provide the public
with information about products placed on the market and their energy labels and to pro-
vide the European Commission with up-to-date products energy efficiency information
for reviewing energy labels [34].

The purpose of EU energy labels is to indicate the energy efficiency of products, en-
abling consumers to make informed choices on products more energy efficient while also
reducing greenhouse gas emissions. When a supplier places an energy related product
on the market, each unit should be accompanied by a label in paper format and should
be easily recognizable. The energy label contains information separated in at least four
sections, as it can be seen in Figure 2.3:

1. Product details: specific information about the device like the brand and model.

2. Energy class: a green to red color scale associated to a letter, from A (most efficient)
to G (least efficient) that gives an idea of the product’s energy consumption. In the
old label the class is on a scale from A+++ to D, while in the rescaled labels scale
is from A to G.

3. Consumption, efficiency, capacity or other information depending on the product
type.

4. QR code: placed on the top right corner in the rescaled energy labels, that gives
access to additional information about the model, depending on the type of device.

Chapter 2. Related work 12

Figure 2.3: Example of the past energy label (left) and new label (right) for a fridge [1]

The EPREL database consists of a public part, a compliance part and an online portal
[15]. The portal gives access to those two parts, and it is possible to consult the model
information that was previously entered by the supplier and the European Commission if
accessing to the public part. In the compliance part, it is possible to register and manage
an organization, to register a device and enter information related with the energy label,
technical documentation, and compliance monitoring [34].

The public information available for each device depends on its type, however there
is some information that is common to all, namely [34]:

• Name, address, contact details of the supplier.

• Energy label in electronic format.

• Energy efficiency class and other parameters of the label.

The supplier also enters some information that will not be publicly available, but nec-
essary for the market surveillance authorities:

• A general description of the model.

• References to the harmonized standards applied.

• Specific precautions to be taken when the model is assembled or installed.

Chapter 2. Related work 13

• Measured technical parameters of the model.

• Calculations performed with the measured parameters.

Additionally, the EPREL system associates to each device, some important informa-
tion:

• Model registration number, used to uniquely identify the device in the database. It
is also associated with the QR code on the device energy label.

• Product group code, used to identify the device type. Currently, the product groups
codes supported are:

– HOUSEHOLD DISHWASHER 2019

– HOUSEHOLD WASHING MACHINE 2019

– HOUSEHOLD WASHER DRIER 2019

– ELECTRONIC DISPLAY

– HOUSEHOLD REFRIGERATING APPLIANCE 2019

respectively, for dishwashers, washing machines, washer dries, electronic displays,
and refrigerator devices. Lamps are planned to be added in 1 of September of 2021
and other device types in the following years. This means that 5 product groups will be
rescaled in 2021.

To insert a device in the EPREL database it must receive a new rescaled energy label
that has some differences from the previous one, such as a QR code, a new class scale
and, possibly, different metrics. Therefore, despite already having information about the
metrics and metadata for a device type, this information will probably be altered when
added to EPREL [2].

One important thing to note is that the measurement units for each metric are not
stored on EPREL and are instead available on the labelling documentation. For example,
the measurement units for electronic displays are available on the Regulation on energy
labelling for electronic displays (EU) 2019/2013 [41]. This measurement units must be
the ones used by all suppliers when inserting the device info into EPREL.

For the currently supported device types, the information and metrics registered in the
EPREL database are [31]:

• Electronic displays:

– Energy class (A, B, C, D, E, F, G)

– On mode power demand (Watts) (numeric)

– Off mode power demand (Watts) (numeric)

Chapter 2. Related work 14

– Standby mode power demand (Watts) (numeric)

– Networked standby mode power demand (Watts) (numeric)

– Visible screen area (dm3) (numeric)

– Category (Television, Monitor, Signage, Other) (varchar(15))

– Panel technology (LCD, LED LCD, QLED LCD, OLED, MicroLED, QLED,
FED, EPD, Other) (varchar(15))

– Size ratio x (int)

– Size ratio y (int)

– Resolution horizontal (Pixels) (int)

– Resolution vertical (Pixels) (int)

– Screen diagonal (cm) (numeric)

• Dishwashers:

– Energy class (A, B, C, D, E, F, G)

– Energy efficiency index (numeric)

– Rated capacity (place settings, a set of tableware for one person) (int)

– Energy consumption [per cycle, based on the eco programme] (Kilowatts)
(numeric)

– Energy consumption [per 100 cycles, based on the eco programme] (Kilo-
watts) (int)

– Water consumption [per cycle, based on the eco programme] (Liters) (nu-
meric)

– Programme duration for the eco programme (Hour:Minutes) (int)

– Off mode power demand (Watts) (numeric)

– Standby mode power demand (Watts) (numeric)

– Networked standby mode power demand (Watts) (numeric)

– Delay start mode power demand (Watts) (numeric)

– Noise emission class for the eco programme (A, B, C, D)

– Noise emissions for the eco programme (Decibel) (int)

– Height (cm) (int)

– Width (cm) (int)

– Depth (cm) (int)

– Cleaning performance index (numeric)

Chapter 2. Related work 15

– Drying performance index (numeric)

• Refrigerator devices:

– Energy class (A, B, C, D, E, F, G)

– Energy efficiency index (int)

– Annual energy consumption (Kilowatts) (numeric)

– Noise emission class (A, B, C, D)

– Noise emissions (Decibel) (int)

– Low noise appliance (Yes, No)

– Total volume (Liters or dm2) (int)

– Height (mm) (int)

– Width (mm) (int)

– Depth (mm) (int)

– Design type (Built in, Free standing)

– Compartment:

* Compartment volume (Liters or dm3) (numeric)

* Compartment type (Pantry, Wine storage, Cellar, Fresh food, Chill, Zero
star, One star, Two star, Three star, Four star, Two star section, Variable
temp)

• Washing machines:

– Energy class (A, B, C, D, E, F, G)

– Energy efficiency index (numeric)

– Rated capacity (Kg) (numeric)

– Energy consumption [per cycle, eco 40-60 programme] (kilowatt-hour) (nu-
meric)

– Weighted energy consumption [per 100 cycles, eco 40-60 programme] (kilowatt-
hour) (int)

– Water consumption [per cycle, eco 40-60 programme] (Liters) (int)

– Washing efficiency index (numeric)

– Rinsing effectiveness (g/kg) (numeric)

– Maximum temperature inside the treated textile [Rated capacity] (Celsius)
(int)

Chapter 2. Related work 16

– Maximum temperature inside the treated textile [Half capacity] (Celsius) (int)

– Maximum temperature inside the treated textile [Quarter capacity] (Celsius)
(int)

– Remaining moisture [Rated capacity] (%) (int)

– Remaining moisture [Half capacity] (%) (int)

– Remaining moisture [Quarter capacity] (%) (int)

– Spin-drying efficiency class (A, B, C, D, E, F, G)

– Spin speed [Rated capacity] (rpm) (int)

– Spin speed [Half capacity] (rpm) (int)

– Programme duration [Rated capacity] (Hour:Minutes) (int)

– Programme duration [Half capacity] (Hour:Minutes) (int)

– Programme duration [Quarter capacity] Hour:Minutes) (int)

– Off mode power consumption (Watts) (numeric)

– Standby mode power consumption (Watts) (numeric)

– Networked standby power consumption (Watts) (numeric)

– Delay start power consumption (Watts) (numeric)

– Noise emissions class (A, B, C, D, E, F, G)

– Noise emissions (Decibel) (int)

– Height (cm) (int)

– Width (cm) (int)

– Depth (cm) (int)

• Washer drier machines:

– Energy class for complete/washing cycle (A, B, C, D, E, F, G)

– Energy efficiency index for complete/washing cycle (numeric)

– Rated capacity for complete/washing cycle (Kg) (numeric)

– Energy consumption for complete/washing [per cycle, eco 40-60 programme]
(kilowatt-hour) (numeric)

– Weighted energy consumption for complete/washing [per 100 cycles, eco 40-
60 programme] (kilowatt-hour) (int)

– Water consumption for complete/washing [per cycle, eco 40-60 programme]
(Liters) (int)

– Washing efficiency index for complete/washing cycle (numeric)

Chapter 2. Related work 17

– Rinsing effectiveness for complete/washing cycle (g/kg) (numeric)

– Maximum temperature inside the treated textile for complete/washing cy-
cle[Rated capacity] (Celsius) (int)

– Maximum temperature inside the treated textile for complete/washing cycle
[Half capacity] (Celsius) (int)

– Maximum temperature inside the treated textile for complete/washing cycle
[Quarter capacity] (Celsius) (int)

– Remaining moisture [Rated capacity] (%) (int)

– Remaining moisture [Half capacity] (%) (int)

– Remaining moisture [Quarter capacity] (%) (int)

– Spin-drying efficiency class (A, B, C, D, E, F, G)

– Spin speed [Rated capacity] (rpm) (int)

– Spin speed [Half capacity] (rpm) (int)

– Programme duration for complete/washing cycle [Rated capacity] (Hour:Minutes)
(int)

– Programme duration for complete/washing cycle [Half capacity] (Hour:Minutes)
(int)

– Programme duration for complete/washing cycle [Quarter capacity] Hour:Minutes)
(int)

– Off mode power consumption (Watts) (numeric)

– Standby mode power consumption (Watts) (numeric)

– Networked standby power consumption (Watts) (numeric)

– Delay start power consumption (Watts) (numeric)

– Noise emissions class (A, B, C, D, E, F, G)

– Noise emissions (Decibel) (int)

– Height (cm) (int)

– Width (cm) (int)

– Depth (cm) (int)

It is possible to access the data stored in EPREL either by scanning the QR code on
the energy label, which redirects to a web page with all the information, or by resorting
to the EPREL REST API [14], which is the solution used in the SATO project.

This API makes available five possible request calls:

1. Get list of products groups - Request used to get full list of product groups codes.

Chapter 2. Related work 18

2. Get product group’s models - Request used to search for all the models. The
mandatory parameter needed is the product group code. This request is the only
one that is restricted, since it needs an API key to be used. The request for this key
is not yet available, and it is not known for when it will be available.

3. Get product group’s model by registration number - Request used to get the
data for a single model in a product group. The mandatory parameters are the
product group code and the model registration number.

4. Get product group’s model label by registration number - Request used to get
the label of a single model in a product group. The mandatory parameters are the
product group code and the model registration number.

5. Get product group’s model fiche by registration number - Request used to get
the fiche (product information sheet) of a single model in a product group. The
mandatory parameters are the product group code and the model registration num-
ber.

The data fetched from the EPREL database will be used in the SATO real-life cloud-
based self-assessments of appliances, as a reference for comparison to the real-life metrics
that will be calculated using sensor-measured data. Additionally, some of the metadata of
the device model is needed for the calculation of some metrics. For example, in the case
of the electronic displays, the visible screen area is used to obtain the energy class. That
measure is part of the metadata stored on the EPREL database.

2.3 Summary

This section presented the requirements for a database used to store sensor data and
presents the time series database engine currently used in this use case. Time series
databases engine differentiates itself from other types due to the type of data they are
made to work with.

Additionally, this chapter also presented a comparison between multiple time series
database engines, each one with different advantages and disadvantages.

Finally, there is the research done on the EPREL database, what information is avail-
able for each device type and how to obtain it using the API.

Chapter 3

Database system design

This chapter presents the database for storing sensor data (Section 3.1), a comparison
between the database engines (Section 3.2) and the database for storing metrics (Section
3.3). Additionally, it presents an overview of the SATO platform (Section 3.4) details and
the main components of this work and their integration in the whole data flow (Section
3.5).

3.1 Database requirements for storing sensor data

To find the adequate database engine for the purpose of storing the sensor data, the first
step is to define the system requirements, so they can then be used as a comparison crite-
rion. Through the research of previous projects that also worked with sensor data, bench-
marks, technical documentation of the database engines and meetings done with other
participants on the SATO project, the collected requirements were:

• Data schema, a structure that describes the elements, for example, tables and rows
before adding data. The existence of a data schema allows for a higher degree of
control, therefore improving the performance, but increases the work needed for
inserting data since it needs to be formatted to fit the schema. In a schemeless
database there are no constrains for inserting data.

• Real-time visualization capabilities, offering the resources to build a dashboard
where the results of a query can be displayed using a various number of visual-
ization types. These results should also update in real-time with the insertion of
new data.

• Query language, the system must provide a efficient language to query the data.
SQL might provide a better experience since its one of the most common languages
used when working with relational databases. However, it may prove to become
too complex when working with time series data, like the one received from the
sensors.

19

Chapter 3. Database system design 20

• Scalability, due to the need to store the data from an increasing amount of connected
sensors, increasing number of users and the need keep historical data.

• High availability, since even a short downtime can cause some problem in the sys-
tem, for example a miscalculation in a metric.

• Load balancing, distributing the workload between the multiple database servers. It
is an additional resource to help with the handling of the large size of sensor data.

• Data retention policies, used to describe how long the database keeps the data. A
longer retention time leads to a worse performance while the opposite also happens.

• Downsampling, used to reduce the overall disk usage as data accumulates over time.

• Access control, used to limit the access of the different types of users to the data.

• Documentation and technical support, to facilitate the implementation and manage-
ment of the database.

• Long-term storage, it is also important to provide the capacity for supporting auto-
matic long-term storage using data retention, downsampling and other tolls.

• Dashboard support for plugins, to allow possible extensions of the dashboards mak-
ing available new functionalities. These can add new visualization types or new
external sources.

• Maintenance without downtime, that is the possibility of doing maintenance, for
example, increasing the cluster size, without any downtime.

3.2 Database engines comparison for sensor data

Before comparing various database engines using the requirements previously defined, it
is necessary to find what is the most appropriate type of database engine. There are many
options like the relational database, document base database, graph database, time series
database, among others.

The decision was to use a time series database due to the large volume of data provided
by the sensors. This type of database are the most adequate [12] to track, monitor and
aggregate timestamped data over time and the multiple number of successful use cases of
IoT applications that use time series databases for working with sensor data [23].

The next step was to find what databases engines to consider for comparison. Research
was done to find which ones have various use case examples of being used in the develop-
ment of IoT applications, the different advantages and disadvantages and different perfor-
mance levels for different types of operations. The databases engines considered for the
comparison were InfluxDB, TimescaleDB, CrateDB, Prometheus and VictoriaMetrics.

Chapter 3. Database system design 21

The Table 3.1 presents the comparison considering the requirements defined in Section
3.1.

Table 3.1: Database comparison table
InfluxDB TimescaleDB CrateDB Prometheus VictoriaMetrics

Data schema 5 3 3 3 3

Real time visualization 3 3 3 3 3

Query language FLUX SQL SQL PromQL MetricsQL
Scalability 3 e.d 3 3 e.d 5 3

High availability 3 5 3 e.d 5 3

Load balancing 3 5 3 3 n.a 3

Data retention policies 3 3 5 3 3

Downsampling 3 3 3 5 5

Access control 3 3 3 e.d 5 3 v.a
Documentation and technical support 3 3 5 5 3

Long term storage 3 3 3 5 3

Dashboard support for plugins 3 3 3 3 3

Maintenance without downtime 3 5 3 5 5

e.d - Enterprise edition, n.a - Not automatic

t.k - Using tasks to perform downsampling and retention policies

v.a - Using the auth proxy vmauth [52]

Analysing the table, it is possible to see the diversity in benefits and limitations of
each database engine. InfluxDB checks all the criteria and has the benefit of not needing
a data schema, allowing for an easier and faster setup, with all the other criteria are also
checked. One disadvantage of the InfluxDB is the need of the enterprise edition for the
database scaling, that even if it does not limit this work, it is needed in the context of the
SATO project. The use of Flux, although it may prove to be a better scripting language it
implies a initial effort learning a new language.

TimescaleDB checks all the requirements besides the high availability, load balancing
and maintenance without downtime which limits the use of this database in the SATO
project. CrateDB, similarly to InfluxDB, checks all the requirements also needing the
enterprise edition for the scalability and high availability. However, since it is a new
database engine it does not have a complete documentation and it still has a low user base
to provide with help.

Prometheus does not meet any of the scaling requirements so it is not a viable choice,
since it cannot be used in the SATO project. The VictoriaMetrics database provides an im-
provement on the TimescaleDB, with the two being able to being used together, however
it does not provide with native access control.

After analysing and comparing the database engines it was decided to consider the
InfluxDB, since it checks all requirements, offers the best performance and it has already
been used in many projects that work with sensor data and technologies.

Chapter 3. Database system design 22

3.3 Database engines for storing metrics and metadata

Another objective of this work is to implement a database to store the data from the
EPREL DB and also to store important metrics and metadata from the sensor DB and
EPREL DB. This database will also support the establishment of relationships between
the metrics, the device and the building.

Since the data needs to be accessible using the Flux query language, the database
engine must be supported by the Flux SQL package [18]. Therefore, the possible database
engines are PostgreSQL [38], MySQL [35], Snowflake [46], SQLite [47], Microsoft SQL
Server [33], Amazon Athena [3] and Google BigQuery [20]. A limitation of the Flux
SQL package is the lack of of support for the SQLite database in the InfluxDB open
source version. Due to this SQLite was excluded since it cannot be used when making a
query from the dashboard.

After analysing all the possibilities, PostgreSQL was the chosen database engine,
mainly due to the fact of it being an object-relational database, meaning that it features
table inheritance which will be useful in the context of the work due to the multiple types
of devices considered. Another advantage of this database engine is how well it handles
concurrency, which is a big requirement for this database due the high number of accesses
needed.

3.4 Overview of the SATO architecture

This section describes briefly the SATO architecture and its main components to under-
stand the integration and the dependencies with the DB components that were developed
in this work.

The SATO platform aims to provide cloud-based self-assessment and optimization of
buildings and equipment/appliances energy.

As already mentioned, the SATO project implements a appliance and building energy
consuming equipment self-assessment and optimization platform, and since this work is
part of the SATO project, it is important to design it in order be integrated now and in the
future. To achieve this goal, the first step is to understand how the thesis work will fit in
the SATO architecture and interact with other components.

The SATO platform comprises six blocks of components and players: external data
sources, buildings, SATO middleware, self-assessment framework, self-optimization ser-
vices, and actors [11]. This blocks are represented in Figure 3.1.

External data sources are publicly available databases that provide context and envi-
ronment information for the SATO platform. They are read-only data that will be for-
warded to the SATO platform. Examples of foreseen external sources include (but are not
limited to) energy labelling of appliances (e.g. EPREL), weather data, and energy prices.

Chapter 3. Database system design 23

Figure 3.1: SATO architecture

SATO middleware is the core block from the SATO architecture in terms of ingesting
data, organizing it, and preparing it to be consumed by the main processing tasks of the
self-assessment framework and optimization services. This block is subdivided into event
streaming components that will bridge buildings and processing components, services
that standardize events being ingested by the platform, services for keeping up-to-date
snapshots of devices on each building (and providing semantically coherent data about
them), and data enhancing components that will assess and improve the quality of data

Chapter 3. Database system design 24

being provided by the platform.
The Self-Assessment framework is the main processing block of the platform, both in

terms of quantity and variety of data. It will use the data ingested by the SATO platform
through data analysis and machine learning to build the assessments that will report on
the energy performance of buildings, on building occupancy and on equipment faults.
This block provides a series of assessment results that complement the available building
data, serving as the inputs for the self-optimization services block that will make energy
management decisions.

Finally, the Actors block represents the users of the SATO platform. It includes build-
ing occupants/owners, building managers, and grid operators, which are humans that will
directly benefit from the SATO project (and its platform) through assessments and opti-
mized energy management decisions, improved comfort, or more flexible infrastructures
than the ones currently available.

Arrows in Figure 3.1 depict data flows of different event types that will become clearer
with the descriptions provided. They include control events (blue lines) related to the
status of the monitored buildings and of the platform, data events (red lines) that pro-
vide most of the data and building measurements that will be ingested and processed by
the SATO platform, and actuation events (green dashed lines) that represent actions and
control commands taken by the self-optimization services and managers to change the
behavior of buildings.

The SATO platform architecture is designed to deal with incoming data events and
outgoing actuation/control commands. It offers support for different types of integration
with devices, including: i) direct communication between devices and the platform; ii)
communication between a building gateway and the platform, and/or iii) communication
between cloud services offered by third parties (e.g. device suppliers or other platforms)
and the platform.

3.5 Database components

The work done in this thesis can be divided into two data flows, one for the collection of
data from EPREL and insertion into the Metrics and Metadata device DB and another for
the collection of the sensor data insertion into the Sensor DB. Both these databases are
located in the structured storage block, as seen in Figure 3.2.

When working with data from the EPREL database as a soft sensor in the SATO
platform, simulating the behavior of a sensor and thus following the same procedures in
the SATO dataflow for inserting data, several steps are executed for registering a device
through the Device Services, namely:

1. When a device is registered, it triggers the connector that first checks, by comparing
the registration number, if the device model data is already stored in the Metrics and

Chapter 3. Database system design 25

Metadata device DB, and if not, it fetches the EPREL data. Otherwise, no request
is issued.

2. The EPREL data is used to populate the ontology on the Device Semantics compo-
nent. A device identifier in the SATO platform (SATO ID), which is assigned by the
Data Catalog (CDM), is used to correlate the device with the semantic information.

3. The device id is sent through the system, using Kafka, and used to insert the EPREL
data on the Structured Storage component.

Kafka is an event streaming platform that was implemented in the SATO platform as
part of the thesis work of André Gil [19]. It is used in the SATO platform for sending
data as events, for example sending the EPREL info to be inserted in the database. The
CDM that is presented in the steps above stands for common data model, a unique data
format that makes possible the integration of heterogeneous commercial platforms and
smart devices.

Figure 3.2: Detailed SATO platform: Sensor DB and EPREL

Figure 3.2 represents a detailed view of the SATO platform with the main components
related to the EPREL DB, Metrics and metadata DB and the Sensor DB. The EPREL data

Chapter 3. Database system design 26

insertion is represented by the green arrow and the sensor data in the dark green arrow.
Additionally, the Python icons are used to represent the adapters that collect and insert
the EPREL data and the one that fetches the EPREL data. This Figure is only used to
provide a better understanding about how the current data flows would fit the current
SATO architecture and in no way represents how it will function in the finalized SATO
project.

The SATO project collects real-life data to perform the energy consumption self-
assessment and optimization. One objective of the SATO project is to relate real-life
assessment of devices to the EU energy label data in EPREL. To accomplish this ob-
jective, it was implemented a time series database (Sensor DB) to store real-life energy
consumption and operating environment data of building devices.

Additionally, a relational database (Metrics and metadata device DB) is also imple-
mented to store the consumption metrics obtained from the real-life data and the energy
labelling data from EPREL. Figure 3.3 shows a dataflow diagram with these databases
and the data exchanged between components.

Figure 3.3: System dataflow

This data flow begins with the sensor data sent to the Sensor DB, where calculations
are done to obtain the consumption metrics. This metrics are then shown in the consump-
tion and metrics dashboard and stored in the metrics and metadata device DB, that can
be accessed through the metrics comparison dashboard. Also present in this dataflow,
although external to the SATO platform, is the EPREL database, where the data is fetched
when a device is registered.

To access the data without making queries or using the dashboards, a REST API is
developed to give this simplified access to the data stored in both the databases. It can
be used in the SATO platform to supply the self-assessment framework with access to the

Chapter 3. Database system design 27

real-life metrics that are then used for the assessments.
The insertion of the sensor data and the energy label info in the respective databases

is done using Python scripts. The connection and interaction between the two different
databases are done using the Flux SQL package. The Flux language is also used to de-
velop the dashboards.

The following subsections present the details of the data model and the dashboards,
starting with the description of the data and the DB.

3.5.1 Sensor data

To obtain real-life consumption metrics of the devices, it is crucial to exist a large col-
lection of data about the device consumption. This data is collected using sensors, more
specifically, an accelerometer sensor, a temperature sensor, a waterflow sensor, a current
sensor and noise sensor. These sensor types were chosen since they collect the required
data to calculate the same consumption metrics as the ones that are present in the EU en-
ergy label. The installation of sensors and collecting of sensor data was part of the thesis
work of [25], that is also part of the SATO project.

Additionally, since these sensors are mounted on the device instead of relying on
sensors previously mounted by the manufacturer, it is possible to support both new and
legacy devices. It is essential that all the data collected by the sensors is timestamped,
since the calculations done to obtain the consumption metrics use data grouped by time.
The following sections details the data models of the data and the DB.

1. Accelerometer sensors collects:

• Timestamp

• X value

• Y value

• Z value

2. Temperature sensors collects:

• Timestamp

• Temperature value

3. Waterflow sensors collects:

• Timestamp

• Quantity of water

4. Current sensors collects:

Chapter 3. Database system design 28

• Timestamp

• Amperes

• Kilowatts

• Kilowatts per hour

5. Noise sensors collects:

• Timestamp

• Decibels

During the implementation of the database, data was available for a monitor AOC
27B1H and a Laptop Asus Rog GL503GE, that was collected using the current sensor
and stored in a file using the XML data format. This work was developed has part of the
thesis work in [25]. This storing method will be modified when integrating in the SATO
platform, so that the insertion is done directly into the database, without the need to use a
file as an intermediate.

Additionally, there was also data available for a fridge Beko TS190030N that was
retrieved from the ACS-F2 dataset [44]. This dataset is composed by the electrical con-
sumption signatures of devices in different categories. This fridge was chosen since it
is the only device type from the dataset that has data in the EPREL database, making
possible a comparison. The data collected for both devices are collected with a 1 second
interval during 1 hour of continuous collecting.

Since there was sensor data for only two device types, this caused some limitations
for the development of this work. Therefore, it will be only possible to calculate, store
and compare metrics for Electronic Displays and Refrigerators.

3.5.2 EPREL data

The EPREL database stores the information about the products placed on the EU market
and their energy label. This data will be compared with the real-life metrics obtained
from the sensor data. For this comparison to be possible, the data must be retrieved and
inserted in the Metrics and metadata device DB.

The insertion of the EPREL data for a device in the Metrics and Metadata device
DB happens when registering the device in the SATO platform. The registration message
contains the device model, brand and type that are used in the API call Get product group’s
info. However, in the current EPREL API version, this call is unavailable until the end of
2021. Therefore, with this restriction in place a temporary amendment needed to be done,
that was associating the device brand, model and type with the registration number and
the use the call Get product group’s model by registration number.

Chapter 3. Database system design 29

3.5.3 Sensor DB

The sensor DB stores all the data collected by the sensors and is developed using In-
fluxDB. As already mentioned, the Influx engine was chosen, because is a time series DB
that allows better performance on time series data and to calculate device energy assess-
ments.

The data is stored in a bucket, called SATO bucket, were it is possible to set a re-
tention period, that is currently set to retain the data forever. The choice of keeping the
data forever was done since data size during this work was not large enough to warrant
the deletion of data to improve performance. However, this retention period can be later
changed to a specific period, for example a week or month, therefore improving the per-
formance.

The device name, model and brand, that are collected from a XML file with the sensor
data like the one in Figure 3.4, are stored as tags in order to improve query performance,
due to the fact of tags being indexed. This decision was made since this meta-data is used
in most queries to filter the results.

Figure 3.4: XML file with sensor data for the monitor AOC 27B1H

Using the InfluxDB tasks it is possible to schedule the calculations and insertion in
the metrics and metadata device DB. For each device type there are two Flux scripts,
one for the device metrics and another for the cycle metrics, that make the necessary
queries. The time between each insertion of the device metrics is 1 week, in order to
obtain a large quantity of data and obtain reliable metrics. This time period can also be
later changed, changing the task option ”every”, if it proves to not be the best choice. The
cycle metrics are calculated and stored after each device cycle ends. A device cycle can

Chapter 3. Database system design 30

be defined as a period where the device is considered turned on and, consequently, with
the consumption’s rising.

Despite not being implemented, due to the lack of a large data quantity, the InfluxDB
checks can be used to detect and warn users about device failures. Section 4.5 will explain,
how this process can be implemented using the Influx checks.

3.5.4 Metrics and metadata device DB

The metrics and metadata device DB stores the metrics and metadata for the devices
registered in the SATO platform is implemented using PostgreSQL. The metadata for
the device comes from the EPREL database and the metrics can come from the sensor
database or the EPREL database.

Figure 3.5: Database block diagram

Figure 3.5 presents a block diagram with the main entities and corresponding connec-
tions that will be detailed next. The full entity-relationship (ER) model for the metrics
and metadata device DB is presented in Appendix A.

Figure 3.6: ER model related with the Device and Building

Figure 3.6 presents ER model associated with the device and the building block of
Figure 3.5. The device block represents the metadata about the device like the model,
brand and EPREL registration number. This number is a unique identifier for a device
model in the EPREL database, that is obtained by scanning the QR code in the energy
label.

The building entity represents the metadata about the location of the device, like the
designation. This block contains the space, floor, building and site entities. Each of these

Chapter 3. Database system design 31

entities has a many to one relationship, for example, a space can be a kitchen on the
second floor, the building is a house and the space a city.

The relationship between these two entities is one or many to one since one building
can have one or many devices.

Figure 3.7: ER model related with the Device and Sensor

The sensor entity, showed in Figure 3.7, represents the sensors metadata like observa-
tions, sensor type , brand and model. It also contains the sensor unique identifier, which
is an id used to identify the sensor in the SATO platform.

The relationship between these two entities is one to many, so one device can have
one or multiple sensors.

Figure 3.8: ER model related with the Device and Failure

Chapter 3. Database system design 32

The device failure entity, showed in Figure 3.8, represents the failures metadata, like
when was it detected (detection time), an error message and observations. However,
since the failure detection part was not possible to implement there may be some missing
information that is needed for the system.

The relationship between these two entities is many to one, but it is not mandatory
that a device has failures.

Figure 3.9: ER model related with the Device and Cycle metrics

The device cycle metrics entity, showed in Figure 3.9, represents the metrics that are
calculated for a device during each running cycle, like the average (e.g. power demand average),
max (e.g. temperature max), min (e.g. noise emission min) and standard deviation
(e.g. waterflow standard deviation). Additionally, there is also some metadata about
the cycle like the start time, end time and measurement unit used (e.g. temperature measure unit).

The relationship between these two entities is one to many, but it is not mandatory that
a device has a device cycle.

Finally, part of the device type metrics and metadata entity is showed in Figure 3.10.
The entity represents the metrics and metadata that comes from EPREL for the device
types that have an energy label. The data for each type was defined to be equivalent to the
EPREL side. Additionally, devices without EU energy labels are also supported having
the most common metrics from all the device types. Using the sensor data, some of the
metrics in this entity (e.g. energy class sdr, energy class, power demand standy) are
also calculated and stored, in order to be compared with the metrics of EPREL.

The relationship between the device type metrics and the device is done through the
entity Device data source, that it has the attribute created at to register the inserted
time. Additionally, it has the attribute source to distinguish between the real-life metrics,
with the value sensors and the EPREL metrics, with the value EPREL. The relation-

Chapter 3. Database system design 33

Figure 3.10: ER model related with the Device and Device type metrics

ship between the device and the device data source is one to many, so a device can have
multiple instances of device type metrics.

3.5.5 Dashboards

There are many ways to access the data stored in the database, for example, using dash-
boards. These dashboards are developed in InfluxDB using the Flux language to query
the data, with the results being displayed using various visualization types. The access
to these dashboards is done through a browser, but there also exists the possibility of de-
veloping dashboards in a mobile app using the same queries and the InfluxDB API. A
user must also login using a username and password in order to be possible to manage the
access permissions for the dashboards.

Consumption and metrics dashboard

The main goal of the consumption and metrics dashboard is to show the device real time
consumption’s, the calculations that are done to obtain the consumption metrics and the
device meta-data. In Figure 3.11 it is possible to see an example of the dashboard for
a monitor. It is possible to select what device group and device is showed using the
dashboard variables on the top bar. Alongside with the sensor data that is stored on
InfluxDB, it is also possible to visualize the device meta-data stored on the PostgreSQL
database.

In this dashboard it is possible to visualize in Figure 3.11 - A, for a selected device,
the energy class, energy efficiency index, the last device action, energy consumption in

Chapter 3. Database system design 34

kWh/1000h, max power demand, min power demand, average power demand and the
power demand standard deviation. There are also two graphs in Figure 3.11 - B, one for
the device real power demand and for the device power demand when turned on.

Additionally, it is also possible to visualize in Figure 3.11 - C, for all devices from the
device group of the selected device, the energy consumption in kWh/1000h, max power
demand, min power demand and power demand standard deviation. Finally, it is also pos-
sible to see in Figure 3.11 - D the device metadata and device EU energy label metrics,
all obtained from Metrics and metadata device DB.

Figure 3.11: Consumption and metrics dashboard

Metrics comparison dashboard

The main goal of the metrics comparison dashboard (Figure 3.12) is to provide a compar-
ison between the expected consumption metrics, obtained from the EPREL database, and
the real-life consumption metrics, obtained from the sensor data. This comparison must
be simple and easy to understand by any user, since it will be accessible by the occupants
of the house that may have different levels of understandability of a device consumption
metrics.

In this dashboard the data visualized depends on the device type of the selected de-
vice, since the metrics that were calculated change depending on the device type. All the
calculations done in order to obtain these results on the dashboard are presented in Sec-
tion 4.3. The metrics visualized are divided into two groups, the EU energy label metrics,
on the left, and the metrics obtained from the sensor data, on the right. In this example
the selected device is an electronic display and the metrics showed are the energy class,

Chapter 3. Database system design 35

power demand in standard dynamic range, power demand in off mode and power demand
in standby mode.

Figure 3.12: Metrics comparison dashboard

3.6 Summary

The section presented the requirements for a database used for storing sensor data, a
comparison between multiple database engines and the choice made for this work. Ad-
ditionally, it also presented the database for storing metrics and metadata. Finally, there
was an overview and description of the SATO architecture, how the database components
developed in this work are integrated and a description of each component.

Chapter 3. Database system design 36

Chapter 4

Database system implementation

This chapter presents the details about the process of fetching the data collected from the
EPREL database and from the sensors. Also presented is the process and implementation
of the consumption metrics calculation, for the device metrics and cycle metrics. Ad-
ditionally, it also presents a description of how a failure detection could be implemented
and the implementation and available calls for the external API. Finally, it presents a com-
parison between the calculated real-life metrics for two devices and their corresponding
values in the energy label.

4.1 Databases implementation

The initial step in the implementation was the creation of the databases in order to start
receiving and storing data. As already mentioned, the Sensor DB is implemented using
InfluxDB and the Metrics and metadata DB using PostgreSQL.

4.1.1 Sensor DB

This creation of this database follows a simple process, since a data schema is not needed.
The only required operations to create this database is the creation of an admin user and
a bucket to store the data. When creating a bucket, the only parameters are the name and
retention period. All these operations, as well as the setup of the dashboards and tasks,
was all done through the InfluxDB interface. A command line interface is also available,
despite being currently limited in some operations due to recent release of the InfluxDB
version being used.

4.1.2 Metrics and metadata DB

This database was created using the administration and development platform pgAdmin
[37]. After the creation of a database using this platform, a SQL script is executed with
the creation of all the tables and enumerated types. This script is in Appendix B.1.

37

Chapter 4. Database system implementation 38

4.2 Data insertion

4.2.1 EPREL data insertion

The implementation of the EPREL data insertion is divided in two scripts, one to collect
the data using the EPREL API (eprel kafka producer.py), in Appendix B.2, and send
it via Kafka acting as a producer and the other script (eprel kafka consumer.py), in
Appendix B.3, consumes the data and stores in the metrics and metadata device DB.

The data stored on the EPREL database is fetched by using the request call Get prod-
uct group’s model by registration number, referenced in Section 2.2. The call must have
the format:

https://eprel.ec.europa.eu/api/products/[PRODUCT GROUP]/[REGISTRATION NUMBER]

The PRODUCT GROUP field must be a valid product group code. The REGISTRA-
TION NUMBER field is the model registration number used in the EPREL database as
a unique identifier for the model [31]. To obtain this number it is necessary to scan the
QR code on the energy label, which redirects to the EPREL public website that gives the
registration number of the model in the corresponding URL.

For example, for the case of a washer drier energy label (right part of Figure 4.1), the
URL for the model page is:

https://eprel.ec.europa.eu/screen/product/washerdriers2019/300268

The data from EPREL will be fetched when a device is first registered in the SATO
platform, by using the previously described call. The output of the call is shown in Figure
4.1.

Chapter 4. Database system implementation 39

Figure 4.1: Example output of an EPREL database API call. Left: assessment data of the
washer drier. Right: the corresponding EU energy label

Chapter 4. Database system implementation 40

The producer script can be executed with the following command:

python3 device type device brand device model

And it executes the following steps:

1. Receive the device type, brand and model in the command line arguments.

2. Get the device registration number through the device brand and model. This is
done using a Python dictionary with the brand and model as keys and the registra-
tion number as value, that was previously manually created.

3. Make a request to the EPREL API call Get product group’s model by registration
number using the device type and registration number as arguments and receive the
response has a JSON object.

4. Inject the response as an event in the Streaming Data component of the SATO plat-
form, implemented using Kafka. This event contains a header with a field identi-
fying that it is an EPREL event and the whole response (unmodified) is placed in
a field called payload (outside the header). The event is associated with the topic
”eprel data”.

The consumer script executes the following steps:

1. While the script is running is consuming events from the topic eprel data and ex-
tracting the payload

2. This data is then processed and inserted in the Metrics and metadata device DB

4.2.2 Sensor data insertion

The implementation of the sensor data insertion is done using a Python script (insert sensor data.py)
that reads a XML file with the sensor data and insert it in the Sensor database.

The script executes the following steps:

1. An Influx client instance is created using the InfluxDB-Python library.

2. The file name of the XML file with the sensor data, is set manually.

3. The file is opened, the contents turned into a Python dictionary object and the device
type, brand and model recovered. The brand and model are then joined to form the
device name, a variable that is then used in the dashboard for the user to easily
identify the device.

Chapter 4. Database system implementation 41

4. The device id for the device data entry in the Metrics and metadata device DB is
recovered, using the device brand and model in the query fields to filter the results.

5. The device metadata is collected from the device file and joined with the device id
obtained in the step 4.

6. The XML file is formatted in order to be inserted in the database.

7. For each line a Influx point is created with the sensor data and the device meta-
data, including for example the device name, collection timestamp, power value
and deviceid. Then each point is inserted.

4.3 Consumption metrics calculation

This section presents how the consumption metrics, for each device types where data was
available (e.g. electronic displays), are calculated using the Flux language. All the formu-
las and tables used were collected from the EU regulation for labelling, more specifically,
the Regulation on energy labelling for electronic displays (EU) 2019/2013 [41] and the
Regulation on energy labelling for fridges and freezers (EU) 2019/2016 [43].

4.3.1 Device metrics

A set of consumption metrics, the same that are on the corresponding energy label, are
calculated on a defined schedule, currently every day, using InfluxDB tasks and then
inserted in the Metrics and Metadata database. The set of metrics depends on the de-
vice type, so each device type has its own script (e.g load electronic display.flux,
load refrigerator.f lux). These metrics are used in the comparison of the real-life de-
vice consumption with the expected consumption that are present on the device energy
label.

This subsection details the metrics that are calculated the device type, namely the
electronic displays, fridges and untyped devices.

Electronic displays

Energy class SDR/HDR: In the case of electronic displays, the energy class is given
when the display is in SDR (Standard display range) or in HDR (High dynamic range).
Since the data available was for a screen with no HDR mode this was not considered dur-
ing the implementation. The device energy class is given accordingly to the EEI (Energy
efficiency index). The association can be seen in Figure 4.2:

To obtain the EEI the following formula is used:

EEIlabel =
(Pmeasured + 1)

(3 ∗ [90h(0, 025 + 0, 0035 + (A− 11) + 4)] + 3) + corri)

Chapter 4. Database system implementation 42

Figure 4.2: Energy class for electronic displays

where:

A represents the viewing surface are in dm2;

Pmeasured is the measured power for the normal configuration, expressed in Watts;

and corri is a correction factor

In this current version the coorl is set to 0, since that is the value for both televisions
and monitors. This value only changes when working with digital signage, like outdoor
panels.

The correspondent Flux code is shown in Figure 4.3.

Figure 4.3: Flux code for the assignment of the energy class for electronic display

Chapter 4. Database system implementation 43

Power demand SDR/HDR: Since the data available was for a screen with no HDR
mode this was not considered during the implementation.

In the case of electronic displays, the power demand is measured in Watts. Since the
sensor also detects the power in Watts, the only calculations needed were the average and
the rounding the result, accordingly to the rules used in the energy label.

Since this power demand metric is set with the device turned on, the data must be
filtered. This is done using the maximum consumptions, set by the regulations of the
European Union, for each mode. These limits are:

• Off mode with a maximum of 0,30 Watts

• Standby mode with a maximum of 2,20 Watts

• Standby networked mode with a maximum of 7,70 Watts

It was decided to consider that consumptions above 7,70 Watts refers to a device
turned on.

The correspondent Flux code is shown in Figure 4.4.

Figure 4.4: Flux code for the calculation of the power demand for electronic display

Power demand standby: The procedure to calculate the power demand in standby
mode is the same for the power demand with the device turned on. In the beginning, the
data is filtered for the power above 0,3 Watts and bellow 2,2 Watts and then the average
is calculated.

The correspondent Flux code is shown in Figure 4.5.

Chapter 4. Database system implementation 44

Figure 4.5: Flux code for the calculation of the power demand in standby mode for elec-
tronic display

Power demand off: The procedure to calculate the power demand in off mode is the
same as the power demand with the device turned on. In the beginning, the data is filtered
for the power bellow 0,3 Watts and then the average is calculated.

The correspondent Flux code is shown in Figure 4.6.

Figure 4.6: Flux code for the calculation of the power demand in off mode for electronic
display

Chapter 4. Database system implementation 45

Power demand networked standby: Since the data available was for a screen with
no networked standby mode, this metric was not considered during the implementation.

Fridges and refrigerators devices

Energy class: The device energy class is given accordingly to the EEI. The limits of each
class can be seen in Figure 4.7.

Figure 4.7: Energy class for fridges and refrigerators devices

The EEI is expressed in % and rounded to the first decimal place, is obtained employ-
ing the following formula:

EEI = AE/SAE

where:
AE is the annual energy consumption is expressed in kilowatts hour per year (kWh/annum)
SAE is the standard energy consumption is expressed in kilowatts hour per year

(kWh/annum)

The SAE is calculated using the following formula.

SAE = C ∗D ∗
n∑

c=1

Ac ∗Bc ∗ [Vc/V] ∗ (Nc + V ∗ rc ∗Mc)

where:
c is the index number for a compartment type ranging from 1 to n, with n the total

number of compartments type;

Chapter 4. Database system implementation 46

Vc, expressed in dm3 or litres and rounded to the first decimal place is the compartment
volume;

V , expressed in dm3 or litres and rounded to the nearest integer is the volume with
V ≤

∑n
c=1 Vc;

rc, Nc, Mc and C are modelling parameters specific to each compartment
Ac, Bc and D are the compensation factors with values.
The tables in Figures 4.8 and 4.9, are used for assigning the variables values accord-

ingly to the compartment type.

Figure 4.8: Variable assignment table for fridges and refrigerators [42]

Figure 4.9: Variable assignment table for fridges and refrigerators [42]

Chapter 4. Database system implementation 47

The Flux code to calculate the EEI is shown in Figure 4.10.

Figure 4.10: Flux code for the assignment of the energy class for fridges and refrigerators

The Flux code to calculate the SAE is in Figure 4.11 (code altered to provide better
readability).

Figure 4.11: Flux code for the calculation of the SAE for fridges and refrigerators

Chapter 4. Database system implementation 48

The AE calculations are presented in the sub section below.

Annual energy consumption: To obtain the AE the following formula is used

AE = 365 ∗ Edaily/L+ Eaux

The Edaily stands for the daily energy consumption and is expressed in kWh/24h. The
L stands for the load factor and changes from 0,9 when the appliance contains only frozen
compartments or 1,0 for all other appliances. The Eaux stands for the energy used by an
anti-condensation heater. Since this value was not present in the data used the variable
was not considered.

The Flux code to calculate the AE is in Figure 4.12.

Figure 4.12: Flux code for the calculation of the AE for fridges and refrigerators

Sound class: Since there was no data available from the sound sensor, this metric was
not considered during implementation.

Untyped devices

It is also important to support devices that have no correspondent type in the EPREL
database, for example a laptop. Since these devices have no energy label, the metrics
calculated are based on the most common ones. The metrics considered were: Power
demand on mode, Power demand off mode, Power demand standby mode, Energy annual
consumption.

4.3.2 Cycle metrics

Besides the consumption metrics a set of metrics are calculated after every device cycle,
also using InfluxDB tasks. A device cycle can be defined as a period where the device
is considered turned on and, consequently, with the consumption’s rising. There are two
types of devices, the ones with alternate cycles, that is, a device that is turned off and on
multiple times over its normal operation like a television or a dishwasher, and the ones
with a continuous cycle that are only turned on once, except for a device failure, like a
fridge.

These metrics are a set of summary statistics, more specifically the average, min, max
and standard deviation. These were the chosen metrics since they allow an analysis of the

Chapter 4. Database system implementation 49

device consumptions over the entire cycle.

The cycle metrics collection script (loaddevicecycle.f lux), in Appendix B.5 is exe-
cuted every 30s in order to ensure that all cycles are accounted, no matter the execution
duration. The script steps are as follows:

1. Check if the device already has the metrics for a previous device cycle. This is
done by checking if there is a cycle in the Metrics and metadata DB with the same
device id.

2. If no previous cycle exists, search for the first data point with a power value above
0,5, in all the sensor data available for the device. If a previous cycle exists only
the entries since the end of that cycle are searched. This will define the start of the
device cycle.

3. The last data point with a power value above 0,5 is then searched and defined as the
end of the cycle.

4. Operations are made over all the data points between the start and end of the cycle
to obtain the average, max, min and standard deviation.

5. The results are stored in the cycle metrics table of the Metrics and Metadata device
DB.

The code to calculate the max value is in Figure 4.13.

Figure 4.13: Flux code for the calculation of the max value for untyped devices

The code for the min value is in Figure 4.14.

Figure 4.14: Flux code for the calculation of the min value for untyped devices

Chapter 4. Database system implementation 50

The code for the average value is in Figure 4.15.

Figure 4.15: Flux code for the calculation of the average value for untyped devices

The code for the Standard deviation value is in Figure 4.16.

Figure 4.16: Flux code for the calculation of the standard deviation value for untyped
devices

4.4 External API

A REST API is developed to give external access to the data stored in the databases. This
API can be used in the SATO platform to supply the self-assessment framework with
access to the real-life metrics that are then used for the assessments. There are four calls
to access the data in the Metrics and metadata device DB and one call for the Sensor DB.
The code of API is in Appendix B.6.

The REST API was developed using Python and the Flask framework. Flask was
chosen due to being a highly extensible microframework. It also has a small number
of dependencies to external libraries and it is not restricted to use a specific library, for
example to access a specific type of database.

These characteristics are important in the development of this API, since it is not a
API with an high number of accesses or with the need of security, so other libraries would
bring unnecessary dependencies. Furthermore, since there are two libraries used to access
the databases, psycopg2 for the Metrics and metadata device DB and influxdb client for
the Sensor DB, the extendibility component is important [17].

Additionally, Flask comes with a built-in server that is designed to be used during
local development. However, it should not be used when deploying in a production envi-
ronment, as in the case of this API being used in the SATO project, since it is not designed

Chapter 4. Database system implementation 51

to be efficient, stable, or secure. Options for the deployment are using Gunicorn, uWSGI
or Gevent [17].

For all the calls the response format can be a numeric value, a float, a JSON object, or
an array of JSON objects. Each response also has a status code depending on the type of
response, with 200 being used when the request is completed successfully and 404 when
the request resource is not found.

The available calls are:

1. Get device metrics – Request used to get all metric values for a specific device.
The format for the call is:
/metrics/[device serial number]

A call example is:
http://127.0.0.1:5000/metrics/123

A response example is:
”category”:null,”created at”:”Mon, 31 May 2021 22:24:32 GMT”,”device id”:3,
”diagonal cm”:null,”energy class hdr”:null,”energy class sdr”:”D”
,”panel technology”:null,”power demand hdr”:null
,”power demand off”:0.0,”power demand sdr”:16.0,”power demand standby”:0.0,
”power demand standby networked”:null,”resolution h pixel”:null,”resolution v pixel”:null,
”size ratio x”:null,”size ratio y”:null,”source”:”sensors”,”visible area”:null

2. Get device single metric – Request used to get a single metric value for a specific
device. The format for the call is:
/metrics/[device serial number]/[metric]

A call example is:
http://127.0.0.1:5000/metrics/123/energy class sdr

A response example is: ”D”

3. Get device metadata – Request used to get all the metadata for a specific device.
The format for the call is:
/metadata/[device serial number]

A call example is:
http://127.0.0.1:5000/metadata/123

A response example is:
”brand”:”AOC”,”building id”:1,”created at”:”Mon, 31 May 2021 19:25:43 GMT”
,”device id”:3,”device type”:”ELECTRONIC DISPLAY”,”eprel registration number”:”419895”
,”model”:”27B1H”,”observations”:null,”serial number”:123

Chapter 4. Database system implementation 52

4. Get device single metadata – Request used to get a single metadata value for a
specific device. The format for the call is:
/metadata/[device serial number]/[metadata]

A call example is:
http://127.0.0.1:5000/metadata/123/brand
A response example is: ”AOC”

5. Get device power data from last week – Request used to get the device power
consumption data points of the last week, for a specific model. The format for the
call is:
/device power/[device brand]/[device model]

A call example is:
http://127.0.0.1:5000/device power/AOC/27B1H

A response example is:
[” device”:”Monitor-AOC-27B1-27”,” device action”:”on”,” device brand”:”AOC”
,” device group”:”Monitor”,” device id”:”3”,” device model”:”27B1H”,” field”:”power”
,” measurement”:”mem”,” start”:”Mon, 30 Aug 2021 21:30:11 GMT”,” stop”:”Mon,
06 Sep 2021 21:30:11 GMT”,” time”:”Mon, 06 Sep 2021 21:18:51 GMT”,” value”:16.0,
”result”:” result”,”table”:0,
...
” device”:”Monitor-AOC-27B1-27”,” device action”:”on”,” device brand”:”AOC”
,” device group”:”Monitor”,” device id”:”3”,” device model”:”27B1H”,” field”:”power”
,” measurement”:”mem”,” start”:”Mon, 30 Aug 2021 21:30:11 GMT”,” stop”:”Mon,
06 Sep 2021 21:30:11 GMT”,” time”:”Mon, 06 Sep 2021 21:30:10 GMT”,” value”:16.0
,”result”:” result”,”table”:0]

4.5 Failure detection

One of the goals of this work was to implement device failure detection. The device failure
can be caused by a malfunction in the device that then leads to abnormal consumption’s
values. This detection is designed to be implemented in a Worten use case. In this use
case Worten provides the costumers with the option to take part of this use case and those
who accept will be provided with a device with sensors.

This device failure detection will allow Worten to provide remote costumer support
even before the failure is detected by the costumer.

The process for the failure detection could work as follows:

1. Compare the cycle metrics of a specific device with the metrics of other devices of
the same model

Chapter 4. Database system implementation 53

2. If the metrics values differ in a large way flag it has a potential failure

3. Save details about this failure in the Metrics and Metadata device DB

4. Notify via email or third party applications the device owner and supplier

Unfortunately, the device failure detection was not possible to implement due to the
lack of data, more specifically, from multiple devices of the same brand and model.

4.6 Validation

With the sensor and EPREL metrics stored in the Metrics and Metadata device DB, it is
now possible to proceed with the comparison of the predicted and real-life consumption.
This section presents the comparison of real-life assessment and EPREL data, to a monitor
AOC 27B1H and a fridge Beko TS190030N as these are the only devices with sensor data
available.

4.6.1 Monitor AOC 27B1H

This is a monitor with a 1920x1080 Full HD resolution on its 27” IPS panel. It also offers
Flicker-Free and Low Blue Light technologies. The metrics obtained from the EPREL
database (https://eprel.ec.europa.eu/screen/product/electronicdisplays/
419895) for the Monitor AOC 27B1H are:

• Energy class - E

• On mode power demand in Standard Dynamic Range (SDR) - 21 W

• Off mode power demand - 0.3 W

• Standby mode power demand - 0.3 W

The metrics obtained from the sensor data are:

• Energy class - D

• On mode power demand in Standard Dynamic Range (SDR) - 16 W

• Off mode power demand - /

• Standby mode power demand - /

https://eprel.ec.europa.eu/screen/product/electronicdisplays/419895
https://eprel.ec.europa.eu/screen/product/electronicdisplays/419895

Chapter 4. Database system implementation 54

As already mentioned, the sensor data for this device was collected using the sensors
that were as part of the thesis work of [25], that is also part of the SATO project. It is also
from 1 continuous hour of collecting with the device always on. That is why there are no
metrics for the power demand of both the off mode and the standby mode. As it can be
seen the metrics obtained from the sensor data show a lower power consumption when
compared to the EPREL metrics.

The results of the sensors data metrics were not the expected ones, since the expec-
tations were for the power consumption in a real-life use case scenario to be above the
performance displayed in energy label metrics, obtained from EPREL.

These expectations come from the difference between the scenario conditions when
obtaining the data, since when calculating the EU energy label metrics, the conditions
remain in a stable predefined state. For example, in the case of electronic displays a fixed
brightness and contrast, which does not happen in real-life since a user may alter these
parameters leading to an increase in the power demand.

However, in this case the change in conditions may also lead to this lower power
consumption, since the settings of the screen during the period in which the data was
collected could for example, have a lower brightness.

4.6.2 Fridge Beko TS190030N

This is a fridge with a total volume of 88L, a single door and LED lighting. The metrics
obtained from the EPREL database (https://eprel.ec.europa.eu/screen/
product/refrigeratingappliances2019/341954) for this device are:

• Energy class - F

• Energy efficiency Index (EEI) - 124

• Annual energy consumption - 106 kWh/annum

The metrics obtained from the sensor data are:

• Energy class - C

• Energy efficiency Index (EEI) - 63

• Annual energy consumption - 79 kWh/annum

As a reminder, the sensor data for this device was collected from the ACS-F2 dataset.
However, the device from the dataset is from an equivalent fridge with the same number
and type of compartments but from a different manufacturer. Despite not being a perfect
comparison, it is still the best possible solution, since there is no device in the dataset that
is still in the current market, therefore with the new EU energy label. It is also from 1

https://eprel.ec.europa.eu/screen/product/refrigeratingappliances2019/341954
https://eprel.ec.europa.eu/screen/product/refrigeratingappliances2019/341954

Chapter 4. Database system implementation 55

continuous hour of collecting with the device always on. As it can be seen the metrics
obtained from the sensor data shows a lower energy consumption when compared to the
EPREL metrics.

The metric results for the sensor data where not ideal mainly due to the small data
size, with the data only being from 1 continuous hour when the ideal would be 1 week
and the fact that it was not possible to simulate a normal use of the device.

However, it is still possible to reach the conclusion that the metric calculations are
correctly implemented since the results are valid and, in the limits, stipulated in the EU
labelling regulations. For example, the energy class is being correctly assigned according
to the power demand in both device types.

4.7 Summary

This section presented the implementation details of the database system, starting with a
description of the data insertions for the EPREL and sensor data. Then, it was presented a
description of the process to calculate and implement, in the Flux language, the consump-
tion and cycle metrics. Additionally, it was described the external API and how the failure
detection can be implemented. Finally, the validation was presented with a comparison of
the real-life metrics of two different devices with the values on the energy label.

Chapter 4. Database system implementation 56

Chapter 5

Conclusion and future work

This chapter presents the conclusions and the future work. The Section 5.1 summarizes
the selection process of the databases engines, integration in the SATO project, the de-
scription of the dataflow and its components, implementation of the data insertion and
consumption metrics calculation, implementation of the API and finally the comparison
of the results. Section 5.2 presents the limitations of the current work as well as possible
paths to overcome them in future work.

5.1 Conclusion

The main objective of this thesis was to provide a comparison between a device real-life
consumption and the predicted consumption. The real-life consumption will provide the
consumers with the knowledge they need to make better decisions when buying an appli-
ance, discover which operating mode and options offers the lower consumption and even
pre-emptively detect a possible device failure. This knowledge is much more valuable
than the design predictions and since this comparison will be part of the SATO plat-
form, it will be available for both new and legacy devices. The SATO platform performs
self-assessments and optimizations of devices and buildings using the data stored in the
databases developed on the work of this thesis.

The analysis of database engines to store sensor data made it possible to bring together
various solutions for the implementation of the project. These where then compared using
a set of application requirements as comparison criteria, namely, the data schema, query
language, scalability, load balancing, data retention policies, among others. The database
system used is InfluxDB, a time series database, because it provides the best performance
when working with time series data, has already been used in projects that work with
sensor data and provides all the resources for scaling.

Additionally, to store device metrics (e.g. energy class, power demand) and device
metadata (e.g. brand, model and the EPREL energy label) the PostgreSQL relational
database engine is used.

57

Chapter 5. Conclusion and future work 58

The work done in this thesis work makes available the databases where all the sensor,
metrics and metadata can be stored and accessed. This includes a DB for the sensor data
with the scripts needed for the metrics calculation and insertion in a relational database. A
DB with both the sensor data metrics and EPREL metrics was also implemented, along-
side with the scripts needed for integration in the SATO platform and an entity relationship
diagram, including the future integration with the building assessments. In order to access
the data stored in the databases, besides the use of queries, an API is made available as
well as two different dashboards. This API was developed using the framework Python
Flask.

For each device, a set of metrics is calculated, depending on the device type over a
certain time frame. The metrics calculations are the same as the ones used in the EU
labelling process, so they can then be compared with the ones in the device energy label.
An additional set of metrics composed of summary statistics is also calculated during
each device cycle. The implementation of this metrics calculations was done using Flux
language, InfluxDB data scripting language.

The results of the comparison between the predicted and the real-life consumption
were not the expected, since the sensor data metrics showed a lower consumption than
the EU energy label metrics, due to the low amount of available data and possible device
settings that may lower the consumption. Despite this it was possible to conclude the
metrics calculations are correctly implemented and that the EU energy labelling metrics
are a viable comparison criterion.

The EPREL database stores EU device energy label and other energy metrics. This
data is extracted using the provided API and is a baseline for the consumption assessment.

The dashboards provide a simple real-time visualization meant to be used by the users
of the SATO platform since it is simple and easy to interact with. On the other side the
API provides access to the metadata, metrics and sensor data through five API calls. For
a SATO user, it is not as simple to interact with the API as it is with the dashboards, as
the API is instead meant to be used by other developers.

5.2 Future work

To correctly compare the sensor data metrics with the EU energy label, it is necessary to
have a large volume of data available collected during a normal use of the device. This
will lead to more viable consumption metrics that will provide more viable comparisons.
It is also fundamental to collect data from the other types of devices supported by the
EPREL database, since these are the only ones that can be used for the comparison.

Additional, it is important to consider other types of sensors, in addition to those
considered in this work (e.g. current sensor). The list of types of sensors that must be
considered is detailed in Section 3.5.1. This is crucial to obtain the data needed for the

Chapter 5. Conclusion and future work 59

calculation of some metrics, namely the waterflow and noise data.
The ER model presented in Appendix A describes the entities and attributes for the all

the devices types eligible for an energy label, both the ones on the EPREL database and
the ones not on the EPREL database. When a device type is added to EPREL database,
the model must be altered to update the metrics and how they are calculated, due to the
release of new Energy Labelling Regulations. Therefore, this ER model will need to be
altered to reflect these updates.

Currently the insertion of sensor data is done by reading the data from a CSV file, but
in the future this insertion should be done using Apache Kafka and sending each data point
individually or grouped by 10 seconds. Due to these planned changes, the script currently
in use will also need to be altered or even discarded in favour of using the Telegraf Kafka
plugin to write to a Kafka broker [28] and the Kafka Consumer Input to read from Kafka
[27].

Chapter 5. Conclusion and future work 60

Bibliography

[1] About the energy label and ecodesign. URL: https://ec.europa.eu/
info/energy-climate-change-environment/standards-tools-
and-labels/products-labelling-rules-and-requirements/
energy-label-and-ecodesign/about_en (cit. on p. 12).

[2] About the energy label and ecodesign. URL: https://ec.europa.eu/
info/energy-climate-change-environment/standards-tools-
and-labels/products-labelling-rules-and-requirements/
energy-label-and-ecodesign/about_en (cit. on p. 13).

[3] Amazon Athena database webpage. URL: https://aws.amazon.com/pt/
athena/ (cit. on p. 22).

[4] Apache Druid website. URL: https://druid.apache.org/ (cit. on p. 10).

[5] Andreas Bader, Oliver Kopp, and Michael Falkenthal. “Survey and Comparison of
Open Source Time Series Databases”. In: (2017) (cit. on p. 10).

[6] European Commission. Commission Recommendation (EU) 2019/1019 of 7 June
2019 on building modernisation. Tech. rep. 2019 (cit. on p. 1).

[7] European Commission. Fourth Report on the State of the Energy Union. Tech. rep.
2019 (cit. on pp. v, 1).

[8] CrateDB webpage. URL: https://crate.io/ (cit. on p. 10).

[9] CrateDB: Technical overview. Tech. rep. Apr. 2020 (cit. on p. 8).

[10] Description of action. Tech. rep. June 2020 (cit. on p. 2).

[11] Description of the system architecture of the SATO platform - Confidential. Tech.
rep. July 2021 (cit. on p. 22).

[12] Paul Dix. Why Time Series Matters for Metrics, Real-Time Analytics and Sensor
Data. Tech. rep. July 2021. URL: https://www.influxdata.com/what-
is-time-series-data/ (cit. on pp. 5, 20).

[13] Driving energy efficiency in the European building stock: New recommendations
on the modernisation of buildings. 2019. URL: https://ec.europa.eu/
info/news/driving-energy-efficiency-european-building-
stock-new-recommendations-modernisation-buildings-2019-
jun-21_en (cit. on p. 1).

[14] EPREL API. URL: https://webgate.ec.europa.eu/fpfis/wikis/
display/EPREL/EPREL+Public+site+-+API (cit. on p. 17).

61

https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://aws.amazon.com/pt/athena/
https://aws.amazon.com/pt/athena/
https://druid.apache.org/
https://crate.io/
https://www.influxdata.com/what-is-time-series-data/
https://www.influxdata.com/what-is-time-series-data/
https://ec.europa.eu/info/news/driving-energy-efficiency-european-building-stock-new-recommendations-modernisation-buildings-2019-jun-21_en
https://ec.europa.eu/info/news/driving-energy-efficiency-european-building-stock-new-recommendations-modernisation-buildings-2019-jun-21_en
https://ec.europa.eu/info/news/driving-energy-efficiency-european-building-stock-new-recommendations-modernisation-buildings-2019-jun-21_en
https://ec.europa.eu/info/news/driving-energy-efficiency-european-building-stock-new-recommendations-modernisation-buildings-2019-jun-21_en
https://webgate.ec.europa.eu/fpfis/wikis/display/EPREL/EPREL+Public+site+-+API
https://webgate.ec.europa.eu/fpfis/wikis/display/EPREL/EPREL+Public+site+-+API

Bibliography 62

[15] EPREL Product database — European Commission. URL: https://ec.europa.
eu/info/energy-climate-change-environment/standards-
tools-and-labels/products-labelling-rules-and-requirements/
energy- label- and- ecodesign/product- database_en (cit. on
pp. 2, 12).

[16] Jimmy Fjällid. “A Comparative Study of Databases for Storing Sensor Data”. 2019
(cit. on pp. 5, 9).

[17] Flask Documentation. https://flask.palletsprojects.com/en/2.0.x/ (cit. on pp. 50, 51).

[18] Flux SQL package. URL: https://docs.influxdata.com/influxdb/
cloud/query-data/flux/sql/ (cit. on p. 22).

[19] André Gil. “Platform architecture and data management for cloud-based buildings
energy self-assessment and optimization”. 2021 (cit. on p. 25).

[20] Google BigQuery database webpage. URL: https://cloud.google.com/
bigquery (cit. on p. 22).

[21] Graphite webpage. URL: https://graphiteapp.org/ (cit. on p. 9).

[22] InfluxDB documentation. https://docs.influxdata.com/influxdb/v2.0// (cit. on p. 7).

[23] InfluxDB Siemens customer story. URL: https://www.influxdata.com/
customer/siemens/ (cit. on p. 20).

[24] InfluxDB website. https://www.influxdata.com/products/influxdb/. 2020 (cit. on pp. 6,
9).

[25] Žygimantas Jasiūnas. “Building appliances energy performance assessment”. 2021
(cit. on pp. 27, 28, 54).

[26] Janaki Joshi, Lakshmi Sirisha Chodisetty, and Varsha Raveendran. “A Quality
Attribute-based Evaluation of Time-series Databases for Edge-centric Architec-
tures”. In: (2019) (cit. on p. 10).

[27] Kafka consumer telegraf plugin. URL: https://github.com/influxdata/
telegraf/tree/master/plugins/outputs/kafka (cit. on p. 59).

[28] Kafka telegraf plugin. URL: https://github.com/influxdata/telegraf/
tree/master/plugins/inputs/kafka_consumer (cit. on p. 59).

[29] Kairos webpage. URL: https://kairosdb.github.io/ (cit. on p. 10).

[30] kdb+ webpage. URL: https://code.kx.com/q/ (cit. on p. 9).

[31] Olivier Mathieu et al. EPREL Exchange Model Documentation. 2019 (cit. on pp. 13,
38).

[32] Anna Carolina Menezes et al. “Predicted vs. actual energy performance of non-
domestic buildings: Using post-occupancy evaluation data to reduce the perfor-
mance gap”. In: Applied Energy 97 (2012), pp. 355–364. DOI: https://doi.
org/10.1016/j.apenergy.2011.11.075. URL: https://www.
sciencedirect.com/science/article/pii/S0306261911007811
(cit. on pp. v, 1).

[33] Microsoft SQL Server database webpage. URL: https://www.microsoft.
com/pt-pt/sql-server/sql-server-2019 (cit. on p. 22).

https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/product-database_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/product-database_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/product-database_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/product-database_en
https://docs.influxdata.com/influxdb/cloud/query-data/flux/sql/
https://docs.influxdata.com/influxdb/cloud/query-data/flux/sql/
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://graphiteapp.org/
https://www.influxdata.com/customer/siemens/
https://www.influxdata.com/customer/siemens/
https://github.com/influxdata/telegraf/tree/master/plugins/outputs/kafka
https://github.com/influxdata/telegraf/tree/master/plugins/outputs/kafka
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/kafka_consumer
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/kafka_consumer
https://kairosdb.github.io/
https://code.kx.com/q/
https://doi.org/https://doi.org/10.1016/j.apenergy.2011.11.075
https://doi.org/https://doi.org/10.1016/j.apenergy.2011.11.075
https://www.sciencedirect.com/science/article/pii/S0306261911007811
https://www.sciencedirect.com/science/article/pii/S0306261911007811
https://www.microsoft.com/pt-pt/sql-server/sql-server-2019
https://www.microsoft.com/pt-pt/sql-server/sql-server-2019

Bibliography 63

[34] Oscar Miralles. European Product Registry for Energy Labelling (EPREL) Com-
pliance Site Description. 2018 (cit. on pp. 11, 12).

[35] MySQL database webpage. URL: https://www.mysql.com/ (cit. on p. 22).

[36] Syeda Noor Zehra Naqvi and Sofia Yfantidou. Time Series Databases and InfuxDB.
Tech. rep. 2017 (cit. on pp. 5, 6).

[37] pgAdmin website. URL: https://www.pgadmin.org/ (cit. on p. 37).

[38] PostgreSQL database webpage. URL: https://www.postgresql.org/
(cit. on p. 22).

[39] Prometheus Documentation. https://prometheus.io/docs/introduction/overview/ (cit.
on p. 8).

[40] Regulation (EU) 2017/1369 of the European parliament and of the council. 2017.
URL: https://eur-lex.europa.eu/legal-content/EN/TXT/
?uri=uriserv%5C%3AOJ.L_.2017.198.01.0001.01.ENG (cit. on
p. 11).

[41] Regulation on energy labelling for electronic displays (EU) 2019/2013. 2019. URL:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
uriserv:OJ.L_.2019.315.01.0001.01.ENG&toc=OJ:L:2019:
315:TOC (cit. on pp. 13, 41).

[42] Regulation on energy labelling for fridges and freezers (EU). URL: https://
eur - lex. europa . eu / legal - content/ EN / TXT / HTML / ?uri =
CELEX:32019R2016&from=EN#d1e32-112-1 (cit. on p. 46).

[43] Regulation on energy labelling for fridges and freezers (EU) 2019/2013. 2019.
URL: https://eur-lex.europa.eu/legal-content/EN/TXT/
?qid=1575537791838&uri=CELEX%3A32019R2016 (cit. on p. 41).

[44] A. Ridi, C. Gisler, and J. Hennebert. “ACS-F2 - A new database of appliance con-
sumption signatures”. In: Soft Computing and Pattern Recognition (SoCPaR), 2014
6th International Conference of. IEEE, Aug. 2014, pp. 145–150 (cit. on p. 28).

[45] Self Assessment Towards Optimization of Building Energy web page. 2020. URL:
https://www.sato-project.eu/ (cit. on p. 2).

[46] Snowflake database webpage. URL: https://www.snowflake.com/ (cit. on
p. 22).

[47] SQLite database webpage. URL: https://www.sqlite.org/index.html
(cit. on p. 22).

[48] Ilya Sychev et al. “Closed Loop Benchmark for Timeseries Databases”. In: (2020)
(cit. on p. 9).

[49] Timescale webpage. URL: https://www.timescale.com/ (cit. on p. 9).

[50] TimescaleDB Documentation. URL: https : / / docs . timescale . com /
latest/main (cit. on p. 8).

[51] VictoriaMetrics Documentation. https://victoriametrics.github.io/ (cit. on p. 9).

[52] vmauth auth proxy. URL: https://docs.victoriametrics.com/vmauth.
html (cit. on p. 21).

https://www.mysql.com/
https://www.pgadmin.org/
https://www.postgresql.org/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%5C%3AOJ.L_.2017.198.01.0001.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%5C%3AOJ.L_.2017.198.01.0001.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.315.01.0001.01.ENG&toc=OJ:L:2019:315:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.315.01.0001.01.ENG&toc=OJ:L:2019:315:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.315.01.0001.01.ENG&toc=OJ:L:2019:315:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32019R2016&from=EN#d1e32-112-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32019R2016&from=EN#d1e32-112-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32019R2016&from=EN#d1e32-112-1
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1575537791838&uri=CELEX%3A32019R2016
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1575537791838&uri=CELEX%3A32019R2016
https://www.sato-project.eu/
https://www.snowflake.com/
https://www.sqlite.org/index.html
https://www.timescale.com/
https://docs.timescale.com/latest/main
https://docs.timescale.com/latest/main
https://docs.victoriametrics.com/vmauth.html
https://docs.victoriametrics.com/vmauth.html

Bibliography 64

SATO
Alexandre Nascimento | September 6, 2021

Electronic_display

FK device_id int

FK source varchar(15)

energy_class_sdr enumerate

energy_efficiency_index_sdr numeric

energy_class_hdr enumerate

energy_efficiency_index_hdr numeric

power_demand_sdr numeric

power_demand_hdr numeric

power_demand_off numeric

power_demand_standby numeric

power_demand_standby_networked numeric

category varchar(15)

panel_technology varchar(15)

size_ratio_x int

size_ratio_y int

resolution_h_pixel int

resolution_v_pixel int

diagonal_cm numeric

visible_area numeric

Sensor

PK sensor_id serial

sensor_unique_identifier int

sensor_type varchar(15)

brand varchar(50)

model varchar(50)

observations text

FK device_id int

Device

PK device_id serial

serial_number varchar(50)

brand varchar(50)

model varchar(50)

device_type varchar(50)

observations text

eprel_registration_number varchar(15)

created_at timestamp

Refrigerator

FK device_id int

FK source enumerate

energy_class enumerate

energy_efficiency_index int

annual_energy_consumption numeric

noise_emissions_class enumerate

noise_emissions int

low_noise_appliance boolean

total_volume int

heigth int

width int

depth int

design_type varchar(15)

Refrigerator_compartment

PK refrigerator_compartment_id serial

compartment_type enumerate

volume numeric

recommended_temperature int

FK device_id int

Dishwasher

FK device_id int

FK source enumerate

energy_class enumerate

energy_efficiency_index numeric

rated_capacity int

energy_consumption_cycle numeric

energy_consumption_100_cycles int

water_consumption_cycle numeric

programme_duration int

power_demand_off numeric

power_demand_standby numeric

power_demand_standy_network numeric

power_demand_delay_start numeric

noise_emissions_class enumerate

noise_emissions int

heigth int

width int

depth int

cleaning_performance_index numeric

drying_performance_index numeric

Washing_machine

FK device_id int

FK source enumerate

energy_class enumerate

energy_efficiency_index numeric

rated_capacity numeric

energy_consumption_cycle numeric

energy_consumption_100_cycles int

water_consumption_cycle int

washing_efficiency_index numeric

rinsing_effectiveness numeric

max_temperature_rated int

max_temperature_half int

max_temperature_quarter int

moisture_rated int

moisture_half int

moisture_quarter int

spin_speed_rated int

spin_speed_half int

spin_speed_quarter int

spin_class enumerate

programme_duration_rated int

programme_duration_half int

programme_duration_quarter int

power_demand_off numeric

power_demand_standby numeric

power_demand_standy_network numeric

power_demand_delay_start numeric

noise_emissions_class enumerate

noise_emissions int

heigth int

width int

depth int

Combined_washer_drier

FK device_id int

FK source enumerate

energy_class_w enumerate

energy_class_wd enumerate

energy_efficiency_index_w numeric

energy_efficiency_index_wd numeric

rated_capacity_w numeric

rated_capacity_wd numeric

energy_consumption_cycle_w numeric

energy_consumption_cycle_wd numeric

energy_consumption_100_cycles_w int

energy_consumption_100_cycles_wd int

water_consumption_cycle_w int

water_consumption_cycle_wd int

rinsing_effectiveness_w numeric

rinsing_effectiveness_wd numeric

max_temperature_rated_w int

max_temperature_half_w int

max_temperature_quarter_w int

max_temperature_rated_wd int

max_temperature_half_wd int

moisture_rated int

moisture_half int

moisture_quarter int

spin_speed_half int

spin_speed_rated int

spin_speed_quarter int

spin_class enumerate

programme_duration_rated_w int

programme_duration_half_w int

programme_duration_quarter_w int

programme_duration_rated_wd int

programme_duration_half_wd int

power_demand_off numeric

power_demand_standby numeric

power_demand_standy_network numeric

power_demand_delay_start numeric

noise_emissions int

noise_emissions_class enumerate

heigth int

width int

depth int

washing_efficiency_index_w numeric

washing_efficiency_index_wd numeric

Air_conditioner

FK device_id int

FK source enumerate

GWP int

function_type enumerate

Eco_label boolean

Eco_label_registration_number varchar(128)

refrigerant_name varchar(128)

noise_emissions_indoor_cooling int

noise_emissions_indoor_heating int

noise_emissions_outdoor_cooling int

noise_emissions_outdoor_heating int

Air_conditioner_ducted

FK device_id int

cooling_energy_class enumerate

cooling_energy_consumption_hour numeric

cooling_rated_capacity numeric

heating_energy_class enumerate

heating_energy_consumption_hour numeric

heating_rated_capacity numeric

COP numeric

duct_type enumerate

EER numeric

Air_conditioner_other

FK device_id int

cooling_energy_class enumerate

cooling_annual_energy_consumption int

cooling_design_load numeric

SCOP_average_heating_season numeric

SCOP_warmer_heating_season numeric

SCOP_colder_heating_season numeric

heating_energy_class_average_heating_season enumerate

heating_energy_class_warmer_heating_season enumerate

heating_energy_class_colder_heating_season enumerate

heating_annual_energy_consumption_average_heating_season int

heating_annual_energy_consumption_warmer_heating_season int

heating_annual_energy_consumption_colder_heating_season int

heating_design_load_average_heating_season numeric

heating_design_load_warmer_heating_season numeric

heating_design_load_colder_heating_season numeric

declared_capacity_average_heating_season numeric

declared_capacity_warmer_heating_season numeric

declared_capacity_colder_heating_season numeric

back_up_heating_capacity_average_heating_season numeric

back_up_heating_capacity_warmer_heating_season numeric

back_up_heating_capacity_colder_heating_season numeric

SEER numeric

Device_failure

PK failure_id serial

detection_time timestamp

error_message varchar(128)

observations text

device_id int

Oven

cavity_number int

Eco_label boolean

Eco_label_registration_number varchar(128)

Cavity

FK device_id int

energy_class enumerate

energy_type enumerate

energy_efficiency_index numeric

volume int

energy_consumption_conventional_kwh numeric

energy_consumption_forced_kwh numeric

energy_consumption_conventional_mj numeric

energy_consumption_forced_mj numeric

Range_hoods

energy_class enumerate

energy_annual_consumption numeric

fluid_dynamic_class enumerate

fluid_dynamic_efficiency numeric

light_class enumerate

light_efficiency numeric

grease_filter_class enumerate

grease_filter_efficiency numeric

air_flow_boost int

air_flow_max int

air_flow_min int

power_demand_off numeric

power_demand_standby numeric

sound_power_boost int

sound_power_max int

sound_power_min int

noise_emissions int

applicable_scale enumerate

Tumble_drier_gas_fired

FK device_id int

weighted_energy_consumption numeric

energy_consumption_full numeric

energy_consumption_partial numeric

energy_consumption_aux_full numeric

energy_consumption_aux_partial numeric

Tumble_drier_eletrical

FK device_id int

energy_consumption_full numeric

energy_consumption_partial numeric

condensation_efficiency_class enumerate

condensation_efficiency_full int

condensation_efficiency_partial int

weighted_condensation_efficiency int

type enumerate

Tumble_driers

FK device_id int

FK source enumerate

energy_class enumerate

eco_label boolean

eco_label_registration_number varchar(128)

rated_capacity numeric

automatic_drying boolean

power_demand_off numeric

power_demand_left_on numeric

duration_left_on int

energy_annual_consumption numeric

noise_emissions int

programme_time_weighted int

programme_time_full int

programme_time_partial int

Residential_ventilation_unit

FK device_id int

FK source enumerate

energy_class_average enumerate

energy_class_cold enumerate

energy_class_warm enumerate

sec_average numeric

sec_cold numeric

sec_warm numeric

energy_annual_consumption numeric

drive_type enumerate

max_flow int

power_input numeric

noise_emissions int

reference_flow numeric

control_typology enumerate

ducted boolean

airflow_sensitivity numeric

air_tightness numeric

annual_heating_saved_average numeric

annual_heating_saved_cold numeric

annual_heating_saved_warm numeric

Bidirectional_ventilation_unit

FK device_id int

heat_recovery_efficiency numeric

heat_recovery_system enumerate

max_internal_leakage numeric

max_external_leakage numeric

carry_over numeric

mixing_rate numeric

Unidirectional_ventilation_unit

FK device_id int

external_leakage numeric

Space_heater

FK device_id int

FK source enumerate

energy_annual_consumption_gj int

energy_annual_consumption_kwh int

indor_noise_emissions int

seasonal_heating_energy_efficiency int

Boiler_space_heater

FK device_id int

energy_class enumerate

rated_output int

Cogeneration_space_heater

FK device_id int

energy_class enumerate

electrical_effiency int

rated_output int

Boiler_combination_space_heater

FK device_id int

load_profile enumerate

water_heating_efficiency_class enumerate

water_heating_efficiency int

water_heating_energy_annual_gj int

water_heating_energy_annual_kwh int

only_for_off_peak_periods boolean

Base_heat_pump

FK device_id int

eco_label boolean

eco_label_registration_number varchar(128)

annual_energy_consumption_cold_gj int

annual_energy_consumption_cold_kwh int

annual_energy_consumption_warm_gj int

annual_energy_consumption_warm_gj int

outdoor_noise_emissions int

rated_output_avg_clim_low_tem int

rated_output_cold_clim_low_tem int

rated_output_warm_clim_low_tem int

seasonal_heating_energy_efficiency_medium int

seasonal_heating_energy_efficiency_warm int

Low_temperature_heat_pump

FK device_id int

energy_class enumerate

Heat_pump

FK device_id int

energy_class_low_temp enumerate

energy_class_medium_temp enumerate

rated_output_avg_clim_medium_temp int

rated_output_cold_clim_medium_temp int

rated_output_warm_clim_medium_temp int

seasonal_heating_energy_efficiency_medium int

seasonal_heating_energy_efficiency_warm
_medium

int

seasonal_heating_energy_efficiency_cold_medium int

anual_energy_consumption_kwh_medium int

anual_energy_consumption_gj_medium int

anual_energy_consumption_kwh_cold_medium int

anual_energy_consumption_gj_cold_medium int

anual_energy_consumption_kwh_warm_medium int

anual_energy_consumption_gj_warm_medium int

Heat_pump_combination_heater

FK device_id int

load_profile enumerate

low_temperature_application boolean

only_for_off_peak_periods boolean

water_heating_efficiency_class enumerate

water_heating_efficiency int

water_heating_efficiency_cold_clim int

water_heating_efficiency_warm_clim int

water_heating_annual_cold_gj int

water_heating_annual_cold_kwh int

water_heating_energy_annual_gj int

water_heating_energy_annual_kwh int

water_heating_annual_warm_gj int

water_heating_annual_warm_kwh int

Local_space_heatter

FK device_id int

FK source enumerate

energy_class enumerate

energy_efficiency_index int

direct_heat_output numeric

indirect_heat_output numeric

useful_efficiency_nom numeric

useful_efficiency_min numeric

Solid_fuel_boiler

FK device_id int

energy_class enumerate

energy_efficiency_index int

eco_label boolean

eco_label_registration_number varchar(128)

electricity_generation_function boolean

rated_output int

seasonal_heating_energy_efficiency int

water_heating_function boolean

Solid_fuel_boiler_package

FK device_id int

FK source enumerate

energy_class enumerate

energy_efficiency_index int

hot_water_storage_tank_included boolean

math_expr_III numeric

math_expr_IV numeric

package_energy_class enumerate

package_energy_efficiency_index numeric

solar_collector_included boolean

solar_collector_size numeric

solar_contrib_and_suppl_heat_pump_adjustment numeric

solar_contribution numeric

solar_tank_rating enumerate

solar_tank_volume numeric

suppl_boiler_contribution numeric

suppl_boiler_energy_efficiency_index int

suppl_heat_pump_contribution numeric

suppl_heat_pump_seasonal_efficiency int

supplementary_heater_included boolean

tenperature_control_included boolean

temperature_control_contribution enumerate

Weight_factor_heat_output numeric

Solid_fuel_boiler

FK device_id int

FK source enumerate

energy_class enumerate

energy_efficiency_index int

eco_label boolean

eco_label_registration_number varchar(128)

electricity_generation_function boolean

rated_output int

seasonal_heating_energy_efficiency int

water_heating_function boolean

Vacuum_cleaner

FK device_id int

FK source enumerate

energy_class enumerate

energy_annual_consumption numeric

eco_label boolean

dust_class enumerate

cleaning_class_c enumerate

cleaning_class_hf enumerate

noise_emissions int

rated_power int

vacuum_cleaner_type enumerate

Solar_device_for_space_heater

FK device_id int

FK source enumerate

solar_tank_class enumerate

anual_aux_consumption int

collector_efficiency int

pump_power_consumption int

solar_collector_size numeric

solar_tank_volume_litres numeric

standby_consumption numeric

water_storage_standing_loss int

Cogeneration_combination_space_heater

FK device_id int

load_profile enumerate

water_heating_efficiency_class enumerate

water_heating_efficiency int

water_heating_energy_annual_gj int

water_heating_energy_annual_kwh int

only_for_off_peak_periods boolean

Temperature_control_for_space_heater

FK device_id int

FK source enumerate

temperature_control_class enumerate

temperature_control_effiency numeric

Space_heater_package

FK device_id int

FK source enumerate

energy_class enumerate

diff_heating_efficiency_cold_avg numeric

diff_heating_efficiency_warm_avg numeric

heat_pump_seasonal_heating_energy_efficiency int

low_temp_heat_emitters numeric

math_expr_III numeric

math_expr_IV numeric

package_energy_class enumerate

package_seasonal_space_heating_efficiency numeric

package_seasonal_space_heating_efficiency_cold numeric

package_seasonal_space_heating_efficiency_warm numeric

preferential_space_heater_type enumerate

seasonal_heating_energy_efficiency numeric

solar_collector_included boolean

solar_collector_size numeric

solar_contrib_and_suppl_heat_pump_adjustment numeric

solar_contribution numeric

solar_tank_rating_class enumerate

solar_tank_volume_m3 numeric

suppl_boiler_seasonal_heating_efficiency int

suppl_boiler_seasonal_heating_energy_contribution int

supplementary_heater_included boolean

temperature_control_class enumerate

temperature_control_included boolean

water_storage_tank_included boolean

weight_factor_heat_output numeric

weighted_efficiency numeric

Water_heater

FK device_id int

FK source enumerate

energy_class enumerate

noise_emissions int

only_for_off_peak_periods boolean

smart int

Heat_pump_water_heater

FK device_id int

eco_label_ enumerate

eco_label_registration_number varchar(128)

noise_emissions int

Solar_water_heater

FK device_id int

first_order_coefficienct numeric

incidence_angle numeric

pump_power_consumption int

second_order_coefficienct numeric

solar_collector_size numeric

solar_tank_volume_litres int

energy_consumption_standby numeric

zero_loss_efficiency numeric

Load_profile_efficiency

FK device_id int

load_profile_is_declared boolean

load_profile enumerate

water_heating_annual_electricity_cons int

water_heating_annual_energy_gj int

water_heating_efficiency int

Climate_related_load_profile

FK device_id int

water_heating_efficiency_cold_clim int

water_heating_efficiency_warm_clim int

water_heating_energy_annual_cold_clim_gj int

water_heating_energy_annual_cold_clim_kwh int

water_heating_energy_annual_warm_clim_gj int

water_heating_energy_annual_warm_clim_kwh int

Conventional_water_heater

FK device_id int

Solar_device_for_water_heater

FK device_id int

FK source enumerate

anual_aux_consumption int

first_order_coefficient numeric

incident_angle numeric

pump_power_consumption int

second_order_coefficient numeric

solar_collector_size numeric

solar_tank_volume_litres numeric

energy_consumption_standby numeric

zero_loss_efficiency numeric

Lamp

energy_class enumerate

weighted_energy_consumption int

Combination_heater_package

FK device_id int

water_heating_efficiency_class enumerate

water_heating_efficiency numeric

combi_math_expr_II numeric

combi_math_expr_III numeric

load_profile enumerate

package_load_profile enumerate

water_heating_energy_efficiency_average_climate numeric

water_heating_energy_efficiency_colder_climate numeric

water_heating_energy_efficiency_warmer_climate numeric

water_heating_solar_contribution numeric

Device_data_source

PK FK device_id int

PK source varchar(15)

PK created_at timestamp

Hot_water_tank_for_water_heater

FK device_id int

FK source enumerate

energy_class enumerate

solar_tank_volume_litres int

water_storage_standing_loss int

Temperature_control_for_space_heater

FK device_id int

FK source enumerate

temperature_control_class enumerate

temperature_control_effiency numeric

Untyped_Device

power_demand_on numeric

power_demand_standy numeric

power_demand_standy_network numeric

energy_annual_consumption numeric

water_consumption numeric

sound_power_min int

souind_power_max int

noise_emissions int

eco_label boolean

eco_label_registration_number varchar(128)

Device_cycle

PK cycle_id serial

power_demand_average numeric

power_demand_standard_deviation numeric

power_demand_max numeric

power_demand_min numeric

waterflow_average numeric

waterflow_standard_deviation numeric

waterflow_max numeric

waterflow_min numeric

noise_emission_average numeric

noise_emission_standard_deviation numeric

noise_emission_min numeric

noise_emission_max numeric

temperature_average numeric

temperature_standard_deviation numeric

temperature_max numeric

temperature_min numeric

start_time timestamp

end_time timestamp

power_demand_measure_unit varchar(15)

waterflow_measure_unit varchar(15)

noise_measure_unit varchar(15)

temperature_measure_unit varchar(15)

device_action varchar(50)

FK device_id int

Space

PK space_id serial

designation varchar(50)

Storey

PK storey_id serial

designation varchar(50)

Building

PK building_id serial

designation varchar(50)

Site

PK site_id serial

designation varchar(50)

Appendix A

ER model for the Metrics and metadata
device DB

Appendix A. ER model for the Metrics and metadata device DB 66

28/10/21, 16:07 databaseCreationScript.sql

localhost:4649/?mode=sql 1/4

DROP SCHEMA public CASCADE;
CREATE SCHEMA public;

CREATE TYPE energy_class AS ENUM ('A+++','A++','A+','A','B','C','D','E','F','G');
CREATE TYPE noise_class AS ENUM ('A','B','C','D');
CREATE TYPE spin_class AS ENUM ('A','B','C','D','E','F','G');

CREATE TABLE measure_unit (
 measure_unit_id serial,
 measurement_unit_name varchar(50),
 PRIMARY KEY (measure_unit_id)
);

CREATE TABLE device (
 device_id serial,
 brand varchar(50),
 model varchar(50),
 observations text,
 eprel_registration_number varchar(15),
 created_at timestamp,
 PRIMARY KEY (device_id)
);

CREATE TABLE sensor (
 sensor_id serial,
 sensor_type varchar(15) CHECK (sensor_type IN
('accelerometer','temperature','waterflow','current','noise')),
 brand varchar(50),
 model varchar(50),
 observations text,
 device_id int REFERENCES Device,
 PRIMARY KEY (sensor_id)
);

CREATE TABLE device_cycle (
 cycle_id serial,
 power_demand_average numeric,
 power_demand_standard_deviation numeric,
 power_demand_max numeric,
 power_demand_min numeric,
 waterflow_average numeric,
 waterflow_standard_deviation numeric,
 waterflow_max numeric,
 waterflow_min numeric,
 noise_emission_average numeric,
 noise_emission_standard_deviation numeric,
 noise_emission_min numeric,
 noise_emission_max numeric,
 temperature_average numeric,
 temperature_standard_deviation numeric,
 temperature_max numeric,
 temperature_min numeric,
 start_time timestamp,
 end_time timestamp,
 power_demand_measure_unit varchar(15),
 waterflow_measure_unit varchar(15),
 noise_measure_unit varchar(15),
 temperature_measure_unit varchar(15),
 device_action varchar(50),
 device_id int REFERENCES Device,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Appendix B

Scripts

B.1 tables creation script.sql

28/10/21, 16:07 databaseCreationScript.sql

localhost:4649/?mode=sql 2/4

 PRIMARY KEY (cycle_id)
);

CREATE TABLE device_failure (
 failure_id serial,
 detection_time timestamp,
 error_message varchar(128),
 observations text,
 device_id int REFERENCES Device,
 PRIMARY KEY (failure_id)
);

CREATE TABLE device_data_source (
 device_id int REFERENCES Device,
 source varchar(15) CHECK (source IN ('EPREL','sensors')),
 created_at timestamp,
 PRIMARY KEY (device_id, source, created_at)
);

CREATE TABLE electronic_display (
 energy_class_sdr energy_class,
 energy_class_hdr energy_class,
 power_demand_sdr numeric,
 power_demand_hdr numeric,
 power_demand_off numeric,
 power_demand_standby numeric,
 power_demand_standby_networked numeric,
 category varchar(15) CHECK (category IN
('TELEVISION','MONITOR','SIGNAGE','OTHER')),
 panel_technology varchar(15) CHECK (panel_technology IN
('LCD','LED_LCD','QLED_LCD','OLED','MicroLED','QDLED','SED','FED','EPD','OTHER')),
 size_ratio_x int,
 size_ratio_y int,
 resolution_h_pixel int,
 resolution_v_pixel int,
 diagonal_cm numeric,
 visible_area numeric
) INHERITS (Device_data_source);

CREATE TABLE refrigerator (
 energy_class energy_class,
 energy_efficiency_index int,
 annual_energy_consumption numeric,
 noise_emissions_class noise_class,
 noise_emissions int,
 low_noise_appliance boolean,
 total_volume int,
 heigth int,
 width int,
 depth int,
 design_type VARCHAR(15) CHECK (design_type IN ('BUILT_IN','FREE_STANDING'))
) INHERITS (Device_data_source);

CREATE TABLE refrigerator_compartment (
 refrigerator_compartment_id serial,
 compartment_type varchar(15) CHECK (compartment_type IN
('PANTRY','WINE_STORAGE','CELLAR','FRESH_FOOD','CHILL','ZERO_STAR','ONE_STAR','TWO_ST
AR','THREE_STAR','FOUR_STAR','TWO_STAR_SECTION','VARIABLE_TEMP')),
 volume numeric,
 device_id int REFERENCES Device,

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88

89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115

28/10/21, 16:07 databaseCreationScript.sql

localhost:4649/?mode=sql 3/4

 PRIMARY KEY (refrigerator_compartment_id)
);

CREATE TABLE untyped_Device (
 power_demand_on numeric,
 power_demand_standy numeric,
 power_demand_standy_network numeric,
 energy_annual_consumption numeric,
 water_consumption numeric,
 sound_power_min int,
 sound_power_max int,
 noise_emissions int
) INHERITS (Device_data_source);

CREATE TABLE dishwasher (
 energy_class energy_class,
 energy_efficiency_index numeric,
 rated_capacity int,
 energy_consumption_cycle numeric,
 energy_consumption_100_cycles int,
 water_consumption_cycle numeric,
 programme_duration int,
 power_demand_off numeric,
 power_demand_standby numeric,
 power_demand_standy_network numeric,
 power_demand_delay_start numeric,
 noise_emissions_class noise_class,
 noise_emissions int,
 heigth int,
 width int,
 depth int,
 cleaning_performance_index numeric,
 drying_performance_index numeric
) INHERITS (Device_data_source);

CREATE TABLE washing_machine (
 energy_class energy_class,
 energy_efficiency_index numeric ,
 rated_capacity numeric,
 energy_consumption_cycle numeric,
 energy_consumption_100_cycles int,
 water_consumption_cycle int,
 washing_efficiency_index numeric,
 rinsing_effectiveness numeric,
 max_temperature_rated int,
 max_temperature_half int,
 max_temperature_quarter int,
 moisture_rated int,
 moisture_half int,
 moisture_quarter int,
 spin_speed_rated int,
 spin_speed_half int,
 spin_speed_quarter int,
 spin_class spin_class,
 programme_duration_rated int,
 programme_duration_half int,
 programme_duration_quarter int,
 power_demand_off numeric,
 power_demand_standby numeric,
 power_demand_standy_network numeric,

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

28/10/21, 16:07 databaseCreationScript.sql

localhost:4649/?mode=sql 4/4

 power_demand_delay_start numeric,
 noise_emissions_class noise_class,
 noise_emissions int,
 heigth int,
 width int,
 depth int
) INHERITS (Device_data_source);

CREATE TABLE combined_washer_drier (
 energy_class_w energy_class,
 energy_class_wd energy_class,
 energy_efficiency_index_w numeric,
 energy_efficiency_index_wd numeric,
 rated_capacity_w numeric,
 rated_capacity_wd numeric,
 energy_consumption_cycle_w numeric,
 energy_consumption_cycle_wd numeric,
 energy_consumption_100_cycles_w int,
 energy_consumption_100_cycles_wd int,
 water_consumption_cycle_w int,
 water_consumption_cycle_wd int,
 rinsing_effectiveness_w numeric,
 rinsing_effectiveness_wd numeric,
 max_temperature_rated_w int,
 max_temperature_half_w int,
 max_temperature_quarter_w int,
 max_temperature_rated_wd int,
 max_temperature_half_wd int,
 moisture_rated int,
 moisture_half int,
 moisture_quarter int,
 spin_speed_half int,
 spin_speed_rated int,
 spin_speed_quarter int,
 spin_class spin_class,
 programme_duration_rated_w int,
 programme_duration_half_w int,
 programme_duration_quarter_w int,
 programme_duration_rated_wd int,
 programme_duration_half_wd int,
 power_demand_off numeric,
 power_demand_standby numeric,
 power_demand_standy_network numeric,
 power_demand_delay_start numeric,
 noise_emissions int,
 noise_emissions_class noise_class,
 heigth int,
 width int,
 depth int,
 washing_efficiency_index_w numeric,
 washing_efficiency_index_wd numeric
) INHERITS (Device_data_source);

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

28/10/21, 16:11 eprel_kafka_producer.py

localhost:4649/?mode=python 1/1

import requests
import json
import sys
from kafka import KafkaProducer

eprel_producer = KafkaProducer(bootstrap_servers='194.117.20.229:9092',
value_serializer=lambda v: json.dumps(v).encode('utf-8'))

def get_eprel_data(registration_number, device_group):
 response =
requests.get(f'https://eprel.ec.europa.eu/api/products/{device_group}/{registration_n
umber}')

 response_content = response.json()

 return response_content

def send_to_kafka(eprel_data):
 header = [('source', 'EPREL'.encode())]
 eprel_producer.send('eprel_data', value=eprel_data, headers=header)

def get_registration_number(brand, model):
 data = {
 ('Candy', 'ROW4966DWMCE/1-S'): ('300268'),
 ('Beko', 'TS190030N'): ('341954'),
 ('AOC', '27B1H'): ('419895'),
 ('PRINCESS', 'WM1044CT0'): ('352767'),
 ('Candy', 'X14IX'): ('352774')
 }

 return data[(brand, model)]

if __name__ == "__main__":
 device_type = sys.argv[1]
 brand = sys.argv[2]
 model = sys.argv[3]

 registration_number = get_registration_number(brand, model)

 eprel_data = get_eprel_data(registration_number, device_type)
 send_to_kafka(eprel_data)

 eprel_producer.close()

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

B.2 eprel kafka producer.py

28/10/21, 16:15 eprel_kafka_consumer.py

localhost:4649/?mode=python 1/5

from datetime import datetime
import psycopg2
from psycopg2 import Error
import json
from kafka import KafkaConsumer

try:
 conn = psycopg2.connect(dbname='SATO', host='localhost', port='5432',
user='admin', password='admin')
 cursor = conn.cursor()

except (Exception, Error) as error:
 print("Error while connecting to PostgreSQL", error)

device_id = 0
eprel_consumer = KafkaConsumer('eprel_data',
 bootstrap_servers='194.117.20.229:9092',
 value_deserializer=lambda v: json.loads(v.decode('utf-8')))

def insert_into_database(eprel_data):
 device_group = eprel_data['productGroup']
 insert_device(eprel_data)

 if (device_group == "electronicdisplays"):
 insert_electronic_display_device(eprel_data)

 elif (device_group == "refrigeratingappliances2019"):
 insert_refrigerator_device(eprel_data)

 elif (device_group == "dishwashers2019"):
 insert_dishwasher_device(eprel_data)

 elif (device_group == "washingmachines2019"):
 insert_washing_machine_device(eprel_data)

 elif (device_group == "washerdriers2019"):
 insert_washer_dryer_device(eprel_data)

 conn.commit()

def insert_device(eprel_data):
 global device_id

 print(eprel_data)

 query = "INSERT INTO device(brand,model,eprel_registration_number,created_at)
VALUES (%s,%s,%s,%s) RETURNING device_id;"

 query_data = (
 eprel_data['supplierOrTrademark'],
 eprel_data['modelIdentifier'],
 eprel_data['eprelRegistrationNumber'],
 datetime.utcnow()
)

 cursor.execute(query, query_data)
 device_id = cursor.fetchone()[0]

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58

B.3 eprel kafka consumer.py

28/10/21, 16:15 eprel_kafka_consumer.py

localhost:4649/?mode=python 2/5

def insert_electronic_display_device(eprel_data):
 query = "INSERT INTO electronic_display VALUES
(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s);"

 query_data = (device_id,
 'EPREL',
 datetime.utcnow(),
 eprel_data['energyClassSDR'],
 eprel_data['energyClassHDR'],
 eprel_data['powerOnModeSDR'],
 eprel_data['powerOnModeHDR'],
 eprel_data['powerOffMode'],
 eprel_data['powerStandby'],
 eprel_data['powerStandbyNetworked'],
 eprel_data['category'],
 eprel_data['panelTechnology'],
 eprel_data['sizeRatioX'],
 eprel_data['sizeRatioY'],
 eprel_data['resolutionHorizontalPixels'],
 eprel_data['resolutionVerticalPixels'],
 eprel_data['diagonalCm'],
 eprel_data['visibleArea'],
)

 cursor.execute(query, query_data)

def insert_refrigerator_device(eprel_data):
 query = "INSERT INTO refrigerator VALUES
(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s);"

 query_data = (device_id,
 'EPREL',
 datetime.utcnow(),
 eprel_data['energyClass'],
 eprel_data['energyEfficiencyIndex'],
 eprel_data['energyConsAnnual'],
 eprel_data['noiseClass'],
 eprel_data['noise'],
 eprel_data['lowNoiseAppliance'],
 eprel_data['totalVolume'],
 eprel_data['dimensionHeight'],
 eprel_data['dimensionWidth'],
 eprel_data['dimensionDepth'],
 eprel_data['designType']
)

 cursor.execute(query, query_data)

 for compartment in eprel_data['compartments']:
 query = "INSERT INTO refrigerator_compartment
(compartment_type,volume,device_id) VALUES (%s,%s,%s);"

 query_data = (
 compartment['compartmentType'],
 compartment['volume'],
 device_id
)

 cursor.execute(query, query_data)

59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115

28/10/21, 16:15 eprel_kafka_consumer.py

localhost:4649/?mode=python 3/5

def insert_dishwasher_device(eprel_data):
 query = "INSERT INTO dishwasher VALUES
(%s,%s);"

 query_data = (device_id,
 'EPREL',
 datetime.utcnow(),
 eprel_data['energyClass'],
 eprel_data['energyEfficiencyIndex'],
 eprel_data['ratedCapacity'],
 eprel_data['energyCons'],
 eprel_data['energyCons100'],
 eprel_data['waterCons'],
 eprel_data['programmeDuration'],
 eprel_data['powerOffMode'],
 eprel_data['powerStandbyMode'],
 eprel_data['powerNetworkStandby'],
 eprel_data['powerDelayStart'],
 eprel_data['noiseClass'],
 eprel_data['noise'],
 eprel_data['dimensionHeight'],
 eprel_data['dimensionWidth'],
 eprel_data['dimensionDepth'],
 eprel_data['cleaningPerformanceIndex'],
 eprel_data['dryingPerformanceIndex'],
)

 cursor.execute(query, query_data)

def insert_washing_machine_device(eprel_data):
 query = "INSERT INTO washing_machine VALUES
(%s,%s
,%s,%s,%s,%s,%s);"

 query_data = (device_id,
 'EPREL',
 datetime.utcnow(),
 eprel_data['energyClass'],
 eprel_data['energyEfficiencyIndex'],
 eprel_data['ratedCapacity'],
 eprel_data['energyCons'],
 eprel_data['energyConsPerCycle'],
 eprel_data['waterCons'],
 eprel_data['washingEfficiencyIndex'],
 eprel_data['rinsingEffectiveness'],
 eprel_data['maxTemperatureRated'],
 eprel_data['maxTemperatureHalf'],
 eprel_data['maxTemperatureQuarter'],
 eprel_data['moistureRated'],
 eprel_data['moistureHalf'],
 eprel_data['moistureQuarter'],
 eprel_data['spinSpeedRated'],
 eprel_data['spinSpeedHalf'],
 eprel_data['spinSpeedQuarter'],
 eprel_data['spinClass'],
 eprel_data['programmeDurationRated'],
 eprel_data['programmeDurationHalf'],
 eprel_data['programmeDurationQuarter'],
 eprel_data['powerOffMode'],

116
117
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

28/10/21, 16:15 eprel_kafka_consumer.py

localhost:4649/?mode=python 4/5

 eprel_data['powerStandbyMode'],
 eprel_data['powerNetworkStandby'],
 eprel_data['powerDelayStart'],
 eprel_data['noiseClass'],
 eprel_data['noise'],
 eprel_data['dimensionHeight'],
 eprel_data['dimensionWidth'],
 eprel_data['dimensionDepth'],
)

 cursor.execute(query, query_data)

def insert_washer_dryer_device(eprel_data):
 query = "INSERT INTO combined_washer_drier VALUES
(%s,%s
,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s);"

 query_data = (device_id,
 'EPREL',
 datetime.utcnow(),
 eprel_data['energyClassWash'],
 eprel_data['energyClassWashAndDry'],
 eprel_data['energyEfficiencyIndexWash'],
 eprel_data['energyEfficiencyIndexWashAndDry'],
 eprel_data['ratedCapacityWash'],
 eprel_data['ratedCapacityWashAndDry'],
 eprel_data['energyConsumptionWash'],
 eprel_data['energyConsumptionWashAndDry'],
 eprel_data['energyConsumption100Wash'],
 eprel_data['energyConsumption100WashAndDry'],
 eprel_data['waterConsumptionWash'],
 eprel_data['waterConsumptionWashAndDry'],
 eprel_data['rinsingEffectivenessWash'],
 eprel_data['rinsingEffectivenessWashAndDry'],
 eprel_data['maxTempRatedWash'],
 eprel_data['maxTempHalfWash'],
 eprel_data['maxTempQuarterWash'],
 eprel_data['maxTempRatedWashAndDry'],
 eprel_data['maxTempHalfWashAndDry'],
 eprel_data['moistureRated'],
 eprel_data['moistureHalf'],
 eprel_data['moistureQuarter'],
 eprel_data['spinSpeedRated'],
 eprel_data['spinSpeedHalf'],
 eprel_data['spinSpeedQuarter'],
 eprel_data['spinClass'],
 eprel_data['programDurationRatedWash'],
 eprel_data['programDurationHalfWash'],
 eprel_data['programDurationQuarterWash'],
 eprel_data['programDurationRatedWashAndDry'],
 eprel_data['programDurationHalfWashAndDry'],
 eprel_data['powerOffMode'],
 eprel_data['powerStandbyMode'],
 eprel_data['powerNetworkedStandby'],
 eprel_data['powerDelayStart'],
 eprel_data['noise'],
 eprel_data['noiseClass'],
 eprel_data['dimensionHeight'],
 eprel_data['dimensionWidth'],
 eprel_data['dimensionDepth'],

173
174
175
176
177
178
179
180
181
182
183
184
185
186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

28/10/21, 16:15 eprel_kafka_consumer.py

localhost:4649/?mode=python 5/5

 eprel_data['washingEfficiencyIndexWash'],
 eprel_data['washingEfficiencyIndexWashAndDry']
)

 cursor.execute(query, query_data)

if __name__ == "__main__":

 for msg in eprel_consumer:
 payload = msg.value
 insert_into_database(payload)

 cursor.close()
 conn.close()
 print("PostgreSQL connection is closed")

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

28/10/21, 16:19 insert_sensor_data.py

localhost:4649/?mode=python 1/2

import xmltodict,os
from time import sleep
from datetime import datetime,timedelta

from influxdb_client import InfluxDBClient, Point, WritePrecision
from influxdb_client.client.write_api import SYNCHRONOUS

#PostgreSQL conection
import psycopg2
from psycopg2 import Error

try:
 conn = psycopg2.connect(database='SATO', host='localhost', port='5432',
user='admin', password='admin')
 cursor = conn.cursor()

except (Exception, Error) as error:
 print("Error while connecting to PostgreSQL", error)

def get_device_info(file_name):
 with open(file_name, 'r') as f:
 file_content = f.read()

 file_dict = xmltodict.parse(file_content)

 device_type = file_dict['satoDb']['data']['targetAppliance']['@type']
 device_model = file_dict['satoDb']['data']['targetAppliance']['@model']

 return device_type, f"{device_type}-{device_model}"

def get_device_id(device_name):
 brand = device_name.split("-")[1]
 model = device_name.split("-")[2] + "%"

 query = "SELECT * FROM device WHERE brand LIKE %s and model LIKE %s;"

 query_data = (brand, model)

 cursor.execute(query, query_data)

 return cursor.fetchone()[0]

#influxDB insert
def insert_file(device_name, device_id, device_group, file_name):
 with open(file_name, 'r') as f:
 file_content = f.read()

 file_dict = xmltodict.parse(file_content)
 device_action = file_dict['satoDb']['data']['targetAppliance']['@action']
 snapshots = file_dict['satoDb']['snapshots']['snap']

 device_brand = device_name.split("-")[1]
 device_model = device_name.split("-")[2]

 for snap in snapshots: #convert data into float
 point = format_data_for_influx(snap, device_name, device_id, device_brand,
device_model, device_action, device_group)

1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

B.4 insert sensor data.py

28/10/21, 16:19 insert_sensor_data.py

localhost:4649/?mode=python 2/2

 write_api.write(bucket, org, point)

 sleep(1)

 print(f"{device_name} inserted")

def format_data_for_influx(snap, device_name, device_id, device_brand, device_model,
device_action, device_group):
 curr = float(snap['@curr'])
 eng = float(snap['@eng'])
 freq = float(snap['@freq'])
 pf = float(snap['@pf'])
 pw = float(snap['@pw'])
 temp = float(snap['@temp'])

 point = Point('mem')\
 .tag('_device', device_name)\
 .tag('_device_id', device_id)\
 .tag('_device_brand', device_brand)\
 .tag('_device_model', device_model)\
 .tag('_device_group', device_group)\
 .tag('_device_action', device_action)\
 .field('current', curr)\
 .field('energy', eng)\
 .field('frequency', freq)\
 .field('powerFactor', pf)\
 .field('power', pw)\
 .field('temperature', temp)\
 .time(datetime.utcnow() , WritePrecision.MS)

 return point

if __name__ == '__main__':
 # Set up influxDB connection
 token = 'NipdVNkwbQ0kXiNbXBQ7P--iQZX0WkAbdrDAoFgNFwsRULUpIF6U70_pn-
viDVeeaocMmXgUCUcgt-QgCkTZFw=='
 org = 'example-org'
 bucket = 'electrical_signatures'

 client = InfluxDBClient(url='http://localhost:8086', token=token)
 write_api = client.write_api(write_options=SYNCHRONOUS)

 file_name = 'Monitor_AOC-27B1-27_on_1.xml'

 device_group, device_name = get_device_info(file_name)

 device_id = get_device_id(device_name)

 insert_file(device_name, device_id, device_group, file_name)

 #close connections
 write_api.close()
 cursor.close()
 conn.close()

59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111

28/10/21, 16:20 load_device_cycle.flux

localhost:4649/?mode=undefined 1/3

import "experimental"
import "sql"
import "influxdata/influxdb/secrets"

option task = {
 name: "load_device_cycle",
 every: 30s,
 offset: 0m,
 concurrency: 1,
}

POSTGRES_USER = secrets.get(key: "POSTGRES_USER")
POSTGRES_PASS = secrets.get(key: "POSTGRES_PASS")

get_last_cycle_exists = (device_id) =>
 sql.from(
 driverName: "postgres",
 dataSourceName: "postgres://${POSTGRES_USER}:${POSTGRES_PASS}@localhost/SATO",
 query: "SELECT EXISTS (SELECT * FROM device_cycle where device_id =
${device_id})"
)
 |> findColumn(fn: (key) => true, column: "exists")

get_last_cycle_end_time = (device_id) =>
 sql.from(
 driverName: "postgres",
 dataSourceName: "postgres://${POSTGRES_USER}:${POSTGRES_PASS}@localhost/SATO",
 query: "SELECT * FROM device_cycle where device_id = ${device_id} ORDER BY
end_time DESC"
)
 |> findColumn(fn: (key) => true, column: "end_time")

get_last_power_value = (device) =>
 from(bucket: "electrical_signatures")
 |> range(start: -1h)
 |> filter(fn: (r) => r["_field"] == "power" and r["_device"] == device)
 |> aggregateWindow(every: 5s, fn: min, createEmpty: false)
 |> last()
 |> findColumn(fn: (key) => true, column: "_value")

get_date_to_search = (tables=<-) =>
 tables
 |> map(fn: (r) => ({ r with
 date_to_search:
 if r.last_power_value != 0 //only execute if device is off
 then experimental.subDuration(d: 1ms, from: now())
 else if r.last_cycle_exists == true
 then experimental.addDuration(d: 1ms, to: r.last_cycle_end_time)
 else experimental.subDuration(d: 1mo, from: now()) //duration to use when
searching for last cycle data
 }))

get_cycle_start_time = (date_to_search, device) =>
 from(bucket: "electrical_signatures")
 |> range(start: date_to_search)
 |> filter(fn: (r) => r["_field"] == "power" and r["_device"] == device and
r["_value"] > 0.5)
 |> aggregateWindow(every: 5s, fn: min, createEmpty: false)
 |> first()
 |> findColumn(fn: (key) => true, column: "_time")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53

54
55
56

B.5 load device cycle.flux

28/10/21, 16:20 load_device_cycle.flux

localhost:4649/?mode=undefined 2/3

get_cycle_end_time = (date_to_search, device) =>
 from(bucket: "electrical_signatures")
 |> range(start: date_to_search)
 |> filter(fn: (r) => r["_field"] == "power" and r["_device"] == device and
r["_value"] > 0.5)
 |> aggregateWindow(every: 5s, fn: min, createEmpty: false)
 |> last()
 |> findColumn(fn: (key) => true, column: "_time")

get_max_power = (start_time, stop_time, device) =>
 from(bucket: "electrical_signatures")
 |> range(start: start_time, stop: stop_time)
 |> filter(fn: (r) => r["_field"] == "power" and r["_device"] == device and
r["_value"] > 0.5)
 |> max()
 |> rename(columns: {_value: "power_demand_max"})
 |> findColumn(fn: (key) => true, column: "power_demand_max")

get_min_power = (start_time, stop_time, device) =>
 from(bucket: "electrical_signatures")
 |> range(start: start_time, stop: stop_time)
 |> filter(fn: (r) => r["_field"] == "power" and r["_device"] == device and
r["_value"] > 0.5)
 |> min()
 |> findColumn(fn: (key) => true, column: "_value")

get_average_power = (start_time, stop_time, device) =>
 from(bucket: "electrical_signatures")
 |> range(start: start_time, stop: stop_time)
 |> filter(fn: (r) => r["_field"] == "power" and r["_device"] == device and
r["_value"] > 0.5)
 |> mean(column: "_value")
 |> findColumn(fn: (key) => true, column: "_value")

get_std_deviation_power = (start_time, stop_time, device) =>
 from(bucket: "electrical_signatures")
 |> range(start: start_time, stop: stop_time)
 |> filter(fn: (r) => r["_field"] == "power" and r["_device"] == device and
r["_value"] > 0.5)
 |> stddev()
 |> findColumn(fn: (key) => true, column: "_value")

formatTable = (tables=<-) =>
 tables
 |> map(fn: (r) => ({
 r with
 device_id: r._device_id,
 power_demand_measure_unit: "W",
 waterflow_measure_unit: "L",
 noise_measure_unit: "db"
 })
)
 |> drop(columns: ["_device", "_device_id", "date_to_search", "last_power_value",
"last_cycle_exists", "last_cycle_end_time"])

from(bucket: "electrical_signatures")
 |> range(start: -1w)
 |> keep(columns: ["_device", "_device_id"])
 |> unique(column: "_device_id")

57
58
59
60
61

62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77

78
79
80
81
82
83
84

85
86
87
88
89
90
91

92
93
94
95
96
97
98
99

100
101
102
103
104
105

106
107
108
109
110

28/10/21, 16:20 load_device_cycle.flux

localhost:4649/?mode=undefined 3/3

 |> map(fn: (r) => ({
 r with
 last_cycle_exists: get_last_cycle_exists(device_id: r._device_id)[0],
 last_power_value: if length(arr: get_last_power_value(device: r._device)) > 0
then get_last_power_value(device: r._device)[0] else 1.0
 }))
 |> map(fn: (r) => ({
 r with
 last_cycle_end_time:
 if r.last_cycle_exists == true
 then get_last_cycle_end_time(device_id: r._device_id)[0]
 else now()
 }))
 |> filter(fn: (r) => r.last_power_value == 0)
 |> get_date_to_search()
 |> map(fn: (r) => ({
 r with
 start_time: get_cycle_start_time(date_to_search: r.date_to_search, device:
r._device)[0],
 end_time: get_cycle_end_time(date_to_search: r.date_to_search, device:
r._device)[0]
 }))
 |> map(fn: (r) => ({
 r with
 power_demand_max: get_max_power(start_time: r.start_time, stop_time:
r.end_time, device: r._device)[0],
 power_demand_min: get_min_power(start_time: r.start_time, stop_time:
r.end_time, device: r._device)[0],
 power_demand_average: get_average_power(start_time: r.start_time, stop_time:
r.end_time, device: r._device)[0],
 power_demand_standard_deviation: get_std_deviation_power(start_time:
r.start_time, stop_time: r.end_time, device: r._device)[0]
 }))
 |> formatTable()
 |> sql.to(
 driverName: "postgres",
 dataSourceName: "postgres://${POSTGRES_USER}:${POSTGRES_PASS}@localhost/SATO",
 table: "Device_cycle")

111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127

128

129
130
131
132

133

134

135

136
137
138
139
140
141

28/10/21, 16:17 external_api.py

localhost:4649/?mode=python 1/4

#!flask/bin/python
from flask import Flask, jsonify, make_response, g, request
import psycopg2
from psycopg2.extras import RealDictCursor
from influxdb_client import InfluxDBClient
import decimal

#API setup

app = Flask(__name__)

def get_db():
 db = getattr(g, '_database', None)
 if db is None:
 db = g._database = psycopg2.connect(dbname='SATO', user='admin',
password='admin', host='localhost', port='5432', cursor_factory=RealDictCursor)
 return db

@app.before_request
def before_request():
 if request.endpoint != "get_device_power_week":
 g.db = get_db()

@app.teardown_appcontext
def close_connection(exception):
 db = getattr(g, '_database', None)
 if db is not None:
 db.close()

@app.route('/')
def hello():
 return "Hello world!"

#API for metrics

@app.route('/metrics/<device_serial_number>/<metric>', methods=['GET'])
def get_indicator(device_serial_number, metric):
 cur = g.db.cursor()

 get_device_query = "SELECT * FROM device WHERE serial_number=(%s);"
 data = (device_serial_number,)
 cur.execute(get_device_query, data)

 get_device_query_result = cur.fetchone()

 if get_device_query_result is not None:
 device_id = get_device_query_result["device_id"]
 device_type = convert_device_type(get_device_query_result["device_type"])

 get_metric_query = "SELECT * FROM " + device_type + " WHERE device_id=(%s) and
source='sensors' ORDER BY created_at DESC LIMIT 1;"

 data = (device_id,)
 cur.execute(get_metric_query, data)

 get_metric_query_result = cur.fetchone()

 if metric in get_metric_query_result.keys():

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58

B.6 external api.py

28/10/21, 16:17 external_api.py

localhost:4649/?mode=python 2/4

 result_metric = get_metric_query_result[metric]

 r = make_response(str(result_metric))
 r.status_code = 200

 else:
 r = make_response("Metric not found")
 r.status_code

 else:
 r = make_response("Device not found")
 r.status_code = 404

 return r

@app.route('/metrics/<device_serial_number>', methods=['GET'])
def get_all_indicators(device_serial_number):
 cur = g.db.cursor()

 get_device_query = "SELECT * FROM device WHERE serial_number=(%s);"
 data = (device_serial_number,)
 cur.execute(get_device_query, data)

 get_device_query_result = cur.fetchone()

 if get_device_query_result is not None:
 device_id = get_device_query_result["device_id"]
 device_type = convert_device_type(get_device_query_result["device_type"])

 get_metric_query = "SELECT * FROM " + device_type + " WHERE device_id=(%s) and
source='sensors' ORDER BY created_at DESC LIMIT 1;"

 data = (device_id,)
 cur.execute(get_metric_query, data)

 get_metric_query_result = cur.fetchone()

 for key, value in get_metric_query_result.items():
 if isinstance(value, decimal.Decimal):
 get_metric_query_result[key] = float(value)

 r = make_response(jsonify(get_metric_query_result))
 r.status_code = 200

 else:
 r = make_response("Device not found")
 r.status_code = 404

 return r

@app.route('/metadata/<device_serial_number>/<metadata>', methods=['GET'])
def get_metadata(device_serial_number, metadata):
 cur = g.db.cursor()

 get_device_query = "SELECT * FROM device WHERE serial_number=(%s);"
 data = (device_serial_number,)
 cur.execute(get_device_query, data)

 query_result = cur.fetchone()

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

28/10/21, 16:17 external_api.py

localhost:4649/?mode=python 3/4

 if query_result is not None:
 result_metadata = query_result[metadata]

 r = make_response(result_metadata)
 r.status_code = 200

 else:
 r = make_response("Device not found")
 r.status_code = 404

 return r

@app.route('/metadata/<device_serial_number>', methods=['GET'])
def get_all_metadata(device_serial_number,):
 cur = g.db.cursor()

 get_device_query = "SELECT * FROM device WHERE serial_number=(%s);"
 data = (device_serial_number,)
 cur.execute(get_device_query, data)

 query_result = cur.fetchone()

 if query_result is not None:
 r = make_response(jsonify(query_result))
 r.status_code = 200

 else:
 r = make_response("Device not found")
 r.status_code = 404

 return r

def convert_device_type(device_type):
 device_type_table_names = {
 "ELECTRONIC_DISPLAY": "electronic_display",
 "HOUSEHOLD_WASHER_DRYER_2019": "combined_washer_drier",
 "HOUSEHOLD_WASHING_MACHINE_2019": "washing_machine",
 "HOUSEHOLD_REFRIGERATING_APPLIANCE_2019": "refrigerator",
 "HOUSEHOLD_DISHWASHER_2019": "dishwasher"
 }

 return device_type_table_names[device_type]

API for sensor data

@app.route('/device_power/<brand>/<model>', methods=['GET'])
def get_device_power_week(brand, model):
 token = 'NipdVNkwbQ0kXiNbXBQ7P--iQZX0WkAbdrDAoFgNFwsRULUpIF6U70_pn-
viDVeeaocMmXgUCUcgt-QgCkTZFw=='
 org = 'example-org'

 client = InfluxDBClient(url="http://localhost:8086", token=token, org=org)

 query_api = client.query_api()

 p = {"_device_brand": brand, "_device_model": model}

 records = query_api.query_stream('''

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
175
176

28/10/21, 16:17 external_api.py

localhost:4649/?mode=python 4/4

 from(bucket: "electrical_signatures")
 |> range(start: -1w)
 |> filter(fn: (r) => r["_field"] == "power")
 |> filter(fn: (r) => r["_device_model"] == _device_model and
r["_device_brand"] == _device_brand)
 ''', params=p)

 result = [point.values for point in records]

 r = make_response(jsonify(result))
 r.status_code = 200

 client.close()

 #r = make_response("Device not found")
 #r.status_code = 404

 return r

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000, debug=True)

177
178
179
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

	List of Figures
	Lista of Tables
	Introduction
	Motivation
	Objectives
	Contributions
	Structure of the document

	Related work
	Databases for storing sensor data
	InfluxDB
	TimescaleDB
	CrateDB
	Prometheus
	VictoriaMetrics
	Database comparison

	EPREL and energy labels
	Summary

	Database system design
	Database requirements for storing sensor data
	Database engines comparison for sensor data
	Database engines for storing metrics and metadata
	Overview of the SATO architecture
	Database components
	Sensor data
	EPREL data
	Sensor DB
	Metrics and metadata device DB
	Dashboards

	Summary

	Database system implementation
	Databases implementation
	Sensor DB
	Metrics and metadata DB

	Data insertion
	EPREL data insertion
	Sensor data insertion

	Consumption metrics calculation
	Device metrics
	Cycle metrics

	External API
	Failure detection
	Validation
	Monitor AOC 27B1H
	Fridge Beko TS190030N

	Summary

	Conclusion and future work
	Conclusion
	Future work

	References
	ER model for the Metrics and metadata device DB
	Scripts
	tables_creation_script.sql
	eprel_kafka_producer.py
	eprel_kafka_consumer.py
	insert_sensor_data.py
	load_device_cycle.flux
	external_api.py

