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Introductory paragraph 

Flash floods are hazardous and capable of significant infrastructure damage because 

they are difficult to predict; often rapid, locally erosive, and transport large sediment loads 

including boulders and other debris. On 20th May 2006 intense rainfall on the Caribbean 

island of Montserrat generated devastating flash floods and the Soufrière Hills Volcano 

experienced a large dome collapse. The floods had very high loads of volcanic debris (lahars), 

unusually high water levels and were the first to transport boulders to the shoreline of the 

Belham Valley. Detailed knowledge of rainfall and geomorphological change, coupled with 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NERC Open Research Archive

https://core.ac.uk/display/57429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:j.alexander@uea.ac.uk


 2

the precise timing of events and eyewitness accounts has enabled us to assess the relative 

importance of rainfall volume and intensity, volcanic debris and vegetation damage for the 

behaviour of this and subsequent sediment-laden floods in this setting. We conclude that 

rainfall intensity and volume are not the critical control on the impact of flash floods in the 

Belham catchment but that changing runoff behaviour (controlled by vegetation damage and 

tephra fall) is critically important.     
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 Sediment-charged flash floods are hazardous and capable of significant infrastructure 

damage because they are a) difficult to predict; b) often rapid; c) locally erosive, and d) 

transport large sediment loads including boulders and other debris. Montserrat is a small 

island in the Lesser Antilles with a bimodal rainfall season with peaks around May and 

October. The eruption of the Soufrière Hills Volcano which started in July 1995 has been 

dominated by the extrusion of highly-viscous lava forming a series of lava domes inside the 

pre-existing English’s Crater1. The eruption has been punctuated by episodes of dome-

collapse and occasional vulcanian explosive activity, all of which have perturbed the upper 

parts of several river catchments. The catchment of the Belham River (area 12.9 km2) drains 

one flank of the Soufrière Hills volcano and has tributaries draining St George’s and Garibaldi 

hills and the Centre Hills (Fig. 1). Stream flow only occurs during, and for short periods after 

rainfall. Before the onset of the volcanic eruption in 1995, the catchment was densely 

vegetated with a diverse tropical flora and small-scale agricultural clearance. Although the 

climate has not detectably changed since 1995, flash floods have become a significant 

hazard2.  

The volcanic-dome collapse on 20th May 2006 was the second largest in the 12-year 

eruptive history and c. 115 × 106 m3 was removed from the edifice in less than three hours 

with most activity taking place within 35 minutes (3; www.mvo.ms). The associated lahar 

activity caused more geomorphic change in the Belham Valley (Fig. 1) than observed on any 

other individual day since 1995. In two days (20th and 21st May) more change occurred within 

the valley than the cumulative total of the preceding five years (Fig. 2). 

In this setting, the potential controls on flash flood behaviour are: (a) the relative 

timing, intensity and distribution of rainfall; (b) the timing, distribution and character of 

coarse volcanic debris deposition; (c) the timing, character and distribution of tephra fallout, 
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and (d) the timing, character and spatial pattern of damage to vegetation (de-vegetation, plant 

mortality, leaf removal, branch breakage etc.). The system responds to changes in these 

variables by altering discharge, flow depth, channel characteristics (width, depth, form, slope, 

bedforms) and the deposited sediment grade. All of these have an influence on the potential 

hazard in the valley. Observations of events on 20th May 2006 and subsequent changes to the 

system, in the context of a longer term study of the Belham Valley [2, 4, 5] are used here to 

assess the most important variables responsible for controlling the dramatic changes observed 

in the mid- and lower valley and thus the important controls on the variation in character of 

these sediment-charged flash floods.        

  

Methods 

Data have been compiled from a continuous rainfall record, eyewitness and 

Montserrat Volcano Observatory (MVO) observations during 20th and 21st May, and field 

work (including sedimentological mapping, sampling, photographic and GPS surveying) 

before and after the flash floods. All of the times recorded in this paper are Montserrat Local 

Time (GMT-4:00). A network of tipping bucket rain gauges has been operating continuously 

on Montserrat since January 2001 5 even though volcanic ash accumulation on the tipping-

bucket gauges affects their operation. In May 2006, the Harris, Garibaldi Hill (GAR) and 

MVO North (MVN) gauges were functioning (Fig. 1) and a fixed bucket gauge at Hope 

provided daily totals. Volcanic activity recorded by the MVO provides timings for the 

eruption on May 20th 2006. Channel bed and tephra fall samples were analyzed for grain size 

with a Malvern Mastersizer 2000 and for composition by XRF. 

The streams were not gauged, so velocity and discharge are estimated indirectly. 

Assuming 30 mm of rain fell over the whole catchment on the 20th May and 17 mm on the 

21st May, the upper limit of runoff volume was 3.87 × 105 m3 and 2.19 × 105 m3 respectively. 
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If all of the water on the 20th ran off at a constant rate between 03:00 and 09:00 then the 

discharge would have been 17.9 m3s-1.  Seismic data and eyewitness reports suggest the 

hydrograph was strongly peaked and possibly multi peaked. Peak discharge of c.200–300 m3s-

1 in the lower valley is estimated from channel cross-section data with maximum water 

elevation assessed from strand lines, vegetation damage and deposits, combined with velocity 

estimates calculated from critical shear stress for bed load transport and wavelengths of 

stationary wave trains. 

 

Critical Observations 

The weather on Montserrat in May 2006 was not unusual 

On 20th May 2006, rainfall totals at MVN and Hope gauges (Fig. 3, 4) were 28.4 mm 

and 52 mm respectively and 27.4 mm fell before the GAR gauge stopped recording (intensity 

reached 1 mm/min). The Hope value is more representative for the catchment because the 

GAR gauge clogged with ash and the MVN gauge is 2.5 km further north. Relatively little 

rain fell after the dome collapse. After 18:30 on the 21st, 31.5 mm were recorded at Hope but 

only 17 mm at MVN. Spatial variation in rainfall intensity is such that individual gauges may 

not always record the peak intensity or maximum volume5. Assuming that the recorded 

rainfall is representative of the events, the totals and intensities on 20th and 21st May 2006 

(Fig. 3a) were not exceptional for the catchment. They are comparable to many other 

localised convective rainfall events (representative examples shown on Fig. 4). This rainfall 

pattern does not explain the high flood magnitude or impact.  

Very little rain fell in the preceding weeks; 1 and 1.2 mm was recorded at GAR and 

7.4 and 1.4 mm at MVN on 12th and 15th May respectively. On 19th May, 3.8 mm was 

recorded at GAR, 0.6 mm at MVN and none at Hope. Thus exceptional flood behaviour on 

the 20th was not caused by unusual antecedent rainfall. 



 6

The succeeding rainy season (June to November) was also unexceptional with 

monthly totals not significantly different from the 2001-2007 average. Several events 

exceeded the daily total recorded on 20th May (e.g. Fig. 4) but the extreme flood behaviour 

was not repeated. 

 

Volcanic activity on 20th May 2006 

Dome collapse began at about 05:52, coinciding with peak rainfall intensity recorded 

at Garibaldi Hill3. Ash plumes drifted to the west and northwest depositing ash and lapilli 

(Fig. 3). Tephra fallout rate declined towards the end of the dome collapse at 09:00, although 

very light ash fallout continued locally until about 16:00. The ash fallout over the Belham 

catchment between 05:52 and 07:32 was water-saturated, and accretionary lapilli were 

observed at MVO between 07:32 and 08:07 implying moisture in the ash cloud3. The last 

major collapse (at c. 08:35) generated grey ash but later (until c. 16:00) distinctively red ash 

fell, sourced from a vent inside the crater. The thickness of the 20th May tephra deposit varied 

over the Belham Catchment (see Fig. 1B). 

On 21st May, accretionary lapilli fell across the whole island. In the upper Belham 

catchment, the 21st May tephra was of the order of 10 mm thick. Data from XRD analysis of 

Belham catchment ash samples matched plagioclase (Ca, Na, Al and Si) as well as cristobalite 

(SiO2), with no indication of any clay minerals in samples deposited in May 2006. 

 

The fluvial events and deposits of the 20th and 21st May 2006  

Some flow may have occurred in the valley between 03:08 and 04:47 on 20th May, 

when there was heavy rainfall (coincident with some ash venting). By 05:32, water was 

flowing rapidly down shallow sub-channel(s) in the lower Belham Valley and a light fall of 

ash was occurring (eyewitness accounts and time-stamped photographs). The sustained 
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rainfall recorded at Garibaldi Hill from 05:48 to 06:15 was accompanied by the onset of noisy 

flow in the Belham Valley. Lahars were heard by MVO staff and detected on the seismic 

network from about 05:52. Eyewitnesses described buildings engulfed by the flowing water to 

roof height by c. 08:00 with large boulders “bouncing downstream” in lower reaches and the 

ash-laden rain “like thick chocolate falling from my roof”.  By 09:00 significant flow had 

ceased, with only some shallow turbid-water flow. At 13:00 the valley floor was wet but with 

little stream flow. Thus discharge varied rapidly through the day (Fig. 3) with peak discharge 

estimated at 200-300 m3s-1. 

Rain fell over the whole catchment. Tephra were added to the flow by direct fallout 

and by entrainment in the rapid runoff. This with bed and suspended load added to the bulk 

discharge. The flow transported large volumes of sediment including boulders throughout the 

system. Sedimentary mapping indicated that the flow “bulked up” with coarse sediment in the 

mid-reaches by eroding up to 3 m of post-1995 deposits from the valley floor (e.g. seen at the 

Sappit confluence, Fig. 1). Although there was net valley floor lowering upstream of the 

bridge site on the 20th May, a sandy-gravel or gravely-sand bed up to a few 100 mm thick, 

with isolated and clusters of boulders (diameter to >1.5 m) was deposited on scour surfaces 

(Fig. 5).  

Downstream of the old bridge site, there was aggradation across the full width of the 

valley floor (c. 200 m) on the 20th May and the channel bed aggraded by c. 1.5 m (decreasing 

downstream).  A sheet of gravelly sand and sandy gravel was deposited with large numbers of 

boulders. The shoreline advanced seawards by up to 100 m, with at least 90 000 m3 of new 

delta prism volume. The delta was strewn with woody debris and boulders. Eyewitnesses 

suggest that boulders arrived at distal sites late in the event and this might explain the 

increased noisiness of the flow. Large boulders had not previously been transported by the 
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Belham River to the delta. The net result of these changes was a decline in valley slope in 

mid- and lower sections. 

At the lowest end of the Belham Valley, the valley floor was draped with up to 0.3 m 

of water-lain sediment with grain size distribution (d50 41 μm, mean 34 μm) indistinguishable 

from the tephra deposits in adjacent areas. X-Ray diffraction analysis only shows primary 

volcanic minerals and no secondary or accessory clay in these deposits. The final waning-

flood deposits in this area were distinctly red and could only have been sourced from ash 

fallout derived from late stage venting in the crater.  

The rainfall was less intense on 21st May and less tephra fell on the Belham 

catchment. The catchment was covered by the veneer of tephra deposited on the previous day. 

The 21st flow had lower peak discharge than that on the 20th. Channel incision occurred 

through the mid reaches. The new channels were steep sided (Fig. 2d) and narrow by 

comparison with the width of the flow on the 20th. They were eroded more than 2 m through 

the 20th May deposits and down into older sediment. The channel depth decreased 

downstream (depth c. 0.7 m, 300-500 m from the shore) to an area of net aggradation near the 

coast. A sedimentary unit, up to 0.2 m thick, was deposited in parts of the lower valley.  

   

Subsequent floods and geomorphic evolution 

The Belham Valley changed further through the subsequent rainy season. During June 

and July the channels were described as “worsening” but in August they started filling and by 

November had been filled to pre-May 2006 levels at many downstream sites. The channels 

filled with gravelly-sand and sandy-gravel and the delta prograded a further c. 100 m. The 

cumulative result of the events in May-November 2006 was net shoreline progradation and 

net aggradation (up to 3 m) at all points below the old bridge site (illustrated by profiles, Fig. 
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1B). The aggradation between April 2005 and November 2006 was about the same as that in 

the preceding five years. 

 

Vegetation damage in 2006 

Vegetation cover affects runoff, influencing flood response time and peak discharge. It also 

directly controls sediment entrainment on hill slopes and channel banks. Before the eruption 

began in 1995, the whole Belham catchment was densely vegetated but volcanic activity had 

removed all vegetation from the upper 18% of the Belham catchment by end 2005.  From 

February 2006 and particularly in April-May 2006, high volcanic emissions of HCl and 

frequent southerly winds, caused acid rain over the Belham catchment and this had caused 

widespread damage to vegetation by 20th May. On 20th May, ash fallout blanketed vegetation 

with increasing intensity between 05:20 and 07:32 burying low-growing plants. Very intense 

tephra fallout between 07:32 and 08:07 broke saplings and tree branches. Wet ash coated and 

adhered to leaves and this would have generated hydrochloric and sulphuric acid, accounting 

for the increased leaf damage over subsequent days (Fig. 2d). After the 20th May collapse, the 

area of the catchment over which vegetation was damaged (browned, lacking leaves) was 5.87 

km2 (45.5 % of the total area), and the area of total vegetation clearance had risen to 2.97 km2 

(23% of the total). Thus 68.5% of the catchment had no vegetation or significantly damaged 

vegetation. Changed wind direction and associated changes in distribution of acid rain in June 

allowed significant re-growth over much of the catchment (Fig. 2b and c). By the end of the 

year re-growth had reduced the de-vegetated area to 2.6 km2 (20.2% of the catchment area) 

and there was re-growth over all of the damaged area.  

 
Synthesis of Observations 

The 20th May 2006 flow was very different from those through most of the 12 years 

since onset of volcanic activity. The rainfall on the 20th was similar in intensity and magnitude 
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to that on the 17th July 2006 and less than that on 19th July 2007 (Fig. 4). Despite this 

similarity, the estimated flow velocities and depths suggest that the discharge was less in July 

2006 and still less in July 2007. For comparison, on three days in 2004 when the rainfall was 

greater than that on 20th May 2006 (Fig. 4) the peak discharges were lower and the flood 

impact on valley morphology was far less (the total change between 2002 and 2005 was about 

the same as that in 2006 alone). Thus, the peak discharge on 20th May 2006 was extreme even 

though the rainfall was not out of the ordinary for this catchment. In none of the events before 

May 2006 did boulders reach the shoreline.   

Given that the rainfall pattern was not unusual, other factors must have controlled the 

extreme flood behaviour on May 20th 2006. The relative importance of these factors is 

discussed here. Volcanic activity has four main impacts on catchments and flood behaviour; 

(a) topographic change, (b) coarse debris input to the upper catchment, (c) tephra fallout over 

the catchment and (d) damage to vegetation.  

(a) Topographic change in the Belham Catchment caused directly by the magmatic and 

volcanic activity through 2006 was negligible on the catchment scale (only a small sub-

catchment drains the volcano’s flank, Fig.1) and on its own, does not account for the variation 

in flood behaviour. The topographic changes resulting from erosion and deposition may be 

more significant. These occur during runoff events with feedback between the flow and 

sediment movement. Rapid rill and gully development on de-vegetated and tephra-draped 

surfaces increases runoff efficiency (cf. 2) and development of slot channels on the 21st May 

influenced transport efficiency. 

(b) Coarse-grade volcanic debris was not emplaced in the Belham catchment on the 20th 

May 2006, debris from the dome collapse was deposited in adjacent catchments. Coarse grade 

sediment from earlier volcanic events may have had an influence, but we have not been able 

to identify such individual sediment slugs moving down the system. 
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(c) Tephra were deposited over the whole catchment on the 20th and 21st May (Fig. 1B). 

Tephra fallout (i) changes infiltration rate and runoff efficiency, (ii) adds sediment to the flow 

increasing bulk discharge, and (iii) may alter flow rheology by changing load characteristics. 

(i) Infiltration rate on newly tephra-blanketed surfaces may be reduced by up to two 

orders of magnitude6 leading to greater runoff. Although the 20th May tephra fallout would 

have influenced infiltration, the total effect is unlikely to have been far in excess of other 

tephra falls in the 12 year eruptive history, therefore its influence on infiltration does not 

account for the extreme flood behaviour on the 20th. 

The 20th May tephra blanket would have increased the runoff efficiency on the 21st 

May, and contributed to the tendency for channel incision. The influence of tephra on runoff 

decreases rapidly with time after deposition such that by June and July rainfall events with 

volumes and intensities similar to 20th May would have generated less runoff. 

(ii) Tephra entrained from the ground and falling onto the moving water surface add 

bulk to floods. On days when little or no tephra fall directly onto the flowing water, 

suspended sediment concentration will vary with flow conditions as in other flash floods (e.g. 

7-8). In contrast, on 20th May 2006, a lot of tephra fell onto the flowing water surface, 

injecting relatively fine-grade sediment directly into the water column. Given that the 20th 

May tephra thickness varied from a couple of 10s mm to 100s mm over the catchment, it must 

have added volume to the discharge. However the flow appears to have remained dominantly 

Newtonian, so it is unlikely that the sediment ever caused bulk discharge to increase more 

than about 25% (cf. 9). Thus, although this sediment addition may have contributed to the 

high peak flood discharge on the 20th May, it cannot have been the main control on discharge. 

 (iii) Tephra falling on flowing water adds sediment load irrespective of the capacity 

or competence of the flow. Grains take time to settle to the bed, thus the sediment load can be 

out of equilibrium with the flow and flow-bed composition. Such imposed increase in 
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sediment load can influence flow behaviour. The proportion and composition of the ash is 

critical to the resultant flow behaviour because very small changes in the percent of some 

minerals (notably clays) can significantly alter viscosity (e.g. 10-11). The effect in May 2006 

is difficult to quantify as the fines content of the flow is not well-represented by the deposits 

and we have no samples from the flow. However, the ash was predominately plagioclase and 

no clay minerals were detected, so the effects of fines on viscosity would have been lower 

than in documented in experiments with clay10-11. 

Large volumes of ash did not fall until relatively late in the runoff event (Fig. 3). Thus 

the early flow may have been relatively fines-poor. The final waning flow was evidently 

fines-rich and deposited silt across distal areas. Direct input of tephra to the flow evidently 

results in a very different pattern of suspended sediment concentration than in other flash 

floods; spikes would have been produced by the pulses in tephra fallout. 

(d) Vegetation was damaged over an unusually large area in the weeks leading up to 20th 

May, whereas the increase in area of damage on the 20th was relatively small. Ash adhering to 

leaves increased the damage over subsequent days, but re-growth was then rapid through the 

year. Vegetation clearance by, for example, wildfires increases water delivery to streams, 

reduces slope roughness, increases runoff speed (increasing peak magnitude), increases 

sediment flux and reduces response time (e.g. 8, 12, 13). The extensive vegetation damage 

was a major contributor to the unusually high discharge on 20th May and during the 

subsequent rainy season, although rapid re-growth reduced this affect through the year.  

 

Geomorphological feedback  

Hydraulic processes, channel geometry and flow resistance are interdependent and given time, 

a fluvial system adjusts to maintain continuity of water and sediment flux. A channel can 

respond by aggrading, incising, changing width, form and slope. All these changes occurred 
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in different parts of the Belham Valley at different times through 20th and 21st May.  In a 

flashy system such as the Belham Valley, a state of equilibrium is difficult to achieve and the 

20th May flow was an extreme disequilibrium event.  

On May 20th the system responded to high runoff rate and tephra input by changing 

the transported grain size and channel slope, the former by movement of boulder-rich gravel 

down the system (such that tephra represented only a small part of the sediment load) while 

the latter changed by erosion, deposition and change in channel form. The relative importance 

of the imposed changes may be assessed simplistically by considering the stream power 

proportionality relationship for channels with mobile boundaries14 stated as 50dQQS s∝ , 

where Q is channel forming discharge, S is energy gradient (approximating to channel 

gradient), Qs is bed material discharge and d50 is the median grain size. If the volcanic 

sediment input was the major control one might expect the channel slope to increase, whereas, 

if raised discharge were more important the expected response might be sediment coarsening 

and slope reduction, as observed on the 20th May. There was increased boulder transport over 

a reduced valley slope in mid and distal reaches. Both the widespread vegetation damage and 

the tephra deposition caused increased discharge. Although high discharge flows occurred in 

June and July they did not cause so much impact as the 20th May flood, because that flood had 

already modified the valley for higher discharge. Subsequent smaller flows were now strongly 

out of equilibrium with the channel form, slope and sediment distribution, and for example 

the Belham River responded to the relatively smaller flows on the 21st May by channel form 

change cutting narrow deep channels. 

We have thus provided evidence that in this setting, rainfall intensity and volume are 

not the critical control on the magnitude or impact of flash floods, changing runoff behaviour 

is. Vegetation damage was the primary control of changed runoff patterns with additional 

effects of tephra. These findings have important implications for hazard from sediment-
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charged flash floods, demonstrating that high discharge and sediment yield events may be 

generated without extreme rainfall. 
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Figures  

Fig. 1 A. Topographic map of the Belham Catchment (shaded) and adjacent areas of 

Montserrat with contours at 50 m intervals. The latitude and longitude are given. The ▼are 

rain gauge sites; the northern one is the Montserrat Water Authority gauge at Hope, and the 

southern one is the UEA gauge named Garibaldi. Ash thicknesses for 20th May 2006 are given 

in mm next to the + marking sample points. BB marks the old bridge site, s marks the 

confluence of the Sappit and Belham rivers, a, d and E refer to the locations of the 

photographs in Fig. 2. 

B. Survey profiles along the centre line of the main channel of the Belham River from the old 

bridge site (BB on the map) to the shoreline. The main channel path did not substantially 

change through this period, although at peak flow additional channels became active in the 

lower reaches. 
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Fig. 2. Photographs of the Belham Valley; A. and B. are aerial views of the same reach of the 

upper valley at Dyer’s (E on Fig. 1A) taken on the evening of the 20th May 2006 (MVO 

photograph; copyright NERC) and in November 2006 (photographer RH) showing the extent 

of tephra deposition and its later partial removal from e.g. roofs. The vegetation damage in 

May was extreme and by November significant re-growth was evident. C. A small house 

towards the lower end of the Belham Valley (A on Fig.1A) on 12th June 2006 (photographer 

Tina Bretton). Notice particularly the >2 m boulders against the walls that were deposited in 

May 2006 and the extent of vegetation damage still evident on the far valley side. D. View 

upstream at D on Fig. 1A on 23rd May 2006, (photographer SL; copyright NERC) shows the 

extent of vegetation damage on the hills and the channel incision into the 20th May and older 

deposits. The house was well above the valley floor in 1995. 

 

Fig 3. Diagram showing the relative timing of events on 19, 20th and 21st May 2006. A. 

Cumulative rain fall data with timing of dome collapse and principle periods of tephra fall. 

The rainfall line for GAR terminates mid graph as the rain gauge stopped registering data.  B. 

Estimated discharge. Although the timing of discharge is fairly well constrained the timing of 

the peaks is not and the magnitude of the peaks are estimates only. The interference of the 

greater peak later in the event on 20th results from the volume of noise made by the flow and 

the timing of boulder mobilization in the lower valley.  C. The ash fall and vegetation damage 

lines are both illustrative with relative rates assessed from our eyewitness reports, and 

discontinuous data. The vegetation damage line includes representation of widespread damage 

before the dome collapse, the rapid damage on the 20th and continuation of damage after that 

date.  
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Fig . 4. A comparison of rainfall data from different rain gauges for the three days in May 

2006 and for six other days for which we have been able to calculate discharge estimates to 

demonstrate the variations. The locations of the Hope and Garibaldi (GAR) gauges are shown 

on Fig. 1A and the MVO North gauge is 2.5 km north of the catchment. Although both the 

peak intensity (indicated by line slope) and the total rainfalls were often greater than those 

recorded on the 20th May 2006, the estimated discharges are all smaller (written above rainfall 

lines). The discharge estimates (given on right of graph in m3 s-1) are very approximate based 

on interpretation of visual observations and interpretation of deposits. The 20th May 2006 

Garibaldi line terminates as the gauge stopped working on that day. The Hope gauge (dashed 

lines) does not record intensities and the timings at this gauge are inaccurate but the data are 

included for comparison of totals. 

 

Fig. 5. Photograph of the Belham valley floor above old bridge site, showing large boulders 

transported by the May 20th flood and the side of the narrower channel cut after that event. 
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