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Resumo  
 
A doença de Alzheimer (DA) e a doença de Parkinson (DP) são as duas doenças 

neurodegenerativas mais comuns no mundo. Embora a etiologia, a região cerebral 

afetada e as características clínicas sejam particulares a cada uma dessas 

doenças, ambas partilham mecanismos comuns, tais como disfunção mitocondrial, 

perda neuronal e acumulação de proteína tau. O principal fator de risco para estas 

doenças é o envelhecimento, sendo a idade de aparecimento da DA e da DP em 

torno dos 65 anos. Em conjunto, a DA e a DP são responsáveis por 50 milhões de 

casos no mundo, número que deve aumentar devido ao facto da esperança de vida 

da população mundial estar continuamente a subir. A maioria dos casos de DA e 

DP são idiopáticos e, apesar de toda a investigação feita durante os últimos séculos 

para compreender melhor a sua natureza molecular, os tratamentos atuais ainda 

só atuam ao nível dos sintomas. Portanto, o desenvolvimento de terapias eficazes 

requer uma melhor compreensão da etiologia das doenças e dos mecanismos 

subjacentes, bem como encontrar alvos específicos das doenças para o 

desenvolvimento de fármacos para a terapia respetiva. 

 

Uma estratégia comum para identificar vias biológicas e processos celulares 

alterados nas doenças neurodegenerativas é a comparação dos perfis de 

expressão génica entre tecidos cerebrais post-mortem com e sem doença, de 

mesma idade. No entanto, os perfis de expressão derivados de mRNA de tecido 

cerebral refletem bastante as alterações da composição celular, nomeadamente a 

conhecida perda de neurónios associada à DA ou à DP, mas não necessariamente 

as alterações moleculares relacionadas com a doença em si nas células do cérebro. 

O avanço tecnológico recente na área da transcritómica de célula individual (single-

cell RNA-seq (scRNA-seq)) permite agora enfrentar essa limitação, permitindo a 

determinação de perfis de expressão de genes de referência para cada um dos 

principais tipos de célula cerebral (i.e. neurónios, astrócitos, micróglia e 

oligodendrócitos) que podem então ser usados para estimar computacionalmente 

o conteúdo celular especifico de amostras de tecido cerebral em condições de 

doença e não doença, desacoplando o efeito de neurodegeneração (ou seja, a 

relativamente acentuada perda de neurónios) dos efeitos da doença sistémicos ou 

específicos do tipo celular. 
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Esta abordagem já foi aplicada na determinação dos efeitos da idade e dos 

distúrbios psiquiátricos na composição celular do cérebro humano, assim como da 

contribuição de cada tipo de célula no transcritoma patológico do autismo. O 

mesmo princípio foi também aplicado na DA modelando a expressão de seus genes 

de risco em função da composição celular estimada de amostras cerebrais. Por 

exemplo, os níveis de expressão dos genes APP, PSEN1, APOE e TREM2 foram 

associados à abundância relativa de neurónios, oligodendrócitos, astrócitos e 

micróglia, respectivamente. Além disso, dois estudos recentes traçaram o perfil de 

expressão obtido de núcleos das principais células de amostras de cérebro post-

mortem com e sem DA, revelando alterações transcricionais específicas do tipo de 

célula. Todos esses estudos destacam a importância de caracterizar fenótipos 

específicos do tipo de célula associados à doença, que podem não apenas 

desvendar as bases celulares e moleculares dos mecanismos patológicos, mas 

também ser terapeuticamente alvejados. 

 

No entanto, alguns desses estudos ainda carecem de validação independente e 

não dissecaram totalmente a natureza das alterações transcritómicas em cérebros 

com DA. Além disso, não temos conhecimento de que abordagens semelhantes 

tenham sido aplicadas à DP, apesar da acumulação de evidências da importância 

da modelação da composição celular em doenças neurodegenerativas. Pelas 

razões supradescritas, nesta tese usámos dados de scRNA-seq para derivar as 

assinaturas de expressão génica dos principais tipos de células cerebrais humanas 

e estimar a composição celular dos transcritomas de amostras cerebrais post-

mortem de DA e DP idiopáticas, avaliando se a perda neuronal poderia estar a 

confundir ou mascarar os efeitos intrínsecos das doenças na expressão génica. 

Validámos os resultados em conjuntos de dados independentes. Além disso, uma 

vez que as DA e DP podem partilhar os mesmos mecanismos de progressão de 

doença, também investigámos as semelhanças entre as alterações transcritómicas 

induzidas por DA e DP em tecidos cerebrais humanos. 

 

Esta abordagem permitiu a identificação inédita de genes e vias biológicas cuja 

atividade no cérebro é intrinsecamente alterada pelas DA e DP, de formas sistémica 

e específica do tipo celular. Além disso, identificámos genes que são comumente 
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alterados por ambas as doenças neurodegenerativas, bem como aqueles que são 

especificamente alterados em cada uma. 

 

Usámos também dados públicos de transcritómica de perturbações químicas de 

linhas celulares humanas com milhares de compostos diferentes. Comparámos 

computacionalmente esta miríade de alterações transcritómicas induzidas 

farmacologicamente com as que identificámos em tecidos cerebrais humanos como 

potencialmente causadas por DA e DP. Esta abordagem permitiu-nos assim 

identificar fármacos candidatos a reverter especificamente as alterações 

moleculares causadas pelas doenças. 

 

Porém, o nosso estudo apresenta algumas limitações. Concentrámo-nos nos 

quatro principais tipos de células cerebrais mas a nossa abordagem não é sensível 

o suficiente para estimar a quantidade relativa de mRNA proveniente da microglia, 

perdendo assim o seu sinal transcritómico fisiológico. Além disso, apesar de termos 

validado os nossos resultados usando um conjunto de dados públicos 

independentes, a desejável validação experimental adicional, com amostras 

independentes do conjunto de dados analisados, não é viável, devido à extrema 

dificuldade em ter acesso a amostras de cérebro humanas post-mortem. Este 

estudo apresenta também uma dificuldade na interpretação dos seus resultados: 

os medicamentos usados atualmente para o tratamento de DA e DP não estão 

entre aqueles que a nossa análise considerou serem os mais prováveis de reverter 

as alterações de expressão génica específicas de DA e DP. Provavelmente este 

resultado deve-se às diferenças entre as alterações de expressão génica induzidas 

por fármacos em linhas celulares derivadas de cancros (aquelas a cujos dados de 

perturbações transcritómicas quimicamente induzidas tivemos acesso) e as 

alterações que os mesmos fármacos possam induzir nas células do cérebro, 

ilustrando assim a principal limitação da nossa abordagem quimio-transcritómica.  

 

Esperamos que o desenvolvimento permanente das tecnologias de single-cell 

ajude a aumentar a resolução do nosso conhecimento sobre as particularidades de 

cada tipo celular do cérebro humano, bem como na identificação das perturbações 

moleculares em cada célula que são críticas para o desenvolvimento e progressão 

das doenças neurodegenerativas como DA e DP. Aliás, alguns estudos já usaram 
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scRNA-seq para caracterizar a composição celular em cérebros não doentes, em 

contextos de neurogénese e reprogramação somática para neurónios, e em 

cérebros com DA. No entanto, tendo em conta que continuam a acumular-se dados 

de single-cell e que já existem vários transcritomas de cérebros com doenças 

neurodegenerativas disponíveis, abordagens como a nossa poderão ajudar a 

desvendar um pouco da complexidade celular e molecular associada à 

neurodegeneração em humanos. 

 

Em suma, os nossos resultados demonstram a relevância de considerar a 

composição celular do cérebro ao analisar alterações moleculares associadas a 

doenças neurodegenerativas, identificando assim um conjunto de novos candidatos 

moleculares relacionados com as próprias DA e DP, em vez de com a perda de 

neurónios associada. Além disso, os nossos resultados ilustram o potencial de 

análises in silico de perturbações químicas dos transcritomas de células humanas 

como estudos preliminares de reaproveitamento de fármacos para novas terapias 

que possam vir a ser mais eficazes a mitigar, ou mesmo reverter, alguns dos 

fenótipos associados a doenças neurodegenerativas. 

 

 

Palavras-chave 
Doença de Alzheimer, doença de Parkinson, neurodegeneração, deconvolução 

celular, citometria digital, single-cell RNA-seq, quimio-transcritómica. 
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Summary  
 
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common 

neurodegenerative disorders worldwide. Although the aetiology, affected brain 

region and clinical features are particular to each of these diseases, they 

nevertheless share common mechanisms such as mitochondria dysfunction, 

neuronal loss and tau protein accumulation. The major risk factor for those disorders 

is ageing, the age of onset of both AD or PD being around 65 years old. Together, 

they account for 50 million cases worldwide, a number expected to increase due to 

the fact that the world population is living longer than ever. Most of AD and PD cases 

are sporadic and, despite all the research during the last centuries to better 

understand their molecular nature, current treatments are still symptomatic. 

Therefore, the development of effective therapies requires a better comprehension 

of the diseases’ aetiology and underlying mechanisms as well as finding disease-

specific targets for drug discovery.   

 

A common strategy to identify biological pathways and cellular processes altered in 

neurodegenerative disorders is to compare gene expression profiles between age-

matched diseased and non-diseased post-mortem brain tissues. However, the 

expression profiles derived from whole brain tissue mRNA highly reflect alterations 

in cellular composition, namely the well-known AD- or PD-associated loss of 

neurons, but not necessarily the disease-related molecular changes in brain cells. 

The advent of single-cell transcriptomes has made it possible to tackle this limitation, 

enabling the determination of reference gene expression profiles for each major 

brain cell type (namely neurons, astrocytes, microglia and oligodendrocytes) that 

can then be used to computationally estimate the cell type-specific content of bulk 

brain sample’s in healthy and diseased conditions, decoupling the 

neurodegeneration effect (i.e. the relative loss of neurons) from the intrinsic 

systemic or cell type-specific disease effects. 

  

This approach has already been applied in determining the effects of age and 

psychiatric disorders on the cellular composition of human brain, or the contribution 

of each cell type in shaping the pathological autism transcriptome. The same 

principle was applied in AD by modelling the expression of its risk genes as a 
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function of estimated cellular composition of brain samples. For instance, APP, 

PSEN1, APOE and TREM2 had their expression levels associated with the relative 

abundance of respectively neurons, oligodendrocytes, astrocytes and microglia. 

Additionally, two recent studies profiled single nuclei of major brain cell types in AD 

and non-AD post-mortem brain samples, unveiling cell type-specific transcriptional 

changes. All these studies highlight the importance of charactering disease-

associated cell type-specific phenotypes that can not only unveil the cellular and 

molecular bases of pathological mechanisms but also be therapeutically targeted.  

 

However, some of these studies still lack independent validation and have not fully 

dissected the nature of transcriptomic alterations in AD brains. Moreover, to our 

knowledge, similar approaches have not yet been applied to PD, despite increasing 

evidence regarding the importance of modelling cellular composition in 

neurodegenerative disorders. We therefore used scRNA-seq data to derive gene 

expression signatures for the major human brain cell types and estimate the cellular 

composition of idiopathic AD and PD post-mortem brain samples from their bulk 

transcriptomes, investigating whether neuronal loss could be confounding or 

masking the intrinsic disease effects on gene expression, and validating the results 

in independent datasets. Additionally, since AD and PD might share the same 

mechanisms of disease progression, we also investigated the similarities between 

the transcriptomic alterations induced by AD and PD in human brain tissues. 

 

This approach allowed the novel identification of genes and pathways whose activity 

in the brain is intrinsically altered by AD and PD in systemic and cell type-specific 

ways. Additionally, we pinpoint the genes that are commonly altered by these major 

neurodegenerative disorders as well as those specifically perturbed in each illness. 

Moreover, using chemical perturbagen data, we computationally identified 

candidate small molecules for specifically targeting the profiled AD/PD-associated 

molecular alterations. Thus, we unveil a set of novel candidates that can potentially 

be targeted in AD and PD therapeutics. Moreover, we herein demonstrate the 

potential of modelling cellular composition in transcriptomics analyses in the 

discovery of therapeutic targets for other neurodegenerative diseases.   
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I - Introduction 

1. The human brain 
 
The human brain is the most complex system in the animal kingdom [1]. It controls 

our thoughts, memory and speech, arm and leg movements, as well as the function 

of many organs within the body. Additionally, throughout the human lifespan, the 

whole brain’s volume changes [2]. It grows until adolescence and then sets until 

around 35 years of age, when it starts a steady volume loss [2]. 

 

1.1 The meninges 
 

The brain is located inside the skull, that protects it from external injuries. Between 

the skull and the brain, there are three layers of tissue called meninges, that cover 

and protect the brain and spinal cord [3]. From the outermost to the deepest layer, 

they are: the dura mater, arachnoid mater and pia mater (Figure 1) [3,4]. 

 

The dura mater is a thick, dense and fibrous membrane that is quite inelastic. It is 

composed of two fused layers: the periosteal layer that is close to the skull and is 

mainly composed of fibroblasts, osteoblasts and extracellular collagen conferring 

the dura’s strength; and the meningeal layer that is closer to the brain tissue [5].  

 

Skull
Dura mater
Arachnoid

Pia mater

Brain tissue

Figure 1 – The human brain meninges 
The human brain is enveloped by three layers of tissue called 
meninges: dura mater, arachnoid and pia mater. 
Figure inspired by [4] and https://en.wikipedia.org/wiki/Human_brain . 
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The arachnoid layer is a thin wispy avascular membrane that lies between the dura 

and the pia maters and is involved in cerebrospinal fluid (CSF) [3]. Its structure 

consists of three layers: a superficial mesothelial layer below the dura, a central 

layer composed of cells conjoined by many junction proteins, and a deep layer of 

less tightly packed cells with many collagen fibbers within their intercellular space 

[5].  

 

Finally, the pia mater, the deepest layer of the meninges, is composed of the epinial 

layer, that contains mesothelial cells and collagen fibbers, and the intima pia, which 

consists of elastic and reticular fibbers [6]. The mesothelial cells connect the pia 

mater to the arachnoid matter and the intima pia adheres to the outermost layer of 

neural tissue, known as the glial membrane [3]. Moreover, the cerebral pia mater 

forms sheaths around the blood vessels that enter and exit the brain perpendicularly 

to the meninges [7].  

 

1.2 Brain components and function 
 

The nervous system is divided into the central nervous system (CNS) and the 

peripheral nervous system (PNS). The CNS is composed of the brain, its cranial 

nerves and the spinal cord, whereas the PNS is composed of the spinal nerves that 

branch from the spinal cord and the autonomous nervous system [8]. 

 

The brain can be divided mainly in three parts: forebrain, midbrain and hindbrain 

(Figure 2). The forebrain is divided into the diencephalon, which contains the 

thalamus and hypothalamus that control sensory and autonomic processes, and the 

telencephalon, which comprises the cerebrum [9]. The cerebrum takes up the 

majority of the space and controls somatosensory and motor functions, language, 

cognition, memory, emotions, hearing, and vision [10].  
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The midbrain ensures the connection between the forebrain and the hindbrain, 

transmitting signals between them [9]. Moreover, it is where the basal ganglia and 

related nuclei are located (Figure 3). These structures are involved in motor control, 

motor learning, executive functions and behaviour, as well as emotions [11]. 

 

Basal ganglia stands for the nuclei deeply embedded in the brain hemispheres 

(striatum or caudate-putamen and globus pallidus) and the related nuclei consist of 

structures located in the diencephalon (subthalamic nucleus), mesencephalon 

(substantia nigra) and pons [11]. The basal ganglia and related nuclei can be 

Figure 2 – Human brain components 
The brain can be divided in 3 main components: forebrain, midbrain and hindbrain.  
The cerebrum can be further subdivided in 4 lobes: frontal, occipital, parietal and temporal.   
Adapted from https://www.wisegeek.com/what-is-neuropsychology.htm# and 
http://brainvisor.com/structure-function%20(1).html . 
 

Figure 3 – Basal ganglia and its related nuclei 
Representation of the basal ganglia and its related nuclei 
location in the human brain.  
Source:https://commons.wikimedia.org/wiki/File:Basal_gangli
a_and_related_structures_(2).svg 
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additionally categorized as input, output and intrinsic nuclei. The input nuclei are 

composed of the caudate nucleus, the putamen and the accumbens nucleus and 

are responsible for receiving incoming information mainly from the cortex, thalamus 

and the substantia nigra [11].  The internal segment of the globus pallidus and the 

substantia nigra pars compacta are the output nuclei and thus send basal ganglia 

information to the thalamus [11].  The intrinsic nuclei are composed of the external 

segment of the globus pallidus and relay the information between the input and 

output nuclei [11]. 

 

The hindbrain can be divided into three sections: medulla oblongata, pons and 

cerebellum. Its main function is to control certain physiological functions of the body 

such as heart rate, breathing and blood pressure [12].  

 

1.2.1 Brain lobes  
 

The human brain is divided by a deep longitudinal fissure into the left and right 

hemispheres, that are kept in contact with one another by the corpus callosum [10]. 

Each individual tends to use more a hemisphere than the other and usually the left 

hemisphere is the dominant one [10]. Each hemisphere can be then subdivided into 

the frontal, parietal, occipital and temporal lobes, with each lobe carrying out 

different functions [10] (Figure 4). 

 

Figure 4 – Human brain lobes 
Representation of the location of the 4 different lobes in the human brain.  
Adapted from © By TeachMeSeries Ltd (2020). 
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The frontal lobe is the largest of the four lobes and is responsible for several 

functions such as motor skills, judgement, abstract thinking, creativity and 

maintaining social appropriateness. It includes the primary motor and prefrontal 

cortices [13]. The primary motor cortex, or percental gyrus, is the area responsible 

for movement [10]. The prefrontal cortex is considered the “personality centre” 

where we process moment-to-moment inputs from our surroundings and manifest 

our insight, foresight and planning capabilities into the actions that define who we 

are [14]. Lesions in this area often cause neuropsychiatric disorders such as 

disinhibition, apathy, loss of initiative and personality changes [14].  

 

The parietal lobe controls perception and sensation such as the sense of touch, 

temperature and pain in parts of the contralateral body, i.e. the body side opposite 

to that of the parietal lobe’s hemisphere [10]. Injury in the parietal lobe can therefore 

cause loss of sensations that depend on which hemisphere the injury takes place. 

For instance, damage in the dominant hemisphere would cause agraphia, acalculia, 

finger agnosia and left-right disorientations [10]. Damage in nondominant parietal 

lobe hemisphere would cause agnosia of the contralateral side of the field of vision, 

also known as the hemispatial neglect syndrome [10].  

 

The occipital lobe is the smallest lobe and forms the caudal part of the brain [15]. It 

is responsible for its visual processing area, being associated with visuospatial 

processing, distance and depth perception, colour determination, object and face 

recognition and memory formation [15].  

 

The temporal lobe can be divided into superior, middle and inferior temporal gyruses 

(Figure 5) [10]. It controls language comprehension, hearing and memory [10].  
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Wernicke’s area, responsible for language comprehension, is located in the superior 

temporal gyrus of the dominant hemisphere [16]. Damage in this specific area 

causes receptive aphasia where one is unable to comprehend or express written or 

spoken language [16].  

 

The primary auditory cortex area, which is responsible for processing most auditory 

information from the contralateral ear, is also located into the superior temporal 

gyrus [10].  Moreover, the hippocampus and amygdala can be found in the medial 

temporal lobe, with the amygdala located just in front the hippocampus (Figure 5) 

[17]. Those two regions play a key role in emotional learning and memory [17].  

 

1.3 Brain cell types 
 

The human brain is considered a complex organ, being composed of several 

different cell types. It is estimated that the entire brain is made of 67-86 billion 

neurons, around 40-50 billion glial cells and 20-25 billion endothelial cells [18]. For 

decades, it was thought that the glia-neuron ratio (GNR) for the entire human brain 

was 10:1 but, since 2009, it has been established that the GNR is, in fact, closer to 

0.7:1 [18]. Additionally, this ratio can vary between brain areas and with age. For 

Figure 5 – Temporal lobe 
Representation of the temporal lobe division as well as the location of the hippocampus 
and amygdala. 
Adapted from © Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 46670 and ID 
139569785 © Designua | Dreamstime.com. 
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instance, the grey matter of the human cerebral cortex evolves from a GNR of 0.3:1 

in the new-borns to a GNR of 2:1 in adulthood [18].  

 

1.3.1 Neurons 
 

Given the very high number of estimated neurons in the human brain, it is not 

surprising that several different neuronal cell types exist. Although the best neuronal 

classification is still debated in the neurobiology field, there are three main 

categories, namely, morphological, functional and molecular, that can be used for 

that purpose [19].  

The neuronal classification based on the function considers the direction of the 

action potential (neuronal electric impulses that send signals around the body) being 

classified as sensorial, motor or interneurons [8]. The sensorial neurons (also known 

as afferent neurons) are responsible for conducting the action potentials to the CNS, 

while the motor neurons (also known as efferent neurons) conduct the action 

potentials from the CNS to the muscles or glands, and the interneurons conduct the 

action potential from one neuron to another in the CNS [8].  

 

The morphological properties of a neuron are based on its dendritic and axonal 

shapes, soma size and spine density [19]. Indeed, neurons can be classified as 

multipolar, bipolar or unipolar [8] (Figure 6).  

Figure 6 – Neuronal morphological types 
Morphologically, neurons can be classified as multipolar, bipolar or unipolar.   
Adapted from 
https://commons.wikimedia.org/wiki/File:Three_Basic_Types_of_Neuronal_
Arrangements.png .  
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Multipolar neurons have several dendrites and only one axon, being found mainly 

in the CNS, while motor neurons are also multipolar [8]. Bipolar neurons have one 

dendrite and one axon, and are usually found in some sensorial organs such as the 

retina, the eye and the nasal cavity [8]. As for unipolar neurons, these are in fact 

pseudo-unipolar. They have an extension that divides in two branches: one axonal 

that goes to the CNS and one peripheric that goes to the periphery where it ramifies 

into sensorial receptors, similarly to the dendrites [8]. The two branches function as 

a unique axon [8].   

 

The most commonly used molecular properties to classify neurons are based on 

their protein and mRNA composition [19].  

 

1.3.2 Glial cells 
 

Although glial cells are not as diverse as neurons, they are essential for normal body 

function. In the PNS, glial cells can be divided into Schwan cells, satellite cells and 

enteric glia [20]. This thesis will focus on the CNS glia and as such these cells will 

be introduced in more detail.  

 

The glia in the CNS is composed of astrocytes, microglia and oligodendrocytes. 

Their relative abundance can vary between brain regions but oligodendrocytes are 

the most abundant glial cell type, reaching up to 45-75% of total human brain glial 

cells, followed by astrocytes with 19-40%, and microglia contributing with 10% or 

less [19].   

 

Astrocytes are present in the entire CNS and are responsible for many physiological 

functions, such as synaptic transmission and information processing by neural 

circuits, as well as maintenance of water and blood-brain-barrier (BBB) homeostasis 

[21]. They respond to all forms of CNS insults by a process referred to as 

astrogliosis, considered to be a pathological hallmark of CNS structural lesions [21].   

 

Microglia are the most abundant mononuclear phagocytes in the CNS [22]. They 

are responsible for several important processes in the brain, such as elimination of 
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microbes, dead cells, redundant synapses, protein aggregates and other antigens 

that might harm the CNS [23]. In a healthy adult brain, microglia are ramified, 

maintaining an immunological stable environment, although they are not able to do 

phagocytosis or present antigens [22]. Only when sensing an injury in the CNS, they 

become activated and acquire a fully active phagocytic form, secreting 

proinflammatory mediators and neurotoxins [24] and giving rise to the microgliosis 

process. As such, they also participate in the removal of damaged neurons and 

foreign substances and are responsible for immunological surveillance, secreting 

growth and pro-inflammatory factors such as prostaglandins, TNF-α and free 

radicals [25]. These factors are needed for normal biological functions but have to 

be tightly regulated to avoid over-activation that triggers a neurotoxic response [25].  

Oligodendrocytes’ primary function is to produce the myelin sheath that wraps the 

axons of many nerve cells. This process facilitates neuronal transmission via 

saltatory action potential that takes advantage of the conductance over the nodes 

of Ranvier, forming the white matter of the CNS [26]. Oligodendrocytes are 

considered the largest non-neuronal cell population in the brain [27]. 

Oligodendrocyte precursor cells (OPCs) represent up to 5% of cells in the mature 

brain and are characterized by the expression of the proteoglycan nerve-glial 

antigen NG2. These cells are the main class of proliferating cells that can 

differentiate into oligodendrocytes, astrocytes and possibly neurons, although this 

ability to differentiate remains debatable [28].   

 

1.3.3 Neuron-glia interaction 
 

Although astrocyte and microglia populations have very specialized roles and show 

heterogeneous distributions across brain tissue, their functional interplay and 

interaction with neurons are also relevant for the maintenance of a healthy brain 

[29,30]. Neuron-glia interactions are responsible for several developmental 

processes in the brain: neurogenesis; myelination; synapse formation, maturation 

and plasticity; neuronal migration, proliferation, differentiation and signalling [31,32]. 

Moreover, soluble factors, like neurotransmitters, hormones and growth factors 

secreted by glial and neuronal cells, also play a role in the nervous system’s 

morphogenesis [32].  



 10 

Another important feature of neuron-glia interaction is the BBB. It is mainly 

composed of endothelial cells and perivascular end feet of astrocytic glia and acts 

as a selective physical barrier by facilitating the entrance of required nutrients to the 

brain and excluding potential harmful compounds [33]. Besides, many features of 

the BBB can be modulated under physiological conditions through the release of 

transmitters and modulators by neurons, astrocytes and endothelium cells [33]. For 

example, the BBB can allow the passage of growth factors and antibodies needed 

into the brain by opening its endothelial cells’ tight junctions [33].   

 

1.4 Brain diseases 
 

The brain is a very tightly regulated and complex organ. As such, when its function 

is impaired, it can lead to several types of disease. Neurological disorders contribute 

to 11.6% of global disability-adjusted life years (DALYs) and 16.5% of deaths from 

all causes, being the leading group cause of DALYs and the second leading group 

cause of deaths in the world [34]. Since 1990, there was an increase of 39% in the 

number of deaths and an increase of 15% of DALYs from neurological disorders 

[35].  

 

Stroke is the largest contributor to global neurological DALYs, being responsible for 

47.3% of DALY and 67.3% of deaths in 2015 [36] (Figure 7). Migraine is the second 

largest contributor, followed by Alzheimer’s and other dementias and meningitis 

[36]. Indeed, migraine and Alzheimer’s disease (AD) and other dementias were 

ranked among the top four contributing neurological conditions in all the 21 world 

regions where the Global Burden of Diseases, Injuries, and Risk Factors Study 

(GBD) was performed [35].  
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The burden of neurological disorders is large and increasing, challenging the 

sustainability of health systems. It is therefore imperative to discover new leads for 

the design of more effective treatments and preventive measures. Hence, in this 

PhD thesis we will focus on the molecular aspects of Alzheimer’s and Parkinson’s 

diseases.  

 

 

 

  

Figure 7 – Relative contribution of different neurological disorders to their 
overall burden 
Estimates of the disability-adjusted life years (DALYs) and deaths caused by several 
neurological disorders in 2015.  
Figure adapted from [36].  
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2. Alzheimer’s disease 
 

2.1 Epidemiology 
 

Worldwide, a new case of dementia is diagnosed every three seconds and, by 2018, 

around 50 million people were known to be living with dementia, a number that is 

expected to more than triple by 2050, as the population ages [37]. Alzheimer’s 

disease (AD) is the biggest single cause of dementia, accounting for up to 80% of 

cases diagnosed, and its prevalence is expected to double every 5 years after the 

age of 65 [38].  

 

Considering that the population older than 60 years is expected to increase by 2050 

[39] (Figure 8) and that age is a major risk factor for AD [40], it is expected that AD’s 

incidence and prevalence will also increase [41,42]. Moreover, more women than 

men are diagnosed with AD, which can be partially driven by more women surviving 

until older ages, when dementia becomes more prevalent [43]. 

 

Figure 8 – Percentage of population aged 60 years and 
over worldwide 
It is expected that, by 2050, the world population with 60 years of 
age or above will double compared with 2006.  
Figure adapted from [39]. 
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2.2 Aetiology 
 

AD can be classified according to age of onset and genetic predisposition. Most AD 

cases (~ 95%) are diagnosed as late onset AD (LOAD), around the age of 65, and 

are considered to be mainly sporadic [44]. Conversely, early onset AD (EOAD), 

manifesting in individuals between 30 and 60 years old, is mostly familial AD (FAD) 

and accounts for 1 to 6% of all cases [40].  Although both EOAD and LOAD can be 

found in patients with a family history of AD [40], around 60% of EOAD patients have 

several relatives with AD diagnosed and, from the cases within these families, 13% 

are inherited in an autosomal dominant manner with at least three generations 

affected [45,46].  

 

Progressive problems centred on episodic memory are the commonest symptoms 

of AD in elderly individuals and can be related to amnestic mild cognitive impairment  

(MCI) [47]. Difficulties related with self-orientation and multitasking, as well as loss 

of confidence, are other symptoms that appear in AD [38]. As the disease 

progresses, cognitive problems become more profound and can widespread and 

interfere with daily living activities, increasing the patient’s self-care dependency 

[38]. Later on, symptoms such as behavioural changes, impaired mobility, 

hallucinations and seizures might appear [38]. AD patient’s death will occur, on 

average, 8.5 years after those symptoms’ appearance [48].   

 

The most common autosomal dominant inherited mutations in FAD cases are 

mainly found in three genes, namely, amyloid precursor protein (APP) where 221 

mutations were reported, presenilin 1 (PSEN1) with 32 mutations described and 

presenilin 2 (PSEN2) with 19 mutations reported [49,50]. Moreover, PSEN1 and 

APP mutations are linked to dementia cases with an earlier onset, contrasting with 

PSEN2 mutations that account for the rarest FAD cases and are associated with a 

later age of onset (> 60 years in 52% of cases) [49,50]. FAD cases associated with 

mutations in both APP and PSEN1 genes are generally characterized by a faster 

course of the disease and by frequent atypical clinical manifestations such as 

weakness and stiffness of the legs and prominent language impairment [49].  
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LOAD is considered to be likely driven by a complex interplay between genetic and 

environmental factors. Apolipoprotein E (APOE) genotype is the strongest risk factor 

for LOAD.  APOE has three common alleles (ε2, ε3, ε4), where one APOEε4 allele 

increases AD risk by 3-fold and two APOEε4 alleles increase AD risk by 12-fold 

[51,52]. Thus, APOEε4 is also associated with a dose-dependent decrease in age 

at onset [51]. Contrastingly, APOEε2 is associated with a decreased risk for AD at 

late age onset [51,52]. Recently, a variant in the TREM2 gene, that encodes a 

receptor expressed in myeloid cells that mediates inflammatory responses, was also 

shown to confer the same AD risk as one copy of the APOEε4 allele [53,54]. Despite 

first-degree relatives of patients with LOAD having approximately twice the expected 

lifetime risk of the disease, there is no Mendelian inheritance pattern of transmission 

[40].  

 

Genome-wide association studies (GWAS) have identified several common and 

rare variants as genetic AD risk factors (Figure 9), not only related with amyloid-beta 

(Aβ) production and clearance but also with lipid metabolism, inflammatory 

response and endocytosis [55]. Additionally, common risk variants that individually 

confer only a very small increase in AD risk can almost double the risk if combined 

and have been used as a polygenic risk factor [56].  
 

Figure 9 – Genetic variants associated with AD risk 
Summary of genes implicated in AD by GWAS.  
Figure adapted from [38] and [55]. 
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Despite 70% of AD risk being thought to be related to genetic factors [38], several 

non-genetic factors have also been associated with increased risk of AD, the most 

consistently reported being the presence of a cerebrovascular disease and its 

antecedents [41]. Clinical history of diabetes, hypertension, smoking, obesity, and 

dyslipidaemia have all also been reported to increase AD risk [41,47,57]. However, 

other factors, such as undertaking oestrogen, statins, antihypertensive medications 

and non-steroidal anti-inflammatory drug therapy, having a diet rich in folate, vitamin 

E/C and coffee, as well as being intellectually and/or physically active, have shown 

to be protective against AD [41,57].  

 

2.3 Pathology 
 
AD brains do not show any gross macroscopic alteration that can be considered as 

diagnostic [58]. They show a moderate degree of cortical and medial temporal 

atrophy affecting the amygdala and the hippocampus, usually together with an 

enlargement in the frontal and temporal horns of the lateral ventricles [59]. This 

dilation of the temporal horns can be detected by magnetic resonance imaging 

(MRI), early in the clinical course of the disease [60,61].  Other macroscopic features 

that can be observed in AD brains include loss of neuromelanin pigmentation in the 

locus coeruleus, white matter volume loss and decrease in brain weight [59].  

However, these changes are not specific enough to diagnose AD with certainty 

since similar alterations can be observed in the brains of non-AD elderly individuals 

or associated with other age-related disorders [58,59,62]. 

 

A microscopic examination of multiple brain regions is needed in order to properly 

diagnose AD [63]. The main characteristics for AD pathologic diagnosis are amyloid 

plaques deposition and neurofibrillary tangles (NFTs) [64].  

 

Amyloid plaques are extracellular accumulations, specific of AD, composed 

primarily of abnormally folded amyloid-beta (Aβ) peptides with 40 or 42 amino acids 

(Aβ40 and Aβ42, respectively), two natural byproducts from the APP metabolism, 

after APP’s sequential cleavage by the enzymes β- and γ-secretases in neurons 

[64]. Although the normal function of APP is not fully understood yet, Aβ production 

and secretion are known to be stimulated upon synaptic activity [65]. The Aβ42 
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peptide tends to be more abundant in amyloid plaques than Aβ40 due to its higher 

rate of fibrilization and insolubility [38].  

 

Most mutations in APP, PSEN1 and PSEN2 result in the overproduction of Aβ, 

specially Aβ42 [47]. Indeed, patients carrying mutations in those genes have lower 

Aβ42/Aβ40 ratios in plasma and higher Aβ42 production in the central nervous 

system (CNS) [66,67].  
 
Accumulation of amyloid plaques can be summarized into three stages (Figure 10): 

isocortical (amyloid deposits mainly found in the basal portions of the frontal, 

temporal, and occipital lobes), allocortical or limbic (hippocampal formation is only 

mildly involved, and the primary sensory, motor, and visual cortices are devoid of 

amyloid), and subcortical (deposition of amyloid in the primary isocortical areas and, 

in some cases, the appearance of amyloid deposits in the molecular layer of the 

cerebellum and subcortical nuclei such as the striatum, thalamus, hypothalamus, 

subthalamic nucleus, and red nucleus) [68–70].  

 

Although amyloid plaque deposition is part of AD diagnosis, it does not correlate 

with the severity nor the duration of the associated dementia [64]. The amyloid 

burden reaches a plateau early after the onset of the cognitive symptoms or at the 

Figure 10 – Amyloid plaques and neurofibrillary tangles in AD 
progression 
Schematic representation of amyloid (top) and tau (bottom) pathologies’ 
progression through the brain. 
Figure kindly provided by Sara Mendes [70], inspired by [47].  
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preclinical phase of the disease and even the size of the plaques does not correlate 

with its course [71,72]. Conversely, due to neuronal and synapse loss typically 

paralleling tangle formation, NFTs are better correlated with clinical features and 

severity of AD [71].  

 

NFTs are mainly composed of the microtubule-associated tau protein in an 

aberrantly misfolded and abnormally hyperphosphorylated state [64]. Often, 

neuropil threads, thought to result from the breakdown of dendrites and axons of the 

tangle-bearing neurons, can be found along NFTs [64]. Essentially, the 

accumulation of NFTs starts in the medial temporal lobes and hippocampus and 

spreads progressively to other areas of the neocortex [47] (Figure 10). Thus, NFTs’ 

presence, in contrast with amyloid plaques’, is less AD-specific since it is also 

observed in several other neurodegenerative diseases such as progressive 

supranuclear palsy, corticobasal degeneration, and subtypes of frontotemporal 

dementia [65].  

 

Other features of AD brains can be microscopically analysed. For instance, besides 

Aβ being the main component of amyloid plaques, it can also be deposited in the 

cerebral blood vessels leading to cerebral amyloid angiopathy [73]. In fact, 85-95% 

of AD cases have some degree of cerebral amyloid angiopathy [59]. Another 

microscopic characteristic found in the cytoplasm of hippocampal pyramidal 

neurons of AD brains is the granulovacuolar degeneration and Hirano Bodies [64]. 

The origin and significance of granulovacuolar degeneration is still unknown and 

consists in the accumulation of large double-membrane bodies. The Hirano Bodies 

are eosinophilic rod-like cytoplasmic inclusions that are also detected in the 

hippocampal CA1 region of elderly brains but show a higher number and a 

translocation towards the neurons of the stratum pyramidal in AD brains [64]. Their 

role is not fully understood. Finally, neuronal and synapse losses, as well as glial 

responses, are also cellular AD-related markers [59]. Indeed, synapse loss, that is 

probably triggered by amyloid and tau pathology [74,75], seems to precede neuronal 

loss as well as being strongly correlated with cognitive decline in AD, even 

surpassing the associations with neuronal loss and tau burden [76].  
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2.4 Pathogenesis  
 

AD pathogenesis remains not fully clear. Several hypotheses have been proposed, 

namely, the amyloid cascade, the cholinergic and the mitochondria-associated 

endoplasmic reticulum membrane (MAM) hypotheses.  

 

2.4.1 Amyloid cascade hypothesis 
 

The amyloid cascade hypothesis is the most commonly accepted theory. It states 

that AD pathogenesis starts as a series of abnormalities in the processing and 

secretion of APP through its sequential cleavage by β- and 𝛾-secretases in the brain 

and the unbalance between production and clearance of Aβ is its trigger event and 

most important factor [77]. Although its function remains unclear, APP was already 

suggested to play a role as a surface receptor, an adhesion molecule, a regulator 

of neuronal processes such as neurite outgrowth and synaptogenesis, a signalling 

molecule and a regulator of cell survival and death [78].  The fact that Aβ depositions 

are found in AD brains, their known neuronal toxic properties in vitro and that FAD 

cases have mutations linked either to Aβ production or processing leading to 

overproduction of toxic forms of β-amyloid,  support the amyloid cascade hypothesis 

[79]. However, nowadays it is thought that Aβ oligomers, instead of Aβ plaques, are 

the most toxic and pathogenic form of Aβ  and that Aβ plaques may indeed act as a 

protective reservoir [80,81]. 

 

2.4.2 Cholinergic hypothesis 
 

The cholinergic hypothesis was presented over 35 years ago and suggests that a 

selective dysfunction of cholinergic neurons is the major responsible for the 

cognitive decline observed in elderly and AD brains [82]. Thus, the major alterations 

in cholinergic neurons are considered to be the choline uptake, impaired 

acetylcholine release, deficits in the expression of nicotinic and muscarinic 

receptors, dysfunctional neurotrophin support, and deficits in axonal transport [82–

84]. Additionally, some studies have already shown that Aβ can interact with 

cholinergic receptors, affecting their function [85]. Although the relationship between 
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cognitive impairment and decreased cholinergic transmission is known to play a role 

in AD, it does not establish a definitive AD causation by itself [64].  

 

2.4.3 MAM hypothesis 
 

Besides plaques and tangles, other biochemical and morphological features, such 

as altered calcium, glucose, cholesterol and phospholipid metabolisms, increased 

endoplasmic reticulum (ER) stress and changes in dynamics and reduction of 

bioenergetic functions of mitochondria, are present in AD brains [86]. Since all these 

features are associated with functions occurring within a subdomain of the ER, 

known as mitochondria-associated ER membranes (MAMs), and MAM-localized 

functions are significantly increased in cellular and animal models of AD and in cells 

from AD patients, Area-Gomez and colleagues suggested the MAM hypothesis [87]. 

MAM is a dynamic and highly specialized subdomain of the ER that is physically 

and biochemically connected to mitochondria, formed directly by the apposition of 

bulk ER with mitochondria [88]. The abnormal increase of MAM function in AD 

affects cellular processes such as calcium homeostasis, cholesterol and 

phospholipid metabolism. That leads to cellular consequences such as altered APP 

processing and tau phosphorylation, causing formation of Aβ plaques and tangles, 

among other phenotypes, that all together contribute to AD onset [88].  

 

2.5 The specific roles of brain cell types in AD  
 

AD brains are characterized by extensive neuronal cell death that can occur through 

apoptosis, necrosis, autophagy or cytoplasmic disfunction [89,90] and an intense 

glia reaction (gliosis) response [89].  

 

2.5.1 Neurons 
 

Neuronal survival and function are compromised in the presence of exogenous Aβ 

[91–96]. For instance, glutamatergic neurons expressing a mutated APP exhibit 

altered APP subcellular distribution and differential cleavage by β- and γ-

secretases, perturbing Aβ production and causing an elevated tau phosphorylation 
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[97]. Additionally, neurons carrying APP mutations exhibit a functional impairment 

in cellular uptake, trafficking and degradation pathways, as well as ER and oxidative 

stress [98].   

 

Studies have highlighted that neurons harbouring homozygous APOEε4 alleles, the 

major risk factor of AD, derived from iPSCs (induced pluripotent stem cells), besides 

producing more Aβ and having higher phosphorylated tau than iPSC-derived 

neurons with APOEε3 alleles [99,100], also present endosome abnormalities and 

defects in autophagy and mitophagy [98]. Moreover, glutamatergic neurons with 

APOEε4 alleles showed more synaptic sites and increased frequency of 

spontaneous synaptic transmission [99]. GABAergic APOEε4 interneurons tend to 

degenerate in culture as opposed to glutamatergic and dopaminergic APOEε4 

neurons, whereas the APOEε4 cholinergic neurons exhibited elevated sensitivity 

and altered Ca2+ signalling in response to glutamate toxicity [98]. Essentially, there 

are differences in neuron sub-type Aβ secretion and susceptibility to Aβ-induced 

toxicity, especially between glutamatergic and GABAergic neurons [101,102].  

 

2.5.2 Astrocytes 
 

Astrogliosis is detected in post-mortem AD brains by the presence of reactive 

astrocytes with a marked cellular hypertrophy and increased glial fibrillary acidic 

protein (GFAP) and S100B expression [103]. Reactive astrocytes are also found 

near amyloid plaques and perivascular β-amyloid deposits, contributing to the local 

inflammatory response and modulation of calcium signalling [104–106]. 

 

Although astrogliosis could be considered a protective reaction, since it is triggered 

upon a CNS injury, in AD cases it seems to contribute directly to defective clearance 

of potential harmful metabolites such as Aβ due to the downregulation of Aquaporin 

4, that plays an important role in the normal glymphatic flow [27,107]. Besides, upon 

Aβ exposure, astrocytes become activated, expressing inflammatory markers 

earlier and displaying abnormal synchronous Ca2+ transients over long distances, 

showing their relevance in Aβ catabolism [27]. Reactive astrocytes are capable of 

accumulating large amounts of Aβ and neuronal nicotinic cholinoreceptor, known to 
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have high affinity to β-amyloid [104,105]. Indeed, astroglial β-amyloid deposits were 

already shown to participate in plaques formation [108]. Besides, PET studies 

confirmed that astrogliosis is an early event in patients, being the strongest signal 

seen in prodromal AD [109].  

 

Despite these observations, it is still unclear whether astrogliosis is beneficial or 

harmful in AD. For instance, in APP/PS1 mice, the attenuation of astrocyte activation 

through deletion of GFAP and Vimentin genes showed an acceleration in plaque 

pathogenesis and a marked increase in dystrophic neurites [110]. However, another 

group showed the opposite effect in similar models [111]. Those contradictory 

findings might be explained by the stage of AD and the brain region affected [112].  

 

Nonetheless, the relationship between amyloidosis, tau pathology, and astrogliosis 

remains to be elucidated.  

 

2.5.3 Microglia 
 

In AD, microglia are often found near Aβ plaques [113,114] and were shown to play 

a dual role in the disease. On the one hand, they help eliminate the Aβ aggregation 

through phagocytosis and, on the other hand, they facilitate Aβ accumulation via the 

release of neurotoxic proteases and inflammatory factors [24]. Moreover, activated 

microglia can secrete various inflammatory molecules such as IL-1, IL-6, TNF-α, 

free radicals and chemokines, all associated with the Aβ cascade during the start 

and development of AD [24]. Essentially, under neurodegeneration conditions, 

microglia detect damage-associated patterns that are created through defective 

cells releases, including misfolded proteins and aggregated peptides, which activate 

the pattern recognition receptors of microglia, leading to a sustained release of 

neuroinflammatory factors that promotes neurodegeneration and disease 

progression [115].  

Besides microgliosis, the majority of identified AD risk genes being selectively or 

preferentially expressed in microglia also points to the importance of microglia in AD 

brains [116]. TREM2, a cell surface receptor selectively and highly expressed in 

microglia, has been specially driving attention to microglia’s role in AD. Its most 
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clearly associated mutation with AD appears to be a loss-of-function mutation, 

impairing TREM2 ligand binding and phagocytosis by microglia [117,118].  In 

physiological conditions, TREM2 interacts with the activation adaptor DAP12 and 

initiates signal transduction pathways that promote microglial chemotaxis, 

phagocytosis, survival and proliferation [119–121]. Thus, TREM2 extracellular 

ligands include a variety of phospholipids and glycoproteins, namely APOE and 

CLU, two proteins encoded by well-known AD-risk genes [116]. Other extracellular 

ligands of TREM2 are apoptotic neurons [122]. Indeed, microglia maintain tissue 

homeostasis through clearance of debris and TREM2 is required for microglial 

phagocytosis of a variety of substrates including apoptotic neurons and Aβ [116]. 

Moreover, TREM2-deficient microglia showed a reduced uptake of Aβ-lipoprotein 

complexes in vitro [123] and less evidence of Aβ internalization in vivo [124], 

suggesting that TREM2 loss-of-function increasing risk of developing AD might be 

related to these impairments in Aβ uptake and clearance. 

 

2.5.4 Oligodendrocytes 
 

In 1996, Braak suggested a link between the neurons’ vulnerability and their 

myelination stage, as the spreading of NFTs seemed to recapitulate the pattern of 

myelination in reverse order [125]. Thus, white matter loss is one of the earliest brain 

changes in AD, preceding even the appearance of tangles and plaques [126]. A 

variety of structural, histopathological and biochemical pathologies take place in the 

AD patients’ white matter. For instance, radiological markers of white matter 

damage, believed to reflect demyelination and axon damage, can be observed in 

patients as young as 22 years old, an even earlier onset than expected in patients 

carrying AD mutations [127]. Moreover, oligodendrocytes and OPCs are thought to 

be either altered in number and in the stability of their DNA or functionally less 

efficient in the presence of genetic changes, oxidative stress, increased iron levels 

and vascular pathology [128,129]. Additionally, some AD mouse models show white 

matter disruption and changes in the expression of myelin markers as the first 

pathological changes and only show cognitive impairments between 3 and 6 months 

of age [130].  
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In summary, white mater loss in AD is thought to be caused by several factors 

namely oxidative stress, apoptosis, neuroinflammation and excitotoxicity, 

associated with accumulation of Aβ and tau hyperphosphorylation [126,131].  

 

2.6 Diagnosis  
 

According to the latest diagnostic criteria, AD’s clinical onset can be divided in three 

broad periods: preclinical, MCI and AD dementia, with the time elapsed between 

each period being in the order of decades [132]. Although AD can only be certainly 

diagnosed after a detailed post-mortem microscopic examination, a combination of 

tools and clinical tests can be used to diagnose living AD patients with more than 

95% accuracy [133].  These include the clinical review of the patients’ familiar 

history, as well as cognitive functions’ evaluation through neuropsychological tests 

[134]. Blood tests are also performed to exclude conditions other than AD that might 

cause or contribute to cognitive symptoms, including assessment of full blood count, 

renal function, thyroid function, vitamin B12, infections, cancer, depression and 

folate levels [38,133].   

 

MRI is also recommended for patients with cognitive impairment to exclude 

structural abnormalities and to provide positive diagnostic information [135]. For 

instance, the detection of focal symmetrical medial temporal atrophy has predictive 

value for AD [136]. Thus, MRI can also be used for differential diagnosis, helping in 

the exclusion of other neurodegenerative diseases and the evaluation of the 

presence and extent of cerebrovascular diseases that might mimic or co-occur with 

AD [38]. Additionally, amyloid positron-emission tomography (PET) is also used in 

the clinical context, with florbetapir, flutemetamol and florbetaben being the agents 

approved by the European Medicines Agency (EMA) and the US Food and Drug 

Administration (FDA) to be used in PET scans for AD diagnosis. These compounds 

have been shown to bind to fibrillary β-amyloid and highly correlated with the β-

amyloid burden at post-mortem [137–139]. However, the cost of amyloid PET scan 

is not reimbursed by the public health systems in most countries and, as such, its 

use is still being evaluated in terms of clinical utility and cost-effectiveness [38]. 
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Cerebrospinal fluid (CSF) examination is also used to diagnose AD, given CSF’s 

higher levels of tau and phosphorylated tau and decreased levels of Aβ42 in AD 

cases [140]. Moreover, those CSF biomarkers can also help to predict the 

development of AD by MCI individuals [140], which is clinically important since 15% 

of MCI cases progress to AD [141]. This evaluation is included in the AD diagnosis 

criteria [142].  

 

Finally, although routine testing of genetic risk factors such as the APOE status is 

not prescribed, genetic testing can be used to identify autosomal dominant causes 

of AD when these are suspected [38].   

 

2.7 Treatment 
 

At the moment there is no cure for AD. The drugs currently prescribed for this 

disease are only symptomatic and can be divided in three groups: inhibitors of 

acetylcholinesterase, antagonist of a N-methyl-d-aspartate (NMDA)-type receptor 

for the neurotransmitter glutamate and psychiatric drugs to control depression and 

behavioural abnormalities [133].  

 

AD patients are known to have impaired cerebral cholinergic functions implicated in 

cognitive losses [143]. Therefore, acetylcholinesterase’s inhibitors are used to 

compensate for the depletion of the neurotransmitter acetylcholine in AD brains by 

inhibiting its degrading enzyme, acetylcholinesterase, thus improving the cholinergic 

transmissions [133]. Three commonly prescribed cholinesterase inhibitors are 

donepezil, galantamine and rivastigmine. Although they showed small beneficial 

effects in functional and/or cognitive scores, they do not translate in consistent 

benefits in patient-oriented outcomes such as the quality of life or institutionalization 

need [144].  

 

Although excitatory glutamatergic neurotransmission via NMDA receptors is critical 

for neuronal survival and synaptic plasticity, its excessive activity causes 

excitotoxicity, promoting cell death [145]. In AD, since neuronal cell death correlates 

with the progressive decline in cognition/memory and the development of 



 25 

pathological neural anatomy, Memantine, an NMDA receptor antagonist drug, is 

also prescribed [145]. It is the only drug targeting NMDA receptors approved by FDA 

in 2003 [144]. However, despite randomized clinical trials showing small benefits in 

cognition, global and functional status in moderate to severe dementia, these were 

not consistently seen in less severe AD cases [144]. Overall, Memantine is currently 

used to treat cognitive and functional symptoms in patients with moderate to severe 

AD [144]. In the clinic, the combination of Memantine with a cholinesterase inhibitor 

may be used to treat the symptoms of patients with moderate to severe AD since 

Memantine is tolerable and there is no other beneficial treatment for cognitive and 

functional decline [144].   

 

Many AD patients also suffer from psychiatric or behavioural problems contributing 

to a reduction of their life quality and, by consequence, an increasing burden to their 

families and community. The antipsychotics commonly prescribed for AD patients 

are risperidone and olanzapine. However, their use is controversial given that they 

are related with elevated mortality rate and risk of cerebrovascular adverse events 

whereas only showing small benefits for psychotic symptoms in AD [146]. 

Anticonvulsant mood stabilizers and antidepressants such as benzodiazepines are 

also commonly used for treating psychiatric or behavioural symptoms, although their 

usage is controversial since several AD clinical trials showed none or very small 

benefits with potential high adverse effects such as sedation, falls and 

gastrointestinal problems when taking those drugs [146]. 

 

Nonpharmacological therapies are also used to improve cognitive and functional 

symptoms in AD. Those therapies include: participating in leisure activities, leading 

to decreased neuropsychiatric symptoms and higher functional capacity as well as 

slowing memory loss; participating in mental stimulation programs, such as puzzles, 

that can improve cognition and self-reported quality of life and well-being; doing 

occupational therapy training in coping strategies and getting help from cognitive 

aides; performing structured physical exercise programs to improve physical 

function, reduce neuropsychiatric symptoms such as depression and slow the 

functional decline rate [144].  
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3. Parkinson’s disease 
 

3.1 Epidemiology 
 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder 

in the world, affecting 1 to 2% of individuals with over 60 years of age [147]. In 2016, 

it is estimated that there were 6.1 million individuals affected with PD and that this 

number will continue to increase due to demographic changes [148,149] (Figure 

11).  

Considering that the percent of population older than 60 years is expected to 

increase by 2050 [39] and age is a major risk factor for PD [150], it is expected that 

its incidence and prevalence will also increase [148]. Moreover, men have twice the 

risk of developing PD than women, although women have a higher mortality rate 

and faster progression of the disease [151]. 
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Figure 11 – Projected number of individuals with PD per country 
Estimated numbers of individuals over the age of 50 with PD in different countries. 
The values for Europe are for the five most populous nations in Western Europe 
(Germany, France, the United Kingdom, Italy, and Spain). 
Adapted from [149].  



 27 

3.2 Aetiology 
  

The majority of PD cases are idiopathic, that is, they have unknown aetiology, 

although 5-10% of the cases have a strong genetic component [152]. PD is indeed 

considered a multifactorial disease in which both genetic and environmental factors 

play a role [153].  

 

The first PD-related symptoms usually do not develop until 70-80% of dopaminergic 

neurons are lost [154]. They usually consist in bradykinesia, muscular rigidity, 

resting tremor and postural instability not caused by primary visual, vestibular, 

cerebellar or proprioceptive dysfunction [155]. Bradykinesia is the most common 

symptom and may be apparent as soon as the patient enters the consulting room 

or when the patient undresses in order to be examined, although it can also be 

assessed through its facial immobile and rigid expression or its slow, quiet and 

lacking rhythm and melody speech [150]. A common test to analyse the patient’s 

bradykinesia is by asking him/her to perform a rapid and repetitive finger taping of 

the index finger on the thumb for about 20 seconds on each hand [150]. 

Bradykinesia can also be assessed for the lower limbs by observing the patient 

doing fast foot taping and walking [150]. Bradykinesia is confirmed when there is a 

demonstration of slowness and a progressive reduction of speed and amplitude on 

sequential motor tasks.  

 

Cigarette smoking and coffee drinking have been shown to reduce the risk of 

developing PD [156,157], although the underlying reasons are not fully understood. 

Additionally, the association between caffeine and PD differs between gender, being 

stronger in men than in women [158].  Other lifestyle factors, such as having a diet 

rich in fruits, vegetables and grains, as well as frequently practicing high intensity 

physical activity, were also shown to decrease the risk of PD [159].  

 

The usage of injectable drugs contaminated with MPTP (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine) cause typical PD signs via the metabolization of MPTP into the 

neurotoxin MPP+ (1-methyl-4-phenylpyridinium), a mitochondrial complex I inhibitor 

that selectively damages dopaminergic cells in the substantia nigra [160]. After this 
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study in 1983, several others have shown an association between PD and the usage 

of pesticides and herbicides, namely Paraquat, an herbicide structurally very similar 

to MPP+, and rotenone [161]. Both of these are also selective inhibitors of 

mitochondria complex I and have been shown to induce dopaminergic depletion in 

animal models of PD [162].  

 

To date, several common and rare gene variants have been linked as genetic PD 

risk factors [163] (Figure 12). Moreover, 5% of the minority of PD cases that have 

reported family history of the disease have Mendelian inheritance [153]. SNCA, 

LRRK2 and MAPT are the genes most significantly associated with PD in GWAS 

and candidate gene association studies and they all present an autosomal dominant 

inheritance of the disease [164]. 

 

 

The α-synuclein (SNCA) gene was the first to be linked to the disease in 1997, in a 

large family of Southern Italy, where a missense mutation (A53T) was found to 

segregate with the disease [147]. This mutation was found in several other families 

of Greek and Italian origins as well as with rare frequency in patients from Korea, 

Figure 12 – Genetic variants associated with PD risk 
Summary of genes implicated in PD by GWAS and candidate gene association studies.  
Light blue genes are dominantly inherited, orange genes are recessively inherited and 
dark blue genes lay on PD risk loci. 
Figure adapted from [163]. 
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Sweden, Poland, Spain, United Kingdom, France, Japan and China [165]. Later, 

other SNCA point mutations and whole-locus multiplications (duplications, 

triplications and quadruplications) were also found to be associated with PD [165]. 

This gene is considered pleiomorphic in the context of PD risk given that both rare 

mutations and common variation at its locus alter the risk of the disease. For 

instance, there seems to be a SNCA genomic dosage-related PD phenotype since 

patients with homozygous duplications and four copies of SNCA have earlier and 

more severe symptoms than those with a single SNCA mutation [166]. Non-coding 

genetic variability in the SNCA locus confers risk and predisposes to genetically 

complex PD [164]. 

 

Genetic variants in LRRK2 account for the majority of known heritable PD cases, 

with the most pathogenic variant, G2019S, being responsible for about 1% of PD 

patients with genetically complex PD and 4% with a family history of PD [165]. This 

specific variant has the highest frequency among the North African Arab and Jewish 

population, as well as in the Middle East and in Southern Europe, compared to 

Northern Europe [164]. Additionally, six other mutations were proven to be 

pathogenic [167]. LRRK2 mutations have an age-related penetrance and clinical 

features identical to late-onset idiopathic PD [168].  

 

Although MAPT mutations have been predominantly associated with dementias, 

they have also been shown to be associated with PD. There are two major 

haplotypes at the MAPT locus: the directly oriented haplotype H1 and the inverted 

sequence containing H2 [164]. MAPT H1 sub-haplotypes were found to be 

preferentially associated with PD, suggesting that haplotype-specific differences in 

the expression, and potentially in the alternative splicing of MAPT, affect cellular 

functions at different levels, increasing susceptibility to PD [169].  

 

VPS35, the vacuolar protein sorting 35 ortholog gene, that encodes a core 

component of the retromer complex, has recently emerged as a novel cause for 

autosomal dominant familial PD, although the molecular mechanism by which it 

induces progressive neurodegeneration in PD is still unknown [170]. The D620N 

mutation, initially found in a Swiss PD family, was also reported in families from other 

origins such as the United States, Tunisia and Israel [171]. This mutation seems 
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predominantly linked to families of Caucasian descent with autosomal dominant PD 

and rare in the Asian population, except for the Japanese [170]. It is estimated that 

the VPS35 D620N frequency in patients with familial PD is between 0.1 to 1% [172].  

 

It was observed in the clinic that first- and second-degree relatives of patients with 

Gaucher’s disease, a lysosomal storage disorder, had an increased PD incidence 

[173,174]. Thus, some patients with Gaucher’s disease presented parkinsonism 

features suggesting a strong link between GBA and PD [175,176]. Heterozygous 

GBA mutations are actually the largest genetic risk factor for developing PD, 

conferring an approximately 5-fold risk increment [177]. Moreover, it is estimated 

that 5-10% of PD patients carry a GBA mutation and that their penetrance and 

lifetime risk of developing PD varies with age, from around 20% at 70 to 30% at 80 

years old [178]. Despite being considered a substantial common risk in PD, its 

frequency varies according to ethnicity, being particularly more frequent in 

Ashkenazi Jewish individuals [164].   

 

Other genes with an autosomal recessive transmission were also found to play a 

role in PD. Unlike the autosomal dominant forms of PD that tend to have an age of 

onset similar to idiopathic PD, the autosomal recessive forms present an earlier 

onset, typically less than 40 years old [179]. 

 

Mutations in Parkin (PRKN) are the most common cause of autosomal recessive 

PD, being present in up to 50% of all early-onset PD cases [180]. Mutations in PRKN 

were found in familial and idiopathic PD patients across populations from all ethnic 

origins and seem to be linked to loss of function of PRKN [180]. In physiological 

conditions, PRKN encodes an E3 ubiquitin ligase that helps to eliminate 

dysfunctional mitochondria and unwanted proteins in the cell. These processes can 

be impaired when PRKN is mutated, leading to an excessive accumulation of protein 

and mitochondria, resulting in cell death [176].  

 

PINK1 is the second most common gene that, when mutated, can cause autosomal 

recessive PD and it is also involved in mitochondrial maintenance and quality control 

[163]. Remarkably, PINK1 shares the same mitochondrial pathway as PRKN [150]. 

Moreover, both PINK1 and PRKN are ubiquitously expressed and, when their 
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function is lost, lead to selective loss of dopaminergic neurons and manifestations 

of PD symptoms such as tremor and bradykinesia [181]. Mutations in PINK1 are 

estimated to account for 1-8% of all early-PD onset cases [182].  

 

Mutations in DJ-1 are very rare causes of autosomal recessive PD. They are 

estimated to account for 1-2% of all early onset PD cases [182]. DJ-1 is known to 

also be important for mitochondrial health, although its function remains to be 

characterized [179]. PRKN, DJ-1 and PINK1 mutations are all associated with an 

early onset of PD, a slow progression of the disease and a positive response to 

levodopa treatment that compensates for the loss of dopamine [180].  

 

ATP13A2, PLA2G6 and FOXB7 are autosomal recessive genes shown to cause 

parkinsonism with atypical features [147]. For instance, specific mutations in 

ATP13A2, that encodes a lysosomal membrane protein with an ATPase domain 

predominantly expressed in the brain, cause an atypical parkinsonism also known 

as the Kufor-Rakeb syndrome [183]. Patients with mutations in that gene have a 

very early onset, at 11 to 16 years old, and a rapid progression of parkinsonian 

symptoms [180]. Mutations in PLA2G6 and FBXO7 have also been found in 

autosomal recessive families, although their frequency is very low, with individuals 

also presenting a very early onset of the disease [180]. 

 

The PD risk factor genes can be summarized as belonging to major biological 

pathways such as autophagy, endocytosis, mitochondrial biology, immune 

response and lysosomal function [164]. All these pathways have already been 

shown to be implicated in PD [164].  

 

3.3 Pathology 
 

PD can be divided into six neuropathological stages (Figure 13). It starts by affecting 

the olfactory bulb and/or the dorsal motor nucleus of the glossopharyngeal and 

vagal nerves (stage I) and ultimately reaches the neocortex (stage VI), with several 

years mediating between those stages [184]. 
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However, macroscopically, the idiopathic PD brain does not show any gross 

alteration, only mild atrophy of the frontal cortex and ventricular dilation in some 

cases [153]. Sections of PD brainstems often show a loss of the normally dark 

pigment in the substantia nigra and locus coeruleus that is correlated with the loss 

of dopaminergic and noradrenergic neurons, respectively [185]. The most 

profoundly affected area in the substantia nigra is the ventrolateral tier, that contains 

neurons projecting to the dorsal putamen of the striatum [179]. Moreover, other brain 

regions suffer neuron loss in PD such as the amygdala and hypothalamus [185].  

Microscopically, the main hallmark of PD is the presence of Lewy bodies (i.e. 

intracellular aggregations of lipids and proteins, namely α-synuclein) in neuronal cell 

bodies and axons [152]. Besides being present in the substantia nigra, this 

manifestation can also be found in the spinal cord and in the peripheral nervous 

system [179].   

In humans, α-synuclein belongs to a three-protein family composed by α-, β- and γ-

synucleins and is distinguishable from β- and γ-synucleins by the non-amyloid-β 

component (NAC) region of its plaques [186].	Alpha-synuclein exists in several 

conformations in a dynamic equilibrium, modulated by internal and external factors 

that can both either promote or inhibit its fibrillation [187]. Moreover, α-synuclein is 

abundantly expressed in the nervous system, comprising 1% of total cytosolic 

Figure 13 – The six neuropathological stages of Parkinson's disease 
The severity of the pathology is indicated by darker degrees of shading in the coloured 
arrow in the middle. The white arrows in the left panel indicate the ascending 
pathological process.  
Adapted from [184]. 
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proteins, although it can also be found in erythrocytes and platelets [188]. Despite 

α-synuclein’s function not being fully understood yet, it seems that it modulates 

synaptic transmission and controls neurotransmitter release [188].  Moreover, α-

synuclein can bind to anionic lipids, which suggests that it can interact with biological 

membranes in vivo [187], by adopting an atypical α-helical structure (Figure 14). It 

is though that α-synuclein exists in equilibrium between its unstructured monomeric 

forms and its tetrameric α-helical oligomeric structure that is resistant to fibrillization 

[189,190].   

 

However, α-synuclein fibrilization can occur, leading to Lewy body formation. In fact, 

fibril formation requires α-synuclein’s structure to suffer a conformational change 

from unstructured monomers to β-sheets. Once this becomes the predominant form, 

monomeric α-synuclein can begin to stack and form β-sheet fibril structures [189]. 

Besides being composed by those fibril forms, Lewy bodies also have partially 

truncated α-synuclein and aggregates of both full length and truncated protein [191]. 

Moreover, α-synuclein seems to be modified by several processes such as 

phosphorylation, oxidation, nitrosylation, glycation or glycosylation [188]. Although 

α-synuclein was found to be phosphorylated at S19 in Lewy bodies, it is not yet 

known the role, if any, this modification is playing in the neurotoxicity context [188]. 

All rare point mutations in α-synuclein that result in autosomal dominant familial PD 

Figure 14 – α-synuclein’s fibrillization process 
Unfolded α-synuclein exists as a monomer but, when interacting with lipids, forms an α-
helical structure. There is an equilibrium between α-synuclein’s unstructured monomeric 
form and its tetrameric α-helical oligomeric structure. Unfolded α-synuclein can also start to 
aggregate and give rise to β-sheets that can then be elongated and create β-sheet fibril 
structures. These fibril aggregates can then be sequestered into Lewy bodies.  
Figure adapted from [190]. 
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are in the N-terminal region and presumably cause the misfolding and/or 

aggregation of the mutant α-synuclein protein [187]. However, how these mutations 

accelerate aggregation remains unclear. 

Besides α-synuclein aggregates, inclusions composed by other proteins such as β-

amyloid and tau-containing neurofibrillary tangles, which are hallmarks of AD, can 

also be found in PD brains [179]. In fact, concomitant AD pathology is associated 

with a greater burden of Lewy body pathology, correlates with a shorter latency to 

onset of dementia in PD [192] and occurs in up to 50% of patients with PD and 

dementia [193]. Neuroinflammation is another feature found in PD pathology, as 

astrogliosis and microgliosis are found within areas of neurodegeneration in PD 

[179].  

3.4 Pathogenesis  
 

Several mechanisms have been implicated in PD pathogenesis. Α-synuclein 

aggregation, however, seems to be central to the development of the disease, 

although other processes, such as abnormal protein clearance and mitochondrial 

dysfunction, have also been reported. 

3.4.1 The spread of alpha-synuclein 

Braak and colleagues developed an α-synuclein spread hypothesis based on the 

presence of pathological aggregates in different brain regions. As such, they 

suggest that PD might progress in six stages following a caudo-rostral pattern 

(Figure 13) [194]. However, not all PD cases follow this theoretical pattern neither 

does this hypothesis explain the absence of clinical symptoms in individuals whose 

autopsy reveals widespread α-synuclein pathology [195].   

 

Two groups independently reported that PD patients subjected to embryonic 

mesencephalic neuronal engraftment into their striatum developed Lewy bodies 

many years after grafting [196,197], giving rise to the “prion-like” hypothesis to 

describe the mechanism of α-synuclein propagation. Essentially, this hypothesis 

states that α-synuclein would be released by living or dying cells into the surrounding 

extracellular milieu [195]. The released α-synuclein would then be absorbed by the 
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grafted neurons and serve as a template to promote the misfolding of the 

endogenously produced α-synuclein, leading  to the formation of Lewy bodies [195]. 

Moreover, intracerebral injections of synthetic α-synuclein fibrils or homogenates of 

brain derived from α-synuclein-transgenic PD mouse models exhibiting Lewy 

pathology into young asymptomatic α-synuclein-transgenic mice stimulate both the 

formation of Lewy body-like inclusions and the onset of motor signs [198]. Although 

all these studies support the “prion-like” model for the spread of α-synuclein, it is 

worth to note that Mendez and colleagues reported lack of Lewy body pathology in 

five patients with PD, 9 to 14 years after transplantation of foetal midbrain cell 

suspensions [199]. However, these difference in results might be linked to 

differences in the incubation period, pattern of α-synuclein pathology, the graft 

environment, the number of years post-grafting, the animal model used, and 

individual differences between patients [200]. 

 

The detection of α-synuclein in the human plasma and in the cerebrospinal fluid 

(CSF), as well as in the medium of several types of cultured neurons, supports the 

idea that α-synuclein can be secreted [201–203]. However, the exact mechanisms 

by which α-synuclein is released and how the cells can internalize are not fully 

understood yet. It is hypothesized that α-synuclein can be passively released but 

only monomeric α-synuclein can pass through the cell membrane via a yet 

unidentified membrane translocator, suggesting that α-synuclein multimers are 

prevented from passively exiting the cell [200]. Additionally, it was hypothesized that 

cells might have mechanisms to recognize misfolded α-synuclein and selectively 

translocate such proteins into vesicles, reducing its intracellular neurotoxicity, and 

secrete the vesicular α-synuclein through non-canonical endoplasmic 

reticulum/Golgi-independent exocytosis [204].  

 

LAG3 and neurexin 1a were also identified as receptors for preformed fibrils, but not 

monomers, able to initiate transmission of α-synuclein and accelerate its spread 

throughout mouse brains [205,206]. Exosomes are also considered to play a role in 

the spread of α-synuclein in PD. For instance, exosomes isolated from plasma of 

PD patients showed a higher concentration of α-synuclein when compared with 

those of non-PD individuals [207]. Moreover, exosomes may contain α-synuclein 

aggregates that can act as seeds for their spreading in the brain [208]. PD CSF 
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exosomes have indeed been shown to initiate oligomerization of soluble α-synuclein 

in targeted cells in a dose-dependent manner and confer disease pathology [209].  

Furthermore, there is also the hypothesis that the pathogenesis of PD involves 

trans-synaptic cell-to-cell α-synuclein transmission from the olfactory bulb to the 

substantia nigra [210]. 

 

Several PD patients report gastrointestinal symptoms, which highlights the link 

between the gut and the brain in PD [211]. Indeed, it has been suggested that PD 

may be triggered by an unknown agent that breaches the intestinal epithelial barriers 

to induce α-synuclein aggregation in the enteric nervous system [212]. This 

hypothesis rises from the strong correlation of increased intestinal gut permeability 

with intestinal α-synuclein, as well as with staining of gram-negative bacteria and 

tissue oxidative stress, suggesting a role of gut leakiness in PD [213]. Essentially, it 

is proposed that α-synuclein misfolding might begin in the gut and spread to the 

brain in a “prion-like” manner via the vagus nerve into the lower brainstem and 

ultimately to the midbrain [212]. Plus, Lewy bodies and Lewy neurites were also 

found in the peripheral nervous system of the gut and in the sympathetic and 

parasympathetic ganglia in PD patients but also in apparently healthy individuals 

without typical motor symptoms or CNS pathology of PD [210].  

 

Other putative mechanisms such as transmission through direct penetration, axonal 

transport or via trans-synaptic means, have also been proposed to be involved in α-

synuclein cell-to-cell propagation [200]. 

 

3.4.2 Abnormal protein clearance  
 

There are two main processes by which a cell can remove its dysfunctional proteins: 

the autophagy-lysosome pathway, responsible for the vesicle-mediated degradation 

of long-lived proteins and degradation of cellular organelle, and the ubiquitin-

proteasome system (UPS) [214]. The mechanisms responsible for α-synuclein 

degradation are not identified yet and neither is how the cell decides if the 

degradation should be mediated by the UPS or the autophagy pathway.  
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Autophagy is responsible for maintaining homeostasis for intracellular recycling and 

metabolic regulation [215]. It mainly occurs in three forms: microautophagy, where 

the lysosomal membrane extends to invaginate the cellular contents for 

degradation; chaperone mediated autophagy (CMA), where a chaperone protein 

recognizes and directs proteins with a specific consensus sequence to the lysosome 

for degradation; and macroautophagy, where special structures called 

autophagosomes entrap the cellular contents and targeted proteins and then fuse 

with the lysosome for degradation (Figure 15) [215–217]. 

  

The first evidence postulating the involvement of autophagy in PD came when 

autophagic vacuoles were described in the substantia nigra of PD patients [218]. An 

increment in the autophagosome marker LC3-II protein and a decrease in the 

lysosomal markers LAMP1 and LAMP2A, as well as increases in several molecular 

chaperones such as HSC70 and HSP35, are also consistently found in PD brain 

Figure 15 – The three autophagy processes 
There are three different types of autophagy in the cell: macroautophagy (1) where 
the cytosolic components are delivered to the lysosome by vesicles; 
microautophagy (2) where the lysosomes capture small volumes of cytosol; and 
chaperone-mediated autophagy (CMA) (3), where the soluble substrates that 
present a specific chaperone complex are translocated into the lysosome through 
the LAMP-2A lysosomal receptor. Figure from [217], adapted from [216].  
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tissue and suggest the presence of abundant and dysfunctional autophagosomes 

and lysosomes [219]. Additionally, several genes whose mutations are known to 

confer PD risk are linked to autophagy, strengthening the hypothesis that this 

process may be contributing to PD pathogenesis. This is the case of mutations found 

in the ATP13A2 gene which encodes for a lysosomal protein, the PRKN and PINK1 

genes that are involved in the autophagic turnover of mitochondria, or even the 

GBA1 mutations that result in a dysfunction of the lysosome-autophagy system 

[153]. Moreover, wild-type monomeric α-synuclein has been shown to contain the 

specific consensus motif that is targeted and degraded by the CMA, whereas 

macroautophagy has been implicated in the clearance of α-synuclein oligomers as 

well as in mutant and post-transcriptionally modified forms of α-synuclein in cellular 

models of PD [220]. Furthermore, there seems to be a sensitive balance between 

α-synuclein intracellular accumulation and autophagy-regulated secretion that, if 

disturbed, can either promote aberrant intracellular accumulation or excessive 

secretion that can later contribute to the spread of PD through the nervous system 

[221]. 

 

The UPS is also an intracellular protein degradation system important for the 

turnover of the majority of short-lived proteins [222]. To be UPS-degraded, proteins 

have to be covalently tagged with ubiquitins, which are 76 amino acid proteins [223]. 

This tagging occurs via an iso-peptide bond ligated through a reaction that requires 

the sequential actions of ubiquitin activating (E1), conjugating (E2) and ligating (E3) 

enzymes [223]. These actions are usually repeated multiple times, allowing the 

formation of a polyubiquitin chain on the substrate that marks the protein for 

degradation by the 26S proteasome in association with two 19S regulatory caps 

[223]. These regulatory caps are mainly important for the initial steps of substrate 

proteolysis, namely recognition, unfolding and translocation of substrate proteins 

into the lumen of the proteolytic core [224]. After degradation, individual monomers 

are regenerated by the action of deubiquitylating enzymes [223].  

 

The first evidence suggesting UPS’ impairments are linked to PD came from UPS 

having a significantly reduced catalytic activity in PD compared with non-PD 

substantia nigra [225]. The same type of impairments were then also found in 

peripheral blood mononuclear cells of PD patients [226], together with lower 
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expression of different proteasomal components important for the normal function 

of the UPS [227]. Furthermore, PRKN and UCH-L1, both linked to monogenic PD, 

were shown to play a role in UPS function. PRKN seems to work as an E3-uniquitin 

protein ligase through its ring domains and may control protein levels via 

ubiquitination [228] whereas an UCH-L1 missense mutation, found in a German 

family with PD, caused a partial loss of catalytic activity in this deubiquitylating 

enzyme [229]. Additionally, pharmacological inhibition of the proteasome in wild-

type rats and transgenic mice was shown to lead to dopaminergic cell death as well 

as Lewy body-like inclusions in the substantia nigra of their brains [230,231]. All 

those findings suggest that UPS might play a role in PD pathogenesis. 

  

3.4.3 Mitochondrial dysfunction 
 

Mitochondria play a vital role in the regulation of cellular energy production, calcium 

homeostasis, bioenergetic quality control and cell death regulation [232]. 

Dopaminergic neurons in the substantia nigra are responsible for the highest cellular 

energy demand (~20%) of the human body and are also known to have a high rate 

of mitochondrial oxidative metabolism [232]. As such, it is not surprising that 

mitochondrial dysfunction is central for PD pathogenesis since the substantia nigra 

is the most affected area in PD brains. Thus, primary mitochondrial defects such as 

mutations in the polymerase gamma gene (POLG) are sufficient to cause not only 

loss of neurons in substantia nigra, among other neuronal populations in other 

regions, but also PD-like symptoms [233]. However, it is still unknown whether 

mitochondrial dysfunction is a cause of PD or a consequence of disease 

progression.  

 

As mentioned before, α-synuclein can interact with membranes, namely the 

mitochondrial ones. Α-synuclein possesses a non-canonical mitochondrial targeting 

sequence and seems to influence mitochondrial structure and function [234]. 

Moreover, increased levels of wild-type and mutated α-synuclein were shown to 

induce mitochondrial fission and production of reactive oxygen species (ROS) in 

vitro and in vivo [235]. Additionally, pathogenic mutations in α-synuclein were found 
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to reduce α-synuclein binding to the mitochondria-associated membranes important 

for Ca2+ signalling and cellular apoptosis [236].  

 

PINK1, PRKN and DJ-1, genes linked to autosomal recessive PD, are also found to 

be key mediators of mitochondrial homeostasis and mitophagy (degradation of 

mitochondria by autophagy), further supporting the role of mitochondrial dysfunction 

in PD [233]. For instance, failure in the activation of PRKN through PINK1, known 

to be responsible for mitophagy and to be an essential pathway for mitochondrial 

quality control, causes persistence of damaged and ROS-producing mitochondria 

that lead to cellular stress [235]. Several studies already reported deficiencies in 

mitochondrial complex I, the first enzyme of the mitochondrial electron transport 

chain, in PINK1 knockouts and mutants [235]. Mitochondrial localization of DJ-1 is 

neuroprotective and dependent on oxidation by ROS that can be inhibited when DJ-

1 is mutated [237]. Although DJ-1 can directly interact with both monomeric and 

oligomeric α-synuclein, it is still unclear if it happens at the mitochondrial level or in 

response to a stimuli such as DJ-1 oxidation [235].   

 

Moreover, LRRK2, the most common mutated gene in familial PD cases, is also 

known to interact with a number of key regulators of mitochondrial fission/fusion, 

with its protein product shown to be co-localized with these in either in the cytosol 

or in the mitochondrial membranes [238]. In fact, increasing wild-type LRRK2 

expression was shown to cause mitochondrial fragmentation along with an 

increment in DLP1, a mitochondrial dynamin-like fission protein, that is even further 

exacerbated when LRRK2 is mutated (G2019S) in SH-SY5 and differentiated 

primary cortical neuron cell lines [238]. Additionally, LRRK2 was also found to 

modulate the activities of Mfn1/2 and OPA1, both mitochondrial fusion regulators. 

Also, PD patients harbouring the LRRK2 G2019S mutation present decreased 

levels of mature OPA1 [239]. Thus, the expression of mutant LRRK2 and/or its wild-

type overexpression in iPSCs from PD patients induces fragmented mitochondria 

that produce more ROS and less ATP and show an increased vulnerability to 

stressors [235]. For instance, iPSC-derived LRRK2 G2019S dopaminergic neurons 

are much more vulnerable to H2O2, 6-hydroxydopamine (6-OHDA), rotenone, and 

proteasome inhibitors, than wild type iPSC-derived LRRK2 dopaminergic neurons 
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[240,241]. In summary, the kinase activity of LRRK2 may be important to modulate 

mitochondrial fusion and fission in PD dopaminergic neurons. 

 

All the aforementioned findings support the idea that mitochondrial dysfunction plays 

indeed a central role in the pathogenesis of PD. Noteworthily, alterations in 

pathways related with autophagy and lysosomes can also allow the accumulation 

of defective mitochondria, exacerbating mitochondrial dysfunctions that can then 

increase the oxidative damage to proteins and organelles in PD brains, leading to 

neuronal loss [233].   

 

3.4.4 Autoimmunity 
 

The immune system has been implicated in PD pathogenesis either through 

inflammation or as an autoimmune response [242]. However, it is not yet fully 

understood if this immune activation is a cause or a consequence of the observed 

neuronal loss.  

 

An autoimmune disease is characterized by the presence of self-antigens and its 

associated auto-antibodies or specific autoreactive cells that are related to the 

observed pathology [243]. There are several studies that suggest PD to be an 

autoimmune disease given that the complement system, chemokines and cytokines, 

related with the innate immune system activation, were found highly increased in 

post-mortem brains [244]. Additionally, gamma delta (γ/δ+) T cells were also found 

increased in the peripheral blood and CSF of PD patients [245]. Moreover, serum 

levels of anti-α-synuclein antibodies were shown to be associated with the familial 

variants of PD and anti-GM1-ganglioside antibodies were associated with the 

tremor-dominant form of PD [246]. In another study that reinforces autoimmunity as 

playing a role in PD pathology, a CSF-derived auto-antibody that reacts with 

dopaminergic neurons in the substantia nigra was present in 78% of the tested PD 

patients but only in 3% of non-PD patients [247]. Furthermore, the cytotoxic effect 

of this CSF antibody on the dopaminergic neurons was also measured via 

immunoglobulin G (IgG), correlated with the degree of neurodegeneration in PD 

[248]. Consistently, purified IgG from PD patients injected in substantia nigra of adult 
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rats caused more degeneration of its neurons and selective damage to the 

nigrostriatal pathway when compared to injection of non-PD IgG [249]. 

 

Moreover, PD patients seem to have fewer naïve T cells and more activated T cells, 

as well as a lower number of T helper cells [250]. Besides, the presence of T cells 

was shown to be increased in the substantia nigra of PD patients, one of the brain 

regions most affected by the disease, suggesting that those cells underwent a 

targeted extravasation [250]. Additionally, T cells of PD patients were also found 

capable of generating an autoimmune response to α-synuclein [251], which could 

support the hypothesis of PD resulting from an autoimmune response triggered by 

the recognition of aggregated and misfolded α-synuclein as a foreign identity.  

 

GWAS also reported a strong association between the human leucocyte antigen 

(HLA) class II region, a key molecule of the immune system, and the risk of 

developing PD [252]. Besides, the usage of ibuprofen, a nonsteroidal anti-

inflammatory drug, was linked with a lower PD risk [253].   

 

All these findings highlight the relevance of the immune system in PD, independently 

of it being considered a trigger of or a response to neurodegeneration in PD.  

 

3.5 The specific roles of brain cell types in PD  
 

As in AD, PD brains are also characterized by extensive neuronal cell death that 

can occur through apoptosis, necrosis, autophagy or cytoplasmic disfunction [89,90] 

and an intense glia reaction (gliosis) response [89].  

 

3.5.1 Neurons 
 

Dopaminergic neurons are those most prone to neurodegeneration in PD and the 

cellular basis of the first PD symptoms such as tremors. Some studies show that 

dopaminergic neurons might die through apoptosis and others find no signs of 

apoptosis in the nigral dopaminergic neurons [254,255]. Additionally, substantia 

nigra neurons contain neuromelanin, a pigment that is the oxidized product of 
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dopamine, that has also been considered a contributor to neuronal death in PD. 

Neuromelanin can capture iron and absorb pesticides, such as rotenone, that will 

promote an increase in oxidative stress resulting in the selective neuronal death in 

the substantia nigra [256]. Moreover, those neurons in transgenic mice can also 

degenerate upon high concentrations of melanin, producing PD-like symptoms as 

well as protein turnover dysfunction [257,258]. Furthermore, vulnerability of the 

substantia nigra to dopamine-induced oxidative stress and neuronal cell death might 

also be related to the diminished expression of the dopamine transporter therein in 

PD. This decrease leads to impaired dopamine storage and enhanced dopamine 

reuptake, causing cell death [259]. However, the striatum being not degenerated in 

PD and acting on dopamine might suggest that the location of dopamine 

concentration, i.e., cytoplasm vs. synapse, influences the selective vulnerability of 

the substantia nigra [260]. Besides dopaminergic neuronal death, PD brains also 

present neuronal degeneration in other regions [261].  

 

Lewy bodies are another feature that can be found in PD neurons, although their 

contribution for promoting or preventing neuronal death is not yet established. 

Greffard and colleagues, for instance, showed that the percentage of Lewy body-

bearing neurons and immunoreactive α-synuclein in the substantia nigra were not 

correlated with the symptoms or the disease duration [262]. Given this observation, 

they hypothesized that Lewy bodies are eliminated when the neurons that bear them 

die, suggesting that the destruction rate of Lewy bodies is equal to their production 

[262].  

 

As mentioned before, SNCA has been found mutated in autosomal familial dominant 

PD, leading to the assumption that α-synuclein accumulation and misfolding could 

be the cause of neuronal death. There are studies that suggest that overexpression 

of α-synuclein, especially the mutant forms found in PD familial cases, exacerbate 

the vulnerability of neurons to dopamine-induced cell death through excess ROS 

generation [263,264]. Moreover, it has also been reported that dopamine and 

neuromelanin can directly affect α-synuclein aggregate propensity, helping to 

generate more toxic forms of α-synuclein [265,266], and that α-synuclein can alter 

enzymes involved in the dopamine metabolism, generating toxic dopamine 

metabolites [267].  
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3.5.2 Astrocytes 
 

It is known that PD patients have a more permeable BBB, suggesting a potential 

role of astrocytes in PD [268]. Moreover, astrocytes produce several molecules that 

are important for the development and survival of dopaminergic neurons, namely 

the glia-derived neurotrophic factor (GDNF) [269]. Expectedly, astrocytes have been 

associated with dopaminergic neuron degeneration in PD [269]. Furthermore, a 

comparative transcriptomic analysis across different types of human and mouse 

brain cells showed that many of the genes that have a monogenic mutation 

associated with familiar PD (e.g. PARK7, SNCA) are equally or even more 

expressed in astrocytes than in neurons [270,271]. Proteins encoded by some of 

those genes are indeed already known to play a role in astrocyte physiology [270]. 

One such example is DJ-1, important not only for the maintenance of mitochondria 

in astrocytes, but also for neuroprotection against rotenone [272,273].  

In pathological conditions, such as brain injury and oxidative stress, astrocytes 

undergo astrogliosis, characterized by several morphological and functional 

changes [274]. This is, together with inflammation, a common feature of all 

neurodegenerative disorders [275]. Both cellular and animal PD models generated 

with the administration of rotenone or MPTP present astrogliosis, together with 

neuronal death, mitochondrial dysfunction and nuclear fragmentation [276]. 

 

3.5.3 Microglia 

Upon a compromise of brain homeostasis, such as an injury, infection or a 

neurodegenerative disorder, microglia shift their phenotype from a “resting” to an 

“activated” state [274]. Once activated, microglia proliferate and migrate towards 

chemoattractants. This process has been postulated to play an important role in PD, 

since there is a dense population of microglia in the substantia nigra that, when 

becoming activated, can influence the midbrain dopaminergic neurons that are 

extremely sensitive to cytokines [277]. Thus, even though microglial activation can 

enhance neuronal survival by releasing trophic and anti-inflammatory factors, the 

constant release of harmful molecules by microglia in the substantia nigra 
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overshadows, in the context of PD, this beneficial effect, becoming overall 

detrimental [278]. 

Moreover, a study, performed in rhesus monkeys treated with MPTP to recapitulate 

to some extent the PD phenotype, suggested that microglia are important for the 

selective vulnerability of dopaminergic neurons to MPTP [279]. Additionally, a 

GWAS study identified a genetic risk factor for late-onset PD in the human leucocyte 

antigen gene (HLA-DRA) that is specifically expressed in microglia, strengthening 

the role of microglia in PD [280]. Besides, PET studies also identified microgliosis 

as being an early and sustained response in PD [281,282].  

One type of pattern recognition receptor, known to respond to pathogen-associated 

molecular patterns and recognize invading pathogens for host defence immune 

mechanisms, are the tool-like receptors (TLRs).  Microglial TLR1/2 has been shown 

to play a role in the α-synuclein pathogenesis, with microglial TLR2 found 

overexpressed in PD patients [283] and activated by α-synuclein in different 

experimental systems [284]. Upon TLR1/2 activation, microglia start to release pro-

inflammatory cytokines, such as TNFα and IL-1β, in a My88 dependent manner, as 

well as anti-inflammatory cytokines, demonstrating the dual role that microglia can 

have upon this activation [284]. Α-synuclein can also interact with other microglial 

receptors, such as EP2, that regulate its phagocytosis, CD11b, that will cause 

microglial migration downstream, or even the CD36 receptor, that regulates 

microglial activation and TNFα release [284]. Although all these receptors can 

activate different pathways upon α-synuclein signal, they activate microglial 

inflammatory response. Additionally, genes related with PD risk, such as DJ-1, 

LRRK2 and SNCA, were shown to be able to mediate microglia inflammation and 

microglial phagocytosis [284]. 

3.5.4 Oligodendrocytes 

Α-synuclein has been found in OPCs isolated from rodent brains, as well as in 

oligodendrocytes originated from human embryonic stem cells and iPSCs derived 

from PD patients’ fibroblasts  [285]. Moreover, α-synuclein was also observed to be 

decreased in pre-myelinating oligodendrocytes regardless of the iPSCs being 

healthy or diseased [285]. Conversely, α-synuclein overexpression in OPCs could 
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delay their maturation into oligodendrocytes expressing the mature marker MBP, 

suggesting a tight link between the intracellular levels of α-synuclein and the 

maturation capacity of primary OPCs [286]. An age and disease-dependent loss of 

MBP signal was indeed observed in the striatum of PD mouse models and α-

synuclein seemed to be involved in the regulation and/or the maintenance of myelin 

phospholipids [287].  

 

Although there have been reports pointing out to microstructural differences in white 

matter between PD and control brains, it is still unknown if they are due to alterations 

in the brain’s myelin content [288–291]. In a neuroimaging study, Dean and 

colleagues reported a higher myelin water fraction in PD brains compared with age-

matched controls and its positive correlation with levodopa dosage, suggesting an 

adaptive mechanism or a side effect of levodopa supplementation [292]. It seems 

that PD pathological changes progress inversely to brain myelination, contributing 

to the hypothesis that oligodendrocytes might be involved in PD [292].  

 

3.6 Diagnosis 
 

PD diagnosis is done by clinical observation of the patient but is not straightforward. 

It is estimated that 25% of the patients diagnosed with PD have an alternative 

diagnosis such as Alzheimer-type pathology or vascular encephalopathy, when their 

brain samples are analysed post-mortem [293]. However, in the past three decades, 

the criteria and guidelines have been optimized, achieving a diagnostic accuracy of 

82% [294]. The most widely used clinical criteria for PD diagnosis refer to the Queen 

Square Brain Bank (QSBB) that provides a three-step method for evaluating a 

patient [295].  

 

The first step details PD-related symptoms and the second step is to check if the 

patient does not have any exclusion criteria such as history of repeated strokes, 

head injuries, supranuclear gaze palsy or cerebellar signs [295]. The third step is to 

assess if the patient has three or more required criteria defined by QSBB (e.g., 

unilateral onset, excellent response to levodopa, hyposmia) [295].  Noteworthily, an 
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important and diagnostic feature of PD is the responsiveness of motor symptoms to 

levodopa administration [296]. 

 

One of the reasons hampering PD diagnosis is the amount of diseases with very 

similar symptoms that incite the performance of differential diagnosis, that is, to 

distinguish PD from other diseases. For instance, abuse of PD-inducing drugs, such 

as MPTP, is considered secondary parkinsonism; multisystemic atrophy, 

progressive supranuclear palsy and corticobasal syndromes are disorders deemed 

as atypical parkinsonism; and other neurodegenerative diseases, such as dementia 

with Lewy bodies, AD with parkinsonism, prion disease or frontotemporal dementia, 

also share several symptoms with PD [296].  

 

Imaging techniques are usually employed for differential diagnosis. Patients that are 

thought to have PD but fail to respond to levodopa administered for 12 weeks 

undergo an MRI scan to exclude other rare secondary causes such as supratentorial 

tumours, normal pressure hydrocephalus and extensive subcortical vascular 

pathology [150]. PET or single-photon emission computed tomography (SPECT) of 

dopaminergic regions can also be used to distinguish PD from conditions with no 

dopaminergic denervation such as drug-induced parkinsonism [296]. The 

demonstration of normal striatal dopamine-transporter uptake with dopamine 

transporter SPECT can avoid inappropriate anti-parkinsonian treatment and is also 

helpful in identifying juvenile parkinsonism when the differential diagnosis lies 

between levodopa-responsive dystonia and monogenetic parkinsonism [150]. 

 

3.7 Treatment  
 

At the moment, there is no cure for PD and the available treatments are only 

symptomatic.  

 

The most commonly prescribed drugs for PD include levodopa, dopamine agonists 

and monoamine oxidative type B inhibitors that enhance intracerebral dopamine 

concentrations or stimulate dopamine receptors [297]. Most of those drugs help PD 
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patients with bradykinesia and rigidity and, to some extent, tremors [179]. 

Anticholinergic drugs, such as clozapine, are also used to control the tremors [179].   

 

Although levodopa and dopamine agonists are the most frequently prescribed 

drugs, they also present several side-effects such as nausea and daytime 

somnolence [179]. Long-term dopaminergic treatments lead to complications in the 

course of PD, including dyskinesia, motor and non-motor fluctuations and 

psychosis, that can reduce the patient’s quality of life [298]. To reduce the wide 

fluctuations in dopamine concentrations, monoamine oxidative type B or catechol-

O-methyltransferase inhibitors are also used [298]. Additionally, non-dopaminergic 

treatments can also be useful to treat motor complications. For instance, 

amantadine or clozapine have been shown to affect multiple neurotransmitter 

systems and are effective in treating dyskinesia [298].  

 

PD patients also suffer from treatable non-motor symptoms such as psychiatric 

symptoms, sleep disorder autonomic dysfunction and fatigue [297]. Depression can 

also be present in PD patients and is typically treated with antidepressants based 

on selective serotonin uptake inhibitors such as citalopram, fluoxetine and sertraline 

[179].  

 

In the late stage of PD, the motor and non-motor symptoms usually start to respond 

poorly to levodopa, which may be explained by the involvement of other 

neurotransmitter systems. For instance, gait dysfunction and falls in late-stage PD 

patients seem to be related to a reduction of acetylcholine due to the degeneration 

of the cholinergic structures [299]. As such, acetylcholine inhibitors, such as 

donepezil or rivastigmine, are also used to manage these type of symptoms [179].  

 

Deep brain stimulation (DBS) is another therapy that is nowadays used to treat PD 

patients with motor fluctuations and dyskinesias. Although the most common 

modality used is the subthalamic nucleus stimulation, stimulation of nodes in the 

cortico-basal ganglia-thalamo-cortical network can also be targeted [300]. The 

precise mechanism responsible for the clinical effects of DBS on the motor 

symptoms of PD is not fully elucidated yet. However, it has been suggested that 

DBS dissociates input and output signals from the basal ganglia, resulting in the 
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disruption of abnormal flow through the stimulation site [301]. Other hypotheses 

postulate that DBS of the subthalamic nucleus is excited while inhibiting some 

specific pathways or even altering neurotransmitter release at synapses that provide 

clinical benefits for PD patients [300]. Nevertheless, DBS treatment is not suitable 

for all PD patients and its accessibility can vary by country. According to the United 

Kingdom National Health Service Commissioning Board, patients that have a clear 

levodopa response, not cognitively impaired and do not fall frequently would be 

suitable candidates for DBS if the drug therapy has not provided good symptom 

control [300]. Besides, to apply this therapy, a brain surgery is needed and 

complications can occur during the procedure. Although the overall adverse events 

are at low rates, 1-15% of DBS procedures report hardware infection resulting in 

multiple hardware savage attempts, hospitalizations and long-term antibiotic 

therapy [302].  
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4. Human brain transcriptomics  
 

Although, over the past few decades, animal and clinical research have improved 

our understanding of the pathophysiological courses of AD and PD, their intricate 

molecular mechanisms have not yet been fully elucidated, hampering the discovery 

of effective drugs for reversing or slowing down AD or PD progression. The advent 

of high-throughput molecular profiling, at a genome-wide scale, of biological 

samples has been instrumental in attempting to unveil which specific molecular 

mechanisms underlie AD and PD.  

 

Transcriptomics is the study of the transcriptome, i.e., the complete set of RNA 

molecules present in one cell or in a population of cells [303]. Although the genome 

is considered static, since it is mostly the same in nearly every cell of the same 

organism, the transcriptome is variable and dynamic, assuring the functional 

diversity of cells and tissues. The transcriptome can thus be used as a snapshot of 

genes’ activity and thereby a signature of the cellular activity, providing insights into 

the molecular mechanisms underlying several processes in the cell or tissue, from 

development to disease [304]. Several technologies have been developed over the 

years to profile the transcriptome, with the most used being microarrays, an 

hybridization-based approach, and high-throughput RNA sequencing (RNA-seq) 

[304].  

 

The most commonly studied RNA molecules are messenger RNAs (mRNAs), that 

can serve as blueprints for protein synthesis. To study this type of molecule in a 

sample, RNA isolation is required. This process can be summarized in the following 

steps: mechanical disruption of cells or tissue; ablation of RNAses, macromolecules 

and nucleotide complexes; separation of RNA from other biomolecules and 

precipitation of the RNA via solution or elution from a solid matrix [303]. Afterwards, 

there is an enrichment of the extracted RNA population in mRNA, by positive 

selection of polyadenylated (poly-A) RNAs using poly-A affinity methods [305].  
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4.1 Transcriptomics of AD and PD brain samples 
 

There have been several efforts involving the profiling of transcriptomes of post-

mortem AD brain samples with microarrays but they seemed to lack reproducibility 

when their results were compared across studies. Moreover, many molecular and 

pathways changes identified therein were apparently not AD-specific, having been 

related also with other neurodegenerative and mental health disorders [306]. Patel 

and colleagues therefore performed a meta-analysis of human brain transcriptomes 

using publicly available microarray data from multiple brain-related disorders, 

including AD [306]. Through this metanalysis, they were able to identify, consistently 

across several brain regions, 3 AD-specifically downregulated (NDUFS5, SOD1 and 

SPCS1) and 4 AD-specifically upregulated (OGT, PURA, RERE and ZFP36L1) 

genes, as well as six AD-specific pathways, all related with metabolism of proteins 

[306]. Moreover, other studies used RNA-seq to profile post-mortem transcriptomes 

from total brain, frontal and temporal lobe [307], parietal cortex [308] and 

hippocampi [309] of AD and non-AD individuals. Several pathways were therein 

reported as being changed in AD brains, such as those involved in lipid metabolism 

[308], neuronal communication [309] and synapse function [307].  Additionally, 

Annese and colleagues analysed post-mortem hippocampal transcriptomes from 

LOAD and non-AD patients where most of the AD-associated gene expression 

changes were related with the regulation of important neural processes such as 

neurogenesis, synaptic vesicle trafficking, long-term potentiation, neurite outgrowth 

and hyperphosphorylation of Tau [310]. Furthermore, very recently, Wan and 

colleagues, performed a meta-analysis of differential gene expression over two 

thousand human postmortem brain samples and 96 different mouse studies relevant 

to AD, other neurodegenerative disorders, aging and related mechanisms [311]. 

They were able to identify five human dominant consensus clusters with robust and 

reproducible patterns of co-expression patterns in seven brain regions affected by 

AD [311].  Additionally, they showed that most AD mouse models have poor 

correspondence to human disease at the brain transcriptome level, with the 

exception of neuronal and microglial-enriched co-expression modules [311].  Their 

cross-species approach also demonstrated the impact of sex on AD brains, with AD 

apparently progressing more rapidly in female than in male mice and female human 
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AD brains showing quantitatively greater transcriptional changes than males [311]. 

Although this cross-species resource can be very valuable for highlighting AD-

associated transcriptional network changes in human brains and identifying their 

correspondence in mouse models for AD preclinical studies, it does not consider 

differences between samples’ cell compositions across datasets. Indeed, most of 

the human co-expression modules found were strongly enriched for cell-type-

specific genes and were not specific of AD, since they were also found in mouse 

studies on other neurodegenerative disorders and aging [311]. 

 

PD-specific changes in gene expression remain poorly understood and elucidating 

them is crucial in the search for PD biomarkers and novel therapeutic strategies. 

Kelly and colleagues have conducted a meta-analysis study of the largest PD cohort 

to date of publicly available microarray data, to identify PD-specific gene expression 

changes and compare them with AD [312]. The authors were able to identify 

changes in signalling, protein-protein interaction, mitochondrial and oxidative stress 

pathways [312].  Moreover, they state that most of the genes found differentially 

expressed in this PD cohort were also found in AD and identified REST as a 

potential upstream regulator in both disorders [312]. Another study profiled the 

mRNA of substantia nigra, striatum and the cortex in control and PD post-mortem 

brains and found changes related to oligodendrocytic function and synaptic vesicle 

release in all those regions [313]. The prefrontal cortex mRNA was also profiled in 

PD post-mortem brains along the proteome of the same samples [314]. In this study, 

the authors found a modest comparability between the mRNA and proteomic 

changes, although they observed consistent changes in functional pathways such 

as mitochondrial-related, protein folding and metallothionein pathways, all 

previously described in PD [314]. In 2020, Benoit and colleagues did a pioneer study 

where they profiled brain biopsies from the frontal lobe of PD and healthy living 

patients that had undergone neurosurgical procedures [315]. Their study revealed 

changes in genes related with trophic signalling, apoptosis, inflammation and cell 

metabolism pathways as well as 123 gene expression changes that had not been 

previously reported in other PD studies involving post-mortem brain samples [315]. 

 
Although many AD and PD studies have investigated transcriptional regulation in 

the brain, it is important to state that they are usually restricted to post-mortem 
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material (except the Benoit et al. study [315]), representing an end-stage reflection 

of the neurodegenerative diseases. Moreover, the reported changes in gene 

expression could be reflective of differences in cellular composition between 

affected and healthy tissue or different disease stages, rather than being indicative 

of disease-causing differences in transcription regulation [316].  

 
4.2 Single cell transcriptomics 

 

Traditionally, cells are classified according to their morphology and certain proteins’ 

expression levels in different functional settings [317]. With the advent of single-cell 

RNA-seq (scRNA-seq), it became possible to classify and characterize cells at the 

transcriptional level on a genome-wide scale [317]. From 2015 to 2019, more than 

80 papers described using scRNA-seq to characterize brain cell types in different 

regions, at different developmental stages or disease statuses [318]. Moreover, the 

number of cells sequenced per study has been increasing, thereby helping the 

scientific community to construct a more comprehensive landscape of neural cell 

types [318]. 

 

The first scRNA-seq study related with the human brain was published in 2014. This 

study revealed the intratumoral heterogeneity of human primary glioblastoma and 

its diverse regulatory programs, central to glioblastoma’s biology, prognosis and 

therapy [319].  

 

By 2015, Darmanis and colleagues were the first to isolate and sequence whole 

transcriptomes of the six major cell types (neurons, astrocytes, microglia, 

oligodendrocytes, OPCs and endothelial cells) from adult and foetal human cortical 

tissues [320]. By using scRNA-seq, they identified a new subset of adult neurons 

presumably not immune-privileged (i.e. the introduction of an antigen therein would 

trigger an inflammatory immune response), as well as neuronal changes from early 

developmental to late differentiated stages [320]. In the same year, individual neural 

stem cells from the human neocortex were also sequenced, contributing to a better 

understanding of its development and evolutionary expansion [321].  
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In 2016, Lake and colleagues developed a single-nucleus sequencing (snRNA-seq) 

technology that was applied in post-mortem human brains [322], contrarily to 

previous scRNA-seq methods that required freshly isolated neurosurgical tissues. 

Being able to analyse post-mortem samples is advantageous when studying non-

accessible tissues in living patients such as brain tissue [322]. However, snRNA-

seq is less sensitive, i.e. has a much lower transcript detection rate, than scRNA-

seq [323]. To enhance the snRNA-seq technology, Habib and colleagues developed 

in 2017 the DroNc-seq method to perform massive parallel snRNA-seq with droplet 

technology [324]. This method was applied to both human and mouse prefrontal 

cortex samples and enabled the classification of their cell types. Later on, another 

study used the same approach to sequence single nuclei from human visual cortex, 

frontal cortex and cerebellum [325].   

 

Nowakowski and colleagues managed to perform scRNA-seq in human 

telencephalon, highlighting human brain development at the molecular level [326]. 

The authors developed a mixed model of topographical, typological and temporal 

hierarchies that govern cell-type diversity and also distinguished excitatory lineages 

emerging in rostral and caudal cerebral cortices [326]. scRNA-seq has also been 

used to study the development of other human brain regions such as prefrontal 

cortex and cerebral cortex [327,328].  

 

Spaethling and colleagues developed a culture system for resected adult human 

brain tissue extracted during neurosurgery and performed scRNA-seq on cells after 

3 weeks in culture, thus demonstrating a potentially relevant system for personalized 

precision medicine [329].  

 

Despite all the previous studies referring to non-diseased brains, scRNA-seq has 

been more recently applied in the context of brain disease. There are several studies 

using single-cell sequencing of brain cancers such as primary and non-primary 

gliobastomas [319,330–334], oligodendroglioma [335], oligodendrocytoma [336], 

astrocytoma [336] and medulloblastoma [337]. Single nuclei from cells of prefrontal 

and anterior cingulate cortex of autistic and non-autistic patients were also 

sequenced [338]. The authors identified specific sets of genes enriched in upper-

layer projection neurons and microglia that correlate with clinical severity, 
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suggesting that these molecular changes are linked with behavioural manifestations 

of autism [338].  

 

Single-cell technologies are also starting to be used in the context of 

neurodegenerative diseases. For instance, in 2019, Lang and colleagues performed 

scRNA-seq of dopamine neurons derived from non-PD iPSCs and iPSCs 

harbouring a genetic risk variant for PD, where they identified a progressive axis of 

gene expression variation leading to endoplasmic reticulum stress that could be 

potentially regulated by HDAC4 [339]. Also, there was a study where the authors 

performed snRNA-seq of multiple cell lineages in Multiple Sclerosis (MS) lesions 

and found lineage- and region-specific transcriptomic changes associated with 

selective cortical neuron damage and glia activation that contribute to the 

progression of MS lesions [340]. Finally, there was a pioneer study coming out in 

2019 that performed snRNA-seq to analyse transcriptional changes in early and late 

disease stages of AD, as well as gender-associated transcriptional differences in 

AD patients [341]. Additionally, another study came out very recently, where snRNA-

seq of an AD mouse model and human AD samples showed specific transcriptomic 

signatures for AD oligodendrocytes, astrocytes and microglia, and unveiled a new 

population of reactive oligodendrocytes in mouse [342].    

 

It is clear that single-cell technologies will keep evolving and massively contribute 

to the creation of a human brain cell atlas. Hopefully, the specific transcriptomic 

signatures of each neural cell type will be well defined to contribute to a better 

understating of the brain as a whole. Furthermore, it will also be possible to address 

the contribution of specific cell-type transcriptomic changes to a particular brain 

disease and how those changes can be manipulated. 
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5. Techniques for transcriptome profiling  
 

5.1 Microarrays  
 

Microarrays were first introduced in 1995 [343] and are an hybridization-based tool 

that measures the relative expression level of a gene by determining the amount of 

cognate mRNA present in a sample [344]. Through a single experiment, microarrays 

allow for a quick and efficient analysis of the expression of thousands of genes, 

which is an advantage over single gene-centred laboratory quantification methods 

such as northern blotting and reverse transcriptase quantitative polymerase chain 

reaction (RT-qPCR) [303,344].  

 

A microarray can be a glass slide, a nylon membrane or a silicon chip, containing 

spots of each gene’s DNA at known location  [345]. Those spots are also known as 

probes and, for mRNA measurement, they are usually sequences of complementary 

DNA (cDNA) or oligonucleotides, which are short fragments of a single-stranded 

DNA with specific complementarity to the gene’s target sequence [345]. Once 

mRNA is isolated from a sample and converted into cDNA with a fluorescent tag, it 

is placed over the array in order to hybridize with the probes, in case they share 

sufficient sequence complementarity [346] (Figure 16). Afterwards, the array is 

washed to eliminate non-hybridized transcripts [346].   

 

After the washing step, each probeset (a collection of probes targeting the same 

molecule) will be bound to a certain quantity of labelled cDNA [347]. The amount of 

sample hybridization is estimated after a laser is beamed to excite the dye of the 

labelled cDNA, whose intensity is proportional to the transcript quantity [344]. This 

fluorescence is then captured by a scanner that gives an image of a grid of bright 

spots, each corresponding  to a probe [344]. The image is then transformed into a 

matrix of intensity values and the gene expression analysis can start  [347].   
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5.2 RNA-seq 
 

RNA-seq is a more recent technique that uses high-throughput technologies to 

sequence RNA, namely the mRNA [304]. Briefly, mRNA of cells or tissue is 

fragmented and converted into a library of cDNA fragments to which adaptors are 

attached in one or both ends [304]. Then, each molecule can be amplified followed 

by high-throughput sequencing to obtain short nucleotide sequences 

(computationally represented by text strings known as reads) from one end (single-

end sequencing) or both ends (paired-end sequencing) [304]. Single-end 

sequencing is cheaper than paired-end and is enough to quantify gene expression 

levels [303]. However, paired-end sequences can provide more robust alignments, 

being potentially beneficial for gene annotation and discovery of new transcript 

isoforms [348]. The reads generated by RNA-seq are usually around 100 base pairs 

but can vary between 30 and 10 000 base pairs [303]. Additionally, RNA-seq can 

be stranded or unstranded. If stranded, reads can be specifically assigned to their 

cognate RNA molecules’ transcriptional strand, allowing to discriminate the 

transcription of genes that overlap in different genomic strands [349].  

 

 

Figure 16 – mRNA quantification with microarrays 
Microarrays are based on fluorescently labelled cDNA that hybridizes with 
complementary pre-defined probes.  
Figure inspired by [303].  
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With this technique, an expressed gene is represented by several reads associated 

with sequenced fragments of its mRNA (Figure 17). Since RNA-seq is not based on  

probe design but rather on the detection of molecules at single-nucleotide 

resolution, it does not have issues related with probe redundancy and annotation, 

allowing a better coverage of all transcripts in the sequenced sample, even novel 

unknown (i.e. never annotated before) ones, reaching therefore higher specificity 

[350–352]. Also, due to background noise and cross-hybridization, microarrays are 

not so effective in detecting genes with low expression levels as they cannot 

distinguish them from non-expressed ones, being therefore less sensitive [351]. 

RNA-seq therefore also outperforms microarrays in the detection of differentially 

expressed genes because it allows for a more accurate quantification of low-

abundant transcripts [353]. Additionally, the RNA quantity needed for RNA-seq is 

much lower (nanograms) than what is required for microarrays (micrograms), which 

also helps RNA-seq to be a more convenient technique [303].  

 

Once the reads are obtained, the reconstruction of the original transcriptome can be 

achieved through either computational de novo assembly or by aligning the reads 

Figure 17 – mRNA quantification by RNA–seq 
mRNA is fragmented and then reverse transcribed, creating double-stranded 
cDNA. Afterwards it is high-throughput sequenced, generating reads that can then 
be aligned, for instance, against the reference genome sequence. 
Figure inspired by [303].   
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against a reference genome or transcriptome [304]. Gene expression is then 

quantified based on the amount of reads that align to a given gene.  

 

5.3 Single-cell RNA-seq 
 

With the advent of scRNA-seq, it became possible to molecularly classify and 

characterize individual cells at a genome-wide level [317]. The first scRNA-seq 

experiment happened in 2009, when a single mouse blastomere was sequenced 

[354]. Nowadays, with the improvement of high-throughput single-cell technologies, 

hundreds to thousands of cells can be sequenced in parallel (Figure 18), allowing 

for an unbiased view of the heterogeneity of transcriptomes across individual cells 

within a population [317]. 

 

 

All scRNA-seq protocols share as common initial steps the conversion of the cell’s 

transcriptome into cDNA. Then, the cDNA is amplified and sequenced to quantify 

gene expression levels therein [317]. However, two challenges have to be overcome 

to sequence mRNA from single cells: capturing them and amplifying their minute 

amount of mRNA [355]. 

 

To isolate cells, methods such as micromanipulation and laser capture 

microdissection (LCM) provide a small, yet precise, number of cells, whereas 

automatic methods, such as microfluidics, are mainly focused on high-throughput 

cell isolation (Figure 19). Micromanipulation techniques tend to be very time 

Figure 18 – Key single-cell mRNA-seq technologies 
Timeline of available key single-cell RNA sequencing as of 2017.  
Figure adapted from [317]. 
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consuming and laborious but the microscopic supervision ensures that a single cell 

is captured at each isolation attempt. LCM is normally employed to isolate cells from 

tissues, where a laser is used to attach individual cells to a removable thin film 

[356,357]. 

 

 

High-throughput isolation methods require cells to be dissociated from a tissue and 

suspended in a buffer. This step can be very challenging because dissociating cells 

from a tissue using enzymes like trypsin or collagenase might affect cell viability as 

well as each cell’s transcriptional profile [355]. Once cells are suspended, they can 

be sorted into individual wells by fluorescence-activated cell sorting (FACS) or 

microfluidic platforms, such as the Fluidigm C1 robot or microdroplet methods. 

FACS is usually a fast and accurate method to sort cells that can also give 

information on the amount of fluorescence of specific labelled proteins in each cell 

but has a higher reagent cost per cell [355]. Fluidigm C1 has some limitations, 

although its reagent costs per cell are cheaper and it allows a precise fluid control. 

For instance, it can only be used with cells of a relatively homogenous size because 

its capture sites have only three size ranges: 5-10, 10-17 and 17-25 microns in 

Figure 19 – Single cell isolation methods 
Examples of high- and low-throughput methods for single cell 
isolation. LCM – laser capture microdissection; FACS – fluorescence-
activated cell sorting. 
Figure adapted from [291].  
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diameter [355]. Thus, the capture efficiency for sticky or non-spherical cells is low. 

In addition, this technique requires a large amount of input cells (~ 1 000 cells) per 

capture, being inadequate if the starting sample contains few cells [358]. Besides 

Fluidigm C1, some microfluidic methods are based on microdroplets with the 

potential of capturing thousands of cells in a single experiment as well as of enabling 

high-throughput delivery of reagents to each droplet, further reducing costs [359].  
 

As mentioned above, the other single-cell sequencing challenge regards the 

amplification of the low mRNA amount per cell. Only 10-20% of transcripts are 

reversely transcribed into cDNA: one of the caveats that scRNA-seq protocols need 

to improve [358]. Next, the resulting small amounts of cDNA need to be amplified 

and both the most commonly used techniques, PCR and in vitro transcription (IVT), 

have biases. PCR is a nonlinear amplification process with sequence-dependent 

efficiency [355]. The IVT method provides a linear amplification but the requirement 

of an additional round of reverse transcription of the amplified RNA results in 

additional 3´ coverage biases [355].  
 

Another way to increase the single-cell RNA-seq throughput is by multiplexing 

samples. In scRNA-seq this can be achieved through barcoding samples either 

before reverse transcription or during library preparation [355]. Additionally, each 

individual mRNA molecule can also be barcoded within a cell during reverse 

transcription with a unique molecular identifier (UMI) [360,361]. In summary, the 

number of copies of a transcript from a given cell lysate is equivalent to the number 

of UMIs associated with all tags that map to the transcript, considering the initial 

RNA capture rate of the protocol [355].  

 

Since scRNA-seq technology is very recent, there is no gold-standard pipeline to 

analyse this type of data yet. Although scRNA-seq analyses are similar to those of 

bulk RNA-seq, there are nevertheless some particularities [362]. For instance, in cell 

populations, there might be dropouts, that is, a gene can be moderately or lowly 

expressed in one cell but not detected in another cell of the same type [363]. These 

dropouts happen due to the low amounts of mRNA and its inefficient capture in 

individual cells as well as the stochasticity of mRNA expression [363]. This 
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characteristic implies the application of a different RNA-seq normalization method 

that accounts for high-dimensional zero inflated count data [364].  

 

Moreover, scRNA-seq experiments often generate large amounts of data containing 

thousands of gene expression measurements over thousands individual cells, 

presenting challenges in computational analysis such as high dimensionality [363]. 

Additionally, different scRNA-seq datasets can also present a high variability 

regarding the number of cells sequenced, the sequencing depth or even the 

experimental procedure used. Therefore, scRNA-seq pipelines should have a 

quality control step to determine if the individual-cell experiment succeed or failed, 

a normalization and scaling step to eliminate batch effects, followed by dimension 

reduction and visualization methods [365], adapted for each individual RNA-seq 

dataset.    
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6. Inference of cellular composition of tissue samples  
 

Although transcriptomic analyses of bulk tissues shed light on several biological 

processes, they overlook cell type composition. When working with bulk gene 

expression data, one cannot assess if the observed pattern of expression is driven 

by a particular cell type since it reflects the average expression across the entire 

tissue’s cell population. Essentially, by not considering cellular composition as a 

potential confounding factor, especially in cellular heterogenous tissues such as the 

brain, it is not possible to know if gene expression differences between samples are 

due to cell type proportion differences, systemic or cell type-specific changes in 

expression, or even a combination of some or all of them [366].  

 

With the advent of scRNA-seq, the ability to measure the gene expression levels of 

each individual cell enabled the development of approaches to estimate the cell type 

composition of a heterogenous sample.  Although most of those tools have been 

used in estimating the proportion of normal, tumour or immune cells in heterogenous 

tumours [367–371], others have been applied to different scenarios [372–378]. For 

instance, Kuhn and colleagues developed population-specific expression analysis 

(PSEA) and applied it to Huntington disease’s brains [379]. However, scRNA-seq 

has very labour-intensive protocols that require expensive and specialized 

resources, making it, for the moment, not easy to implement in a clinical setting 

[380].  

 

Cell type deconvolution stands for a procedure that estimates the proportion of each 

cell type in a bulk/mixture sample from their corresponding cell-type-specific gene 

expression profiles [381]. Most existing methods require cell-type-specific gene 

expression profiles (also known as signature matrixes) as input to estimate the 

sample’s cell-type proportions or vice-versa and typically use regression techniques 

to estimate the unknowns of interest [382]. It is the case, for instance, of MuSic 

(Multi-subject Single Cell deconvolution), a weighted non-negative least squares 

linear regression-based method, that estimates cell type proportion in bulk samples 

by giving low leverage to genes showing less cross-cell type variation and high 

leverage to the most influential genes of cell-type-specific gene expression profiles 
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as input [380]. Cell Population Mapping (CPM) uses a support vector regression 

approach to combine the bulk profile of a complex tissue with a collection of CPM’s 

reference scRNA-seq profiles, to infer the cellular composition of the input complex 

tissue [383]. Other methods, such as CDSeq (Complete Deconvolution for 

Sequencing data), perform deconvolution approaches without requiring cell-type-

specific gene expression profiles or specific sample cell-type proportions by 

decoupling the bulk RNA-seq profile into weighted averages of expression profiles 

of possible constituent cell types [381]. The CDSeq pipeline introduces a “complete” 

deconvolution method that estimates both cell-type proportions and cell-type-

specific gene expression profiles. While gene expression profiles of tissue samples 

are assumed to be weighted averages of the gene expression profiles of pure 

individual cell types, the tool is based on a probabilistic model inspired in the way 

RNA-seq reads are generated from genes. More specifically, deconvolution is 

achieved with random variable modelling of the probability of a given read being 

assigned to a given gene in a given cell type. This probability depends on the 

proportion of this cell type in the sample and on the typical amount of RNA produced 

by cells of this type, accommodating the possibility of different cell types producing 

different amounts of RNA [381]. However, afterwards, reference gene expression 

profiles or marker genes are still required to match cell types gene expression 

profiles constructed by the algorithm with actual biological cell types [381]. 

CIBERSORTx [384], a computational framework to estimate cell type proportions in 

bulk samples, uses the CIBERSORT [377] deconvolution algorithm that is based on 

linear support vector regression. This algorithm performs a feature selection where 

genes from the signature matrix are adaptively selected to deconvolute a given bulk 

mixture [377]. Additionally, CIBERSORTx is able to overcome technical variation 

across different platforms (i.e. scRNA-seq, RNA-seq, microarrays) and tissue 

preservation techniques (fresh/frozen) by performing batch correction methods, 

namely B-mode or S-mode [385]. B-mode batch correction is used for deconvolution 

when the signature matrix was derived from bulk RNA-seq of populations of sorted 

cells of the same type or from scRNA-seq data generated without UMIs (i.e. 

SMART-Seq2) [385]. This batch correction method will adjust the mixture dataset, 

so that it is in the same space as the signature matrix, and will be then used for 

estimating the cell type proportions [385]. S-mode batch correction is used when the 

single cell-derived signature matrix comes from droplet-based protocols or protocols 
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that use UMIs (i.e. 10x Chromium, Drop-Seq). Unlike B-mode, S-mode adjusts the 

signature matrix to be in the same order of magnitude of expression as the mixture 

dataset and then use the adjusted signature matrix to estimate the cell proportions 

[385]. CIBERSORTx has already been used in different studies to estimate cell type 

proportions. For instance, it was used to estimate the composition in non-cancer 

cells of tumours from their bulk transcriptomes, focusing on immune cells, thereby 

allowing to analyse the tumour microenvironment in solid cancers [386]. Moreover, 

Zeran and colleagues used CIBERSORTx to estimate the neuronal proportions of 

post-mortem brain samples from patients with and without neurodegenerative 

disorders and were able to identify an association between a frontotemporal lobar 

degeneration-protective TMEM106B variant and an increased neuronal proportion, 

suggesting that this gene variant may have a neuronal protection effect against 

normal physiological aging, independent of the disease status [387].   
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II - Objectives  
 

Alzheimer’s and Parkinson’s diseases are the two most common neurodegenerative 

disorders worldwide [36]. Although aetiological processes, affected brain regions 

and clinical features are disease-specific, they share common mechanisms such as 

mitochondria dysfunction, neuronal loss and tau protein accumulation [388,389]. 

Their associated major risk factor is ageing [390]. The increasing worldwide life 

expectancy [391,392], together with the scarcity of available treatment choices, 

makes it thus pressing to find the molecular bases of AD and PD so that the causing 

molecular mechanisms can be targeted. A common strategy to study the 

mechanisms underlying neurodegenerative disorders is to compare the gene 

expression profiles of diseased and control brain tissues, thereby identifying 

biological pathways and cellular processes putatively altered in disease [393]. 

However, the specificities of diseased whole-brain gene expression profiles mainly 

reflect altered cellular composition, therefore masking disease-associated systemic 

or cell-type-specific molecular alterations [393]. 

 

Therefore, the work described herein had the following aims: 

 

1) Define the gene expression signatures of the major human brain cell types.  

2) Identify pathology-associated molecular effects in AD and PD by decoupling 

them from neurodegeneration (i.e. the loss of neurons), accounting for cell 

type composition when comparing transcriptomes of healthy and diseased 

brain samples.  

3) Identify, through computational chemo-transcriptomics tools, candidate small 

molecules for specifically targeting the profiled condition-associated 

molecular alterations.  

 

Characterising those molecular alterations has allowed us to tackle pertinent 

questions on the molecular nature of the alterations that AD and PD induce in the 

brain. Our approach could therefore not only bring new insights into the molecular 

aetiology of AD and PD but also foster the discovery of more specific targets for 

functional and therapeutic exploration.  
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III – Materials & Methods  

1. Datasets used  
 
We obtained, through NCBI Gene Expression Omnibus (GEO), two single-cell RNA-

seq datasets that we employed to derive gene expression signatures for the major 

brain cell types (i.e. astrocytes, microglia, neurons and oligodendrocytes), one from 

human temporal lobe (GSE67835 [320] - only cells from adult samples were used) 

and the other from mouse cortex (SRP135960 [394]). We used a third  single-cell 

RNA-seq dataset (GEO GSE73721 [271]) to independently validate those 

signatures, considering only cells from the human cortex (12 astrocytes, 1 neuron, 

4 oligodendrocytes and 2 endothelial cells), for consistency. 

The AD analysis was based on the temporal cortex RNA-seq dataset from the AMP-

AD Knowledge Portal with accession syn3163039 [395]. We used the table available 

therein, containing the pre-processed raw read counts for each gene in each 

sample, for the downstream analyses. We selected only the samples diagnosed as 

AD and non-AD with RNA integrity number (RIN) ≥ 8 [396].  

We used AD dataset GEO GSE104704 [397] for independent validation, less 

stringently requiring RIN ≥ 6 to keep enough samples for analysis.  

We fetched the PD RNA-seq dataset from GEO GSE68719 [314] and kept samples 

with RIN ≥ 7 and from donors older than 60 years, for a better age match between 

control and diseased samples and given the reported onset of idiopathic PD at 

around 65 years of age [398].  

For independent validation, we used PD gene expression microarray dataset GEO 

GSE20168 [399]. Since the PD RNA-seq dataset only comprised males, we 

selected the 10 non-diseased and 8 PD male samples from the microarray dataset. 

Although RINs were not provided for this dataset, we were able to detect possible 

RNA degradation by using function AffyRNAdeg from the xps R package [400].  

 

All datasets used are summarized in Table 1.              
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Table 1 – Summary of transcriptomic datasets analysed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

                      

1.1 Samples discarded 
 

We discarded respectively one and three non-AD samples from the MayoClinic and 

Nativio datasets because they presented a very low (< 0.40) estimated proportion 

of neurons (Figure 20, Table S1). Therefore, we used totals of 71 AD and 32 non-

AD samples from the MayoClinic dataset and 9 AD and 14 non-AD samples from 

the Nativio dataset. 
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When performing principal component analysis (PCA) of the normalized gene 

expression data (see sections “Statistical tests” and “Data processing” below) from 

the Dumitriu dataset, we identified 2 samples (SRR2015728 and SRR2015748) with 

an outlying behaviour (Figure 21).  

Figure 21 – Identification of outlying samples in the Dumitriu dataset 
Sample factorial maps of components 1 (PC1) and 2 (PC2) (left), and 1 and 3 (PC3) (right), 
of Principal Component Analysis (PCA) of the gene expression in Dumitriu samples. 
Indicated in the respective axes’ labels are the percentages of data variance explained by 
the components. Labelled are the two samples deemed as outliers and removed from 
further analyses. 
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Figure 20 – Smoothed histograms of distribution of neuronal proportions of 
AD and non-AD samples 
Smoothed histograms of distributions of neuronal proportions of diseased (AD) and non-
diseased (Control) samples from the (A) MayoClinic and (B) Nativio datasets. One 
MayoClinic and three Nativio Control samples were removed from further analyses due to 
their very low (< 0.4, vertical dashed lines) neuronal proportions. The significances (p) of 
Wilcoxon signed-rank tests used to compare differences in proportions between diseased 
(AD) and non-diseased (Control) samples are shown.  
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When clustering samples based on the correlation between their normalized gene 

expression profiles (see section “Statistical tests” below), SRR2015728 and 

SRR2015748 are again shown to be outliers (Figure 22).  

 
 

Moreover, non-PD samples SRR2015714 and SRR2015728 are also those showing 

an abnormally low (< 0.40) estimated neuronal proportion (Figure 23 A, Table S1). 

As such, we conservatively discarded those 3 samples from the Dumitriu dataset, 

leaving 15 PD and 26 non-PD samples. Regarding the Zhang dataset, although one 

non-PD sample had a low (< 0.40) estimated neuronal proportion (Figure 23 B), we 

decided to keep it due to the small number of samples in the dataset (Table S1).  

 

 
 

 

Figure S2 - Sample factorial maps of components (A) 1 (PC1) and 2 (PC2), and (B) 1 and 3 (PC3), of Principal
Component Analysis (PCA) of the gene expression in Dumitriu samples. Indicated in the respective axes labels
are the percentages of data variance explained by the components. Labelled are the two samples deemed as
outliers and removed from further analyses. (C) Heatmap of gene expression correlation between Dumitriu
samples, with associated hierarchical clustering, confirming the outlying behavior of the two excluded samples.

Figure 22 – Identification of outlying samples in the Dumitriu dataset 
Heatmap of gene expression correlation between Dumitriu samples, with associated 
hierarchical clustering, confirming the outlying behaviour of the two excluded samples. 
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2. Statistical tests 
 
We performed all statistical analyses in R (programming language for statistics and 

graphics) [401], extensively using packages from Bioconductor (repository of R tools 

for the analysis of high-throughput biological data) [402]. We used t-tests [403] to 

compare differences in expression of specific marker genes, as well as differences 

in age distributions between diseased and non-diseased groups. To compare 

differences in proportions of neural cell types between diseased and non-diseased 

brains, we used Wilcoxon-signed-rank tests [404], and to compare the neuronal 

proportion densities between diseased and non-diseased brains, we used the 

Kolmogorov-Smirnov test [405]. For correlation analysis, we used Pearson’s 

correlation, unless stated otherwise. We chose Euclidean distance for clustering 

samples based on gene expression correlation, having used the ComplexHeatmap 

package [406] for the purpose and to generate the associated heatmap in Figure 

22.  

Principal component analysis (PCA), enabling the identification of the linear 

combinations of variables that contribute the most to data variance [407],  was 

implemented through the singular value decomposition (SVD) algorithm provided by 
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Figure 23 – Smoothed histograms of distribution of neuronal proportions of 
PD and non-PD samples 
Smoothed histograms of distributions of neuronal proportions of diseased (PD) and non-
diseased (Control) samples from the (A) Dumitriu and (B) Zhang datasets. The 
significances (p) of Wilcoxon signed-rank tests used to compare differences in proportions 
between diseased (PD) and non-diseased (Control) samples are shown. 
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the PCA function from R package FactoMineR [408]. 

Where applicable and not indicated otherwise, p-values were corrected for multiple 

testing using Benjamin-Hochberg’s False Discovery Rate (FDR) 

3. Data processing  
 
For all the RNA-Seq datasets with no pre-processed data available (Table 1), we 

aligned the reads against the human transcriptome (hg38 Gencode annotation 

[409]) with Kallisto [410] using the default parameters.  

For both single-cell datasets, we performed state-of-the-art procedures for quality 

assessment [411], such as checking for library size discrepancies between cells, the 

number of expressed genes per cell and the proportion of reads aligning to 

mitochondrial genes [411] (Figure 24). We removed low-quality cells that presented 
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Figure 24 – Quality assessment of single-cell datasets 
Dot plots of median absolute deviations (MADs) of library size (i.e. total number of RNA-
seq reads), gene counts (i.e. number of genes detected) and proportion of mitochondrial 
reads (i.e. RNA-seq reads of transcripts from mitochondrial genes) of cell samples from the 
(A) Darmanis and (B) Mouse datasets. Cells with MADs below -3 for either library size or 
gene counts or above 3 for mitochondrial proportion (horizontal black dashed lines) were 
removed from subsequent analyses. 
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a median absolute deviation (MAD) < -3 for the library size, MAD < -3 for the number 

of expressed genes or a MAD > 3 for the proportion of mitochondrial reads.  

 

 Additionally, we kept for downstream analysis only genes whose log10(average 

read counts per million (CPM)) > 0 (Figure 25) and whose variance in expression 

was significantly associated with the biological component (i.e., the cell type) as 

assessed through the usage of the decomposeVar function from the scran R 

package [411]. Briefly, the variance in expression for each gene was decomposed 

into their biological and technical components. The technical component is 

estimated by fitting the mean-dependent trend of the variance. The biological 

component of the variance is then calculated by subtracting the technical component 

from the overall variance [411].   

 

This last step avoids prioritizing genes whose expression is highly variable due to 

technical factors such as sampling noise during RNA capture and library preparation 

[411].Furthermore, the t-Distributed Stochastic Neighbour Embedding (tSNE) [412] 

plot of human single-cell (Darmanis) gene expression shows a few cells not 

clustered together with those of their respective annotated type (Figure 26A). 

Moreover, all of them appear to have been misclassified also based on single-cell 

trajectories (i.e. cells’ ordering according to their inferred biological state [413]) 

obtained with the monocle package [413–415] (Figure 26B) or the nearest shrunken  
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Figure 25 – Selection of informative genes 
Smoothed scatter plots relating, for each gene, its average expression across cells with the 
number of cells in which its expression was detected for the (A) Darmanis and (B) Mouse 
datasets. Only genes with average expression higher than 1 CPM (vertical red dashed 
lines) were kept for subsequent analyses. 
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centroid classification, implemented in R package pamr [416] (Figures 26C-D). 

Therefore, they were discarded from our analysis (Figure 26E). No potentially 

misclassified cells were detected in the mouse dataset (Figure 26F).  
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Figure S4 - (A) t-Distributed Stochastic Neighbor Embedding (tSNE) plot of gene expression of Darmanis brain
cells. Labelled samples do not cluster with those of their respective annotated cell types, according to pamr
(gray) or monocle (black). (B) monocle-derived single-cell trajectory analysis in the Darmanis dataset. Labelled
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lowest misclassification error, as that yielding a classifier simultaneously with fewer genes and lower false
discovery rate. (D) Probability of classification by pamr of each Darmanis cell sample in each of the four main
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misclassified samples. (F) tSNE plot of gene expression of Mouse cells used to derive the murine cell type
signature.
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Figure 26 – Identification of misclassified cells 
(A) t-Distributed Stochastic Neighbour Embedding (tSNE) plot of gene expression of 
Darmanis brain cells. Labelled samples do not cluster with those of their respective 
annotated cell types, according to pamr (gray) or monocle (black). (B) monocle-derived 
single-cell trajectory analysis in the Darmanis dataset. Labelled are cells that do not map to 
the same states as those of their annotated cell types. (C) Percentage of samples 
misclassified by pamr across centroid shrinkage tresholds. 3.51 was selected, amongst the 
thresholds with the lowest misclassification error, as that yielding a classifier simultaneously 
with fewer genes and lower false discovery rate. (D) Probability of classification by pamr of 
each Darmanis cell sample in each of the four main brain cell types. Labelled are 
misclassified cells.  (E) tSNE plot of gene expression of Darmanis cells without the 
misclassified samples. (F) tSNE plot of gene expression of Mouse cells used to derive the 
murine cell type signature. 
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After the filtering steps mentioned above, summed expression values across pools 

of cells were deconvolved in cell-based factors for normalization of the Darmanis 

and the mouse single-cell gene expression datasets [417]. All bulk RNA-seq 

datasets were quantile-normalized using the voom function, from the limma R 

package [418]. The rma function from the affy R package [419] was used to 

normalize and summarize the PD microarray dataset.  

 

Moreover, we used the ComBat function from the sva package to correct for batch 

effects. This function requires possible technical effects to be encoded as 

categorical variables [420]. Thus, for the AD MayoClinic dataset, RIN was defined 

as high if > 8.5 and low if ≤ 8.5, in the AD Nativio dataset high if > 7.3 and low if ≤ 

7.3, and in the PD Dumitriu dataset it was defined as high if > 7.8 and low if ≤ 7.8. 

For the PD Zhang dataset, the RNA degradation slope, derived from the average 

intensities per relative 5´ - 3´ position of probes in their target transcripts across 

probe sets [421], was used and defined as low if ≤ 5 and high if > 5.  

 

We quantified gene expression from RNA-seq data in counts per million (CPM) and 

kept only genes with an average CPM higher of 10/L, where L is the minimum library 

size in million reads [422], in at least N samples, where N is the smallest sample 

Figure 27 – Selection of informative 
genes 
Smoothed scatter plots relating, for each gene, 
its average expression across samples with 
the number of samples in which its expression 
was detected for the (A) MayoClinic, (B) 
Nativio, and (C) Dumitriu datasets. Genes kept 
for analysis have an average expression of at 
least 0.34, 0.83, and 0.66 CPM and are 
expressed in at least 33, 9, and 15 samples 
(red dashed lines) respectively for the 
MayoClinic, Nativio, and Dumitriu datasets.   
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size in our analyses (Figure 27). For the microarray dataset, gene expression was 

quantified by normalized intensities. 

 

4. Estimation of cellular composition of bulk AD, PD and 
non-diseased brain samples 

 

We used CIBERSORTx deconvolution [423], relying on human and mouse gene 

expression signatures for the major brain cell types derived as described above, to 

estimate the cellular composition of all AD, PD, and non-diseased brain samples 

from their bulk transcriptomes. Moreover, as CIBERSORTx options, we enabled 

batch normalization, disabled quantile normalization and used 100 permutations for 

significance analysis. Following CIBERSORTx’s user guidelines, the B-mode batch 

normalization was chosen to perform deconvolution when using the human 

signature, since the single cell data used to derive it were generated with SMART-

seq2 [424], and the S-mode batch normalization when using the mouse signature, 

since it is tailored for signatures derived from data generated with the 10x Genomics 

Chromium platform, as was the case [423].  

 

5. Differential gene expression  
 

We performed differential gene expression using the limma [418] and edgeR [425] 

packages.  

For each coefficient in the linear model, the magnitude of differences in gene 

expression was measured in log2 fold-change and their significance was given by 

the FDR-adjusted p-value of the moderated t-statistic (an ordinary t-statistic with its 

standard errors moderated across genes), along with the empirical Bayes statistic 

(B statistic - log-odds ratio of a gene being differentially expressed) [426]. Moreover, 

we also used the moderated t-statistic to assess the differential gene expression 

coherence between different datasets.  

 

We linearly modelled gene expression in the AD datasets according to the following: 
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𝐺𝐸$ = 	𝛽( +	𝛽*+,-.,- ∙ 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 + 𝛽567 ∙ 𝑅𝐼𝑁 + 𝛽7-;<=>-?-@-<.A+=@ ∙ 𝑁𝑒𝑢𝑟𝑜𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

+	𝛽I?- ∙ 𝐴𝑔𝑒 +	𝛽K-$ ∙ 𝑆𝑒𝑥 + 𝛽6@A-<.NA+=@ ∙ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 	𝜀 

 

Here GEx is the expression of gene x; Disease is the sample’s centered disease 

status; RIN is the categorized sample’s RNA Integrity Number (1 for high and 0 for 

low); Neurodegeneration is given by the sample’s estimated proportion of neurons 

centered; Age is the age of the sample’s donor in years; Sex  is the biological sex 

of the sample’s donor (1 for male and 0 for female); Interaction is the interaction 

between Disease and the Neurodegeneration effects, given by the product of the 

two and interpretable as the differential effect of the loss of neurons between AD 

and non-diseased samples or, equivalently, the part of AD effect that is dependent 

of the sample’s neuronal contents; bs are the unknown coefficients, to be estimated 

from fitting that linear model to the gene expression data, for each of the 

aforementioned variables hypothesized to impact gene expression; ε states the 

error of the model, that is the remaining variance not explained by the model. 

Disease and Neurodegeneration were centered to diminish the correlation between 

their associated estimated coefficients, thereby using a model more consistent with 

the purpose of estimating independent effects [427]. We thus shifted the “prediction 

center” (i.e. the virtual reference) to the average sample [427] by turning the 

variables’ means to 0 through the usage of the scale function from the built-in R 

package base [428], with the scale argument turned to “false”.  

Likewise, we modelled gene expression in the PD Dumitriu dataset as following: 

 
𝐺𝐸$ = 	𝛽( +	𝛽*+,-.,- ∙ 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 + 𝛽567 ∙ 𝑅𝐼𝑁 + 𝛽7-;<=>-?-@-<.A+=@ ∙ 𝑁𝑒𝑢𝑟𝑜𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

+	𝛽I?- ∙ 𝐴𝑔𝑒 +	𝛽Q@R@=S@	T.ANU ∙ 𝑈𝑛𝑘𝑛𝑜𝑤𝑛	𝐵𝑎𝑡𝑐ℎ + 	𝜀 

 

Unknown batch corresponds to a batch effect of unknown source detected by PCA 

(Figure 28A) that was thereby adjusted for (Figure 28B). 

 

For validation with the independent PD microarray dataset (Zhang), we used the 

following linear model: 
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𝐺𝐸$ = 	𝛽( +	𝛽*+,-.,- ∙ 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 + 𝛽7-;<=>-?-@-<.A+=@ ∙ 𝑁𝑒𝑢𝑟𝑜𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 +	𝛽I?-

∙ 𝐴𝑔𝑒 + 𝛽57I	>-?<.>.A+=@ ∙ 𝑅𝑁𝐴	𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 + 	𝜀 

 

RNA degradation is given by its slope grouping for each sample (1 for high and 0 

for low).  

 

We considered a gene differentially expressed if FDR < 0.05, except for the Zhang 

PD microarray dataset, where we considered FDR < 0.11. This arbitrary cut-off was 

used to “rescue” a reasonable number of genes for further analyses, given the small 

sample size of the Zhang dataset and the consequent lower statistical power of the 

associated differential expression analysis. This arbitrary looseness in specificity is 

dealt with by subsequent filtering (v. section on permutation analyses below).  
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Figure S8 - Sample factorial maps of components 1 (PC1) and 2 (PC2) of Principal Component Analysis (PCA) of the gene expression in Dumitriu samples, with
samples colored according to a different variable in each panel. Indicated in the respective axes labels are the percentages of data variance explained by the
components. The confounder effect highlighted in the first panel could not be explained by any known variable, namely, condition (disease) status, age, RIN or
source of the samples (second to fifth panels).
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Figure 28 – Unknown confounder in the Dumitriu dataset 
Sample factorial maps of components 1 (PC1) and 2 (PC2) of Principal Component 
Analysis (PCA) of the gene expression in Dumitriu samples before adjusting for the 
unknown confounder (A) and after adjusting for it (B), with samples coloured according to 
a different variable in each panel. Indicated in the respective axes’ labels are the 
percentages of data variance explained by the components. The confounder effect 
highlighted in the first panel (A) could not be explained by any known variable, namely, 
condition (disease) status, age, RIN or source of the samples (second to fifth panels from 
(A)).  
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6. Identification of genes reportedly associated with AD and 
PD 

 

Genes already reported to play a role in AD and PD were gathered from the 

DisGeNET database [429]. Only genes with a human gene-disease association 

(GDA) score > 0.1 and an evidence index ≥ 0.9 (180 genes for AD and 112 genes 

for PD) were considered as such in our analyses. 

7. Permutation analyses 
 

We performed permutation tests to identify genes with consistent differential 

expression ranking between datasets. For each gene, we multiplied its t-statistic 

values for the intrinsic disease effect (Disease in the linear models) in each of the 

two datasets (MayoClinic and Nativio for AD; Dumitriu and Zhang for PD) and 

compared that product with the distribution of those resulting from 5000 random 

permutations of the disease status labelling of samples. The proportion of random 

products more extreme than the empirical one was taken as its False Discovery 

Rate (FDR).  

 

To assess the similarity between the intrinsic AD and PD Disease effects on gene 

expression, we compared the aforementioned FDRs. For each disease, when t-

statistics for both datasets were positive, we used –log10(FDR), when both 

negative, we used log10(FDR), and when contradictory (i.e. showing different signs) 

we set this value to 0. When FDRs were originally zero, we equaled them to 1e-5 

(half of the FDR resolution) to avoid infinite values when computing their logarithms.  

Then, for each gene, we multiplied those scores of AD and PD and compared this 

product with the distribution yielded by 1 000 000 permutations of randomly shuffled 

product scores. The proportion of random products more extreme than the empirical 

one was taken as its FDR.  

8. Gene set enrichment analysis  
 

We identified KEGG [430] pathways dysregulated in AD and PD datasets using the 

Piano R package [431] to perform gene set enrichment analysis (GSEA) [432,433], 
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by default on t-statistics, but also on B-statistics of differential gene expression for 

the AD Disease and Neurodegeneration effects. We also used the AD cell-type 

marker genes defined by Kelley et al. [434] as a gene set. For GSEA on genes 

commonly changed in AD and PD, we used -log10(FDR) when both AD and PD 

scores were positive, log10(FDR) when both negative, and zero when signs were 

contradictory.  

9. Identifying candidate compounds for reverting disease-
associated gene expression alterations 

 

We used cTRAP [435] to compare the changes in gene expression induced by 

thousands of drugs in human cell lines, available in the Connectivity Map (CMap) 

[436], with those in human brains that we have inferred to be related to the intrinsic 

(i.e. systemic) AD and PD effects. As input for cTRAP, we used the aforementioned 

scores for the Disease and Neurodegeneration effects, thereby ranking changes 

that are coherent between the MayoClinic and Nativio datasets for AD and the 

Dumitriu and Zhang datasets for PD, as well as those coherent between AD and 

PD. The compounds, in clinical trials or launched, with their perturbation z-scores  

[436] exhibiting the 20 most negative and the 20 most positive average (across 

different cell lines) Spearman’s correlation with the Disease effect scores across 

common genes, and with an average absolute Spearman’s correlation with the 

Neurodegeneration effect scores < 0.05 (to avoid confounding between effects), 

were selected for AD (Figure 29A) and PD (Figure 29B) as the top candidates for 

reversal or induction of disease-associated gene expression alterations for 

discussion. Noteworthily, cMap includes data for the same compounds tested with 

different concentrations and at different time points, as well as run in different plate 

types (ASG, CPD, HOG, etc) (Tables S16-S18).  
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SCH-23390 1.11 µM 24 h 1
sildenafil 3.33 µM 24 h 2

SCH-23390 0.37 µM 24 h 3
tubastatin-a 1.25 µM 6 h 4

dimenhydrinate 10 µM 24 h 5
PCI-34051 5 µM 6 h 6
scriptaid 10 µM 24 h 7
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chloroquine 0.12 µM 24 h 12
amisulpride 10 µM 24 h 13

panobinostat 0.039 µM 6 h 14
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wortmannin 10 µM 24 h 5
geldanamycin 10 µM 24 h 6
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A B

Figure 29 – Selection of top compounds for reversal or induction of AD- and 
PD- specific gene expression alterations 
(A) Scatter plot comparing, between the AD and the Neurodegeneration effects, the cTRAP-
derived cross-gene Spearman’s correlation coefficients (rho) of their differential expression 
combined scores with perturbation z-scores for cMap compounds. Labelled compounds are 
those selected as top candidates for reversal (blue) and induction (red) of AD-associated 
gene expression alterations (v. Materials and Methods) and with |rho| < 0.05 for 
Neurodegeneration (dashed light gray lines). (B) Scatter plot comparing, between the PD 
and the Neurodegeneration effects, the cTRAP-derived cross-gene Spearman’s correlation 
coefficients (rho) of their differential expression combined scores with perturbation z-scores 
for cMap compounds. Labelled compounds are those selected as top candidates for 
reversal (blue) and induction (red) of PD-associated gene expression alterations (v. 
Materials and Methods) and with |rho| < 0.05 for Neurodegeneration (dashed light gray 
lines). Note: identical labels correspond to the same compound tested with the same 
concentration and at the same time point but in a different plate (v. Materials and Methods). 
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IV – Results 
 
The results presented below were published in the Frontiers in Neuroscience, 

Neurogenomics section, peer-reviewed journal. The author of this thesis was 

responsible for all the analyses, interpretation of data and the writing of the 

manuscript, under the supervision of Prof. Dr. Nuno Luis Barbosa Morais.   

 

1. Derivation of gene expression signatures for the major 
brain cell types 

 

We employed CIBERSORTx [423] to infer, with machine learning, both human and 

mouse gene expression signatures for each of the major brain cell types (Tables 

S2, S3) and subsequently used them to estimate the cellular composition of brain 

samples from their bulk transcriptomes.  

We followed three different approaches to assess the accuracy of human and 

mouse CIBERSORTx-derived signatures in correctly identifying the major cell types 

in human brain samples, that we describe below.  

 

1.1 Estimating cell-type proportions of artificial mixture 
samples derived from the Darmanis dataset 

 

We split the Darmanis human dataset such that 80% of cells were used to infer cell 

type-specific gene expression signatures with CIBERSORTx. We used the 
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Figure S6 - (A) Pipeline to derive the human cell type signature and the artificial mixture samples from the Darmanis single-cell dataset. CIBERSORTx derived the
human cell type signature matrix from gene expression from 80% of the cells of each type. The remaining 20% of cells of each type were used to generate artificial
mixture samples with different cellular compositions that were then used to test the signature. (B) Comparison between the proportions estimated by CIBERSORTx
(observed) and those expected in the artificial mixture samples generated as in (A). (C) Comparison between the proportions estimated by CIBERSORTx (observed)
and those expected in the artificial mixture samples generated as in (A) using the CIBERSORTx-derived mouse cell type signature. Pearson’s correlation coefficients
(r) between observed and expected proportions are shown for each cell type.
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Figure 30 – Pipeline to derive the human cell type signature and the artificial 
mixture samples from the Darmanis single-cell dataset. 
CIBERSORTx derived the human cell type signature matrix from gene expression from 
80% of the cells of each type. The remaining 20% of cells of each type were used to 
generate artificial mixture samples with different cellular compositions that were then 
used to test the signature.  
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remaining 20% of cells, with the same proportion of each cell type, to create 300 

artificial mixture samples with a diverse range of known (i.e. pre-defined) cell-type 

proportions (Figure 30) by generating chimeric libraries of 35 million reads. In brief, 

all the reads from all cells of each cell type were pooled together. For each artificial 

sample, reads were randomly sampled from cell-type-specific pools according to its 

defined cell type proportion as in Table S4. We treated the artificial mixture samples 

as bulk RNA-seq samples. 

 

CIBERSORTx estimated the cell type proportions of the artificial mixtures, using the 
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Figure 31 – Comparison between estimated and expected cellular 
compositions of artificial mixture samples (Darmanis) 
(A) Comparison between the proportions estimated by CIBERSORTx (observed) 
and those expected in the artificial mixture samples generated as in Figure 30. (B) 
Comparison between the proportions estimated by CIBERSORTx (observed) and 
those expected in the artificial mixture samples generated as in Figure 30 using 
the CIBERSORTx-derived mouse cell type signature. Pearson’s correlation 
coefficients (r) between observed and expected proportions are shown for each 
cell type.   



 85 

human (Darmanis) cell-type-specific gene expression signatures. Those estimates 

are generally concordant with the expected proportions, except for the systematic 

underestimation of microglia’s relative abundance (Figure 31A). We repeated the 

deconvolution analysis in the same artificial mixtures but using the mouse cell-type 

signatures and got a similar, albeit noisier, concordance (Figure 31B).  

 

1.2 Classifying samples from the Zhang single-cell dataset 
 

We ran CIBERSORTx using the same human and mouse cell-type signatures, to 

classify samples from an independent human brain single-cell RNA-seq dataset 

(Zhang). Most cells were correctly classified with the human signature (Figure 32A). 
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Figure 32 – Classification of Zhang human brain single-cell samples 
Barplots of CIBERSORTx estimates of cellular composition of the Zhang single-cell 
samples based on the (A) human and (B) mouse cell type signatures.    
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With the mouse signature, most cells are classified as a mixture of cell types but 

with a dominant proportion of that expected (Figure 32B).  

 

1.3 Estimating cell-type proportions of artificial mixture 
samples derived from the Zhang single-cell dataset 

 

We generated artificial mixtures from the Zhang dataset as described in 4.1.1 

section. Those artificial mixtures were then deconvoluted with CIBERSORTx relying 

again on the derived human and mouse signatures. Both signatures yield significant 
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Figure 33 – Comparison between estimated and expected cellular compositions of 
artificial mixture samples (Zhang) 
Comparisons between the proportions estimated by CIBERSORTx (observed) and those 
expected in the artificial mixture samples derived from the Zhang single-cell dataset, using 
the (A) human and (B) mouse cell type signatures.  Pearson’s correlation coefficients (r) 
between observed and expected proportions are shown for each cell type. 
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concordances (all with p < 2.2e-16) between the expected and observed 

proportions, with the human signature being again, as expected, more accurate 

(Figure 33). 

2. The cellular composition of AD brains is altered 
 
Most neuronal markers (DCX [437], MAP2 [437], NEFM [437], NEFH [437], NEFL 

[437], RBFOX3 [437], SYP [437]) are significantly downregulated in AD temporal 

cortex samples from the MayoClinic dataset (Figure 34A). In contrast, all astrocytic 

(ALDH1L1 [438]), GFAP [438]), SLC1A3 [438]) and a few microglial and 

oligodendrocytic markers (CD40 [439], OLIG1 [440] and OLIG2 [440]) are 

significantly upregulated in AD brains. 
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Figure 34 – Estimated cellular composition of MayoClinic brain samples 
(A) Neuronal, astrocytic, microglial, and oligodendrocytic known markers’ expression in the 
MayoClinic samples. T-tests were used to compare gene expression mean differences 
between diseased (AD) and non-diseased (Control) samples. (B) Estimates of the 
composition of MayoClinic samples in each main cell type based on the human cell type 
gene expression signature. Wilcoxon signed-rank tests were used to compare differences 
in proportions between diseased (AD) and non-diseased (Control) samples. Legend: ns: 
non-significant, ****: p <= 0.0001, ***: p <= 0.001, **: p <= 0.01, *: p <= 0.05. 
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CIBERSORTx [423] was used to derive the composition in major cell types 

(astrocytes, microglia, neurons and oligodendrocytes) of AD brain samples. These 

estimates (Figure 34B) are concordant with the observations in Figure 34A, 

including significant increase and decrease respectively in the proportions of 

astrocytes and neurons in AD brain samples.  

Despite the known differences in gene expression between mouse and human brain 

cells [441], the same trends can be seen using the mouse signature (Figure 35).  

 

We also performed principal component analysis (PCA) on normalized gene 

expression in the MayoClinic brain samples. The neuronal composition, along with 

the disease effect, is correlated with the first principal component (PC1), i.e. that 

retaining the most data variance (Figure 36A – rho = -0.88; p < 2.2e-16).  
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Figure 35 – Estimated cellular composition of MayoClinic brain samples 
using the mouse cell type gene expression signature 
(A) Estimates of the composition of MayoClinic samples in each main cell type based on 
the mouse cell type gene expression signature. Wilcoxon signed-rank tests were used to 
compare differences in proportions between Control and AD samples.  ns: non-
significant, ****: p <= 0.0001. (B) Comparison between estimated proportions of different 
cell types in MayoClinic samples obtained from the human and mouse cell type signatures. 
Their Pearson’s correlation coefficient (r) and respective p-value (p) are shown. 
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Figure 36 – Principal Component Analysis (PCA) of the gene expression in 
MayoClinic samples 
(A) Sample factorial map (upper plot) of components 1 (PC1) and 2 (PC2) of Principal 
Component Analysis (PCA) of the gene expression in MayoClinic samples, and their 
neuronal proportion related to PC1 loadings (lower plot). Indicated in the respective axes’ 
labels are the percentages of data variance explained by PC1 and PC2. In the lower plots, 
the coloured solid lines represent the linear regressions between neuronal proportions and 
PC1 loadings for AD and Control Samples. The respective Pearson’s correlation 
coefficients (r) and associated significance (p) are also indicated. (B) Same as (A) but 
samples are coloured according to the RIN (top), Sex (middle) and Age (bottom). Indicated 
in the respective axes’ labels are the percentages of data variance explained by PC1 and 
PC2. In the lower right plot, the coloured solid lines represent the linear regressions 
between age and PC1 loadings for AD and Control Samples. 
Kolmogorov-Smirnov tests were used to compare the distributions of PC1 and PC2 loadings 
between AD and Control samples (A), RIN groups (B) and Sexes (B), illustrated by the 
smoothed histograms along the respective axes of the PCA plots (ns: non-significant).   
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Sex also shows a strong association with PC1 (Figure 37A) but there is no significant 

difference in age or neuronal proportion between female and male individuals 

(Figure 37B).  

 

3. AD alters cortical gene expression independently from 
neurodegeneration 

 

We linearly modelled gene expression in the MayoClinic brain samples as a function 

of technical (RIN) and biological variables, such as neuronal proportion (reflecting 

neurodegeneration), systemic AD, Age, Sex and interaction between 

neurodegeneration and AD (Table S6, Figure 38).  
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Figure 37 – Relationship between known effects on gene expression in 
MayoClinic samples  
(A) Heatmap of significance, given by p-values, of the association between the loadings 
of each of the first 5 components of PCA and the seven annotated potentially 
explanatory sample variables. Spearman’s correlation and Kolmogorov-Smirnov tests 
were used respectively for categorical (Condition, Sex and RIN) and continuous 
(proportions of astrocytes, neurons and oligodendrocytes, and Age) variables. (B) Violin 
plots of distributions of age and neuronal proportion of samples, discriminated between 
sexes and disease status.  
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Figure 38 – Volcano plots of differential gene expression in MayoClinic 
samples 
Volcano plots, relating log2 fold-changes (log2FC) and B-statistics, of differential gene 
expression associated with the (A) AD, (B) Neurodegeneration, (C) Interaction, (D) Age, 
(E) RIN and (F) Gender effects in MayoClinic samples. Highlighted with larger coloured 
dots are disease-associated genes from DisgeNet [429] (light blue), genes reported by 
[434] as undergoing cell-type-specific changes in AD (pink), manually selected gene 
candidates for AD-specific alterations (orange), and genes included in the 
CIBERSORTx-derived expression signature for the major brain cell types (dark grey). 
Amongst all these, labelled are genes of particular interest, with individual expression 
profiles plotted in Figure 39 and 40. The other labelled genes are the top 10 differentially 
expressed genes. 
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We were thereby able to discriminate genes whose expression is significantly 

systemically affected by AD (Figure 38A, Figure 39) from those essentially showing 

a strong association with neurodegeneration (Figures 38B, Figure 40). For instance, 

LIAS, CTB-171A8.1, COX18 and ETV4 exemplify genes that show a strong intrinsic 

AD effect, independent of neuronal proportion (Figure 39).  

 

Moreover, genes that have previously been reported as playing a role in AD in the 

DisGeNet database, namely CDK5 [442], CDK5R1 [443], FERMT2 [444] and 

HSD17B10 [445], were actually found to be associated with neurodegeneration 

rather than with the disease component (Figure 40).  
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Figure 39 – Expression of selected gene candidates for AD-specific 
alterations 

Expression of manually selected gene candidates for AD-specific alterations (labelled in 
orange in Figure 38) in Control and AD samples – scatterplots against neuronal 
proportion on the left, boxplots of distribution by condition on the right. Coloured solid 
lines in represent linear regressions. T-tests, for which p-values are indicated, were used 
to compare gene expression mean differences between Control and AD samples. 
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Additionally, with the Interaction effect we were also able to detect genes, such as 

PNPLA5 and PTPN20A (Figure 41), whose expression was differentially altered with 

cellular composition in AD brains compared with non-AD samples. It is worth noting 

that AD genes specific of a cell type, as defined by Kelley et al. [434], are also more 

related with the neuronal composition effect (pGSEA = 0.0001) than with the disease 

effect (pGSEA = 0.6) (Figures 38A-B).  
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Figure 40 – Expression of selected DisgeNet genes 
Expression of manually selected DisgeNet genes (labelled in light blue in Figure 38). 
Coloured solid lines in represent linear regressions. T-tests, for which p-values are 
indicated, were used to compare gene expression mean differences between Control 
and AD samples. 
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Moreover, most up-regulated AD-specific genes seem to be related with cell survival 

and immune pathways, whereas down-regulated ones with oxidative 

phosphorylation and Parkinson’s disease (Figure 42).  
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Figure 42 – KEGG pathways altered in AD  
Significance of enrichment of KEGG pathways in genes up-regulated (green) and down-
regulated (red) in MayoClinic AD samples compared to Controls. 
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Figure 41 – Expression of selected genes with high AD-Neurodegeneration 
interaction effect 
Expression of genes selected as examples of high Interaction effect in Control and AD 
samples – scatterplots against neuronal proportion on the left, boxplots of distribution by 
condition on the right. T-tests, for which p-values are indicated, were used to compare gene 
expression mean differences between Control and AD samples.  
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4. AD-specific genes are validated in an independent 
dataset 

 

In order to validate those results, we used the independent AD RNA-seq dataset 

(lateral temporal lobe) [397], herein named Nativio (Table 1), that we found to better 

match the larger MayoClinic dataset (temporal cortex) [395] in terms of brain area. 

Although the Nativio dataset did not present significant differences in cellular 

composition between AD and non-AD samples (Figure 43), its samples were from 

significantly younger donors (p = 2.7e-10) and the neuronal proportion of its AD 

samples is significantly different (p = 0.033) from MayoClinic AD samples’ (Figure 

44). 
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Figure 43 – Estimated cellular composition of Nativio brain samples 
(A) Neuronal, astrocytic, microglial and oligodendrocytic known markers’ expression in the 
Nativio samples. T-tests were used to compare gene expression mean differences between 
Control and AD samples. (B) Estimates of the composition of Nativio samples in each main 
cell type based on the human cell type gene expression signature. Wilcoxon signed-rank 
tests were used to compare differences in proportions between Control and AD samples. 
Legend: ns: non-significant, ****: p <= 0.0001, ***: p <= 0.001, **: p <= 0.01, *: p <= 0.05.    
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Moreover, we found consistency in AD-associated gene expression changes 

between the MayoClinic and the Nativio datasets (Figures 45-47, Tables S7-S9).   
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Figure 44 – Comparison of neuronal proportion and age between MayoClinic 
and Nativio samples 
Boxplots of distributions of neuronal proportion (left) and age of donors (right) in Control 
and AD samples from the MayoClinic and Nativio datasets. Wilcoxon signed-rank tests 
were used to compare differences in neuronal proportion and age of samples in the same 
condition between datasets. 
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Figure 45 – Comparison of t-statistics of AD-associated differential gene 
expression between the MayoClinic and Nativio datasets 
Scatter plot comparing the t-statistics of differential gene expression associated with the 
AD effect in MayoClinic and Nativio samples. Points (genes) are coloured according to the 
FDR of the random permutation test on the product of the t-statistics (v. Materials and 
Methods). Labelled genes are those significantly differentially expressed (FDR < 0.05) in 
both datasets and significant in that permutation test (FDR < 0.05). Light gray dashed zero 
and identity lines, light gray solid contour density lines.   
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Figure 46 – Volcano plots of differential gene expression in MayoClinc and 
Nativio samples 
Volcano plots, relating log2 fold-changes (log2FC) and B-statistics, of differential gene expression 
associated with the of AD and Neurodegeneration effects in MayoClinic and Nativio samples. 
Genes highlighted in orange are those manually selected as candidates for AD-specific 
alterations already represented in Figure 39, those labelled in Figure 45 are here highlighted in 
purple (“Common”), and those here labelled in purple are presented in Figure 47. 
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Figure 47 – AD-associated gene expression changes in common between 
the MayoClinic and Nativio datasets 
Expression of manually selected “Common” genes in MayoClinic and Nativio samples. 
Coloured solid lines represent linear regressions. 



 99 

5. PD alters cortical gene expression independently from 
neurodegeneration 

 

We analysed the PD datasets following similar approaches to those used on AD 

transcriptomes. In the RNA-seq PD dataset (Dumitriu), only two neural (DCX and 

MAP2) and two microglial (CD40 and ITGAM) markers showed significant 

alterations between PD and non-PD samples (Figure 48A), concordantly with no 

significant differences in cellular composition as estimated by CIBERSORTx (Figure 

48B) using both the human and the mouse signatures (Figure 49).  

 

 

 

 

* *** ns ns ns ns ns

ns * * ns

ns ns ns

ns ns ns ns

Microglial Oligodendrocytic

Neuronal Astrocytic

AIF1
CD40

ITGAM

PTPRC
OLIG

1
OLIG

2
MBP

MOG

DCX
MAP2

NEFH
NEFL

NEFM

RBFOX3
SYP

ALD
H1L

1
GFA

P

SLC
1A

3
0

5

10

15

0

5

10

15

N
or

m
al

iz
ed

 e
xp

re
ss

io
n 

(C
PM

)

Control PD

ns

ns

ns

ns
Microglial Oligodendrocytic

Neuronal Astrocytic

Control PD Control PD

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

C
el

l t
yp

e 
pr

op
or

tio
n

0.68
0.17

0.15

0.67
0.2

0.13

Control PD

Cell type
proportion neuronal astrocytic oligodendrocytic

* *** ns ns ns ns ns

ns * * ns

ns ns ns

ns ns ns ns

Microglial Oligodendrocytic

Neuronal Astrocytic

AIF1
CD40

ITGAM
PTPRC

OLIG
1

OLIG
2

MBP
MOG

DCX
MAP2

NEFH
NEFL

NEFM

RBFOX3
SYP

ALD
H1L

1
GFA

P

SLC
1A

3
0

5

10

15

0

5

10

15

No
rm

al
ize

d 
ex

pr
es

sio
n 

(C
PM

)

Control PD

ns

ns

ns

ns
Microglial Oligodendrocytic

Neuronal Astrocytic

Control PD Control PD

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Ce
ll t

yp
e 

pr
op

or
tio

n

0.68
0.17

0.15

0.67
0.2

0.13

Control PD

Cell type
proportion neuronal astrocytic oligodendrocytic

A B

* *** ns ns ns ns ns

ns * * ns

ns ns ns

ns ns ns ns

Microglial Oligodendrocytic

Neuronal Astrocytic

AIF1
CD40

ITGAM
PTPRC

OLIG
1

OLIG
2

MBP
MOG

DCX
MAP2

NEFH
NEFL

NEFM

RBFOX3
SYP

ALD
H1L

1
GFA

P

SLC
1A

3
0

5

10

15

0

5

10

15

No
rm

al
ize

d 
ex

pr
es

sio
n 

(C
PM

)

Control PD

ns

ns

ns

ns
Microglial Oligodendrocytic

Neuronal Astrocytic

Control PD Control PD

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00
Ce

ll t
yp

e 
pr

op
or

tio
n

0.68
0.17

0.15

0.67
0.20

0.13

Control PD

Cell type
proportion neuronal astrocytic oligodendrocytic

Figure 48 – Estimated cellular composition of Dumitriu brain samples 
(A) Neuronal, astrocytic, microglial, and oligodendrocytic known markers’ expression in the 
Dumitriu samples. T-tests were used to compare gene expression mean differences 
between diseased (PD) and non-diseased (Control) samples. (B) Estimates of the 
composition of Dumitriu samples in each main cell type based on the human cell type gene 
expression signature. Wilcoxon signed-rank tests were used to compare differences in 
proportions between diseased (PD) and non-diseased (Control) samples. Legend: ns: non-
significant, ****: p <= 0.0001, ***: p <= 0.001, **: p <= 0.01, *: p <= 0.05 
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However, the neuronal composition of samples, along with the disease effect, has 

a significant association with PC1 (Figure 50A – rho = -0.66; p = 3.2e-6) of gene 

expression. Age also shows a relationship with PC1 (Figure 51A) but no significant 

age difference exists between PD and non-PD sample donors (Figure 51B). 
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Figure 49 – Estimated cellular composition of Dumitriu brain samples using 
the mouse cell type gene expression signature 
(A) Estimates of the composition of Dumitriu samples in each main cell type based on the 
mouse cell type gene expression signature. Wilcoxon signed-rank tests were used to 
compare differences in proportions between Control and PD samples.  ns: non-
significant, ****: p <= 0.0001. (B) Comparison between estimated proportions of different 
cell types in Dumitriu samples obtained from the human and mouse cell type signatures. 
Their Pearson’s correlation coefficient (r) and respective p-value (p) are shown. 
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Figure 50 – PCA of the gene expression in Dumitriu samples 
(A) Sample factorial map (upper plot) of components 1 (PC1) and 2 (PC2) of Principal 
Component Analysis (PCA) of the gene expression in Dumitriu samples, and their 
neuronal proportion related to PC1 loadings (lower plot). Indicated in the respective axes’ 
labels are the percentages of data variance explained by PC1 and PC2.  Kolmogorov-
Smirnov tests were used to compare the distributions of PC1 and PC2 loadings between 
PD and Control samples, illustrated by the smoothed histograms along the respective 
axes of the PCA plot. In the lower plots, the coloured solid lines represent the linear 
regressions between neuronal proportions and PC1 loadings for PD and Control Samples. 
The respective Pearson’s correlation coefficients (r) and associated significance (p) are 
also indicated. (B) Same as (A) but samples are coloured according to their RIN (top), 
Unknown confounder (middle) and Age (bottom). Indicated in the respective axes’ labels 
are the percentages of data variance explained by PC1 and PC2. Kolmogorov-Smirnov 
tests were used to compare the distributions of PC1 and PC2 loadings between RIN 
groups (top) and Unknown confounder (middle), illustrated by the smoothed histograms 
along the respective axes of the PCA plots (ns: non-significant). In the lower right plot, the 
coloured solid lines represent the linear regressions between age and PC1 loadings for 
PD and Control Samples. Legend: ns: non-significant 
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Next, gene expression was modelled for each gene as a function of the technical 

variables (RIN and unknown confounder), neuronal proportion (i.e. 

neurodegeneration), intrinsic PD and Age (Figure 52, Table S10). No PD-

neurodegeneration interaction effect was considered because no significant 

differences in cell type proportions between PD and non-PD samples were detected 

(Figure 48B).  

  

ns

ns

ns

ns
Microglial Oligodendrocytic

Neuronal Astrocytic

Control PD Control PD

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Ce
ll t

yp
e 

pr
op

or
tio

n

r  =  0.91
    p < 2.2e-16

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Human signature

M
ou

se
 s

ig
na

tu
re

Neuronal proportion
r  =  0.92

    p < 2.2e-16

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Human signature

M
ou

se
 s

ig
na

tu
re

Astrocytic proportion
r  =  0.95

    p < 2.2e-16

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Human signature

M
ou

se
 s

ig
na

tu
re

Oligodendrocytic proportion

-80

-40

0

40

-60 -30 0 30 60
PC1 -  19%

PC
2 

-  
12

%

Control
PD RIN high

low
ns

ns

-80

-40

0

40

-60 -30 0 30 60
PC1 -  19%

PC
2 

-  
12

%

Control
PD

Unknown
Confounder

1
2

ns

ns -80

-40

0

40

PC
2 

- 1
2%

60 70 80 90Age (years)

60
70
80
90

-60 -30 0 30 60
PC1 - 19%

Ag
e

0

5

10

15

1 2 3 4 5 6 7 8 9 10
Principal Components

%
 v

ar
ia

nc
e 

ex
pl

ai
ne

d

0.037

0.241

0.519

0.037

1.4e-6

2.7e-5

0.001

0.328

0.553

0.625

0.706

0.001

0.469

6.8e-7

0.909

0.890

0.607

0.755

0.640

0.019

0.080

0.596

0.553

0.810

0.891

0.382

0.022

0.871

0.086

0.761

0.979

0.879

0.412

0.003

0.454

Condition

RIN

Confounder

Age

Neuronal
proportion

Astrocytic
proportion

Oligodendrocytic
proportion

PC1 PC2 PC3 PC4 PC5

2
4
6

-log10
(p-value)

Control PD

60

70

80

90

Ag
e 

(y
ea

rs
)

B A 

Figure 51 – Relationship between known effects on gene expression in 
Dumitriu samples  
(A) Heatmap of significance, given by p-values, of the association between the loadings 
of each of the first 5 components of PCA and the seven annotated potentially 
explanatory sample variables. Spearman’s correlation and Kolmogorov-Smirnov tests 
were used respectively for categorical (Condition, Confounder and RIN) and continuous 
(proportions of astrocytes, neurons and oligodendrocytes, and Age) variables. (B) Violin 
plots of distributions of age of samples, discriminated between disease status. 
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ConfounderE Figure 52 – Volcano plots of differential 
gene expression in Dumitriu samples 
Volcano plots, relating log2 fold-changes 
(log2FC) and B-statistics, of differential gene 
expression associated with the (A) PD, (B) 
Neurodegeneration, (C) Age, (D) RIN and (E) 
Confounder effects in Dumitriu samples. 
Highlighted with larger coloured dots are 
disease-associated genes from DisgeNet 
[428] (light green), manually selected gene 
candidates for PD-specific alterations 
(yellow), and genes included in the 
CIBERSORTx-derived expression signature 
for the major brain cell types (dark grey). 
Amongst all these, labelled are genes of 
particular interest, with individual expression 
profiles plotted in Figure 50. The other 
labelled genes are the top 10 differentially 
expressed genes. 
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We were thereby able to discriminate genes with a strong disease effect (Figures 

52A and 53A) from those essentially altered by neurodegeneration (Figures 52B 

and 53B). In fact, according to our analysis, genes reported as playing a role in PD 

(ABL1 [446], COMT [447], GRK5 [448] and APT1A3 [449]) were found associated 

with neurodegeneration rather than the disease itself (Figure 53B).    

 

Moreover, most genes specifically up-regulated in PD brains are annotated as being 

involved in oxidative phosphorylation and Parkinson’s disease (Figure 54). 

up−regulated

vegf signaling pathway

parkinsons disease

notch signaling pathway

oxidative phosphorylation

ribosome

0 1 2 3 4 5
−log10(FDR)

Figure 54 – KEGG pathways altered in PD 
Significance of enrichment of KEGG pathways in 
genes up-regulated (green) in Dumitriu PD 
samples compared to Controls.  
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Figure 53 – Expression of selected gene candidates for PD-specific 
alterations and DisgeNet genes 
(A) Expression of manually selected gene candidates for PD-specific alterations (labelled 
in yellow in (Figure 48) in Control and PD samples – scatterplots against neuronal 
proportion on the left, boxplots of distribution by condition on the right. (B) Same as (A) for 
selected DisgeNet genes (labelled in light green in Figure 48). Coloured solid lines in (A) 
and (B) represent linear regressions. T-tests, for which p-values are indicated, were used 
to compare gene expression mean differences between Control and PD samples.   
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6. PD-specific genes are validated in an independent 
dataset 

 

Although RNA-seq provides a more precise quantification of gene expression than 

microarrays [304], we could not find any other independent PD RNA-seq dataset 

matching, in terms of brain region, the Dumitriu study and therefore resorted to the 

Zhang microarray study. This independent dataset did not present any significant 

cellular composition alteration between PD and non-PD samples (Figure 55) either.  

 

Additionally, we found no significant differences in neuronal proportion estimates or 

age between samples from the Dumitriu and Zhang studies (Figure 56).  
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Figure 55 – Estimated cellular composition of Zhang brain samples 
(A) Neuronal, astrocytic, microglial and oligodendrocytic known markers’ expression in the 
Zhang samples. T-tests were used to compare gene expression mean differences between 
Control and PD samples. (B) Estimates of the composition of Zhang samples in each main 
cell type based on the human cell type gene expression signature. Wilcoxon signed-rank 
tests were used to compare differences in proportions between Control and PD samples. 
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We find gene expression changes that are consistent between the two analysed PD 

datasets (Figures 57-58, Tables S10-13), including for LRRC40 and ABCB6 (Figure 
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Figure 56 – Comparison of neuronal proportion and age between Dumitriu 
and Zhang samples 
Boxplots of distributions of neuronal proportion (left) and age of donors (right) in Control and 
PD samples from the Dumitriu and Zhang datasets. Wilcoxon signed-rank tests were used 
to compare differences in neuronal proportion and age of samples in the same condition 
between datasets.   
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Figure 57 – Comparison of t-statistics of PD-associated differential gene 
expression between the Dumitriu and Zhang datasets 
Scatter plot comparing the t-statistics of differential gene expression associated with the PD 
effect in Dumitriu and Zhang samples. Points (genes) are coloured according to the FDR of 
the random permutation test on the product of the t-statistics (v. Materials and Methods). 
Labelled genes are those significantly differentially expressed (FDR < 0.05 – Dumitriu and 
FDR < 0.11 – Zhang, v. Materials and Methods) in both datasets and significant in that 
permutation test (FDR < 0.05). Light gray dashed zero and identity lines, light gray solid 
contour density lines.   
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59).  However, from the selected PD candidates as examples shown in Figure 53, 

only ADAMTS2 and ADCYAP1 were profiled in the Zhang dataset and did not 

recapitulate the changes observed in the Dumitriu dataset (Figure 58).   

 

 

Figure 58 – Volcano plots of differential gene expression in Dumitriu and 
Zhang samples 
Volcano plots, relating log2 fold-changes (log2FC) and B-statistics, of differential gene 
expression associated with the of PD and Neurodegeneration effects in Dumitriu and Zhang 
samples. Genes highlighted in orange are those manually selected as candidates for PD-
specific alterations already represented in Figure 53, those labelled in Figure 57 are here 
highlighted in purple (“Common”), and those labelled in purple are presented in Figure 59.   
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Figure 59 – PD-associated gene expression changes in common between the 
Dumitriu and Zhang datasets 
Expression of manually selected “Common” genes in Dumitriu and Zhang samples. Coloured 
solid lines represent linear regressions. 
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7. Common AD- and PD-associated gene expression 
alterations are related with cell survival and metabolism  

 

AD- and PD-associated gene expression changes in human brains are very 

correlated (Figure 60A, Tables S14-S15), suggesting commonalities in the 

molecular mechanisms underlying both diseases.  

 

Although some neuronal markers are amongst the genes commonly altered by AD 

and PD, most of them are not, indicating effectivity in decoupling the 

neurodegeneration effect on gene expression (Figure 60A). Genes consistently up-

regulated in both diseases are linked to Wnt signaling (basal cell carcinoma 

pathway) and NF-KB signaling (acute myeloid leukemia) (Figure 60B). Indeed, the 

genes driving the basal cell carcinoma pathway are FZD9, FZD7, FZD2, DVL1 and 

AXIN1, all playing a role in the Wnt signaling pathway, which has already been 

linked to AD and PD [450]. The genes contributing the most to the acute myeloid 

leukemia pathway (RAF1,RELA and IKBKB) are related with NF-KB signaling, a 
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Figure 60 – Common AD- and PD-associated gene expression alterations 
(A) Scatter plot comparing the combined scores of differential gene expression (v. 
Materials and Methods) associated with the AD and the PD effects. Labelled genes are 
those highly significant (FDR < 0.0005) in the random permutation test of the product of 
scores (v. Materials and Methods). The Pearson’s correlation coefficient (r) between 
scores and associated significance (p) are also indicated. Neuronal gene markers 
included in the CIBERSORTx-derived cell-type expression signature depicted in yellow. 
Identity line in dashed gray. (B) Significance of enrichment of KEGG pathways in genes 
up-regulated (green) and down-regulated (red) in both AD and PD (v. Materials and 
Methods). 
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process already known to also play a role in AD and PD [451]. Genes consistently 

down-regulated in both diseases are linked essentially to cell metabolism (Figure 

60B). Although the magnitude of disease-induced changes in gene expression is 

generally modest (as expected, as samples from the same type of tissue are being 

compared), reassuringly they are overall quite independent from the neuronal 

composition of the brain samples (Figure 61). 
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Figure 61 – Expression of selected genes commonly altered in AD and PD in 
samples from all analysed datasets against their neuronal proportion 
Coloured solid lines represent linear regressions. 
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8. Metaraminol administration is inversely correlated with 
the AD- and PD-gene expression phenotype 

 

We used cTRAP [435] to identify drugs that, when delivered to human cell lines, 

cause similar (correlated) or opposite (anti-correlated) gene expression changes to 

those we observed as intrinsically associated to AD and PD (Figure 62). 
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Figure 62 – Comparison of the cTRAP-derived cross-gene Spearman’s correlation 
between AD/PD and the Neurodegeneration effects 
(A) Scatter plot comparing, between the AD and the Neurodegeneration effects, the cTRAP-derived 
cross-gene Spearman’s correlation coefficients (rho) of their differential expression combined 
scores with perturbation z-scores for cMap compounds. Highlighted with blue and red triangles are 
compounds selected as top candidates for respectively reversal and induction of AD-associated 
gene expression alterations (Figure 29A; v. Materials and Methods). Coloured circles highlight 
compounds in use for AD treatments, including those listed by [452]. (B) Scatter plot comparing, 
between the PD and the Neurodegeneration effects, the cTRAP-derived cross-gene Spearman’s 
correlation coefficients (rho) of their differential expression combined scores with perturbation z-
scores for cMap compounds. Highlighted with blue and red triangles are compounds selected as 
top candidates for respectively reversal and induction of PD-associated gene expression alterations 
(Figure 29B; v. Materials and Methods). Coloured circles highlight compounds in use for PD 
treatments. 
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Interestingly, gene expression perturbations induced by drugs known to be used in 

the clinic to treat AD [452] (donepezil, galantamine, memantine and rivastigmine) 

and PD [453] (amantadine, bromocriptine, cabergoline, carbidopa, entacapone, 

levodopa, lisuride and selegiline) were not amongst the most correlated with those 

by the respective target diseases (Figure 62), Tables S17-S18).  

 

 

Siavelis et al. [452] had followed a similar approach, although they did not decouple 

the neurodegeneration effect, having identified 27 drugs linked to the AD phenotype 

(Figure 62A). Chloroquine and scriptaid seem promising drug candidates for AD 

since their known targets are indeed overexpressed in AD and vary very little with 

neurodegeneration (Figure 63A). Scriptaid also seems promising for PD 

therapeutics for similar reasons (Figure 63B).  

 

Additionally, gene expression changes upon metaraminol administration showed up 

as being the most anti-correlated with those commonly induced by AD and PD 

(Figure 64), being metaraminol therefore a potential candidate drug to be tested for 

repurposing. Gene expression changes upon wortmannin administration are, in a 
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Figure 63 – Comparison of the combined scores of differential gene 
expression between the AD/ PD and the Neurodegeneration effects  
(A) Scatter plot comparing the combined scores of differential gene expression between 
the AD and the Neurodegeneration effects. Highlighted genes are known targets of 
selected candidate compounds for reversal of AD-associated gene expression 
alterations (Figure 29A). (B) Scatter plot comparing the combined scores of differential 
gene expression between the PD and the Neurodegeneration effects. Highlighted genes 
are known targets of selected candidate compounds for reversal of PD-associated gene 
expression alterations (Figure 29B). 
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dose dependent manner, the most correlated with those commonly induced by AD 

and PD (Figure 64).  
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Figure 64 – Comparison of the cTRAP-derived cross-gene Spearman’s 
correlation coefficients between the AD and the PD effects 
Scatter plot comparing, between the AD and the PD effects, the cTRAP-derived cross-
gene Spearman’s correlation coefficients (rho) of their differential expression combined 
scores with perturbation z-scores for cMap compounds. Points (compounds) are 
coloured according to the cross-gene Spearman’s correlation coefficients of their 
perturbation z-scores with the scores for common AD-PD differential expression (v. 
Materials and Methods). Labelled compounds are the 3 most correlated and the 3 most 
anti-correlated compounds. 
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V- Discussion 
 

In this thesis, we investigated the impact of cellular composition on Alzheimer’s and 

Parkinson’s diseases’ molecular effects in human brains.  

1. Neural cellular markers’ expression is altered in AD 
brains  

 

AD and PD brains are characterized by a loss of neurons and an increase of 

astrocytic reactivity when compared to age-matched healthy brain samples 

[270,454–456]. Signatures of these changes will be confounded with disease-

intrinsic molecular alterations, both systemic and cell type-specific, in any differential 

expression analysis between diseased and healthy brains. We confirmed this by 

looking at the expression of known neuronal, astrocytic, oligodendrocytic and 

microglial markers in AD and PD transcriptomic datasets. We indeed found neuronal 

and astrocytic markers significantly downregulated and upregulated, respectively, 

in MayoClinic AD samples compared to controls (Figure 34A). Although microglia 

were reported to be involved in AD [457] and PD [458], we only observed a 

significant increase in one (CD40) out of four microglial markers tested in AD (Figure 

34A) and in two (CD40 and ITGAM) in PD samples (Figure 48A). Since microglia 

represent a small subset of human brain cells (5% to 15% of human brain cells 

[459]), there were likely too few microglial cells in the profiled brain sections for their 

transcriptomic signal to be properly detected, as suggested by our digital cytometry 

estimates (Figures 34B and 48B). Still, the detection of a significant increase in 

CD40 and ITGAM microglial markers in PD samples needs further investigation, as 

the highest concentration of microglia in the brain is located in the substantia nigra 

[277], the first region affected by the loss of dopaminergic neurons in PD [152]. This 

could then induce a more reactive response of microglia in PD cortices. 
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2. Neural cell type gene expression signatures can be used 
to accurately estimate the cellular composition of artificial 
brain tissue samples from their transcriptomes 

 

Based on the evidence that cellular composition was altered in AD and PD brain 

samples, we computationally estimated therein the proportion of the main brain cell 

types: neurons, astrocytes, microglia and oligodendrocytes. We derived a gene 

expression signature  (1962 genes – Table S2) from a publicly available single-cell 

RNA-seq dataset of human adult cortical samples [460] to distinguish those four cell 

types.  To test the specificity of those signatures, we used CIBERSORTx [423] to 

estimate the composition of samples from an independent single-cell RNA-seq 

dataset [271] of human neurons, microglia, astrocytes and oligodendrocytes. Each 

of these cells was mostly assigned to its respective pre-annotated cell type (Figure 

32A). Some oligodendrocyte samples showed a small presence of the other three 

cell types that might be related with the myelin of oligodendrocytes having some 

debris of astrocytes, microglia and neurons attached, given that oligodendrocytes 

closely interact with those cells [461]. With the further advances in scRNA-seq 

technologies and the accumulation of human brain single-cell datasets in healthy 

and diseased conditions [462], the major brain cell type signatures will be further 

improved and allow an increase the sensitivity of digital cytometry.  

 

3. Cellular composition is significantly altered in AD brains 
 

After validating the cell type signatures, we used them to estimate the proportion of 

neurons, astrocytes, microglia and oligodendrocytes in AD and PD brain samples 

from their bulk transcriptomes. In line with differences in expression in canonical 

markers illustrated in Figure 34A, the estimated neuronal proportion was 

significantly lower in AD compared with control brains (Figure 34B). Some samples 

reached up to 60-90% of neurons, much higher than estimates based on cell 

counting [459,463]. This is likely related with the neuronal RNA content being up to 

two fold as much as that of glial cells [464]. In this study we are therefore estimating 

the relative contribution by each cell type to the total amount of mRNA in the bulk 

samples and not their actual proportion of the total number of cells.  
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4. Neuronal loss-independent intrinsic disease effects on 
gene expression in the human brain can be linearly 
modelled 

 

Linear models are a commonly used statistical approach to model gene expression 

as a function of relevant explanatory variables. Here, these were potential technical 

biases (RIN and an unknown confounder variable), age, sex (for AD datasets), 

estimated neuronal proportion (neurodegeneration), disease (categorical AD or PD) 

and, for the AD datasets, interaction between neurodegeneration and disease. 

Considering that AD and PD are age-related neurodegenerative disorders, it is 

expected that most of their associated gene expression changes in the brain are 

result from the loss of neurons and ageing, therefore the need to estimate their 

independent effects and decouple them from the intrinsic molecular effects of the 

diseases that we are interested in. Using those models, we identified genes whose 

expression was significantly affected by the intrinsic (systemic) disease effect 

(Figures 39 and 53A), as well as genes whose expression was mostly explained by 

the other effects (Figures 38 and 52).  

 

However, we were not able to completely decouple the explanatory variables, as 

the associated moderated t statistics of differential expression were to some extent 

correlated with each other (Figure 65). The correlations between RIN and the 

intrinsic disease and neurodegeneration effects may be explained by potential 

agonal conditions, such as patients being in a coma or their brains undergoing 

hypoxia just before death, preceding the collection of post-mortem samples [465]. 

For AD, with the Interaction effect, we were able to detect genes whose expression 

varies differently upon neurodegeneration in AD samples (Figure 41). For example, 

the PNPLA5 gene is involved in lipid metabolism [466] and is thought to play a role 

in the autophagy biogenesis [467]. Those processes have been implicated in AD 

[468,469] and a variant in PNPLA5 was reported to be associated with the APOE 

genotype directly linked to AD [470].  Another example is PTPN20A, encoding a 

phosphatase with a dynamic subcellular distribution that targets sites of actin 
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A 

B 

Figure 65 – Comparison of t-statistics of differential expression between 
modelled effects in AD and PD 
Below the diagonal: scatter plots (with light gray solid contour density lines) comparing 
the t-statistics of differential gene expression between pairs of modelled effects for the 
MayoClinic (A) and Dumitriu (B) datasets. Diagonal: smoothed histograms of 
distributions of t-statistics of t-statistics of differential gene expression for the modelled 
effects. Above the diagonal: Pearson’s correlation coefficients (r), and associated 
significance (p), of t-statistics of differential gene expression between pairs of modelled 
effects.  
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polymerization, a fundamental cellular process [471]. Although, to our knowledge, 

no reports have linked PTPN20A to AD, it might indicate that, concomitant with the 

loss of other neurons, AD neurons suffer more structural changes than non-AD 

neurons.  

 

The importance of decoupling the intrinsic disease effect from others can be seen 

in Figures 40 and 53B. Looking at some of the genes already reported as potentially 

playing a role in AD (e.g. CDK5 [442]) or PD (e.g. COMT [447]), we observed that 

alterations in their expression were mostly driven by neurodegeneration, i.e. by 

changes in cellular composition, but not so much by an intrinsic cell type-

independent disease effect. This suggests that some genes previously reported as 

candidates for playing a role in AD or PD may be “false positives” for their 

association with the diseases’ aetiology and, given their cell-type specificity, have 

been found dysregulated due to changes in cellular composition [434].  

 

As shown in Figures 45 and 57, the results of differential expression analyses are 

significantly correlated between independent datasets. Although some genes 

initially selected as candidates for intrinsic disease markers, such as ETV4 and LIAS 

for AD, were not found to behave consistently in both datasets, others previously 

described as playing a role in AD and PD, such as RPH3A [472] and CXXC1 [473], 

were consistent. We identified genes such as HEBP2 and PRKAR1A to be 

respectively AD and PD-specific (Figure 49 and Figure 59) and, to our knowledge, 

they had not been previously linked with the disorders. HEBP2 is known to play a 

role in mitochondria and its inhibition has been shown to be important for HeLa cells 

survival upon oxidative stress [474]. Considering that HEBP2 is upregulated in our 

AD samples, its overexpression may contribute to the sudden death of neuronal 

cells upon the AD-characteristic high oxidative stress environment [475]. Moreover, 

although HEBP2 has not yet been linked to AD, its homologue HEBP1 has been 

described as potentially playing a role in neurons’ ability to sense cytotoxicity over 

the course of the disease [476]. When PRKAR1A, the cAMP-dependent protein 

kinase type I-alpha regulatory subunit, is not working properly, it causes an 

hyperactivation of PKA signalling and its loss of function has been shown to cause 

cell death and muscle impairment [477], two PD-related phenotypes.   
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5. AD and PD brains share common gene alterations 
 

Being the two most common neurodegenerative disorders in the world, it has 

already been suggested that AD and PD could share a common mechanism of 

neurodegeneration [388,478]. For instance, Greenfiel et al. proposed that the 

common mechanism may be associated with the aberrant activation of a 

developmental process involving a non-classical, non-enzymatic action of 

acetylcholinesterase [479]. Our results suggest that the genes whose expression is 

commonly altered in AD and PD are essentially related with cell metabolism and 

NF-KB and Wnt signaling pathways (Figure 60B), which were already reported as 

playing a role in PD [450,451,480,481] . Oxidative phosphorylation and Parkinson’s 

disease pathways were significantly altered in both diseases but enriched in genes 

downregulated in the MayoClinic AD samples (Figure 42) and upregulated in 

Dumitriu PD samples (Figure 54). The putative upregulation of the oxidative 

phosphorylation pathway in PD is mostly driven by NADH dehydrogenase genes 

such as NDUFS8, NDUFS7 and NDUFA11, which take part in mitochondria’s 

complex I, already reported to be impaired in PD [482]. Oxidative phosphorylation’s 

apparent downregulation in AD is mostly driven by COX genes such as COX11 and 

COX15. The most consistent defect in mitochondrial electron transport enzymes in 

AD is indeed a deficiency in COX [483], mitochondria complex IV [483]. Genes 

highlighted in Figure 60 should also be considered as candidate targets for 

functional manipulation in both AD- and PD-related studies, since they may unveil 

mechanisms that are disrupted in similar ways in both disorders. 

 

6. In silico chemo-transcriptomic analyses could act as 
preliminary screens for drug repurposing in AD and PD 

 

Drug discovery for human diseases is a slow and costly process [484], drug 

repurposing being therefore seen as a faster, safer and cheaper alternative [452]. 

Using cTRAP [435], we identified drugs, already in clinical trials or launched, that 

potentially induce gene expression changes that are significantly anti-correlated with 

those caused by AD and PD (Figures 62A-B). For AD, we identified compounds 

already linked with the disease. For instance, chloroquine, an antimalarial drug, was 
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shown to increase tau proteolysis [485] as well as to be neuroprotective upon brain 

injury by diminishing inflammation and neuronal autophagic death [486]. Tubastatin-

a, an HDAC6 inhibitor, was used in AD mice leading to alleviated behavioral deficits, 

alterations on amyloid-beta load and reduced tau phosphorylation [487]. Sildenafil, 

usually used to treat erectile dysfunction, is currently being investigated in AD 

therapeutics [488]. Amisulpride and citalopram, two antipsychotic drugs, have been 

used in AD [489,490]. Curcumin has been implicated in AD therapeutics, apparently 

decreasing beta-amyloid plaques as well as slowing neurodegeneration and acting 

as an anti-inflammatory [491]. Doxycycline is a compound known to cross the blood-

brain barrier and a very promising candidate since it reduced amyloid-beta 

oligomers and neuroinflammation in AD mouse models [492]. Etoposide needs to 

be further explored, given a study reporting it as an inducer of cellular senescence 

and mitochondrial dysfunction in cultured rat astrocytes [493] but knowing that rat 

cell lines may not recapitulate all the molecular cues of the human brain 

microenvironment. To our knowledge, no research has been reported on the use of 

interesting candidates panobinostat, dimenhydrinate and perhexiline in AD. Indeed, 

perhexiline is involved in the inhibition of mTOR pathway which is related with 

autophagy, a process known to be altered in AD [494], and panobinostat acts as an 

HDAC inhibitor, leading to the hypothesis that it may play a role similar to that of 

tubastatin-a. For PD, we also identified compounds previously linked to the disease. 

Atomoxetine, an inhibitor of the norepinephrine reuptake, has been studied in PD 

therapeutics since the noradrenergic system is involved in executive functions 

impaired in PD [495]. Meclofenamic acid, a non-steroid anti-inflammatory drug, has 

been shown to have an anti-fibrillogenic effect on alpha-synuclein fibrils in vitro 

[496]. Tamoxifen, an estrogen modulator, has also been related with PD treatment 

but is associated with controversial findings. Although tamoxifen demonstrated 

neuroprotective effects in some animal and in vitro studies [497,498], it has been 

shown in some cohorts of female breast cancer patients that its usage may increase 

PD risk [499,500]. However, given that our PD analyses were performed only in 

male samples, our results could suggest a sex-specific mode of action of tamoxifen 

in PD. Additionally, myricetin has neuroprotective effects in different PD Drosophila 

and rat models [501,502]. To our knowledge, other drugs such as genipin and 

praziquantel have not yet been related to PD and could be interesting to further 

explore for repurposing in that context. For instance, genipin is the main component 
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of a Chinese medicinal herb and was shown to have anti-inflammatory and 

neuroprotective effects that could be beneficial for neurogenerative diseases such 

as PD [503]. Praziquantel, an anthelmintic compound, could be a very interesting 

candidate since niclosamide, another anthelmintic drug, has been suggested to be 

beneficial in PD through the activation of the PINK1 pathway that is usually impaired 

in PD [504].  

 
Metaraminol, an adrenergic agonist that also stimulates the release of 

norepinephrine and primarily used as a vasoconstrictor in the treatment of 

hypotension [505], induces the gene expression changes most anti-correlated with 

those by both AD and PD (Figure 64). To our knowledge, there is no association 

between metaraminol and AD and PD therapeutics. However, adrenergic agonists 

can decrease noradrenergic degeneration, a characteristic condition of AD patients 

[506]. As for PD, using adrenergic agonists along with levodopa treatment has been 

shown to lead to a diminishment in parkinsonian symptoms [507]. Perhexiline can 

act as an inhibitor of mTORC1, a protein kinase involved in autophagy, and is able 

to stimulate autophagy [508]. One common shared feature between AD and PD is 

indeed autophagy decrease [509], which might explain the anti-correlation between 

its transcriptomic impact and the expression profiles changes induced by AD and 

PD (Figure 64). Itopride, a dopamine D2 antagonist with acetylcholinesterase 

inhibitory actions [505], has already been studied as a potential drug for AD given 

its very similar structure to curcumin, shown to decrease the accumulation of Aß 

aggregates [510]. Moreover, it is also used for increasing gastrointestinal motility, a 

symptom that is prominent in PD patients, although it also seems to induce 

parkinsonism [511]. We also found scriptaid (Figure 63), a histone deacetylase 

(HDAC) inhibitor. HDAC enzymes have already been linked to neurodegenerative 

diseases and there are already several applications of HDAC inhibitors being tested 

in such context [512]. Interestingly, gene expression changes induced by 

wortmannin, auranofin and prednicarbate, were the most correlated with those by 

AD and PD. Indeed, wortmannin has been shown to increase Alzheimer-like tau 

phosphorylation in vivo [513,514] and to diminish the effect of an anti-apoptotic 

compound in an in vitro PD model [515]. Auranofin, a drug used as an antirheumatic 

agent, has indeed been linked with AD and PD, but not as an inducer of both 

disorders [516]. This result needs to be further explored as, for instance, auranofin 
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seems to act through glial cells but does not stop cytokines secretion from astrocytes 

[517,518]. Additionally, these findings result from work in cell lines [517] and mice 

[518], models that do not recapitulate all the molecular cues of the human brain 

microenvironment. To our knowledge, there is no association between 

prednicarbate, a corticosteroid drug with an anti-inflammatory action,  and AD and 

PD therapeutics besides the recommendation of not being used together with 

memantine, one of the few FDA approved drugs for AD, since it inhibits its action 

[519]. These results show the potential of using in silico tools to find existing drugs 

that could be tested as candidates for the treatment of neurodegenerative diseases.  

 

7. Conclusion 
 
In summary, our results show the relevance of modelling and accounting for cell 

type composition when analysing molecular alterations associated with 

neurodegenerative disorders, thereby helping to identify candidate gene targets that 

are related with the disease itself rather than the consequent loss of neurons. They 

also illustrate the interest of performing in silico analysis of chemical perturbagens 

as preliminary screens for drug repurposing, helping to find new, more effective drug 

therapies that could mitigate, or even reverse, some of those neurodegenerative 

disorders’ phenotypes. 
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VII – Future perspectives 
 
To our knowledge, this is the first study that decouples the effects of cellular 

composition, ageing and sex from the intrinsic disease effect of AD and PD on gene 

expression in human brains. However, our study has limitations. We focused on the 

four major brain cell types but our approach is not sensitive enough to estimate the 

relative amount of mRNA contributed by microglia, therefore missing the 

transcriptomic signal of their physiology.  Moreover, although we validated our 

results using independent public datasets, an additional local experimental 

validation is not feasible due to extreme difficulty in having access to human 

samples that would be suitable independent replicates of those used to generate 

the analysed datasets. Additionally, drugs currently used for AD and PD treatment 

were not among those our analysis deemed more likely able to revert the AD-/PD-

specific gene expression changes. This likely reflects the differences between gene 

expression changes induced by drugs in cancer cell lines (i.e. those available in 

CMap [436], on which cTRAP [435] relies) and those the same drugs would induce 

in brain cells.  

 

We expect the permanent development of single-cell technologies to help increase 

the resolution of our understanding of the nuances in each human brain cell type, 

as well as which molecular perturbations therein are critical to the onset and 

progression of neurodegenerative diseases such as AD and PD. In fact, there are 

already some studies using single-cell RNA-seq to characterize the cellular 

composition in normal brains [322,460,520], in neurogenesis and somatic 

reprogramming to neurons [521,522], as well as in AD brains [341,523]. 

Nevertheless, as single-cell data are still accumulating and there are several bulk 

transcriptomes available for brains affected by neurodegenerative disorders, 

approaches like ours could help in the meantime to unveil some of cellular and 

molecular complexity associated with neurodegeneration in humans.  
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VII – Annexes  
 
All the supplementary tables can be found at 
https://imm.medicina.ulisboa.pt/group/distrans/MarieBordone_PhD2020_SuppTabl
es.zip  
 
Table S1 – CIBERSORTx estimates of the cellular composition of brain samples 
from all datasets.  
 

- Sample ID is the sample’s identifier. 

- Condition is the sample’s disease status (i.e., AD/PD or Control). 

- Neuronal proportion is the proportion of neurons in the sample estimated 

by CIBERSORTx. 

- Astrocytic proportion is the proportion of astrocytes in the sample 

estimated by CIBERSORTx. 

- Microglial proportion is the proportion of microglia in the sample estimated 
by CIBERSORTx. 

- Oligodendrocytic proportion is the proportion of oligodendrocytes in the 

sample estimated by CIBERSORTx. 

- Correlation is the highest Pearson's correlation coefficient between gene 

expression profiles of artificial mixture samples, generated by CIBERSORTx 

using a comprehensive range of imputed cell fractions, the cell-type 

expression signature and the sample’s gene expression profile. The 

estimated sample’s cellular composition is indeed that of the most correlated 

artificial mixture sample. 

- RMSE is the Root Mean Squared Error of the CIBERSORTx-modelled gene 

expression profile (i.e., that from the most correlated imputed artificial 

mixture) when compared to the actual (empirical) sample’s gene expression. 

Note: the p-values of the aforementioned correlation tests are not shown because 
they are all virtually zero.  
 
 
Table S2 – Human brain cell types gene expression signature. 

Relative expression, in arbitrary units (with 1 being the minimum), in the main human 

brain cell types of the genes selected by CIBERSORTx as able to discriminate 

between them. 
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Table S3 – Mouse brain cell types gene expression signature. 

Relative expression, in arbitrary units (with 1 being the minimum), in the main murine 

brain cell types of the genes selected by CIBERSORTx as able to discriminate 

between them. 

 

Table S4 – Artificial mixture samples.  

Cell-type proportions of the 300 artificial mixture samples generated through 

chimeric libraries of 35 million reads, with numbers of randomly sampled read from 

the cell-type-specific pools also shown. 

 

Table S5 – Modes of Action of cMap compounds. 

 

Table S6 – Differential Gene Expression – MayoClinic dataset. 

For each linearly modelled effect (i.e. each tab): 

- logFC is the gene’s log2(fold-change) in expression associated with the 

effect. 

- AveExpr is the gene’s average expression (in log2(CPM)) over all samples. 

- t is the moderated t-statistic of differential gene expression. 

- P.Value is the p-value associated with the t-statistic. 

- adj.P.Val is the p-value associated with the t-statistic corrected for multiple 

testing by the Benjamini-Hochberg FDR procedure. 

- B is B-statistic, i.e. the empirical Bayesian log-odds that the gene is 

differentially expressed. 

 

Table S7 – Differential Gene Expression – Nativio dataset. 

For each linearly modelled effect (i.e. each tab): 

- logFC is the gene’s log2(fold-change) in expression associated with the 

effect. 

- AveExpr is the gene’s average expression (in log2(CPM)) over all samples. 

- t is the moderated t-statistic of differential gene expression. 

- P.Value is the p-value associated with the t-statistic. 

- adj.P.Val is the p-value associated with the t-statistic corrected for multiple 

testing by the Benjamini-Hochberg FDR procedure. 
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- B is B-statistic, i.e. the empirical Bayesian log-odds that the gene is 

differentially expressed. 

 

Table S8 – Combined AD effect’s scores from t-statistics of differential expression 

of common genes in the MayoClinic and Nativio datasets. 

 

Table S9 – Combined Neurodegeneration effect’s scores from t-statistics of 

differential expression of common genes in the MayoClinic and Nativio datasets. 

 

Table S10 – Differential Gene Expression – Dumitriu dataset. 

For each linearly modelled effect (i.e. each tab): 

- logFC is the gene’s log2(fold-change) in expression associated with the 

effect. 

- AveExpr is the gene’s average expression (in log2(CPM)) over all samples. 

- t is the moderated t-statistic of differential gene expression. 

- P.Value is the p-value associated with the t-statistic. 

- adj.P.Val is the p-value associated with the t-statistic corrected for multiple 

testing by the Benjamini-Hochberg FDR procedure. 

- B is B-statistic, i.e. the empirical Bayesian log-odds that the gene is 

differentially expressed. 

 

Table S11 – Differential Gene Expression – Zhang dataset. 

For each linearly modelled effect (i.e. each tab): 

- logFC is the gene’s log2(fold-change) in expression associated with the 

effect. 

- AveExpr is the gene’s average expression (in log2(CPM)) over all samples. 

- t is the moderated t-statistic of differential gene expression. 

- P.Value is the p-value associated with the t-statistic. 

- adj.P.Val is the p-value associated with the t-statistic corrected for multiple 

testing by the Benjamini-Hochberg FDR procedure. 

- B is B-statistic, i.e. the empirical Bayesian log-odds that the gene is 

differentially expressed. 
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Table S12 – Combined PD effect’s scores from t-statistics of differential expression 

of common genes in the Dumitriu and Zhang datasets. 

 

Table S13 – Combined Neurodegeneration effect’s scores from t-statistics of 

differential expression of common genes in the Dumitriu and Zhang datasets. 

 

Table S14 – Joint AD&PD Disease effect’s scores from the combined AD and PD 

effects’ scores. 

 

Table S15 – Joint AD&PD Neurodegeneration effect’s scores from the combined 

Neurodegeneration effects’ scores from the AD and PD datasets. 

 

Table S16 – cTRAP results: cMap compound perturbations and AD-associated 

gene expression changes. 

- cMAP perturbation is the identifier of the chemical perturbation that 

incorporates information on the compound, cell line, time of exposure and 

dosage. 

- Compound is the common name of the drug used. 

- Spearman's rho AD is the correlation between the compound’s perturbation 

z-scores and the AD differential expression combined scores. 

- Spearman’s rho Neurodegeneration is the correlation between the 

compound’s perturbation z-scores and the Neurodegeneration differential 

expression combined scores. 

- Mode of Action lists the compound’s known modes of action. 

- Targets are the known compound’s gene targets. 
- Disease area stands for the medical field in which the compound is already 

being administrated. 
- Phase indicates the stage of clinical trials the drugs is in. 

 

Table S17 – cTRAP results: cMap compound perturbations and PD-associated 

gene expression changes. 
- cMAP perturbation is the identifier of the chemical perturbation that 

incorporates information on the compound, cell line, time of exposure and 

dosage. 
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- Compound is the common name of the drug used. 

- Spearman's rho PD is the correlation between the compound’s perturbation 

z-scores and the PD differential expression combined scores. 

- Spearman’s rho Neurodegeneration is the correlation between the 

compound’s perturbation z-scores and the Neurodegeneration differential 

expression combined scores. 

- Mode of Action lists the compound’s known modes of action. 

- Targets are the known compound’s gene targets. 
- Disease area stands for the medical field in which the compound is already 

being administrated. 
- Phase indicates the stage of clinical trials the drugs is in. 

 
Table S18 – cTRAP results: cMap compound perturbations and common AD- and 

PD- associated gene expression changes. 

- cMAP perturbation is the identifier of the chemical perturbation that 

incorporates information on the compound, cell line, time of exposure and 

dosage. 

- Compound is the common name of the drug used. 

- Spearman's rho AD&PD is the correlation between the compound’s 

perturbation z-scores and the AD-PD differential expression combined 

scores. 

- Spearman’s rho Neurodegeneration is the correlation between the 

compound’s perturbation z-scores and the Neurodegeneration differential 

expression combined scores. 

- Mode of Action lists the compound’s known modes of action. 

- Targets are the known compound’s gene targets. 
- Disease area stands for the medical field in which the compound is already 

being administrated. 
- Phase indicates the stage of clinical trials the drugs is in. 

 


