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Abstract
We propose new short-step interior-point algorithms (IPAs) for solving P∗(κ)-linear
complementarity problems (LCPs). In order to define the search directions, we use
the algebraic equivalent transformation (AET) technique of the system describing
the central path. A novelty of the paper is that we introduce a whole, new class of
AET functions for which a unified complexity analysis of the IPAs is presented. This
class of functions differs from the ones used in the literature for determining search
directions, like the class of concave functions determined byHaddou,Migot andOmer,
self-regular functions, eligible kernel and self-concordant functions.We prove that the
IPAs using anymember ϕ of the new class of AET functions have polynomial iteration
complexity in the size of the problem, in starting point’s duality gap, in the accuracy
parameter and in the parameter κ .
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1 Introduction

LCPs have been extensively studied in recent years. Linear programming (LP) and
linearly constrained (convex) quadratic programming (QP) problems are special cases
of LCPs. Several applications of LCPs arise in different fields, such as engineering,
computational mechanics, game theory, economics, see [5, 13]. It was shown that
solvability of LCPs related to quitting games ensures the existence of different ε-
equilibrium solutions, see [34]. Bimatrix games can be also formulated as LCPs,
see [25]. The Arrow-Debreu competitive market equilibrium problem with linear and
Leontief utility functions can be transformed to LCP [38]. For detailed study on LCPs,
see the books of Cottle, Pang, Stone [5] and Kojima et al. [23]. In the book of Kojima
et al. [23], the theory of IPAs for solving LCPs is highlighted.

LCPs belong to the class of NP-complete problems, see [4]. However, the properties
of the problem’s matrix have influence on the solvability of the LCPs. It is known that
if the problem’s matrix is skew-symmetric [33, 36, 37] or positive semidefinite [24],
IPAs can find approximate solutions of LCPs in polynomial time. Cottle, Pang, and
Venkateswaran [6] introduced the class of sufficient matrices. The class of P∗(κ)-
matrices was proposed by Kojima et al. [23]. If we consider the union of the sets
P∗(κ) for all nonnegative κ , we obtain the class P∗, see [23]. Väliaho [35] proved that
the class of P∗-matrices is equivalent to the class of sufficient matrices. In general,
IPAs for solving P∗(κ)-LCPs have polynomial iteration complexity in the size of the
problem, starting point’s duality gap, in the accuracy parameter and in the special
parameter κ ≥ 0. However, De Klerk and E.-Nagy [12] showed that the handicap of
the problem’s matrix could be exponential in the bit length of the data. Furthermore,
the complexity analyses of IPAs for P∗(κ)-LCPs depend on the special parameter
κ . In spite of this fact, there are computational results in the literature for LCPs with
matrices having exponential value κ , where the iteration numbers are much better than
predicted by the complexity results, see [8–10, 21]. The AET technique for defining
search directions in case of IPAs for LP was introduced by Darvay, see [7]. He applied
a continuously differentiable, monotone increasing function ϕ : (ξ2,∞) → R, where
0 ≤ ξ < 1, on the modified nonlinear equation of the system defining the central
path. Darvay, Illés and Majoros [8] proposed a new short-step IPA for P∗(κ)-LCPs
by using the function ϕ(t) = t − √

t in the AET technique, and they also provided
numerical results. In [9], a PC IPA for P∗(κ)-LCPs was introduced where the function
ϕ(t) = t − √

t was applied in the AET approach. The authors presented numerical
results for problems with different sufficient matrices. Furthermore, it turned out that
the algorithm is a promising tool to detect matrix copositivity, as well. In [10], a new
type of AET technique and numerical results regarding this approach were presented.
Kheirfam [21] proposed a new PC IPA for P∗(κ)-LCPs, where he used the function
ϕ(t) = √

t in the AET technique and he also provided numerical results.
An important aspect in the theory of IPAs is howwe determine the search directions.

Several approaches have been proposed in the literature. For example, there are meth-
ods that use barrier functions for defining search directions. Peng, Roos and Terlaky
[31] considered self-regular functions, and in this way, they reduced the theoretical
complexity of long-step IPAs. Beside these, Bai, Ghami and Roos [3] introduced
the class of eligible kernel functions. Lešaja and Roos [26] gave a unified analysis

123



Journal of Optimization Theory and Applications

using eligible kernel functions for IPAs solving P∗(κ)-LCPs. They proposed a gen-
eral scheme to derive iteration bounds for the class of eligible kernel functions, see
Theorem 6.3 in [26]. For several known specific eligible kernel functions, they cal-
culated the iteration bounds of long-step and short-step algorithms. As mentioned
before, Darvay [7] proposed the AET technique for defining search directions in case
of IPAs for LP. In the literature, most of the IPAs do not use any transformation of the
central path system; hence, these IPAs refer to the case when ϕ(t) = t in the AET
technique, see [16, 20]. Darvay [7] was the first who used the function ϕ(t) = √

t in
the AET technique. In 2016, Darvay, Papp and Takács [11] considered the case when
ϕ(t) = t −√

t and they proposed small-update IPA for LP using this search direction.
Kheirfam and Haghighi [22] introduced an IPA for P∗(κ)-LCPs which applies the

function ϕ(t) =
√
t

2(1+√
t)
in the AET technique. Later on, Haddou, Migot and Omer

[15] proposed a class of concave functions in order to determine search directions in
case of IPAs for solving monotone LCPs. It should be mentioned that they used a dif-
ferent type of transformation of the central path system. IPAs using the AET approach
for determining search directions have been also extended to LCPs, see [2, 8, 10,
21, 27]. Rigó [32] presented different IPAs using the AET technique for LP, sufficient
LCPs and symmetric cone optimization. Furthermore, a comparison between the AET
approach and other methods for determining search directions is also provided in [32].

The aim of this paper is to introduce a new class of AET functions and to give a
unified analysis of IPAs for P∗(κ)-LCPs for the new class of AETs. We compare the
new class of functions to the class of concave functions given byHaddou,Migot, Omer
[15] and to other AET functions used in this approach. We analyze the relationship
of the corresponding kernel functions belonging to this new class of AET functions
to the class of eligible kernel functions. We give an example for a function belonging
to our new class of AET functions, whose corresponding kernel function is neither
eligible, nor self-regular kernel, nor self-concordant function.We also present a kernel
function, for which the corresponding AET function is not a member of our class.

The paper is organized in the following way. In Sect. 2, we present several results
related to the theory of P∗(κ)-LCPs, the classical AET approach. We also introduce
a new class of AET functions used in this paper. We compare the proposed class of
functions to other techniques for determining search directions. Section3 is devoted
to the introduction of the new class of short-step IPAs and to the complexity analysis
of the IPAs that are based on the new class of AET functions. Furthermore, in Sect. 4
some concluding remarks and further research topics are enumerated.

2 A New Class of AET Functions for Interior-Point Algorithms Solving
P∗(�)-Linear Complementarity Problems

The aim of the LCPs is to find vectors x, s ∈ R
n , that satisfy the following constraints:

−Mx + s = q, x, s ≥ 0, xs = 0, (LCP)
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where M ∈ R
n×n , q ∈ R

n and xs is the componentwise product of vectors x and s.
The feasible region, its interior and the solution set of the LCP are given as follows:

F := {(x, s) ∈ R
n⊕ × R

n⊕ : −Mx + s = q},
F+ := {(x, s) ∈ R

n+ × R
n+ : −Mx + s = q},

F∗ := {(x, s) ∈ F : xs = 0}.
Note that Rn⊕ denotes the n-dimensional nonnegative orthant and R

n+ the positive
orthant, respectively.

In the first part of this section, we present some basic concepts related to the theory
of P∗(κ)-LCPs and P∗(κ)-matrices.

2.1 P∗(�)-Matrices

Cottle, Pang and Venkateswaran [6] introduced the class of sufficient matrices.

Definition 2.1 (Cottle, Pang and Venkateswaran [6]) Amatrix M ∈ R
n×n is a column

sufficient matrix if for all x ∈ R
n

X(Mx) ≤ 0 implies X(Mx) = 0,

where X = diag(x). Analogously, a matrix M is row sufficient if MT is column
sufficient. The matrix M is sufficient if it is both row and column sufficient.

Kojima et al. [23] proposed the notion of P∗(κ)-matrices.

Definition 2.2 (Kojima et al. [23]) Let κ ≥ 0 be a nonnegative real number. A matrix
M ∈ R

n×n is a P∗(κ)-matrix if

(1 + 4κ)
∑

i∈I+(x)

xi (Mx)i +
∑

i∈I−(x)

xi (Mx)i ≥ 0 ∀x ∈ R
n, (1)

where

I+(x) = {1 ≤ i ≤ n : xi (Mx)i > 0} and I−(x) = {1 ≤ i ≤ n : xi (Mx)i < 0}.
Aproblem is called P∗(κ)-LCP if the problem’smatrix is a P∗(κ)-matrix. Through-

out the paper, we assume that F+ �= ∅ and M is a P∗(κ)-matrix. Hence, we
are dealing with P∗(κ)-LCPs. The handicap of a matrix M [35] is defined by
κ̂(M) := inf{κ|M ∈ P∗(κ)}.
Definition 2.3 (Kojima et al. [23]) A matrix M ∈ R

n×n is a P∗-matrix if it is a P∗(κ)-
matrix for some κ ≥ 0.

Let P∗(κ) denote the set of P∗(κ)-matrices. Analogously, we also use P∗ to denote
the set of all P∗-matrices, i.e.,

P∗ =
⋃

κ≥0

P∗(κ).
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Kojima et al. [23] proved that a P∗-matrix is column sufficient and Guu and Cottle
[14] showed that it is row sufficient, too. This means that each P∗-matrix is sufficient.
Väliaho [35] demonstrated the other inclusion, as well, proving that the class of P∗-
matrices is the same as the class of sufficient matrices.

2.2 Algebraic Equivalent Transformation Technique

The central path problem in this case is

− Mx + s = q, x, s > 0, xs = μe, (CPP)

where e denotes the n-dimensional all-one vector andμ > 0. Kojima et al. [23] proved
that if M is a P∗(κ)-matrix, then (CPP) has unique solution for every μ > 0.

We present the AET technique in case of P∗(κ)-LCPs. Let ϕ : (ξ̄ ,∞) → R,
with 0 ≤ ξ̄ < 1, be a continuously differentiable and invertible function, such that
ϕ′(t) > 0 ∀t > ξ̄ , see [7]. We use the notation ϕ(x) = [ϕ(x1), ϕ(x2) . . . , ϕ(xn)]T .

System (CPP) can be written as

− Mx + s = q, x, s > 0, ϕ

(
xs
μ

)
= ϕ(e). (CPPϕ)

Applying Newton’s method, we obtain the following system, see [9]:

− M�x + �s = 0,

S�x + X�s = aϕ, (3)

where

aϕ = μ
ϕ(e) − ϕ

(
xs
μ

)

ϕ′
(
xs
μ

) (4)

and X , S are the diagonal matrices formed by the components of the vectors x and s.
System (3) has unique solution, see Lemma 4.1 in [23].
Scaling plays important role in the theory of IPAs. Consider the following notations:

v =
√
x s
μ

, d =
√
x
s
, dx = d−1 �x√

μ
= v�x

x
, ds = d�s√

μ
= v�s

s
,

where all operations are understood componentwise. From these, we obtain

�x = x dx
v

and �s = s ds
v

. (5)
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Table 1 AET functions used in
the literature

ϕ aϕ pv

ϕ(t) = t μe − xs v−1 − v

ϕ(t) = √
t 2(

√
μxs − xs) 2(e − v)

ϕ(t) = t − √
t

√
μxs

2
√
xs−√

μe
− xs 2(v−v2)

2v−e

ϕ(t) =
√
t

2(1+√
t)

√
xs
μ (μe − xs) e − v2

After substituting these into (3), we obtain the scaled system:

− M̄dx + ds = 0,

dx + ds = pv, (6)

where M̄ = DMD, D = diag(d) and

pv = ϕ(e) − ϕ(v2)
vϕ′(v2)

. (7)

Table 1 contains the classical AET functions used in the literature and the correspond-
ing vectors aϕ and pv .

Haddou, Migot and Omer [15] proposed a class of smooth concave functions for
monotone LCPs. However, it should be mentioned that they used a different type of
transformation of the central path system. They used functions ϕ : R+ → R+ that
satisfy the following conditions

H1. ϕ(0) = 0;
H2. ϕ ∈ C3([0,+∞));
H3. ϕ′(t) > 0 ∀t ≥ 0;
H4. ϕ′′(t) ≤ 0 ∀t ≥ 0;
H5. ϕ′′′(t) ≥ 0 ∀t ≥ 0.

It should be mentioned that conditions H1-H5 are satisfied only in case of ϕ(t) = t
fromTable 1. In the following subsection, we introduce the new class ofAET functions
used in this paper.

2.3 A New Class of AET Functions

We present the new class of AET functions which will be used in order to determine
search directions.

Definition 2.4 Let ϕ : (ξ,∞) → R be a continuously differentiable, invertible func-
tion, such that ϕ′(t) > 0 ∀t > ξ , where 0 ≤ ξ < 1. All functions ϕ satisfying the
conditions
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AET 1. ∃ c1 ∈ R+, such that

∣∣∣∣
ϕ(1) − ϕ(t2)

2t(1 − t2)ϕ′(t2)

∣∣∣∣ ≤ c1,

for all t > ξ .
AET 2. ∃ c2 ∈ R+, such that

∣∣∣∣∣
4t2ϕ′(t2)

[
(1 − t2)ϕ′(t2) − ϕ(1) + ϕ(t2)

]

(ϕ(1) − ϕ(t2))2

∣∣∣∣∣ ≤ c2,

for all t > ξ .
AET 3. ∃ c3 ∈ R+ such that the inequality

4t2(ϕ(1) − ϕ(t2))ϕ′(t2) − c3
(
ϕ(1) − ϕ(t2)

)2 ≤ 4t2(1 − t2)
(
ϕ′(t2)

)2

≤ 4t2(ϕ(1) − ϕ(t2))ϕ′(t2) +
(
ϕ(1) − ϕ(t2)

)2

holds for all t > ξ ,

belong to the new class of AET functions.

It should bementioned that the boundedness of the functions appearing in conditions
AET1 and AET2 shows that the point t = 1 and the point(s) where ϕ(t2) = ϕ(1) are
removable discontinuities of the functions given in AET1 and AET2, respectively.

Remark 2.1 Condition AET1 can be rewritten in the following form:

∣∣∣∣∣∣

ϕ(1)−ϕ(t2)
2tϕ′(t2)
1 − t2

∣∣∣∣∣∣
≤ c1.

Conditions AET2 and AET3 can be rewritten in a similar way, and these forms show
that the functions belonging to this class of AET functions have transformations with
growth proportional to the identical function. Hence, we may call these functions AET
functions with bounded proportional growth rate.

Let us introduce the following function: f : (ξ,∞) → R:

f (t) := ϕ(1) − ϕ(t2)

tϕ′(t2)
. (8)

By using the function given in (8), we can give the definition of the new class of
AET functions in the following way.
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Table 2 Examples for ϕ

belonging to the new class of
AET functions

ϕ(t) ξ c1 c2 c3

t 0.25 2 6 1√
t 0 2 6 1

t − √
t 0.7 2 6 1

t2 − t + √
t 0 2 8 8

t2 + √
t 0 2 6 8

Proposition 2.1 Let ϕ : (ξ,∞) → R be a continuously differentiable, invertible
function, such that ϕ′(t) > 0 ∀t > ξ , where 0 ≤ ξ < 1. Consider the function f
given in (8). The conditions given in Definition 2.4 can be formulated in the following
equivalent form:

AET a. ∃ c1 ∈ R+, such that g(t) = f (t)
2(1−t2)

and |g(t)| ≤ c1, holds for all t > ξ ;

AET b. ∃ c2 ∈ R+, such that h(t) = 4(1−t2−t f (t))
f (t)2

= 1−2tg(t)
(1−t2)g(t)2

and |h(t)| ≤ c2,
holds for all t > ξ ;

AET c. ∃ c3 ∈ R+ such that the inequality

t f (t) − c3
f (t)2

4
≤ 1 − t2 ≤ t f (t) + f (t)2

4

holds for all t > ξ .

Proof By using the function given in (8), after some calculations we obtain that con-
ditions AET1-3 can be formulated as the ones given in AETa-c. ��
Remark 2.2 The values of the parameters c1, c2 and c3 will have influence on the
well-definedness of the algorithm. For this, we will give a relation between these
parameters.

Table 2 contains examples for ϕ belonging to this new class of functions, the value
of ξ and the values c1, c2 and c3. From Table 1, we can see that almost all AET
functions used in the literature belong to our new class of AET, except the function

ϕ(t) =
√
t

2(1+√
t)
, where condition AET3 is not satisfied. This means that several short-

step IPAs proposed in the literature (see for example [2, 8]) are special cases of our
unified approach. The values given in Table 2 will be clear in the second part of the
paper when we study the well-definedness of the algorithm. It should be mentioned
that for the given values from Table 2, the introduced short-step IPAs are well defined
and the complexity analyses work. However, there are several other acceptable values
for these parameters.

Table 2 shows that most of the functions used in the literature fromTable 1 belong to
the new class of AET functions. However, it should be mentioned that the intervals on
which the functions ϕ are defined play important role in this approach. For example,
ϕ(t) = t is only a member of this new class of AET functions if it is defined on a
(ξ,∞) interval, where ξ is strictly positive. If ξ would be zero, then condition AET1
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would not be satisfied for this function. Similar remark can be formulated in case of
ϕ(t) = t − √

t .
We can compare our new class of AET functions to the class of concave functions

proposed by Haddou, Migot and Omer [15].

Example 2.1 Consider the functionϕ(t) = log(1+t), amember of the class of concave
functions introduced by Haddou, Migot and Omer [15]. By using Definition 2.4, we
can check that for this function condition AET3 is not satisfied.

In the following subsection, we present the class of eligible kernel functions pro-
posed in [3] and the relationship between the kernel function approach and the AET
technique.

2.4 Eligible Kernel Functions

The determination of the search directions in case of IPAs can be realized by using
kernel functions. It needs to be mentioned that in the literature we can find several
properties and definitions of kernel functions. We require that the kernel function ψ

has properties similar to those of the logarithmic kernel function. These properties are
given in Definition 2.5.

Definition 2.5 A function ψ : R+ → R⊕ is called kernel function if it is twice
continuously differentiable and if the following conditions hold:

K1. ψ(1) = ψ ′(1) = 0;
K2. ψ ′′(t) > 0, for all t > 0;
K3. limt↓0 ψ(t) = limt→∞ ψ(t) = ∞.

Remark 2.3 Condition K3. is used to define the notion of coercive kernel function, see
[3].

We can construct a barrier function � : Rn+ → R in the following form:

�(v) :=
n∑

i=1

ψ(vi ),

where v ∈ R
n+.

Peng, Roos and Terlaky [31] modified the second equation of the scaled system to

dx + ds = −∇�(v).

Using this and the scaled system (6), we have

dx + ds = −∇�(v) = pv = ϕ(e) − ϕ(v2)
vϕ′(v2) . (9)
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Hence, we can assign a corresponding kernel function to several functions ϕ appeared
in the AET technique in the following way, see [30]:

ψ(t) =
∫ t

1

ϕ(τ̄ 2) − ϕ(1)

τ̄ϕ′(τ̄ 2)
d τ̄ , (10)

where the function ψ satisfies the properties K1.-K3.
Peng, Roos and Terlaky [31] considered self-regular functions, and in this way, they

reduced the theoretical complexity of long-step IPAs. The definition of self-regular
functions is given below.

Definition 2.6 (Peng, Roos and Terlaky [31]) A function ψ : (0,∞) → R, ψ ∈ C2
is self-regular if it satisfies the conditions

SR1. ψ(t) is strictly convex with respect to t > 0 andψ(t) = 0 at its global minimal
point t = 1, i.e., ψ(1) = ψ ′(1) = 0. Further, there exist positive constants
ν2 ≥ ν1 > 0 and p ≥ 1, q ≥ 1 such that

ν1

(
t p−1 + t−1−q

)
≤ ψ ′′(t) ≤ ν2

(
t p−1 + t−1−q

)
∀t ∈ (0,∞); (11)

SR2. For any t1, t2 > 0,

ψ
(
tr1 t

1−r
2

)
≤ rψ(t1) + (1 − r)ψ(t2) ∀r ∈ [0, 1]. (12)

The prototype self-regular kernel function is given by

ϒp,q(t) = t p+1 − 1

p(p + 1)
+ t1−q − 1

q(q − 1)
+ p − q

pq
(t − 1), (13)

where p ≥ 1 and q > 1.
Bai, Ghami and Roos [3] defined the class of eligible kernel functions.

Definition 2.7 (Bai, Ghami and Roos [3]) We call a kernel function eligible kernel
function if it satisfies the following conditions:

EK1. tψ ′′(t) + ψ ′(t) > 0 ∀t < 1;
EK2. ψ ′′′(t) < 0 ∀t > 0;
EK3. 2ψ ′′(t)2 − ψ ′(t)ψ ′′′(t) > 0 ∀t < 1;
EK4. ψ ′′(t)ψ ′(βt) − βψ ′(t)ψ ′′(βt) > 0 ∀t > 1, β > 1.

Note that the class of eligible kernel functions contains some self-regular functions, as
well as many non-self-regular functions as special cases, see [26]. However, it should
be mentioned that self-regular kernel functions ϒp,q(t) with growth p ≤ 1 belong to
the class of eligible kernel functions.
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Remark 2.4 By using (8) and (10), we have

ψ ′(t) = − f (t). (14)

From (14) and Proposition 2.1, we obtain that if we have a kernel function, then
using AETa-c we can check whether the corresponding function(s) ϕ do(es) belong to
the new class of AET without calculating the functions ϕ. Furthermore, if we have a
function ϕ, then by using the conditions given in Proposition 2.1 we can checkwhether
the conditions given in EK1-4 and K1-3 hold for the corresponding kernel function.
Hence, (14) gives the opportunity to compare AET functions to corresponding kernel
functions.

Example 2.2 The function ψ(t) = 1
2

(
t − 1

t

)2
is an eligible kernel function, see [26].

It is also a self-regular kernel function. From (10), we have

f (t) = ϕ(1) − ϕ(t2)

tϕ′(t2)
= −ψ ′(t) = 1

t3
− t .

This leads to

ϕ(1) − ϕ(t2) =
(
1

t2
− t2

)
ϕ′(t2);

hence, we get the following differential equation

ϕ′(t2) = t2

1 − t4

(
ϕ(1) − ϕ(t2)

)
. (15)

Easy computations show that f (t) = 1
t3

− t does not satisfy condition AETb from
Proposition 2.1. Thus, none of the solutions of (15) belongs to the new class of AET
functions. This discussion shows that inmany cases we do not need to know ϕ, because
Proposition 2.1 gives the opportunity to check whether a corresponding AET function
is member of the new class or not.

2.5 Self-Concordant Functions

The theory of self-concordant functions was developed primarily by Nesterov and
Nemirovskii [29]. They realized that among the different properties of the logarithmic
barrier for a polytope, only two are responsible for the polynomiality of the path-
following methods associated with this polytope. One is the self-concordance of the
barrier function, and the other is the finiteness of the barrier parameter. The notion of
self-concordant function can be found in [29].

Definition 2.8 Let Q be a nonempty open convex set in R
n and F be a C3 smooth

convex function defined on Q. F is called self-concordant on Q, if it possesses the
following two properties:
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(SC1) F(xi ) → ∞ along every sequence {xi ∈ Q} converging, as i → ∞, to a
boundary point of Q;

(SC2) F satisfies the inequality |D3F(x)[h, h, h]| ≤ 2
(
D2F(x)[h, h]) 3

2 ∀x ∈ Q
and h ∈ R

n .

Thus, a one-dimensional convex barrier function � is called self-concordant if

|ψ ′′′(t)| ≤ 2ψ ′′(t)
3
2 , (16)

for every t in the interior of the function’s domain.
By taking into consideration (14), we can write this condition using the AET

approach:

| f ′′(t)| ≤ 2
(− f ′(t)

) 3
2 . (17)

Example 2.3 The kernel functions corresponding to the functions ϕ(t) = t , ϕ(t) = √
t

are self-concordant functions. However, we have seen that the new class of AET func-
tions contains functions having inflectionpoints, aswell. In this case, the corresponding
kernel function will not be convex. This means, that in case of ϕ(t) = t2 − t +√

t the
corresponding kernel function is not self-concordant.

We showed example for functions that belong to other classes of functions, but
do not belong to the new class of AET functions. In the following proposition, we
summarize some important properties of two AET functions belonging to the new
class that do not belong to other existing classes of functions.

Proposition 2.2 Consider the functions ϕ1, ϕ2 : (0,∞) → R, ϕ1(t) = t2 − t + √
t

and ϕ2(t) = t2 + √
t . Then,

1. Both ϕ1 and ϕ2 have an inflection point in t = 1
4 .

2. The functions ϕ1, ϕ2 belong to the new class of AET functions given in Definition
2.4.

3. The functions ϕ1 and ϕ2 do not belong to the class of concave functions proposed
by Haddou, Migot and Omer [15].

4. The kernel functions ψ1 and ψ2 corresponding to these AET functions are neither
eligible, nor self-regular kernel, nor self-concordant functions.

Proof 1. Elementary analyses give the result.
2. In case of ϕ1(t) = t2 − t + √

t , we have

f1(t) = 2(1 − t4 + t2 − t)

4t3 − 2t + 1
, (18)

and in case of ϕ2(t) = t2 + √
t we get

f2(t) = 4 − 2t4 − 2t

4t3 + 1
. (19)
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After some calculations, it can be proven that conditions AET1-3. of Definitions
2.4 are satisfied for these AET functions.

3. It follows from 1.
4. Functions ψ1 and ψ2 are not convex on R+.

��

2.6 Recent Trends in Unified Approaches for AET Technique

M. E.-Nagy and A. Varga [28] presented on a conference a family of Ai-Zhang type
IPAs for sufficient LCPs. Their class of functions is influenced by the wide neighbor-
hood, Ai-Zhang type search directions. Our new class of AET functions works for
small-update IPAs that have a different type of complexity analysis. Hence, up to our
best knowledge, these two classes of functions differ and the symmetric difference of
these two classes is nonempty.

In the following subsection, we present short-step IPAs for solving P∗(κ)-LCPs,
that use the new class of functions in theAET technique to determine search directions.

3 New Short-Step Interior-Point Algorithms for Solving P∗(�)-Linear
Complementarity Problems

Firstly, we deal with the determination of the search directions. For this, we consider
system (3), where aϕ depends on the function ϕ used, which is a member of the class
of new AET functions.
We define the centrality measure δ : Rn+ × R

n+ × R+ → R ∪ {∞} as

δ(x, s;μ) := δ(v) = ‖pv‖
2

, (20)

where ‖ · ‖ denotes the standard Euclidean norm, and pv is given in (7).
Consider the τ -neighborhood of a fixed point of the central path as

N2(τ, μ) := {(x, s) ∈ F+ : δ(x, s;μ) ≤ τ }, (21)

where δ(x, s;μ) is given in (20), μ > 0 is fixed and τ is a threshold parameter.

In Algorithm 3.1, we define a whole class of IPAs for solving P∗(κ)-LCPs, which
is based on our new class of AET functions.

Algorithm 3.1 : Short-step IPAs for P∗(κ)-LCPs based on a new class of AET
functions

Let ε > 0 be the accuracy parameter, 0 < θ < 1 be the update parameter and τ be
the proximity parameter. Furthermore, a known upper bound κ of the handicap

κ̂(M) is given. Assume that for (x0, s0) we have
(
x0

)T s0 = nμ0 with μ0 > 0, such
that δ(x0, s0;μ0) ≤ τ . Suppose that v0 > ξe.
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begin
k := 0;
while

(
xk

)T
sk > ε do

begin
(determination of the search directions)
compute (�xk,�sk) from (3) with ϕ from the new class of AETs;
let xk := xk + �xk and sk := sk + �sk;
(update of the parameter μ)
μk+1 := (1 − θ) μk;
k := k + 1;

end
end

Remark 3.1 The default values of the parameters τ and θ will be given later in the
complexity analysis of the algorithms.

In the following section, we present the complexity analysis of the IPAs using the new
class of AET functions defined by conditions AET1-3 of Definition 2.4.

3.1 Complexity Analysis of the Short-Step IPAs

The first lemma shows the strict feasibility of the full-Newton step. We denote by
x+ = x + �x and s+ = s + �s the vectors obtained after a full-Newton step.

Lemma 3.1 Let (x, s) ∈ F+ be given, such that δ(x, s;μ) < 1√
1+4κ

and v > ξe. Let

ϕ be a function satisfying AET3 of Definition 2.4. Then, we have (x+, s+) ∈ F+.

Proof It should be mentioned that only the second inequality of AET3 should be
satisfied in this lemma, namely:

4t2(1 − t2)
(
ϕ′(t2)

)2 ≤ 4t2(ϕ(1) − ϕ(t2))ϕ′(t2) +
(
ϕ(1) − ϕ(t2)

)2
, (22)

where t > ξ . For each 0 ≤ α ≤ 1, let us denote x(α) = x+α�x and s(α) = s+α�s.
We have

x(α)s(α) = (x + α�x)(s + α�s) = xs + α(s�x + x�s) + α2�x�s

= μv2 + μvα(dx + ds) + α2μdxds
= μ((1 − α)v2 + α(v2 + vpv + αdxds)). (23)

Our aim is to show that α(v2 + vpv + αdxds) > 0. We have pv = dx + ds and using
the notations qv = dx − ds it can be seen that

dxds = p2v − q2v
4

. (24)
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By using the definition of pv given in (7), we obtain that (22) is equivalent to

vpv + p2v
4

≥ e − v2, (25)

which leads to

v2 + vpv ≥ e − p2v
4

. (26)

From (23), (24) and (26), we have

x(α)s(α)

μ
= (1 − α)v2 + α

(
v2 + vpv + α

p2v
4

− α
q2v
4

)

≥ (1 − α)v2 + α

(
e − (1 − α)

p2v
4

− α
q2v
4

)
.

We have
x(α)s(α)

μ
> 0, if

∥∥∥∥(1 − α)
p2v
4

− α
q2v
4

∥∥∥∥∞
< 1 holds.

By using the results given in [9], we obtain

∥∥qv

∥∥ ≤ √
1 + 4κ

∥∥pv

∥∥ = 2
√
1 + 4κ δ. (27)

Then, we have

∥∥∥∥(1 − α)
p2v
4

− α
q2v
4

∥∥∥∥∞
≤ (1 − α)

∥∥pv

∥∥2

4
+ α

∥∥qv

∥∥2

4

≤ (1 − α)

∥∥pv

∥∥2

4
+ α(1 + 4κ)

∥∥pv

∥∥2

4
= (1 + 4ακ)δ2 ≤ (1 + 4κ)δ2.

Thus,

∥∥∥∥(1 − α)
p2v
4

− α
q2v
4

∥∥∥∥∞
< 1 holds if we have δ(x, s;μ) <

1√
1 + 4κ

. Hence, we

have that x(α)s(α) > 0 for each 0 ≤ α ≤ 1. Thus, x(α) and s(α) do not change sign
on 0 ≤ α ≤ 1. From x(0) = x > 0 and s(0) = s > 0, we obtain that x(1) = x+ > 0
and s(1) = s+ > 0. ��
In the following lemma, we analyze the conditions under which the Newton-type
iteration is quadratically convergent.

Lemma 3.2 Let (x, s) ∈ F+, v > ξe and v̄ =
√
x+s+

μ
be given and suppose that

δ(x, s;μ) <

√
1−ξ2

1+4κ . Let ϕ satisfy conditions AET1-3 of Definition 2.4 with constants
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c1, c2 and c3 ∈ R+. Then, after a primal-dual Newton barrier step we have v̄ > ξe
and

δ(x+, s+;μ) ≤ c1(c2 + 2 + 4κ)δ(x, s;μ)2.

Proof By using the proof of Lemma 5.6 in [1] and condition AETc of Proposition 2.1,
we get

min(v̄) ≥
√
1 − (1 + 4κ)δ2.

From this and δ <

√
1−ξ2

1+4κ , we obtain v̄ > ξe. It should be noted that in the next part
of the proof we will use the form AETa and AETb of Proposition 2.1. This and (20)
yields

δ(x+, s+;μ) := ‖pv̄‖
2

=
∥∥∥(e − v̄2)g(v̄)

∥∥∥ , (28)

where the function g is given in Proposition 2.1. By using the assumption that ∃c1 ∈
R+, for which |g(t)| ≤ c1 for all t > ξ , we obtain

δ(x+, s+;μ) ≤ c1
∥∥∥e − v̄2

∥∥∥ . (29)

We know from (23) that

∥∥∥e − v̄2
∥∥∥ =

∥∥∥∥e − x+s+

μ

∥∥∥∥ =
∥∥∥∥e − v2 − vpv − p2v

4
+ q2v

4

∥∥∥∥ . (30)

From condition AETb of Proposition 2.1, we have

e − v2 − vpv = h(v)
p2v
4

. (31)

By using (27), (30) and (31), we obtain

∥∥∥e − v̄2
∥∥∥ ≤

∥∥∥e − v2 − vpv

∥∥∥ +
∥∥∥∥
p2v
4

∥∥∥∥ +
∥∥∥∥
q2v
4

∥∥∥∥ ≤ (2 + c2 + 4κ)δ2. (32)

From (29) and (32), we have

δ(x+, s+;μ) ≤ c1(c2 + 2 + 4κ)δ(x, s;μ)2,

which proves the lemma. ��
In the next lemma, we investigate the effect of the full-Newton step on the duality gap.

123



Journal of Optimization Theory and Applications

Lemma 3.3 Let δ := δ(x, s;μ) and suppose that the vectors x+ and s+ are obtained
using a full-Newton step, thus x+ = x + �x and s+ = s + �s. Let ϕ be a function
satisfying AET3 of Definition 2.4 with c3 ∈ R+. Then, we have

(
x+)T s+ ≤ μ

(
n + (c3 + 1)δ2

)
.

Proof Note that only the first inequality of AET3 will be used in this proof, namely

4t2(ϕ(1) − ϕ(t2))ϕ′(t2) − c3
(
ϕ(1) − ϕ(t2)

)2

≤ 4t2(1 − t2)
(
ϕ′(t2)

)2
, (33)

where t > ξ . By using the definition of pv in (7), we get that (33) is equivalent to

vpv − c3
p2v
4

≤ e − v2. (34)

From (23) and (34), we obtain

1

μ
x+s+ = v2 + vpv + dxds ≤ e + c3

4
p2v + dxds .

After some calculations, we have

(
x+)T s+ = eT

(
x+s+

) ≤ μ
(
eT e + c3

4
eTp2v + eTdxds

)

= μ
(
n + c3

4

∥∥pv

∥∥2 + dTx ds
)

≤ μ
(
n + c3δ

2 + δ2
)

= μ
(
n + (c3 + 1)δ2

)
.

The last inequality holds, since

dTx ds = ‖dx + ds‖2 − ‖dx − ds‖2
4

≤ ‖dx + ds‖2
4

=
∥∥pv

∥∥2

4
,

which proves the result. ��

The next lemma examines the effect which a Newton step followed by an update of
the parameter μ has on the proximity measure.

Lemma 3.4 Let v > ξe and v+ =
√

x+s+
μ+ , whereμ+ = (1−θ)μ and let η = √

1 − θ .

Assume that δ(x, s;μ) <

√
1−ξ2

1+4κ . Let ϕ be a function satisfying conditions AET1-3
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of Definition 2.4 with c1, c2 and c3 ∈ R+. Then, after a primal-dual Newton step we
have v+ > ξe and

δ(x+, s+;μ+) ≤ c1
η2

(
θ
√
n + ((c2 + 2) + 4κ)δ2

)
.

Proof From Lemma 3.2, we have v̄ > ξe. Using this and 0 < θ < 1, we obtain that
v+ > ξe. Now, we will use the form AETa and AETb of Proposition 2.1. By using
the definition of the proximity measure given in (20), we have

δ(x+, s+;μ+) =
∥∥∥(e − (v+)2)g(v+)

∥∥∥ .

From condition AETa of Proposition 2.1, we get

δ(x+, s+;μ+) ≤ c1
∥∥∥e − (v+)2

∥∥∥ . (35)

Furthermore,

∥∥∥e − (v+)2
∥∥∥ =

∥∥∥∥e − 1

η2

x+s+

μ

∥∥∥∥ =
∥∥∥∥e − 1

η2

(
v2 + vpv + p2v

4
− q2v

4

)∥∥∥∥

= 1

η2

∥∥∥∥η2e −
(
v2 + vpv + p2v

4
− q2v

4

)∥∥∥∥

= 1

η2

∥∥∥∥−θe + e − v2 − vpv − p2v
4

+ q2v
4

∥∥∥∥ . (36)

From (31), (35), (36) and condition AETb of Proposition 2.1, we obtain

δ(x+, s+;μ+) ≤ c1
η2

(
‖θe‖ +

∥∥∥e − v2 − vpv

∥∥∥ +
∥∥∥∥
p2v
4

∥∥∥∥ +
∥∥∥∥
q2v
4

∥∥∥∥

)

≤ c1
η2

(
θ
√
n + ((c2 + 2) + 4κ)δ2

)
, (37)

and the lemma is proven. ��
In the following lemma, we set the values of the parameters θ and τ and we prove

that for these values IPAs using the new class of AET functions are well defined.

Lemma 3.5 Let ϕ : (ξ,∞) → R be a function satisfying AET1-3 of Definition 2.4.

Assume that n ≥ 1, θ = 2
√

1−ξ2

25c2(2+κ)
√
n
and τ =

√
1−ξ2

2c2(2+κ)
. Suppose that δ(x, s;μ) ≤ τ .

If c1 ≤ 100c2−4
41c2+50 and c2 ≥ 6, then we have

δ(x+, s+;μ+) ≤ τ,

hence the IPAs defined in Algorithm 3.1 are well defined.
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Proof We have τ =
√

1−ξ2

2c2(2+κ)
and c2 ≥ 6 > 1

2 . From here, we have
√

1−ξ2

2c2(2+κ)
<√

1−ξ2

2+κ
<

√
1−ξ2

1+4κ < 1√
1+4κ

. By using this and the assumption that conditions AET1-

3 of Definition 2.4 are satisfied, from Lemma 3.1, we get that (x+, s+) ∈ F+.
By using Lemma 3.4, we have

δ(x+, s+;μ+) ≤ c1
η2

(
θ
√
n + ((2 + c2) + 4κ)δ2

)
. (38)

Considering θ = 2
√

1−ξ2

25c2(2+κ)
√
n
and τ =

√
1−ξ2

2c2(2+κ)
, we get

θ
√
n = 2

√
1 − ξ2

25c2(2 + κ)
= 4

25
τ. (39)

Moreover, by using n ≥ 1 and κ ≥ 0, we have

1

1 − θ
≤ 1

1 − 2
50c2

= 25c2
25c2 − 1

. (40)

By using that δ ≤ τ and from η = √
1 − θ , (38), (39) and (40), we get

δ(x+, s+;μ+) ≤ c1
25c2

25c2 − 1

(
4

25
τ + ((2 + c2) + 4κ)τ 2

)

= c1
25c2

25c2 − 1

(
4

25
+ ((2 + c2) + 4κ)τ

)
τ (41)

and we want to show that δ(x+, s+;μ+) ≤ τ . For this, we need to show that

c1
25c2

25c2 − 1

(
4

25
+ ((2 + c2) + 4κ)τ

)
≤ 1. (42)

From κ ≥ 0 and δ ≤ τ ≤ 1
2c2(2+κ)

, we get

c1
25c2

25c2 − 1

(
4

25
+ ((2 + c2) + 4κ)τ

)
≤ c1

25

25c2 − 1

(
4

25
+ 2 + c2 + 4κ

2c2(2 + κ)

)

= c1
25c2

25c2 − 1

(
4

25
+ c2 − 6

2c2(2 + κ)
+ 4(2 + κ)

2c2(2 + κ)

)

≤ c1
25c2

25c2 − 1

(
4

25
+ c2 − 6

4c2
+ 2

c2

)
= c1(41c2 + 50)

100c2 − 4
. (43)

By using c2 ≥ 6 > 1
25 and c1 ≤ 100c2−4

41c2+50 , we obtain that δ(x+, s+;μ+) ≤ τ , which
gives the result. ��
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Remark 3.2 It should bementioned that the parameters c1 and c2 of the functions given
in Table 2 satisfy the conditions c2 ≥ 6 and c1 ≤ 100c2−4

41c2+50 .

The following lemma gives an upper bound on the number of iterations.

Lemma 3.6 Consider ϕ : (ξ,∞) → R satisfying AET1-3 of Definition 2.4. Let n ≥ 1,

θ = 2
√

1−ξ2

25c2(2+κ)
√
n
, τ =

√
1−ξ2

2c2(2+κ)
, c1 ≤ 100c2−4

41c2+50 , and c2 ≥ 6 and c3 ≤ 16c22 −1. Assume

that the pair (x0, s0) ∈ F+, μ0 = (x0)T s0

n and δ(x0, s0;μ0) ≤ τ . Let xk and sk be the
two vectors obtained by the IPAs given in Algorithm 3.1 after k iterations. Then, for

k ≥
⌈
1

θ
log

μ0(n + 1)

ε

⌉

we have (xk)T sk ≤ ε.

Proof From Lemma 3.3 and c3 ≤ 16c22 − 1, we have

(
xk

)T
sk ≤ μk

(
n + (c3 + 1) · 1

(2c2(2 + κ))2

)

= (1 − θ)kμ0
(
n + (c3 + 1) · 1

(2c2(2 + κ))2

)

≤ (1 − θ)kμ0 (n + 1) . (44)

The condition (xk)T sk ≤ ε holds if

(1 − θ)kμ0 (n + 1) ≤ ε. (45)

By taking the logarithm of both sides of (45), we have

k log (1 − θ) + log
(
μ0 (n + 1)

)
≤ log ε.

By using that − log (1 − θ) ≥ θ , finally we get

kθ ≥ log
(
μ0 (n + 1)

)
− log ε = log

μ0(n + 1)

ε
,

which proves the lemma. ��
Remark 3.3 Condition c3 ≤ 16c22 − 1 is satisfied for all functions given in Table 2.

Theorem 3.1 Let ϕ : (ξ,∞) → R satisfying AET1-3 of Definition 2.4. Consider

n ≥ 1, θ = 2
√

1−ξ2

25c2(2+κ)
√
n
and τ =

√
1−ξ2

2c2(2+κ)
. If c1 ≤ 100c2−4

41c2+50 , c2 ≥ 6 and c3 ≤ 16c22 −1,

then the IPAs given in Algorithm 3.1 require no more than

O
(

(2 + κ)
√
n log

(n + 1)μ0

ε

)

interior-point iterations.
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Corollary 3.1 Let ϕ : (ξ,∞) → R satisfying AET1-3 of Definition 2.4. Consider

n ≥ 1, θ = 2
√

1−ξ2

25c2(2+κ)
√
n
and τ =

√
1−ξ2

2c2(2+κ)
. If c1 ≤ 100c2−4

41c2+50 , c2 ≥ 6 and c3 ≤ 16c22 −1,

then the IPAs given in Algorithm 3.1 have polynomial iteration complexity in the size
of the problem, in the starting point’s duality gap μ0, the accuracy parameter and in
the parameter κ .

In the following section, some concluding remarks are presented.

4 Conclusions and Further Research

In this paper, we proposed new short-step IPAs for solving P∗(κ)-LCPs. The novelty
of the paper is that we introduced a whole new class of AET functions (AET functions
with bounded proportional growth rate) in order to determine search directions in case
of PD IPAs. Many AET functions used in the literature belong to this new class. This
means that several short-step IPAs, see for example [2, 8], can be considered as special
cases of the whole class of IPAs proposed in this paper. We proved that IPAs using any
member ϕ of this new class of AET functions with bounded proportional growth rate
have polynomial iteration complexity in the size of the problem, in the starting point’s
duality gap μ0, the accuracy parameter and in the parameter κ . As further research, it
would be worth analyzing the complexity of IPAs based on other AET function that
do not belong to our class.

The new class of AET functions with bounded proportional growth rate defined
by conditions AET1-3 of Definition 2.4 differs from the existing classes. We showed
examples for functions belonging to our new class that are not members of the existing
classes of AET functions. The kernel functions corresponding to these AET functions
ϕ are neither self-regular, nor eligible kernel, nor self-concordant functions. We also
provided examples for eligible and self-regular kernel functions for which the cor-
responding AET functions are not members of our new class AET functions with
bounded proportional growth rate.

As further research it would be worth analyzing the system of differential inequal-
ities given in AET1-3. Furthermore, the introduction of new classes of AET functions
for other types of IPAs, such as predictor-corrector or affine-scaling IPAs, would be
an interesting future research. Numerical results based on members of the new class
of AET functions could be also given. However, there are promising results using the
functions ϕ(t) = √

t and ϕ(t) = t − √
t belonging to this new class. These computa-

tional results show that the proposed IPAs based on the new class of AET functions
with bounded proportional growth rate work efficiently in practice.

Illés et al. [19] proposed a strongly polynomial rounding procedure in case of
P∗(κ)-linear complementarity problems, which creates exact solution from ε-optimal
solution, if the value of ε is small enough. As future research plan, it would be worth
trying to implement the rounding procedure in this case, as well. Another interesting
research topic would be to extend the presented IPAs in a similar way that Illés, Nagy
and Terlaky did in [17, 18], for general LCPs. It would be good to collect general
LCP test problems in order to make the computational performance of the algorithms
testable on an interesting set of real-life problems.
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