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Abstract

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease vastly known
for its rapid progression, usually leading to death within a few years, by respiratory fail-
ure. Since there is no cure currently known, the main objective is treatment in order to
improve symptoms and prolong survival. A treatment that is known to be effective, is
Non-invasive Ventilation (NIV), being capable of extending life expectancy and improv-
ing quality of life. Therefore it is imperative to administrate it preemptively. However
Amyotrophic Lateral Sclerosis (ALS) affects most muscles of the body, so there will exist
many clinical conditions that require some kind of treatment. In this work, we propose
two approaches that use deep learning to predict Amyotrophic Lateral Sclerosis (ALS)
disease progression, to know when a patient should be treated or not for a given clinical
endpoint. In the first approach, we use the various snapshots of the patients as input with-
out taking into consideration the temporal dependence between the available features, so
instead we use each assessment of the patient as a single instance to feed the models. In
this approach, we propose the use of a MLP and a CNN, to predict the outcome for the
time windows available (90, 180 and 365 days), using the instances mentioned before and
perform class resampling on the training sets, using SMOTE on the minority class and
Random Undersampling on the majority class. In order to have more data to train the
models and have a balanced set, which helps achieving a better performing model on the
test set. In the second approach, we take the snapshots of the patients and group them
by the patient reference, and proceed to only used those that have length of 3 and 4. On
the sequences of length 3, we performed padding in order to have the same length as the
sequences of length 4, by simply taking the first instance of this sequence and use it as
the first and second assessment on the sequences. We proceed to use the sequences to
feed them into a LSTM model, and train for the several datasets and retrieve the scores
obtained. On this approach we do not perform any type of class resampling, as the first
approach does. The results obtained show some promising insights, on the first approach
in which we use the instances of the patients, the preprocessing performed was one of the
main factors to the great results obtained. On the second approach, which the temporal
sequences of length 3 and 4 are used, the results obtained are not as promissing as the first
approach, however there are still improvements that could be done.
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Resumo

Esclerose Lateral Amiotrófica (ELA) é uma doença neurodegenerativa amplamente
conhecida pela rápida progressão, geralmente leva à morte em poucos anos, entre os 3 e 5
anos, devido a insuficiência respiratória. Como não existe nenhuma cura conhecida atu-
almente, o principal objetivo é o tratamento de forma a melhorar os sintomas e prolongar
a expectativa de vida dos pacientes. Um dos tratamentos conhecido por ser eficaz, é a
Ventilação Não-Invasiva (VNI), sendo capaz de prolongar a expectativa de vida e melho-
rar a qualidade da mesma. Portanto é imperativo administrá-lo preventivamente. E porque
não administrar este tratamento a todos os pacientes? Devido a nem todos os pacientes
são elegı́veis para começar o tratamento de NIV, e ainda existe discordância sobre quando
é o momento ideal para começar este tratamento. Para tal, é imperativo procurar prever
quando um paciente estará elegı́vel para um dado tratamento num futuro próximo. No
entanto, a Esclerose Lateral Amiotrófica (ELA) afeta a maioria dos músculos do corpo,
desta forma existem diversas condições clı́nicas que requerem algum tipo de tratamento,
e atenção médica.

Até à data, há diversas aplicações promissoras de modelos preditivos para a previsão
de NIV, no entanto apenas aplicado ao tratamento de NIV, e dado que ALS afeta a mai-
oria dos músculos do corpo, existe assim um potencial por explorar. Desta forma temos
disponı́veis vários datasets com diferentes condições clı́nicas, para a qual vamos utilizar
modelos com o intuito de realizar a previsão nas mesmas janelas de tempo.

Neste trabalho, propomos o uso de Deep Learning para prever a progressão da doença
Esclerose Lateral Amiotrófica (ELA), para saber se um paciente deve ou não ser tratado
para uma dada condição clı́nica, dentro de janelas de tempo pré-definidas (90, 180, e 365
dias).

No entanto, antes de treinarmos qualquer modelo precisamos de realizar o tratamento
de dados nos datasets disponı́veis, para tal, os conjuntos de dados usados consistem em
pacientes com ALS após serem diagnosticados e receberem terapia na clı́nica de ALS do
Centro Hospitalar Universitário de Lisboa Norte, Hospital Santa Maria, de 1995 a 2021.
Os dados consistem de informação estática, que contém informação demográfica sobre
o paciente, e informação temporal que consiste do resultados de uma série de avaliações
clı́nicas de testes especı́ficos, que incluem testes respiratórios, dados neurofisiológicos, e
respostas ao questionário da ALS Functional Rating Scale.
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Como os conjuntos de dados apresentavam dados em falta em grande parte das co-
lunas, tivemos que realizar data imputation, tivemos em conta o tamanho dos conjuntos
de dados e tentámos remover o mı́nimo de linhas possı́vel. Para tal, decidimos utilizar o
K-Nearest Neighbours Imputation (KNN Imputation), em colunas que tinham um número
de dados em falta abaixo de um valor definido por nós, e as colunas que tivessem mais
que o valor definido são retiradas. Para as que estavam dentro do valor definido iam ser
introduzidos nos dados em falta, valoresc calculado por outras instâncias mais próximas
em termo dos vários valores que possuem. Mais tarde, usamos estes novos conjuntos de
dados para realizar feature selection, para obtermos as que melhor definem o conjunto de
dados.

Na primeira abordagem, usamos os vários snapshots dos pacientes como input sem
ter em consideração a dependência temporal entre as features disponı́veis, sendo assim
usamos cada avaliação do paciente como uma única instância para fornecer aos modelos.
Nesta abordagem, propomos o uso de uma MLP e uma CNN, para prever o resultado
para as janelas de tempo anteriormente mencionadas, usando as snapshots mencionadas
anteriormente e realizar Class Resampling nos conjuntos de treino, usando o SMOTE na
minority class e o Random Undersampling na majority class. De forma a termos mais
dados para treinar os modelos e ter um conjunto balanceado, dado que ajuda a obter
melhor desempenho do modelo no conjunto de teste.

Na segunda abordagem, tiramos os snapshots dos pacientes e os agrupamos pela re-
ferência de cada paciente, e passamos a utilizar apenas aqueles que possuem comprimento
3 e 4. Nas sequências de comprimento 3, realizamos padding para ter o mesmo compri-
mento que as sequências de comprimento 4, simplesmente utilizamos a primeira instância
dessa sequência, como primeira e segunda avaliação das sequências. De seguida, usamos
as sequências para fornecer a uma LSTM e treinamos para os vários conjuntos de dados,
no final obtemos as avaliações de cada modelo. Nesta abordagem não realizamos nenhum
tipo de reamostragem de classe, ao contrário do que acontece na primeira abordagem.

Os nossos resultados demonstram que, a primeira abordagem da MLP e da CNN foi
capaz de obter resultados bastante promissores para alguns dos tratamentos disponı́veis,
alcançando até um valor de 92% na métrica AUC no Clinical Endpoint C2, na janela de
tempo de 90 dias. Sendo este resultado uma surpresa, dado que esperávamos que os con-
juntos de dados com melhores resultados seriam os de 365 dias, devido a terem um maior
número de instâncias positivas que os conjuntos de dados de 90 e 180 dias. Relativamente
à segunda abordagem com a LSTM, e com a utilização de sequências temporais, não atin-
gimos resultados tão promissores. Devido a reduzirmos a quantidade de dados disponı́vel
para o treino dos modelos, já que utilizamos sequências de comprimento 3 e 4, e deixa-
mos de parte o resto das intâncias dos dados, leva a não atingirmos uma performance tão
boa quanto à abordagem anterior.
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Chapter 1

Introduction

1.1 Context and Motivation

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with no cure and a
short life expectancy following the start of symptoms, with most patients dying of respi-
ratory failure within 3-5 years. Only a few of the available treatments increase the life
expectancy by a few months. Being Non-invasive Ventilation (NIV) the technique that
has showed the most promise in terms of extending life expectancy and improving quality
of life, there is research that suggests that starting it sooner is better. So why not treat
every patient with Non-invasive Ventilation (NIV)? Not all patients are eligible to begin
the NIV treatment, and there is still some disagreement over when the optimal time is to
begin NIV [12]. Therefore it is a good idea to look into whether it is possible to predict
whether patients will be eligible for NIV in the near future based on their progression.
However there are other clinical endpoints just as important to predict, such as the need
of a wheelchair. Given that ALS affects most muscles of the body, there will exist many
clinical conditions that require some kind of treatment, which motivates the study of al-
gorithms to analyse the evolution of other clinical endpoints.

1.2 Goals and Contributions

This dissertation follows the work developed by Carreiro et al. [7] which proposed the first
prognostic models based on predefined time windows to predict the disease progression
and the need of NIV treatment in ALS. Following this work, Pires et al. [32] proceeded
to categorize patients depending on their stage of disease progression, stratifying them in
3 groups (slow, neutral and fast). Afterwards they used the data from each of the groups
and build a specialized model, achieving promising results. However neither of these ap-
proaches take into consideration the temporal dependence between the available features.
Regarding deep learning approaches, Muller et al. [30] made use of neural networks,
mainly the Long Short-Term Memory (LSTM), to predict the disease progression of the
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Chapter 1. Introduction 2

patients in the previously mentioned time windows and Shapley Additive Explanations
(SHAP) to explain complex machine learning models.

Our goal is to predict Amyotrophic Lateral Sclerosis (ALS) disease progression, in or-
der to know when a patient should or not receive treatment for a given clinical endpoint,
within a predefined time window. To this end, we propose the use of deep learning mod-
els, to predict disease progression based on temporal clinical data. This approach is not
common due to the fact that deep learning models tend to be quite complex and difficult
to interpret and usually there is not enough data available.

In this work, our data consists of static and temporal information, the first being de-
mographic data and the second being the outcomes of a series of clinical assessments of
specific tests, from 1093 ALS patients observed from the early 90’s until October 2021,
in the form of multivariate time series. These scores and the demographic data will then
be used to feed as input to our models later on.

In order to achieve a model capable of making such disease progression predictions,
we propose the use of a Multilayer Perceptron (MLP) and a Convolutional Neural Net-
work (CNN) on a first approach, and a Long-Short Term Memory (LSTM) with tem-
poral sequences from the patients’ data. One of the main advantages of deep learning
approaches is having the ability to solve complex problems, which require finding hidden
patterns in the data. This approach shines when there is a lack of domain understanding
for feature introspection, since feature engineering is less of a concern [26].

Concerning the prediction of different clinical endpoints, such as the need of Non-
invasive Ventilation (NIV) or the need of a wheelchair, we will make use of the proposed
models and take into account the clinical history and temporal data of the patients, in or-
der to predict the outcome.

In this scenario, the previous approaches to the problem at hand do not make use
of the temporal data available. In our approach, the objective is to use the temporal
dependence between features, in addition to the static data already used, to implement
deep models capable of predicting disease progression of different clinical endpoints.
The main contributions of this work are:

• The proposal and evaluation of different deep neural networks to predict disease
progression of several clinical endpoints in Amyotrophic Lateral Sclerosis (ALS).

• Explanation of the results obtained, give insights on what is happening and how to
further improve the scores.
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• Analyze the practical utility to help with prognostic prediction, improve patient care
and increase survival time.

1.3 Structure of the document

This document is organised as follows:

• Chapter 1 - Provides an introduction, explains the goals and contributions of this
work and introduce the ALS case study.

• Chapter 2 - Gives an overview of Deep Learning approaches in ALS and insights
of work that has already been done related to ALS.

• Chapter 3 - Is an overview of the data used to describe each ALS patient.

• Chapter 4 - Discusses the main deep learning approaches we used for this work.

• Chapter 5 - Presents and discusses the results obtained by the models proposed.

• Chapter 6 - Presents the conclusions and outlines future work and goals.
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Chapter 2

Background and Related Work

2.1 Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease, that consists of
rapidly progressing muscular weakness. ALS patients have a short life expectancy, and
the most common cause of death being respiratory failure, given that it eventually affects
most muscles, including the diaphragm [45]. ALS affects around 10 per 100.000 inhabi-
tants, in Portugal, and worldwide between 5.9 and 39 people per 100.000 inhabitants [38],
suffer of ALS.

Most treatments focus on managing symptoms, because this disease has no cure. So
improving quality of life and increasing the life expectancy is the main objective of clin-
icians at the moment. Non-invasive Ventilation (NIV) has shown to increase the life
expectancy of patients, however not all patients are eligible to start NIV treatment.

It is hard to predict when a patient should be treated with NIV, given that there is still
some discordance to when the optimal time is to start the treatment, mainly because it is
generally accepted that it should be started when clinical symptoms of respiratory insuf-
ficiency are evident. However, recent studies show that an earlier initiation of NIV might
have greater benefits [12].

The Revised ALS Functional Rating Scale (ALSFRS-R) is the temporal information
available, and consists on the outcomes of a series of clinical assessments of specific
tests, from 1093 ALS patients observed from the early 90’s until October 2021, in the
form of multivariate time series. Consisting on a set of tests that are recommended to the
patients to perform, they then can evaluate on a scale from 0 to 4, based on the difficulty
of performing certain tasks. The score of 0 means that the patient cannot perform the
task, and a 4 that the patient can easily perform the task assigned. In clinical practice,
the ALSFRS-R is widely used to assess disease progression. Despite this scale, there is

5



Chapter 2. Background and Related Work 6

a need for advanced machine learning approaches for clinicians to be able to use these
models to aid in prognostic prediction and improve life expectancy, given the challenge
of disease heterogeneity. However, there is still difficulties predicting disease progression
of ALS, given the quantity of data being rather small and highly imbalanced proves to be
a great challenge.

2.2 Deep Learning

In this section, we discuss the use of deep neural networks approaches on tabular data
and the different types of architectures approaches that can further improve the perfor-
mance of the models. We will provide an overview of architecture-based methods and
regularization-based models.

2.2.1 Preprocessing

In this section, we discuss the preprocessing of Deep Learning on Tabular Data. Despite
traditional machine learning approaches being generally better with tabular data and deep
learning models were usually used with audio or image data. However, it is still not clear
why deep learning cannot achieve the same level of predictability on tabular data, as on
image classification and natural language processing.

There are several challenges when working with this type of data, such as inappropri-
ate training data with a lot of missing values, extensive preprocessing pipelines and model
sensitivity. The quality of the data is a common issue for real-world data [5]. These often
include missing values, outliers, inconsistent data, and tabular data are frequently class-
imbalanced, due to the expensive nature of data collection.

To deal with the class-imbalance, there are two main approaches. The first, over-
sampling, this approach adds copies of instances from the minority class. Increasing the
number of instances of the minority class, by replicating them until you have a more bal-
anced class, Random Over-sampling is an example of this approach. And under-sampling,
this approach deletes instances from the majority class, scaling down the number of in-
stances of the majority class, Random Under-sampling is an example of this approach.

However, both of the approaches have their pros and cons that one should consider
when dealing with this type of problem. Over-sampling has the advantage that it does
not lead to information loss, given that it creates new data, but this increases the likeli-
hood of model overfitting, because it replicates the minority class. Under-sampling has
the advantage that it can help improve the run-time of the model and memory problems,
when a data set is quite large, however, unlike the over-sampling it can eliminate useful



Chapter 2. Background and Related Work 7

information about the data.

SMOTE (Synthetic Minority Over-sampling Technique) [8] is a technique proposed
to solve the previous approaches problems. This approach is an over-sampling method,
that creates synthetic data, instead of replicating the instances of the minority class. It
aims at generating similar samples of the minority class, by taking into account each mi-
nority class sample and creating new samples using K-nearest Neighbours (KNN). This
approach alleviates the overfitting caused by the random oversampling, given it generates
new data instead of replicating instances. It does not lead to loss of information, because
there is no deletion of instances of the majority class. However, SMOTE can generate
additional noise to the data, and is not as practical for high dimensional data.

One of the main challenges when working with this type of data, is the extensive pre-
processing needed, mainly on how to handle categorical features. Generally the first step
is to convert the categories into a numerical representation, these may be quite sparse
leading to a problem known as curse of dimensionality [19].

Regarding model sensitivity, deep neural networks can be particularly vulnerable to
little changes in the input data [37]. Even the tiniest change in a both categorical and
binary features can have a significant influence on prediction [5].

2.2.2 Specialized Architectures

The most common strategy for deep learning with tabular data is specialized architectures.
With this we will provide an overview of state of the art deep neural network architec-
tures, specifically for heterogeneous tabular data, such as the data used for this project.
This group can be further divided into two sub-groups, the first being hybrid models and
the second being transformer-based models.

The majority of deep neural network techniques for tabular data are hybrid models.
They adapt the data and combine neural networks with proven classical machine learning
algorithms, such as decision trees. In this we have two types that we will distinguish, the
fully differentiable models and partly differentiable models.

This category’s fully differentiable models have a unique feature, they use gradient
descent optimizers to provide end-to-end deep learning for training and inference. As a
result, they enable highly efficient implementations in recent deep learning frameworks
that make extensive use of GPU or TPU acceleration. We will present some models that
we found interesting to mention on this topic.
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First we have an ensemble of differentiable oblivious decision trees [25] proposed by
Popov et al. [33] - the NODE Framework for deep learning tabular data. Because all
nodes on the same level utilize the same splitting function, oblivious decision trees can
be easily parallelized. NODE uses the transformation with soft splits to make the entire
architecture fully differentiable and benefit from end-to-end optimization.

Katzir et al. [21] introduced an interesting idea, which every decision tree is essen-
tially a form of a Boolean formula, more precisely a disjunctive normal form, as Net-DNF
recognizes. They employ this inductive bias to construct the architecture of a neural net-
work that can mimic the gradient boosting decision trees algorithm’s properties. It was
then tested for classification tasks on data sets with no missing values and produced re-
sults that were similar to those of XGBoost [9].

Nondifferentiable techniques and deep neural networks are combined in this subset
of hybrid models. The nondifferentiable element of these models is usually handled by
decision trees.

Ke et al.[22] proposed the TabNN architecture, which is built on two principles: di-
rectly using expressive feature pairings and lowering model complexity. It extracts feature
groups from gradient boosting decision trees, clusters them, and then builds a neural net-
work based on those feature combinations. However, numerous intensive computation
stages are already involved in the network’s creation [5].

Similar to the TabNN, it was proposed the use of gradient boosting decision trees for
the data preprocessing stage by Ivanov and Prokhorenkova [20]. The authors demonstrate
that a decision tree has the shape of a directed graph. As a result, the proposed approach
uses graph neural networks to utilize topology information from decision trees. Several
experiments showed that the proposed architecture was superior to other solid proposals,
regarding predictive performance and training time.

The other type of specialized architectures, is the transformer based models. Re-
searchers and practitioners have proposed numerous ways for heterogeneous tabular data
employing deep attention processes [5], inspired by the recent explosion of interest in
transformer-based methods and their results on text and visual data.

Cai et al. [6] introduced ARM-net, this is a tabular data-specific adaptive neural net-
work for relation modeling. The ARM-net framework’s main idea is to dynamically and
selectively simulate feature interactions with combined features. In addition, the authors
offer a novel sparse attention approach for dynamically generating interaction weights
given input data. As a result, users can directly model feature crosses of any order with
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noisy features that have been judiciously filtered.

2.2.3 Regularization Models

This group of approaches claims that the extreme flexibility of deep learning models for
tabular data is one of the key learning challenges, and that substantial regularization of
learnt parameters might improve overall performance [5].

The Regularization Learning Network (RLN) introduced by Shavitt and Segal [36],
which uses a learnt regularization approach, was one of the first methods in this area. In
their tests, RLN’s outperformed deep neural networks and produced results comparable to
the gradient boosting decision trees approach, but they only compared the models using
one data set containing mostly numerical data. The categorical data concerns are not
addressed in the RLN study. Data sets with solely numerical data were used for the studies
and example implementation. Borisov et al. [4] proposed a similar approach, in which
regularization coefficients are learned exclusively in the first layer with the purpose of
extracting feature importance. We found out that using the right regularization techniques
is fundamental to train these models and give all the details in the following chapters.

2.2.4 Activation Functions

These type of functions are used to establish the neural network’s output, such as yes or
no. The obtained values are mapped between 0 and 1 or -1 and 1. The Activation func-
tions are divided in 2 types, Linear and Non-Linear activation functions. The activation
function used on our models in this work, is the Rectified Linear Unit (ReLU) activa-
tion function, this is a non-linear function. The output values are between 0 and 1, given
the nature of this function, all negative values become zero. This method provide some
advantages, such as simpler computation which reduces computation run times.

2.3 Related Work

In this section we focus on machine learning and deep learning methods applied to the
ALS domain. There have been a lot of studies regarding ALS, where many researchers
developed machine learning models in order to predict the diagnosis. That is whether or
not the patient has ALS or some other condition, given that is not uncommon for misdi-
agnosis. There has been some promising proposals made by ALS researchers, despite the
limited size data [17].

To achieve that, there are two main approaches, supervised and unsupervised learn-
ing. Based on the features of the available data and the overall study purpose, the specific
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method should be carefully chosen.

The goal of supervised learning is to map inputs to outputs using training data sets.
Problems regarding supervised learning can be divided into either classification or regres-
sion problems [35]. Classification approaches use the input of the training data sets, and
the output variable is a category, such as ”Disease Progression” or ”No Disease Progres-
sion”. On the other hand, regression approaches use the input, to predict a real value of a
variable, such as trying to predict motor decline based on clinical observations [17].

The goal of unsupervised learning is to learn the structure of data without a well-
defined output or feedback [35]. Being extremely helpful in patient stratification prob-
lems. In order to create clusters, this approach is used, current clinical criteria, which
are generally based on a limited collection of clinical observations, tight thresholds, and
conservative inclusion/exclusion criteria for class membership, may be preferable than
clustering approaches [17].

Bereman et al. [2], investigated protein bio markers in a set of matched plasma
and CSF (Cerebrospinal fluid) samples from patients with ALS. To discover differen-
tially abundant proteins, intensity-based relative quantification was performed, followed
by evaluation of advanced machine learning techniques to construct both diagnostic and
prognostic models for application in ALS.

Zhou et al. [44] to investigate the utility of predictive modeling on clinical trial
analysis of ALS. The approach proposed for ALS disease progression was measured by
ALSFRS-R in a test set from a former clinical trial. The models used were able to achieve
some promising results, for the trial sample. Reaching the conclusion that ALSFRS-R are
capable of explaining a moderate degree of longitudinal change variability, which is aided
by robust missing data management for baseline parameters.

Carreiro et al. [7] proposed the first prognostic models based on predefined time win-
dows to predict the disease progression and the need of NIV treatment in ALS. This ap-
proach consisted in clustering temporally-related tests using hierarchical clustering with
constraints, in order to obtain snapshots of the patients’ condition at a given time, then
used to predict whether or not the patient will require NIV within a time window.

Pires et al. [32] proceeded to categorize patients depending on their stage of disease
progression, stratifying them in 3 groups, slow, neutral and fast. Using the patients’ dis-
ease progression rate to create the previous groups. Afterwards they used the data from
each of the groups and build specialized models, with the goal to improve prognostic
prediction. However neither of these approaches take into consideration the temporal de-
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pendence between the available features.

Martins et al. [29] has also made progress regarding disease presentation patterns
and disease progression patterns, where the original features of the dataset available were
transformed, in order to use as sequences for the algorithms used on the SPMF library,
and these outputs the extracted patterns. Following the evaluation of the extracted pat-
terns, the resulting findings showed to be very promising, with the models for all three
prediction time windows.

Regarding deep learning approaches, Muller et al. [30] made use of neural networks,
mainly the Long Short-Term Memory (LSTM), to predict the disease progression of the
patients in the previously mentioned time windows and Shapley Additive Explanations
(SHAP) to explain complex machine learning models. Finding that the use of SHAP ex-
plaining the deep model was helpful to determine the influence of certain features for the
overall prediction. Our work is most similar to [30], which inspired the deep learning
approach and preprocessing steps.

Van der Burgh et al. [42] use deep learning, with clinical characteristics as well as
MRI data to predict survivability of ALS patients. In close to 70% of patients, clinical
features successfully predicted survival category. Deep learning utilizing MRI data prop-
erly predicted 62.5% of structural connections and 62.5% of brain morphological data.
But when combining all the sources of information, the deep models prediction accu-
racy increased to almost 85%. Demonstrating a promising advantage of the use of deep
learning model in disease prognostication.
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Chapter 3

Data Pipeline

3.1 Dataset

The datasets used in this work consist of ALS patients after being diagnosed with ALS and
receiving therapy in the ALS clinic of Centro Hospitalar Universitário de Lisboa Norte,
Hospital Santa Maria, from 1995 to 2021. The data consists on static information, con-
taining demographic information about the patient, and temporal information that consists
of the results of a series of clinical assessments of specific tests, these include respiratory
tests, neurophysiological data, and questionnaire answers to the ALS Functional Rating
Scale. The tests are recommended for the patient to perform, which they can proceed to
evaluate on a scale from 0 to 4, based on the difficulty of performing certain tasks, where
a 0 means that the patient cannot perform the task, and a 4 means that the patient can
easily perform the task assigned. Table 3.1 shows the tests mentioned.

The main objective includes being able to predict within a predefined time window,
whether or not a patient will need NIV. These time windows are within 90, 180 and 365
days. For that the main dataset is also divided into 3 sub-datasets for each time window.
However, ALS also affects other areas of the body. Many patients might have difficulty
walking or talking, so those are also clinical endpoints that are interesting to predict and
further improve the quality of life. Therefore there are other possible datasets for the dif-
ferent clinical endpoints available aside from the NIV, such as, to predict the need of an
additional communication tool, of a full-time caretaker, of a wheelchair or the indication
of PEG.

3.2 Data Acquisition

As mentioned before the data was acquired of the ALS patients receiving therapy in the
ALS clinic of Centro Hospitalar Universitário de Lisboa Norte, Hospital Santa Maria,

13
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Category Test Abbreviation
Respiratory Tests Vital Capacity VC

Forced Vital Capacity FVC
Airflow Occlusion Pressure P0.1
Maximal Sniff Nasal Inspiratory Pressure SNIP
Maximal Inspiratory Pressure MIP
Maximal Exspiratory Pressure MEP

Neurophysiological Tests Phrenic Nerve Response Amplitude PhrenMeanAmpl
Phrenic Nerve Response Latency PhrenMeanLat

Other Physical Values Cervical Extension CervicalExt
Cervical Flexion CervicalFlex

ALSFRS-R Questions 1- Speech P1
2- Salivation P2
3- Swallowing P3
4- Handwriting P4
5- Cutting Food and Handling P5
6- Dressing and Hygiene P6
7- Turning Bed and Adjusting Bed Sheets P7
8- Walking P8
9- Climbing Stairs P9
10- Breathing P10

Table 3.1: Overview of the Several Tests. This presents the temporal information of the
data, that consists of the results of a series of clinical assessments of specific tests, they
consist of respiratory tests, neurophysiological information, and ALS Functional Rating
Scale questionnaire responses. On the ALSFRS-R, are the recommended tests for the
patients to perform and self evaluate their performance on a scale from 0 to 4, based on
the difficulty on performing the tests. Self evaluating with a 0 means that the patient is
not able to perform the said test, and a 4 means that the patient can easily perform it.
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from 1995 to 2021. However the data had to go through a processing approach, that was
proposed by Carreiro et al. [7]. In order to build the snapshots from this type of clinical
time series, the majority of the researchers follow a simple approach, which consists on
the use of a pivot date, usually the day of a crucial event or test. Every evaluation of a
test that was conducted between two pivot dates is sorted into the cluster that contains the
pivot date that is furthest to the left, one example would be the date of hospitalization.
Therefore the following test after this date is always included in the snapshot. However,
this approach present several limitations, which a patient’s important test may not have
been evaluated, or it may have been performed more than once between two pivot dates.
This would result in the discarding of a large number of test evaluations or the creation of
sparser snapshots (with more missing values) [7].

In order to overcome these limitations Carreiro et al. [7] proposed a new way to cre-
ate the patient snapshots based on clustering temporally-related tests using hierarchical
clustering with constraints (using single-linkage metric) in order to obtain snapshots of
the patients’ condition at a given time, the same test cannot be evaluated twice because
it is a component of two independent batches of tests, and all tests in a snapshot must
be coherent with respect to a particular property of interest. As a result, the NIV status
of each test in a given patient snapshot must be the same, given that it is known at the
time of each test if the patient required NIV or not. The method proceeds to compute a
single feature representing the NIV status for the snapshots, which can have two values 1
meaning the requirement of NIV, and 0 meaning no requirement of NIV.

It is required to build the learning instances that the prediction models will employ
after creating the patient snapshots using the original follow-up data. These depend on
changes in NIV status between snapshots within the k-day time range that has been se-
lected. And afterwards, they created the class Evolution (E), with two possible values, 1
the patient needs to initiate treatment within the time window and 0 the patient does not
need any treatment.

In figure 3.1, we can see the transformation performed on the original data into the
snapshots of each patient used on this work which are divided by the reference of each
patient, meaning each instance is a different evaluation performed, the instances go up to
the point where a patient has a positive evolution, and does not go beyond that point.

3.3 Target Indicators

The tests performed by the patients are indicators for the doctors to whether or not to
treat a patient for a certain clinical problem. For the several clinical endpoints, there
are different tests used as indicators as we will further explain for each of the clinical
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Figure 3.1: Example of data transformation, from the original data into the patient snap-
shots used on this work, in this case the target clinical endpoint was the NIV.

endpoints.

For the clinical endpoint C1 that is the need for NIV, it is detailed that before the usage
of the ALS Functional Rating Scale Revised (ALSFRS-R), it was used the ALSFRS, and
it had the P10 test, which tested the patient’s respiration. Meaning that older instances
of patients, only have the ALSFRS, and for these whenever the value of the test is below
2 are considered eligible to start NIV. However on more recent patients, it is used the
ALSFRS-R, in which the P10 respiration test is not applied and there are 3 new instances
for testing the respiration of the patient. Therefore the P10 test is the existence of dyspnea
on the patience, the P11 test is the existence of orthopnea, and the P12 is whether there
is respiratory insufficiency. In this case, the patient is eligible to start the NIV treatment,
when the P10 test value is 1 (dyspnea occurs while in rest, when sitted or laying) or 0, or
when the P12 test value is below 3 (Intermittent use of BiPAP).

On the clinical endpoint C2 that is the need for an auxiliary communication device, the
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test remained the same as previous scales, being the P1 speech test, that indicates how the
patient communicates. Therefore the patient is eligible to use an auxiliary communication
device, when the P1 test value is 1 (Speech combined with non-verbal communication) or
0 (Loss of useful speech).

The clinical endpoint C3 is the Percutaneous Endoscopic Gastrostomy (PEG) indica-
tion, has the C2 the test remained the same, the test being the P3 Deglutition test. Given
that this treatment is quite invasive a lot of patients with PEG indication end up stalling
the procedure, therefore the timing to start PEG is when the P3 value test is 1 (Need for
probe for supplements) or 0 (Enteral or parenteral nutrition).

On the clinical endpoint C4 that is the need for a caregiver, there are 2 tests to con-
sider that remained the same, the first being test P5 which consists of cutting food and
managing objects and the second is test P6 which is getting dressed and personal hygiene.
On the first test, there are 2 variants one for patients with gastrostomy and one for those
that do not have gastrostomy, in both the value that is considered to have a caregiver is
below 2 (Needs some help doing the activities). On the second test, the value decided to
have a caregiver is 1 (Needs help for the personal hygiene) or 0 (Total dependence).

Lastly, the clinical endpoint C5 is the need for a wheelchair, the main testing metric is
the walking test. On this one if the patient can not walk even with help it is determined that
is time to start using a wheelchair, therefore if the test value is 1 (Functional movement
only, no outpatient) or 0 (No useful limb movements inferior).

3.4 Preprocessing

3.4.1 Data Imputation

With that, the dataset was missing values in most of the columns, so data imputation was
crucial, given the size of the dataset we tried to remove as few rows as possible. There
are several ways why certain values are missing from the data, as such there are three
different types of missing values: Missing Completely at Random (MCAR), Missing at
Random (MAR) and Missing Not at Random (MNAR) [10], described below:

• MCAR: Data gaps have underlying causes that are independent of both known and
unknowable patient factors. An illustration is when a blood sample tray breaks
unintentionally and the lab results are lost.

• MAR: The fundamental causes of missing data are connected to well-known patient
features. The greater likelihood that a blood sample could not be taken prior to the
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commencement of dialysis in patients who started acutely is one example.

• MNAR: The fundamental causes of missing data are connected to unidentified pa-
tient features. As an illustration, participants with lower levels of education are
more likely to leave out a question in a survey on their schooling.

To address this problem, there are several approaches we can use, the three main ap-
proaches are the use of Deletion, Imputation or Prediction [10], described as follows.

• Deletion: This consists in removing single instances or columns that are formed
mostly by missing values, that are above a threshold defined by the user. However
this method often leads to a considerable loss of information that could be essential
for the model learning.

• Imputation: This process consists on replacing the missing data with values that
are plausible by observing other instances of the whole data. The most common
methods are the Mean Imputation and the Zero imputation, however these methods
often lead to dataset bias [46], that would greatly affect the model performance and
make it so the model would not be able to perform on a real world application. And
there are methods, such as the KNN Imputation that uses the nearest neighbours to
replace the missing values with data that are similar.

• Prediction: This method consists on using predictive models that learned from the
data in order to predict the missing values. This type of process can be used with
deep learning or regression models, however these are really complex to implement
and are not always advantageous if one does not have enough time to spend training
these models.

3.4.2 K-Nearest Neighbours Imputation

Our approach to solve this, was to use a model to predict the missing values, the model
used in this case was the K-Nearest Neighbours Imputation (KNN Imputation). KNN
algorithm has been proven to be quite effective [3], however we only used it on features
that had less than a predefined threshold of values missing, that is specific to the datasets
of each clinical endpoint. The features with a number of missing values above the defined
threshold, were removed from the dataset.

However we would have to pay attention about choosing a low k value will make the
results less generalizable and increase the influence of noise [31]. As opposed to that,
choosing a higher k tends to make local effects less noticeable [31]. Another For that we
would have to choose somewhere around the middle. There is also a need to pay attention
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to whether or not we have binary classes, since it is recommended to use an odd number
of neighbours to avoid ties [31].

Figure 3.2: Example of K-Nearest Neighbours Imputation. This algorithm predicts the
missing values by using the nearest neighboured instances to replace the missing values
with data which is similar.

As shown on figure 3.2, this was one of many approaches possible to tackle this prob-
lem, however some of the other approaches result in modifying the variance of the dataset,
such as the Mean Imputation and the Zero Imputation, which would turn the dataset bias
to some degree [46]. Another approach that would greatly affect the performance would
be to simply remove the rows that contain missing data, but given that the data available
is already limited, to further reduce the amount of data which we could feed to the models
was not a option.

3.4.3 Label Encoder

In order to be able to use the KNN Imputation algorithm and neural networks for pre-
diction, there was a need to change the categorical features so they could be used on the
algorithm. For that, we used Label Encoder, which consists on encoding the levels of
categorical features and transform them into numeric values, given that these algorithms
do not work unless we use numerical values.

3.4.4 Class Imbalance

The next step was dealing with the class imbalance, given that some of the datasets we
have available are highly imbalanced, meaning that classes of data are not equally repre-
sented. This represents a problem for most classification algorithms, the reason why, is
these aim at maximizing classification accuracy, this measure is biased towards the major-
ity [27].Without dealing with this problem, models could achieve high values of accuracy,
despite not being able to generalize the predictions made.

There are two main approaches to address the class disparity problem. The oversam-
pling methods add duplicate instances from the minority class. Random Over-sampling is
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an example of this method, which involves increasing the number of examples of the mi-
nority class by repeating them until you have a more balanced class.And under-sampling,
which reduces the number of instances of the majority class by deleting examples from
the majority class, an example of this strategy is Random Under-sampling.

To solve this problem, there are several approaches as previously mentioned, but many
have the risk of overfitting the model, for that the approach chosen in this case is SMOTE
(Synthetic Minority Over-sampling Technique). This approach, avoids the risk of overfit-
ting, by generating artificial samples instead of replicating existing observations [13], but
it is recommended to use SMOTE combined with Random Undersampling of the majority
class, as it is believed to achieve better model performance [8]. On table 3.2, we can see
the class distribution of the datasets we are using before any class resampling.

Dataset Evolution k=90 k=180 k=365
C1 - Need For NIV Yes 217 740 1394

No 4178 3655 3001
C2 - Need for an auxiliary

Communication Device Yes 159 454 859

No 5237 4942 4537
C3 - Need For PEG Yes 68 267 605

No 5983 5784 5446
C4 - Need for a Caregiver Yes 341 837 1437

No 2750 2254 1654
C5 - Need for a Wheelchair Yes 202 589 1242

No 4928 4541 3888

Table 3.2: Class Distribution For Time Windows of k Days. The class imbalance tends to
be at its’ highest when the time window is shorter, such as the 90 day time window, and
as the time window enlarges to 180 and 365 days, the class imbalance decreases.

Checking the previous table we can see that the class imbalance, tends to be at its
highest when dealing with the shorter prediction time window (90 days), and tends to
decrease this disparity as the time windows grow larger. This is a trend that every dataset
follows, and is something to be expected given that in a larger time window there is more
likelihood of a patient to have a positive disease progression.

3.4.5 Feature Selection

After that we proceed to do feature selection which the goal is to find the best set of fea-
tures, to achieve a better prediction model. Evaluating the features that will give the most
information to make a good prediction of the target class. There are several approaches
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one could use, in order to, obtain a set of features that can explain the dataset without
using all features available.

We decided to use the Maximum Relevance - Minimum Redundancy (MRMR) algo-
rithm, in order to achieve that. The MRMR is an algorithm used for finding the ”minimal-
optimal” subset of features, this finds the features that are relevant with the least redun-
dancy to explain the data available, as is shown on the figure 3.3.

Figure 3.3: Example of Maximum Relevance - Minimum Redundancy. This algorithm
finds the ”minimal-optimal” subset of features which prove to be relevant with the least
redundancy to describe the data available.

We tried several values for the number of features to use on the models, after choosing
a value we then trained the models and evaluated them in order to, reach a conclusion to
what number of features we could achieve the best performing model. Reaching the
consensus that the number of features chosen does not impact greatly the performance of
the proposed models, these achieved the best results in most of the cases when paired with
15 features as inputs. However the performance increase is not enough to justify the use
of this number of features and not only 3 to 5 features, but as this does not decrease the
overall computational run time, so we decided for now to keep using 15 features as input.

3.4.6 Selected Features

In this section we will give insight of the features selected by the MRMR algorithm. As
mentioned previously on section 3.1, there are tests used as indicators, to help clinicians
know when a patient should start a given treatment. And the MRMR algorithm was able
to find the features that were originally used as indicators in the great majority of the
datasets. With this said, the tests used as indicators are in the top 5 features in terms of
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relevance, in all most all of the datasets. This shows that the algorithm chosen for feature
selection is able to find the relationship between the test used as indicator and the target
value.



Chapter 4

Methodology

This section describes the methodology proposed for the prediction of disease progression
of clinical endpoints in ALS. As previously mentioned, ALS is a disease characterized by
the progressive loss of motor neurons in the brain and spinal cord. Patients with ALS
tend to have a short life expectancy, being the most common cause of death respiratory
failure. Given that most muscles are eventually affected by this disease, the patients with
ALS, suffer from various conditions that need treatment. There is no cure for ALS, so
most treatments focus on managing symptoms, and the main objective of clinicians is
to improve quality of life and increase life expectancy. The goal is predict ALS disease
progression, in order to know when a patient should receive treatment for a given clinical
endpoint, within a predefined time window.

4.1 Architecture Proposal

There are many approaches that could deal with the problem at hand, for this work we
proposed the use of deep learning, in order to come up with deep models that are capable
of predicting disease progression of clinical endpoints in ALS. The same deep learn-
ing model can be applied to various different applications and data types, and is flexible
enough to be adapted to new problems in the future. Despite the need of a large amount
of data, in order to achieve a better performance than other approaches, there has been
promising results with using neural networks.

Our models consist of somewhat complex neural networks. The first is a Multi Layer
Perceptron (MLP), and a Convolutional Neural Network (CNN) based on a previous ap-
proach winner of second place on Mechanisms of Action (MoA) prediction competition
and used on the Santander customer transaction prediction problem [39]. The last model
developed is a Long-Short Term Memory (LSTM), which takes advantage of the temporal
clinical data in the form of sequences, being a somewhat simple architecture.

23
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4.2 Multilayer Perceptron

Multilayer Perceptrons are the classical type of neural network, feedforward artificial
neural network that generates a set of outputs from a set of inputs. One or more layers of
neurons make up these structures. These use backpropagation for training the network,
this is a method of propagating the entire loss back into the neural network to determine
how much of the loss is caused by each node, and updating the weight values of the nodes
with the higher error rates, in order to minimize the overall loss. The technique propagates
an output error from a neural network backwards through the network to identify the
routes that have the biggest effects on the output [34].

Backpropagation reveals which pathways have a greater impact on the outcome and
enables us to strengthen or weaken connections to make the prediction we want. MLP’s
are well suited to classification prediction problems in which inputs are classified or la-
beled, and are used for tabular data sets as is the case of the ALS data set.

Figure 4.1: Multilayer Perceptron Proposed Architecture. This proposed architecture con-
sists on a sequence of input neurons, into its’ 3 layers. The input layer uses n features, and
passes those to the other two hidden layers with 512 features of the batch normalization
and followed by a dropout layer of 20%, both use the ReLU activation function, finally
reaching the output layer, that is a continuous value between 0 and 1. Figure adapted from
[]

The proposed architecture for this model is shown on the figure 4.1, it consists on a
sequence of input neurons as features, into its 3 layers. The first layer is the input layer and
consists of the input neurons and a ReLU activation function, after this layer we have the
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batch normalization layer with 512 features, followed by a dropout layer of 20%, finally
connecting with the output layer. The output of this MLP is a continuous value between
0 and 1, where a 0 indicates the patient does not require the treatment, and 1 when the
patient requires the treatment, for the specific clinical endpoint its trying to predict.

4.3 Convolutional Neural Networks

Convolutional Neural Networks, or more commonly known as CNN or ConvNet, are a
class of neural networks that is dedicated to the processing of data with a grid-like archi-
tecture, such as images. Normally CNN’s consist of three layers: a convolutional layers,
a pooling layer and a fully connected layer. Although the CNN structure is effective at
extracting features, it is rarely employed in tabular data since the precise feature ordering
is unclear. The data can be directly reshaped into a multi-channel picture format, and the
correct sorting can be learned using the FC layer through back propagation.

Figure 4.2: 1 Dimension Convolutional Neural Network Architecture. The FC layer im-
proves the feature dimension, which expands the input’s dimension and makes the result-
ing data meaningful through feature sorting. Afterwards there is a reshaping of the data
into an image format, then features are extracted on the oncoming 1D-Conv layers. Fi-
nally they are used to make predictions trough a FC layer after flatten. Figured adapted
from [39]

The architecture shown on the figure 4.2, first we have a FC layer is used to improve
the feature dimension. This layer’s responsibilities include expanding the input’s dimen-
sion and making the resulting data meaningful through feature sorting. After this, there is
the reshaping of the data into an image format. Features are extracted in the next multiple
1D-Conv layers with a shortcut-like link, just like in the basic CNN model. Finally, the
features that were extracted are used to make target predictions through a FC layer after
flatten [39].
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4.3.1 Training

In order to train the models proposed more efficiently, there was a need to rescale the
data, through data normalization on all features. This is a rescaling of data from its origi-
nal range so that all values fall between 0 and 1. This is recommended when dealing with
neural network problems, as it often results in a better performing model, and leads to a
more efficient neural network training.

Furthermore each dataset was imputed to the models, while using stratified group
k-fold cross-validation (CV) scheme [23]. Cross-validation is a resampling procedure,
widely used on machine learning model evaluation, on data sets with limited samples.
This method only uses the parameter k, that represents the number of groups the data
provided is to be split into. In this case we used the parameter k equals to 5 and 10,
therefore the data set provided to train the model, will then be split into k groups, then it
will select one group as a test set to evaluate the model, and the rest of the groups are used
as training data, and it does this k times until it used all groups as test sets in evaluation.
It is important to notice that this algorithm is a variation of the Stratified k-fold cross
validation, as it attempts to return a stratified fold, with no overlapping instances in the
train and validation sets at the same time. Ideally, we would have used the recommended
approach [18] of using the stratified 10-fold CV, given that it is relatively low bias and
variance. However in some circumstances, stratification will be impossible due to a small
number of groups containing a large number of samples.

In order to prevent such event from happening, it was required to do a search over the
several different folds produced by the CV, to find the ones where this would not happen.
To achieve this, we tried several random state values on the CV, and analysed whether or
not the groups formed were stratified. Saving the values which the groups were indeed
stratified, if not it would generate problems when trying to evaluate the models, because
it would not be able to calculate the AUC-ROC metric if there were only instances of
a single class present on the validation set. However the most imbalanced datasets, did
not have enough positive class instances to produce stratified groups, and only produced
groups that the validation set just had one class present. This proved to be quite challeng-
ing, so the decision was to put aside any dataset that could not produce stratified groups.

This will help to get an idea of how the model would behave on real data, without
having bias on our train and validation sets.

The resampling is only applied on the training set of each fold, leaving the test set
unchanged and these sets created have the same class distribution as the original data set.
Therefore it was confirmed that the cross-validation method does not result in training set
contamination by the test set or vice versa, meaning no patient appears in the train and
test sets at the same time.
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Figure 4.3: A K fold example. This approach will split the data provided into k groups,
defined by the user, afterwards it will select one group as a test set and the remaining
groups are used as training sets, and repeats this process until every group has been used
as a test set in evaluation.

Given that these type of models require a lot of training, in order to achieve good
results, the models train for a maximum of 500 epochs. But not all models end up training
to that amount of epochs, because some models reach a plateau sooner than others. To
prevent training models that are not improving anymore, we decided to use Early Stopping
to prevent pointless training and consumption of resources. In most cases the value chosen
for this parameter was between 50 and 80 epochs of training, meaning if the model has
stopped improving its loss value for the specified number of epochs, it stops training that
model

4.3.2 Loss Function

The main objective when training neural networks is to decrease the value of the loss
function, the reason why is this metric focus on the minimizing the error the model makes.
The loss function aggregates the various good and bad aspects to a single number. So
when this value decreases it is a good representation that the model is improving it’s
performance.

There are many loss functions one can choose, but for the context of the ALS disease
progression problem, as we are trying to predict between two classes, it is a binary clas-
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sification problem as previously mentioned. So the better option of loss function for this
is the Binary Cross-Entropy (also referred as Logarithmic Loss), and the configuration of
the output layer of a node with a sigmoid activation unit.

4.4 Long-Short Term Memory

Long Short-Term Memory (LSTM) networks are a special sort of recurrent neural net-
work (RNN) that can learn order dependence in sequence prediction problems. Tradi-
tionally, recurrent neural networks have been difficult to train. However LSTM’s are not
generally appropriate for tabular data sets, where results have been poor. But they can be
used on time series data, as is the case of the ALS data set, so for that reason we will try
this type of model to evaluate whether it is a good approach.

Figure 4.4: Sequence Model - LSTM Architecture. This approach makes use of the
temporal dependence of the clinical features, which the input layer feeds the data into
it’s hidden layers, that are composed of 256 neurons, and use batch normalization and a
dropout layer of 30%. Finally the output layer consists of 1 neuron that is a continuous
value between 0 and 1.

This approach will use the temporal dependence of the clinical features, and for that
the proposed architecture for the LSTM, as it is shown on the figure 4.4, consists on
a input layer that feeds the data into it’s hidden layers. The 3 hidden layers consist of
256 neurons that proceed to use batch normalization and a dropout layer of 30%, finally
reaching the output layer that consists on a single neuron which the output is a continuous
value between 0 and 1, in which 0 means there is no requirement for treatment, and 1
means that it requires treatment.
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4.4.1 LSTM Training

The training procedure for the LSTM consists on grouping sequences by the patient ref-
erence, and then only using the sequences of length 3 and 4. We checked the mean length
value of the sequences, it was around 3.6 instances, so because of the lack of data we
decided to choose 3 and 4. However the sequences of length 3, needed padding in order
to all sequences have the same length for the model, for that we decided to simply take
the first clinical assessment available and use it as the first and second assessment on the
sequences, as it is shown on the figure 4.5.

Figure 4.5: Padding Method for the Sequences of Length = 3. This approach consists on
grouping the patient instances in groups of sequences of length 3 and 4. The sequences
with length of 3, needed some padding, in order to be able to provide this data to train the
model. For that we used the first instance of the sequence and simply use it as the first
and second instances of the sequence, resulting in a sequence of length 4.

Afterwards it consists on using the Stratified K-Fold, to create the train and test sets
which will be used to to train and evaluate the model. On the contrary as the MLP and
CNN training procedure, this one does not have any class resampling so the sets are quite
small.

4.5 Evaluation

For the evaluation of the models’ performance, we use various metrics that tell us how
the model is truly behaving. Given the training that is done, we need to be able to check
whether the models are learning and if they are capable of generalizing to the validation
data. The main metrics used for this evaluation, are the AUC-ROC Curve, the f1-score
and the accuracy.
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4.5.1 AUC-ROC Curve

The Receiver Operator Characteristic (ROC) curve is a binary classification issue eval-
uation metric. The Area Under the Curve (AUC) is a summary of the ROC curve that
measures a classifier’s ability to distinguish between classes. Therefore it indicates how
well the model distinguishes between positive and negative classes. The greater the AUC,
the better. The following figure 4.6 is an example of the different values of AUC.

Figure 4.6: AUC ROC example. This metric summarizes the classifier’s ability to dis-
tinguish between classes, the ability to distinguish between positive and negative classes.
The higher the value on this metric the better performance on the model. Figure from
[40].

Being this the metric we will use the most to evaluate the model’s performance given
the skewness of the data. As it can provide a lot of information in a single metric, making
it easier to evaluate how our models behave.

4.5.2 Accuracy

Accuracy is the most common metric used to evaluate models, however is not always the
best metric to use, specially when the classes are imbalanced. Such it was the case of the
the disease progression class we are trying to predict, prior to the resampling done with
SMOTE. Therefore the accuracy is a viable option to evaluate our model’s performance
on the training sets. However it is not viable to evaluate the test sets, because on this set
the class is not balanced as it previously was mentioned on the section 4.

Accuracy =
TP + TN

P +N

4.5.3 Sensitivity

Given that the Sensitivity is the model’s ability to correctly identify the positive class
[14], in this case it is the ability to correctly identify patients with disease progression. As
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Figure 4.7: Confusion Matrix. TP, TN, FP, FN refer to the number of true positives, true
negatives, false positives and false negatives.

the objective of this project is to clearly identify the positive instances, if we are able to
achieve higher scores on this metric it means the model is capable to identify the minority
class.

Sensitivity =
TP

TP + FN

4.5.4 Specificity

The Specificity is the model’s ability to correctly identify the negative class [14], in this
case it is the ability to correctly identify patient with no disease progression. This is a
metric that will no be the main objective to have the highest values however we still need
to be able to identify the negative class instances in order to have a great prediction model.

Specificity =
TN

TN + FP

4.5.5 F1-Score

This metric is one of the most used for model evaluation of binary classification problems,
as it uses both precision and recall to represent the performance of the model. F1-score
is better than the accuracy metric when dealing with imbalanced classes, as is the case of
ours. This will be used in complement of the AUC-ROC curve, to validate how the model
is behaving.

F1Score =
TP

TP + 1
2
(FP + FN)
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Chapter 5

Results

5.1 Baseline Results

In this section we will discuss the baseline results obtained. With the first approach men-
tioned on section 4.1 with the MLP and CNN models, we were able to achieve some
promising results, which are reported in the table 5.1.

Some of the datasets do not have a score, due to the lack of data available, meaning
that the class distribution is so sparse and the stratified group k-fold cross-validation was
not able to return a stratified group. Therefore we decided to exclude those that we could
not get a stratified group, in order to not get redundant scores on the AUC ROC metric.

We will then compare the models to other approaches to the problem, however the
only one we can compare is with the clinical endpoint C1, as the other clinical endpoints
it is the first time these are used to predict the disease progression, so there is no other
available references with the same data that is comparable.

The scores show that both models were able to achieve overall great results, they be-
haved similarly and scored close to each other. However in the majority of the datasets
the MLP performed better by a slight margin. With the scores that these models achieved
on this metric, means that the models are able to distinguish between classes.
Being able to distinguish between both classes, shows that the models are quite effectively
predicting the outcome. The clinical endpoint that showed the most promise is the clinical
endpoint C2, that was able to surpass the 90% metric value, which is excellent results on
this metric, without any hyper parameter search. The other 2 clinical endpoints 5.1, that
were able to achieve good results, were the clinical endpoint C4 and C5, being able to
score above 80% mark. Despite being a good score, there is still room for improvement
in order to, surpass the 90% mark as the previous clinical endpoint.
The clinical endpoint C1 despite being the one with the lowest scores, still was able to
achieve overall fair scores. However it is the one that needs the most improvement, given
that it is the treatment that showed the most promise in improving life expectancy of pa-
tients. And given that fact there is a need to work even more on this clinical endpoint,

33
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Dataset Model AUC ROC Mean
k=90 k=180 k=365

C1 - Need For NIV MLP 0.761 0.746 0.792
CNN 0.768 0.766 0.762

C2 - Need for an auxiliary
Communication Device MLP X 0.924 0.924

CNN X 0.921 0.906
C4 - Need for a Caregiver MLP 0.834 0.797 0.824

CNN 0.850 0.782 0.800
C5 - Need for a Wheelchair MLP X 0.840 0.833

CNN X 0.827 0.823

Table 5.1: Baseline Model Mean Values for the AUC Evaluation Metric for the different
Time Windows of k Days for each Clinical Endpoint. The Clinical Endpoint C3, and the
time windows of 90 days of the clinical endpoints C2 and C5 do not have scores, as the
class distribution was too sparse and no stratified group was found. The other models
were able to achieve some promising results, with the clinical endpoint C2 being the best
scoring one, obtaining above the 90% mark.

because it able to increase life expectancy of a lot of patients with ALS in the short term.
Pires et al. developed models to predict the clinical endpoint C1 (Need for NIV) [32], the
patient data was grouped by the stage of disease progression (Slow, Neutral and Fast), the
results obtained were higher than the models we presented on table 5.1. Our models did
not reach the 80% mark, where as the models Pires presented, several of the them were
above 80% and one was even able to surpass the 90% mark, this shows that our models
still have a lot of room to improvement.

To better understand the scores obtained, we made use of confusion matrices, to check
how the models were behaving. The confusion matrices showed that the models were in-
deed able to predict correctly the majority of the time all positive class instances, while
only miss classifying a few of the negative class instances. This shows that the models
can clearly distinguish between both classes, and also be able to achieve good accuracy
scores, which the models achieved in average above the 70% and 80% of accuracy, on an
imbalanced set.

The following section 5.2, we will present the scores obtained by the models after
doing this hyper parameter search and check whether or not we gained an increase in
performance of the model.
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5.2 Hyper Parameter Search

In this section we will show the results obtained when doing the parameter search. This
search consisted on changing the parameter values of the preprocessing of the datasets,
meaning we evaluated the models with different preprocessed methods datasets. The
values changed were the number of neighbors used on the KNN imputation, the number
of features used as input as well as the hidden size on the models. The objective is
to optimize the scores obtained, and check if we can get better scores on some of the
datasets, as this is a very costly procedure. The tables we will present, show the scores
obtained by the models on the several test metrics, where each table represents a specific
clinical endpoint. The following table 5.2 refers to the clinical endpoint C1 model results.

By analysing the scores of the table 5.2, we have that on the 90 day time window
both models had an increase on the AUC ROC metric, where the CNN had the biggest
increase from 76.8% to 79.6% when compared with the table 5.1, this is a considerable
increase but there is still room for improvement, by adjusting the parameters in order
to achieve better performance. However the rest of the time widows there was not an
increase noticeable enough to say that there was an improvement in performance. As
mentioned on the section 5.1, that Pires et al.[32] models achieved better scores than our
baseline models on table 5.1, however after the hyper parameter search we were able to
improve the models however not to the point to surpass Pires’ models.

Something to note is that the sensitivity values, which was the ability to correctly iden-
tify patients with disease progression as mentioned on section 4.5.3, were great and close
to 1 in all models, which in our case is a positive outcome given the objective we have.
However the values of the specificity metric, which was the ability to identify the patients
with no disease progression, were lower. On the 90 day time window, the scores obtained
did not surpass the 20% mark, on the 180 day time window the scores were around the
30% mark, the best was the 365 day time window that reached the 50% mark but with
sensitivity of around 80% mark.

The following table 5.3 refers to the clinical endpoint C2 model results.
By analysing the scores of the table 5.3 and comparing with the table 5.1, there was no

increase in performance as the scores stayed quite similar, around the 91% mark. As this
dataset already had models with great scores of AUC ROC, we did not expect any signifi-
cant improvement of performance, given that the models perform quite well and achieved
values extremely close to 1. The Scores obtained on the sensitivity metric were also quite
close to 1, and the specificity were higher than the values obtained on the table 5.2, on
the 90 day time window scores on the MLP of around 40% and on the CNN around the
30% mark, and on the 180 day time window scores on the MLP of around 60% and on
the CNN around the 40% mark.
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The table 5.4 refers to the clinical endpoint C4 model results.

The scores obtained on the table 5.4, on the 90 day time window the scores of AUC
ROC increased by 1% on both models, the other time windows did not achieve any im-
provement and stayed pretty much the same. The sensitivity and specificity of the 90 time
window, were close to 1 and around 0.30 mark respectively, the 180 day time window,
scored around 90% and around 50% respectively. The 365 day time window achieved
scores of the AUC ROC of around 80%, however it achieved scores of sensitivity and
specificity around the 70% mark, which was quite different from all the other clinical
endpoints which showed high values of sensitivity and low values of specificity.

We believe this happened because the 365 day time window dataset was the only that
did not require any class resampling, as the disparity between classes was quite low, and
the number of positive and negative instances were close to the same value. And by not
having to use the SMOTE and the undersampling methods, we used all of the real data
we had on this dataset. This means that perhaps the SMOTE method of creating synthetic
data, can cause the model to become more sensitive rather than a mix in between sensitive
and specific.

The following table 5.5 refers to the clinical endpoint C5 model results.

By analysing the scores of the table 5.5 and comparing with the table 5.1, similarly
to the clinical endpoint C2, there was no increase in performance as the scores did not
surpass the baseline values obtained, around the 83% in AUC ROC. However the scores
are already pretty good, as the models have a decent capability of identifying the patients
with disease progression as we can check the sensitivity values, and do not have the low-
est values for the specificity.

An interesting note is that the majority of the models, turned out to be more sensitive
than specific. Meaning the models take higher into account getting the positive instances
than the negative classes, this was clear when checking the confusion matrices, where
we had basically all the positive instances correctly labelled, and had the majority of the
negative instances correctly labelled however with several instances being miss classified.
For the context of this problem and given the lack of data available, it is a positive out-
come. As well as the scores obtained on the accuracy metric, we can confirm that the
models still perform quite well, where most of them are above the 80% threshold, and
only on some cases this metric did not reach the 70% threshold.

With this by checking the several tables we are can notice that comparing with the
results obtained with no parameter search, this process was able to increase by a slight
margin the scores obtained by some models. However the parameter search done, could
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be even deeper and perhaps there could have been a higher increase in results. But given
that this process takes time to do, and doing it on 10 different datasets, we had to reduce
the selection of parameters for the hyper parameter search. Therefore, we can also con-
clude that these models are very robust to different preprocessing steps.

Even so, there were some convergence on the parameters values, the most noticeable
case is the number of features used as input to feed the neural networks, where the most
recurrent value was 15 features as input. On a complex problem like ours, there is a need
to have enough features to be able to distinguish between classes and find patterns, that
might not be as easy to find, with just 5 features for example. With the other parameters,
the same happened but it was not as clear, on the number of neighbours for the KNN
imputation algorithm, it ended up being 4 neighbours that appeared in half of the times,
as it happened on the hidden size parameter where the 512 of hidden size was the best one
half of the time. Meaning the models had better performance with a neural network that
was a bit more complex.

5.2.1 Parameter Convergence

As mentioned before, there were some parameters that showed some convergence such as
the number of input features used. On this section will further discuss and present data that
support this. We can further support this statement by presenting the top five best models
of each dataset, with the following tables, which result from the hyper parameter search
performed that in total sum up to 270 different models of each proposed architecture
(MLP and CNN). The following table 5.6, shows the scores obtained by the models on
the clinical endpoint C1.

The following table 5.7, shows the scores obtained by the models on the clinical end-
point C2.

The following table 5.8, shows the scores obtained by the models on the clinical end-
point C4.

The following table 5.9, shows the scores obtained by the models on the clinical end-
point C5.

The models shown on the previous tables support the statement of models having a
better performance the more complex they are to a certain degree, which shows that the
great majority of the models take advantage of having a higher number of input features
used on the models, as before the number of input in which the models performed best
was the 15 features. Showing that the models have an easier time distinguishing between
the classes with more information available rather than 10 and 5 features, meaning the
features clinicians use really have a high correlation with the outcome. It would be bene-
ficial to go beyond the scope of values done in the hyper parameter search we performed,
to understand if the highest number of input values would still achieve the best performing
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models.
The following parameter value was not as clear whether or not there was any type

of convergence, however by showing the tables with the top 5 best performing models
it is possible to confirm whether or not there was any convergence on the number of
neighbours used on the KNN imputation algorithm. By analyzing the previous tables
for the KNN parameter, as mentioned on the section 5.2, the value that was the most
recurrent was the number of 4 neighbours, however unlike the number of features it was
not as clear. Given that, most of the models performed better with 3 or 4 neighbours on
the KNN, however value of 3 neighbours was pretty close to being the most common
value. Which would also be a good option, but normally we would have more values to
test with, to obtain a good measure of exactly what values work better on each dataset.
Although having more values to test would be beneficial, we would have to pay attention
to the points made on section 3.4.1, that choosing a low k would make the results less
generalizable and increase noise, however a higher k would tend to make local effects
less noticeable.

On the other hand, the hidden size parameter does not seem to converge to a specific
value, as the models seem to vary a lot this parameter value. This could mean that this
parameter does not have as great of an impact as the other two parameters, or that the
values chosen could have been lower for example instead of using 128, 256 and 512, use
a hidden size value of 64 in the place of the 128.

5.3 LSTM Results

In this section we will discuss the results obtained by the LSTM models. With this ap-
proach the results obtained were not the most promising results, comparing with the pre-
vious models that were able to achieve quite promising scores. Similarly to the section
5.1 and 5.2, because of the lack of data some of the datasets do not have scores, as it was
not able to have all groups with positive instances presence on the test sets.

On the following table 5.10 we will present the results obtained by the LSTM models
for the clinical endpoints C1 and C2, where we performed a hyperparameter search, of
the number of neighbours of the KNN imputation algorithm and the number of features
used as input on the model.

The table 5.10, we can analyse the results obtained, and verify that the achieved scores
were not the most promising. As most of the scores of the AUC metric were around 50%
meaning they were not able to distinguish between classes and performed quite poorly,
however the only one that performed slightly better was on the clinical endpoint C2 on
the time window of 365 days, as it obtained a score of 73%, which it is not ideal but
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when comparing with the MLP and the CNN on the table 5.3, that achieved above the
90% score, which shows that there is a lot of information that is lost when not using the
whole dataset as input for the models. However these models were able to obtain more
balanced scores of the sensitivity and specificity metrics, which means the models are not
as inclined to get just the positive instances correctly.

The following table 5.11 we will present the results obtained by the LSTM models for
the clinical endpoints C4 and C5.

By analysing the table 5.11, the scores achieved as the previous table were not the
most promising. Most of the scores of the AUC were around the 50% mark on the clini-
cal endpoint C4, so they were not able to distinguish between the classes, however on the
clinical endpoint C5, the scores of the AUC were above 70% with the highest score on
the 365 day time window of 76%. The time windows that got the best scores again was
the 365 day time window, as we thought it would happen given there were more positive
instances as the time window is larger. Comparing with the table 5.5, the scores were a
obtained by the LSTM were lower but not by a big difference, which with more tweak-
ing of the hyper parameters and collecting more data the probably could achieve similar
values as the MLP and the CNN. As the table 5.10 models, the values of sensitivity and
specificity were more balanced than on the section 5.2 models, most likely because there
is no usage of the SMOTE to re-sample the data, which is the reason we see fit to make
this happen, as it creates synthetic instances from the data available meaning it also uses
the negatives instances this can create a problem that the model may be biased to being
more sensitive or specific.

The models of the tables 5.10 and 5.11, like on the section 5.2 models, also showed
convergence on the hyper parameters values, where the number of neighbours for the
KNN imputation that achieved the best scores was with 2 neighbours, on all most of all
datasets. As well as the number of inputs features used by the models they converged
to 5 features used as input, which unlike the MLP and CNN from section 5.2, that more
features ended up being more beneficial for the model’s performance.

In order to support the claims mentioned previously, about parameter convergence we
decided to present the top 5 best performing models as we did on section 5.2.1, with the
MLP and CNN approach. The following table 5.12, shows the scores obtained by the
models on the clinical endpoint C1.

The following table 5.13, shows the scores obtained by the models on the clinical
endpoint C2.

The following table 5.14, shows the scores obtained by the models on the clinical
endpoint C4.

The following table 5.15, shows the scores obtained by the models on the clinical
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endpoint C5.
The tables shown provide a lot of insight to support the statements previously made,

but the data shows that it was not as clear as we thought, where the models actually
converged to 2 values most of the times. For the number of neighbours on the KNN
algorithm, the best performing models converged to 2 or 3 neighbours, and as mentioned
on section 5.2.1, we have to be careful whether or not the values are to low that makes the
model less generalizable, so with that in mind we would most likely use the models with
3 neighbours used.

On the number of input features used, most models tend to converge to 5 or 10 features
as input, unlike the models on the section 5.2, which most of those ended up performing
better the more complex the neural networks were, on the other hand, on this approach the
models do not benefit as much of having more features, where most of the best performing
models have only 5 features. Even so, these models were not able to achieve as good of
results as the first approach, showing that there is still some improvement that can be
done.
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Time
Window Model KNN # Input

Features
Hidden

Size Metric Mean Score

k=90 MLP 4 15 128 AUC ROC 0.777
Accuracy 0.817
Sensitivity 0.973
Specificity 0.154

CNN 3 10 256 AUC 0.796
Accuracy 0.712
Sensitivity 0.978
Specificity 0.121

k=180 MLP 4 15 128 AUC 0.753
Accuracy 0.689
Sensitivity 0.912
Specificity 0.313

CNN 4 15 512 AUC 0.769
Accuracy 0.630
Sensitivity 0.924
Specificity 0.293

k=365 MLP 3 15 512 AUC 0.769
Accuracy 0.686
Sensitivity 0.824
Specificity 0.504

CNN 4 15 128 AUC 0.764
Accuracy 0.649
Sensitivity 0.833
Specificity 0.477

Table 5.2: Best scoring models from the hyper parameter search for the Clinical Endpoint
C1 - Need for NIV in k days. There was a slight increase in the scores obtained by the
parameter search, relatively to the baseline results, where the largest increase was on the
90 day time window with the CNN model, from 76.8% to 79.6%.
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Time
Window Model KNN # Input

Features
Hidden

Size Metric Mean Score

k=180 MLP 3 15 512 AUC 0.916
Accuracy 0.888
Sensitivity 0.967
Specificity 0.387

CNN 3 15 256 AUC 0.923
Accuracy 0.784
Sensitivity 0.988
Specificity 0.285

k=365 MLP 2 15 512 AUC 0.910
Accuracy 0.868
Sensitivity 0.951
Specificity 0.596

CNN 3 15 256 AUC 0.918
Accuracy 0.787
Sensitivity 0.976
Specificity 0.392

Table 5.3: Best scoring models from the hyper parameter search for the Clinical Endpoint
C2 - Need for an auxiliary Communication Device in k days. As this clinical endpoint
already had excellent scores, there was no increase in the results obtained, as it was harder
to improve given the baseline scores.
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Time
Window Model KNN # Input

Features
Hidden

Size Metric Mean Score

k=90 MLP 4 5 128 AUC 0.842
Accuracy 0.760
Sensitivity 0.961
Specificity 0.295

CNN 2 15 256 AUC 0.863
Accuracy 0.657
Sensitivity 0.978
Specificity 0.243

k=180 MLP 2 15 256 AUC 0.787
Accuracy 0.728
Sensitivity 0.875
Specificity 0.504

CNN 4 15 512 AUC 0.787
Accuracy 0.638
Sensitivity 0.907
Specificity 0.425

k=365 MLP 2 15 512 AUC 0.811
Accuracy 0.730
Sensitivity 0.734
Specificity 0.716

CNN 2 15 512 AUC 0.804
Accuracy 0.734
Sensitivity 0.727
Specificity 0.726

Table 5.4: Best scoring models from the hyper parameter search for the Clinical Endpoint
C4 - Need for a Caregiver in k days. On the 90 day time window both models increased
1% relatively to the baseline results. The other time windows the scores obtained did not
increase, and obtained similar scores to the baseline results.
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Time
Window Model KNN # Input

Features
Hidden

Size Metric Mean Score

k=180 MLP 4 15 256 AUC 0.832
Accuracy 0.780
Sensitivity 0.952
Specificity 0.313

CNN 4 15 512 AUC 0.835
Accuracy 0.674
Sensitivity 0.973
Specificity 0.251

k=365 MLP 2 15 512 AUC 0.827
Accuracy 0.763
Sensitivity 0.890
Specificity 0.498

CNN 4 15 128 AUC 0.827
Accuracy 0.714
Sensitivity 0.922
Specificity 0.465

Table 5.5: Best scoring models from the hyper parameter search for the Clinical Endpoint
C5 - Need for a Wheelchair in k days. The scores obtained did not show any increase of
the baseline scores. However most models turned out to be more sensitive than specific,
which these favor getting more positive instances correct than the negative classes.
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Time Window Model KNN # Input
Features Hidden Size AUC ROC Mean Accuracy Sensitivity Specificity

k=90 MLP 4 15 128 0.777 0.817 0.973 0.154
4 15 512 0.753 0.855 0.965 0.148
4 15 256 0.749 0.828 0.966 0.139
3 10 128 0.744 0.756 0.973 0.121
3 10 256 0.743 0.764 0.970 0.115

CNN 3 10 256 0.796 0.712 0.978 0.121
3 10 512 0.795 0.705 0.980 0.122
4 15 512 0.795 0.625 0.984 0.106
3 15 256 0.794 0.654 0.985 0.111
3 15 512 0.793 0.624 0.986 0.106

k=180 MLP 4 15 128 0.753 0.689 0.912 0.313
4 10 128 0.752 0.679 0.912 0.308
4 15 256 0.752 0.707 0.908 0.326
2 15 128 0.751 0.694 0.909 0.311
4 10 256 0.749 0.686 0.906 0.312

CNN 4 15 512 0.769 0.639 0.924 0.293
4 15 256 0.767 0.649 0.923 0.302
4 15 128 0.767 0.648 0.924 0.299
3 15 256 0.765 0.646 0.925 0.293
2 15 128 0.765 0.667 0.924 0.310

k=365 MLP 3 15 512 0.769 0.686 0.824 0.504
3 15 256 0.761 0.674 0.815 0.494
4 15 512 0.759 0.684 0.816 0.506
2 15 256 0.758 0.669 0.814 0.489
2 15 512 0.757 0.670 0.808 0.490

CNN 4 15 128 0.764 0.649 0.833 0.477
4 15 512 0.763 0.641 0.832 0.466
4 15 256 0.763 0.642 0.844 0.468
3 15 256 0.762 0.638 0.838 0.464
3 15 128 0.760 0.634 0.833 0.461

Table 5.6: Top 5 models obtained by the hyper parameter search for the Clinical Endpoint
C1 - Need For NIV.

Time Window Model KNN # Input
Features Hidden Size AUC ROC Mean Accuracy Sensitivity Specificity

k=180 MLP 3 15 512 0.916 0.888 0.967 NAN
3 15 128 0.912 0.854 0.975 0.352
3 15 256 0.910 0.868 0.970 NAN
3 10 128 0.909 0.845 0.977 0.349
2 10 256 0.906 0.854 0.976 0.366

CNN 3 15 512 0.916 0.888 0.967 0.596
3 15 128 0.912 0.854 0.975 0.352
3 15 256 0.910 0.868 0.970 0.598
3 10 128 0.909 0.845 0.977 0.349
2 10 256 0.906 0.854 0.976 0.366

k=365 MLP 2 15 512 0.910 0.868 0.951 0.596
3 15 256 0.906 0.839 0.960 0.519
3 15 512 0.906 0.869 NaN 0.598
2 15 128 0.905 0.840 0.960 0.520
3 15 128 0.904 0.848 NaN 0.532

CNN 3 15 256 0.918 0.787 0.976 NaN
2 15 512 0.917 0.801 0.972 0.464
4 15 256 0.916 0.799 0.970 NaN
2 15 128 0.916 0.791 0.974 0.452
4 15 128 0.916 0.775 0.973 NaN

Table 5.7: Top 5 models obtained by the hyper parameter search for the Clinical Endpoint
C2 - Need for an auxiliary Communication Device.
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Time Window Model KNN # Input
Features Hidden Size AUC ROC Mean Accuracy Sensitivity Specificity

k=90 MLP 4 5 128 0.842 0.760 0.961 0.295
4 5 256 0.837 0.775 0.958 0.304
4 10 128 0.835 0.766 0.957 0.294
3 10 256 0.834 0.786 0.956 0.313
2 10 256 0.834 0.768 0.953 0.290

CNN 2 15 256 0.863 0.657 0.978 0.242
4 15 256 0.863 0.678 0.978 0.257
4 15 512 0.858 0.669 0.975 0.248
2 15 128 0.858 0.690 0.975 0.254
4 15 128 0.855 0.682 0.973 0.255

k=180 MLP 2 15 256 0.787 0.728 0.875 0.504
2 15 128 0.787 0.717 0.878 0.488
2 15 512 0.786 0.731 0.873 0.504
4 15 512 0.785 0.705 0.861 0.478
4 10 512 0.778 0.684 0.868 0.458

CNN 4 15 512 0.787 0.638 0.907 0.425
4 15 256 0.786 0.635 0.906 0.423
4 15 128 0.784 0.624 0.912 0.419
2 15 512 0.784 0.690 0.873 0.464
4 10 128 0.784 0.639 0.898 0.425

k=365 MLP 2 15 512 0.811 0.730 0.734 0.716
3 15 256 0.803 0.723 0.729 0.708
3 15 512 0.803 0.726 0.726 0.708
2 15 128 0.799 0.728 0.738 0.707
3 15 128 0.798 0.723 0.727 0.708

CNN 2 15 512 0.804 0.734 0.727 0.726
3 15 512 0.804 0.728 0.715 0.726
3 15 128 0.801 0.731 0.734 0.713
2 15 256 0.801 0.731 0.726 0.720
3 15 256 0.800 0.733 0.727 0.726

Table 5.8: Top 5 models obtained by the hyper parameter search for the Clinical Endpoint
C4 - Need for a Caregiver.

Time Window Model KNN # Input
Features Hidden Size AUC ROC Mean Accuracy Sensitivity Specificity

k=180 MLP 4 15 512 0.835 0.674 0.973 0.251
4 15 128 0.833 0.643 0.977 0.236
4 15 256 0.833 0.665 0.974 0.245
2 15 128 0.830 0.710 0.965 0.268
3 15 256 0.828 0.660 0.972 0.243

CNN 4 15 512 0.835 0.674 0.973 0.251
4 15 128 0.833 0.643 0.977 0.236
4 15 256 0.833 0.665 0.974 0.245
2 15 128 0.830 0.710 0.965 0.268
3 15 256 0.828 0.660 0.972 0.243

k=365 MLP 2 15 512 0.827 0.763 0.890 NaN
4 15 512 0.826 0.764 0.892 NaN
3 15 512 0.823 0.764 0.891 NaN
4 15 256 0.822 0.756 0.897 0.518
3 15 256 0.822 0.753 0.896 NaN

CNN 4 15 512 0.827 0.714 0.922 0.465
4 15 256 0.824 0.705 0.921 NaN
4 15 512 0.823 0.729 0.915 NaN
3 15 256 0.821 0.726 0.915 NaN
3 15 128 0.821 0.732 0.909 NaN

Table 5.9: Top 5 models obtained by the hyper parameter search for the Clinical Endpoint
C5 - Need for a Wheelchair.
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Dataset Time
Window KNN # Input

Features Metric Mean Score

C1 - Need for NIV k=90 3 15 AUC 0.526
Accuracy 0.734
Sensitivity 0.817
Specificity 0.238

k=180 2 5 AUC 0.581
Accuracy 0.602
Sensitivity 0.562
Specificity 0.609

k=365 2 5 AUC 0.510
Accuracy 0.553
Sensitivity 0.422
Specificity 0.598

C2 - Need for an Auxiliary
Communication Device k=90 2 5 AUC 0.542

Accuracy 0.807
Sensitivity 0.868
Specificity 0.462

k=180 2 5 AUC 0.583
Accuracy 0.589
Sensitivity 0.553
Specificity 0.618

k=365 2 5 AUC 0.731
Accuracy 0.751
Sensitivity 0.808
Specificity 0.668

Table 5.10: Hyper Parameter Search of the LSTM models on the Clinical Endpoints C1
and C2. The results from this model were not the most promising, which most models
were not able to achieve the 60% mark on the AUC metric, however the only one to
surpass the 70% mark was on the 365 day time window on the clinical endpoint C2.
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Dataset Time
Window KNN # Input

Features Metric Mean Score

C4 - Need for Caregiver k=90 2 15 AUC 0.501
Accuracy 0.758
Sensitivity 0.827
Specificity 0.185

k=180 3 5 AUC 0.493
Accuracy 0.610
Sensitivity 0.317
Specificity 0.673

k=365 2 10 AUC 0.560
Accuracy 0.720
Sensitivity 0.508
Specificity 0.760

C5 - Need for a Wheelchair k=180 2 5 AUC 0.720
Accuracy 0.745
Sensitivity 0.760
Specificity 0.739

k=365 2 5 AUC 0.764
Accuracy 0.753
Sensitivity 0.734
Specificity 0.789

Table 5.11: Hyper Parameter Search of the LSTM models on the Clinical Endpoints C4
and C5. On the clinical endpoint C4 the models stayed around the 50% mark meaning
they are not able to distinguish between classes, however the clinical endpoint C5 models
were slightly better and achieved above the 70% mark.

Time Window KNN # Input
Features AUC ROC Mean Accuracy Sensitivity Specificity

k=90 2 5 0.542 0.807 0.868 0.462
4 15 0.532 0.779 0.866 0.213
2 10 0.530 0.789 0.865 0.304
4 10 0.526 0.781 0.864 0.210
2 15 0.525 0.768 0.864 0.258

k=180 2 5 0.583 0.589 0.553 0.618
2 10 0.547 0.555 0.512 0.585
2 15 0.510 0.519 0.465 0.555
3 10 0.507 0.519 0.458 0.552
3 5 0.506 0.513 0.460 0.551

k=365 2 5 0.731 0.751 0.808 0.668
2 10 0.726 0.736 0.822 0.635
3 5 0.711 0.728 0.801 0.629
3 10 0.709 0.724 0.805 0.621
4 5 0.702 0.720 0.795 0.615

Table 5.12: Top 5 models obtained by the hyper parameter search of the clinical endpoint
C1 - Need For NIV.
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Time Window KNN # Input
Features AUC ROC Mean Accuracy Sensitivity Specificity

k=90 2 5 0.542 0.807 0.868 0.462
4 15 0.532 0.779 0.866 0.213
2 10 0.530 0.789 0.865 0.304
4 10 0.526 0.781 0.864 0.210
2 15 0.525 0.768 0.864 0.258

k=180 2 5 0.583 0.589 0.553 0.618
2 10 0.547 0.555 0.213 0.297
2 15 0.510 0.519 0.465 0.555
3 10 0.507 0.519 0.458 0.552
3 5 0.506 0.513 0.460 0.551

k=365 2 5 0.731 0.751 0.808 0.668
2 10 0.726 0.736 0.822 0.635
3 5 0.711 0.728 0.801 0.629
3 10 0.709 0.724 0.805 0.621
4 5 0.702 0.720 0.795 0.615

Table 5.13: Top 5 models obtained by the hyper parameter search of the clinical endpoint
C2 - Need for an auxiliary Communication Device.

Time Window KNN # Input
Features AUC ROC Mean Accuracy Sensitivity Specificity

k=90 2 15 0.501 0.758 0.827 0.185
4 15 0.499 0.756 0.826 0.183
4 5 0.498 0.755 0.826 0.175
3 10 0.497 0.757 0.826 0.180
3 5 0.497 0.761 0.826 0.172

k=180 3 5 0.493 0.610 0.317 0.673
3 10 0.486 0.603 0.297 0.669
2 10 0.484 0.594 0.283 0.668
2 15 0.483 0.596 0.286 0.667
4 5 0.481 0.602 0.300 0.666

k=365 2 10 0.560 0.720 0.508 0.760
3 15 0.549 0.706 0.508 0.755
2 15 0.547 0.703 0.456 0.753
3 10 0.547 0.708 0.508 0.754
3 5 0.544 0.708 0.508 0.752

Table 5.14: Top 5 models obtained by the hyper parameter search of the clinical endpoint
C4 - Need for a Caregiver.
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Time Window KNN # Input
Features AUC ROC Mean Accuracy Sensitivity Specificity

k=180 2 5 0.720 0.745 0.760 0.739
2 10 0.712 0.736 0.760 0.706
2 15 0.708 0.728 0.758 0.689
3 15 0.701 0.722 0.755 0.681
3 5 0.701 0.723 0.751 0.682

k=365 2 5 0.764 0.753 0.734 0.789
3 5 0.753 0.742 0.736 0.751
2 15 0.751 0.742 0.735 0.750
3 10 0.750 0.738 0.733 0.746
4 5 0.748 0.736 0.731 0.742

Table 5.15: Top 5 models obtained by the hyper parameter search of the clinical endpoint
C5 - Need for a Wheelchair.
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Conclusion and Future Work

In this section we will conclude the discuss of the results obtained. We proposed the use
of neural networks, such as the MLP, the CNN and a LSTM, to tackle the prediction of
disease progression of the different clinical endpoints available within predefined time
windows of 90, 180 and 365 days.

On the first approach proposed the results are promising, achieving up to 92% in AUC,
for the clinical endpoint C2 in the 90 day time window. The results were somewhat ex-
pected, however the fact that the best resulting models of a certain clinical endpoint, were
within the 90 day time window, which surprised us. We expected that the results would
get better as the time windows were larger, given that the number of positive instances
increased and the disparity between classes lowered, this was not the case whatsoever.

On the other hand, the LSTM models performed as we thought they would where the
largest time window would be the best scoring, because it had more positive instances
than the other time windows. However the scores achieved were not as promising as the
MLP and CNN models, since using sequences of length 3 and 4, reduces drastically the
data available for the model to learn from, which translates to a lower performance. To
improve this, an approach is to use even more sequences of different lengths and find a
padding technique that fits best to improve the sequences we have.

There is still a lot that can be done to improve the results obtained, such as a deeper
hyper parameter search and to further explore the hyper parameter search there are still
several parameters we did not experiment, that could potentially further improve the re-
sults achieved. On the first approach we only explored 3 different parameters, with 3
different values each, this is not a nearly enough to consider it as concluded. Ideally, we
would have liked to have at least 5 parameters with minimum of 5 to 6 values each, this
would give us for each dataset around 75 different models tested, right now we have 27
on each dataset. And we still were able to slightly improve some of the results, with a
deeper hyper parameter search there might be some improvement to achieve.

51
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For the models we proposed there is a need to obtain more data to train this type of
models that are really dependent on how much data you can feed into it, where we did
everything not to throw away data that could be essential to have good results. However
we believe that these type of prediction models will be very useful once fully tested and
used on a practical context with real patients. It might prove to be an effective tool to help
clinicians reach a decision on when to treat a patient, and the patients’ well being, with
the objective to improve quality of life and increase the life expectancy of the patient.
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