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ORIGINAL ARTICLE

Incomplete pairwise comparison matrices: Ranking top women tennis
players

J�ozsef Temesia , Zsombor Sz�adoczkia,b and S�andor Boz�okib,a

aDepartment of Operations Research and Actuarial Sciences, Corvinus University of Budapest, Budapest, Hungary; bInstitute for
Computer Science and Control (SZTAKI), E€otv€os Lor�and Research Network (ELKH), Budapest, Hungary

ABSTRACT
The method of pairwise comparisons is frequently applied for ranking purposes. This article aims
to rank top women tennis players based on their win/lose ratios. Incomplete pairwise comparison
matrices (PCMs) were constructed from data obtained from the WTA (Women’s Tennis
Association) homepage. The database contains head-to-head results from the period between
1973 and 2022 for 28 players who had the position No. 1 in the official rankings of WTA. The
weight vector was calculated from the incomplete PCM with the logarithmic least squares method
and the eigenvector method. The results are not surprising: Serena Williams, Steffi Graf, and
Martina Navratilova stand in the first three positions, and Martina Hingis, Kim Clijsters, and Justine
Henin follow them. We also tested the frequently used probability-based Bradley-Terry method
and found high rank-correlation values. Using graph representations, the results gave us a deeper
insight into the properties of incomplete PCMs. Special attention was given to the nontransitive tri-
ads. A data modification was necessary to remove ties in order to apply the commonly used tests.
The results indicate that ordinally nontransitive triads are not significant in the data we analysed.
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1. Introduction

In a wide range of individual (chess, fencing, tennis,
boxing) and team sports (basketball, football, ice
hockey), the title will be awarded based on pairwise
match results. Various traditional systems are available
for conducting these types of competitions. We do not
aim to correct any of them (a theoretical approach can
be found in Csat�o (2021)). Instead, we are interested in
a historical ranking: who is the best player in the long
run? Collecting results from certain databases about
the wins and losses of players against each other to
generate a pairwise comparison matrix seems to be a
natural choice. If the pool of selected players contains
pairs who have not had matches against each other,
then the matrix is incomplete. These matrices play a
special role in our research agenda, and applications
are crucial to demonstrating our results empirically.

Several studies analysed sports results; ours
focused on tennis competitions. Statistical analysis of
performance data in tennis can be done for various
purposes. Some articles use the data for forecasting
certain results of sporting events (Kovalchik, 2016).
Lisi and Zanella (2017), for instance, estimate the
probability of winning with a logistic regression
model. Their example is the analysis of the Grand

Slam championships’ results in 2013. A special
approach for creating reliable forecasts applies Elo-
model (Elo, 1978). Vaughan-Williams et al. (2019)
confirm the good fitness of the model for
Wimbledon 2018 results, especially for top women
players. Gu and Saaty (2019) apply descriptive indica-
tors (e.g., age, right- or left-handedness, ranking pos-
ition) and performance indicators (e.g., number of
aces, winning or losing service games, winning or
saving break-points). Their Analytic Network Process
model is based on factor analysis of the key indica-
tors; it was tested on the results of the US Open 2015.
They reported very good fitness with the real results
(85%) compared to usual forecasts (70%). Ram�on
et al. (2012) used similar data, but they applied Data
Envelopment Analysis to rank tennis players.

Another application area of sports data is team or
player ranking. Langville and Meyer (2012) collected
the key ideas and methods of ranking and rating with
excellent historical notes and examples (not only
sports applications). Their observation is that
“ranking methods … are largely based on matrix
analysis or optimization… Of course, there are
plenty of ranking methods from other specialties
such as statistics, game theory, economics, etc.” (p.2.)
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They describe Keener’s rating method (Keener, 1993)
as a demonstrative example of using the Perron-
Frobenius theory, mentioning Wei (1952), Kendall
(1955) and Saaty (1987) as early and innovative users
of the concept. Langville and Meyer (2006) dedicated
a whole book to the PageRank method (Brin & Page,
1998). Dingle et al. (2012) published a PageRank-
based tennis ranking, and Dahl (2012) introduced a
parametric method based on linear algebra consider-
ing the importance of the matches. The method uses
pairwise comparisons and was developed for single-
elimination tournaments.

Probability-based approaches form another class
of models. In the papers of Baker and McHale (2014,
2017) the paired comparisons models are formulated
so, that each player being compared is associated
with a strength parameter given by a function of the
ratio of the strength parameters of the two players in
question. The Bradley–Terry (BT) model (Bradley &
Terry, 1952) assumes a logistic distribution for that
function, and the Thurstone–Mosteller (TM) model (
Thurstone, 1927) uses a normal distribution. Baker
and McHale used Grand Slam data from more than
four decades to estimate the power value of tennis
players with the probabilistic dynamic model of
paired comparisons. As it will be shown in Section 3,
their final rankings for women players gave similar
results to ours, while the rankings for men players
show the same pattern as the results of Wang et al.
(2021). Here, the authors applied a two-stage ranking
method to minimize ordinal violation for pairwise
comparisons to rank the male tennis players.

Orb�an-Mih�alyk�o et al. (2019) applied WTA Head-
to-Head results (as we also do in this article) to rank
women tennis players using the Thurstone model to
estimate parameters with the maximum likelihood
method. Their ranking is similar to ours, too.

Our article discusses the main properties of
incomplete pairwise comparison matrices in Section
2 and describes the database used in Subsection 3.1.
Ranking results are presented from different angles
using the original PCM and its submatrices in
Subsection 3.2. The properties of the graph repre-
sentation are demonstrated next in Subsection 3.3.
Finally, we draw some conclusions in Section 4.

2. Pairwise comparison matrices

We briefly summarise some definitions and theo-
rems that we will use during the analysis. We intro-
duce most of the concepts here in a more general
way, not specifically for our application. Later on,
we will adopt the same notations.

Let P1, P2, :::, Pn denote the examined items to
be compared (alternatives, criteria, voting powers,
or, as in our case, players).

Definition 1. An n� n P ¼ ½pij� matrix is called a
pairwise comparison matrix (PCM), if it satisfies the
following properties:

(1) pij > 0, i, j ¼ 1, 2, :::, n (positivity)
(2) pji ¼ 1=pij, i, j ¼ 1, 2, :::, n (reciprocity)
(3) from (1) and (2) follows that pii ¼ 1, i ¼

1, 2, :::, n:

The general element of the matrix, pij shows how
many times alternative Pi is better/larger/stronger
than alternative Pj: From a practical point of view,
the inconsistency of the matrix is crucial.

Definition 2. A PCM is called consistent if the fol-
lowing holds for any three alternatives (triads):

ð4Þ pik ¼ pij � pjk i, j, k ¼ 1, 2, :::,n (cardinal transitivity).

If there exists a triad, where this equality does
not hold, then the PCM is said to be inconsistent.

Moreover, a triad is called ordinally nontransi-
tive, if the order of its alternatives determined by
the appropriate matrix elements is circular. For
instance, if pik > 1, pkj > 1 and pij < 1, namely
alternative Pi is better than alternative Pk, while Pk
is better than Pj, however, Pj is also better than Pi:
In our application and sports in general, the ordi-
nally nontransitive triads can be interpreted well,
and they occur quite often. There can be huge dif-
ferences in the inconsistency of different PCMs.
Measuring this problem has an extended literature
(Brunelli, 2018), and there is an ongoing debate
about the needed properties of the inconsistency
metrics (Brunelli & Fedrizzi, 2015). In real applica-
tions, however, the CR (Consistency Ratio) incon-
sistency index recommended by Saaty (1977),
remains the most popular. Here, the CR < 0:1
acceptance rule is usually used.

Definition 3. The CR inconsistency index of an n�
n P PCM is defined as follows:

CR ¼ CI
RI

where CI (Consistency Index) can be calculated as:

CI ¼ kmax � n
n� 1

where kmax is the principal eigenvalue of matrix P,
while RI (Random Index) is the average CI calcu-
lated from a randomly generated sample of n� n
PCMs.

Based on different methods, a weight vector can
be calculated from a PCM, which determines the
ranking (goodness, importance) of the alternatives.
The two most commonly used techniques are the
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eigenvector method (EV) (Saaty, 1977) and the loga-
rithmic least squares method (LLSM) (Crawford &
Williams, 1985), which are defined by the following
formulas:

� EV: Pw ¼ kmax � w,
� LLSM:

Pn
i¼1

Pn
j¼1 ln pijð Þ � ln wi

wj

� �� �2 !w min,

where w denotes the computed weight vector with
the general element wi ði ¼ 1, :::, nÞ, and kmax is
the principal eigenvalue of matrix P, as before. If a
PCM is consistent, then its elements can be written
as pij ¼ wi=wj, which means that for such a matrix
every weight calculation method results in the same
weight vector. It is common in the literature to esti-
mate an inconsistent PCM with a consistent one
based on different techniques (Anholcer & F€ul€op,
2019). The difference between the priority vectors of
the two presented weight calculation techniques also
depends on the inconsistency (Kułakowski et al.,
2021). Illustrative examples can be found in Brunelli
(2014), as well as in Boz�oki et al. (2009).

PCMs can contain some missing elements. There
are several reasons for this, including: the inability to
make some comparisons (as in our case), some data
may have been lost, or the time constraints of the deci-
sion maker. In these cases, we are dealing with incom-
plete PCMs (IPCMs). The above-mentioned weight
calculation techniques can be easily generalised for
IPCMs, as well. The eigenvector method is based on
the CR minimal completion (Shiraishi et al., 1998),
while in case of the LLSM we only use the known ele-
ments of the matrix in the optimization problem
(Boz�oki et al., 2010). Inconsistency indices and their
respective thresholds have also been generalised for the
incomplete case (�Agoston & Csat�o, 2022).

IPCMs are easier to understand if we focus on the
graph representation instead of the matrix (Gass, 1998).

Definition 4. A G ¼ ðV ,EÞ undirected graph, where
V is the vertex set and E is the edge set of the
graph, is called the representing graph of IPCM P,
if V corresponds to the alternatives of P, and an
edge is in E if and only if the appropriate element
in P is known.

With the help of graph representation, many
results connected to pairwise comparisons can be
easily formulated.

Theorem 1 (Boz�oki et al., 2010). The EV and LLSM
techniques generalized to IPCMs have a unique solu-
tion, if and only if the representing graph of the
IPCM is connected.

A graph is called connected if there is a path
between any two vertices in the graph. If there are
two elements for which we cannot find a path, then

we cannot determine the relation between their
weights (importance) uniquely. However, it is worth
investigating some of the stricter variants of con-
nectedness for our problem.

Definition 5. a) A G ¼ ðV ,EÞ graph is called k-edge-
connected, if it remains connected whenever fewer
than k edges are removed from the graph, i.e., G0 ¼
ðV ,E HÞ is connected, where H � E and Hj j < k:
The edge connectivity of G is the maximal k, for
which G is k-edge-connected.

b) A G ¼ ðV ,EÞ graph is called k-vertex-con-
nected, if it remains connected whenever fewer than
k vertices are removed from the graph, i.e., G0 ¼
ðV L,EÞ is connected, where L � V and Lj j < k:
The vertex connectivity of G is the maximal k, for
which G is k-vertex-connected.

It is also worth considering the confidence level
of the weights between two elements for which there
is only a long, indirect path that includes many
comparisons. A natural measure for this problem is
the diameter of the graph (Sz�adoczki et al., 2022).

Definition 6. The diameter (d) of a graph G ¼
ðV ,GÞ is the longest shortest path between any two
vertices of the graph:

d ¼ maxu, v2Vl u, vð Þ
where lð:, :Þ is the graph distance, namely the short-
est path between two vertices (in our case the
weight of every edge is 1).

Examples of the application of the graph repre-
sentation can be found for instance in Gass (1998),
Boz�oki and Tsyganok (2019), and Sz�adoczki et al.
(2022).

3. Data and results

3.1. Database of top women tennis players

The basics of professional tennis have not changed a
lot since 1972 when the Association of Tennis
Professionals (ATP) was established for protecting
the interests of men players, and since 1973 when
the Women’s Tennis Association (WTA) was
founded. The tournament system and the ranking
system had their origins in the 1970s. Ranking the
players is important because the seeding system is
based on the ranking positions, ensuring enjoyable
and spectacular competitions. The official ranking
systems have special rules in order to play a relevant
role in the administration of the tournaments.

ATP and WTA have databases containing the
results of all official tournaments, there are search
options by tournaments and by players on the
homepage of both associations1. The H2H (Head-
to-Head) statistics are also available: one can be
informed about the match results of any two ranked

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 3



players. The webpages report the recent ranking lists
according to the official point systems2. These
points are informative if we wish to see a kind of
power ranking based on the strength of the given
tournaments over a certain time frame. However, it
is always debated, who the “best” player is for a lon-
ger period, or how we can create a historical rank-
ing. The selection of the players to be ranked is also
controversial. Previously (Boz�oki et al., 2016), the
rankings were generated of those men players who
have ever been first on the official ATP lists. We
followed the same approach for the women players
collecting the No. 1 players from the WTA rank-
ings3 from 1973 to mid-August of 2022. We have
found 28 players; their names and the length of
their professional careers can be seen in Figure 1.

The chart shows that Navratilova and the Williams
sisters have the longest career paths (although others
also have careers close to 20 years). We can also see,
for instance, that Clijsters retired and resumed two
times during our time. There were 11 active players at
the beginning of 2022 including the Williams sisters.

We use the database to support our methodology
to provide a historical ranking of the selected play-
ers. Instead of building a point system from the
tournament characteristics and the advancement of
a player at a given tournament, we will determine
the position of a player using the match results
against each other. Let us say that player Pi is
“better” than Pj if the number of her wins over Pj is
greater than her losses (there is no tie in tennis),
and it is measured by the win/lose (Wij/Lij) ratio.
We can construct a matrix with the names of the
players in the rows and columns, where the ele-
ments are the W/L ratios. The row player is better
than the column player if the corresponding ratio is
larger than 1, and they are equal if the W/L ratio is

1. If the reciprocal values will measure how much
“worse” Pi than Pj, then all of the ratios form a
paired comparison matrix (PCM).

Let P1, P2, :::, Pn denote the players. Our data
can be described as follows:

zij ði, j ¼ 1, :::, n, i 6¼ jÞ : the number of

matches played between Pi and Pj ðzij ¼ zjiÞ;
xij ði > jÞ : the number of matches between

Pi and Pj, where the winner was Pi;

yij ¼ zij � xij ði > jÞ : the number of matches

between Pi and Pj, where Pi was the loser:
(1)

In the incomplete P ¼ ½pij�, i, j ¼ 1, :::, n pair-
wise comparison matrix, pij denote the Wij/Lij ratio
between Pi and Pj :

pij ¼
xij
yij

, if i, j ¼ 1, :::, n, i > j

and xij 6¼ 0, yij 6¼ 0;

pji ¼ yij=xij ¼ 1=pij, if i, j ¼ 1, :::, n, i < j

and xij 6¼ 0, zij 6¼ 0;

pii ¼ 1 i ¼ 1, :::, nð Þ;
(2)

pij and pji are missing otherwise.
Similarly to Boz�oki et al. (2016), we had to make

data corrections to avoid the case of 0 as a denom-
inator in Wij/Lij ratios:

pij ¼ xij þ 2, if i > j, yij ¼ 0 and zij 6¼ 0ði, j ¼ 1, :::, nÞ:
(3)

The interpretation of the pij > 0 element is that the
i th player is pij times better than the j th player.

The WTA web page H2H section includes all
results of the players. The W/L ratios are in Table 1.
As can be seen from Table 1, the range of the zij

Figure 1. WTA top tennis players and the length of their professional careers.
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elements is large: therefore the range of the values
of pij is large as well. We have used the following
transformation to extract the range:

tij ¼ p
zij=K
ij if zij < K and tij ¼ pij otherwise (4)

K ¼ max
i, j

zij,

where the transforming factor is the ratio of the
number of matches played between the given two
players and the maximum of the number of matches
played between any two players. This can also solve
the problem that the same W/L ratio based on a
few matches is considered to be less reliable com-
pared to the ratio coming from a large number of
matches, so we transform the ratios based on a
small sample in a way that they will be closer to
one. Note that if all players have the same number
of matches, transformation (4) results in tij¼ pij: If
the parameter K is set to a smaller value, it can be
interpreted as a threshold from where we do not
distinguish between the confidence of the ratios
based on the number of matches. Now the initial
matrix of the calculations will be matrix T with ele-
ments tij: This matrix is obviously incomplete
because it is easy to find players with disjoint career
intervals in Figure 1.

The graph representation of Table 1 is the net-
work in Figure 2. The vertices of the undirected
graph represent the players. The edges show that
the connected players played at least one match
against each other. An important property of the
graph representation in Figure 2 is that it is con-
nected. According to Theorem 1, the estimated
weight vector gives a unique solution.

Figure 2. Graph representation of top WTA players’ IPCM.

Table 2. Ranking results.
LLSM W/L LLSMK¼30 EV BT

S. Williams 1 1 1 1 1
Graf 2 2 2 2 2
Navratilova 3 6 3 3 4
Hingis 4 7 4 4 7
Clijsters 5 5 5 5 6
Henin 6 4 6 6 3
V. Williams 7 8 7 7 9
Barty 8 3 8 8 10
Davenport 9 9 10 9 8
Evert 10 10 9 10 5
Seles 11 16 11 11 12
Osaka 12 14 12 13 16
Sharapova 13 11 13 12 13
Pliskova 14 12 14 14 20
Halep 15 15 15 15 19
Swiatek 16 13 16 16 17
Azarenka 17 17 17 17 18
Muguruza 18 19 18 18 21
Mauresmo 19 18 19 20 14
Kerber 20 20 20 19 22
Wozniacki 21 22 21 21 24
Safina 22 25 23 22 25
Austin 23 21 22 23 11
Ivanovic 24 24 24 24 27
Capriati 25 26 25 25 23
Jankovic 26 27 26 26 28
Sanchez 27 28 28 27 26
Goolagong 28 23 27 28 15
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On first glance it appears that the players at the
beginning and at the end of the 50-year-long period
are strictly separated; however, we can find players
who “connect” them, like Sharapova or the Williams
sisters. Navratilova could be one of them, but she
met only 8 players of the other 27: calculating career
path statisticians do not distinguish between indi-
vidual and double competitions, and the latter
extended her professional career longer than the
average.

3.2. Ranking results

The weight vector of the women players’ incomplete
PCM calculated with the logarithmic least squares
method gives the ranking in the first column in
Table 2. The result is not surprising: Serena
Williams, Graf, and Navratilova top the list, fol-
lowed by Hingis, Clijsters, and Henin. The new gen-
eration is represented by Barty in the 8th place. The
second column of the table demonstrates that the
W/L rates prove to be a good proxy of our ranking.
The Spearman rank correlation value is 0.962.

Since the value of the parameter K is an outlier
ðK ¼ 80), a ranking was generated with an aver-
age value, K ¼ 30, as can be seen in column 3.
There are minor changes in the positions of the
players: Evert and Davenport changed positions in
the 9th and 10th places; Safina and Austin in the
22nd and 23rd positions; Sanchez and Goolagong
changed the last two positions. The Spearman rank
correlation value is 0.998. The situation was similar
to other transformation factors. The fourth column

of the table contains the ranking calculated with the
eigenvector method. Two rank reversals can be
found: Osaka and Sharapova, and Mauresmo and
Kerber. The Spearman rank correlation is 0.999.

We also applied the well-known, probability-
based Bradley-Terry model (Bradley & Terry, 1952)
to our data to create a ranking, and compare this
approach to ours. This method assumes that there
are latent random variables with logistic distribution
behind the performance of the players. In the trad-
itional model we are estimating the expected values
of these random variables and based on those we
can rank the objects (the larger the better). Usually,
the maximum likelihood estimation method is used
to determine the parameters (expected values), for
which there exists a unique solution if and only if
the directed graph of the comparisons is strongly
connected (Ford, 1957). This assumption is more
stringent than the uniqueness of the PCM-based
method. It basically means that even that graph
should be connected, for which we delete those
edges from the graph of Figure 2 where only one of
the players has won all the matches. This means 40
of the 192 edges in our data, however, this graph is
still connected. We calculated the results of the
Bradley-Terry model to compare our method to one
of the most commonly used probability-based rank-
ing methods as well. Column 5 of the table contains
the ranking calculated with the maximum likelihood
method of the Bradley-Terry model. As one can see,
the BT-model provides a similar ranking, and the
Spearman rank correlation is 0.860. The main differ-
ence is that the ranks of the earlier players
(Goolagong, Evert, Austin, and Henin) are signifi-
cantly better.

Our calculations with the WTA players are in
line with the top ATP players in Boz�oki et al.
(2016). Both data systems are robust in that respect
that the rankings which have been calculated from
the incomplete PCMs are not sensitive to reasonable
corrections, and the choice of the estimation
method does not make a significant impact on the
results. The rankings are similar to other orders
determined by commonly used ranking models, like
the Bradley-Terry method. Empirical evidence sug-
gests that our methodology can be recommended
for the given ranking exercise.

The next step of our calculations was to analyse
the submatrices of the initial matrix. What happens
if elements (players) were dropped or involved?
How do subrankings behave? PCM1 column of
Table 3 shows a ranking without the first nine play-
ers in the overall ranking. Seles, Sharapova, and
Evert have the first three positions; Osaka, Kerber,
and Muguruza lost several positions; the last posi-
tions did not change significantly. PCM2 is a

Table 3. Ranking results from various submatrices of
matrix T:

PCM1 PCM2 PCM3 PCM4 PCM5

S. Williams – 1 – 1 –
Graf – 2 – – 1
Navratilova – 8 1 – 2
Hingis – 9 – 6 3
Clijsters – 10 – 2 4
Henin – 12 – 3 5
V. Williams – 5 – 4 –
Barty – 3 – – 10
Davenport – 7 – 5 6
Evert 3 18 2 – –
Seles 1 19 – – –
Osaka 12 6 – – 15
Sharapova 2 15 – 7 8
Pliskova 6 4 – – 13
Halep 7 11 – – 14
Swiatek 8 13 – – –
Azarenka 5 16 – – –
Muguruza 14 14 – – 16
Mauresmo 4 17 – 8 11
Kerber 15 – – – –
Wozniacki 11 – – 11 12
Safina 9 – – 9 –
Austin 18 – 3 – 7
Ivanovic 10 – – 10 18
Capriati 13 – – – 17
Jankovic 17 – – 12 –
Sanchez 16 – – – 19
Goolagong 19 – 4 – 9
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ranking without the last nine players of the overall
ranking. Serena Williams and Graf saved the first
two positions, but the ranking behind them is very
different from the original one. The position of
Seles is very interesting: in PCM1, she is first, but in
PCM2, she is last! The explanation of the changes is
simple and plausible. Both the number of matches
and the composition of matches changed. Some
players benefitted from the modified structure
(those players were missing with whom they had
the poorest W/L ratios), and others became victims
of the changes (their best W/L ratios disappeared).
Some indirect impacts have also vanished. The most
prominent example of this phenomenon is Monica
Seles. The rankings are not independent of the
incoming and outgoing elements—as was expected.

PCM3 is the ranking of the four most influential
stars of the seventies. They follow each other under
the overall ranking: it looks like their results inside
of PCM3 follow the pattern outside of the block.

Since everybody played against everybody here, a
simple preference order can be calculated based on
the winner-loser relationship as a binary relation.
The order is Navratilova � Evert � Austin 	
Goolagong. PCM4 is a ranking of 12 players from
the next era. From the first six places, Hingis is the
only one, who lost position, and Wozniacki is the
other one, who lost position at the end of the rank-
ing. PCM4 gives evidence that it is possible to select
a relatively large number of players with their most
active career in the same time period, so that their
results practically determine their positions with
minor changes compared to the overall ranking.
PCM3 and PCM4 are complete submatrices of
matrix T, therefore the usual CR inconsistency
indices can be calculated, too. The CR values are
below 0.02 supporting our hypothesis about the
robustness of the data. Furthermore, PCM4 includes
20.50% of all matches in the matrix T:

Finally, in PCM5 there is a ranking of 19 players
selected randomly from our pool of women players.
The Williams sisters, Evert, Seles, Kerber, Azarenka,
Safina, Jankovic, and Swiatek were not included.
The first five players follow each other in the same
order as they did in the overall ranking. The reason
is likely the fact that their performance against Evert
and the Williams sisters follows the same pattern
not influencing the ranking based on their match
results against each other. Due to the elimination of

Figure 3. The differences in the rankings of women tennis players when they enter the ranking one by one.

Table 4. Properties of the representing graph for WTA
players.

WTA WTAmod

Number of vertices (players) 28 23
Number of edges (players compared) 192 170
Minimal vertex degree 3 9
Maximal vertex degree 22 22
Diameter 4 2
Average shortest path 1.66 1.33
Edge connectivity 3 9
Vertex connectivity 3 8
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their results against the leaving players, Sharapova
and Austin are in a better position. We have had
the same experience with other random sets of
players.

There are two key conclusions from these calcu-
lations. Changes in the set of players changed the
rankings—as we expected. However, these changes
did not blow over the original rankings entirely, the
new positions could be explained with the new pat-
terns of the modified PCM.

We also examined the rankings, when we added
additional elements (tennis players) to the set of
players one by one. The first subset that we analysed
includes the players who were active at the begin-
ning of 2022 (11 players). Then we stepped back-
ward in time and included the next player, who
finished her professional career the latest (in case of
a tie between two players, we chose the one who
started her career later). We included the elements
one by one until we get the whole ranking of all 28
players. In this way, we generated 18 different rank-
ings, which can be seen in Figure 3, as well as the
changes caused by the entry of a given player (the
entering players are shown at the bottom of the
chart). It is important to note that there are exactly
as many rank reversals due to the inclusion of a
given player, as many lines cross each other between
the inclusion and the former player’s involvement.

We can see that the ranking is robust, the inclu-
sion of a player usually does not affect the results
too much, and only one or two rank reversals occur.
In the rare cases when a player’s rank is changed by
a significant number it is since she barely played
with the other players who are in the ranking so far

(for instance Austin), and her comparison to the
newly involved element (Evert, and then
Goolagong) is more reliable. This can be seen, when
the ranking of Navratilova undergoes a lot of
change in the first few steps as she only played a
single match with the so far included players. Of
course, a player may also win (or lose) many times
against a currently entered element (for instance
Hingis against Seles or Sanchez and Venus Williams
against Ivanovic). It is worth mentioning that the
entry of a player usually has a larger impact on the
players with whom she has played a lot. The begin-
ning and the end of the ranking both seem to be
robust. We can see more rank reversals in the mid-
dle, as we involve more and more elements.
However, it still looks like there are clusters here,
and the ranking of the players only changes within
those groups.

3.3. Graph representations

Using graph representations gave us the possibility
to have a deeper insight into the properties of
incomplete pairwise comparison matrices. The rep-
resenting graph of the women players can be seen
in Figure 1, while its connectivity indicators are
described in Table 4.

We can find one player (Goolagong), who had
competitions with only three other players, as it is
indicated by the minimal vertex degree. On the con-
trary, the Williams sisters had matches with 22
other players. The maximal vertex degree belongs to
them. Erasing either any 2 edges or vertices we can
get a connected graph. The longest shortest path

Figure 4. Distribution of the degree of vertices.

Table 5. Basic data for nontransitivity analysis.
WTA WTAcomplete

Density 192/378 378/378
Number of ties 20 0
Number of ordinally nontransitive triads 83 315
Possible maximal number of ordinally nontransitive triads 910 910
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(diameter) is 4, and it can be determined between
players far from each other in time: Goolagong and
Osaka/Muguruza/Barty/Swiatek respectively or
between Evert and Swiatek.

Figure 4 illustrates the degree of vertices. That
distribution is used in network theory (Albert et al.,
2000) for analysing various types of systems. In our
case, the average shortest path has a small value,
and the degrees are distributed relatively orderly
around the average. The clustering value is 0.79
(that means certain groups of players have results
from the same group). These properties indicate
that our network is a small-world type one (Watts
& Strogatz, 1998).

Another feature of the representing graph for
WTA players is that by erasing the Williams sisters,
represented by the vertices with maximal vertex
degree, the connectivity properties practically do not
change. However, erasing the critical triads of Evert,
Navratilova, and Graf, or Evert, Navratilova, and
Austin, the connectivity of the graph will be lost.
On the other hand, erasing four players of the ear-
liest period (Goolagong, Evert, Navratilova, Austin)
and the most recent world number one (Swiatek),
the remaining graph will have much stronger con-
nectivity indicators, as can be seen in the second
column of Table 4 (WTAmod). Rankings generated
from these reduced graphs (submatrices) almost fol-
low the positions in the overall ranking, suggesting
that these strong relations can specify them.

It is another fact that the modified, strongly con-
nected graph is the union of two star graphs, com-
plemented with a few edges. The centres are the
Williams sisters –meaning they played directly with
all other players. Similar representing graphs can be
obtained by applying the popular best-worst method
(Rezaei, 2015). That structure can also be respon-
sible for the robustness of our ranking results.

Another line of our research referred to the ordi-
nally nontransitive triads. There are many sports
competitions where W/L> 1 for A and B, and the
same is true for B and C: A is better than B, and B
is better than C. We can expect that A will be better
than C; however, from the results, we get W/L< 1.
In preference ordering that triad is called contradict-
ory (Kwiesielewicz & van Uden, 2004). A suitable
example of an ordinally nontransitive triad is Henin,
Davenport, and Venus Williams in our database.
We chose the positive reciprocal multiplicative PCM
approach for ranking tennis players because the esti-
mation methods are functional in the case of ordinal
or cardinal nontransitivity. However, in the course
of discussing the ranking results, it is important to
know more about the ordinally nontransitive triads
of the PCM, since their presence signals a kind of
contradiction. Representing graphs are directed in

the analysis of ordinal nontransitivity: an edge leads
from one player to the next if the latter player lost
more matches.

Kendall and Babington Smith (1940) gave the
distribution of ordinally nontransitive triads in the
case of a low number of elements (n 
 7) and pro-
posed a significance test. Alway (1962) extended the
distribution for 8 
 n 
 10; others analysed cases
with larger numbers of elements. Moran (1947)
proved that the distribution of the nontransitive tri-
ads goes to the normal distribution if the number of
elements goes to infinity, but the convergence is
slow. Knezek et al. (1998) investigated the chi-
square distribution used by Kendall and Babington
Smith (1940) earlier, and they found it satisfactory
for more than 15 elements. Jensen and Hicks (1993)
proposed a consistency coefficient and a nonpara-
metric test for ordinal PCMs, while Iida (2009) dis-
cussed the nontransitivity tests for decision-making
problems by applying them to binary PCMs without
ties. It is crucial to note that all of the above-
mentioned tests worked for complete PCMs without
ties. In the case of ties, Kułakowski (2018) deter-
mined the maximal number of contradictory triads
for any number of elements and proposed an index
related to that number (without a statistical test).
He extended the definition of contradictory triads to
those cases when there are only one or two equal-
ities between the elements of the triads. That kind
of inconsistency analysis could not be interpreted
properly in our case; we are looking for strictly
inconsistent triads. That is why we did not follow
the approaches of Iida or Kułakowski, and decided
to hark back to the case without ties and to use the
known tests.

The modified databases contain W/L set ratios
for each pair. In the case of having ties even for the
set ratios, the original LLSM ranking was the refer-
ence to make a precedence relation. The nontransi-
tivity tests need complete matrices. If two players
have not played with each other for any reason (no
edge was found between the two vertices), then we
used the same reference ranking to determine a
“winner.” A complete directed graph was created
this way. Table 5 includes information about the
original incomplete PCM in the first, and about its
completed and tie-corrected version in the second
column.

Regarding the case before correction, we can see
that the PCM has a density of around 50% (half of
the elements are known), and the ratio of ties is
about 10%. We have got the number of nontransi-
tive triads from the incomplete matrices here, there-
fore it is not comparable with the possible maximal
number of nontransitive triads obtained from the
complete matrix. The second column of Table 5
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informs us about the case after eliminating ties and
completing the matrix. The chi-squared test value is
	202, the corresponding p-value is practically 0: the
number of ordinally nontransitive triads is not sig-
nificant in our database.

4. Conclusion

Our results provide empirical evidence that the
method of incomplete pairwise comparison matrices
is appropriate for producing well-understood rank-
ings. Our study was based on the match results of
players against each other. Calculations with the
whole databases and their subsets clarified that WTA
data were robust enough to state that although the
rankings have been changed, the differences can be
explained via the analysis of the data matrices, and
they are logically consistent. Our historical rankings
alone may be of interest to tennis experts, but they
are also relevant from a decision theory perspective.

One of the novelties of our approach was the
analysis of representing graphs. We aimed to con-
tribute to a deeper description of the properties of
incomplete pairwise comparison matrices. Graph
representations can open new avenues in this
regard. We consider further research on ordinally
nontransitive triads to be particularly important.

Our work is based on Head-to-Head statistics of
the players without taking some considerations into
account, which seems to limit the validity of our
rankings. They are listed and commented on here
with the aim of either explaining why we chose an
overall and unified approach or opening new tracks
with fine-tuning of the data.

Tennis fans and experts can say that: “It is not
fair to give the same weight to the matches of any
player from the very early and very late periods of
their professional career.” Having details about the
professional career of each player it is possible to
introduce correction factors. But there are at least
two reasons to drop the idea. It would not be easy
to determine those early and late stages, and even if
we can do it, the value of the correction parameter
would include a strong subjective factor in the ana-
lysis. On the other hand, we can easily find players
with exceptionally good early results (e.g., Austin,
Seles, Osaka), and some players retired without a
declining period (e.g., Henin). That kind of time-
dependent adjustment of data would bring a very
controversial factor to the ranking results.

,,Different surfaces need another sort of treatment.”
The weighting of surfaces would introduce a subject-
ive factor, again. Revaluation of individual results
would lead to endless debates. Yes, a viable solution
would be to make separate rankings for different sur-
faces: who is the top player on clay court, and who is

the most successful on grass? Data are available, but
we did not undertake that job, because it would not
give extra methodological benefits.

,,Match ratios can be used, but set ratios would
reflect better to power differentiation.” Data are
available to calculate W/L ratios from sets. We have
made some calculations in the case of both men and
women players. Rankings were not significantly dif-
ferent from the original ones, so we dropped that
artificial approach.

,,Ranking is restricted to the No. 1 WTA play-
ers—their performance against other players might
change that ranking.” For instance, selecting the top
20 players from every year between 1973 and 2022
is possible, as data are available. We have not done
the job of ranking them (or more players). It is
worth mentioning that historical rankings of differ-
ent player populations show very strong similarity
(as is referred to in the introductory section of this
article). Another remark is that top tennis is surpris-
ingly endogenous, the best players meet each other
frequently. Even in our small sample, we can see
that the ratio of “number of matches in our databa-
se/number of matches in the entire career” is the
smallest for Swiatek (	6%), and the largest for
Serena Williams (	25%).

Notes

1. https://www.atptour.com/, https://www.wtatennis.com
2. https://www.atptour.com/en/rankings/singles, https://

www.wtatennis.com/rankings/singles
3. https://en.wikipedia.org/wiki/List_of_WTA_number_

1_ranked_tennis_players
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