A REAL-TIME PERSONALISED RECOMMENDER SYSTEM FRAMEWORK FOR ONLINE LEARNING PLATFORMS

OKUOYO, OTAVIE LOVEDAY (20PCG02182)

A REAL-TIME PERSONALISED RECOMMENDER SYSTEM FRAMEWORK FOR ONLINE LEARNING PLATFORMS

BY

OKUOYO, OTAVIE LOVEDAY (20PCG02182)

BSc. Computer Science, University of Port Harcourt, Port Harcourt

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.SC) DEGREE IN COMPUTER SCIENCE, DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

DECEMBER, 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Science in Computer Science in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **OKUOYO**, **OTAVIE LOVEDAY** (**20PCG02182**) declare that this research was carried out by me under the supervision of Prof. Olufunke O. Oladipupo of the Department of Computer and Information Sciences Science, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria. I attest that this dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

OKUOYO, OTAVIE LOVEDAY

Signature and Date

CERTIFICATION

We certify that this dissertation titled "A REAL-TIME PERSONALISED RECOMMENDER SYSTEM FRAMEWORK FOR ONLINE LEARNING PLATFORMS" is an original research carried out by OKUOYO, OTAVIE LOVEDAY (20PCG02182) in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Olufunke O. Oladipupo. We have examined and found this work acceptable as part of the requirements for the award of Master of Science (M.Sc.) in Computer Science.

Prof. Olufunke O. Oladipupo (Supervisor)

Signature and Date

Prof. Olufunke O. Oladipupo (Head of Department)

Signature and Date

Dr. Victor T. Odumuyiwa (External Examiner)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

I dedicate this dissertation to my saviour, Jesus Christ.

ACKNOWLEDGEMENTS

I would like to express my gratitude to God Almighty for His grace and mercy that allowed me to complete this project. I also want to specifically thank my mother, Mrs. Onemfien Okuoyo, and my sister, Martha Okuoyo, for their constant support and love. Additionally, I am grateful for the guidance and prayers of Pastor Constance Iwenya. I would also like to extend my thanks to Obaro Benedict Ikoh for their friendship and support.

I am particularly grateful to the National Information Technology and Development Agency (NITDA) for funding my program at Covenant University.

I also want to thank the Chancellor of Covenant University, Dr David O. Oyedepo, for his commitment to developing generation of exceptional leaders. I appreciate the management of Covenant University for their support during my program. In addition, I am grateful to the faculty of the Computer and Information Science Department for the valuable learning experience and to the Head of Department, Professor Olufunke O. Oladipupo, who also served as my supervisor, for her mentorship and endless support.

I also want to acknowledge my post graduate colleagues: Emmanuel Omonedo, Ogunsola Opeyemi, Chidera Eze, Christabel Uzor, Deborah Bassey Etukudo, Emmanuel Owoka, Excellent Ikeakanam, Gabriel Opeyemi, Isaac Martins, Seth Samuel, Samuel Olanipekun, Temitope Ogungbesan, Timilehin Owoseni, Victoria Robert, Olumide Adeosun, Andrew Omiloli, Henry Ogbu, Blessing Odede, and Kingsly Onoja who have contributed in many ways to my post graduate experience. I am grateful to you all, and I celebrate you all.

TABLE OF CONTENTS

CONTENTS		PAGES	
COV	ER PA	GE	i
	LE PAG		ii
		ICE PAGE	iii
	CLARAT CTIFICA		iv v
	ICATI(vi
ACK	NOWL	EDGEMENTS	vii
		CONTENTS	viii
	OF FI		xi
	「OF TA	BBREVIATIONS	xiii xiv
	TRACT		xvii
CHA	PTER (ONE: INTRODUCTION	1
1.1	Backg	ground to the Study	1
1.2	Staten	nent of the Problem	4
1.3	Aim a	and Objectives of the Study	5
1.4	Resea	rch Methodology	6
1.5	Signif	ficance of the Study	7
CHA	PTER 7	ΓWO: LITERATURE REVIEW	8
2.1	Conce	eptual Review	8
	2.1.1	Recommender System	8
	2.1.2	Machine and Deep Learning	14
	2.1.3	Reinforcement and Deep Reinforcement Learning	27
2.2	Metho	odological Review	34
	2.2.1	Association Rule	34
	2.2.2	Matrix Factorization (MF)	35
	2.2.3	K-Means Clustering Algorithm	38
	2.2.4	Autoencoder	39
	2.2.5	Deep Belief Network (DBN)	41
2.3	Appli	cation Review	41
	2.3.1	Social Media Platforms	42

	2.3.2	Electronic Commerce (e-Commerce) Websites	43
	2.3.3	News Platforms	44
	2.3.4	Online Learning	45
2.4	Revie	w of Related Works	47
2.5	Gaps	in Literature	54
СНА	PTER 7	THREE: METHODOLOGY	58
3.1	Introduction		58
3.2	Formulation of Recommendation as Markov Decision Process (MDP)		59
	3.2.1	Markov Decision Process	59
3.3	RECS	IM: The Simulation Environment	60
3.4	Comp	onents of RECSIM	61
	3.4.1	User Model	61
	3.4.2	Document Model	62
	3.4.3	User-Choice Model	62
	3.4.4	User Transition Model	62
3.6	How t	the RECSIM Works	62
3.7	Datas	et	63
СНА	PTER 1	FOUR: RESULTS AND DISCUSSION	64
4.1	Introd	uction	64
4.2	The Framework		64
	4.2.1	The Recommender Agent	65
	4.2.2	The Environment	65
	4.2.3	The States	65
	4.2.4	The Actions	66
	4.2.5	The Reward	66
	4.2.6	Termination	66
4.3	The e-	-Learning Platform	67
4.4	Configuration of the Simulator		68
	4.4.1	Description of Document	68
	4.4.2	Number of Candidates	69

	4.4.3	User Observable Features	69
	4.4.4	Slate Size	69
	4.4.5	Step	70
	4.4.6	Episode	70
4.5	Envir	Environment Configuration	
4.6	Training Results		70
	4.6.1	Average Episode Reward	71
	4.6.2	Click Through Rate (CTR)	72
	4.6.3	Average Quality of Recommendation	73
	4.6.4	Standard Deviation (Std) of Episode Reward	74
4.7	Evalu	ation Results	75
	4.7.1	Average Episode Reward	75
	4.7.2	Click Through Rate (CTR)	76
	4.7.3	Average Quality of Recommendation	77
	4.7.4	Standard Deviation of Episode Reward	78
4.8	Discu	ssion of Findings	79
CHA	PTER 1	FIVE: CONCLUSION AND RECOMMENDATION	80
5.1	Sumn	nary	80
5.2	Concl	usion	80
5.3	Contr	ibution to Knowledge	81
5.4	Recor	mmendation	81
	ERENC ENDIX	CES	82 97

LIST OF FIGURES

FIGURES:	TITLE OF FIGURES	PAGES
1.1	Research Methodology Flowchart	6
2.1	Taxonomy of Recommendation System	8
2.2 (a)	User-Based Collaborative Recommender System	10
2.2 (b)	Item-Based Collaborative Recommender System	10
2.3	Content-Based Recommender System	11
2.4	Relationship Between AI, ML, ANN and DL	15
2.5	Graph for Linear and Logistic Regression Functions	17
2.6	Structure of a Decision Tree	18
2.7	Random Forest for Predicting Fruits	19
2.8	Separation Using Hyperplane	21
2.9	Structure of Convolution Neural Network	22
2.10	A Simple Convolution Operation	23
2.11	Structure of RNN	24
2.12	Conversion of Feedforward Neural Network to RNN	25
2.13	The LSTM Module	25
2.14	Structure of GAN, Adapted from (Google Developers, 2022)	27
2.15	Classification of RL Algorithms	27
2.16	RL – Agent-Environment Interaction	28
2.17	DRL with Deep Neural network Replacing the Q table	29
2.18	Q-Learning Showing the Q-Table	30
2.19	Deep Q-Learning Showing the Deep Neural Network	31
2.20	Autoencoder Architecture 1	40
2.21	Autoencoder Architecture 2	40
2.22	Deep Belief Network Architecture	41
3.1	Research Methodology Workflow	58
3.2	The agent interaction with the environment	59

3.3	RECSIM Architecture	61
3.4	How RECSIM Environment Work	63
4.1	The Proposed Framework for Online Learning RS	64
4.2	User Interface of the Learning Platform	67
4.3	Interface showing courses related to NLP	67
4.4	Interface showing advanced courses on data structure and algorithm	68
4.5	Representation of Document Observable Features	69
4.6	Sample of User Observable Features	69
4.7	Slate Size of 2 Showing Document Features	70
4.8	Average Episode Reward During Training using Configuration 1	71
4.9	Average Episode Reward During Training using Configuration 2	71
4.10	Click Through Rate During Training using Configuration 1	72
4.11	Click Through Rate During Training using Configuration 2	72
4.12	Average Quality During Training using Configuration 1	73
4.13	Average Quality During Training using Configuration 2	73
4.14	Standard Deviation of Episode Reward During Training using Configuration 1	74
4.15	Standard Deviation of Episode Reward During Training using Configuration 2	74
4.16	Average Episode Reward During Evaluation using Configuration 1	75
4.17	Average Episode Reward During Evaluation using Configuration 2	75
4.18	Click Through Rate During Evaluation using Configuration 1	76
4.19	Click Through Rate During Evaluation using Configuration 2	76
4.20	Average Quality During Evaluation using Configuration 1	77
4.21	Average Quality During Evaluation using Configuration 2	77
4.22	Standard Deviation of Episode Reward During Evaluation using Configuration 1	78
4.23	Standard Deviation of Episode Reward During Evaluation using Configuration 2	78

LIST OF TABLES

TABLE	TITLE OF TABLE	PAGES
1.1	Mapping of Objectives and Methodology	7
2.1	Identified Research Gaps in Literature	54
4.1	Configuration of the RL Environment	70
4.2	Summary of Evaluation Result	79

LIST OF ABBREVIATIONS

ABSA Aspect-Based Sentimental Analysis

ACO Ant Colony Optimization

AI Artificial Intelligence

ANN Artificial Neural Network

AI-ML Artificial Intelligence/Machine Learning

A3C Asynchronous Advantage Actor-Critic

BMF Biased Matrix Factorization

CA Context Awareness

CART Classification And Regression Tree

CB Content-Based

CF Collaborative Filtering

CMN Collaborative Memory Network

CNN Convolutional Neural Network

CTR Click Through Rate

C2C Consumer-to-Consumer

DBN Deep Belief Networks

DBPMF Deep Bias Probabilistic Matrix Factorization

DDPG Deep Deterministic Policy Gradient

DDQN Double Deep Q-Learning Network

DE Distance Education

DeepCoNN Deep Cooperative Neural Networks

DKN Deep Knowledge-aware Network

DL Deep Learning

DPRMF Dual-Prior Review-based Matrix Factorization

DQN Deep Q-learning Network

DRL Deep Reinforcement Learning

ELRA E-Learning Recommendation Architecture

FM Factorisation Matrix

FP-growth Frequent Pattern-growth

GA Genetic Algorithm

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GSP Generalized Sequential Pattern

HFT Hidden Factors as Topic

IDE Integrated Development Environment

IoT Internet of Things

IT2FLS Interval Type-2 Fuzzy Logic Systems

KNN K-Nearest Neighbour

LSTM Long Short-Term Memory

MDP Markov Decision Process

MF Matrix Factorization

ML Machine Learning

MLlib Machine Learning Library

MOOC Massive Open Online Courses

MOOCRC MOOC Resource Recommendation

NAMN Neighbourhood Attentional Memory Networks

NARRE Neural Attention Regression model with Review-level Explanations

NeuMF Neural Matrix Factorization
NLP Natural Language Processing

NMF Nonnegative Matrix Factorization

OCCF One-Class Collaborative Filtering

PCA Principal Component Analysis

PCC Pearson Correlation Coefficient

PMF Probabilistic Matrix Factorization

PTCCF Preference Pattern TCCF

RBM Restricted Boltzmann Machines

RF Random Forest

RL Reinforcement Learning

RNN Recurrent Neural Network

RECSIM RECommendation SIMulation

RS Recommendation/Recommender System

SARSA State-Action-Reward-State-Action

SPM Sequential Pattern Mining

STD Standard Deviation

SVD Single Value Decomposition

SVD++ Single Value Decomposition Plus Plus

SVM Support Vector Machines

TCC Time Correlation Coefficient

TCCF Time Correlation Coefficient Collaborative Filtering

TD Temporal Difference

TD3 Twin Delayed DDPG

T2FLSs general Type-2 Fuzzy Logic Systems

URecSYS Utility-based News Recommendation SYStem

VA Virtual Agent

ABSTRACT

Long-tail concerns affect traditional recommender systems. They often recommend identical things, limiting the options available to users. Conventional recommender systems also suffer from lack of real-timeliness. In this work, a recommender system framework for online learning platform is proposed using deep reinforcement learning algorithm. The agent takes action by recommending learning materials to the learners based on the interactions of the recommender agent with the learner. Positive reinforcement (positive reward such as likes, longer dwell time, clicks, etc.) and negative reinforcement (punishment such as dislikes, less dwell time, skips, etc.) are used to teach the recommender agent what to recommend. This enables the agent to iteratively refine its policy via interactivities with the environment, using trial-and-error methods, until the model conforms to an ideal policy that produces suggestions that are most suitable for the users' dynamic preferences. The outcomes of the deep reinforcement learning agent were benchmarked against the performance of a random agent using evaluation metrics such as average episode reward, click through rate, average quality of recommendation and standard deviation of episode reward. The study shows that the average episode reward, click through rate, average quality of recommendation for the DRL agent increased by 2.72, 1.5 and 16.20 percent respectively, while the standard deviation of episode reward for the DRL agent reduced by 20.61 percent. All these are positive indicators of the better performance of the DRL agent.

Keywords: Recommender System; Reinforcement Learning; Deep Reinforcement Learning; Markov Decision Process; Online Learning; Personalised Learning