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The development of renewable diesel fuel from the deoxygenation of non-edible oil is 
an alternative to non-renewable fuels. This study investigated the catalytic 
deoxygenation of waste cooking oil (WCO) over supported Ni-based catalysts. The 
deoxygenation of WCO was conducted using different types of supports: activated 
carbon (AC), reduced graphene oxide (rGO), and beta zeolite (Zeo). The addition of Ni 
to AC improves the physicochemical properties of the catalyst, owing to the high number 
of acid-base sites, high surface area, smaller crystallite size, and high pore volume of the 
catalyst. Based on the catalytic results, Ni20/AC was the most active catalyst, which 
achieved 90% hydrocarbon yield and 89% selectivity towards n-(C15+C17). Furthermore, 
it was stable up to the fourth cycle with consistent hydrocarbon yield (85-87%) and 66-
77% selectively towards n-(C15+C17). Further investigation was conducted to study the 
effect of bifunctional catalysts (NiLa, NiCe, NiFe, NiMn, NiZn, and NiW) supported on 
AC. High hydrocarbon yield above 60% with lower oxygenated species was found in the 
liquid product with the product selectively toward n-(C15+C17)-diesel fractions. The 
predominance of n-(C15+C17) hydrocarbons with concurrent production of CO and CO2 
indicated that the deoxygenation pathway preceded via decarbonylation and 
decarboxylation mechanisms. For NiLa/AC, high deoxygenation activity with better n-
(C15+C17) selectivity was obtained due to great synergistic interaction between La–Ni, 
and its compatibility of acid-base sites increased the removal of oxygenates. For the 
effect of La on the deoxygenation performance, it was found that a high percentage of 
La species would be beneficial in the removal of C-O bonded species. Furthermore, 
optimum deoxygenation activity of 88% hydrocarbon yield with 75% n-(C15+C17) 
selectivity was obtained over 20% La, which strongly evinced that La leads to more 
significant enhancement of deoxygenation activity. The NiLa/AC reusability study 
showed consistent deoxygenation with 80% hydrocarbon yield and 60% n-(C15+C17) 
hydrocarbons selectivity within six runs. As the NiZn/AC catalyst also showed high 
performance in deoxygenation activity, the optimization over a series of Ni20Znx/AC 
catalysts (X: 5–20 wt.%) was also studied. The Ni20Zn10/AC catalyst exhibited superior 
deoxygenation activity by yielding 86% hydrocarbons and 79% of n-(C15 + C17) 
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selectivity. High deoxygenation activity is corroborated by the higher acidity and basicity 
strength of the catalyst and the oxygenate species removal that occurred via 
decarbonylation pathway. The Ni20Zn10/AC catalyst showed promising catalytic stability 
and reusability up to four runs with hydrocarbon yield (78 – 87%) and n-(C15 + C17) 
selectivity within the range of 43 – 70%, respectively. The decrease in the n-(C15 + C17) 
selectivity in the fourth cycle was due to the active metal species leaching and coking. 
In conclusion, all Ni-based catalysts demonstrated significant catalytic activity and 
reusability for green diesel production. 
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PEMBANGUNAN MANGKIN BERASASKAN NIKEL YANG DISOKONG 
UNTUK  PENYAHOKSIGENAN SISA MINYAK MASAK KEPADA 

PENGHASILAN BAHAN API YANG BOLEH DIPERBAHARUI 
 
 

Oleh 
 
 

WAN NOR ADIRA BINTI WAN KHALIT  
 
 

Mac 2022 
 
 

Pengerusi : Profesor Datuk ChM. Ts. Taufiq Yap Yun Hin, PhD 
Fakulti  : Sains 
 
 
Pembangunan bahan bakar diesel yang boleh diperbaharui melalui penyahoksigenan 
minyak yang tidak boleh di makan merupakan satu alternatif kepada bahan bakar yang 
tidak boleh diperbaharui. Kajian ini menyiasat penyahoksigenan pemangkin bagi sisa 
minyak masak (WCO) menggunakan pemangkin berasaskan Ni. Tindak balas 
penyahoksigenan terhadap WCO dilakukan menggunakan pelbagai jenis sokongan: 
karbon teraktif (AC), grafena oksida yang dikurangkan (rGO) dan beta zeolit (Zeo). 
Penambahan Ni ke AC meningkatkan sifat fizikokimia pemangkin yang baik disebabkan 
oleh bilangan tapak asid-bes yang tinggi, luas permukaan yag tinggi, saiz kristal yang 
lebih kecil dan jumlah liang pemangkin yang tinggi. Dari hasil penyahoksigenan, 
Ni20/AC menunjukkan pemangkin paling aktif dengan memberikan 90% hasil 
hidrokarbon dan  89% pemilihan n-(C15+C17). Tambahan pula, pemangkin tersebut 
menujukkan kestabilan sehingga kitaran keempat dengan hasil hidrokarbon yang 
konsisten (85-87%) dan pemilihan n-(C15+C17) (66-77%). Penye1idikan lebih lanjut 
dilakukan untuk mengkaji kesan pemangkin dwifungsi (NiLa, NiCe, NiFe, MiMn, NiZn, 
dan NiW) yang disokong pada AC. Hasil hidrokarbon melebihi 60% dengan spesies 
oksigen yang lebih rendah didapati dalam produk cecair dengan pemilihan utama 
terhadap n-(C15+C17)-pecahan diesel. Penguasaan hidrokarbon n-(C15+C17) dengan 
pengeluaran CO dan CO2 secara serentak menunjukkan bahawa penyahoksigenan 
melalui tindak balas penyahkarbonilan dan penyahkarbosilan. Penyahoksigenan aktiviti 
yang tinggi dan pemilihan n-(C15+C17) yang lebih baik oleh pemangkin NiLa/AC 
disebabkan oleh interaksi sinergistik yang baik antara La–Ni, dan  keserasian tapak-tapak 
asid dan bes meningkatkan lagi penyingkiran spesis oksigen. Kajian mengenai kesan La 
terhadap penyahoksigenan aktiviti dijalankan dan mendapati bahawa peratusan spesis La 
yang tinggi bermanfaat untuk penyingkiran spesis terikat C–O. Di samping itu, 20% La 
menunjukkan optimum penyahoksigenan aktiviti dengan menghasilkan 88% hasil 
hidrokarbon and 75% pemilihan n-(C15+C17), yang membuktikan bahawa La membawa 
kepada peningkatan penyahoksigenan aktiviti yang lebih ketara. Kajian kebolehgunaan 
semula NiLa/AC menunjukkan tindak balas penyahoksigenan yang stabil dengan hasil 
hidrokarbon 80% dan pemilihan n-(C15+C17) 60% dalam enam kitaran. Oleh kerana 
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pemangkin NiZn/AC juga menunjukkan penyahoksigenan aktiviti yang tinggi maka 
pengoptimuman terhadap satu siri pemangkin Ni20Znx / AC (X: 5-20 wt.%) juga 
dijalankan. Pemangkin Ni20Zn10/AC menunjukkan penyahoksigenan aktiviti yang tinggi 
dengan menghasilkan 86% hidrokarbon dan 79% pemilihan n-(C15+C17). Aktiviti 
penyahoksigenan yang tinggi disebabkan oleh kekuatan asid dan bes pemangkin dan 
penyingkiran spesis oksigen berlaku melalui tindak balas penyahkarbonilan. 
Diperhatikan, pemangkin Ni20Zn10/AC menunjukkan penyahoksigenan aktiviti yang 
stabil dan penggunaan semula pemangkin sehingga empat kitaran dengan hasil 
hidrokarbon (78-87%) dan pemilihan n-(C15+C17) (43-70%). Penurunan pemilihan n-
(C15+C17) adalah disebabkan oleh pelarutlesapan tapak aktif logam dan pembentukan 
karbon. Kesimpulannya, semua pemangkin berasaskan Ni menunjukkan aktiviti 
pemangkinan dan penggunaan semula yang ketara untuk pengeluaran diesel hijau. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Research Background 

 
 

Global population growth causes rapid industrialisation, expanding urbanisation, and an 
increase in the number of transportations, resulting in increased global energy 
consumption. According to the US Energy Information Administration. global energy 
consumption is expected to increase by 50% between 2010 and 2050, (Sourmehi, 2021). 
Currently, fossil fuels meet the majority of energy demand, with oils, coal, and natural 
gas accounting for 33%, 27%, and 24%, respectively (Gross, 2020; Looney, 2020). 
However, these are not considered renewable energy sources because their applications 
are unfavourable from a financial, environmental, and ecological standpoint.  
 
 
The transportation sector is essential to globalisation and contributes significantly to the 
economy. The primary sources of transportation energy use worldwide are gasoline and 
diesel. Global transportation fuel demand is relatively high, with approximately 4.9 
billion L of gasoline and diesel consumed daily (Kalghatgi, 2019). Unfortunately, this 
consumes most fossil fuels, negatively affecting the living environment. The world’s 
fossil fuel reserves are also rapidly depleting (Pattanaik & Misra, 2017). One of the most 
severe problems caused by fossil fuels is the massive emission of greenhouse gases 
(GHGs) that contribute to global warming.  
 
 
According to the Inventory of U.S. Greenhouse Gas Emissions and Sinks (2021), carbon 
dioxide (CO2) accounted for 80% of GHG emissions in 2019, followed by methane 
(10%), nitrous oxide (7%), and fluorinated gases (3%) (Figure 1.1a). Transportation was 
the leading source of GHG emissions (29%), followed by electricity (25%), industry 
(23%), commercial and residential (13%), and agriculture (10%) (Figure 1.1b). 
Researchers worldwide are concerned about the rapid increase in CO2 emissions from 
transportation. One of the primary reasons for over 1.2 billion passenger cars worldwide 
is the proliferation of automobiles (Kalghatgi, 2018). According to the ITF Transport 
Outlook, (2019), global transportation demand is expected to triple by 2050. 
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Figure 1.1: Overview of (a) GHGs emission and (b) sources of GHGs in 2019 
[Adapted from Inventory of U.S. Greenhouse Gas Emissions and Sinks (2021)] 
 
 
A substancial amount is consumed from various fossil fuel resources to meet this energy 
demand. Unfortunately, current consumption rates will deplete crude oil and natural gas 
reserves in 33 and 41 years, respectively. Every year, we consume approximately 11 
billion tonnes of oil. However, crude oil reserves are depleted at a rate of 4 billion tonnes 
per year. If current trends continue, oil reserves will be depleted by 2051. 
 
 
Nonetheless, if increased gas production can fill the energy gap left by oil, those reserves 
will last an additional eight years until 2061. Even though the world has enough coal 
reserves to last until the end of the century, increased production is needed to fill the void 
left by the depletion of oil and gas reserves. Coal reserves will supply enough energy 
until 2088. Even so, the global energy consumption rate is not constant because it grows 
significantly with the global population and improved living standards. Furthermore, the 
world is on the verge of an energy crisis, prompting researchers to investigate alternative 
approaches. Figure 1.2 depicts the world’s coal, oil and gas energy reserves and the point 
at which fossil fuels may be depleted in the future. 
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Figure 1.2: Energy reserves for coal, gas, and oil in the future (Kuo, 2019)  
 
 
1.2 Renewable Energy  
 
 
Using renewable energy resources to replace fossil fuels would reduce GHG emissions 
and make renewable energy more appealing. Renewable energy is considered “green” 
and is one of the environmentally friendly energies that never run out and can be used 
without reducing its future availability. Hydropower, solar energy, geothermal, wind 
energy, marine energy, and biomass energy are the primary sources of renewable energy 
(Pattanaik & Misra, 2017). Currently, the primary focus of renewable energy research is 
on biomass energy. Agriculture crop residue, forestry, food processing, and animal fats 
are all biomass sources. Waste vegetable oils and animal fats have been targeted as a 
renewable feedstock for biofuel production (Kordulis et al., 2016). 
 
 
Figure 1.3 depicts global energy consumption by energy sources in 2020. Renewable 
energy accounts for 12% of global energy consumption. Biomass energy (39%) is one 
of the most important renewable energy sources. Renewable energy, such as biofuels, 
can improve energy security while reducing GHG emissions and preventing air pollution. 
Future generations will benefit from a cleaner environment, a more stable economy, and 
a more reliable energy source as more renewable resources are used. According to 
Baležentis et al. (2019), a 1% increase in biomass energy output results in a 0.089% 
reduction in GHG emissions. 

 

Year
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Figure 1.3: Global energy consumption by energy sources in 2020 [Adapted from U. 
S. Energy Information  Administration (2021)] 
 
 
1.3 Biofuels as a Petroleum Alternative 
 
 
Biofuels are liquid or gaseous fuels derived from biomass such as corn starch, vegetable 
oils, animal fats, sugarcane, grasses, or trees. Biofuels are the only viable alternatives to 
petroleum because they have the potential for large-scale production due to the 
abundance of biomass sources. Furthermore biofuels are biodegradable and contribute 
to environmental sustainability. Pyrolysis, gasification, and chemical and biochemical 
processes are all methods for producing biofuel from biomass. Syngas (CO and H2) is 
produced by pyrolysis and gasification and is converted to hydrocarbons for use as fuels. 
Chemical processing of biomass yields biofuels via homogeneous or heterogeneous 
catalysis, whereas biological processes (for example, biomass fermentation) use 
enzymatic catalysis. 
 
 
Green fuel is a biofuel that includes green gasoline (C8-C14) and green diesel (C15-C18) 
that contain n-alkane and n-alkene hydrocarbons. The green fuel obtained is similar to 
gasoline and diesel from crude oil refining in petroleum refineries. Green diesel 
production is a simple, cost-effective, and low polluting process. Deoxygenation is the 
most effective method for producing green diesel from biomass when heterogeneous 
catalysts are used. Furthermore, green diesel, which has a higher heating value, energy 
density, cetane number, and quality than diesel fuel, was recently named the most 
preferred biofuel. 
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1.4 Problem Statement 
 
 

Excessive waste cooking oil (WCO) production has become a major global issue. 
Improper WCO handling may stimulate the production of organic contaminants in land 
and water, contributing to environmental pollution. The proper recycling of WCO 
through conversion to industrial products such as green diesel is an ideal solution. WCO 
can be used directly in a diesel engine. However, there are several disadvantages to using 
WCO directly including high viscosity, low volatility, and engine problems such as 
coking on injectors, carbon deposition, and lubricating oil thickening (Biswas et al., 
2017). As a result, WCO must be upgraded to be used as green diesel. Due to its similar 
diesel-fuel properties, high cetane number, and high calorific value producing green 
diesel using hydroprocessing technologies is a potential process for producing diesel-
like hydrocarbon (Gamal et al., 2020). 
 
 
Hydroprocessing technology (e.g., hydrodeoxygenation) is preferred in the refinery 
industry. Adding H2 results in forming hydrocarbons in the C15 - C18 range and removing 
O2 as a by-product in the form of H2O. However, due to the high cost of H2 consumption, 
hydrodeoxygenation is less desirable method of producing green diesel. As a result, the 
production of green diesel via deoxygenation has been implemented, with the reaction 
taking place in an H2-free environment. 
 
 
However, current deoxygenation research is more focused on using noble metals (such 
as Pt and Pd) and sulfided metals (such as ReNiMoS, NiMoS, CoMoS, and NiWS) as 
catalysts (Lup et al., 2017a). These active metals have been proven to be the most 
effective catalysts. Nonetheless, due to the high cost of noble metals, large-scale green 
diesel production is limited, and sulphur leaching from sulfided catalysts has the 
potential to contaminate green diesel quality (Ramesh et al., 2020). Hence, research has 
focused on developing low-cost and sulfur-free catalysts. The transition Ni 
approximately 1750 and 3450 times  less expensive than the noble metals Pd and Pt 
(Asikin-Mijan et al., 2018; Santillan-Jimenez et al., 2013).  
 
 
In addition, Ni-based catalysts also outperformed numerous noble-metal catalysts 
(Hongloi et al., 2021). Thus, transition metal oxides (TMO) are more suitable for 
deoxygenation. Ni-based catalysts have been studied to improve deoxygenation activity 
among various TMO catalysts. This is due to the high reactivity of Ni-based catalysts in 
converting triglycerides-based biomass to primary products in the diesel-range 
hydrocarbon. On the other hand, it has been proposed that the primary role of Ni-based 
catalysts is to promote C–C and C–O breakage via decarboxylation/decarbonylation 
pathways. Evidently, a 60Ni/Al2O3 catalyst was effectively upgraded the triglycerides in 
sunflower oil to green diesel with 96% conversion to hydrocarbon and 52% to n-C17 
selectivity (Gousi et al., 2017).  
 
 
Nevertheless, in the deoxygenation of soybean oil, a 20 wt.% Ni/C catalyst also showed 
a greater conversion to hydrocarbon (92%) followed by 5 wt.% Pd/C (30%) and 1 wt.% 
Pt/C (23%) (Morgan et al., 2010). Previously, the deoxygenation of triolein over Ni/HMS 
catalyst was capable of inducing the C–C cleavage and C–O cleavage and resulted in a 
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higher selectivity towards diesel-range (C11-C20) (95%) (Zulkepli et al., 2018). The acidic 
sites of the Ni-based catalysts is also responsible for effectively removing oxygenating 
species in deoxygenation reaction.  
 
 
Furthermore, larger pore diameters of catalysts may make waste oil molecules more 
easily transported to active catalytic sites, thus increasing deoxygenation activity. The 
nature of the reactant, on the other hand, has minimal effect on the activity of Ni-based 
catalysts. As a result, Ni-based catalysts are considered suitable for a wide range of 
reactants in the production of green diesel, particularly in WCO. 
 
 
Catalyst supports are also crucial in increasing deoxygenation activity. Carbon-based 
support effectively promotes the deoxygenation of fatty acid and their derivatives. 
Activated carbon (AC) also has a large surface area due to its microporous structure, 
which contains numerous functional oxygen groups on the surface, thereby improving 
its efficacy as an oxygen removal agent (Zhao et al., 2017). Furthermore, it aids in the 
reduction of undesirable reactions such as polymerization, cracking, and coke formation. 
Although the deoxygenation activity of the Ni-supported AC catalyst is prominent, the 
catalyst still produces highly undesirable coke formation.  
 
 
Thus, incorporating metal oxides promoters such as Mn, W, La, Zn, Fe, and Ce to into a 
binary system could reduce the deactivation reaction rate. It has been proposed that the 
synergistic interaction of the acidic and basic sites derived from these metals species may 
allow for improve catalytic stability and deoxygenation activity. Therefore, the current 
research focuses on developing supported Ni-based heterogenous catalysts on AC for the 
catalytic deoxygenation of WCO in an H2-free environment. 
 
 
1.5 Objectives of the Study 
 
 
The primary goals of this research are as follows: 
 

1. To synthesise and characterise the physicochemical properties of Ni-based 
catalysts using the wet impregnated method with other transition metals and 
various supports.  

2. To examine the catalytic performance of the synthesised catalysts and optimise 
the deoxygenation reaction under various catalytic parameters. 

3. To assess the reusability and stability of the catalysts for catalytic 
deoxygenation of WCO. 

4. To determine the fuel properties of green diesel based on the American Society 
for Testing and Materials (ASTM) method. 
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1.6 Scope of the Study 
 
 
The wet-impregnation method was used in this study to synthesise Ni-based 
heterogenous catalysts. First, the deoxygenation reaction of Ni-based catalysts was 
investigated using various supports (AC, reduced graphene oxide (rGO), and beta zeolite 
(Zeo)). The physical properties of the catalysts were determine using XRD, BET, TPD-
NH3, TPD-CO2, TGA, FESEM-EDX, and XPS. The performance of deoxygenation was 
evaluated to select the best catalyst with high catalytic activity. The liquid product was 
tested using GC-FID, GC-MS, GC-TCD, FTIR, and CHNOS. Further research was 
conducted to investigate the impact of acid-base bimetallic catalysts. Various metals, 
including Ce, Mn, La, Fe, Zn, and Fe were doped with Ni and screened for the incredible 
bimetallic catalysts, which produced high diesel-ranged hydrocarbon. 
 
 
The potent catalysts were used in optimisation studies with a one-variable-at-a-time 
approach to study the effect of different catalyst loadings, reaction temperatures, and 
reaction times. The catalysts were then tested for reusability and stability studies. 
Catalyst reusability studies are critical for estimating the economics of catalysts for large-
scale production. Under favourable reaction conditions, the reusability activity was 
evaluated. Renewable fuel properties are also discussed. 
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