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Abstract 

Even in the absence of external feedback, humans are capable of subjectively 

estimating the accuracy of their own decisions, resulting in a sense of confidence that a 

decision is correct. While decision confidence has been proposed to be closely related to 

other metacognitive judgments, including error awareness (i.e., awareness that a 

decisions error has occurred) and changes of mind (i.e., reversal of previously made 

decisions), their relationships so far remain unclear. 

The current project aimed to investigate how confidence could be related to 

metacognitive judgments from two perspectives. First, Studies 1 and 2 investigated how 

confidence and changes of mind were affected by changes in different stimulus 

properties, particularly absolute evidence strength. In a brightness judgment task, 

participants were presented with two flickering, grayscale squares and required to select 

the square that appeared brighter. After each trial, participants reported their subjective 

accuracy on a rating scale ranging from “surely incorrect” to “surely correct”. Results 

showed that with stronger absolute evidence (i.e., increased overall luminance across 

both squares), confidence was increased and the proportion of changes of mind trials 

was reduced. These consistent changes support the hypothesis that higher confidence 

could contribute to less frequent changes of mind. 

Second, Study 3 investigated the relationships between confidence and the 

event-related potential (ERP) components of the centro-parietal potential (CPP) and the 

error positivity (Pe), which have been respectively proposed to be indexes of pre- and 

post-decisional evidence accumulation processes. In the same brightness judgment task, 

it was found that the relationships between confidence and these two ERP components 

depended on decision accuracy: Confidence was positively related to CPP amplitudes in 

correct trials, but negatively related to Pe amplitudes in error trials. These findings 
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suggest that confidence in correct and error decisions involve different pre- and post-

decisional processes. 

Overall, the current findings suggest that (a) confidence could serve as a basis of 

changes of mind, and (b), confidence in correct and erroneous decisions was 

differentially related to pre- and post-decisional ERP indexes of evidence accumulation. 

Taken together, they suggest that confidence might emerge during decision formation 

and could, with the contribution from post-decisional processes, serve as a basis of 

changes of mind. 
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Abstract 

Auch ohne (externes) Feedback sind Menschen in der Lage, die Genauigkeit 

ihrer eigenen Entscheidungen einzuschätzen, was zu einer Sicherheit führt, dass die 

jeweilige Entscheidung richtig ist (confidence, Entscheidungssicherheit). Es wurde zwar 

vermutet, dass die Entscheidungssicherheit in engem Zusammenhang mit anderen 

metakognitiven Konzepten steht, beispielweise dem Fehlerbewusstsein (d. h. dem 

Bewusstsein, dass ein Fehler aufgetreten ist) und der Meinungsänderung (d. h. der 

Änderung bzw. Umkehrung zuvor getroffener Entscheidungen), aber die 

Zusammenhänge zwischen diesen Konzepten sind bisher unklar.  

Das aktuelle Projekt beabsichtigt, aus zwei Perspektiven zu untersuchen, wie die 

Entscheidungssicherheit mit metakognitiven Konzepten zusammenhängt. Zuerst wurde 

in den Studien 1 und 2 untersucht, wie Entscheidungssicherheit und Meinungsänderung 

durch Veränderungen verschiedener Reizeigenschaften, vor allem der absoluten 

Evidenzstärke dieser Reize, beeinflusst werden können. In einer Aufgabe sollten die 

Teilnehmenden die Helligkeit von zwei visuellen Reizen beurteilen. Dazu wurden den 

Teilnehmenden zwei flackernde Quadrate in verschiedenen Graustufen präsentiert, von 

denen sie das jeweils hellere Quadrat auswählen sollten. Nach jedem Versuch 

berichteten die Teilnehmenden die subjektive Genauigkeit ihrer Entscheidung mithilfe 

einer Bewertungsskala, die von "sicher falsch" bis "sicher richtig" reichte. Die 

Ergebnisse zeigten, dass mit stärkerer absoluter Evidenz (d. h. mit höherer Gesamt-

Helligkeit beider Quadrate) die Entscheidungssicherheit zunahm und der Anteil der 

Durchgänge, bei denen die Meinung geändert wurde, abnahm. Diese konsistenten 

Veränderungen unterstützen die Hypothese, dass eine höhere Entscheidungssicherheit 

zu weniger häufigen Meinungsänderungen beitragen könnte. 



   4  

Darüber hinaus untersuchte Studie 3 die Beziehungen zwischen der 

Entscheidungssicherheit und den ereigniskorrelierten Potenzialen (EKP), centro-

parietales Potential (CPP) und Fehlerpositivität (Pe), die als Indizes für prä- und 

postdezisionale Evidenzakkumulationsprozesse gelten. Unter Verwendung des gleichen 

Paradigmas wie in Studien 1 und 2 konnte festgestellt werden, dass die Beziehungen 

zwischen der Entscheidungssicherheit und diesen beiden EKP-Komponenten von der 

Entscheidungsgenauigkeit abhängen: Entscheidungssicherheit stand im positiven 

Zusammenhang mit den CPP-Amplituden bei richtigen Versuchen (d.h. korrekten 

Entscheidungen), aber im negativen Zusammenhang mit Pe-Amplituden bei 

fehlerhaften Versuchen (d.h. Fehlern). Diese Ergebnisse deuten darauf hin, dass die 

Entscheidungssicherheit in korrekte und fehlerhafte Entscheidungen unterschiedliche 

prä- und postdezisionalen Prozesse beinhaltet. 

Zusammengefasst deuten die aktuellen Befunde darauf hin, dass (a) die 

Entscheidungssicherheit als Grundlage für Meinungsänderungen dienen könnte und (b) 

Entscheidungssicherheit in richtige und falsche Entscheidungen in unterschiedlichem 

Maße mit prä- und postdezisionalen EKP-Indizes der Evidenzakkumulation verbunden 

war. Zusammengenommen weisen die vorgelegten Ergebnisse darauf hin, dass 

Entscheidungssicherheit während der Entscheidungsfindung entsteht und durch 

postdezisionale Prozesse als Grundlage für Meinungsänderung dienen könnte. 
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Chapter 1. Introduction 

1.1. Background 

Decisions are ubiquitous in our lives. For both perceptual and value-based 

decisions, the decision process is based on evaluation of choice alternatives, for 

example, comparing their physical qualities or economic utilities (Smith & Krajbich, 

2021). The decision outcomes, however, are oftentimes not finalized after the 

evaluation process, as they themselves are also subject to further evaluation regarding 

their validity. When functioning properly, this secondary evaluation allows us to correct 

our erroneous decisions and improve decision making in the future. 

This idea could be illustrated by the following everyday example. Imagine that 

you are walking in a dark and remote area and facing two paths. You want to choose the 

one that is more brightly lit, as it is more likely to lead to safer place. Therefore, you try 

to evaluate and compare the brightness of the two paths. Once the evaluation process is 

complete, one path is judged to be brighter and correspondingly you walk along the 

chosen path. However, this decision is subject to further evaluation. For example, you 

might doubt the correctness of your decision after a couple more seconds. As a result, 

you might decide that the previous decision was incorrect, and walk back to make the 

decision again. 

The ability to evaluate the accuracy of our own decisions and make 

corresponding adjustment is an important aspect of decision making, and it has been 

studied in different areas of research that were recently argued to be under the broad 

research topic of metacognition. The current research project aimed to investigate how 

one key aspect of metacognitive decision, decision confidence, could be related to other 

metacognitive judgments. To provide a background of the project, this introduction 

chapter will (a) review the literature on the key constructs related to metacognition in 
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decision making (Sections 1.2 & 1.3), (b) review the literature on relevant theories on 

metacognitive decisions (Section 1.4), (c) review research methods relevant to the 

current project (Sections 1.5 & 1.6), and (d) provide an overview of the current project 

(Section 1.7). 

1.2. What is metacognition? 

The term metacognition was coined by Flavell (1979) to refer to “knowledge 

and cognition about cognitive phenomena” in his study of cognitive development. It is 

an umbrella term that refers to a range of cognitive processes (e.g., knowledge, 

experience, regulation) operating on different cognitive contents (e.g., perception, 

memory, learning; Flavell, 1979; Schwartz & Díaz, 2014; Metcalfe & Schwatz, 2016; 

Norman et al., 2019). For example, it encompasses one’s knowledge on how attention 

and memory generally work, how well one knows about one’s ability to complete a 

cognitive task, as well as the use of this knowledge or experience to devise task 

strategies and achieve desired task performance. This broad concept of metacognition 

has been studied in different areas of research including developmental, educational, 

social, personality, and cognitive psychology, as well as clinical domains including 

clinical psychology, neuropsychology, and psychiatry (Chapman et al., 2020; Flavell, 

1979; Norman et al., 2019). 

Functionally, metacognition serves to modulate cognitive processes such that 

they are more flexible and less reliant on the external environment (Fernandez-Duque et 

al., 2000). These modulations include two main aspects: monitoring (e.g., detecting 

errors, confirming decisions, and generating internal learning signal) and control (e.g., 

revising decisions, adjusting caution, guiding future decisions, time and resource 

allocation, information seeking; Desender et al., 2018; Fleming & Daw, 2017; Peters, 

2022; Pouget et al., 2016; van den Berg, Anandalingam et al., 2016; Yeung & 
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Summerfield, 2012). In a broader sense, these basic functions also regulate cognitive 

performance through adaptation at higher levels, including flexible goal-setting (e.g., 

deciding to complete or abandon tasks), developing cognitive/metacognitive strategies 

(e.g., deciding on how to improve performance), learning (e.g., deciding on how well 

one have learned / will learn), and also improving performance in collective decision 

making (e.g., through communication of beliefs; Flavell, 1979; Metcalfe, 2009; Peters, 

2022). 

1.3. Metacognitive decision constructs 

As metacognition has been investigated from different perspectives, various 

constructs and terminologies have been developed in the literature. As the scope of the 

current project concerns only metacognition in decision-making, this section first 

introduces what metacognitive decision encompasses, then focused on three areas that 

are particularly relevant, namely, (1) performance and error monitoring, (2) confidence 

judgment, and (3) changes of mind. For each of these areas, their definitions and 

characteristics are given, and common research methods and findings are summarized. 

Their relevant theoretical frameworks are discussed in Section 1.4. 

1.3.1. Metacognitive judgments / decisions 

Within the area of cognitive psychology, researchers focus mainly on how 

cognition is regulated and coordinated (Fernandez-Duque et al., 2000); more 

specifically, how meta-level cognitive processes monitor and control object-level 

cognitive process (Fernandez-Duque et al., 2000; Fleming & Dolan, 2012; Koriat, 2007; 

Nelson & Narens, 1990). In general, these processes were commonly studied by 

prompting metacognitive judgments / decisions, which are decisions that require 

evaluation of cognitive processes / cognitive task outcomes (Fleming & Dolan, 2012; 

Fernandez-Duque et al., 2000; Yeung & Summerfield, 2012). Conventionally, decisions 
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related to object-level and meta-level processes are often referred to as primary and 

secondary decisions, type 1 and type 2 decisions, or first-order and second-order 

decisions (de Gardelle & Mamassian, 2015; Peters, 2022; Yeung & Summerfield, 

2012). 

Depending on cognitive domains, different types of metacognitive decisions are 

elicited. For example, the memory domain often requires participants to report judgment 

of learning (predicting how well one can recall an item) or feeling of knowing 

(reporting how well one thinks an item could be recalled later after just failing to recall 

it). In the decision-making domain, the types of metacognitive decisions range from 

perceptual to knowledge- and value-based decisions often requiring confidence 

judgment (reporting how well one thinks a decision just made was correct), post-

decision wagering (gambling with a wager amount that corresponds to how well one 

thinks a decision was correct), and opt-out decision (deciding not to make a decision 

when one is unsure whether a decision will be correct; Fleming & Dolan, 2012; 

Gherman & Philiastides 2015; Rahnev et al., 2020; Sanders et al., 2016). Within the 

scope of the current thesis, three types of metacognitive judgments, namely error 

monitoring, confidence judgement, and changes of mind, are discussed below. In this 

thesis, the term metacognitive decision refers to as a set of decisions that include these 

three types. 

1.3.2. Performance and error monitoring  

As part of cognitive control, performance monitoring is a broad set of processes 

that evaluate motivationally salient events and determine adaptation (Ullsperger, 2017). 

Specifically, it tracks and signals a variety of events ranging from response conflict to 

violation of outcome prediction, and leads to a range of adaptations, including orienting, 

motor adjustment, and learning. As studies on performance monitoring focuses 
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primarily on how erroneous decisions are detected (which involve discrepancy between 

expected and actual states) in tasks that induce response conflicts (e.g., go/no-go tasks, 

Stroop tasks, flanker tasks), performance monitoring is sometimes defined more 

narrowly as error monitoring (Steinhauser & Yeung, 2010; Ullsperger, 2017). 

Given this definition, error monitoring can also be defined as a function of 

metacognition (Fernandez-Duque et al., 2000; Fleming & Dolan, 2012; Yeung & 

Summerfield, 2012). Indeed, error monitoring studies typically measure behavior that 

could require metacognitive ability (e.g., error correction responses, post-error slowing 

[i.e., slowdown response in trials following error commission]), or explicitly require 

metacognitive decisions from participants, e.g., error-signaling responses (i.e., 

indicating whether a decision error has occurred; Rabbitt, 1968). Traditionally, 

researchers often study error monitoring processes through variables including error 

detection and correction rates/RT, error awareness ratings, task performance that follow 

errors (e.g., post-error slowing, post-error accuracy [i.e., increased or decreased 

accuracy in trials following error commission]), as well as response force and 

electromyogram (EMG) measures (for measures of partial errors and force profiles 

during motor execution), and electroencephalography (EEG) measures (for identifying 

neural correlates of error monitoring; discussed in Section 1.5.2; Scheffer et al., 1996; 

Wessel, 2017; Yeung & Summerfield, 2012). 

An example of error detection study is the early work by Rabbitt (1966), who 

employed an error detection task that required participants to respond to sequences of 

light signals as quickly as possible, and correct errors when they occurred. In this study, 

response time (RT) of error responses, error-correcting responses, and post-error 

slowing were measured. Essentially, it was found that erroneous decisions could be 
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quickly corrected without external feedback, and these decisions were also followed by 

slower responses, suggesting the presence of error monitoring processes.  

Building on these early studies focusing on error detection and correction, 

research has been extended to error awareness (Hester et al., 2005; Ullsperger et al., 

2010; Wessel et al., 2011). So far, consistent findings have shown that participants are 

able to process and correct errors they made, with or without error awareness. 

Accordingly, separate neural correlates of automatic error processing and awareness 

were postulated (e.g., Yeung & Summerfield, 2012), and different theoretical accounts 

have been suggested (Fleming & Daw, 2017; Wessel, 2017; discussed in Section). 

1.3.3. Confidence judgment 

Decision confidence is defined as the subjective belief that a decision is correct 

or appropriate (Luttrell, 2013; Meyniel et al., 2015; Pouget et al., 2016; Yeung & 

Summerfield, 2012). The study of decision confidence dates back to early 

psychophysical experiments, for example, studies by Peirce and Jastrow (1885) and 

Henmon (1911). These experiments were the first to include a subjective measure of 

confidence ratings, such that participants could report the extent to which they believed 

their decision was correct, for example, after making comparative judgment based on 

two lines of different length. These early experiments investigated how confidence was 

related to task difficulty, decision accuracy, and RT. Specifically, as later confirmed 

with different task paradigms, stimuli, and response modalities, confidence is usually 

positively related to accuracy, negatively related to task difficulty, and negatively 

related to RT of both primary and secondary decisions (Rahnev et al., 2020; Sanders et 

al., 2016).  

Particularly, consistent findings have been reported in previous studies using 

different cognitive tasks (e.g., perceptual decision, knowledge-based decision, value-
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based decision, reasoning task) with different stimuli (e.g., visual, auditory, tactile), 

different confidence ratings with different measurement scales (e.g., continuous, 

ordinal, binary ratings), and different response modalities (e.g., eye saccade, hand 

movement, wagering; Double & Birney, 2019; Fairhurst et al., 2018; Folke et al., 2016; 

Grimaldi et al, 2015; Kunimoto, 2001; Moreno-Bote, 2010; Persaud et al., 2007; Peters, 

2022; Sanders et al., 2016; van den Berg, Anandalingam et al., 2016; Zylbergerg et al., 

2016).  

Taken together, these findings suggest that humans are capable of reporting 

confidence estimates that track objective accuracy (Sanders et al., 2016). Building on 

this relationship, some studies also focused on how well confidence corresponds to 

objective accuracy (metacognitive accuracy, e.g., how often participants assign high 

confidence to correct decisions and low confidence to incorrect decisions) as well as the 

tendency to rate high and low confidence (metacognitive bias, e.g., how often 

participants assign high confidence to decisions regardless of objective accuracy) and 

investigated conditions in which metacognitive performance changed (Boldt et al., 

2017; Maniscalco & Lau, 2012; Maniscalco et al., 2021; Sander et al., 2016). For 

example, it has been reported that metacognitive accuracy is usually higher when 

primary task difficulty is low (because primary task performance influences secondary 

task performance), and when the primary decision is made with emphasis on speed, but 

secondary decision is made with sufficient time (Baranski & Petrusic, 1994; Boldt et al., 

2017; Desender et al., 2020, 2021; Moran et al., 2015; Pleskac & Busemyer, 2010; Yu 

et al., 2015). These findings served as the basis for better understanding the mechanism 

underlying confidence judgment (Moran et al., 2015; discussed in Section 1.4.). 

Lastly, it should be noted that a similar term certainty has been used in the 

literature with two different definitions. First, it has been used to refer to choice-
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independent sensory variability (Pouget et al., 2016). Second, it has been used as a 

directional expression of confidence (Baranski & Petrusic, 1994; Moreira et al., 2018). 

For example, a confidence rating indicating that a decision has no chance of being 

correct could be equally framed as indicating absolute certainty of being incorrect. 

Throughout this thesis (particularly in Chapter 3), certainty refers to the second 

definition. 

1.3.4. Changes of mind 

Compared with error monitoring and confidence judgment, change-of-mind is a 

relatively recent research topic. Change-of-mind decisions are defined as decisions that 

reverse the outcome of previous decisions, with and without explicit response execution 

or additional processing of external stimuli (Resulaj et al., 2009; Stone et al., 2022). 

Similar to confidence studies, previous studies have mainly investigated changes of 

mind in perceptual, memory, and value-based decision tasks (Stone et al., 2022). For 

example, perceptual decision-making tasks such as dot motion tasks and luminance 

discrimination tasks were commonly used (Fleming et al., 2018; Resulaj et al., 2009; 

Turner et al., 2021; van den Berg, Anandalingam et al., 2016). In terms of response 

modalities, in addition to the typical button press that allows a measure of binary 

changes of decision (Turner et al., 2021), studies have also utilized devices that allow 

more detailed examination of motor response, for example, manipulandum and 

touchscreen that track movement trajectory, which provide measures of movement 

speed and bends, and allow more fine-grained changes of mind to be expressed, or the 

process of the change of mind decision to be tracked while it unfolds (Burk et al., 2014; 

Dotan et al., 2018; van den Berg, Anandalingam et al., 2016). 

For example, in an early study by Resulaj et al. (2009), participants completed a 

dot motion task where they were required to judge the moving direction of random dot 
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stimuli with different motion strength. Using a manipulandum, they responded by 

moving a handle to the position that indicate the choice (left or right). Critically, the 

stimuli presentation was terminated once the hand movement initiated. However, it was 

shown that even in the absence of continued stimulus presentation, the trajectory of 

hand movement sometimes changed from one direction to another. This study suggests 

that even in the absence of stimuli, processing of stimuli continued after response 

initiation and could reverse the initial decision (i.e., the processing pipeline hypothesis). 

Changes of mind usually occur most often at an intermediate level of difficulty 

(Resulaj et al., 2009). When task difficulty is low, changes of mind rarely occur. As task 

difficulty increases, changes of mind occur more frequently because there are more 

error trials, which are more subjected to changes of mind. With extremely high 

difficulty, further processing after the decisional process is also unlikely to reverse the 

initial decision (Stone et al., 2022). As accuracy and RT both covary with difficulty, 

changes of mind also appear to show a consistent relationship: They are more likely to 

occur when accuracy is intermediate, and when RT is slow (Resulaj et al., 2009). 

Changes of mind are also largely corrective, as they usually correct erroneous decisions 

rather than spoiling correct decisions (Resulaj et al., 2009; Stone et al., 2022). This 

corrective nature is more obvious for decisions originally made with low-quality 

evidence (Stone et al., 2022). 

1.3.5. Summary 

Although originated as different research areas, error monitoring, confidence 

judgment, and changes of mind are closely related. They are all decisions concerning 

the subjective accuracy of certain primary decisions: Confidence judgment involves 

judging the correctness of the decision (i.e., certainty of being correct), error detection 

involves judging how likely a decision is incorrect (i.e., certainty of being incorrect), 
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and changes of mind are subsequent decisions based on a subjective sense of accuracy 

(Moreira et al., 2018; Stone et al., 2020; van den Berg, Anandalingam et al., 2016). 

Their close relationships are further supported by their similar neural correlates and 

proposed underlying mechanisms (Boldt & Yeung, 2015; Charles & Yeung, 2019; 

Fleming & Daw, 2017; Rausch et al., 2020; van den Berg, Anandalingam et al., 2016; 

Yeung & Summerfield, 2012, 2014). This naturally leads to some tentative proposals 

that these three types of metacognitive decisions could be explained by a common 

mechanism (Desender et al., 2021; Fleming & Daw, 2017; van den Berg, Anandalingam 

et al., 2016; discussed in 1.3.6). 

 However, these metacognitive decisions are different in several aspects. 

Methodologically, researchers investigate these decisions with different task types and 

parameters such as difficulty, response deadlines, and measurement scales (Yeung & 

Summerfield, 2012). Conceptually, confidence is more flexible with respect to time 

references (can be measured prospectively and retrospectively) and assumed to emerge 

as early as decision formation (Di Gregorio et al., 2020; Dotan et al., 2018; Gherman & 

Philiastides, 2015, 2018; Lee et al., 2022). In contrast, changes of mind and error 

awareness are assumed to occur and are measured after the primary decision and might 

require late-arriving evidence in addition to evidence that support the primary decision 

(Stone et al. 2022; van den Berg, Anandalingam et al., 2016). Additionally, empirical 

support for an association between error awareness and confidence is still equivocal 

with some studies suggesting that error awareness and confidence are partially 

dissociable (Fitzgerald et al., 2017). Therefore, whether these three types of 

metacognitive decisions could be considered as sufficiently similar to be explained by 

the same underlying mechanism remains unclear. 
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1.4. Theories and models of metacognitive decisions 

Based on the experimental findings discussed above, researchers have attempted 

to characterize about the mechanisms underlying different metacognitive decisions. 

Some theories were further developed into computational models that account for 

different sets of empirical observations. This section reviews two dominant types of 

models that were commonly used to account for metacognitive decisions in two-choice 

tasks: Signal detection theory (SDT), and sequential sampling models (Rahnev, 2020, 

2021). While the application of SDT has been limited to confidence judgment, 

sequential sampling models have been applied to all three types of metacognitive 

decisions. 

1.4.1. Signal Detection Theory (SDT) 

As an early successful model of decision making, SDT was one of the first 

models utilized to account for confidence judgment and it has served as the basis for 

more recent models (Green & Swets, 1966; Macmillan & Creelman, 2004). Proposed 

by Green and Swets (1966), SDT was first applied to behavioural tasks in which 

responses correspond to different stimulus types, and accurate performance is defined as 

the extent to which behaviour follows the correspondence (e.g., signal detection tasks; 

Macmillan & Creelman, 2004). 

In an example of a signal detection task, SDT assumes a decision space where 

the perceived stimulus strength is determined by a decision variable, the value of which 

comes from either of two overlapping normal probability distributions representing the 

mean and variation and of stimulus strength in the target-present and target-absent 

conditions. As the decision maker does not know the source of the decision variable 

value, a further criterion (or response bias, c) is assumed to separate the distributions, 

such that values above the criterion lead to a target-present response, while values 
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below lead to a target-absent response. Therefore, the criterion partitions the 

distributions into four possible outcomes: hit, miss, false alarm, and correct rejection. 

The proportions of these outcomes allow the estimation of an unbiased measure of 

sensitivity (d’), as the mean difference between the two distributions in terms of their 

common standard deviation (representing how well the decision maker discriminate the 

two conditions), and a measure of response bias as the location of the criterion 

(representing how biased the decision maker to give a target-present response). This 

theory also provides graphical tools such as the Receiver Operating Characteristics 

(ROC) curve and its derived measures (e.g., area under curve [AUROC] as a non-

parametric measure of sensitivity). 

In addition to its application to primary decision performance, SDT can also 

account for confidence by assuming multiple additional type 2 criteria dividing the 

decision space. While the implementations of the type 2 SDT vary with different 

assumptions, the central idea is that more extreme states of the decision variable (lower 

than the lowest criterion or higher than the highest criterion) result in higher confidence, 

while more intermediate states result in lower confidence (Clarke et al., 1959; Galvin et 

al., 2003; Macmillan & Creelman, 2004; Maniscalco & Lau, 2012, 2014; Maniscalco et 

al., 2016; Peters & Lau, 2015). This type 2 SDT approach has provided adequate 

accounts for confidence judgment since early work and more recent variants have been 

developed (e.g., with additional assumptions on decision space [Maniscalco et al., 

2016], and noise structures [Shekhar & Rahnev, 2019]). Additionally, this approach 

also provides a foundation for measures of metacognitive performance in recent 

research (Pleskac & Busemeyer, 2010; Maniscalco & Lau, 2012; Maniscalco et al., 

2022; discussed in Section 1.4.1.2). 
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However, this traditional SDT approach is limited in two ways. First, this 

approach connected the primary decision and confidence judgment, but its application 

to error monitoring and changes of mind is still limited (although there has been 

attempts to apply SDT for error detection tasks, the applications did not consider 

primary decision performance; Charles et al., 2013; Steinhauser & Yeung, 2010). The 

main reason is that SDT assumes that primary decision and confidence are based on the 

same source of evidence, which is inconsistent with major theories suggesting that error 

detection and changes of mind were driven by an evidence source different from that of 

primary decision (Yeung et al., 2004; Stone et al., 2022; Ullsperger et al., 2010). Even 

in SDT variants where confidence involves different sources of evidence than the 

primary decision (e.g., sensory signal contaminated by metacognitive noise), these 

models still do not allow cases where confidence contradicts the primary decision 

(Shekhar & Rahnev, 2019). Second, SDT does not consider the temporal dynamics 

within decisions, and thus not accounting for the RTs of primary decision and 

metacognitive decisions (Rahnev, 2021).  

1.4.2. Sequential sampling models 

One type of model that overcomes the limitations of SDT are sequential 

sampling models, which typically assume noisy accumulation of evidence over time, 

and a decision is made when the accumulated evidence crosses a decision criterion, or 

threshold (Ratcliff, 1978). These models have been successful in accounting for primary 

decisions, and it is possible to extend their application to secondary decisions with 

additional auxiliary assumptions on how confidence is related to the accumulation 

processes (Lee et al., 2022). This section discusses two major categories of sequential 

sampling models: single-stage models, which suggest confidence is based on evidence 

accumulated during the decision process, and dual-stage models, which suggest 
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confidence also involves evidence accumulated during post-decisional processes, and 

could be applied to changes of mind and error detection (Moran et al., 2015; Resulaj et 

al., 2009; Ullsperger et al., 2010). 

It should be noted that past studies have also categorized models by other 

features, for example, when confidence processing occurs (i.e., locus of confidence, 

which does not necessarily align with whether confidence is based on pre- or post-

decisional evidence, e.g., a model could assume that confidence processing occurs after 

decision but based on evidence accumulated during decision formation, Baranski & 

Petrusic, 1998; Moran et al., 2015; Yeung & Summerfield, 2012), whether confidence 

judgment is computational or heuristic-based (i.e., based on evidence from the stimulus 

or external information such as RT; Moran et al., 2015; Shea et al., 2014), whether a 

single decision variable or two separate variables support decision and confidence (i.e., 

first-order vs. second-order models, without specifying the temporal aspect; Fleming & 

Daw, 2017). 

1.4.2.1 Single-stage models 

An early example of single-stage models is the accumulator model by Vickers 

and Packer (1982). Central to their model is the balance-of-evidence hypothesis, which 

states that confidence is determined by the difference in accumulated evidence between 

the winning and losing accumulators contributing to the primary decision. This 

hypothesis was successful in accounting for confidence in different tasks and influenced 

later models that involved different accumulation processes and auxiliary assumptions 

(Charles & Yeung, 2019; Fleming & Daw, 2017; Kiani et al., 2014; Rahnev, 2021; 

Ratcliff & Starns, 2009, 2013; Sander et al., 2016). For example, Kiani et al. (2014) 

proposed an evidence accumulation model in which the balance of evidence together 

with decision time (and thus RT) were sufficient to account for confidence, which 
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additionally assumes that RT could inform confidence as high confidence is often 

coupled with shorter RT. Additionally, single-stage models can also involve different 

accumulation processes and computation of confidence, for example, leaky and 

competing accumulators, or accumulation of confidence rather than evidence (Lee et al., 

2022; Maniscalco et al., 2021; Usher & McClelland, 2001). However, as most models 

of this type generally assume confidence is a readout of decision variable, most struggle 

to explain empirical findings that confidence and accuracy were sometimes dissociable 

(unless an assumption of biased evidence use is incorporated; Maniscalco et al., 2016; 

Zylberberg et al., 2012), or account for error awareness and changes of mind 

(Desenders et al., 2020, 2021; Fleming & Daw, 2017; Rabbitt, 1966; Resulaj et al., 

2009; Steinhauser & Yeung, 2010; Stone et al., 2022). 

1.4.2.2 Dual-stage models 

More recent models therefore incorporated a post-decisional evidence 

accumulation process, reflected by the state of a metacognitive or confidence variable. 

A simple form of this kind of models assumes a continuation of the pre-decisional 

evidence accumulation (e.g., due to late-arriving evidence in the processing pipeline) 

and additional criteria that define the amount of evidence required to reach certain 

confidence levels (Moran et al., 2015; Pleskac & Busemeyer, 2010; Resulaj et al., 2009; 

van den Berg, Anandalingam et al., 2016; Yu et al., 2015). Because this kind of models 

does not have the limitation that the same decision variable determines choice 

metacognitive decision, it allows cases where the metacognitive decision contradicts the 

primary decision, thus providing an explanation for changes of mind in addition to 

confidence (Resulaj et al., 2009; van den Berg, Anandalingam et al., 2016).  

Similarly, post-decisional evidence accumulation has also been proposed to be 

the mechanism underlying error awareness (Steinhauser & Yeung, 2010; Ullsperger et 
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al., 2010). In such case, however, it is assumed that this process accumulates error-

specific evidence from multiple sources (e.g., post-response conflict) instead of sensory 

evidence from stimulus (Ullsperger et al., 2010). Similar suggestions that other 

evidence sources could contribute to metacognitive judgment have also been made for 

confidence judgment (e.g., information from response execution [Fleming & Daw, 

2017], memory [Yu et al., 2015]). More recently, it was further suggested that error-

specific evidence from multiple sources could be accumulated to give rise to both 

confidence and error awareness in a unified model (Desender et al., 2021). With the 

assumption that different sources of evidence contribute to the post-decisional 

accumulation process, it has been proposed that the evidence accumulation processes of 

the pre-decisional stage and post-decisional stage differ in terms of accumulation rates 

and reference frames: The pre-decisional stage accumulates sensory evidence with 

reference to the stimulus-response mapping, while the post-decisional stage 

accumulates error evidence with reference to decision accuracy (Desender et al., 2021).  

1.4.3. Summary 

This section reviewed the major theories on metacognitive decisions and the 

convergence from three areas of metacognitive decisions that a two-stage, evidence 

accumulation model could be applied in their respective areas. This forms the basis that 

different metacognitive decisions could be explained by a common mechanism, and the 

construct of confidence is common in these models. (Desender et al., 2021; van den 

Berg, Anandalingam et al., 2016). However, while such proposal is possible, it should 

be considered with caution as these metacognitive decisions could be qualitatively 

different at least in the following two aspects. 

First, while sequential sampling models commonly assume that metacognitive 

decisions are largely determined by accumulated evidence, it is unclear what type of 
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evidence is relevant, and whether different metacognitive decisions involve the same 

sources of evidence. Past studies have shown that metacognitive decisions are likely 

informed by a wide range of information sources (i.e., a multi-cue model; Bolt et al., 

2017; Stone et al, 2022; Ullsperger et al., 2010), such as information from different 

stimulus properties (Bolt et al., 2017; Rausch et al., 2018; Zylbergerg et al. 2012), 

information related to motor execution (Fleming et al., 2015; Resulaj et al., 2009; 

Pereira et al., 2020; Turner et al., 2021), prior belief (Fleming & Daw, 2017), individual 

differences in self-confidence (Double & Birney, 2019), or even information confidence 

from irrelevant tasks (e.g., changes in motion range in a dot motion stimulus affects 

brightness judgment based on the same stimulus, i.e., uncertainty transfer effect; Spence 

et al., 2018). However, these sources of evidence might not contribute similarly to 

different types of metacognitive decisions. For example, some studies have shown that 

confidence could be explained solely by stimulus-based evidence, while changes of 

mind and error awareness were often explained by post-decisional evidence such as 

response conflict (Lee et al., 2022; Shekhar & Rahnev, 2022; Steinhauser et al., 2008; 

Steinhauser & Yeung,2010; Stone et al., 2022; Ullsperger et al., 2010). 

Second, the temporal aspect of evidence accumulation could differ across 

different types of metacognitive decisions (discussed in Section 1.3.5). On the one hand, 

confidence appears to be more closely related to pre-decisional process (Lee et al., 

2022; Shekhar & Rahnev, 2022). On the other hand, changes of mind and error 

awareness might rely more on post-decisional processes (Steinhauser et al., 2008; 

Steinhauser & Yeung, 2010; Stone et al., 2022; Ullsperger et al., 2010). This potential 

difference in processing stages also reinforces the idea that different metacognitive 

decisions involve different sources of evidence, as previous studies have shown that 
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contributions from different evidence source could change across processing stages 

(Stone et al, 2022). 

Therefore, metacognitive decisions appear to be more complex processes and 

the proposals that they shared a common mechanism remains to be explored. 

Specifically, in the current project focusing on confidence judgment, sources of 

evidence and the temporal aspect of accumulation process were respectively 

investigated with behavioral experiments that manipulated stimulus properties and ERP 

measures. To provide a background of these two methodological approaches, the next 

section reviews common measures that are relevant to the current project. 

1.5. Measures in metacognitive decision research 

To understand metacognitive processes, studies most often required 

metacognitive decisions with different types of behavioral measures and obtain neural 

measures that correlate with these metacognitive decisions under different experimental 

conditions. This section first focuses on the most common behavioral measure of self-

report, subjective ratings of accuracy and its derived measures of metacognitive 

performance. Then it moves on to the often used event-related potentials (ERP) 

measures based on EEG signals, which were found to be consistently related to 

metacognitive decisions. 

1.5.1. Behavioral measures 

1.5.1.1 Accuracy ratings 

Although different methods have been used to estimate metacognitive states 

(e.g., pupil dilation [Urai et al., 2017] for confidence, movement tracking [Resulaj et al., 

2009] for changes of mind), the majority of studies on metacognitive decisions 

employed self-report accuracy ratings (including confidence ratings, error awareness 

ratings, and change-of-mind responses). This section reviews commonly used 
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measurements in the literature and provides a background for the ratings scale used in 

the current project. 

In error monitoring studies, error awareness is most often measured after 

decisions with forced-choice ratings, which require a response to indicate whether or 

not (or the extent to which) the participant is aware of an error, or error-signaling 

responses, which requires pressing a button only when the participant is aware of an 

error (Nieuwenhuis et al., 2001; Wessel, 2012). Error-signaling responses are 

considered suboptimal as it could induce a bias not to report error awareness and could 

wrongly categorize trials with residual error awareness as unaware errors (Wessel, 

2012). Within studies employing forced choice ratings, most studies used binary scales 

and only few used ordinal scales that measure the degree of error awareness (Wessel, 

2012; Scheffers & Coles, 2000; Hewig et al., 2011). 

On the other hand, confidence has been measured less consistent ways. 

Researchers have employed different variants of the confidence rating scale (Grimaldi 

et al., 2015; Rahnev et al., 2020). In terms of the timing when the ratings are given, 

studies have used retrospective ratings (confidence reported after choice), prospective 

confidence ratings (confidence prediction before choice), or simultaneous report of 

choice and confidence (Fleming & Dolan, 2012; Fleming et al., 2012; Peters, 2022; 

Siedlecka et al., 2016; Zylberberg et al., 2014). These options were motivated by 

different assumptions and could exert different effects. For example, retrospective 

ratings usually track accuracy better than prospective ratings (Fleming & Daw, 2017; 

Siedlecka et al., 2016). Simultaneous report was assumed to limit post-decisional 

processing underlying confidence judgment, but some argued that it could also lead to 

different processing and interpretation than that elicited by sequential report (as an 

experience judgment instead of a performance judgment; Desender et al., 2020; Fleming 



   42  

& Lau, 2014; Galvin, 2003; Petrusic & Baranski, 2003; Samaha & Denison, 2022). In 

terms of the measurement scales, studies differ by the type of scale (continuous, ordinal 

with different number of points, and binary ratings scales) as well as scale labels (verbal 

labels [“surely incorrect” vs. “surely correct”] vs. percentage labels [0% to 100% 

correct]; Cheesman & Merikle, 1986; Dienes & Perner, 1999; Grimaldi et al., 2015; 

Baranski & Petrusic, 1994, 1998). Studies also assess confidence with regard to 

performance of different scales. While traditionally item-wise confidence judgment is 

most commonly used, confidence judgement can also be made with regard to 

performance within task intervals or overall performance over the whole task (Norman 

& Price, 2015; McWilliam et al., 2022). 

More importantly, confidence rating scales also differ in terms of scale range. 

While the full-range scale ranges a from “surely incorrect (0% chance of being correct)” 

to “surely correct” (100% chance of being correct), others have used a half-range scale 

which ranges from “not confident” (50% chance of being correct) to “confident” (100% 

chance of being correct), based on the assumption that in two-choice tasks the 

objectively minimal accuracy should be 50% (Lichtenstein et al., 1982). Therefore, with 

a half-range scale, participants might report low confidence when they know their 

decision was wrong, but the full-range scale allows indicating that one has detected an 

error (Baranski & Petrusic, 1994). For this reason, more recent studies are now shifting 

to the use the full-range scale instead of the half-range scale as a hybrid measure of both 

confidence and error awareness, thus avoiding excluding error detection trials or simply 

recording them as low confidence trials as in previous studies (Bolt & Yeung, 2015; 

Fleming & Daw, 2017).  

Such a measure could also be converted into a measure of changes of mind and 

thus serves as a hybrid scale that measures these three types of metacognitive decisions. 
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Particularly, assuming that these metacognitive decisions can be defined on a 

continuum of subjective probability of being correct, any confidence ratings indicating 

accuracy below chance could be considered as a potential change-of-mind trial (Charles 

et al., 2019; Fleming et al., 2018). By the same token, the graded confidence ratings 

could also be reverse coded as a measure of error awareness (e.g., confidence ratings 

indicating “surely incorrect” could be considered as indicating a strong sense of error 

awareness). While such conceptualization could be inconsistent with the theoretical 

differences between these types of decisions and could affect the interpretation of 

findings (Charles & Yeung, 2019; Maniscalco & Lau, 2014), this hybrid scale provides 

a flexible, simultaneous measure of the three types of metacognitive decisions. 

1.5.1.2 Metacognitive accuracy/sensitivity 

Measures of subjective accuracy allow researchers to further investigate how 

well metacognitive decisions match primary task performance, termed metacognitive 

accuracy/sensitivity (Fleming & Dolan, 2012; Fleming & Lau, 2014). Although humans 

are capable of making metacognitive decisions that reasonably correspond to objective 

accuracy, this correspondence appears to vary across experimental conditions and 

individuals (Rahnev et al., 2020; Rouault et al., 2018). To better understand this 

relationship, a number of measures of metacognitive accuracy have been developed. In 

confidence studies, these include calibration measures, correlation measures such phi 

and gamma (correlation between accuracy and binary/ordinal confidence ratings), and 

early SDT-derived measures (which measures how well high and low confidence 

ratings discriminate correct and erroneous decisions; Baranski & Petrusic, 1994; Clarke 

et al., 1959; Fleming & Lau, 2014; Galvin, 2003; Lichtenstein & Fischhoff,1977; 

Maniscalco & Lau, 2012). Similarly, error monitoring studies also examine 

metacognitive performance with error detection rates and SDT-derived measures 



   44  

(Steinhauser & Yeung, 2010), and changes of mind studies measure the proportions of 

corrective changes and spoilt responses (Stone et al., 2022). However, a major 

limitation is that these measures are not independent of primary task performance 

(which could be confounding as primary and secondary decision performance are often 

positively correlated; Baranski & Petrusic, 1994; Evans & Azzopardi, 2007; Fleming & 

Lau, 2014).  

Therefore, less biased SDT-derived measures have been developed, and one 

commonly used measure is meta-d’ (Mansicalco & Lau, 2012; Fleming, 2017). The 

basis of meta-d’ is the d’ measure in SDT. As discussed above in Section 1.4.1.1., d’ is 

a sensitivity measure that represents how well the representation of two stimuli are 

discriminable to an observer in the presence of noise, and this is usually estimated with 

primary task performance in the type 1 SDT model (Macmillan & Creelman, 2004). The 

measure of meta-d’ was developed based on the fact that the type 1 SDT model can also 

be determined accuracy ratings. Therefore, in reverse, empirical accuracy ratings could 

be expressed in terms of type 1 model parameters. In practice, meta-d’ was estimated by 

fitting the SDT model to accuracy ratings data. This estimated meta-d’ is therefore on 

the same scale of d’ and thus can be used to calculate a metacognitive measure relative 

to primary task performance (by calculating the ratio between the two [meta-d’/d’] or 

difference between the two [meta-d’ – d’]), termed metacognitive efficiency (Fleming, 

2017; Mansicalco & Lau, 2012; but recent studies have suggested that this measure is 

not completely independent of primary task performance [Guggenmos, 2021],  

speed/accuracy trade-off [Desender et al., 2022], and metacognitive bias [Shekhar & 

Rahnev, 2021; Xue et al., 2021]). 

These less biased measures have been commonly used in studies on confidence 

judgment and error monitoring (Charles et al., 2013; Guggenmos, 2021). These studies 
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showed that human participants usually show metacognitive inefficiency, meaning 

metacognitive performance worse than primary task performance, but in some cases 

metacognitive hyper-efficiency was observed (i.e., metacognitive performance being 

better than primary task performance, e.g., Charles et al., 2013). These discrepant 

findings may result from the use of other sources of evidence, error detection, and 

different criteria improved metacognitive performance (Fleming & Daw, 2017; 

Maniscalco & Lau, 2012). 

1.5.1.3 Metacognitive bias 

Additionally, when metacognitive accuracy/sensitivity is not perfect, a 

metacognitive bias can be measured (i.e., the tendency to over- or underestimate 

confidence; Baranski & Petrusic, 1994; Fleming & Lau, 2014; Lichtenstein & 

Fischhoff, 1977). Traditionally, in confidence studies this bias was termed over-/under-

confidence bias (Lichtenstein & Fischhoff,1977; Baranski & Petrusic, 1994). A typical 

finding is that metacognitive bias depends on the task type and difficulty. Past studies 

showed a hard-easy effect, which describes the common phenomenon that individuals 

are usually overconfident in difficult, knowledge-based tasks, while underconfident or 

unbiased in easier, perceptual tasks (Gigerenzer et al., 1991). 

While past studies used different measures of metacognitive bias (e.g., 

calibration measures), a metacognitive bias derived from SDT, meta-c, was more 

commonly utilized in recent studies (Baranski & Petrusic, 1994; Bolt & Yeung, 2017; 

Maniscalco & Lau, 2012, 2014). Based on the same model that generates meta-d’, meta-

c can be estimated similarly. This measure of metacognitive bias was found to be 

relevant particularly when metacognitive decisions were biased, e.g., when confidence 

appeared to be based on sources of evidence that were not informative about decision 

accuracy (Boldt et al., 2017; Samaha & Denison, 2022; Winter & Peters, 2022). 
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1.5.2. ERPs correlates of metacognitive decisions 

Besides behavioral measures, previous studies have also utilized EEG 

recordings and identified ERP correlates of metacognitive decisions. Typically, EEG 

are recorded by electrodes on the scalp that record electrical activity of the human brain, 

which were then amplified and filtered; Luck, 2014). As the recordings are noisy in 

nature due to due to different sources of activity, recordings in response to a common 

event (e.g., stimulus onset and response) are averaged together to increase the signal-to-

noise ratio. The amplitudes within a specific time window and electrode location is then 

extracted as a measure of ERP. While ERPs correlates of metacognitive decisions 

cannot serve as objective measures of metacognitive states (e.g., how confident one is), 

they are informative about the timing and stage of processing involved in such 

metacognitive decisions. 

This section reviews three ERP components that are investigated in the current 

project: error-related negativity (ERN/Ne), CPP/P3 (Centro-parietal positivity), and 

error positivity (Pe). These components were candidates of metacognitive decision 

correlates because the ERN/Ne and the Pe have been the major ERP components 

studied in the error monitoring literature. Moreover, the Pe has been shown to be similar 

to the CPP/P3 in that they were both recently theorized to reflect decision variables, 

which are closely related to confidence (Gehring et al., 2012; Rausch et al., 2020). 

1.5.2.1. Centro-parietal potential (CPP/P3) 

The centro-parietal potential (CPP/P3; Sutton et al., 1965; also sometimes 

labelled as late positive potential when measured as a stimulus-locked component; Sun 

et al., 2017) is a positive component measured at midline, centro-parietal sites. Its 

typical measurement window varies from 300 to 800 ms relative to stimulus onset, or -

300 to -100 ms relative to the time point a response is given (depending on task 
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paradigms). and it is believed to originate from temporal and parietal regions (Polich, 

2012). The CPP/P3 is considered to be indicative of different cognitive processes 

related to stimulus processing (Polich, 2012). For example, early studies found it to be 

larger in response to targets compared to non-targets in oddball tasks, and thus was 

assumed to reflect updating of stimulus representation in working memory (Donchin et 

al., 1978, 1981), particularly for task-relevant properties as its amplitudes were larger 

when attention resources are not reduced by another task (Kramer et al., 1985). Also, it 

was suggested to be related to memory encoding and its amplitudes are related to 

memory strength (Crites et al., 1998; Patterson et al., 1991). Its latency was found to be 

related to stimulus processing speed (Kutas et al., 1977; Magliero et al., 1984). 

More recently, this component was considered a supramodal signal that reflects 

task-related evidence accumulation, as its amplitudes in a range of decision tasks show 

a characteristic build-up pattern up to the response, which is considered as 

accumulation-to-bound dynamics, and this was observed even when no motor response 

was required (Kelly & O'Connell, 2013; O’Connell et al., 2012; O’Connell & Kelly, 

2021; Twomey et al., 2015). It also shows other characteristics that are related to 

evidence accumulation: Its build-up rates covary with RT, decision accuracy, as well as 

evidence strength (O’Connell & Kelly, 2021). It was therefore suggested that it closely 

corresponds to the decision variable in some computational models (Desenders et al., 

2021; Gold & Shadlen, 2007; O’Connell & Kelly, 2021). 

Some studies further linked this component to subjective experience including 

subjective visibility (Del Cul et al., 2007; Lamy et al., 2009; Sergent et al., 2005; 

Tagliabue et al., 2016, 2019) and decision confidence (Eimer & Mazza, 2005; Hillyard 

et al., 1971; Herding et al., 2019; Rausch et al., 2020; Sutton et al., 1982; Squires et al., 

1975). For example, its amplitudes were positively related to visual awareness reported 
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on the perceptual awareness scale in visual discrimination tasks (Tagliabue et al., 2016, 

2019). Its amplitudes also positively correlated with confidence and are affected by task 

difficulty in a way similar to confidence changes (Eimer & Mazza, 2005; Herding et al., 

2019; Rausch et al., 2020; Scheffer et al., 2000; Sun et al., 2017). However, it should be 

noted that this relationship between CPP/P3 amplitudes and confidence was mostly 

observed for correct trials, as some studies did not analysis error trials (e.g., Rausch et 

al., 2020), and the relationship was smaller or absent when error trials were analyzed 

(e.g., Eimer & Mazza, 2005; Herding et al., 2019; Hillyard et al., 1971). Additionally, 

this relationship was often based on stimulus-locked CPP amplitudes, which could be 

artefactual due to the negative relationship between RT and confidence (Feuerriegel et 

al., 2022). This is because low confidence trials are often coupled with slower 

responses, and the stimulus-locked CPP would thus be more temporally variable and 

smaller in amplitudes after averaging. 

1.5.2.2. Error negativity (ERN/Ne)  

The ERN/Ne is a negative deflection typically observed within 100 ms after an 

erroneous response in a wide range of speeded choice reaction time tasks with different 

stimulus modalities (Falkenstein et al., 1989, 1991; Gehring et al., 1990, 1993, 2012). It 

is typically measured at frontal sites and assumed to be generated at the anterior 

cingulate cortex (ACC; Nieuwenhuis et al. 2004; Hester et al., 2005; Scheffers et al., 

1996; Gehring et al., 2012). It has been theorized that it reflects processes involving 

cognitive control (Gehring et al., 2012), including mismatch between the 

representations of correct response and executed response (Coles et al. 2001; Di 

Gregorio et al., 2018; Falkenstein et al., 1991; Gehring et al., 1993; Scheffers & Coles, 

2000), mismatch between expected and actual stimuli (Bernstein et al., 1995; Schmidt 

& Gordon, 1977), the process of monitoring response conflict between multiple 
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activated responses (Carter et al., 1998; van Veen & Carter, 2002; Yeung et al., 2004), 

reinforcement learning and violation of expectation (Holroyd et al., 2004; Holroyd & 

Coles, 2002; Alexander & Brown, 2010), and negative affective response to errors (Luu 

et al., 2003, 2004; Luu & Pederson, 2004; Vidal et al., 2000). Additionally, although the 

ERN/Ne was proposed to be error-specific, a component following correct response 

with similar scalp distribution and latency, named the correct-response negativity 

(CRN), has also been consistently reported (Ford, 1999; Gehring & Knight, 2000; Luu 

et al., 2000; Scheffers & Coles, 2000; Vidal et al., 2000). 

Previous studies have reported several typical findings regarding the ERN/Ne. In 

terms of experimental conditions, ERN/Ne amplitudes were larger when task 

instructions emphasized accuracy over speed, and when errors were less likely (Arbel & 

Donchin, 2009; Falkenstein et al., 2000; Gehring et al., 1993; potentially due to 

increased significance of errors; Steinhauser & Yeung, 2012). In terms of behavioral 

correlates, its amplitudes were positively related to error correction magnitude, error 

correction likelihood and speed, as well as less forceful responses, and more post-error 

slowing (Falkenstein et al., 1995; Gehring et al., 1993; Yeung & Summerfield, 2012).  

In relation to metacognitive decision, it has been asked for a long time whether 

its amplitudes are modulated by error awareness or confidence. However, the answer to 

this question is still unclear as mixed findings have been reported (Dehaene et al., 1994; 

Endrass et al., 2007; Gehring et al., 1993; Scheffers & Coles 2000; Nieuwenhuis et al., 

2001; Steinhauser & Yeung, 2010; Wessel, 2012; Wessel et al., 2011). For example, 

Hewig et al. (2011) showed that the ERN/Ne was the larger for detected errors than 

undetected errors and correct trials, and Scheffers and Coles (2000) found that ERN/Ne 

amplitudes were modulated by confidence and error awareness in both correct and error 

trials, suggesting its relationship with error awareness or even confidence. However, 
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Endrass et al. (2007) and Neuwenhuis et al., (2001) reported that ERN/Ne amplitudes 

were the same for detected and undetected errors in their tasks. Additionally, these 

reported associations with error awareness and confidence could result from 

aggregating different proportions of error detection trials within confidence / error 

awareness categories, as some studies pooled together correct and error trials in their 

analyses (e.g., Boldt & Yeung, 2015).  It was suggested that this component does not 

directly index error awareness or confidence (but might reflect one source of evidence 

that contributes to them; Boldt & Yeung, 2015; Charles et al., 2013; Hewig et al., 2011; 

Rausch et al., 2020; Steinhauser & Yeung, 2010). 

1.5.1.4 Error positivity (Pe) 

The Pe is a positive slow deflection 200-400 ms after erroneous response in 

decision tasks (e.g., perceptual decision tasks, Flanker tasks, etc), measured at midline 

parieto-central sites (Gehring et al., 2012; Falkenstein et al., 1991; Hester, 2005; Yeung 

& Summerfield, 2012). Although its source is less well-characterized, it showed 

properties similar to the CPP/P3, including morphology and neural generators 

(Niewenhuis et al., 2001; Overbeek et al., 2005; Ridderinkhof et al., 2009; Murphy et 

al., 2015; Yeung & Summerfield, 2012). It has been theorized that this component 

reflects affective response to error, behavioural adaptation after error, and error 

awareness (Overbeek et al., 2005). It has also been noted that the Pe is composed of two 

sub-components: an early, fronto-central Pe, and a late, posterior Pe (Arbel & Donchin, 

2009; Ruchsow et al., 2005; van Veen & Carter, 2002). While the early Pe could be 

functionally similar to the ERN/Ne (that they are both related to error detection but not 

necessarily error awareness), the late Pe might be more related to error awareness or 

affective response (Endrass, 2007; van Veen & Carter, 2002). 
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Studies that have contrasted the Pe and ERN/Ne have shown that the Pe 

typically reflects error awareness as it shows stronger amplitudes for aware errors 

compared to unaware errors (Di Gregorio et al., 2018; Endrass et al., 2007; Murphy et 

al., 2015; Overbeek et al., 2005; Ridderinkhof et al., 2009). This relationship was also 

extended to confidence judgment by the finding that Pe amplitudes reflected both error 

awareness and confidence: Its amplitudes were negatively and linearly related to 

confidence ratings ranging from “surely incorrect” to “surely correct” (Boldt & Yeung, 

2015; Desender et al., 2019). Based on this relationship and the link between the Pe and 

CPP/P3, some theorized that the Pe reflects post-decisional accumulation of evidence 

analogous to the CPP/P3, which reflects evidence accumulation during decision 

formation. Note that these theories differ in terms of what evidence is accumulated 

(Desenders et al., 2021). Specifically, while some proposed that the Pe represents a 

metacognitive decision variable that accumulates “error evidence” that could be based 

on difference sources (Desenders et al., 2021; Murphy et al. 2015), others suggested that 

it represents evidence accumulation continued form the decision process (Rausch et al. 

2019). 

However, the relationship between the Pe and full-range confidence was only 

established preliminarily and has not been replicated in many studies (Boldt & Yeung, 

2015; Desender et al., 2019). Particularly, the linear relationship between confidence 

and Pe amplitudes reported by Boldt and Yeung (2015) could potentially be confounded 

by their analysis that pooled correct and error trials, as different levels of confidence are 

associated with different proportions of correct and error responses. That is, even if Pe 

amplitudes only differed between correct and erroneous decisions, a linear relationship 

between Pe amplitudes and confidence could still be observed due to this pooling 

procedure. Further, a recent study has suggested that the typical measures of Pe in these 
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studies could be biased by the practice of pre-response baseline correction (Feuerriegel 

et al., 2021; as mentioned above). The reason is that such a baseline often overlaps with 

the CPP/P3, which could also vary with error awareness and confidence, and thus 

contaminate the measure of Pe amplitudes. 

Other suggested roles of the Pe can also be found in the literature. For example, 

an alternative hypothesis is that stronger Pe amplitudes represent nonspecific 

ambiguity/uncertainty, not necessarily error awareness (Hewig et al., 2011), or the Pe is 

an expression of error awareness rather than representing the process that leads to error 

awareness (Ridderinkhof et al., 2009). 

1.5.1.5 Summary 

The above section reviewed the three ERP components that could be related to 

metacognitive decisions. While the ERN/Ne appeared to be only modulated by 

detection of errors, both CPP/P3 and Pe were suggested to be related to error awareness 

and/or confidence. These two latter components proposed to reflect evidence 

accumulation in different ways: While the CPP/P3 reflects accumulation of sensory 

evidence, the Pe could reflect error evidence accumulation, mapping respectively onto 

the decision and metacognitive variables in a unified model of metacognitive decisions 

(Desenders et al., 2021). While this notion receives partial support from studies the 

relationships of CPP/P3 and Pe with confidence (e.g., Boldt et al., 2015; Herding et al., 

2019), some methodological concerns have been raised. Furthermore, whether these 

relationships are similar in correct is  yet to be clarified (Feuerriegel et al., 2021). The 

use of ERP measures in the current project allows investigating the temporal aspect of 

evidence accumulation. Particularly, whether different types of metacognitive decisions 

are similarly related to sensory evidence and error evidence accumulation.  
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1.5.3. Experimental manipulations of sensory evidence 

Behavioral experiments probing the mechanism underlying metacognitive 

decision often involve the manipulation of stimulus properties (Shekhar & Rahnev, 

2019). Particularly, qualitative patterns between these manipulations and the dependent 

variables of accuracy, confidence, RT of primary and secondary decisions could be 

diagnostic of different models (Moran et al., 2015). For example, when comparing 

different computational models of confidence judgment, Moran et al. (2015) established 

a set of empirical hurdle requirements that a plausible model should meet. This section 

reviews two important dimensions of stimulus properties: evidence strength and 

evidence variability. 

1.5.3.1. Evidence strength 

Studies on decision making often investigate the effects of evidence strength on 

decision performance as the observed patterns guide the development of theories and 

computational models for both primary and metacognitive decisions (Moran et al., 

2015). In most studies, the strength of task-relevant evidence was manipulated. 

However, recent studies have shown that task-irrelevant evidence also showed 

systematic effects on both primary and metacognitive decisions, and models were 

assessed on how well they could account for these patterns (Ratcliff et al., 2018; 

Teodorescu et al., 2016; Turner et al., 2021).  

Specifically, these studies focused on two-choice comparative judgment tasks, 

where evidence strength can be defined in two ways: Relative evidence refers to the 

magnitude difference between the two stimuli (which is task-relevant), and absolute 

evidence refers to the overall magnitude of the two stimuli (which is task-irrelevant). 

Empirically, it has been shown that while increased relative evidence increases 

accuracy and shortens RT (Ratcliff et al., 2018; Teodorescu et al., 2016). In terms of 
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secondary decision performance, increased relative evidence increases confidence in 

correct trials, but reduce confidence in error trials (i.e., more certain that errors 

occurred; Sander et al., 2016). This pattern is consistent across tasks and stimulus 

modalities (length discrimination task [Johnson, 1939; Festinger, 1943; Yu et al., 2015]; 

weight-lifting tasks [Pierrel & Murray, 1963]; extended decision tasks with visual 

length stimuli [Vickers & Packer, 1982; Vickers et al., 1985]; auditory tasks [Sander et 

al., 2016] and knowledge-based decision tasks [e.g., which of the two countries given 

has a larger population; Sander et al., 2016; Yu et al., 2015]; dot sampling task [Charles 

& Yeung, 2019]). These patterns have been well-captured by model variants that 

assume the balance-of-evidence hypothesis, that indeed confidence was largely 

determined by relative evidence (Moran et al., 2015). 

On the other hand, increased absolute evidence impairs decision accuracy and 

shortens RT, possibly through increased internal noise or variability of stimulus 

representation (Ratcliff et al., 2018; Teodorescu et al., 2016). Importantly, increased 

absolute evidence also appear to affect metacognitive decision at least in terms of 

changes of mind, as Turner et al. (2021) showed that it led to slower change-of-mind 

RT and lower change-of-mind rates. Unlike the effects of relative evidence, these 

effects of absolute evidence could not be adequately explained by existing models. 

While these findings are currently limited to changes of mind, exploring the effects of 

absolute evidence might inform the mechanism underlying metacognitive decisions in 

general. 

1.5.3.2. Evidence variability 

Although less studied than evidence strength, evidence variability has also been 

shown to affect confidence as it represents how reliable the evidence is (Boldt et al., 

2017; de Gardelle & Mamassian, 2015; Yeung & Summerfield, 2014). For example, in 
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a color-averaging task, it has been shown that increased variability in stimulus 

presentation reduced confidence after primary decision performance (accuracy and RT) 

and relative evidence were taken into account (Boldt et al., 2017). Notably, while the 

effect of relative evidence on confidence was explained by decision performance, 

variability predicted confidence over and above primary decision performance, 

suggesting that variability itself could serve as a cue for confidence judgment. 

However, such an effect does not appear to be universal and might be task-

dependent. On one hand, consistent with the findings by Boldt et al. (2017), some found 

that confidence decreases with variability. For example, Spence et al. (2015, 2018) 

reported that wider motion range in a dot motion task did not influence accuracy, but 

reduced confidence. On the other hand, some studies found the opposite pattern that 

confidence increased with higher variability. For example, Zylbergerg et al. (2016) 

showed that increased variability of motion coherence led to a small decrease in 

accuracy but increased confidence. In addition, the effect of variability could interact 

with task difficulty. For example, Zylberberg et al. (2014) found that in a bar orientation 

detection task, increased variability of bar orientation reduced accuracy, but its effect on 

confidence depended on evidence strength: Higher variability increased confidence 

when evidence strength was low but decreased confidence when signal strength was 

high. It was suggested that in conditions where evidence strength was limited, 

variability could be mistaken as a cue to confidence (Boldt et al., 2017; Sander et al., 

2016). 

1.5.3.3. Summary 

While relative evidence has long been manipulated to probe the mechanism 

underlying metacognitive decisions, some recent studies shifted the focus to other 

evidence properties such as absolute evidence strength and evidence variability. 
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Although only a small number of studies have investigated their effects and they were 

often limited to a single type of metacognitive decision, their effects appear to be as 

important as that of relative evidence, particularly in the understanding of how 

metacognitive decisions could be affected by internal noise and cues other than directly 

task-relevant signals. 

1.6. The current project 

This introduction chapter has provided a review on three types of metacognitive 

decisions, namely confidence judgment, error awareness, and changes of mind. Given 

their similarities, it has been proposed that they could be closely related, and evidence 

accumulation models have been proposed to link confidence with changes of mind and 

error awareness (Desender et al., 2021; van den Berg, Anandalingam et al., 2016). The 

connection between confidence and evidence accumulation was also supported by ERP 

studies that showed confidence was related to indexes of pre- and post-decisional 

evidence accumulation. 

While these models have received preliminary support from behavioral and ERP 

studies, the extent to which confidence and other metacognitive decisions are based on 

the same sources of evidence or processes remains to be explored, given their 

differences on methodological, conceptual, and empirical grounds, as well as potential 

methodological confounds in previous ERP studies. Therefore, the current project 

focused on the role of confidence in metacognitive decisions and investigated: (a) how 

confidence is related to changes of mind, and (b) how confidence is related to pre- and 

post-decisional processes.   

  The first part of this project includes two behavioral studies aimed to answer the 

question: Do confidence and changes of mind change consistently in response to 

changes in stimulus properties? (Chapter 2, Studies 1 and 2). On a behavioral level, as 
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confidence and changes of mind are assumed to share the same source of sensory 

evidence, they should change consistently with the manipulations of sensory evidence, 

including relative evidence, absolute evidence, and evidence variability, which were 

shown to affect both confidence and changes of mind in past studies. 

 The second part of this project includes an EEG study aimed to answer the 

question: How is confidence related to pre- and post-decisional processes? Previous 

studies have provided evidence that confidence is related to ERP indexes of pre- and 

post-decisional evidence accumulation, namely the CPP/P3 and Pe (Desender et al., 

2021). However, such findings are mixed and potentially methodologically confounded. 

Moreover, the relationships between confidence and these ERP components could be in 

fact dependent on accuracy. Therefore, in an EEG study, these relationships were 

examined with the methodological confounds being controlled (Chapter 3, Study 3). 

Throughout these three studies, a two-choice, comparative brightness judgment 

task was used as the main task paradigm, as this perceptual decision task has been used 

in past studies and it allows the manipulation of different stimulus properties that 

represent relative evidence, absolute evidence, and evidence variability (Ratcliff et al., 

2018; Teodorescu et al., 2015; Turner et al., 2022). In each trial, participants were 

required to make a brightness judgment based on two flickering, grayscale square 

stimuli, and then report confidence using a full-range accuracy rating scale. 

 Lastly, the findings of these investigations will be summarized in Chapter 4, 

which discusses the role of confidence in metacognitive decision processes, as well as 

the limitations of the current project. 
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Chapter 2. Divergent effects of absolute evidence 

magnitude on decision accuracy and confidence in 

perceptual judgements 

The first part of the current project investigated how different types of 

metacognitive judgment could be affected by changes in different sensory evidence 

properties, namely relative evidence strength, absolute evidence strength, and evidence 

variability in a dynamic luminance judgment task. The current chapter focused 

specifically on confidence judgment and changes of mind. Research findings are 

reported in the published article below. 
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A B S T R A C T   

Whether people change their mind after making a perceptual judgement may depend on how confident they are 
in their decision. Recently, it was shown that, when making perceptual judgements about stimuli containing high 
levels of ‘absolute evidence’ (i.e., the overall magnitude of sensory evidence across choice options), people make 
less accurate decisions and are also slower to change their mind and correct their mistakes. Here we report two 
studies that investigated whether high levels of absolute evidence also lead to increased decision confidence. We 
used a luminance judgment task in which participants decided which of two dynamic, flickering stimuli was 
brighter. After making a decision, participants rated their confidence. We manipulated relative evidence (i.e., the 
mean luminance difference between the two stimuli) and absolute evidence (i.e., the summed luminance of the 
two stimuli). In the first experiment, we found that higher absolute evidence was associated with decreased 
decision accuracy but increased decision confidence. In the second experiment, we additionally manipulated the 
degree of luminance variability to assess whether the observed effects were due to differences in perceived 
evidence variability. We replicated the results of the first experiment but did not find substantial effects of 
luminance variability on confidence ratings. Our findings support the view that decisions and confidence 
judgements are based on partly dissociable sources of information, and suggest that decisions initially made with 
higher confidence may be more resistant to subsequent changes of mind.   

1. Introduction 

The cognitive and neural processes underlying simple decisions have 
been studied extensively over the past decades, and performance in 
discrete choice tasks has been successfully accounted for using compu-
tational models (Gold & Shadlen, 2007; Ratcliff, Voskuilen, & Teodor-
escu, 2018; Smith & Ratcliff, 2004). The most prominent class of models 
are evidence accumulation models, such as the Diffusion Decision Model 
(DDM; Ratcliff, 1978). These models describe the decision process as a 
noisy accumulation of evidence towards alternative decision thresholds. 
For a discrete perceptual decision, such as deciding whether a cloud of 
dots are predominantly moving to the left or the right, these models 
propose that sensory evidence is sampled and integrated over time, and 
a decision is made when the accumulated evidence reaches a threshold 
in favour of a particular choice outcome. 

When an incorrect decision is made, we can often rapidly detect that 
an error has occurred (Ullsperger, Danielmeier, & Jocham, 2014). For 
example, in a typical Flanker task, when judging the identity of a central 
letter in the presence of distracting flankers, a detected decision error is 
reflected in brain activity following the incorrect motor response 
(Scheffers & Coles, 2000). Beyond simply detecting an error, we can also 
rapidly change our minds and correct erroneous decisions (Resulaj, 
Kiani, Wolpert, & Shadlen, 2009; van den Berg et al., 2016). This ca-
pacity for fast changes of mind has been linked to metacognitive pro-
cesses – specifically, those which allow us to derive a subjective sense of 
confidence in our decisions (Fleming & Daw, 2017; van den Berg et al., 
2016). Consistent with the notion of a link between the processes un-
derlying confidence and changes of mind, decisions initially made with 
high confidence are less likely to be overruled than those made with a 
lower degree of confidence (van den Berg et al., 2016). In light of this, it 
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has been proposed that decision confidence may influence the processes 
that determine how quickly and how often we change our minds 
(Turner, Feuerriegel, Andrejevic, Hester, & Bode, 2021; van den Berg 
et al., 2016). Beyond these initial proposals, however, this idea is yet to 
be systematically tested. 

1.1. The effect of absolute evidence on changes of mind 

A recent study investigated how variations in absolute evidence 
magnitude affect the speed and accuracy of decisions and subsequent 
changes of mind (Turner, Feuerriegel, et al., 2021). In this study, par-
ticipants judged which of two flickering squares was, on average, 
brighter by integrating information over a short period of time. The 
overall (i.e., summed) luminance across the two stimuli was manipu-
lated to investigate the effect of absolute evidence, while relative evi-
dence (i.e., their luminance difference) was held constant. According to 
certain classes of evidence accumulation models (i.e., ‘purely relative’ 
models such as the DDM), the differences in evidence for each choice 
option are accumulated in the decision process (Ratcliff & Rouder, 
1998). This is empirically supported by the standard finding that 
increasing relative evidence leads to higher accuracy and faster response 
times (RTs; Ratcliff et al., 2018; Teodorescu, Moran, & Usher, 2016). 
However, purely relative models do not predict an effect of absolute 
evidence on decision accuracy or RT if relative evidence is held constant 
(although performance differences at different absolute evidence levels 
could still emerge due to Weber-scaling, i.e., diminished increase in 
perceived brightness as luminance increases; Geisler, 1989). Neverthe-
less, Turner, Feuerriegel, et al. (2021) showed that, even after consid-
ering the effects of Weber-scaling, decisions are sensitive to variations in 
absolute evidence magnitude – a finding which purely relative models 
cannot account for. In particular, consistent with other studies, it was 
shown that increasing absolute evidence leads to faster but less accurate 
decisions (Ratcliff et al., 2018; Teodorescu et al., 2016; Turner, Feuer-
riegel, et al., 2021). 

It should be noted that, to be consistent with previous studies (Peters 
et al., 2017; Teodorescu et al., 2016; Turner, Feuerriegel, et al., 2021), 
we use the term ‘evidence’ to refer to sensory evidence. That is, sensory 
information about each of the choice options. Therefore, in concrete 
terms, we define the ‘evidence’ for each choice option as their respective 
luminance values. Importantly, under this definition, the term ‘evi-
dence’ should not be interpreted as necessarily referring to ‘choice ev-
idence’. That is, information which can be used to inform a choice. This 
is because the sensory evidence associated with a single choice option (i. 
e., the luminance of one of the squares), or indeed the overall level of 
absolute evidence, is by itself not informative for decision-making (at 
least for comparative judgements). 

Turner, Feuerriegel, et al. (2021) asked the additional question of 
how absolute evidence magnitude affects the speed and likelihood of 
change-of-mind decisions. In their study, the stimuli were first presented 
for an initial luminance judgment and then remained on the screen for a 
further 1 s, allowing participants to submit a second, change-of-mind 
response within this time window. They reported that higher levels of 
absolute evidence led to slower change-of-mind RTs relative to the time 
of the decision. Importantly, these RT effects also remained when effects 
of Weber-scaling were accounted for in a follow-up experiment. This 
finding suggests that participants may have required a larger amount of 
conflicting, post-decisional sensory evidence to overrule their decisions 
in conditions of high absolute evidence. As decision RTs were consis-
tently faster in higher absolute evidence conditions, and faster RTs are 
associated with higher levels of decision confidence (Kiani, Corthell, & 
Shadlen, 2014), participants may have been more confident in their 
decisions, despite being objectively less accurate. If this were the case, 
this might have led participants to wait longer and accumulate more 
evidence before deciding to overrule their decision. The current study 
aimed to examine whether confidence would increase with increased 
absolute evidence. This would point to a moderation effect of confidence 

that could ultimately drive changes of mind. We further tested more 
directly whether any effects of confidence would potentially translate 
into changes of mind by converting our confidence measure into a 
change-of-mind measure, following previous approaches (Charles & 
Yeung, 2019; Fleming, van der Putten, & Daw, 2018). 

1.2. The decision-congruent evidence hypothesis 

The idea that confidence may have increased with higher absolute 
evidence magnitude is consistent with the decision-congruent evidence 
hypothesis. This hypothesis suggests that the extent of sensory evidence 
in favour of the selected option primarily informs confidence judge-
ments (Koizumi, Maniscalco, & Lau, 2015; Odegaard et al., 2018; Peters 
et al., 2017; Samaha & Denison, 2020; Zylberberg, Barttfeld, & Sigman, 
2012). These accounts suggest that, while decisions are determined by 
the difference in evidence between choice options (i.e., relative evi-
dence), confidence might be a product of a winner-takes-all process. The 
more evidence for the winning option, the higher the confidence in the 
decision, regardless of the amount of evidence for the alternative, non- 
chosen option (Peters et al., 2017; Zylberberg et al., 2012). Similar re-
sults have been shown experimentally via manipulations of ‘positive’ 
evidence (i.e., evidence supporting the correct response) and ‘negative’ 
evidence (i.e., evidence supporting the alternative response) in random 
dot motion and grating orientation judgment tasks (Koizumi et al., 2015; 
Odegaard et al., 2018; Samaha, Barrett, Sheldon, LaRocque, & Postle, 
2016; Samaha & Denison, 2020). Specifically, when the ratio between 
positive and negative evidence was held constant, increased positive and 
negative evidence together led to increased confidence without 
impacting accuracy. This effect was termed the Positive Evidence Bias 
(Maniscalco et al., 2021; Samaha & Denison, 2020). Taken in relation to 
the findings of Turner, Feuerriegel, et al. (2021), this would mean that 
stronger absolute evidence (and the corresponding increase in decision- 
congruent evidence) may have increased participants’ subjective con-
fidence in their decisions and, in turn, made them less prone to changing 
their mind. As Turner, Feuerriegel, et al. (2021) did not investigate 
confidence, the current study was designed to directly test whether 
stronger absolute evidence in the same task as used by Turner and col-
leagues does indeed lead to increased decision confidence. 

1.3. The current study 

We employed a luminance discrimination task using flickering 
stimuli, as in Turner, Feuerriegel, et al. (2021), and manipulated both 
absolute and relative evidence across three levels (low, medium, and 
high). Stimuli were presented for a maximum of 1.5 s and disappeared 
when the keypress response reported the perceptual decision. Partici-
pants subsequently reported their degree of confidence in their decision 
on a 7-point scale ranging from “surely incorrect” to “surely correct”. 

In Experiment 1, we first aimed to replicate previous findings that (a) 
increasing relative evidence leads to increased decision accuracy and 
faster RTs, and (b) increasing absolute evidence leads to both lower 
accuracy and faster RTs (Ratcliff et al., 2018; Teodorescu et al., 2016; 
Turner, Feuerriegel, et al., 2021). Furthermore, we predicted that con-
fidence in trials with correct responses would increase with stronger 
relative evidence, while confidence in error trials would decrease with 
stronger relative evidence, as shown in previous studies (Sanders, 
Hangya, & Kepecs, 2016). Critically, we also predicted that stronger 
absolute evidence would be associated with increased confidence for 
both correct and error trials, despite decreased decision accuracy. This is 
because higher absolute evidence implies stronger decision-congruent 
evidence for both correct and error trials. Such findings in a highly 
similar task to Turner, Feuerriegel, et al. (2021) would suggest that 
slower change-of-mind responses co-occur with a higher degree of 
confidence in one’s decision. 

It should be taken into account that the high absolute evidence 
stimuli (i.e., brighter pairs of squares) would likely have been perceived 
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as being less variable over time. This is because physical luminance and 
perceived brightness are related via a nonlinear compressive function 
(Geisler, 1989). In other words, under conditions of high luminance, 
changes in perceived brightness with an equivalent increase in lumi-
nance are diminished. Accordingly, when there is the same amount of 
luminance variability, the variability in brightness over time will be 
perceived as more pronounced in the dimmer stimulus condition (i.e., 
dimmer squares will appear to flicker more than brighter squares). 

Perceived stimulus variability is theorised to inform confidence 
judgements (Yeung & Summerfield, 2012). Consistent with this theory, 
some previous studies have shown that higher stimulus variability can 
lead to lower confidence ratings (e.g., Desender, Boldt, & Yeung, 2018; 
Navajas et al., 2017; Spence, Dux, & Arnold, 2016). However, the 
opposite has also been found (e.g., Zylberberg, Roelfsema, & Sigman, 
2014; Zylberberg, Fetsch, & Shadlen, 2016), where the observed effects 
appear to vary by the task and type of variability manipulation. It is 
therefore possible that reductions in perceived brightness variability for 
higher absolute evidence conditions in our task might have led to higher 
confidence ratings, which might explain the observed effects of absolute 
evidence. 

In Experiment 2, we examined whether decreases in stimulus vari-
ability could lead to increased confidence in our experimental design, by 
directly manipulating luminance variability (i.e., the distribution of 
luminance values between frames around the same mean), in addition to 
relative and absolute evidence. This experiment therefore served two 
purposes: (a) to replicate the general effects of Experiment 1, and (b) to 
directly (i.e., experimentally) test the effect of stimulus variability on 
confidence within our specific luminance task. While finding that 
reduced stimulus variability leads to substantially higher confidence 
ratings would not prove that this is indeed the explanation for why 
increased absolute evidence impacts confidence, it would nevertheless 
demonstrate that it is possible for stimulus variability to affect confi-
dence in our study design. We could then speculate that this might also 
be a potential alternative explanation for the effects of absolute evidence 
on confidence in our experiments. However, if directly manipulating 
stimulus variability does not affect confidence in our study, a relevant 
contribution of stimulus variability on the current findings can be 
essentially ruled out. Moreover, we could include stimulus variability in 
our models to test whether effects of absolute evidence are reproducible 
at different levels of stimulus variability. 

2. Experiment 1 

2.1. Methods 

2.1.1. Participants 
Thirty-seven university student volunteers with normal or corrected- 

to-normal vision were recruited. Six participants were excluded: Three 
failed to report confidence in more than 20% of all trials, two showed 
lower than 55% accuracy, and one reported the same confidence level in 
more than 90% of trials where confidence was reported. The final 
sample comprised 31 participants (mean age = 26 years, SD = 5, range 
19–38 years, 17 females). This experiment was approved by the Uni-
versity of Melbourne ethics committee (ID: 1954641.2). 

2.1.2. Experimental procedures 
Before the experiment, participants gave written consent and were 

given task instructions. Participants were then seated in a dark testing 
booth 70 cm from a computer monitor. At the beginning of the experi-
ment, participants underwent task training while the experimenter 
stayed in the testing booth. This procedure ensured that participants 
understood the task instructions correctly. Participants then completed 
the main experiment. After completion of the task, participants were 
reimbursed 20 AUD and were debriefed by the experimenter. 

2.1.3. Task and stimuli 
We used a luminance judgment task to examine the effects of relative 

and absolute evidence on perceptual decisions, RTs, and decision con-
fidence. Participants had to decide which of two flickering squares, 
presented on the left and right of a central red fixation dot, was brighter 
(Fig. 1A). There were three levels (low, medium, high) for both relative 
evidence and absolute evidence, resulting in a 3 × 3 factorial design 
(Fig. 1B). 

The two square stimuli changed in luminance with each frame 
refresh (i.e., every 13.3 ms at 75 Hz). For each refresh, the luminance 
value for each square was determined by randomly drawing values 
sampled from two truncated normal distributions around the pre- 
determined means for each square, respectively. Mean luminance 
values for the two distributions were specified by pairs of RGB values, 
such that one distribution had a higher mean than the other (therefore, 
one stimulus appeared on average brighter than the other; Fig. 1B). 
Following Ratcliff et al. (2018), both distributions had a standard de-
viation of 25.5 and were truncated at ±1 SD from their means. The mean 
luminance values mapped onto relative evidence strength, defined as 
the difference in distribution means for the two stimuli, and absolute 
evidence strength, defined as the sum of the distribution means for both 
stimuli. The size of both stimuli was 70 × 70 pixels, and they were 
positioned at equal distance from the centre of the screen, separated 
from each other by 180 pixels. The positions of the stimuli were coun-
terbalanced such that in half of the trials, the left stimulus was brighter, 
and in the other half of the trials the right stimulus was brighter. The 
order of the trials was randomised. Participants were instructed to 
respond as quickly as possible. After submitting the choice response, 
participants were required to indicate their confidence using a 7-point 
rating scale ranging from “surely incorrect” (1) to “surely correct” (7), 
with a midpoint rating (4) indicating they were unsure whether they 
were correct or incorrect (i.e., they felt they were guessing). They were 
again instructed to respond as fast as possible. 

Participants completed a training phase before starting the experi-
mental phase. They first practised the experimental task (see below) for 
36 trials, without making confidence ratings. Instead, they received 
performance feedback after each trial to familiarise themselves with the 
judgement task. Subsequently, they practised the entire task, including 
confidence judgements for another 36 trials in which (as in the main 
experiment) no performance feedback was given. During training, a 
confidence rating scale was presented on the screen for a maximum of 
1500 ms or until response. Participants were instructed that during the 
main task, this visual presentation of the scale would be removed, and 
only the word “confidence” would prompt the rating. 

Experiment. After the two training blocks, participants started the 
main experiment. Each trial started with an intertrial interval lasting 
500 ms. A red fixation dot followed this interval in the middle of the 
screen for 600 ms, and then a blank screen was presented for 200 ms. 
After that, the flickering squares were presented, and participants were 
required to make the brightness decision by pressing either the left or 
right key on a response pad using left and right index fingers, corre-
sponding to which stimulus they perceived as brighter. The stimuli were 
presented for a maximum of 1500 ms and disappeared immediately after 
a response was submitted. Subsequently, after an interval of 500 ms with 
a blank screen, participants were asked to rate their confidence without 
a visual presentation of a rating scale but prompted by the word “con-
fidence”. The scale had the same properties as during training, and 
participants were required to press one of the seven keys on the response 
pad to indicate their confidence level. No confidence rating was required 
if the brightness judgment was “too slow” (>1500 ms RT) or “too quick” 
(<250 ms RT). In this case, only the respective timing feedback was 
presented for 1500 ms, and then the next trial began. 

The experiment comprised 1008 experimental trials equally allo-
cated across 14 blocks. Each block was followed by a self-terminated rest 
period. An equal number of trials from all conditions were randomly 
interleaved within each block. 

Y.H. Ko et al.                                                                                                                                                                                                                                    



   62  

 

Cognition 225 (2022) 105125

4

2.1.4. Apparatus 
Stimuli were presented on a Sony Trinitron Multiscan G420 CRT 

Monitor (resolution 1280 × 1024 pixels; frame rate 75 Hz) that was 
gamma-corrected with a ColorCAL MKII Colorimeter (Cambridge 
Research Systems), such that the physical luminance of the stimuli was 
linearly related to the RGB values. The task was programmed in MAT-
LAB R2018b (The Mathworks) using Psychtoolbox-3 (Brainard, 1997; 
Kleiner et al., 2007). Participants responded using a seven-button Ced-
rus response pad (RB-740, Cedrus Corporation). 

2.1.5. Data analysis 
We used generalised linear mixed-effects models (GLMMs) to 

examine the effects of relative and absolute evidence on accuracy, RT, 
and confidence ratings. For RT and confidence ratings, we ran two 
separate sets of analyses: one included only correct trials and the second 
set included only error trials. This was done to control for the effect of 
accuracy, given that error trials have different RT distributions than 
correct trials, and confidence patterns for correct and error trials could 
also potentially differ across relative and absolute evidence conditions 
(Gajdos, Fleming, Saez Garcia, Weindel, & Davranche, 2019; Turner 
et al., 2021; Urai, Braun, & Donner, 2017). Additionally, by converting 
confidence ratings into a change-of-mind measure, we also analysed 
how change-of-mind frequency was affected by absolute and relative 
evidence strength. This was done by transforming confidence ratings 
into a binary variable (confidence lower than 4 as 1 [change-of-mind 
trials], and confidence higher or equal to 4 as 0 [trials without 
changes of mind]), as in Charles and Yeung (2019) and Fleming et al. 
(2018). This approach resulted in seven separate and independent an-
alyses with different dependent variables: accuracy, RT (correct), RT 
(error), confidence (correct), confidence (error), changes of mind (cor-
rect), and changes of mind (error). 

For each model, the model structure included fixed effects of relative 
evidence, absolute evidence, and the interaction between relative and 
absolute evidence, and a random intercept by participant. We also 
attempted to fit models with random slopes for each effect of interest. 

However, we found that not all models with random slopes converged 
across the different analyses of accuracy, RT and confidence. To be 
consistent across these different analyses we therefore used models 
without random slopes. 

As in Turner, Feuerriegel, et al. (2021), for different dependent 
variables different distributions were assumed, and different link func-
tions were used: Binomial distributions with a logit function were used 
to model accuracy and changes of mind, gamma distributions with an 
identity function were used to model RTs, and normal distributions with 
an identity function were used to model confidence. All analyses were 
conducted in R (version 4.0.1). GLMMs were fitted using the lme4 
package (version 1.1; Bates, Maechler, Bolker, & Walker, 2015), and 
statistical significance of each effect was determined by likelihood ratio 
tests conducted using the afex package (version 0.28; Singmann, Bolker, 
Westfall, Aust, & Ben-Shachar, 2020). For brevity, only significant ef-
fects are reported in the results section. Complete statistical results 
including likelihood ratio test results for all effects and regression co-
efficients of the full models are reported in Supplementary Material. 
Code and data used for the analyses in this paper are available at htt 
ps://osf.io/r8vfx/. 

As shown by the results below, increases in absolute evidence led to 
increased confidence and faster RTs. As faster responding has been 
shown to contribute to higher confidence (Kiani et al., 2014), we further 
asked whether the effect of absolute evidence on confidence could 
simply be explained by faster RTs in conditions with higher absolute 
evidence. To answer this question, we ran post-hoc analyses in which 
confidence was predicted by RT and the same predictors as in the main 
analyses except absolute evidence, and then included absolute evidence 
in the model to examine whether absolute evidence could predict con-
fidence above the effect of RT. Also similar to the main analyses, each 
variable was entered into the model in a forward stepwise approach, and 
the statistical significance of each predictor was determined by likeli-
hood ratio tests comparing the models before and after the predictor was 
included. 

Fig. 1. Task paradigm and stimuli. (A) Paradigm. In each trial, two flickering square stimuli of different average luminance were presented. Each square changed in 
luminance with each frame. Participants were required to select the stimulus that appeared brighter on average and subsequently reported their decision confidence 
using a 7-point scale while the word “confidence” was presented on the screen. (B) Illustration of average luminance values for stimuli for all experimental conditions 
of Experiment 1. Luminance values were randomly sampled from normal distributions truncated one standard deviation around pre-defined means. The standard 
deviation of all distributions was 25.5. 
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2.2. Results 

2.2.1. Accuracy and response times 
First, we aimed to replicate previous findings that accuracy increases 

with stronger relative evidence but decreases with stronger absolute 
evidence (Ratcliff et al., 2018; Teodorescu et al., 2016; Turner, Feuer-
riegel, et al., 2021). As expected, there was a positive effect of relative 
evidence (χ2[2] = 1433.01, p < .001), a negative effect of absolute ev-
idence (χ2[2] = 485.87, p < .001), and an interaction (χ2[4] = 91.71, p 
< .001; the interaction was observed because the log odds of being 
correct was reduced by absolute evidence more strongly when relative 
evidence was high; see Supplementary Fig. S1. However, this pattern 
was not observable in terms of proportion correct). Fig. 2A shows that 
the average proportion of correct decisions increased with stronger 
relative evidence but decreased with stronger absolute evidence. Full 
statistical results are presented in Supplementary Tables S1 and S2. 

RTs were expected to be faster in conditions of stronger relative 
evidence and higher absolute evidence (Ratcliff et al., 2018; Teodorescu 
et al., 2016; Turner, Feuerriegel, et al., 2021). Consistently, for correct 
trials, there was an effect of relative evidence (χ2[2] = 314.71, p < .001), 
an effect of absolute evidence (χ2[2] = 35.85, p < .001), and an inter-
action (χ2[4] = 106.25, p < .001; Fig. 2B). RTs were faster in conditions 
with stronger relative and stronger absolute evidence, and the effects of 
relative evidence appeared to diminish in conditions of higher absolute 
evidence. When the analysis was repeated for error trials only, similar 
effects were found (relative evidence: χ2[2] = 18.54, p < .001; absolute 
evidence: χ2[2] = 49.96, p < .001; interaction: χ2[4] = 20.20, p < .001; 
Fig. 2C). Fig. 2B and C show that RTs generally became faster with 
stronger relative evidence. Stronger absolute evidence also led to faster 
RTs for low and medium relative evidence, both for correct as well as 
error trials. The exception was that, for the high relative evidence con-
dition, RTs were slower with low absolute evidence in error trials, but 
faster in correct trials. This result pattern was also reported in a previous 
study and appears to be a feature of this task (Ratcliff et al., 2018). 
Supplementary Fig. S2 further shows that RTs were faster in conditions 
of higher absolute evidence across all RT quantiles, as also reported by 
Turner, Feuerriegel, et al. (2021). Full statistical results are presented in 
Supplementary Tables S3 – S6. 

Taken together, these results show that increases in relative evidence 
are associated with faster and more accurate decisions. Moreover, these 
results replicate recent reports that increases in absolute evidence were 
associated with faster but less accurate decisions. The following section 
investigates the effect of absolute evidence magnitude on participants’ 
confidence ratings directly. 

2.2.2. Confidence 
We predicted that confidence would increase with both stronger 

relative and absolute evidence for correct trials. Consistent with our 
prediction, there was an effect of relative evidence (χ2[2] = 879.07, p <

.001), an effect of absolute evidence (χ2[2] = 293.89, p < .001), and an 
interaction (χ2[4] = 121.55, p < .001). Fig. 3A shows that mean confi-
dence ratings increased with both relative and absolute evidence, 
although the effect of absolute evidence diminished as relative evidence 
increased. For the analysis of error trials, there was only an effect of 
relative evidence (χ2[2] = 99.99, p < .001) and an effect of absolute 
evidence (χ2[2] = 392.15, p < .001); (Fig. 3B). As expected, the direc-
tion of the relative evidence effect was reversed, with highest confidence 
ratings seen in lower as compared to higher relative evidence conditions. 
Full statistical results are presented in Supplementary Tables S7 – S10. 
Interestingly, even on error trials, absolute evidence magnitude was 
positively associated with confidence. 

2.2.3. Change of mind 
When confidence was transformed into a binary variable that in-

dicates changes of mind (confidence lower than 4 indicates a change of 
mind), in correct trials we observed a negative effect of relative evidence 
(χ2[2] = 259.51, p < .001), a negative effect of absolute evidence (χ2[2] 
= 38.67, p < .001), and an interaction between relative and absolute 
evidence (χ2[4] = 22.35, p < .001). Fig. 4A showed that changes of mind 
were less likely with both stronger relative and absolute evidence, 
although the effect of absolute evidence diminished for stronger relative 
evidence. For error trials, a similar negative effect of absolute evidence 
was observed (χ2[2] = 176.64, p < .001), while relative evidence 
showed a positive effect (χ2[2] = 96.92, p < .001). There was also an 
interaction between relative and absolute evidence (χ2[4] = 14.09, p =
.007). Fig. 4B showed that changes of mind were less likely with stronger 
absolute evidence and weaker relative evidence, and the effect of ab-
solute evidence was diminished when relative evidence was weaker. 
These patterns of results are opposite to the patterns of confidence, 
consistent with the negative relationship between confidence and 

Fig. 2. Experiment 1 accuracy and response time (RT). (A) Decision accuracy (average proportion correct) in each condition. (B) Mean RTs for correct trials. (C) 
Mean RTs for error trials. Error bars represent standard errors of the mean (SEM). 

Fig. 3. Mean confidence ratings in each condition in Experiment 1. (A) Correct 
trials. (B) Error trials. Confidence ratings were measured on a scale ranging 
from 1 (“surely incorrect”) to 7 (“surely correct”). The dotted line indicates the 
mid-point of the scale. Error bars represent SEM. 
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changes of mind. Full statistical results are presented in Supplementary 
Tables S11 – S14. 

2.2.4. The effect of absolute evidence on confidence in addition to RT 
Lastly, to examine whether the effect of absolute evidence on con-

fidence was simply due to faster RTs in higher absolute evidence con-
ditions, we fitted models in which confidence was predicted by RT and 
relative evidence, and then compared model fits with a model that 
included the predictor of absolute evidence. When controlling for effects 
of RT in this way, confidence in correct trials was still predicted by 
relative evidence (χ2[2] = 667.60, p < .001) and RT (χ2[1] = 1207.10, p 
< .001), and additionally by absolute evidence (χ2[2] = 270.15, p <
.001) as well as the interaction between relative and absolute evidence 
(χ2[4] = 80.22, p < .001). Similarly, confidence in error trials was also 
predicted by relative evidence (χ2[2] = 125.88, p < .001) and RT (χ2[1] 
= 405.39, p < .001), and additionally by absolute evidence (χ2[2] =
335.72, p < .001) and its interaction with relative evidence (χ2[4] =
10.37, p = .035). Full statistical results are presented in Supplementary 
Tables S15 – S18. To further visualize how confidence was related to RT 
and absolute evidence, we binned the data into six RT bins using RT 
quantiles of each participant (10%, 30%, 50%, 70%, 90%; separately for 
correct and error trials), and plotted mean confidence in each bin by 
absolute evidence in Fig. 5A and B. These figures show that increasing 
absolute evidence generally led to higher confidence across correct and 
error trials across RT bins. 

In summary, these results confirm that, even though decision accu-
racy decreased with increasing absolute evidence, confidence increased 
for both correct and incorrect responses. Changes of mind likelihood 

results showed the opposite pattern, which could be expected from its 
negative relationship with confidence. Lastly, the positive effect of ab-
solute evidence on confidence did not appear to be simply due to faster 
RTs in conditions with higher absolute evidence. Next, we investigated 
in Experiment 2 whether confidence also co-varied with stimulus vari-
ability in our task, which was introduced as an additional factor. 

3. Experiment 2 

3.1. Methods 

3.1.1. Participants 
A different sample of 35 university student volunteers with normal or 

corrected-to-normal vision was recruited. Six participants were subse-
quently excluded: Three failed to report confidence in more than 20% of 
all trials, one showed lower than 55% accuracy, and two reported the 
same confidence level in more than 90% of trials where confidence was 
reported. Twenty-nine participants were included in the analysis (mean 
age = 23, SD = 5, range 18–39 years, 25 females). This experiment was 
approved by the University of Melbourne ethics committee (ID: 
1954641.2). 

3.1.2. Experimental procedures 
Experimental procedures were identical to Experiment 1, except 

where noted below. 

3.1.3. Task and stimuli 
Experiment 2 aimed to test the effect of evidence variability (i.e., the 

standard deviations of the distributions from which luminance values 
were sampled in each frame) on decision accuracy and confidence. It 
was a replication of Experiment 1 but included the additional factor 
“luminance variability”. We again used three levels of absolute evidence 
(low, medium, high), as in Experiment 1. We only included two levels of 
relative evidence (low, high) because the effects of relative evidence 
were not of primary interest in this experiment. The mean luminance 
values for the low and high relative evidence conditions were in- 
between the values used in Experiment 1 (see Supplementary 
Table S19) to reduce ceiling and floor effects. We further included two 
levels of luminance variability (low, high), resulting in a 3 × 2 × 2 
design. Evidence variability was operationalised as the variability of the 
luminance value distributions (standard deviation of 25.5 for high 
variability and 12.5 for low variability; Supplementary Fig. S3). The 
high variability condition was identical to Experiment 1, while the low 
variability condition contained only half the variability around the mean 
as compared to Experiment 1. The task structure, stimulus presentation, 
and apparatus were otherwise the same as in Experiment 1. 

Fig. 4. Experiment 1 proportions of change-of-mind trials in each condition. 
(A) Correct trials. (B) Error trials. Change-of-mind trials were defined as trials 
with confidence ratings lower than 4, indicating that the participant believed 
their brightness judgement was incorrect. Error bars represent SEM. 

Fig. 5. Experiment 1 mean RTs and confidence ratings by 
absolute evidence level and RT quantile bin (with borders be-
tween bins at the 10th, 30th, 50th, 70th, and 90th RT per-
centiles) for (A) correct trials and (B) error trials. Horizontal 
and vertical error bars indicate SEM of RT and confidence, 
respectively. Note that the statistical effects for absolute and 
relative evidence cannot be seen clearly in this figure due to 
the division into RT quantiles and the omission of relative 
evidence levels (for illustrations of these effects see Figs. 2B 
and C).   
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3.1.4. Data analysis 
The same GLMM approach used in Experiment 1 was used for 

Experiment 2, except that the models included the additional factor of 
variability and its interactions with relative evidence, absolute evidence, 
and the three-way interaction term. 

3.2. Results 

3.2.1. Accuracy and response times 
For decision accuracy, there were an effect of relative evidence 

(χ2[1] = 576.22, p < .001), an effect of absolute evidence (χ2[2] =
588.29, p < .001), and an interaction between relative and absolute 
evidence (χ2[2] = 37.02, p < .001) as in Experiment 1. This interaction 
was again because log odds of being correct were reduced by absolute 
evidence more strongly when relative evidence was high (see Supple-
mentary Fig. S4). Importantly, luminance variability and its interaction 
terms were not significant. As depicted in Fig. 6A and D, the accuracy of 
participants’ responses increased with stronger relative evidence and 
decreased with higher absolute evidence, regardless of flicker vari-
ability. Full statistical results are presented in Supplementary Tables S20 
and S21. 

For RTs, when analysing data from correct trials, there was an effect 
of relative evidence (χ2[1] = 106.53, p < .001), an effect of absolute 
evidence (χ2[2] = 44.46, p < .001), and an interaction between relative 
and absolute evidence (χ2[2] = 32.20, p < .001), again replicating 
Experiment 1 (Fig. 6B and E). Additionally, we found an effect of 
luminance variability (χ2[1] = 6.61, p = .010), an interaction between 
absolute evidence and luminance variability (χ2[2] = 7.13, p = .028), 
and an interaction among all three factors (χ2[2] = 6.24, p = .044). This 
effect appears to be driven by a small dip in RTs for the low relative / 
medium absolute evidence condition in the high compared to the low 
luminance variability condition. The overall pattern of RT results, 
however, was highly similar between luminance variability conditions, 
suggesting no substantial effect of luminance variability on RT in correct 
trials. 

Analyses of error trials again showed a similar pattern of results 

(relative evidence: χ2[1] = 23.74, p < .001; absolute evidence: χ2[2] =
37.22, p < .001; interaction between relative and absolute evidence: 
χ2[2] = 14.25, p < .001), and no effect of luminance variability or 
interaction involving luminance variability. Fig. 6C and F show that the 
RT effects for error trials from Experiment 1 replicated regardless of 
variability condition. Full statistical results are presented in Supple-
mentary Tables S22 – S25. 

Taken together, the effects of relative and absolute evidence on ac-
curacy and RT found in Experiment 1 were replicated in Experiment 2. 
Importantly, we did not find strong and significant effects of luminance 
variability on accuracy or RT measures. 

3.2.2. Confidence 
When analysing correct trials, there was an effect of relative evidence 

(χ2[1] = 261.57, p < .001), an effect of absolute evidence (χ2[2] =
191.90, p < .001), and an interaction between relative and absolute 
evidence (χ2[2] = 47.83, p < .001). Confidence was higher in trials with 
stronger relative evidence and higher absolute evidence, and the effect 
of relative evidence was diminished in high absolute evidence condi-
tions, replicating the pattern of results of Experiment 1. There was no 
significant effect of luminance variability nor significant interactions 
with luminance variability (Fig. 7A and C). 

For analyses of error trials, we again found effects for relative and 
absolute evidence, but unlike in Experiment 1, despite reproducing the 
same overall pattern, their interaction failed to reach significance 
(relative evidence: χ2[1] =57.71, p < .001; absolute evidence: χ2[2] =
400.02, p < .001; Fig. 7B and D). The absence of this interaction is most 
likely because we included only two levels of relative evidence, which 
were more similar to each other than in Experiment 1. While there was 
no main effect of luminance variability, an interaction was found be-
tween relative evidence and luminance variability (χ2[2] = 4.35, p =
.037); as well as between absolute evidence and luminance variability 
(χ2[2] = 8.47, p = .014). The interaction between relative evidence and 
luminance variability was because higher variability was associated 
with increased confidence when relative evidence was high. That is, 
when relative evidence was high, low luminance variability was 

Fig. 6. Experiment 2 accuracy and response time (RT). (A, D) Decision accuracy (average proportion correct) for the low (A) and high (D) luminance variability 
conditions. (B, E) Mean RTs for correct trials for low (B) and high (E) luminance variability conditions. (C, F) Mean RTs for error trials for low (C) and high (F) 
luminance variability conditions. Error bars represent SEM. 
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associated with lower confidence judgements, despite no detected 
change in performance (see above). The interaction between absolute 
evidence and luminance variability was reflected in higher luminance 
variability associated with increased confidence when absolute evidence 
was low. Full statistical results are presented in Supplementary 
Tables S26 – S29. 

3.2.3. Change of mind 
For change-of-mind likelihood in correct trials, there was a negative 

effect of relative evidence (χ2[2] = 36.33, p < .001), and an interaction 
between relative and absolute evidence (χ2[2] = 9.72, p = .008). 
However, unlike in Experiment 1, there was no effect of absolute evi-
dence (Fig. 8A and C). For error trials, there was a positive effect of 
relative evidence (χ2[2] = 119.24, p < .001), a negative effect of abso-
lute evidence (χ2[2] = 19.63, p < .001) and an interaction between 
relative and absolute evidence (χ2[2] = 125.93, p < .001; Fig. 8B and D), 
as in Experiment 1. Full statistical results are presented in Supplemen-
tary Tables S30 – S33. 

3.2.4. The effect of absolute evidence on confidence in addition to RT 
When modelling confidence in correct response trials using pre-

dictors of RT, luminance variability and relative evidence (but not ab-
solute evidence), we observed both the effects of relative evidence 
(χ2[1] = 195.23, p < .001) and RT (χ2[1] = 1044.45, p < .001). When we 
added absolute evidence (and interactions involving this variable) as a 
predictor, we also observed the effect of absolute evidence (χ2[2] =
169.31, p < .001), and an interaction between absolute evidence and 
relative evidence (χ2[2] = 33.46, p < .001). For error trials, confidence 
was predicted by relative evidence (χ2[1] = 75.31, p < .001) and RT 
(χ2[1] = 357.34, p < .001). Additionally, it was predicted by absolute 
evidence (χ2[2] = 357.69, p < .001), an interaction between luminance 
variability and absolute evidence (χ2[2] = 6.83, p = .033), and an 
interaction between luminance variability and relative evidence (χ2[1] 
= 4.95, p = .026). Consistent with Experiment 1, Fig. 9A and B also 
showed that stronger absolute evidence increased confidence across RT 
bins for both correct and error trials. Full statistical results are presented 

in Supplementary Tables S34 and S37. 
Taken together, the results of Experiment 2 replicated the effects of 

relative and absolute evidence on decision accuracy and RT from 
Experiment 1. They further replicated the overall patterns of results for 
effects of relative and absolute evidence on confidence. The result that 
increasing absolute evidence led to increased confidence and faster RTs 
was also replicated. However, the effects on change-of-mind frequency 
were only replicated for error trials, but not for correct trials. This is 
possibly due to the fact that the effect on change of mind was rather 
weak as participants rarely change their mind after a correct response, 
and in Experiment 2 the luminance values of the low relative evidence 
level were higher than that of Experiment 1, in which the effect was 
stronger. 

The luminance variability manipulation did not appear to substan-
tially affect decision performance or confidence judgements. Only when 
looking at error trials specifically we observed some interactions be-
tween luminance variability and confidence. Overall, the pattern of re-
sults for high variability looked highly similar to Experiment 1. 
However, firstly, with lower luminance variability, confidence for error 
trials in high relative evidence trials was reduced. Given that these were 
trials in which errors were indeed committed, this means the combi-
nation of low luminance variability and strong relative evidence made it 
easier for participants to sense that their decision might have been 
wrong. Secondly, the combination of low variability and low absolute 
evidence also led to decreased confidence in error responses. This again 
indicates that participants found it somewhat easier to sense that their 
decision might have been wrong. However, we do not interpret the re-
ported interaction effect as strong evidence that variability substantially 
influenced confidence judgements in our designs. This is because these 
interaction effects were rather small compared with the effects of rela-
tive and absolute evidence, and they were only observed within low 
ranges of relative and absolute evidence. 

Fig. 7. Mean confidence ratings in Experiment 2. (A, C) Mean confidence for 
correct trials for low (A) and high (C) variability. (B, D) Mean confidence for 
error trials for low (B) and high (D) variability. Confidence ratings were 
measured on a scale ranging from 1 (“surely incorrect”) to 7 (“surely correct”). 
The dotted line indicates the mid-point of the scale. Error bars represent SEM. 

Fig. 8. Experiment 2 proportions of change-of-mind trials in each condition. 
(A, C) Mean proportion of change of mind for correct trials for low (A) and high 
(C) variability. (B, D) Mean proportion of change of mind for error trials for low 
(B) and high (D) variability. Change-of-mind trials were defined as trials with 
confidence ratings lower than 4, indicating that the participant believed their 
brightness judgment was incorrect. Error bars represent SEM. 
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4. Discussion 

Based on the previous finding that higher levels of absolute evidence 
were associated with less accurate perceptual decisions and slower 
changes of mind (Turner, Feuerriegel, et al., 2021), and suggestions that 
confidence in one’s decision might moderate the speed and likelihood of 
later changes of mind (Turner, Feuerriegel, et al., 2021; van den Berg 
et al., 2016), we asked whether increases in absolute evidence are 
associated with higher decision confidence. We used a luminance 
discrimination task that was highly similar to that in Turner, Feuerrie-
gel, et al. (2021) and examined the effect of absolute evidence on de-
cision accuracy, RTs and confidence ratings. In this task, to manipulate 
absolute evidence we varied the overall (summed) luminance across the 
two stimuli, in addition to manipulating relative evidence (i.e., their 
luminance difference). Experiment 1 first replicated previous findings 
showing that increases in absolute evidence are associated with 
decreased accuracy and faster RTs (Ratcliff et al., 2018; Teodorescu 
et al., 2016; Turner, Feuerriegel, et al., 2021). We also found that while 
stronger relative evidence increased confidence for correct trials and 
reduced confidence for error trials, absolute evidence increased confi-
dence for both correct and error trials. We replicated these effects in 
Experiment 2 and did not identify any substantial effects of luminance 
variability manipulations on task performance or decision confidence. 
Our findings suggest that heuristic biases in decision confidence asso-
ciated with absolute evidence magnitude may ultimately make decisions 
harder to be subsequently overruled, in line with recent theoretical ac-
counts (Turner, Feuerriegel, et al., 2021; van den Berg et al., 2016). 

4.1. Why does high absolute evidence lead to decreased decision accuracy 
but increased confidence? 

Increasing absolute evidence led to reduced accuracy but increased 
confidence. While seemingly paradoxical, these divergent effects have 
several coherent explanations within the general framework of an evi-
dence accumulation process. 

Considering first the negative effect of absolute evidence on decision 
accuracy, this can be explained, at least in part, by Weber’s law (Geisler, 
1989; Ratcliff et al., 2018; Teodorescu et al., 2016; Turner, Feuerriegel, 
et al., 2021). Weber’s law suggests that relative evidence is perceptually 
reduced when absolute evidence is increased, due to nonlinear 
compressive scaling of the incoming sensory information. Over and 
above the effects of this compressive scaling, however, increases in ab-
solute evidence are also thought to increase noise within the evidence 
accumulation process (Ratcliff et al., 2018; Turner, Feuerriegel, et al., 
2021). This could be explained by assuming that the variability of 
brightness representations scales with their mean luminance, such that 

more intense (i.e., brighter) stimuli are represented more variably in 
terms of brightness (Ratcliff et al., 2018). By assuming an input- 
dependent increase in noise within the decision process it is possible 
to account for both the speed up in initial RT and the decrease in choice 
consistency, which have been observed in previous studies under con-
ditions of high absolute evidence (Ratcliff et al., 2018; Turner, Feuer-
riegel, et al., 2021). 

Turning now to the effect of absolute evidence magnitude on deci-
sion confidence, we found that increasing absolute evidence increased 
confidence, for both correct and incorrect decisions, despite the simul-
taneous decrease in decision accuracy. Hereafter, we will consider three 
possible explanations for this effect. 

Firstly, this finding is in line with more recent studies that showed a 
positive evidence bias for decision confidence (Koizumi et al., 2015; 
Odegaard et al., 2018; Samaha et al., 2016; Samaha & Denison, 2020). 
In these studies, confidence was increased by experimentally increasing 
positive evidence (i.e., the extent of sensory evidence for the chosen 
decision outcome) while maintaining the ratio between positive and 
negative evidence. In other words, confidence judgements appeared to 
be based on the absolute magnitude of decision-congruent evidence but 
not decision-incongruent evidence. 

These observations have led to development of several models of the 
processes that underlie decisions and confidence judgements (Man-
iscalco et al., 2021; Peters et al., 2017; Zylberberg et al., 2012). Central 
to all these models is the assumption that decisions and confidence 
judgements are based on two distinct sources of sensory evidence. While 
perceptual decisions are determined by relative evidence, confidence 
involves the heuristic use of only decision-congruent evidence. 

From this viewpoint, the divergence between confidence and accu-
racy which we observed can be simply explained. For the decision 
process, relative evidence drove the decision outcome, with higher 
levels of absolute evidence leading to a decreased signal (due to Weber- 
scaling) and increased variability (due to input-dependent noise), within 
the decision process. As a result, decisions were, on average, faster and 
less accurate. Coincidently, due to our absolute evidence manipulation, 
the amount of decision-congruent evidence was boosted in conditions of 
high absolute evidence, leading to an increase in confidence, irre-
spective of these co-occurring accuracy and RT effects. In other words, 
the combined effects of Weber-scaling and a positive evidence bias can 
account for the effects of absolute evidence on decision accuracy, RTs, 
and confidence. 

An alternative explanation for our divergent accuracy and confi-
dence effects is that the increase in confidence we observed in high 
absolute evidence trials may have been a by-product of faster RTs. 
Certain models, distinct from those discussed above, suggest that con-
fidence is partly determined by the time taken to come to a decision (e. 

Fig. 9. Experiment 2 mean RTs and confidence ratings by 
absolute evidence level and RT quantile bin (with borders be-
tween bins at the 10th, 30th, 50th, 70th, and 90th RT per-
centiles) for (A) correct trials and (B) error trials. Horizontal 
and vertical error bars indicate SEM of RT and confidence, 
respectively. Note that the statistical effects for absolute and 
relative evidence cannot be seen clearly in this figure due to 
the division into RT quantiles and the omission of relative 
evidence levels (for illustrations of these effects see Fig. 6B, C, 
E, F).   
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g., Kiani et al., 2014; Zylberberg et al., 2016). As faster decision times 
are often associated with more reliable sources of evidence and correct 
decisions, RTs may inform confidence judgements. Considering the 
current findings, this view suggests that the increase we observed in 
decision confidence following increases in absolute evidence might have 
been due to the co-occurring speed up in response times. However, our 
results showed that, while higher absolute evidence led to both faster 
RTs and increased confidence, and faster RTs co-occurred with higher 
confidence ratings, RT alone could not fully explain the effect of abso-
lute evidence on confidence. Within similar RT ranges, increased abso-
lute evidence was still associated with increased confidence. This 
provides evidence that the effect of absolute evidence on confidence was 
not simply due to speeding of RTs. 

It should further be noted that the decision-congruent evidence hy-
pothesis has been challenged recently by Khalvati, Kiani, and Rao 
(2021), who suggested an alternative explanation. Participants might 
use only a subset of the evidence provided in each trial to make a de-
cision, while the data analysis includes all evidence available (including 
evidence not used by the participants). In particular, the subset of evi-
dence used by the participant may contain a higher proportion of 
decision-congruent evidence than the unused subset (and therefore the 
full set), which might lead to an overestimate of the weight of decision- 
congruent evidence. Their model further assumes that the decision 
process involves continuous belief updating about the relevant envi-
ronmental states (i.e., task parameters, which would correspond to 
luminance discrepancy in our task) based on sensory observations and 
prior beliefs. Where the decision maker terminates the decision process 
early, the small amount of evidence processed would lead to low choice 
accuracy but high confidence (in particular for incorrect decisions). Our 
pattern of faster response times fits with this explanation, which means 
that participants might have adapted a strategy of terminating the evi-
dence accumulation process earlier when absolute evidence was higher. 
However, we also note again that response time effects did not fully 
explain the effect of absolute evidence on confidence, which calls into 
question whether the model by Khalvati et al. (2021) can fully explain 
our findings. Future research could address this issue by using different 
task instructions with either an emphasis on speed or on accuracy. 

4.2. How does the effect of absolute evidence on confidence translate to 
change-of-mind decisions? 

Our findings show that increasing absolute evidence magnitude, 
which led to slower change-of-mind decisions in an almost identical 
design (Turner, Feuerriegel, et al., 2021), also increases participants’ 
sense of confidence in their decisions. Moreover, when confidence rat-
ings were coded as a binary change-of-mind variable, increasing abso-
lute evidence similarly led to reduced change-of-mind frequency (except 
for Experiment 2, correct trials). This supports that confidence and 
changes of mind in our design were indeed closely related and both 
depended on absolute evidence. This finding is consistent with the idea 
that subjective feelings of confidence in one’s decision may affect sub-
sequent change-of-mind decisions (van den Berg et al., 2016). More 
generally, this implies that heuristic biases in confidence judgements, 
such as those associated with absolute evidence magnitude / the positive 
evidence bias (e.g., Peters et al., 2017; Zylberberg et al., 2012), or 
motor-related confidence biases (e.g., Fleming & Daw, 2017; Gajdos 
et al., 2019; Turner, Angdias, et al., 2021) may play an essential role in 
determining the speed and likelihood of subsequent change-of-mind 
decisions. 

The positive association we found between absolute evidence 
magnitude and decision confidence may be important to consider when 
attempting to model the dynamics of error correction and changes of 
mind. For example, it was recently shown that existing change-of-mind 
models, based solely on the ongoing accumulation of relative evidence 
after a decision, cannot easily account for the effects of absolute evi-
dence on change-of-mind likelihood or RTs (Turner, Feuerriegel, et al., 

2021). In particular, these models have difficulty capturing patterns of 
slower change-of-mind RTs in higher absolute evidence conditions. To 
completely account for decision and changes-of-mind behaviour, novel 
modelling assumptions may need to be explored. For example, one 
possibility is that the decision threshold for changing one’s mind may 
depend, at least in part, on decision confidence. That is, decisions made 
with higher confidence may require more significant amounts of con-
tradictory evidence to trigger a decision reversal (Turner, Feuerriegel, 
et al., 2021; see also van den Berg et al., 2016). Alternatively, it is 
possible that the weighting of post-decisional evidence may depend on 
decision confidence (Braun, Urai, & Donner, 2018; Rollwage et al., 
2020). In other words, the dynamics of post-decisional processing may 
be fundamentally altered in a confidence-depended manner. 

By demonstrating that decision confidence does vary across changes 
in absolute evidence magnitude, the current study provides empirical 
backing for exploring such assumptions. Suppose future theoretical 
work were to incorporate confidence-related biases in specific model 
parameters (such as shifts in the change-of-mind threshold) within 
existing computational frameworks, this may yield better accounts of 
the dynamics underlying change-of-mind decisions, and may help to 
integrate insights from recent theoretical accounts that capture effects of 
absolute evidence and positive evidence biases (e.g., Maniscalco et al., 
2021). 

4.3. Limitations 

Our findings should be interpreted with the following caveats in 
mind. Firstly, one difference between our study and Turner, Feuerriegel, 
et al.’s (2021) study that limits the generalizability of our confidence 
findings to their change-of-mind results is that in their study, stimuli 
remained on the screen for a short duration after the initial response was 
submitted, while in our study the stimuli were terminated after the 
response. It should be noted that it is reasonable to assume that visual 
processing continues for around 300 ms after a stimulus is terminated 
(Resulaj et al., 2009), reducing the relevance of this issue. However, it is 
still possible that the difference in trial structure prompted temporally 
different computations. Change-of-mind decisions in Turner, Feuerrie-
gel, et al. (2021) might have been more strongly based on late-arriving 
post-decisional evidence (e.g., Charles & Yeung, 2019), while our con-
fidence judgements could not be based on such information. Future 
studies could investigate whether such different presentation conditions 
might prompt participants to use incoming sensory evidence differently 
to compute confidence. If a change-of-mind is the end-product of a 
confidence computation, this could affect how confidence is reported. 

An avenue for future studies is therefore to further explore the 
temporal dynamics of the evidence signal that contribute to the forma-
tion of confidence judgements. For example, the use of reverse corre-
lation approaches (e.g., Charles & Yeung, 2019; Turner, Feuerriegel, 
Hester, & Bode, 2022; Zylberberg et al., 2012) might be useful to relate 
the frame-by-frame fluctuations in available evidence to confidence 
judgements. Using such an approach in combination with a similar 
brightness judgement task as used here, Turner et al. (2022) have 
recently shown that changes of mind can already be predicted by 
random fluctuations of evidence contained in the very first frames of 
stimulus presentation. Given the close link between change-of-mind and 
confidence, our findings might suggest that such early evidence could 
also already contribute to confidence formation; however, this needs to 
be tested experimentally for which much larger trial numbers are 
required than were available in our study. 

Another limitation is that we did not include an extensive range of 
luminance variability conditions in Experiment 2. This means that we 
cannot rule out the possibility that more extensive magnitude manipu-
lations of luminance variability might exert more substantial effects on 
task performance and confidence measures in our task. For example, 
there are many examples of stimulus variability-related effects in other 
decision tasks (e.g., Desender et al., 2018; Zylberberg et al., 2014), 
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although these are not always consistent in the direction of their effects. 
However, given that the observed effects appeared to be very small in 
our study, we believe that changes in perceived variability are an un-
likely explanation for the much larger and consistent effects of absolute 
evidence in our experiments. 

5. Conclusion 

Using a luminance discrimination task, we showed that stronger 
absolute evidence led to reduced decision accuracy, faster RTs, and 
increased decision confidence. This finding parallels previous findings of 
higher absolute evidence leading to slower changes of mind (Turner, 
Feuerriegel, et al., 2021) and suggests that decision confidence may 
moderate the speed of decision reversals in perceptual judgment tasks. 
Our results are compatible with recent suggestions that confidence 
might be driven by decision-congruent evidence, in addition to the 
theory that faster response time contributes to higher confidence. 
Finally, by demonstrating that decision confidence varies with absolute 
evidence magnitude, the current work provides an empirical basis for 
future exploration of potential confidence-related changes in post- 
decisional information processing (e.g., shifts in the change-of-mind 
threshold or changes in the weighting of evidence). 
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2.2. Summary of findings 

Chapter 2 presented two studies in which stronger absolute evidence in a 

brightness judgment task disrupted the typically observed positive association between 

accuracy and decision confidence. That is, increased absolute evidence strength 

impaired decision accuracy but inflated confidence ratings. Further, when confidence 

ratings were converted into a measure of changes of mind (by assuming that confidence 

ratings lower than “guessing” would have led to changes of mind), a consistent pattern 

was observed: Where confidence was inflated by stronger absolute evidence, the 

proportions of changes of mind trials were reduced. These consistent findings suggest a 

close relationship between confidence and changes of mind, and support the possibility 

that confidence could affect the likelihood that changes of mind occur, as suggested in 

previous studies (van den Berg, Anandalingam et al., 2016; Turner et al., 2021).  

As the effect of absolute evidence on confidence was consistent the positive 

evidence bias (PEB) observed in previous studies (e.g., Samaha & Denison, 2022), it 

can be attributed to a confirmation bias that confidence was only based on decision-

congruent evidence. Taken together with the absolute evidence effect on changes of 

mind, it further suggests that this confirmation bias could be carried over to the change-

of-mind decisions, for example, through a positive effect of confidence on evidence 

accumulation rate (Navajas et al., 2016; Rollwage et al., 2020; Braun et al., 2018). 

Mechanisms underlying the effect of confidence on changes of mind are further 

discussed in Chapter 4. 

In summary, the first part of the current project supports a link between 

confidence and changes of mind, and their relationship might be explained by the 

evidence accumulation framework. To further explore how confidence is related to 
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evidence accumulation, the next chapter presents an EEG study that focused on the 

relationships between confidence and proposed ERP indexes of evidence accumulation. 

2.3. Preview of Chapter 3 

Theories of confidence judgment have previously linked confidence to pre- and 

post-decisional evidence accumulation (reviewed in Chapter 1). Under the evidence 

accumulation framework, previous studies have suggested that confidence could track 

the amount of sensory evidence during pre-decisional processes, or the amount of 

evidence accumulated after the decision (Desender et al., 2021). In parallel, the ERP 

components of CPP/P3 and Pe have been proposed to be indexes of pre- and post-

decisional evidence accumulation processes (reviewed in Chapter 1). Taken together, 

confidence should also be related to these ERP indexes. However, their relationships 

with confidence are still being debated. Particularly, a recent study (Feuerriegel et al., 

2021) has suggested that these relationships between confidence and Pe could be 

artefactual results of using a typical pre-response baseline correction procedure, which 

is confounded by CPP amplitudes. With pre-stimulus baseline correction, their study 

suggested that CPP and Pe showed different specificity to objective accuracy (i.e., their 

relationships with confidence depends on whether decisions were correct). 

The EEG study presented in the next chapter therefore focuses on how the 

amplitudes of centro-parietal potential (CPP) and error positivity (Pe) could be related 

to confidence ratings in general, as well as how these relationships are potentially 

dependent on objective and subjective accuracy. Based on previous studies, it was 

predicted that CPP amplitudes would only be positively related to confidence in correct 

decisions, while Pe amplitudes would only be negatively related to confidence in 

erroneous decisions. Using the same brightness judgment task as in Studies 1 and 2, 

where participants were required to judge which of the two stimuli was brighter, it was 
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found evidence supporting this specific association to objective accuracy. It further 

examined whether the two ERPs also showed specific association to subjective accuracy 

(i.e., whether the relationship between confidence and these ERPs were only observed 

when decisions were perceived as correct or incorrect). However, results suggest that 

only CPP but not Pe showed this specific association. These findings are discussed in 

relation to recent evidence accumulation models of performance monitoring. 
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Chapter 3. Event Related Potential Correlates of Decision 
Confidence Show Specific Associations to Objective and 

Subjective Accuracy 
 

3.1. Introduction 

Humans are capable of making metacognitive decision, that are decisions based 

on one’s own cognitive process (Fleming & Frith, 2014; Sanders et al., 2016). For 

example, people were able to detect whether their own decisions were incorrect in error 

detection tasks, and assign graded levels of confidence to their decisions when they 

were asked to report how likely they believed their decisions were correct (van den 

Berg, Anandalingam et al., 2016; Yeung & Summerfield, 2012). This ability is not only 

important for immediate behavioral adjustment (Desender et al., 2019; Wessel, 2017), 

but has also been associated with important cognitive functions such as learning 

(Drugowitsch et al., 2019) and information seeking (Desenders et al., 2018). 

Many studies have been using electroencephalography (EEG) signals to 

investigate metacognitive processes (Yeung & Summerfield, 2012). With high temporal 

resolution, EEG allows the monitoring of the time course of neural processes that 

contribute to metacognitive decision outcomes, such as decision confidence. 

Specifically, event-related potentials (ERPs) have been used to investigate confidence 

because several ERPs have been consistently related to constructs that are closely 

related to confidence, including as error awareness, evidence accumulation, visibility, 

and stimulus discriminability (error negativity [ERN/Ne; Falkenstein et al., 1991], error 

positivity [Pe; Nieuwenhuis et al., 2001], P3/centro-parietal potential [CPP; Kelly & 

O'Connell, 2013], and late positive potential [LPP; Tagliabue et al., 2019]). For 

example, ERP components that occur before a decision such as P3/CPP and LPP have 

been related to sensory evidence accumulation and visibility (Tagliabue et al., 2019). 

ERP components that occur after a decision such as ERN/Ne and Pe have been related 
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to error detection and error awareness (Di Gregorio et al., 2018; Niessen et al., 2017). 

Among the components mentioned above, it has been suggested that CPP and Pe 

closely track confidence specifically (Desender et al., 2021; Rausch et al., 2020). 

Empirically, both CPP and Pe amplitudes have been found to be generally related to 

confidence across correct and error trials. These findings have led to the proposal that 

they are indexes of decision variable and metacognitive decision variable, which 

represent the states of evidence accumulated for choice and metacognitive decisions 

respectively (Desender et al., 2021; Rausch et al., 2020). 

3.1.1. Centro-parietal potential (CPP) 

CPP (or equivalently P3; Twomey et al., 2015) is a parietal positive component 

leading up to and peaking at the time of decision, typically measured as a stimulus-

locked component 200 to 350 ms after the presentation of a stimulus, or as response-

locked component -250 to -100 ms before a response (Kelly & O’Connell, 2013). It is 

present for both correct and incorrect decision although its amplitudes in incorrect trials 

is smaller (Kelly & O’Connell, 2013; O’Connell et al., 2012), and its amplitudes and 

build-up rate are positively related to discriminability of the stimuli (Kelly & O'Connell, 

2013; O’connell et al., 2012). Different theories have been proposed regarding what the 

CPP reflects. Recent studies suggest that its build-up rate tracks the accumulation of 

sensory evidence during decision formation (Kelly & O'Connell, 2013; Kelly et al. 

2021). It has also been theorized that CPP reflects confidence (Eimer & Mazza, 2005; 

Hillyard et al., 1971; Herding et al., 2019; Rausch et al., 2020) and subjective visibility 

of stimulus (Lamy et al., 2008; Sergent et al., 2005; Tagliabue et al., 2019). 

3.1.2. Error positivity (Pe) 

The Pe is a centro-parietal positive deflection that occurs 200 to 600 ms after 

decisions, with amplitudes typically larger for erroneous decisions than correct 
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decisions (Desender et al., 2021; Nieuwenhuis et al., 2001; O’Connell et al., 2007; Orr 

& Carrasco, 2011). It was initially suggested to reflect error awareness as it shows 

stronger amplitudes for aware errors compared to unaware errors (Di Gregorio et al., 

2018; Endrass et al., 2007), but it has also been suggested that it reflects confidence as 

its amplitudes appear to decrease with higher confidence (Boldt & Yeung, 2015; 

Desender et al., 2019). Particularly, in the study by Boldt and Yeung (2015), 

participants completed a numerosity judgment task with confidence ratings ranging 

from “certainly wrong” to “certainty correct”. Pe amplitudes were found to be 

monotonically decreasing with confidence ratings. Given the similarity between the Pe 

and CPP in morphological and functional characteristics, it has been proposed that the 

Pe also reflect a similar evidence accumulation process, which however accumulates 

error evidence or sensory evidence after decision, and it could be based on different 

sources of information and contribute to different metacognitive decisions including 

error detection and confidence judgment (Desender et al., 2021; Di Gregorio, Maier, & 

Steinhauser, 2017; Wessel, 2018; Murphy et al., 2015). Others suggest that Pe does not 

reflect confidence but simply post-decisional evidence accumulation, which does not 

necessarily correlate with confidence (Rausch et al., 2020). 

3.1.3. Specific associations with objective accuracy 

While many studies have shown the above ERP components to be related to 

confidence and/or error awareness generally (Boldt & Yeung, 2015; Desender et al., 

2021; Rausch et al., 2020), it remains unclear whether their relationships could be 

dependent on objective accuracy (i.e., whether such relationships are only observed in 

correct or error trials). This is because previous studies often investigated these 

relationships only in correct trials (in confidence judgment studies, e.g., Rausch et al., 

2020) or error trials (in error detection studies, e.g., Murphy et al., 2015), and 
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sometimes in a mix of correct and error trials (and thus masking any potential 

moderating role of objective accuracy; Boldt & Yeung, 2015; Desender et al., 2019). 

Also, some past studies showed that the relationship between the CPP and confidence 

was weaker when decisions were objectively incorrect (Eimer & Mazza, 2005; Hewig et 

al., 2011), and some showed that the CPP only reflected evidence accumulated for 

correct trials but not error trials (Herding et al., 2019). Similarly for the Pe, its 

relationship with confidence was also stronger in objectively incorrect trials (Hewig et 

al., 2011). 

In addition, a recent study by Feuerriegel and colleagues (2022) showed that 

both the relationship between confidence and CPP amplitudes and the relationship 

between confidence and Pe amplitudes were subjected to methodological confounds. On 

the one hand, the relationship between Pe amplitudes and confidence could be 

confounded by the practice of baseline correction with a pre-response baseline (e.g., as 

used in Boldt & Yeung [2015]). This is because the pre-response baseline often 

overlaps with the CPP, which shows amplitude differences by confidence, and these 

differences could then be propagated into the Pe measure when this contaminated 

baseline is used for correction. On the other hand, the relationship between stimulus-

locked CPP amplitudes and confidence could be confounded by the negative 

relationship between confidence and response times. This is because low confidence 

trials are often coupled with slower response times, which lead to more variable latency 

and thus lower averaged amplitudes. In their study, which used a pre-stimulus baseline 

and response-locked measures to avoid these confounds, it was found that while the 

CPP was positively related to confidence in both correct and incorrect decisions, the Pe 

was only negatively related to confidence in incorrect decisions. Additionally, with 

current source density (CSD; Kayser & Tenke, 2006) transformed data, they found a 
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pre-response, frontal-central component that was only related to confidence in correct 

decisions, which was hypothesized to be the origin of the relationship between CPP and 

confidence. 

These specific associations to objective accuracy could potentially be attributed 

to different evidence accumulation processes related to correct and erroneous decision 

outcomes and the proposed locus of confidence judgment (Baranski & Petrusic, 1998; 

Yeung & Summerfield, 2012). Particularly, in an evidence accumulation framework 

where the CPP reflects accumulated sensory evidence (O’Connell & Kelly, 2021), it 

could be that evidence is effectively accumulated in correct trials but not in error trials 

(due to more noise in error trials). Assuming that confidence depends on the evidence 

accumulated during decision formation (i.e., a decision locus of confidence judgment, 

e.g., Kiani & Shadlen, 2009; Vickers, 1979), it follows that only in correct trials the 

CPP could serve as an index of confidence. In contrast, the Pe reflects error evidence 

accumulation, which is more likely to be effective and correspond to actual error 

commission likelihood in error trials than in correct trials. If confidence depends on the 

error evidence accumulated after the decision (i.e., a post-decisional locus of confidence 

judgment, e.g., Desender et al., 2021; Moran et al., 2015), it follows that only in error 

trials the Pe is related to confidence. 

3.1.4. Specific association with subjective accuracy 

 In addition to objective accuracy, a decision can also be defined as subjectively 

correct or incorrect (i.e., whether a decision considered by the participant to be correct 

or incorrect). This is the case when the option to signal an erroneous decision is 

available, as in error detection studies, and in confidence studies where a full-range 

confidence scale (ranging from “surely incorrect” to “surely correct”) allows 

participants to report how certain they are that their decisions were correct or incorrect. 
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Subjective accuracy in this sense has only been investigated in a few studies as only 

recently error detection and confidence judgment were proposed to be closely related 

and measured using the same scale (Boldt & Yeung, 2015; Charles & Yeung, 2019; 

Yeung & Summerfield, 2012), and most previous studies focused on only side of the 

scale (measuring certainty of being correct or certainty of being incorrect). 

 To provide a unifying account for both error awareness and confidence 

judgment, it has been assumed that decisions that are subjectively correct and incorrect 

lie on the same continuum, and that ERP correlates of confidence such as Pe amplitudes 

are monotonically decreasing with confidence levels on the full-range scale (Boldt & 

Yeung, 2015; Charles & Yeung, 2019; Desender et al., 2021; Yeung & Summerfield, 

2012). However, empirically this monotonic relationship was only reported by Yeung 

and Summerfield (2012) and was not observed in other studies (Feuerriegel et al., 2022; 

Hewig et al., 2011). Additionally, it was also suggested that the two ends of the 

proposed continuum could be qualitatively different (Charles et al., 2013; Feuerriegel et 

al., 2022; Yeung & Summerfield, 2012).  

If the specific associations with objective accuracy mentioned above could be 

explained by different evidence accumulation in correct and erroneous decisions, it is 

then possible that the relationships between the CPP and confidence, and between the 

Pe and confidence are also dependent on subjective accuracy, as subjective accuracy 

levels should also reflect different levels of accumulated sensory evidence and error 

evidence (Desender et al., 2021). In other words, only evidence in both subjectively and 

objectively correct decisions might scale with certainty of being correct (and hence the 

relationship between CPP and certainty of being correct). Decisions that are objectively 

correct but made with a sense of error, should not show the relationship between CPP 

and certainty of being incorrect (because of the limited amount of sensory evidence). 
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Likewise, only evidence in both subjectively and objectively incorrect scales certainty 

of being incorrect. Decisions that are objectively incorrect but made with a sense of 

correctness, should not show the relationship between Pe and certainty of being 

incorrect (because of the limited amount of error evidence). In other words, it is 

possible that CPP does not simply reflect confidence levels in correct trials but reflects 

certainty of being correct specifically. Similarly, Pe might not simply reflect confidence 

levels in error trials, but certainty of being incorrect specifically. 

Preliminary support for these hypothesized relationships was reported by 

Feuerriegel and colleagues (2022), who showed that CPP amplitudes correlated 

positively with certainty of being correct and Pe amplitudes positively correlated with 

certainty of being incorrect. However, as they included both correct and error trials in 

their analyses, it is unclear whether such specific associations would be found within 

correct and error trials respectively. 

3.1.5. The current study 

 The current study aimed to examine (1) whether CPP amplitudes are only 

related to confidence in correct trials but not in error trials, and (2) whether Pe 

amplitudes are only related to confidence in error trials but not correct trials. A speeded 

brightness judgment task used in a previous study by Ko et al. (2022) was used in this 

study. In this task, participants were required to make a comparative judgment based on 

the brightness of two grayscale, flickering squares, and then report confidence on a full-

range confidence ratings scale. This task was used as it allowed the manipulation of 

sensory evidence and could induce a wide range of confidence ratings in the previous 

study (Ko et al., 2022). 

We first predicted that when confidence was measured using a full-range scale, 

CPP amplitudes should only be positively related to confidence in correct trials, and Pe 
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amplitudes should only be negatively related to confidence in error trials. Secondly, as 

we found evidence for the hypothesised relationships between the two components and 

confidence (i.e., specific associations with objective accuracy), we examined further 

whether CPP and Pe amplitudes reflected the graded certainty of being correct and 

incorrect (i.e., specific association with subjective accuracy). Specifically, we predicted 

that in correct trials, CPP would be positively related to certainty of being correct but 

not related to certainty of being incorrect. On the other hand, in error trials, Pe would be 

negatively related to graded certainty of being incorrect but not graded certainty of 

being correct. 

3.2. Methods 

3.2.1. Participants 

We recruited 36 university student volunteers with normal or corrected-to-

normal vision. We excluded two participants who failed to report confidence in more 

than 20% of all trials, three participants for overall accuracy lower than 55%, one for 

reporting the same confidence level in more than 90% of trials where confidence was 

reported (using the same exclusion criteria as in Ko et al., 2022) and two for excessively 

noisy EEG data. The final sample included 28 participants (mean age 26, age SD = 6, 

age range = 18-39, 16 females). This study was approved by the Human Ethics 

Committee of the Melbourne School of Psychological Sciences (ID 1954641.2). 

3.2.2. Task and stimuli 

 Participants completed a speeded luminance discrimination task in which two 

flickering squares were presented, and they were required to choose the stimulus that 

appeared brighter to them on average. The luminance level of the two flickering squares 

changed with each frame refresh (i.e., every 13.3 ms at 75 Hz). At each screen refresh, 

the luminance levels of the stimuli were randomly sampled from a pair of truncated 
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normal distributions, which had mean RGB values used in a previous study (Ko et al., 

2022; specified in Figure 3.1B. As one distribution had a higher mean than the other, 

one stimulus appeared on average brighter than the other. The truncated distributions 

had the same parameters (standard deviation of 25.5, truncated at ±1 SD from their 

means) as in Ratcliff et al. (2018) and Ko et al. (2022). The difference between the 

means were varied as a manipulation of relative sensory evidence strength, and the 

overall mean values were varied as a manipulation of absolute sensory evidence 

strength. Both stimuli had a size of 70 × 70 pixels and were positioned with equal 

distance from the center of the screen, separated from each other by 180 pixels. Stimuli 

positions were counterbalanced such that the brighter square was on the left in half of 

the trials, and one the right in the other half of the trials. The order of the trials was also 

randomized. Participants were instructed to respond as quickly as possible.  

 After the response for brightness judgment, participants were required to rate 

their confidence level in their brightness judgment using a 7-point scale ranging from 

“surely incorrect” (1) to “surely correct” (7), with a midpoint rating (4) that indicated 

that they were unsure whether the brightness judgment was correct or incorrect (i.e., 

they felt they were guessing). They were also instructed to respond as quickly as 

possible for this confidence rating. 

The effects of these manipulations on accuracy, RT and confidence were 

investigated in a previous study (Ko et al., 2022), and they were used again in the 

current study to induce changes in confidence. The same task was used in the previous 

study and only the timing parameters were adjusted in this study for EEG recording 

(Figure 3.1A). Additionally, the fixation dot color also changed from white to red 

before stimulus presentation to signal the onset of stimuli, and it was presented together 

with the stimuli to keep participants focused on the center of the screen. 
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Before the main experiment, participants completed a training block of 36 trials 

without making confidence ratings. Instead, they received performance feedback after 

each trial to familiarize themselves with the brightness judgment task. Subsequently, 

they completed another training block of 36 trials where both brightness and confidence 

judgment were required. No performance feedback was given in this training and a 

confidence rating scale was presented on the screen for 1,500 ms. Participants were 

instructed that during the main experiment, the visual presentation of the scale would be 

removed, and the confidence judgment would only be prompted by the word 

“confidence”. 

 

Figure 3.1. Task paradigm and stimuli. (A) Paradigm. In each trial, two flickering 

square stimuli of different average luminance were presented. Each square changed in 

luminance with each frame. Participants were required to select the stimulus that 

appeared brighter on average and subsequently reported their decision confidence using 

a 7-point scale while the word “confidence” was presented on the screen. (B) 

Illustration of average luminance values (in RGB) for stimuli for all experimental 

conditions of Experiment 1. Luminance values were randomly sampled from normal 

distributions truncated one standard deviation around pre-defined means. The standard 

deviation of the grayscale values for all distributions was 25.5. 
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3.2.3. Experimental procedures 

After giving written consent and receiving task instructions, participants were 

seated in a dark testing booth, 70 cm from a computer monitor. They completed task 

training while the experimenter stayed in the testing booth. This ensured that 

participants understood the task instructions correctly. Participants then completed the 

main experiment alone. They were reimbursed 30 AUD and debriefed by the 

experimenter after the experiment. 

3.2.3.1. Experiment 

Each trial of the experiment started with an intertrial interval with white fixation 

dot for 1500 ms. The white fixation dot then turned to red in the pre-stimulus interval 

lasting 500 ms, which was to signal the upcoming stimuli. After that, the flickering 

squares were presented, and the brightness judgment was required. Participants were 

required to press either the left of right key on the response pad using left and right 

index fingers, corresponding to the stimulus that they perceived to be brighter. The 

stimuli were presented for a maximum of 1,500 ms and disappeared immediately after a 

response. Subsequently, after an interval of 1,000 ms with a blank screen, a confidence 

judgment was required. Participants were required to rate their confidence level when 

prompted by the word “confidence”. The scale had the same properties as during 

training, and participants were required to press one of the seven keys on the response 

pad to indicate their confidence level. No confidence rating was required if the 

brightness judgment was “too slow” (>1,500 ms RT) or “too quick” (<250 ms RT). In 

this case, only the respective timing feedback was presented for 1,500 ms, and then the 

next trial began. The experiment comprised 1,008 experimental trials equally allocated 

across 14 blocks. Each block was followed by a self-terminated rest period. An equal 

number of trials from all conditions were randomly interleaved within each block. 
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3.2.3.2. Apparatus 

 A Sony Trinitron Multiscan G420 CRT Monitor (resolution 1280 x 1024 pixels; 

frame rate 75 Hz) that was gamma-corrected with a ColorCAL MKII Colorimeter 

(Cambridge Research Systems) was used. The task was programmed in MATLAB 

R2018b (The Mathworks) using Psychtoolbox-3 (Brainard, 1997; Kleiner et al., 2007). 

Participants responded using a seven-button Cedrus response pad (RB-740, Cedrus 

Corporation). 

3.2.4. EEG data processing 

EEG data were recorded using a Biosemi Active Two system, with 64 electrodes 

and a sampling rate of 512Hz. Six external electrodes were additionally included: two 

behind the left and right mastoids (for referencing), two at the outer canthi, and one 

above and one below the right eye (for measuring eye movement). 

EEG data pre-processing was conducted using EEGLab (v2019_1; Delorme & 

Makeig, 2004). Raw data were first re-referenced to the average of linked mastoids. 

Excessively noisy sections of data were excluded based on visual inspection. 

Excessively noisy channels were identified based on visual inspection and were 

excluded from further processing  and were later interpolated. Independent Component 

Analysis (ICA) was then used to identify and remove artefacts. To obtain clearer 

independent components, ICA was applied to a copy of the dataset that was high-pass 

filtered at 1Hz and low-pass filtered at 30Hz. The results of the ICA were then copied to 

a dataset that was high-pass filtered at 0.1Hz and low-pass filtered at 30Hz, and 

subsequent processing was based on this dataset (as done by Feuerriegel et al., 2018). 

Independent components identified as generated by eye blinks, eye movements, and 

muscle movement (based on visual inspection and the IClabel algorithm; Pion-

Tonachini et al., 2019) were then removed. Channels that were identified earlier as 
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noisy were then interpolated using spherical spline interpolation (median number of 

channels interpolated = 3, range = 0 - 10). 

3.2.4.1. Epoching and baseline correction 

To avoid two main methodological confounds associated with the stimulus-

locked measure of CPP, and pre-response baseline correction for the Pe, we followed 

Feuerriegel et al. (2022) to use response-locked measures and pre-stimulus baseline for 

both ERP components. The data were first segmented using the time window of -100 to 

2200 ms relative to stimulus onset, and baseline corrected to the 100 ms pre-stimulus 

interval before stimulus onset. From this data, response-locked epochs were derived 

using the time window of -500 to 700 ms relative to choice response. Epochs with 

amplitudes exceeding ±150 μV at any scalp channel were excluded from further 

analyses. Across participants, the number of epochs included in the final analyses 

ranged from 450 to 984, with a median of 808. Single trial amplitudes of the 

components of interest were then measured according to the following definitions. 

Based on previous work (Steinemann et al., 2018; Feuerriegel et al., 2021), we 

measured CPP mean amplitudes as the average amplitudes from -130 to -70ms relative 

to response at electrode Pz. We measured Pe mean amplitudes as the average 

amplitudes from 300 to 400 ms relative to the response at electrode Pz. The Pe time 

window was defined as the time range where the amplitude difference between correct 

and error trials emerged and remained prominent. The resulting time window was 

highly similar to the ones used in previous studies (Gehring et al., 2012; Falkenstein et 

al., 2000). 

3.2.5. Behavioural data analyses  

 For analyses of task performance and confidence ratings, we first examined the 

effects on relative evidence and absolute evidence on accuracy, RT (correct), RT 



   87  

(error), confidence (correct), confidence (error). This was done to test whether the 

pattern of results established in our earlier work (Ko et al., 2022) were replicated here 

and to confirm that the experimental manipulations led to the desired spread of choice 

behaviour, giving rise to a wide spectrum of subsequent confidence ratings. We fitted 

generalised linear mixed models with relative evidence, absolute evidence, their 

interaction and a random intercept for participants to predict these dependent variables 

in separate models. This approach was identical to that of Ko et al. (2022). We used 

binomial distributions with a logit function for accuracy, gamma distribution with an 

identity function for RTs, and normal distribution with an identity function for 

confidence. Additionally, we also investigated how confidence was related to accuracy 

and RTs. 

3.2.6. Analyses of ERP component amplitudes 

For ERP component amplitudes analyses, we fitted linear mixed models with 

confidence as the predictor and a random intercept for participants to predict single-trial 

amplitudes of each component of interest (i.e., the CPP and Pe components). Random 

slopes were not included because not all models with random slopes converged, and 

therefore omitting random slopes allowed for using the same model structure across 

analyses. Also, to examine whether specific association with objective accuracy 

reported by Feuerriegel et al. (2021) could be observed, analyses were run separately for 

trials with correct responses and errors. 

Our first prediction was that CPP amplitudes would only be positively related to 

confidence in correct trials, and that Pe amplitudes would only be negatively related to 

confidence in error trials. We tested this hypothesis using models where the amplitudes 

of the respective components were predicted by the full-range confidence ratings (from 

“surely incorrect” to “surely correct”), similar to the approach in Feuerriegel et al. 
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(2021). When significant relationships were found, trend analyses were conducted to 

examine how the components changed between levels of confidence ratings (i.e., 

whether a linear trend was observed). 

To investigate whether the amplitudes of the CPP and Pe differed by binary 

subjective accuracy, we further coded the trials based on confidence ratings as 

subjectively correct trials (collapsed across trials with confidence ratings > 4), 

subjectively incorrect trials (collapsed across trials with confidence ratings < 4). In 

addition, we specified a third category as guessing trials in which participants were 

unsure about their confidence (confidence ratings = 4). These three categories were then 

compared. This analysis allowed us to detect any difference due to subjective accuracy, 

which might not be captured by the analyses with full-range confidence ratings due to 

small number of trials in some confidence categories. The comparisons among three 

categories also allowed our results to be  comparison with other studies that used a 

binary or trichotomized scales. When significant effects were found, post-hoc pairwise 

comparisons with Holm-Bonferroni correction were conducted. 

Our second prediction was that CPP amplitudes would only be positively related 

to certainty of being correct in correct trials, and that Pe amplitudes would only be 

negatively related to certainty of being incorrect in error trials To examine whether 

certainty of being correct/incorrect predicted CPP and Pe amplitudes, we fitted models 

with the same structure (confidence predicting ERP amplitudes, separately for correct 

and error trials), but within subsets of trials that were rated as subjectively incorrect 

(confidence < 4) or subjectively correct (confidence > 4). Guessing trials were excluded 

from these analyses as they might include trials with no clear error awareness or 

confidence judgment.  
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All analyses were conducted in R (version 4.0.1). GLMMs were fitted using the 

lme4 package (version 1.1; Bates et al., 2015), statistical significance of each effect was 

determined by likelihood ratio tests conducted using the afex package (version 0.28; 

Singmann et al., 2017) in a stepwise forward approach, where each effect of interest 

was enter into the model and models before and after an effect was included were 

compared. Post hoc comparisons and trend analysis were conducted using the emmeans 

package (version 1.4.8; Lenth et al., 2020). Complete statistical results including 

likelihood ratio test results for all effects and regression coefficients of the full models 

are reported in Appendix A. The effect of confidence on alternative ERP measures, and 

the effects of relative and absolute evidence on ERP measures were also examined and 

reported in Appendices B and C. As in Feuerriegel et al. (2022), we also explored 

whether specific associations to subjective accuracy would be observed when 

objectively correct and error trials were pooled, however, as the results are highly 

similar to the results reported here, they are reported in Appendix D. 

3.3. Results 

3.3.1. Behavioural data analysis 

3.3.1.1. Effects of relative and absolute evidence on accuracy, RTs, and 

confidence 

We first examine the behavioural data as in Ko et al. (2022), to ensure that the 

same patterns were found in terms of how the manipulation of relative and absolute 

evidence affected accuracy, RTs, and confidence. Consistent with the previous study, 

accuracy was increased by stronger relative evidence and reduced by stronger absolute 

evidence (Figure 3.2A; ps < .001 for all main effects and interaction). RTs for both 

correct and error trials were faster when absolute evidence was increased and when 

relative evidence was increased (ps < .01 for all main effects and interactions except 
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that for error trials RT, where relative evidence did not have a significant effect; Figure 

3.2B-C, where 3.2C shows relative did not reduce RT in error trials). Confidence was 

increased with stronger relative evidence and absolute evidence in correct trials (ps 

< .001; Figure 3.3), and spread across a wide range as expected.  

Except for the relative evidence effect on RT in error trials, all the effects of 

relative evidence and absolute evidence on accuracy, RT (correct), RT (error), 

confidence (correct), confidence (error) were replicated. Statistical results are reported 

in the Appendix A. 

 

Figure 3.2. Accuracy and response time (RT) for different combinations of relative and 

absolute evidence levels. (A) Decision accuracy (average proportion correct) in each 

condition. (B) Mean RTs for correct trials. (C) Mean RTs for error trials. Error bars 

represent standard errors of the mean (SEM).  

 

Figure 3.3. Mean confidence ratings for different combinations of relative and absolute 

evidence levels. (A)  Correct trials. (B) Error trials. Confidence ratings were measured 
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on a scale ranging from 1 (“surely incorrect”) to 7 (surely correct). The dotted line 

indicates the mid-point of the scale. Error bars represent SEM. 

3.3.1.2. Accuracy and RTs across confidence levels, and confidence 

distributions 

 We additionally examined how confidence ratings varied with accuracy and RT, 

in order to confirm that participants used the rating scale to meaningfully report the 

confidence level. Overall mean proportion correct was 66.53% (SE = 0.91%) and mean 

response time was 784 ms (SE = 28ms). Figure 3.4 shows error rates in each confidence 

level, confidence distributions for correct and error trials, and response times in each 

confidence level. Figure 3.4A shows that confidence increased as error rates 

decreased, suggesting that participants reported confidence in a way that correlated 

with their objective decision accuracy. Figure 3.4B shows that the confidence 

distributions for both correct and error trials were negatively skewed, showing that 

participants tended to report higher confidence, although previous studies more 

commonly reported positively skewed distribution for error trials (e.g., Boldt & Yeung, 

2015). Figure 3.4C shows that response times were negatively correlated with certainty 

of being correct (when confidence > 4) in both correct and error trials (mean r for 

correct trials = -.201; mean r for error trials = -.167 ps < .001), but not related to 

certainty of being incorrect (mean r for correct trials = -.066, p = .254; mean r for error 

trials = .022  p = .617). These patterns show that while accuracy increased with higher 

confidence levels in general, RT showed different relationships for certainty of being 

correct and certainty of being incorrect. Full statistical results are reported in Tables A1 

- A10. 
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Figure 3.4. Primary task performance by confidence ratings. (A) Proportion correct 

across confidence levels. (B) Confidence distributions for correct and error trials. (C) 

Mean RT by confidence levels between correct and error trials. Error bars represent 

SEM. 

3.3.2. EEG data analysis 

3.3.2.1. CPP and Pe by correct ad error trials 

Before the main analyses related to confidence, we first examined whether 

accuracy predicted the amplitudes of CPP and Pe as the accuracy effects were reported 

in previous studies (e.g., Desender et al., 2021). ERP waveforms of CPP and Pe for 

correct and error trials are presented in Figure 3.5. The difference in CPP amplitudes for 

correct compared to error trials was not statistically significant (χ2 = 2.62, p = .106), 

whereas Pe amplitudes in error trials were significantly larger than in correct trials (χ2 = 

3.94, p = .047). The absence of accuracy effect for CPP could be due to the fact that 

CPP reflects confidence rather than error commission, and confidence in error trials was 
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similar to confidence in correct trials (as shown by the negatively skewed distribution in 

Figure 3.4B). Full statistical results are reported in Tables A11 - A12. 

 

Figure 3.5. Group mean ERP waveforms for correct and error trials. Shaded areas show 

the time windows of the CPP (-130 to 70 ms) and the Pe (300 to 400 ms). Pe amplitudes 

were larger for error than correct trials.  

Note. *p <.05 **p <.01 ***p <.001 

3.3.2.2. Specific association to objective accuracy 

In this main analysis, we examined how the CPP and Pe amplitudes were related 

to confidence. We first tested whether CPP amplitudes would only be positively related 

to confidence in correct trials, with the regression model where CPP amplitudes were 

predicted by full-range confidence ratings. Figure 3.7 shows the waveforms by accuracy 

and all confidence levels. In line with our hypothesis, the model for correct trials 

showed that CPP was only positively related to confidence (χ2 = 32.52, p < .001) but the 

model for error trials did show a significant effect (χ2 = 4.96, p = .549).  Trend analysis 

showed a significant linear trend for correct trials (p = .006), suggesting that CPP 

amplitudes increased with higher confidence (see Figure 3.7A). This finding was 

however contrary to the finding by Feuerriegel et al. (2021), which showed that CPP 

was positively related to both confidence in correct and error trials. 

We then tested whether Pe amplitudes would only be negatively related to 

confidence in error trials. Also as predicted, the model for error trials showed that Pe 
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was negatively related to confidence (χ2 = 32.18, p <.001), and trend analysis showed a 

significant linear trend (p <. 001), consistent with the waveforms and amplitudes plotted 

in Figure 3.7B. Unexpectedly, Pe also varied with confidence in correct trials (χ2 = 

18.98, p = .004). However, trend analysis showed no linear trend (p = .915) but a 

quartic trend (p = .023). The waveforms are shown in Figure 3.7A. Pe amplitudes did 

not increase linearly with confidence, instead, it fluctuated across confidence levels and 

the guessing level showed the largest amplitudes. Other than this unexpected finding, 

we found that CPP and Pe amplitudes were indeed only related to confidence in correct 

and error trials respectively. Full statistical results are reported in Tables A13 - A16. 

3.3.2.3. Binary subjective accuracy and guessing 

After testing how CPP and Pe were related to full-range confidence (as done by 

Feuerriegel et al., 2022), we then conducted additional analyses with binary categories 

of subjective accuracy, which allowed us to examine whether subjectively correct and 

incorrect trials overall differed in these two components. We coded as subjectively 

incorrect (collapsed across ratings < 4), guessing (ratings = 4), and subjectively correct 

(collapsed across ratings > 4), and then repeated the analyses separately for objectively 

correct and error trials. Figure 3.6 showed the waveforms by subjectively correct, 

subjective incorrect, and guessing trials. Only within correct trials, subjectively correct 

trials had higher CPP amplitudes than subjectively incorrect trials (χ2 = 13.51, p <.001). 

Conversely, only within error trials, subjectively incorrect trials had higher Pe 

amplitudes than subjectively correct trials (χ2 = 17.99, p <.001). This is consistent with 

the above analysis with full-range confidence ratings.  

However, there was no significant difference in Pe amplitudes for objectively 

correct trials (χ2 = 0.89, p = .345). This suggests that the relationship between the Pe 

and full-range confidence ratings in correct trials does not imply that the Pe differed 
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between subjectively correct and incorrect trials. Instead, that relationship was likely 

due to guessing trials having larger amplitudes. This was confirmed by repeating the 

same analysis with guessing trials included. When comparing guessing trials, 

subjectively correct trials, and subjectively incorrect trials, confidence again had a 

significant effect on Pe in objectively correct trials (χ2 = 9.89, p = .007) and pairwise 

comparison showed that guessing trials indeed had larger amplitudes than subjectively 

correct trials (p = .007; but not subjectively incorrect trials, p = .623). 

For other analyses with binary subjective accuracy as the predictor, inclusion of 

guessing trials did not change the patterns of statistical significance. Post-hoc pairwise 

comparisons showed that, for the Pe in error trials, guessing trials showed similar 

amplitudes as subjectively incorrect trials, and they were both different from 

subjectively correct trials (ps < .01). However, for the CPP in correct trials,  guessing 

trials showed similar amplitudes as subjectively incorrect trials, and they were both 

different from subjectively correct trials (ps < .001). For CPP in error trials, no effect of 

confidence was found, as in other analyses. These results suggest that guessing trials did 

not separate clearly from both subjectively correct and subjectively incorrect trials, 

potentially due to the fact that guessing could include a mix of trials where participants 

inclined to report certainty of being correct or incorrect (but reported guessing). Full 

statistical results are reported in Tables A17 – A24. 

In summary, by trichotomizing the confidence scale, we found results that were 

consistent with the analysis with the full-range scale. It also clarified that guessing trials 

contributed to the relationship between confidence and Pe in correct trials, but Pe did 

not differentiate subjectively correct and incorrect trials. 
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Figure 3.6. (A-B) Group mean ERP waveforms by subjectively correct, subjective 

incorrect, and guessing trials, separated by correct and error trials. Shaded areas show 

the time windows of the CPP (-130 to 70 ms) and the Pe (300 to 400 ms). CPP 

amplitudes were larger for correct trials rated as subjectively correct than correct trials 

rated as subjectively incorrect. Pe amplitudes were larger for error trials rated as 

subjectively incorrect than error trials rated as subjectively correct. Pe amplitudes were 

also larger for correct trials rated as guessing than correct trials rated as correct. 

Note. *p <.05 **p <.01 ***p <.001 

3.3.2.4. Specific associations to subjective accuracy 

We also predicted that CPP amplitudes would only be positively related 

certainty of being correct and Pe amplitudes would only be negatively related to 

certainty of being incorrect. To test these predictions, we ran the same analyses as 

above but limiting the scale ranges to ratings of 1-3 (certainty of being incorrect) and 

ratings of 5-7 (certainty of being correct). 

For the CPP in correct trials, when only trials with high confidence ratings of 5-

7 were included, a significant positive, linear effect of certainty of being correct (χ2 = 

24.04, p < .001) was found. This relationship was however absent when the range was 

limited to low ratings of 1-3 (χ2 = 0.95, p = .621), suggesting that CPP did not scale 

with graded certainty of being incorrect. For CPP in error trials, as in the analyses 

above, CPP amplitudes were not related to confidence in error trials, regardless of the 
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scale ranges (high range of 5-7: χ2 = 0.00 p =.998; low range of 1-3: χ2 = 0.16, p =.923). 

These results are consistent with our prediction that CPP should positively related to 

certainty of being correct but not certainty of being incorrect, and this is true for correct 

decision only. 

Unexpectedly, for Pe in correct trials, when only trials with high confidence 

ratings of 5-7 were included, a significant effect of certainty of being correct was found 

(χ2 = 7.05, p = .029). This effect, however, did not follow a linear trend (p = .122) as a 

follow-up trend analysis showed, but was driven by the fact that “surely correct” had a 

higher amplitudes than “probably correct” (p = .022). It should also be noted that this 

direction of effect was inconsistent with the negative relationship between confidence 

and Pe as commonly reported in previous studies (Boldt & Yeung, 2015; Desender et 

al., 2021). When only correct trials with low confidence ratings of 1-3 were included, 

there was no significant effect of certainty of being incorrect (χ2 =1.90, p = .387). For 

Pe in error trials, neither certainty of being correct (χ2 = 3.66, p =.161) or certainty of 

being incorrect (χ2 = 0.97, p = .615) had an effect. Contrary to our prediction that Pe 

amplitudes could be positively related to certainty of being incorrect in error trials only, 

we did not find Pe amplitudes in error trials related to certainty of either direction. Full 

statistical results are reported in Tables A25 – A32. 
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Figure 3.7. (A-B) Group mean of stimulus-locked ERP waveforms by all confidence 

levels separated by correct and error trials. Shaded areas show the time windows of the 

CPP (-130 to 70 ms) and the Pe (300 to 400 ms). Only CPP amplitudes in correct trials 

showed a positive relationship with certainty of being correct. The relationship between 

Pe amplitudes in correct trials and certainty of being correct was significant but did not 

follow a linear trend. Note. *p <.05 **p <.01 ***p <.001. Blue asterisks indicate the p 

value for the relationship with certainty of being correct. 

3.4. Discussion 

 In the current study, we asked whether CPP and Pe are related to confidence 

only in correct and incorrect decisions respectively, that is, whether the relationships 

between CPP and Pe and confidence show specific associations to objective decision 

accuracy. We further asked whether their relationships with confidence were only 

driven by certainty of being correct and certainty of being incorrect respectively, that is, 

whether these relationships show specific associations to subjective decision accuracy. 

To answer these two questions, we measured ERPs during a luminance judgment task 

with confidence ratings, and we found support for the hypothesized specific 

associations to objective accuracy, but only partial evidence for the hypothesized 

specific associations to subjective accuracy (for the CPP but not the Pe).  



   99  

3.4.1. Specific associations with objective accuracy 

As reported by Feuerriegel et al. (2022), we replicated that confidence ratings 

were related to Pe amplitudes only in error trials and related to CPP amplitudes only in 

correct trials. These results were supported by our analyses with full-range confidence 

ratings, and when the confidence scale was trichotomized.  

For the CPP, this pattern of results is consistent with previous findings that 

confidence in correct trials was positively related to CPP amplitudes (Feuerriegel et al., 

2022; Herding et al., 2019; Rausch et al., 2020). As confidence is assumed to reflect the 

subjective likelihood that a decision is correct, which should be positively related to the 

amount of sensory evidence accumulated according to the decision-locus models, it is 

congruent that CPP amplitudes, as an index of sensory evidence accumulation (Kelly & 

O'Connell, 2013), were positively related to confidence ratings. However, this 

relationship should only be observed when sensory evidence is effectively accumulated 

(such that the amount of sensory evidence is actually related to the likelihood of being 

correct). As this is not the case for error trials (sensory evidence in error trials is likely 

noisy), the same relationship was not observed in error trials. 

For the Pe, our pattern of results is consistent with those reporting Pe amplitudes 

in error trials were lower when confidence was high (Feuerriegel et al. 2021; Hewig et 

al., 2011). Considering Pe as an index of post-decisional error evidence accumulation 

(Desender et al., 2021), an account similar to that of our CPP results is possible. That is, 

this relationship between Pe and confidence in error trials reflects that error evidence 

was more effectively accumulated in a way that its amount was indeed positively related 

to error likelihood (and hence negatively related to confidence). This also explains why 

in correct trials such a relationship was not observed: Error evidence accumulated in 
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correct trials was likely due to noise, and therefore was not related to actual error 

likelihood (or confidence ratings). 

However, we also found an unexpected result: Correct trials rated as guessing 

showed larger Pe amplitudes than subjectively correct trials (while correct trials rated as 

subjectively incorrect did not show even larger Pe amplitudes). There are two potential 

interpretations of this finding. First, the pattern that correct trials rated as guessing 

showed larger Pe amplitudes suggests that, Pe in correct trials might not be completely 

ineffective as previously suggested: Even in correct trials where error evidence was 

limited, guessing trials still involve some amount of error evidence. However, such 

error evidence in correct trials could be derived from sources and not reliably related to 

actual error likelihood, e.g., a sense of uncertainty or response conflict. 

A second interpretation of this finding is that, correct trials rated as subjectively 

incorrect involved qualitatively different processes that limited error evidence 

accumulation (such that Pe amplitudes in these trials were not larger than that in 

guessing trials). In fact, some correct trials rated as subjectively incorrect to a larger 

extent (“surely incorrect” and “probably incorrect”) showed descriptively lower 

amplitudes not only in the Pe time window, but throughout the epoch time window 

(Figure 3.7A), suggesting that in this case stimulus processing could be qualitatively 

different from the pre-decisional stage (e.g., because correct trials in these two 

categories were driven by premature responding, which involved no sensory or error 

evidence accumulation, but led to the reports of  “surely incorrect” and “probably 

incorrect”). In contrast, the correct trials rated as “maybe incorrect”, which did not show 

lower amplitudes throughout the epoch, showed descriptively higher amplitudes than 

those trials rated as subjectively correct. Therefore, it is possible that some error 
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evidence accumulation might have still occurred in correct trials, but was disrupted in 

trials where a strong sense of certainty of being incorrect was involved. 

3.4.2. Specific association with subjective accuracy 

Regarding the specificity to subjective accuracy, we showed that the CPP was 

only related to different levels of certainty of being correct but not certainty of being 

incorrect. This supports the account that CPP does not reflect a general confidence 

level, but specifically certainty of being correct. The absence of relationship with 

certainty of being incorrect suggests that decisions perceived to be incorrect likely 

involve ineffective sensory evidence accumulation, even though these subjectively 

incorrect decisions turned out to be correct. 

In contrast, we did not observe the parallel pattern for Pe. Contrary to our 

prediction, while Pe was not linearly related to certainty of being correct, it was also not 

related to certainty of being incorrect. However, taken together with the analysis with 

binary subjective accuracy, it shows that while Pe did reflect subjective accuracy, but 

was not sensitive to the graded certainty of being incorrect. This suggests that the same 

amount of error evidence could be accumulated regardless of the certainty levels, unlike 

the relationship between certainty of being correct and CPP amplitudes in correct trials. 

Therefore, these patterns of results suggest that error awareness and confidence 

judgment might not lie on the same linear scale. Even though in behavioral terms 

participants were able to signal certainty of being incorrect in a graded fashion (that was 

linearly related to proportions of correct trials), the Pe appeared to be a binary, all-or-

none signal that reflects whether error awareness has occurred. This is analogous to 

some accounts that error detection is at least partly all-or-none (Charles et al., 2013; 

Janssen et al. 2016; Spinelli et al., 2021). This possibility is also partly supported by the 

pattern in our data that RTs were similar across different levels of certainty of being 
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incorrect. It should however be noted that as trials that were rated as incorrect were 

small in number (Figure 3.4B), this notion remains to be tested.  

3.4.3. Connection with the evidence accumulation framework 

Taken together, inconsistent with the proposal that the Pe reflects a general 

metacognitive variable (Desender et al. [2021)) and previously findings supporting this 

proposal (Boldt & Yeung [2015]; Desender et al. [2019]; Scheffer & Coles [2000]), we 

found no monotonic relationship between the Pe and full-range confidence. Therefore, 

if the CPP and Pe are taken to be the decision variable and metacognitive decision 

variable, then confidence appeared to be related to them in a more complex way than 

what was assumed in the evidence accumulation framework (Desender et al., 2021).  

The evidence accumulation framework proposed by Desender et al. (2021) 

suggests that decision and confidence are both driven by evidence accumulation 

processes. Specifically, a decision variable is assumed to accumulate noisy sensory 

evidence and give rise to a decision once the amount of sensory evidence reaches a 

boundary. This is then followed by a similar process in which a metacognitive variable 

accumulates error evidence. Critically, the model suggests that the metacognitive 

variable gives rise to confidence judgment and error awareness depending on criterion 

setting. For example, error awareness occurs when the accumulated error evidence is 

against the decision and its amount exceeds a criterion, and confidence emerges when 

the opposite is true. Confidence and error awareness thus lie on the same continuum, 

and both depend on the state of the metacognitive variable, which was proposed to be 

reflected by the Pe (Desender et al, 2021). 

However, the current finding regarding the relationship between the Pe and 

confidence is not in line with the framework. As discussed by Feuerriegel et al. (2022), 

Desender and colleagues’ claim that the Pe should reflect both error awareness and 
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confidence (2021) was incompatible with their findings that Pe amplitudes were only 

related to certainty of being incorrect in error trials. Using a pre-stimulus baseline as in 

Feuerriegel et al. (2022), the current study similarly suggests that Pe is not sensitive to 

certainty of being correct is therefore inconsistent with the proposal by Desender et al. 

(2021). However, while the Pe might not serve as a general index of full-range 

confidence, it might reflect error evidence accumulation, that is limited in objectively 

correct trials, and error trials rated as correct. This is because Pe amplitudes still 

differentiated error trials rated as incorrect from error trials rated as guessing or correct, 

potentially because error evidence accumulation was effective in the former case but not 

in the latter. Taken together with the finding that confidence in correct trials was related 

to CPP amplitudes, this would then imply that confidence and error awareness are not 

two sides of the same coin: Confidence could emerge during decision formation, while 

error awareness might be based more on post-decisional processes. 

While the current findings are broadly consistent with Feuerriegel et al. (2022), 

there are however some differences. First, whereas they reported that Pe amplitudes 

were related to certainty of being incorrect (measured on a continuous scale), the 

current study did not find such an effect. Further, Pe appeared to be an all-or-none 

signal of error awareness in error trials as similar Pe amplitudes across different levels 

of certainty of being incorrect were observed. This inconsistency could however be due 

to different scales used between studies and that guessing trials were excluded in the 

current analyses. As only few studies measured graded error awareness, it remains to be 

tested in the future whether error awareness is indeed binary or graded. Second, while 

Feuerriegel et al. (2022) found that the CPP was related to confidence in both correct 

and error trials, the current study found it to be related to confidence only in correct 

trials. This difference could be attributed to the difference between task paradigms. It is 
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possible that errors in their task were easier to detect because detected errors involved 

the absence of sensory evidence accumulation, whereas in the current task detected and 

undetected errors had similarly noisy sensory evidence accumulation (as the current 

paradigm was shown to induce a confidence bias through noise; Ko et al., 2022). 

Additionally, the fact that the Pe as a response-locked component was baseline 

corrected using a pre-stimulus baseline might have increased the noise in its measure, 

contributing to the difference between our findings. 

Lastly, although the current study does not support the claim that Pe indexes a 

metacognitive variable as Desender and colleagues (2021) suggested, it does not reject 

the suggestion that a metacognitive variable exists. The idea that decisions and 

confidence are supported by two separate variables has been previously put forward 

(Fleming & Daw, 2017). Without assuming that they have respective evidence 

accumulation processes, serial or parallel structures, or the relationship between 

decision and metacognitive variables, it has been shown that the presence of a 

metacognitive variable explains a range of empirical findings in both confidence and 

error awareness studies (Fleming & Daw, 2017). This suggests that metacognitive 

variable remains a useful construct for understanding metacognitive decisions, although 

its neural implementations could be more complex than the Pe. 

3.4.4. Limitation and future directions 

 One limitation in the current study was that the number of trials rated as 

incorrect (ratings < 4) was much lower than the number of high confidence trials 

(ratings > 4), especially when only correct trials were considered (Tables 3.1 & 3.2). 

This could have contributed to the unexpected ERP patterns of correct trials rated as 

incorrect, as discussed above. Therefore, for the analyses involving certainty of being 

incorrect in correct trials (and to a lesser extent in error trials), the absence of effects 
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could potentially be due to underpowered statistical tests and noise due to low trial 

numbers. While this is a typical pattern in a range of perceptual tasks (decisions are less 

likely to be rated as incorrect than correct), future studies could employ tasks where a 

larger number of trials rated as incorrect occur, for example, go/no-go tasks (Murphy et 

al., 2015) or instruct participant to detect error with lower threshold (Steinhauser & 

Yeung, 2010).  

 Another limitation was that the observed relationships might not be due to the 

proposed mechanisms, but correlation between the components. For example, 

participants could have determined their confidence levels before indicating a decision 

with a response even though they were only required to do so after an interval (Baranski 

& Petrusic, 1994). This could still lead to amplitude differences in the Pe which was 

observed after the response and the Pe might reflect continued processing of sensory 

evidence (Rausch et al., 2020). However, while this could be possible in correct trials 

where the CPP and Pe show similar amplitude differences (Figure 3.7A), error trials 

showed that the amplitude difference in the Pe time window only appeared after 

response, thus suggesting that Pe is likely to reflect evidence from a different source 

rather than only sensory evidence. To avoid mixing the accumulation processes of 

sensory evidence and error evidence in future studies, stimulus masked such that 

sensory evidence is unlikely to continue after decision. 

 Lastly, the relationships between confidence ratings and ERP components were 

analysed across trials from all stimulus conditions, due to the low number of trials in 

each condition. As the CPP and Pe could vary with both confidence ratings and 

stimulus conditions with different relative and absolute evidence strength (Appendix C), 

the reported relationships between confidence ratings and ERP measures could have 

been confounded by the effects of stimulus conditions. Additionally, different stimulus 
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conditions could have led to stimulus-offset potentials of different amplitudes, which 

could have further overlapped and confounded with the Pe. In future studies where the 

number of trials is sufficient, one could take into account of both stimulus conditions 

and confidence ratings to separate the two effects. For example, this could be done by 

examining trials within the same stimulus condition but with different confidence 

ratings (Tagliabue et al., 2019). To avoid the overlapping between stimulus-offset 

potentials and the Pe, future studies could employ tasks where stimuli remain on screen 

throughout the trial, or stimulus offset and decision are separated by an interval. 
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Table 3.1 Means and standard deviations of trial counts by confidence ratings and 
objective accuracy  
 Surely 

incorrect 
Probably 
incorrect 

Maybe 
incorrect 

Guessing Maybe 
correct 

Probably 
correct 

Surely 
correct 

Correct 4±7 8±14 13 ±15 77±82 122±110 186 
±114 

233±170 

Error 11±13 11±15 16 ±15 82±58 61±47 81±60 77±67 
 

Table 3.2 Means and standard deviations of trial counts by subjective and objective 
accuracy  
 Subjectively 

incorrect 
Guessing Subjectively 

correct 
Correct 25±29 77±82 541±103 
Error 38±30 67±58 219±67 

 

3.4.5. Conclusion 

 In summary, we found that the two proposed correlates of confidence, the CPP 

and Pe, showed respective positive and negative relationships with confidence ratings in 

a luminance judgment task, thus supporting the hypothesis that both of these 

components exhibit specific associations with objective decision outcomes. We further 

showed that CPP amplitudes in particular were only positively related to certainty of 

being correct, but there was no evidence that Pe amplitudes were only related to 

certainty of being incorrect. While the current findings could be explained by an 

evidence accumulation framework, they suggest that confidence might be largely 

dependent on how much sensory evidence is accumulated, and error awareness emerges 

through an error evidence accumulation process after decision. This is inconsistent with 

the recent suggestion that confidence and error awareness could be considered as 

different expressions of metacognitive decision that is determined by a common 

metacognitive variable. 
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Chapter 4. General discussion 

4.1. Summary of the current project 

Metacognitive decisions regarding subjective decision accuracy, including 

confidence judgment, error awareness, and change-of-mind decisions have been 

traditionally studied as different areas of research. However, they have been recently 

proposed to be closely related and might be explained by a common mechanism based 

on evidence accumulation, and confidence is a common construct in these proposals 

(Desenders et al., 2021; van den Berg, Anandalingam et al., 2016). 

The current project therefore focused on the role of confidence in metacognitive 

decisions and investigated: (a) how confidence is related to changes of mind, and (b) 

how confidence is related to pre- and post-decisional processes. Particularly, Chapter 2 

(Studies 1 and 2) investigated behaviorally how confidence and changes of mind varied 

with stimulus properties including relative evidence strength, absolute evidence 

strength, and evidence variability. Chapter 3 (Study 3) investigated how ERP 

components related to sensory and error evidence accumulation, namely the CPP and 

Pe, could be linked to confidence differentially. 

This final chapter first summarizes the key research findings, then discusses 

these findings in relation to relevant cognitive processes, as well as their implications to 

models of metacognitive decision, and lastly discusses the methodological limitations of 

the current project and future research directions. 

4.2. Main research findings 

4.2.1. Behavioral findings 

First, on the behavioral level, when stimulus properties including relative 

evidence and absolute evidence were varied, confidence ratings and the proportions of 

change-of-mind trials were found to change in largely consistent ways (Studies 1 & 2). 
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In correct trials, stronger relative evidence led to increased confidence, and reduced 

proportions of change-of-mind trials, and stronger absolute evidence similarly increased 

confidence and reduced proportions of change-of-mind trials. In contrast, in error trials, 

stronger absolute evidence increased confidence and reduced proportions of change-of-

mind trials, and stronger relative evidence led to reduced confidence and higher 

proportions of change-of-mind trials. Therefore, the current findings showed that 

confidence and changes of mind were consistently affected by sensory evidence 

strength. These key findings are summarized in Table 4.1. 

4.2.2. EEG findings 

Second, on the neural level, the relationships between confidence and ERP 

components were examined (Study 3). The main finding was that these relationships 

were dependent on objective accuracy. CPP amplitudes were only positively related to 

full-range confidence (and binary subjective accuracy) in correct decisions, while Pe 

amplitudes were only negatively related to full-range confidence (and binary subjective 

accuracy) in erroneous decisions. Further, when the full-range confidence scale was 

divided into measures of certainty, only certainty of being correct in objectively correct 

decisions was related to the CPP and Pe: It was positively related to CPP amplitudes 

and nonlinearly related to Pe amplitudes. Such findings remained largely unchanged 

when alternative measures of the same ERP components were used (Appendix B) or 

when only subjective accuracy but not objective accuracy was considered (Appendix 

D). In an exploratory analysis on the effects of relative and absolute evidence 

(Appendix C), it was found that stronger absolute evidence reduced both Pe and CPP 

amplitudes in error trials, but only when relative evidence was strong. The key findings 

are summarized in Tables 4.2 – 4.4. 
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Table 4.1. Summary of the effects of relative and absolute evidence on confidence ratings and change-of-mind trial proportions. 

 Relative evidence Absolute evidence 

 Confidence Change of mind Confidence Change of mind 

Correct  increase decrease increase decrease 

Error  decrease increase increase decrease 

 

Table 4.2. Summary of the relationships between ERP component amplitudes and confidence measures. 

 Response-locked CPP Pe 

 Full-

range 

Binary Correct 

certainty 

Error 

certainty 

Full-

range 

Binary Correct 

certainty 

Error 

certainty 

Correct positive positive positive n.s. nonlinear n.s. nonlinear n.s. 

Error n.s. n.s. n.s. n.s. negative negative n.s. n.s. 

Note. n.s. no significant relationship. 
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Table 4.3. Summary of the relationships between alternative ERP component amplitudes and confidence measures. 

 Stimulus-locked CPP Late Pe ERN/Ne 

 Binary Correct 

certainty 

Error 

certainty 

Binary Correct 

certainty 

Error 

certainty 

Binary Correct 

certainty 

Error 

certainty 

Correct positive positive n.s. nonlinear n.s. positive negative n.s. n.s. 

Error n.s. n.s. n.s. negative n.s. n.s. n.s. n.s. n.s. 

Note. n.s. no significant relationship. 

 

Table 4.4. Summary of the effects of relative and absolute evidence on ERP component amplitudes. 

 Response-locked CPP Pe Late Pe 

 Relative 

evidence 

Absolute 

evidence 

Interaction Relative 

evidence 

Absolute 

evidence 

Interaction Relative 

evidence 

Absolute 

evidence 

Interaction 

Correct n.s. n.s. n.s. n.s. n.s. n.s. n.s. negative n.s. 

Error n.s. n.s. negativea  n.s. negativea negativea n.s. negative negativea 

Note. n.s. no significant relationship. 
aNegative relationship between absolute evidence strength and ERP amplitudes, only when relative evidence was strong
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4.3. Theoretical implications 

This section discusses the implications of the current findings. It first discusses (a) 

how increased absolute evidence increased confidence while impairing accuracy, and (b) the 

possibility that increased absolute evidence reduced changes of mind through increased 

confidence. This section then moves on to discuss (c) how confidence in correct and 

erroneous decisions could be differentially related to CPP and Pe amplitudes, and (d) how 

these ERP findings map onto existing evidence accumulation models of metacognitive 

decisions. 

4.3.1. How did stronger absolute evidence increase confidence? 

Chapter 2 has suggested that the positive effect of absolute evidence on confidence 

was analogous to the positive evidence bias (PEB) observed in previous studies. The PEB (or 

more recently termed, “high-intensity-high-confidence” effect; Shehkar & Rahnev, 2022) 

was originally found in earlier studies employing dot motion tasks where positive evidence 

(i.e., evidence supporting the correct response) was experimentally increased, while the ratio 

between positive and negative evidence (i.e., evidence supporting other responses) was 

maintained (Koizumi et al., 2015; Odegaard et al., 2018; Peters et al., 2017; Samaha & 

Denison, 2022). In the condition with stronger positive evidence, confidence was consistently 

found to be increased while decision accuracy remained unchanged.  

Although the dot motion task is the most commonly used paradigm for inducing the 

PEB, similar biases were later shown in comparative judgment paradigms involving 

perceptual and value-based decisions (Folke et al., 2016; Sepulveda et al., 2020). For 

example, Sepulveda et al. (2020) showed that in a numerosity task that required participants 

to decide which of the two visually presented boxes contained more dots, the summed dot 

number of the two boxes predicted confidence beyond the dot number difference between the 

boxes. The same pattern was also observed in value-based decision tasks involving the choice 
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between multiple food items assigned with different preference values (Folke et al., 2016; 

Sepulveda et al., 2020). Given that the task used in the current project was also a comparative 

judgment task and produced similar effects, the effect of absolute evidence on confidence 

could be considered to be of the same nature as the PEB. 

The PEB provides an uncommon case where confidence is dissociated with decision 

accuracy, serving as a hurdle phenomenon that computational models of confidence 

judgment attempted to explain (Shekhar & Rahnev, 2022). One major assumption that has 

been incorporated into models of confidence judgment is the decision-congruent (or 

response-congruent) evidence hypothesis discussed in Chapter 2, which suggests that while a 

decision is based on sensory evidence difference between the selected and nonselected option 

(i.e., balance-of-evidence), confidence is based on only sensory evidence congruent with the 

selected option (Zylberberg et al., 2012; Peters et al., 2017; Maniscalco et al., 2021). As 

increase in positive evidence (and absolute evidence in the current task paradigm) implies 

increase in decision-congruent evidence, this hypothesis provides a direct account for the 

PEB, as supported by previous modelling works (Zylberberg et al., 2012; Peters et al., 2017; 

Maniscalco et al., 2021). Thus, in line with this account, stronger absolute evidence should 

have increased decision-congruent evidence, and thereby increased confidence.  

4.3.1.1. Why is confidence based on decision-congruent evidence? 

Previous studies have discussed why confidence could be estimated in such an 

apparently suboptimal way that confidence does not track decision accuracy (Mazor, 2021; 

Navajas et al., 2016). One possibility is that such confirmation bias is a form of heuristic that 

allows efficient estimation of confidence in the natural environment (Maniscalco et al., 

2016). As the natural environment often contains more than two choice alternatives, 

maintaining the evidence supporting each of the alternatives could be resource-demanding. 

Instead, by discarding such evidence and basing confidence on decision-congruent evidence 
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only, confidence could still be adequately estimated (albeit less accurate under a lab 

condition where an ideal estimate of confidence requires taking into account the balance-of-

evidence between two alternatives). This is aligned with the idea that a confidence estimation 

strategy adaptive for detection tasks is employed for estimating confidence in discrimination 

tasks, altohugh confidence estimated in this way corresponds to the likelihood that a stimulus 

is present vs. absent, rather than the likelihood of a stimulus being different from other 

stimuli (Maniscalco et al., 2016; Mazor, 2021). 

This notion that the PEB originates from decision making in the natural environment 

is further supported by simulation studies. For example, Miyoshi and Lau (2020) showed 

that, under conditions where representations of stimulus strength were differentially variable 

for different stimulus categories (e.g., by assuming that target-present trials involve higher 

variability than target-absent trials), the use of decision-congruent in confidence could 

actually lead to more accurate confidence ratings than the use of balance-of-evidence. As 

such large variance difference is likely present in the natural environment, it was suggested 

that basing confidence on decision-congruent evidence could be adaptive. Consistently, 

Webb et al. (2021) showed that neural network models that were trained with stimuli of 

variable contrast levels (corresponding to higher variability), could naturally produce the 

PEB similarly to human participants. This finding accords with the argument that the 

presence of the PEB stems from applying confidence judgment rule from a more variable 

environment to a more controlled environment. 

However, others have suggested that the over-reliance on decision-congruent 

evidence might be more dependent on the decision-making agent. For example, some have 

suggested such strategy serves to maintain self-consistency in decision making (Peters et al., 

2017), to minimize cognitive dissonance (Navajas et al., 2016), and to allocate attentional 

resources to focus on evidence that matches one’s behavioral goal (Sepulveda et al., 2020). 
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This explanation is consistent with previous studies showing that the commitment to a 

decision could bias further processing of the stimuli that the decision was based on (Stocker 

& Simoncelli, 2007).  

4.3.1.2. Does the PEB involve pre- and/or post-decisional processes? 

Another question that has been asked about the PEB is whether this bias involve pre- 

and/or post-decisional processes (Samaha & Denison, 2022). As the PEB is driven by sensory 

evidence, it is reasonable to assume that it occurs during the pre-decisional stage. In fact, 

with the PEB induced in a dot motion task, Samaha and colleagues (2022) showed that the 

PEB was also observed when choice and confidence were reported simultaneously (where the 

time for post-decisional processing was limited), although such finding did not completely 

rule out a post-decisional account (as in such condition one could still internally commit to a 

choice and then a confidence level; Baranski & Petrusic, 1994; Desender et al., 2021). In 

support of the pre-decisional account, psychophysical kernel analyses also showed that 

decision-congruent evidence at early stimulus presentation contributed to confidence 

(Zylberberg et al., 2012; Mazor, 2021).  

Notably, it has also been suggested that such confirmation bias could extend to the 

post-decisional stage, thus influencing confidence reported later and changes of mind 

(Navajas et al., 2016; Rollwage et al., 2020). In the current project, additionally analyses 

were conducted to examine the relationships between absolute evidence and the ERP 

components of the CPP and Pe, in order to identify the neural processes related to the 

absolute evidence effect. However, these analyses showed that stronger absolute evidence 

reduced both the CPP and Pe in error trials, suggesting that both sensory and error evidence 

accumulation before and after erroneous decisions were reduced (Appendix C). Particularly, 

reduced sensory evidence accumulation due to stronger absolute evidence could be explained 

by the fact that stronger absolute evidence reduced perceived relative evidence, which was 
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assumed to be directly relevant to sensory evidence accumulation in comparative judgment 

tasks (discussed in Chapter 2). On the other hand, reduced error evidence accumulation due 

to stronger absolute evidence corresponded to the positive effect of absolute evidence on 

confidence. This suggests that the bias observed affected post-decisional processes, and 

might reduce error evidence accumulation. 

 However, it should be noted that the effect of absolute evidence on ERP amplitudes 

did not correspond completely with their effects on confidence. First, confidence changes due 

to absolute evidence were mostly found at all levels of relative evidence, and for both correct 

and error trials, but ERP changes were observed within a limited subset of trials (error trials 

where relative evidence was strong). This is potentially because the absolute evidence effect 

involve not only the processes reflected by these ERPs (i.e., sensory and error evidence 

accumulations), but other aspects such as metacognitive bias, and decision-congruent 

evidence was not measured in the current studies (Rollwage et al., 2020; Samaha et al., 

2022). Second, the negative effect of absolute evidence on CPP amplitudes in error trials was 

however not consistent with the fact that stronger absolute evidence increased confidence 

(given that confidence and CPP amplitudes were positively related), but this could be due to 

the possibility that sensory evidence in error trials does not inform confidence (discussed in 

Chapter 4). 

4.3.2. How did increased confidence translate into lower change-of-mind frequency?  

4.3.1.1. Confidence and changes of mind share the same stream of evidence 

Chapter 2 showed that stronger absolute evidence not only increased confidence, but 

also reduced changes of mind. This pattern of results is also consistent with the previous 

finding reported by Turner et al. (2021), which showed that changes of mind in a highly 

similar task were also reduced by stronger absolute evidence. These converging findings 

between the current studies and Turner et al. (2021) suggest that confidence and changes of 
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mind are closely related, to the extent that they are not only negatively related when task 

difficulty was high in general (e.g., due to reduced relative evidence), but also when a bias 

was induced due to absolute evidence strength. This consistency is in support of the proposal 

that both confidence and changes of mind are based on the same stream of stimulus-based, 

sensory evidence (Rollwage et al., 2020; van den Berg, Anandalingam et al., 2016). 

In the study by van den Berg, Anandalingam et al. (2016), participants completed a 

dot motion task where they moved a handle to indicate choice and confidence 

simultaneously, and changes of mind were measured as changes of movement trajectories. 

Their psychophysical kernel analysis showed that while initial confidence and choice were 

explained by balance-of-evidence and RT, changes of mind were explained additionally by 

post-decisional evidence accumulation even when the stimulus was absent. This showed that 

stimulus-based evidence that did not contribute to initial choice and confidence (i.e., late-

arriving evidence in the processing pipeline) was continuously processed and affected 

changes of mind. Specifically, changes of mind occurred when evidence supporting one 

choice alternative changed to support another choice alternative.  

Using a brightness judgment task similar to the current studies, Turner et al. (2022) 

replicated the same psychophysical kernel analysis results, and additionally demonstrated that 

even evidence from early stimulus presentation was also related to changes of mind: Choice 

options supported by stronger momentary evidence initially were less likely to be reversed. 

They suggested that it was potentially because such early evidence biased sensory evidence 

accumulation. Taken together, these previous studies suggest that changes of mind and 

confidence share the same stream of sensory evidence, but the occurrence of changes of mind 

occur depend on whether late-arriving evidence is in conflict with earlier evidence. This 

provides an explanation for the consistent findings between the current studies and the 
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findings reported by Turner et al. (2021): Stimulus-based, sensory evidence contributes to 

confidence, which serves as the basis of changes of mind. 

4.3.1.2. The effect of confidence on changes of mind 

Considering that confidence could be the basis of changes of mind, what could be an 

underlying process that connects confidence and changes of mind? While this is beyond the 

scope of the current project, this section discusses the possible mechanisms in the evidence 

accumulation framework. Specifically, confidence could affect changes of mind in two 

aspects: change-of-mind evidence accumulation rates and change-of-mind criteria. 

As discussed above, van den Berg and colleagues (2016) suggested that confidence 

emerges during decision formation based on the state of the decision variable, which then 

receives late-arriving sensory evidence and determines whether changes of mind occur. 

Particularly, decisions made with higher confidence (due to more accumulated sensory 

evidence) required more conflicting, late-arriving evidence to be overruled, compared with 

decisions made with lower confidence (equivalent to an effect on the starting point of the 

change-of-mind evidence accumulation process; Rollwage et al., 2020).  

Beyond the effect on the starting point, confidence could also affect the change-of-

mind evidence accumulation rates. In the current studies, both relative and absolute evidence 

strength consistently affected confidence and changes of mind. As relative and absolute 

evidence were respectively linked to drift rates and drift rate variability in previously 

proposed evidence accumulation models (Ratcliff et al., 2018; Turner et al., 2021), it is 

possible that earlier drift rates and drift rate variability could extend to the change-of-mind 

evidence accumulation process. However, this idea that post-decisional processes are simply 

extension of pre-decisional processes appeared to be insufficient, at least when this was 

applied to explain the effect of absolute evidence on changes on mind (Turner et al., 2021). 

Such findings might suggest that in addition to the sensory evidence accumulation, change-
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of-mind evidence accumulation process could involve additional sources of (error) evidence 

(Desender et al., 2021; Murphy et al. 2015; Stone et al., 2022; Ullsperger et al., 2010), or drift 

rate changes dependent on confidence (Braun et al., 2018; Rollwage et al., 2020). 

Additionally, the relationship between confidence and changes of mind could be 

explained by change-of-mind criteria. For example, under conditions where confidence is 

high due to liberal confidence criteria, change-of-mind criteria could also be more liberal, 

leading to a higher change-of-mind likelihood. While this idea has not yet been tested, two 

streams of studies suggest that this mechanism is possible. First, the PEB has been shown to 

be related to more liberal criteria for reporting high confidence, meaning that a smaller 

amount of evidence is required to give a high confidence response (Samaha et al., 2022), 

suggesting that absolute evidence might not only affect drift rate variability (Ratcliff et al., 

2018; Turner et al., 2021), but also confidence criteria. If higher confidence results from 

more liberal criteria (instead of accumulated a large amount of evidence), this might imply 

that in such case changes of mind might as well occur easily. Second, studies have reported 

cases in which confidence could affect subsequent decisions (Desender et al., 2019; Overhoff 

et al., 2021; van den Berg, Zylberberg et al., 2016), although the direction of effects could be 

task-specific. Typically, in tasks where only one decision is made in each trial, lower 

confidence likely leads to more conservative decision criteria / more caution for the following 

decision (Desender et al., 2019). However, in a task where participants were required to make 

a pair of decisions sequentially, it was found that the decision threshold that determines 

speed-accuracy tradeoff of the second decision was dependent on the confidence level in the 

first decision (van den Berg, Zylberberg et al., 2016). Particularly, as task performance in this 

particular task was contingent on both decisions being correct and accuracy feedback was not 

available until the end of trial, participants prioritized accuracy over speed in making the 

second decision if they were confident in their first decisions. Nevertheless, these studies 



   120  

generally suggest that confidence could be considered as an internal feedback signal that 

influences the decision criteria for the following decision. 

In summary, the current behavioral findings suggest that absolute evidence increased 

confidence by increasing decision-congruent evidence, and such increase in confidence might 

in turn affect post-decisional processes including drift rates and change-of-mind criteria for 

changes of mind.  

4.3.3. ERP correlates of metacognitive decisions 

4.3.3.1. Confidence (certainty of being correct) was only related to the CPP 

amplitudes 

Single-stage evidence accumulation models of confidence judgment suggest that 

confidence emerges during decision formation, based on the amount of sensory evidence 

accumulated (Kiani & Shadlen, 2009; Vickers, 1979; Lee et al., 2022; Rahnev, 2022). 

Consistently, Study 3 showed that CPP amplitudes, which was proposed to be an index of 

sensory evidence accumulation, was a pre-decisional correlate of decision confidence. Likely 

because the amount of sensory evidence in errors and subjectively incorrect trials was noisy, 

such correlate was only observed for correct trials rated as correct (i.e., certainty of being 

correct), but did not differ across confidence levels. It therefore also explains why even 

though error trials in the current study showed variability in certainty of being correct, CPP 

amplitudes were not related to certainty of being correct in error trials. Confidence was 

however not related in the same way to the Pe, which was proposed to be a post-decisional 

correlate of confidence (Desender et al., 2021). Instead, Pe amplitudes in correct trials were 

higher for guessing trials than subjectively correct and incorrect trials, suggesting that 

confidence (i.e., certainty of being correct) was not meaningfully related to post-decisional 

error evidence accumulation. Therefore, the current findings are consistent with a single-

stage model of confidence (Lee et al., 2022; Rahnev, 2022), but inconsistent with the claim 
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that post-decisional accumulation of sensory or error evidence determines confidence 

(Desender et al., 2021; Moran et al., 2015). 

4.3.3.2. Changes of mind could be related to both CPP and Pe amplitudes 

In contrast, subjectively correct and subjectively incorrect trials differed in terms of 

both CPP amplitudes in correct trials and Pe amplitudes in error trials. Assuming that 

subjectively incorrect trials would have led to changes of mind, this suggests that, on the one 

hand, changes of mind occur when the amount of sensory evidence accumulated was low (in 

initially correct trials), consistent with the previous finding that weaker early sensory 

evidence could predict more frequent changes of mind (Turner et al., 2022). On the other 

hand, changes of mind could also occur when the amount of error evidence accumulated was 

high (in error trials). This is consistent with the previous findings that changes of mind and 

confidence depend on the amount of evidence accumulated before and after decision (Charles 

& Yeung, 2019).  

These respective patterns for correct and error trials also suggest a difference between 

changes of mind in correct and changes of mind in error trials, where the latter could be 

associated with error awareness. In correct trials rated as incorrect, changes of mind could be 

driven by the lack of sensory evidence, e.g., due to premature responding, motor slips, or lack 

of response preparation, and thus one could report changes of mind without post-decisional 

error evidence accumulation. In error trials rated as incorrect, changes of mind could be 

driven by post-decisional error evidence accumulation. Specifically, error awareness in trials 

where errors actually occurred could involve more error evidence due to error-specific, 

processes such as orienting responses (Wessel, 2017). It also provides a potential explanation 

for the common finding that changes of mind were often corrective (Stone et al., 2022), as 

additional error evidence in error trials could lead to more changes of mind, compared with 

correct trials. 
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Additionally, certainty of being incorrect was not related to Pe amplitudes, suggesting 

that the same error evidence accumulation process was involved regardless of levels of 

certainty. Assuming that certainty of being incorrect is related to error awareness, this finding 

could be explained by the possibility that error awareness is binary. Unlike confidence, the 

graded nature of error awareness has not been well established as most error monitoring 

studies employed binary accuracy ratings (Wessel, 2012). Evidence suggesting that error 

awareness could be graded comes from studies investigating neural correlates of error 

detection. For example, Gehring et al. (1993) showed that ERN amplitudes were related to a 

range of parameters (response force, error correction proportion, correct response RT in the 

next trial) in a graded fashion. Scheffer and Coles (2000) showed that ERN amplitudes 

decreased monotonically with confidence ratings. A ERP component similar to the ERN, the 

feedback-related negativity (FRN), was also modulated by error feedback that reflected a 

large or small discrepancy to ideal response (Luft et al., 2014). In contrast, Janssen et al. 

(2016) showed that outcome monitoring activities from medial frontal cortex showed binary 

patterns even in response to prediction errors in different sizes. Similarly, Charles et al. 

(2013) also reported that the ERN occurred depending on binary visibility report instead of 

gradual manipulation of stimulus masking time. Given that the ERN might reflect processes 

that contribute to error awareness and the Pe, e.g., response conflict (Charles et al., 2013; 

Ullsperger et al., 2010), it is possible that the Pe similarly reflects binary error awareness. 

However, it should be noted that the number of trials rated as incorrect was low in Study 3, 

which might have contributed to the non-significant results regarding certainty of being 

incorrect and Pe amplitudes. In summary, the current findings suggest that on the neural level 

error awareness appears to be binary, as Pe amplitudes were invariant across regarding 

certainty levels of being incorrect. 
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4.3.4. What can explain the asymmetry between metacognitive decisions in correct and 

erroneous decisions? 

The current studies showed that metacognitive decisions in correct and erroneous 

decisions were different in terms of ERP correlates. This suggests that error commission 

could involve qualitatively different cognitive processes than those of correct decisions 

(Rabbitt, 1966; Wessel et al., 2017).  

In fact, previous studies on metacognitive decisions have often reported asymmetrical 

patterns between correct and erroneous decisions. In confidence studies, it has been typically 

found that when stimulus discriminability is varied, retrospective confidence ratings in 

correct and error trials showed a folded-X pattern (but not when choice and confidence were 

reported simultaneously; Desender et al., 2020; Kepecs et al., 2008; Rausch et al., 2020; 

Sander et al., 2016): Confidence in correct trials increased with discriminability, but 

confidence in error trials decreased with discriminability. Also, confidence in correct trials is 

invariant to the interval between the primary decision and confidence report (i.e., inter-

judgment time), while confidence in error trials appears to decay with longer inter-judgment 

time. These findings suggest that post-decisional processes contribute to lower confidence 

ratings following erroneous decisions. 

Similarly, changes of mind patterns also differ between correct and error trials. In 

addition to overall higher change-of-mind frequency in error trials (Stone et al., 2022), 

changes of mind in error trials also occurred most often at intermediate task difficulty level 

(as low task difficulty produces few errors, but high task difficulty prevents decision from 

being reversed by conflicting evidence), while changes of mind in correct trials decreased 

monotonically with lower difficulty (Albantakis et al., 2012). These findings suggest that 

post-decisional processing differ between correct and error trials, as on average post-
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decisional evidence tend to contradict sensory evidence more in error than in correct trials 

(Yu et al., 2015).  

In error monitoring studies, both ERN and Pe amplitudes have been found to be 

elevated for error trials compared with correct trials, and error signaling occurs more often in 

error trials, suggesting error-specific processing following error commission (e.g., 

Steinhauser & Yeung, 2010). In a recent study by Overhoff and colleagues (2022), it was also 

found that full-range confidence was related to RT and response force in correct and error 

decisions respectively, suggesting the involvement of different response parameters 

informing metacognitive judgments in correct and erroneous decisions. 

While different explanations have been proposed to explain these asymmetrical 

patterns, one common assumption is that error trials might involve qualitatively different 

processes from early to later processing stages, e.g., inhibition of ongoing cognitive 

processes, automatic orienting responses, and behavioral adjustments such as post-error 

slowing (Wessel et al., 2017). Within the evidence accumulation framework, these processes 

could be involved in a distinct error evidence accumulation process (Desender et al., 2020; 

Ullsperger et al., 2010; Yu et al., 2015), leading to the current observation that increased Pe 

amplitudes appear to be specific to error trials rated as incorrect. 

4.3.5. Implications to models of metacognitive judgment 

 The above section discussed how absolute evidence affected confidence and changes 

of mind, as well as how the relationships between confidence and ERP indexes of evidence 

accumulation differed between correct and error trials. Based on these findings, this section 

discusses some implications for future theory development, regarding (a) the nature of 

evidence accumulated, and  (b) the decision locus of confidence. 
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4.3.5.1. Dissociation between choice and confidence 

A model of metacognitive decisions must explain metacognitive decisions together 

with the primary decision. The current behavioural finding that accuracy could be dissociated 

from confidence posed a hurdle for several common model structures, e.g., evidence 

accumulation models that assume confidence and changes of mind could be explained by 

balance-of-evidence (Vickers & Packer, 1982) or post-decisional sensory evidence 

accumulation (Moran et al., 2015; Resulaj et al., 2009; van den Berg, Anandalingam et al., 

2016). In contrast, this dissociation is in support of models that assume separate sources of 

evidence for choice and metacognitive decisions, e.g., the unified model of metacognitive 

decisions that assumes metacognitive decisions are based on error evidence that is distinct 

from sensory evidence (Desender et al., 2021). 

The distinction between continued accumulation of sensory evidence and error 

evidence has been noted in the literature (or the sensory/response vs. accuracy reference 

frame of evidence accumulation; Desender et al., 2021). The current findings are congruent 

with the error evidence hypothesis that the Pe reflects error evidence accumulation 

(Steinhauser et al., 2010; Murphy et al., 2015), as it could account for the observed pattern 

that error trials rated as incorrect showed clearly increased Pe amplitudes than error trials 

rated as correct, while their CPP amplitudes were similar. This pattern might suggest that 

post-decisional accumulation departs from pre-decisional accumulation for error trials rated 

as incorrect, which should not be expected if post-decisional accumulation is simply a 

continuation of sensory evidence accumulation. 

However, it is possible that error evidence and sensory evidence are correlated or both 

processes exist (Shekhar & Rahnev, 2022). For example, when examining the effects of 

absolute evidence on CPP and Pe amplitudes in error trials, the negative effect of increased 

absolute evidence on amplitudes appeared to maintain from the CPP to Pe time windows, 



   126  

suggesting that in such condition both sensory evidence as well as error evidence 

accumulations were reduced (Appendix C). While this exploratory finding does not clarify 

how the two types of evidence are correlated, previous studies have suggested different 

proposals on how the decision variable is transformed into a metacognitive variable (e.g., by 

incorporating Gaussian or logarithmic noise; Shekhar & Rahnev, 2022). 

4.3.5.2. Decision locus of confidence 

A key assumption that is incorporated in models of metacognitive decisions is that 

metacognitive decisions are based on a metacognitive variable that accumulates sensory/error 

evidence (e.g., Desender et al., 2021). This assumption is however inconsistent with the 

current findings that confidence appeared to be instead dependent on the decision variable 

that accumulates sensory evidence only, while changes of mind and error awareness could be 

related to error evidence in addition to sensory evidence. Correspondingly, future theory 

might consider a mechanism where confidence emerges during decision formation, and 

changes of mind and error awareness require post-decisional evidence, consistent with 

existing models in these two areas (Murphy et al., 2015; Steinhauser & Yeung, 2010; Stone 

et al., 2022; Ullsperger et al., 2010). 

While such proposal would be against the models that suggest that confidence 

depends on post-decisional accumulation (Boldt & Yeung, 2015; Desender et al., 2021; 

Moran et al., 2015), recently it has been suggested that post-decisional accumulation is not a 

generally necessary feature for explaining confidence (but could be more important in some 

cases, e.g., when decisions are speeded and stimulus is presented continuously after response; 

Lee et al., 2022; Shekhar & Rahnev, 2022). This however does not preclude the possibility 

that confidence could be modified in post-decisional stages (as suggested by Lee et al., 2022). 

In the context where relative and absolute evidence are manipulated, this tentative 

proposal would suggest that, during decision formation, both relative and absolute evidence 
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contribute to the primary decision, but absolute evidence predominantly contributes to 

confidence. Furthermore, absolute evidence could continue to affect error evidence 

accumulation, which leads to the refinement of confidence, and sometimes changes of mind 

and error awareness. 

4.4. Methodological limitations 

In addition to the theoretical implications, several methodological limitations of the 

current studies should also be considered given that they could be related to the divergent 

findings between the current and previous studies. Particularly, this section focuses on (a) the 

difference between simultaneous and sequential measures of confidence, (b) evidence 

availability in task design, (c) emphasis on response speed, and (d) the low frequency of 

change-of-mind trials. 

4.4.1. Simultaneous vs. sequential measures of confidence 

In the current task paradigm, the primary decision and confidence were measured 

sequentially (e.g., as in Charles & Yeung, 2019; Petrusic & Baranski, 2003), as opposed to 

simultaneously with one response (e.g., as in Burk et al., 2014; Van den Berg, Anandalingam 

et al., 2016). Given that this methodological difference could lead to different confidence 

patterns (Desender et al., 2020, 2021; Petrusic & Baranski, 2003), the sequential measure of 

choice and confidence could have contributed to the biased confidence patterns observed in 

the current studies. 

Particularly, when the decision and confidence reports are separated by a time interval 

(i.e., inter-judgment time; IJT), post-decisional processing is more likely to contribute to 

confidence report (Desender et al., 2020; Moran et al., 2015; Yu et al., 2015), whereas post-

decisional processing is likely to be limited with simultaneous report (Samaha et al., 2022). 

Previous studies on the effect of inter-judgment time on confidence have shown mixed 

findings. For example, Desender et al. (2020) showed that longer IJT had positive effects on 
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metacognitive accuracy: Longer IJT increased confidence in correct trials but reduced 

confidence in error trials, suggesting that unbiased stimulus processing occurs during IJT and 

leads to more accurate confidence judgment, particularly when stimuli remain present. 

However, others have suggested that processing during IJT could be biased. For example, Yu 

et al. (2015) showed that longer IJT reduced confidence in error trials but did not affect 

confidence in correct trials, suggesting that post-decisional processing involves decay of 

evidence supporting erroneous decisions. More relevant to the current studies, Navajas et al. 

(2016) also suggested that post-decisional processing could be subject to the confirmation 

bias underlying the PEB. This suggests that the absolute evidence effect on confidence 

observed in the current studies might be partially attributed to the sequential measurement. 

Additionally, stimuli in the current task were terminated after the primary decision, 

leading to a post-decisional interval without stimulus presentation. This absence of stimuli 

could have also strengthened the bias in confidence ratings. It has been suggested that 

information that is incorporated into confidence could be task dependent (Stone et al., 2022). 

For example, some studies that allowed continued presentation of stimuli, have shown that 

under such condition post-decision accumulation of sensory evidence was facilitated (e.g., 

Charles & Yeung, 2019, Moran et al., 2015). Notably, when additional information is 

relevant and the use of such evidence is encouraged (e.g., continued presentation of the same 

stimulus in the decisional stage), metacognitive sensitivity might increase (Charles & Yeung, 

2019; Desender et al., 2020; Turner et al., 2022). On the other hand, absence of stimuli might 

have limited effect on metacognitive sensitivity (Desender et al., 2019). In the current study 

where a confidence bias was induced, absence of stimuli might lead to the loss of 

metacognitive sensitivity (as post-decisional processes are likely biased; Rollwage et al., 

2020).  
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It should however be noted that the sequential measurement and termination of 

stimuli do not fully explain the absolute evidence effect, as previous studies on the PEB 

showed similar effects with the simultaneous measure of decision and confidence (e.g., 

Samaha et al., 2022). The current measurement approach therefore could have at most 

amplified the PEB effect. 

4.4.2. Measure of changes of mind based on converted confidence ratings 

In Studies 1 and 2, confidence ratings were converted into a binary change-of-mind, 

by assuming that confidence ratings lower than “guessing” would have led to changes of 

mind (as done in e.g., Charles & Yeung, 2019). This converted measure based on confidence 

ratings however could have confounded the finding that changes of mind and confidence 

exhibited similar patterns in response to both relative and absolute evidence, as it is based on 

several assumptions.  

For example, it assumes that measuring them together would not alter how 

participants respond. This assumption might not be valid as requiring accuracy report could 

affect primary and metacognitive performance (Double & Birney, 2019; Grützmann et al., 

2014; Porth et al., 2022). It also assumes that metacognitive decisions could be converted, 

e.g., accuracy ratings lower than guessing implies changes of mind, while changes of mind 

could involve additional processes than confidence judgment. Additionally, by merging their 

measurements, it abandoned some features specific to different types of metacognitive 

decisions (discussed in Chapter 1). For example, it would not be reasonable to simultaneously 

measure primary decisions with changes of mind, but simultaneous report of choice and 

confidence is common in confidence studies. Also, change-of-mind paradigms usually 

involve continued presentation of stimuli, which was not incorporated in the current 

paradigm. The current measurement approach therefore only examined changes of mind 

indirectly. However, it should be noted that the convergence between the current findings and 
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the study by Turner et al. (2021), which involved a highly similar paradigm, partially 

supports that the validity of the converted measure. Future studies investigating the 

relationship between confidence and changes of mind could incorporate measures of both 

(e.g., as in van den Berg, et al., 2016). 

4.4.3. Speed emphasis on primary and secondary tasks 

The task used in the current project involved instructing participants to respond as 

quickly as possible for both primary and secondary decisions. This might have influenced 

both primary and secondary decision processes given that previous studies have reported 

different effects of speed and accuracy emphasis (Baranski & Petrusic, 1994; 1998; 

Falkenstein et al., 2000; Rafiei & Rahnev, 2021; Steinhauser & Yeung, 2010; Summerfield & 

Yeung, 2012). 

In error monitoring studies, Steinhauser and Yeung (2012) and Steinhauser et al. 

(2008) tested the effect of primary task speed/accuracy trade-off on error signalling and 

found that people tended to signal more errors with higher speed pressure. Likewise, with 

speed emphasis on primary decision, number of changes of mind increased (Resulaj et al., 

2009). Additionally, primary decision RT and changes of mind are also negatively related 

(Albantakis et al., 2012). Confidence was also lower and was more likely to involve post-

decisional processing when speed was emphasized (Baranski & Petrusic, 1998; Desender et 

al., 2021). When accuracy was stressed, confidence could be readily judged before primary 

decision response and error awareness was less likely to occur (Baranski & Petrusic, 1998). 

Generally, speed emphasis reduces the threshold for primary decision, such that errors 

occur more often due to premature responding and more errors are detected (Baranski & 

Petrusic, 1994; Charles et al., 2013; Desender et al., 2022). This is consistent with the 

common finding that high time pressure increases metacognitive sensitivity (Moran et al., 

2015). In terms of ERP measures, earlier studies have found that speed pressure impaired 
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performance monitoring, as reflected by reduced ERN/Ne and Pe amplitudes (Arbel & 

Donchin, 2009; Falkenstein et al., 2000; Gehrin et al., 1993). However, when task 

instructions required speeding response but did not reduce significance of errors, Pe 

amplitudes were increased by speeded responses, as in such case more error evidence could 

be present (Steinhauser & Yeung, 2012). 

Taken together, these findings suggest that speed pressure could alter both primary 

and metacognitive decision processes. These effects of speeded responses could have 

influenced the findings of the current studies where the primary decision was speeded. For 

example, it could explain the smaller ERN/Ne than previous studies (Falkenstein et al., 2000; 

Appendix B) and the fact that changes of mind occurred comparatively more often than 

typical perceptual decision tasks (e.g., Albantakis et al., 2012). Confidence ratings in the 

current studies were also speeded as participants were instructed to rate as quickly as 

possible. Based on previous studies investigating the effect of inter-judgment time (Desender 

et al., 2020; Yu et al., 2015), making metacognitive judgment faster likely leads to lower 

metacognitive sensitivity, potentially due to smaller difference in post-decisional evidence 

between correct and error trials. This instruction reduced the criterion for reporting errors, 

and could have led to reduced metacognitive accuracy (Boldt et al., 2017; Moran et al., 2015; 

Pleskac & Busemyer, 2010). Additionally, time pressure might also induce effects other than 

only changing the decision criterion, such as reduced evidence accumulation, as evidence 

during decision formation might not be equally used in primary decisions (Calder-Travis et 

al., 2020; Carsten et al., 2022; Rae et al., 2014), and the same idea might apply to 

metacognitive decisions. As the current studies only involved speed emphasis without a 

comparison with accuracy emphasis, it is entirely unclear how speed pressure might have 

impacted the current findings. 
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4.4.4. Low number of changes of mind and aware errors 

The current studies have a rather low number of trials with changes of mind or error 

awareness. As discussed above, in typical perceptual tasks, changes of mind occurred rarely 

(see Chapter 1; ~10% of all trials in current studies). Similarly, error monitoring studies also 

sometimes suffered from the lack of error awareness trials (e.g., Scheffer et al. [2000], 

Wessel et al. [2012]). Although this could be increased by giving instructions that, e.g., 

encourage participants to change their mind (Turner et al., 2022), or use more liberal criteria 

for reporting errors (Steinhauser & Yeung, 2010), these manipulations might influence the 

mechanism underlying spontaneously occurring changes of mind or error awareness. As 

insufficient trials could lead to underpower statistical analyses (particularly when further 

exclusion criteria are used e.g., in ERP studies), future studies could include a larger number 

of trials with multiple testing sessions (e.g., van dan Berg et al., 2016).  

4.5. Future directions 

4.5.1. What constitutes error evidence? 

As discussed above, the current studies suggest that the post-decisional process 

accumulates error evidence. However, two aspects of this concept are still to be clarified. 

Current proposals involving the error evidence hypothesis have not yet specified clearly what 

constitutes error evidence. Early studies defined that error evidence is evidence that indicate 

an error has occurred. It was initially assumed to be generated by response conflict or internal 

correction response (Steinhauser & Yeung, 2012), but then also extended to include 

information from a wide range of sources (Desender et al., 2022; Stone et al., 2022), 

including information from different stimulus properties (Bolt et al., 2017; Rausch et al., 

2018; Zylbergerg et al. 2012) to motor execution (Fleming et al., 2015; Resulaj et al., 2009; 

Pereira et al., 2020; Turner et al., 2021). While this conceptualization (or termed a multi-cue 

model; Boldt et al., 2017) accommodates different empirical findings where confidence or 
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metacognitive decisions in general could be influenced by factors other than sensory 

evidence, what exactly contributes error evidence appears less clear. Existing studies have 

suggested these different factors could be task-specific (Hagura et al., 2022; Bolt et al., 2017) 

and perhaps individual-specific (de Gardelle & Mamassian, 2015; Moreira et al., 2018; 

Navajas et al., 2018). In future studies, manipulations that specifically affect error evidence 

but not sensory evidence, e.g., instructions on criteria for error detection (Steinhauser & 

Yeung, 2010) or even confidence and changes of mind could be useful for investigating how 

different cues are selectively involved, represented, and integrated into metacognitive 

decisions (Desender et al., 2021). 

4.5.2. How is error evidence accumulation related to sensory evidence accumulation? 

The relationship between error evidence accumulation and sensory evidence 

accumulation is so far unclear. Although the current studies could be explained by the error 

evidence hypothesis, previous studies also provided strong support that post-decisional 

accumulation of sensory evidence occurred (e.g., van den Berg, Anandalingam et al., 2016). 

Therefore, it is still unclear whether both processes exist, and how they are potentially related 

in terms of correlation and mechanisms. While the current project could not further clarify 

their relationship, future studies could aim to specify this relationship. 

One proposal by Desender and colleagues (2021) is that post-decisional accumulation 

of sensory evidence precedes error evidence accumulation, corresponding to the finding that 

the CPP, indexing sensory evidence accumulation, was sometimes found to persist shortly 

after the decision, and that the Pe, indexing error evidence accumulation, occurs much later. 

In terms of mechanism, while not under the evidence accumulation framework, Fleming and 

Daw (2017) suggested that the decision variable feeds into the metacognitive variable. This 

idea that the decision variable together with other sources of information contribute to the 
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metacognitive variable broadly accords with the proposal that additional information enters 

the post-decisional process after response (Stone et al., 2022; Ullsperger et al., 2011). 

It has been suggested that post-decisional accumulation involves error evidence that is 

qualitatively different from sensory evidence (Desender et al., 2021). This is supported by 

previous studies showing that speed pressure on primary decision leads to more error 

evidence and larger Pe amplitudes in error trials (Steinhauser & Yeung, 2012; Desender et 

al., 2020, 2021). This could result from the fact that the requirement to give speeded 

responses lower the response criterion for primary decision, which also leads to more conflict 

and thus error evidence. As speed pressure is assumed to affect response criterion but not the 

rate of sensory evidence accumulation, it shows that error evidence could be independently 

manipulated. Consistently, criterion for error signaling could be manipulated by monetary 

incentive, without impacting primary decision performance (Steinhauser & Yeung, 2010). 

Taken together, error evidence accumulation appears to be at least partially dissociated from 

sensory evidence accumulation. 

4.5.3. Can a unified model account for confidence, changes of mind, and error 

awareness? 

The current studies have attempted to clarify how confidence could be related to other 

metacognitive decisions. While the current findings cannot adjudicate whether they are 

outcomes of the exact same process or metacognitive variable (Desender et al., 2021), they 

could still be linked to the same mechanism. As discussed, one possible mechanism could be 

one in which a pre-decisional process leads to the primary decision and an initial sense of 

confidence, which in turn serves as the basis for error evidence accumulation and leads to 

changes of mind and error awareness (Stone et al., 2022). 

This proposal, however, remains to be validated by future experimental and 

computational works. Experimentally, future work could employ decision tasks with 
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independent measures of different metacognitive decisions, instead of the converted measures 

used in the current and previous studies. Computationally, future studies could test whether 

confidence could directly impact different parameters of evidence accumulation models 

(Braun et al., 2018; Rollwage et al., 2020; van den Berg, Anandalingam et al., 2016), for 

example, how confidence might lead to more conservative change-of-mind criterion, or 

changes in error evidence accumulation rate. This approach might also benefit from using a 

wider range of task paradigms, e.g., those that induce a confidence bias, as previous model 

comparisons have shown that model performance differed considerably when tested with 

different tasks.  

4.6. Conclusion 

Recent research has extensively applied evidence accumulation models to explain 

how metacognitive processes emerge and behave under various experimental conditions. This 

allowed the decomposition of metacognitive performance into its underlying mechanistic 

components and thus advanced the understanding of metacognitive decisions. Given the 

central role of confidence in this general framework, the current project firstly investigated 

the effects of sensory evidence strength on confidence judgment and changes mind, and 

secondly investigated the relationships between confidence and certainty are related to ERP 

components linked to evidence accumulation processes. 

By showing that confidence and changes of mind varied consistently in response to 

stimulus properties such as relative and absolute evidence strength, the current studies 

suggest that confidence might moderate the effect of sensory evidence on changes of mind. 

On the neural level, it was shown that confidence in correct and error trials were respectively 

associated with CPP and Pe amplitudes, suggesting confidence in correct decisions is related 

to pre-decisional sensory evidence accumulation, while changes of mind could involve post-

decisional error evidence accumulation. Taken together, current findings converge on the 
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notion that confidence emerges during decision formation and could, with the contribution 

from post-decisional evidence, serve as a basis of changes of mind.  
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Appendix A Mixed-effects model results for Chapter 3 main 

analyses (likelihood ratio tests and regression coefficients) 

Mixed-effects models results of behavioural data analysis 

Table A1 Likelihood Ratio Tests Results for Predicting Accuracy (Log Odds of Being 
Correct) from Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 746.23 <.001*** 

Abs 2 225.62 <.001*** 

Rel × Abs 4 26.62 <.001*** 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table A2 Regression Coefficients for Predicting Accuracy (Log Odds of Being Correct) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 0.73 0.04 17.08 <.001*** 

Low Rel -0.38 0.02 -20.91 <.001*** 

Med Rel -0.12 0.02 -6.24 <.001*** 

Low Abs 0.26 0.02 13.20 <.001*** 

Med Abs -0.02 0.02 -1.21 .228 

Low Rel × 
Low Abs -0.10 0.03 -3.63 <.001*** 

Med Rel × 
Low Abs -0.05 0.03 -1.80 .073 

Low Rel × 
Med Abs 0.05 0.03 1.82 .069 

Med Rel × 
Med Abs 0.01 0.03 0.32 .749 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Table A3 Likelihood Ratio Tests Results for Predicting Response Time (Correct Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 64.28 <.001*** 

Abs 2 98.51 <.001*** 

Rel × Abs 4 38.80 <.001*** 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table A4 Regression Coefficients for Predicting Response Time (Correct Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 790.47 2.92 270.88 <.001*** 

Low Rel 8.07 1.70 4.73 <.001*** 

Med Rel 8.91 1.64 5.42 <.001*** 

Low Abs 21.16 1.82 11.65 <.001*** 

Med Abs -5.40 1.99 -2.72 .007** 

Low Rel × 
Low Abs 13.26 2.10 6.33 <.001*** 

Med Rel × 
Low Abs 4.62 2.46 1.88 .060 

Low Rel × 
Med Abs -7.21 2.13 -3.38 .001** 

Med Rel × 
Med Abs -3.81 2.08 -1.83 .067 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Table A5 Likelihood Ratio Tests Results for Predicting Response Time (Error Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 3.21 .201 

Abs 2 28.92 <.001*** 

Rel × Abs 4 14.08 .007** 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table A6 Regression Coefficients for Predicting Response Time (Error Trials) from Relative 
Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 814.86 3.19 255.27 <.001*** 

Low Rel 3.19 2.43 1.31 .190 

Med Rel 3.67 2.51 1.46 .144 

Low Abs 19.47 2.15 9.07 <.001*** 

Med Abs -13.11 2.16 -6.07 <.001*** 

Low Rel × 
Low Abs 15.34 2.84 5.40 <.001*** 

Med Rel × 
Low Abs 2.35 3.12 0.75 .451 

Low Rel × 
Med Abs -2.93 2.71 -1.08 .280 

Med Rel × 
Med Abs -4.86 3.00 -1.62 .106 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

 
  



   158  

Table A7 Likelihood Ratio Tests Results for Predicting Confidence (Correct Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 494.24 <.001*** 

Abs 2 200.91 <.001*** 

Rel × Abs 4 54.75 <.001*** 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table A8 Regression Coefficients for Predicting Confidence (Correct Trials) from Relative 
Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 5.77 0.11 52.91 <.001*** 

Low Rel -0.21 0.01 -17.82 <.001*** 

Med Rel -0.02 0.01 -1.43 .154 

Low Abs -0.15 0.01 -13.17 <.001*** 

Med Abs 0.02 0.01 1.50 .132 

Low Rel × 
Low Abs -0.10 0.02 -6.02 <.001*** 

Med Rel × 
Low Abs -0.00 0.02 -0.09 .931 

Low Rel × 
Med Abs 0.03 0.02 1.82 .068 

Med Rel × 
Med Abs 0.00 0.02 0.26 .795 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Table A9 Likelihood Ratio Tests Results for Predicting Confidence (Error Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 128.07 <.001*** 

Abs 2 239.46 <.001*** 

Rel × Abs 4 3.95 .413 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table A10 Regression Coefficients for Predicting Confidence (Error Trials) from Relative 
Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 5.10 0.10 51.71 <.001*** 

Low Rel 0.20 0.02 9.38 <.001*** 

Med Rel 0.06 0.02 2.82 .005** 

Low Abs -0.36 0.02 -15.14 <.001*** 

Med Abs 0.12 0.02 5.46 <.001*** 

Low Rel × 
Low Abs 0.01 0.03 0.32 .751 

Med Rel × 
Low Abs -0.04 0.03 -1.25 .212 

Low Rel × 
Med Abs -0.02 0.03 -0.60 .549 

Med Rel × 
Med Abs -0.01 0.03 -0.27 .791 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Mixed-effects models results of ERP data analysis: Accuracy, full-range confidence, and 

subjective accuracy 

 

Table A11 Regression Coefficients for Predicting CPP Amplitudes from Accuracy 

Parameters Estimate SE z p 

Intercept 3.57 0.54 6.62 <.001*** 

Correct -0.15 0.09 -1.62 .106 

Note. Intercept represents the estimate for error.                                     
*p <.05 **p <.01 ***p <.001 

Table A12 Regression Coefficients for Predicting Pe Amplitudes from Accuracy 

Parameters Estimate SE z p 

Intercept 5.29 0.64 8.29 <.001*** 

Correct 0.22 0.11 1.99 .047* 

Note. Intercept represents the estimate for error.                                     
*p <.05 **p <.01 ***p <.001 

 
Table A13 Regression Coefficients for Predicting CPP Amplitudes (Correct Trials) from 
Full-Range Confidence 

Parameters Estimate SE z p 

Intercept 2.87 0.61 4.73 <.001*** 

Surely 
incorrect -0.94 1.17 -0.80 .422 

Probably 
incorrect -1.49 0.83 -1.80 .073 

Maybe 
incorrect -0.90 0.69 -1.32 .188 

Guessing 
incorrect 1.11 0.39 2.86 .004** 

Maybe 
correct -0.01 0.35 -0.02 .985 

Probably 
incorrect 0.75 0.32 2.35 .019* 

Note. Intercept represents the estimate for surely correct.                                  
*p <.05 **p <.01 ***p <.001 
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Table A14 Regression Coefficients for Predicting CPP Amplitudes (Error Trials) from Full-
Range Confidence 

Parameters Estimate SE z p 

Intercept 3.28 0.56 5.83 <.001*** 

Surely 
incorrect 0.13 0.79 0.16 .870 

Probably 
incorrect -0.37 0.75 -0.49 .622 

Maybe 
incorrect -0.61 0.63 -0.97 .331 

Guessing 
incorrect 0.72 0.39 1.85 .065 

Maybe 
correct 0.21 0.39 0.53 .599 

Probably 
incorrect 0.14 0.36 0.40 .688 

Note. Intercept represents the estimate for surely correct.                                  
*p <.05 **p <.01 ***p <.001 

Table A15 Regression Coefficients for Predicting Pe Amplitudes (Correct Trials) from Full-
Range Confidence 

Parameters Estimate SE z p 

Intercept 5.21 0.72 7.28 <.001*** 

Surely 
incorrect 0.04 1.40 0.03 .975 

Probably 
incorrect -1.42 1.00 -1.43 .153 

Maybe 
incorrect 1.52 0.82 1.85 .065 

Guessing 
incorrect 0.95 0.46 2.03 .042* 

Maybe 
correct -0.38 0.42 -0.89 .371 

Probably 
incorrect -0.74 0.38 -1.92 .055 

Note. Intercept represents the estimate for surely correct.                                  
*p <.05 **p <.01 ***p <.001 
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Table A16 Regression Coefficients for Predicting Pe Amplitudes (Error Trials) from Full-
Range Confidence 

Parameters Estimate SE z p 

Intercept 6.16 0.69 8.90 <.001*** 

Surely 
incorrect 0.51 0.95 0.54 .587 

Probably 
incorrect 1.73 0.90 1.91 .056 

Maybe 
incorrect 1.27 0.75 1.69 .091 

Guessing 
incorrect 0.48 0.47 1.02 .307 

Maybe 
correct -0.58 0.47 -1.24 .215 

Probably 
incorrect -1.35 0.43 -3.14 .002** 

Note. Intercept represents the estimate for surely correct.                                  
*p <.05 **p <.01 ***p <.001 

Table A17 Regression Coefficients for Predicting CPP Amplitudes (Correct Trials) from 
Binary subjective Accuracy 

Parameters Estimate SE z p 

Intercept 2.73 0.61 4.47 <.001*** 

Subjectively 
incorrect -1.00 0.27 -3.68 <.001*** 

Note. Intercept represents the estimate for subjectively correct.                                  
*p <.05 **p <.01 ***p <.001 

Table A18 Regression Coefficients for Predicting CPP Amplitudes (Error Trials) from Binary 
subjective Accuracy 

Parameters Estimate SE z p 

Intercept 3.13 0.58 5.42 <.001*** 

Subjectively 
incorrect -0.19 0.25 -0.76 .445 

Note. Intercept represents the estimate for subjectively correct.                                  
*p <.05 **p <.01 ***p <.001 
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Table A19 Regression Coefficients for Predicting Pe Amplitudes (Correct Trials) from 
Binary subjective Accuracy 

Parameters Estimate SE z p 

Intercept 5.19 0.71 7.31 <.001*** 

Subjectively 
incorrect 0.31 0.33 0.94 .345 

Note. Intercept represents the estimate for subjectively correct.                                  
*p <.05 **p <.01 ***p <.001 

Table A20 Regression Coefficients for Predicting Pe Amplitudes (Error Trials) from Binary 
subjective Accuracy 

Parameters Estimate SE z p 

Intercept 6.17 0.67 9.21 <.001*** 

Subjectively 
incorrect 1.28 0.30 4.25 <.001*** 

Note. Intercept represents the estimate for subjectively correct.                                  
*p <.05 **p <.01 ***p <.001 

Table A21 Regression Coefficients for Predicting CPP Amplitudes (Correct Trials) from 
Trichotomized Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 3.21 0.57 5.61 <.001*** 

Subjectively 
incorrect -1.43 0.38 -3.76 <.001*** 

Guessing 0.89 0.29 3.14 .002** 

Note. Intercept represents the estimate for subjective correct.                                  
*p <.05 **p <.01 ***p <.001 

Table A22 Regression Coefficients for Predicting CPP Amplitudes (Error Trials) from 
Trichotomized Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 3.42 0.56 6.14 <.001*** 

Subjectively 
incorrect -0.47 0.34 -1.40 .163 

Guessing 0.57 0.30 1.92 .055 

Note. Intercept represents the estimate for subjective correct.                                  
*p <.05 **p <.01 ***p <.001 
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Table A23 Regression Coefficients for Predicting Pe Amplitudes (Correct Trials) from 
Trichotomized Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 5.53 0.69 8.07 <.001*** 

Subjectively 
incorrect 0.03 0.46 0.06 .955 

Guessing 0.62 0.34 1.82 .069 

Note. Intercept represents the estimate for subjective correct.                                  
*p <.05 **p <.01 ***p <.001 

Table A24 Regression Coefficients for Predicting Pe Amplitudes (Error Trials) from 
Trichotomized Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 6.26 0.68 9.25 <.001*** 

Subjectively 
incorrect 1.13 0.41 2.79 .005** 

Guessing 0.32 0.36 0.90 .366 

Note. Intercept represents the estimate for subjective correct.                                  
*p <.05 **p <.01 ***p <.001 

 
Mixed-effects models results of ERP data analysis: Certainty of being correct and certainty 

of being incorrect 

Table A25 Regression Coefficients for Predicting CPP Amplitudes (Correct Trials) from 
Certainty of Being Correct 

Parameters Estimate SE z p 

Intercept 3.58 0.58 6.22 <.001*** 

Maybe 
correct -0.85 0.21 -4.09 <.001*** 

Probably 
correct -0.04 0.17 -0.22 .824 

Note. Intercept represents the estimate for surely correct.                                  
*p <.05 **p <.01 ***p <.001 
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Table A26 Regression Coefficients for Predicting CPP Amplitudes (Error Trials) from 
Certainty of Being Correct 

Parameters Estimate SE z p 

Intercept 3.30 0.59 5.62 <.001*** 

Maybe 
correct 0.01 0.31 0.05 .963 

Probably 
correct 0.01 0.27 0.03 .978 

Note. Intercept represents the estimate for surely correct.                                  
*p <.05 **p <.01 ***p <.001 

Table A27 Regression Coefficients for Predicting Pe Amplitudes (Correct Trials) from 
Certainty of Being Correct 

Parameters Estimate SE z p 

Intercept 4.82 0.65 7.39 <.001*** 

Maybe 
correct -0.14 0.25 -0.55 .586 

Probably 
correct -0.40 0.20 -1.94 .052 

Note. Intercept represents the estimate for surely correct.                                  
*p <.05 **p <.01 ***p <.001 

Table A28 Regression Coefficients for Predicting Pe Amplitudes (Error Trials) from 
Certainty of Being Correct 

Parameters Estimate SE z p 

Intercept 4.88 0.63 7.70 <.001*** 

Maybe 
correct 0.66 0.37 1.77 .077 

Probably 
correct -0.04 0.32 -0.11 .910 

Note. Intercept represents the estimate for surely correct.                                  
*p <.05 **p <.01 ***p <.001 
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Table A29 Regression Coefficients for Predicting CPP Amplitudes (Correct Trials) from 
Certainty of Being Incorrect 

Parameters Estimate SE z p 

Intercept 1.48 1.05 1.41 .167 

Maybe 
incorrect -0.55 1.15 -0.48 .634 

Probably 
incorrect -0.31 0.90 -0.34 .733 

Note. Intercept represents the estimate for surely incorrect.                                  
*p <.05 **p <.01 ***p <.001 

Table A30 Regression Coefficients for Predicting CPP Amplitudes (Error Trials) from 
Certainty of Being Incorrect 

Parameters Estimate SE z p 

Intercept 3.06 0.77 3.96 .001** 

Maybe 
incorrect 0.14 0.82 0.17 .865 

Probably 
incorrect 0.15 0.77 0.20 .841 

Note. Intercept represents the estimate for surely incorrect.                                  
*p <.05 **p <.01 ***p <.001 

Table A31 Regression Coefficients for Predicting Pe Amplitudes (Correct Trials) from 
Certainty of Being Incorrect 

Parameters Estimate SE z p 

Intercept 5.63 1.06 5.31 <.001*** 

Maybe 
incorrect 0.34 1.33 0.25 .802 

Probably 
incorrect -1.26 1.06 -1.19 .235 

Note. Intercept represents the estimate for surely incorrect.                                  
*p <.05 **p <.01 ***p <.001 
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Table A32 Regression Coefficients for Predicting Pe Amplitudes (Error Trials) from 
Certainty of Being Incorrect 

Parameters Estimate SE z p 

Intercept 7.70 1.10 7.02 <.001*** 

Maybe 
incorrect -0.78 1.00 -0.78 .434 

Probably 
incorrect 0.89 0.93 0.96 .340 

Note. Intercept represents the estimate for surely incorrect.                                  
*p <.05 **p <.01 ***p <.001 
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Appendix B Relationships between additional ERP measures and 
confidence 

 
B.1. Background 

While Chapter 3 showed how the response-locked CPP and Pe were related to 

confidence ratings, previous studies have also suggested that other ERP measures are related 

to confidence judgment. Specifically, the CPP and Pe have been defined differently in the 

literature and the component of error negativity (ERN/Ne) has also been considered 

important to performance monitoring. Therefore, this following analyses aimed to extend the 

previous investigation to these additional ERP measures, in order to explore how findings in 

the main analyses could be generalized.  

B.1.1. Stimulus-locked CPP 

 Based on the assumption that the CPP is closely related to stimulus processing, this 

component was also measured relative to stimulus onset. In this case, CPP was measured 

from central and parietal EEG channels 300 ms after stimulus onset (Kelly & O’Connell, 

2013) and is also termed P3 or late positive potential (LPP; Sun et al., 2017). While some 

studies investigated both response-locked and stimulus-locked CPP (Kelly & O’Connell, 

2013), many only focused on stimulus-locked measures (Herding et al., 2019; Sun et al., 

2017; Rausch et al., 2020). Although both measures were assumed to reflect the same 

component, which could be similarly related to confidence,  different measures might lead to 

different relationship with confidence empirically. Specifically, Feuerriegel et al. (2022) 

suggested that the relationship between stimulus-locked CPP and confidence could be 

confounded by RT. Therefore, the following analysis examined whether stimulus-locked CPP 

amplitudes would show similar results as response-locked CPP amplitudes. This would 

clarify if such confound suggested by Feuerriegel et al. (2022) was involved in the previous 

analyses. 
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B.1.2. Late Pe 

It has been proposed that the Pe is composed of two sub-components: early Pe 

(measured from around 200 to 450 ms after response) and late Pe (measured from around 400 

to 600 ms after response; Moreau et al., 2022; Ruchsow et al., 2005). Functionally, while the 

early Pe was similar to ERN/Ne, the late Pe was more related to error awareness (Endrass et 

al., 2007; Ruchsow et al., 2005). As the Pe time window in Chapter 3 ranged from 300 to 400 

ms relative to response, this time window might not fully capture the later subcomponent 

(and also the early Pe, which is not focused here as it is less relevant to error awareness). It is 

therefore possible that the later component might show different relationships with 

confidence. Based on previous findings on Pe, late Pe was expected to also differ between 

subjectively correct and subjectively incorrect trials. However, it might also show 

relationships with certainty of being correct or incorrect given its stronger relationship with 

error awareness.  

B.1.3. ERN/Ne 

Another ERP component related to performance monitoring is the ERN/Ne. Past 

studies have provided different proposals about what the ERN/Ne reflects (see Chapter 1), 

e.g., response conflict or conflict between error response and a corrective tendency (Scheffers 

& Coles, 2000; Di Gregorio et al., 2018). While past studies have shown that ERN/Ne 

amplitudes were larger for error trials, mixed findings have been reported regarding its 

relationships with error awareness and confidence. For example, Hewig et al. (2011) showed 

errors rated as incorrect (i.e., detected errors) showed larger ERN/Ne amplitudes than errors 

rated as guessing, which also showed larger amplitudes than errors rated as correct (i.e., 

undetected errors). This difference between detected and undetected errors were also found in 

other studies (Scheffers & Coles, 2000; Steinhauser & Yeung, 2010; Maier et al., 2008). On 
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the other hand, Hewig et al. (2011) found no modulation by confidence in correct trials and 

Rausch et al. (2020) replicated this finding. 

However, these studies used a more typical pre-response baseline correction 

procedure which could have biased the measurement of response-locked components due to 

amplitude differences in the baseline (as discussed in Chapter 3). In a visual discrimination 

task where pre-stimulus baseline correction was used, no ERN/Ne difference was found 

between detected and undetected errors (Pavone et al., 2009). Therefore, it could be expected 

that, in the current dataset where pre-stimulus baseline correction was used, ERN/Ne in error 

trials would not be modulated by confidence. However, as no previous studies have used a 

similar pre-stimulus baseline correction procedure and investigated correct trials, it is unclear 

how ERN/Ne in correct trials would be modulated. 

B.2. Method 

B.2.1. ERP measures 

B.2.1.1. Stimulus-locked CPP 

Previous studies measured stimulus-locked CPP at Pz from around 300 to 800 ms 

after stimulus onset (Tagliabue et al., 2019; Sun et al., 2017; depending on the morphology of 

the waveforms shorter time windows were also used, e.g., 300 to 400 ms [Del Cul et al., 

2007]). Considering RTs in most trials in the current study were above 600ms, stimulus-

locked CPP was defined as the averaged amplitude recorded at Pz from 400 to 600 ms after 

stimulus onset. 

B.2.1.2. Late Pe 

Previous studies have reported late Pe at Pz in the time intervals ranging from 250 to 

750 ms (Endrass et al., 2007; Ruchsow et al., 2005; Moreau et al., 2022; Tops et al., 2013). 

Following these studies and using a time window not overlapping with that of the Pe in 

Chapter 3, the late Pe was defined as the averaged amplitudes recorded at Pz from around 
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400 to 600 ms. Note that to be consistent with the term used in Chapter 3, the label Pe is 

reserved to refer to the component as defined in Chapter 3 (300 to 400 ms relative to 

response). 

B.2.1.3. ERN/Ne 

Previous studies measuring ERN/Ne at FCz from around -40 to 200 ms after response 

(Falkenstein et al., 2001; Endrass et al., 2007; Boldt & Yeung, 2015] ). Following these 

studies and considering that the ERN/Ne appeared to peak at around response in the current 

study, the ERN/Ne was defined as the averaged amplitude recorded at FCz from -50 to 50 ms 

in response-locked epochs. 

B.2.2. Data analysis 

The same processed dataset and linear mixed-effects model analysis approach as in  

Chapter 3 was used for the following analyses. First, the above additional ERP measures of 

stimulus-locked CPP amplitudes, ERN/Ne amplitudes, and late Pe amplitudes in correct and 

error trials were predicted by a trichotomized subjective accuracy measure (“subjectively 

incorrect” [confidence ratings < 4], “guessing” [confidence ratings = 4], and “subjectively 

correct” [confidence ratings > 4]). In separate sets of mixed-effects models, the same ERP 

measures were then predicted by the graded measures of certainty recoded from confidence 

ratings: certainty of being correct (confidence > 4) and certainty of being in correct 

(confidence < 4). As in Chapter 3, ERP waveforms by subjective accuracy and all confidence 

levels were plotted. Full statistical results are reported in Tables B1 - B18, Section B.5. 

B.3. Results 

B.3.1. Stimulus-locked CPP  

To examine how the relationships between response-locked CPP and confidence 

measures could be extended to stimulus-locked CPP, the effects of subjective accuracy and 

certainty on stimulus-locked CPP amplitudes were tested. 
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First, for stimulus-locked CPP amplitudes, subjective accuracy in correct trials 

showed a significant effect (p < .001). Pairwise comparisons showed that it was driven by the 

fact that subjectively incorrect showed lower amplitudes than guessing trials (p = .011) and 

subjectively correct trials (p < .001). However, such effect was not observed in error trials (p 

= .503). Stimulus-locked waveforms by subjective accuracy, separated for correct and error 

trials, are shown in Figure B1. 

 

 

Figure B1. (A, B) Stimulus-locked waveforms at Pz by subjective accuracy, separated for 

correct and error trials. Stimulus-locked CPP amplitudes differed by subjective accuracy in 

correct trials but not in error trials.  

Note. *p <.05 **p <.01 ***p <.001. 

Further, certainty of being correct also had an effect on stimulus-locked CPP 

amplitudes in correct trials (p < .001) and trend analysis showed a linear effect (p < .001), 

suggesting that its amplitudes increased with higher certainty of being correct. However, 

certainty of being incorrect did not predict CPP amplitudes (p = .069). For error trials, CPP 

amplitudes were neither predicted by certainty of being correct (p = .353) or certainty of 

being incorrect (p = .433). Stimulus-locked waveforms at Pz by all levels of confidence 

ratings, separated for correct and error trials, are shown in Figure B2. Overall, the patterns of 
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results of stimulus-locked CPP are consistent with the results based on response-locked CPP 

amplitudes.  

 

Figure B2. (A, B) Stimulus-locked waveforms at Pz by all confidence rating levels, separated 

for correct and error trials. Shaded areas show the time windows of the stimulus-locked CPP 

(400 to 600 ms). Stimulus-locked CPP only differ by certainty of being correct in correct 

trials. Error bars indicate SEM.  

Note. *p <.05 **p <.01 ***p <.001. Blue asterisks indicate the p value for the relationship 

with certainty of being correct. 

B.3.2. Late Pe 

As Pe defined in Chapter 3 was related to confidence only in error trials, the 

following analysis examine whether this finding extends the late Pe measure. Consistent with 

the findings based on Pe amplitudes, late Pe amplitudes also differed by subjective accuracy 

for both correct (p = .011) and error trials (p < .001), as shown by Figure B3. The effect in 

correct trials, however, was driven by the difference between guessing trials and subjectively 

correct trials (p = .010) without a linear trend (p = .399). On the other hand, the effect in error 

trials was driven by the pattern that both subjectively incorrect trials and guessing trials had 

larger amplitude than subjectively correct trials (ps < .01), with a linear trend (p < .001).  

Waveforms of all confidence levels are presented in Figure B4. In error trials, late Pe 

amplitudes were related to certainty of being correct (p = .016) and a linear trend was 
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observed (p = .004), suggesting that lower certainty of being correct was related to larger Pe 

amplitudes. Late Pe amplitudes were however, not related to certainty of being incorrect in 

error trials, or any certainty in correct trials. Therefore, the late Pe showed the same patterns 

of results as the Pe except for the above-mentioned linear trend, which was absent for the Pe.

 

Figure B3. (A, B) Response-locked waveforms at Pz by subjective accuracy, separated for 

correct and error trials. Shaded areas show the time windows of the late Pe (400 to 600 ms). 

Late Pe amplitudes differed by subjective accuracy in both correct ad error trials.  

Note. *p <.05 **p <.01 ***p <.001. 

 
Figure B4. (A, B) Response-locked waveforms at Pz by all confidence rating levels, 

separated for correct and error trials. Shaded areas show the time windows of the late Pe (400 

to 600 ms). Late Pe amplitudes differed by certainty of being correct in error trials. Error bars 

indicate SEM. 
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Note. *p <.05 **p <.01 ***p <.001. Blue asterisks indicate the p value for the relationship 

with certainty of being correct. 

B.3.3. ERN/Ne 

 When ERN/Ne amplitudes were predicted by subjective accuracy, a significant effect 

was found in correct trials (p = .006) but not in error trials (p = .101). Post-hoc comparisons 

showed that the effect in correct trials was due to the fact that subjectively incorrect trials 

showed lower amplitudes than guessing trials (p = .004), and subjectively correct trials  (p 

= .036). However, ERN/Ne amplitudes were not predicted by certainty of being correct or 

certainty of being incorrect, in either correct or error trials. Response-locked waveforms at 

FCz by subjective accuracy, as well as by all levels of confidence ratings, separated for 

correct and error trials, are shown in Figures B5 and B6.

 

Figure B5. (A, B) Response-locked waveforms at FCz by subjective accuracy, separated for 

correct and error trials. Shaded areas show the time windows of the ERN/Ne (-50 to 50 ms). 

ERN/Ne differed by subjective accuracy in correct trials but not in error trials.  

Note. *p <.05 **p <.01 ***p <.001.  
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Figure B6. (A, B) Response-locked waveforms at FCz by all confidence rating levels, 

separated for correct and error trials. Shaded areas show the time windows of the ERN/Ne (-

50 to 50 ms). ERN/Ne amplitudes were not modulated by certainty of being correct or 

incorrect. Error bars indicate SEM. 

B.4. Summary 

B.4.1. Stimulus-locked CPP 

 Compared with response-locked CPP amplitudes (discussed in Chapter 3), stimulus-

locked CPP amplitudes showed the same patterns of being modulated by subjective accuracy 

in correct trials, as well as certainty of being correct in correct trials. This suggests that both 

measures are similarly related to confidence despite the suggestion that RT could confound 

this relationship for stimulus-locked CPP (Feuerriegel et al., 2022). In fact, this is consistent 

with the results reported by Feuerriegel and colleagues, as they also found the stimulus-

locked CPP amplitudes were related to confidence in correct trials but not in error trials.  

B.4.2. Late Pe 

In terms of subjective accuracy and certainty, the late Pe showed similar patterns as 

the Pe (discussed in Chapter 3): The late Pe amplitudes were negatively related to subjective 

accuracy in error trials, while in correct trials the amplitudes were larger for guessing trials 

than subjectively correct trials. The only differences between the Pe and late Pe measures 

were that, first, in error trials only the late Pe amplitudes were negatively related to certainty 
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of being correct, and second, in correct trials the late Pe amplitudes were not related to 

certainty of being correct as the Pe.  

While the overall findings suggest that the Pe and late Pe measures in the current 

dataset are highly similar, the first inconsistent finding suggests that the late Pe could be 

more sensitive to the graded differences in certainty of being correct in error trials. This may 

be because late Pe is more closely related to confidence than the early Pe (Endrass et al., 

2007; Ruchsow et al., 2005). Indeed, the Pe time window in the current dataset was close to 

the time window of some early Pe measures, e.g., 300 to 450 ms [Moreau et al., 2022]). 

Considering the long response deadline (1500 ms) for confidence ratings in the task, it is also 

possible that the accumulation of error evidence continued beyond the measurement window 

of Pe (300 to 400 ms relative to response), such that more graded differences emerged only at 

a later stage (potentially because of more sources of information entering the error evidence 

accumulation process), captured by the late Pe measurement window (400 to 600 ms). This 

would then suggest that the post-decisional metacognitive process involves binary error 

awareness in the early stage, but then develops more fine-grained evaluation. This also 

suggests that even in cases where subjective certainty of being correct was observed in error 

trials, error evidence could still be negatively related to accuracy ratings, rather than simply 

driven by noise. Due to the inconsistency between the measures of Pe and late Pe, this 

hypothesis remains to be tested in future studies. It should however be noted that even if such 

relationship is true, the Pe still appears to be more sensitive to error awareness, as its 

amplitudes for subjectively incorrect trials were considerably larger compared with 

subjectively correct trials. 

The second finding that the late Pe amplitudes in correct trials were not related to 

certainty of being correct as the Pe could be attributed to the noisy accumulation of error 

evidence. As discussed in Chapter 3, it could be assumed that error evidence is accumulated 
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ineffectively in correct trials. This noise could have driven the relationship between the Pe 

and subjective accuracy as well as certainty of being correct in correct trials, which did not 

sustain in the later time window of the late Pe. 

B.4.3. ERN/Ne 

ERN/Ne amplitudes were modulated by subjective accuracy only in correct trials but 

not error trial. The null finding in error trials is inconsistent with previous studies that found 

subjectively incorrect trials had larger ERN using a pre-response baseline (e.g., Scheffers & 

Coles, 2000), but consistent with a study that did not find such an effect using a pre-stimulus 

baseline (Pavone et al., 2009). It is therefore possible that it could be explained by these 

different baseline correction procedures. For example, as errors rated as correct might have 

larger CPP overlapping with baseline compared with errors rated as incorrect, the true 

difference between subjectively correct and incorrect trials in ERN/Ne might be reduced by 

correction with the pre-response baseline. 

The null effect of subjective accuracy on the ERN/Ne in error trials was previously 

interpreted as evidence showing that the ERN/Ne reflects unconscious error detection, such 

that similar ERN/Ne amplitudes were observed across subjective accuracy levels (Pavone et 

al., 2009). However, the current analysis also showed an effect of subjective accuracy in 

correct trials, which was only rarely investigated in previous studies (Scheffers & Coles, 

2000). Two interpretations could be considered. First, if ERN/Ne reflects response conflict 

(Scheffers & Coles, 2000; Di Gregorio et al., 2018), then it suggests that the larger ERN/Ne 

amplitudes for correct trials rated as incorrect involve larger conflict than correct trials rated 

as correct, where the source of conflict could be related to the difference between subjective 

and objective accuracy. Although using a pre-response baseline, Scheffers and Coles (2000) 

also similarly reported that ERN/Ne amplitudes were the largest for correct trials rated as 

subjectively incorrect, even when compared with error trials rated as subjectively incorrect, 
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showing that ERN/Ne amplitudes might not be only dependent on error awareness. Second, 

such effect might reflect differences due to stimulus processing, as such differences emerged 

before response (Figure 3.7A, Chapter 3). 

It should be noted that the ERN/Ne was not as large as in previous studies (e.g., 

Scheffers & Coles, 2000). Reduced ERN/Ne amplitudes could be due to the speeded nature 

of the task paradigm (Arbel & Donchin, 2009; Gehrin et al., 1993) or pre-stimulus baseline 

correction (Pavone et al., 2009).  

Overall, the results showed largely similar findings as reported in Chapter 3, thus 

strengthening the claim that the CPP is specific to confidence in correct decisions and Pe/late 

Pe is specific to confidence in error decisions, even when alternative measures were used. 

Additionally, the ERN/Ne showed modulation by subjective accuracy only in correct trials, 

which could be due to larger response conflict when correct trials were rated as incorrect. 
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B.5. Linear mixed-effects model results (regression coefficients) 
 
Mixed-effects models results of ERP data analysis: Subjective accuracy 

 

Table B1 Regression Coefficients for Predicting Stimulus-locked CPP amplitudes (Correct 
Trials) from Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 2.96 0.50 5.88 <.001*** 

Subjectively 
incorrect -1.12 0.31 -3.62 <.001*** 

Guessing 0.37 0.23 1.58 .115 

Note. Intercept represents the estimate for subjectively correct.             
*p <.05 **p <.01 ***p <.001 

Table B2 Regression Coefficients for Predicting Stimulus-locked CPP amplitudes (Error 
Trials) from Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 3.00 0.46 6.48 <.001*** 

Subjectively 
incorrect -0.31 0.27 -1.15 .248 

Guessing 0.17 0.24 0.71 .479 

Note. Intercept represents the estimate for subjectively correct.             
*p <.05 **p <.01 ***p <.001 

Table B3 Regression Coefficients for Predicting Late Pe amplitudes (Correct Trials) from 
Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 0.00 0.01 0.10 .924 

Subjectively 
incorrect -0.02 0.01 -1.58 .114 

Guessing -0.00 0.01 -0.17 .867 

Note. Intercept represents the estimate for subjectively correct.             
*p <.05 **p <.01 ***p <.001 
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Table B4 Regression Coefficients for Predicting Late Pe amplitudes (Error Trials) from 
Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 0.01 0.01 2.08 .042* 

Subjectively 
incorrect -0.00 0.01 -0.40 .692 

Guessing 0.00 0.01 0.12 .904 

Note. Intercept represents the estimate for subjectively correct.             
*p <.05 **p <.01 ***p <.001 

Table B5 Regression Coefficients for Predicting ERN/Ne amplitudes (Correct Trials) from 
Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 4.76 0.70 6.82 <.001*** 

Subjectively 
incorrect -0.04 0.48 -0.08 .938 

Guessing 0.66 0.36 1.85 .065 

Note. Intercept represents the estimate for subjectively correct.             
*p <.05 **p <.01 ***p <.001 

Table B6 Regression Coefficients for Predicting ERN/Ne amplitudes (Error Trials) from 
Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 5.64 0.67 8.42 <.001*** 

Subjectively 
incorrect 1.15 0.43 2.71 .007** 

Guessing 0.17 0.38 0.46 .642 

Note. Intercept represents the estimate for subjectively correct.             
*p <.05 **p <.01 ***p <.001 

 
  



   182  

Mixed-effects models results of ERP data analysis: Certainty of being correct and certainty 
of being incorrect 
 
Table B7 Regression Coefficients for Predicting Stimulus-locked CPP amplitudes (Correct 
Trials) from Certainty of Being Correct 

Parameters Estimate SE z p 

Intercept 3.58 0.52 6.87 <.001*** 

Maybe 
correct -0.75 0.17 -4.36 <.001*** 

Probably 
correct -0.18 0.14 -1.29 .198 

Note. Intercept represents the estimate for surely correct.                      
*p <.05 **p <.01 ***p <.001 

Table B8 Regression Coefficients for Predicting Stimulus-locked CPP amplitudes (Error 
Trials) from Certainty of Being Correct 

Parameters Estimate SE z p 

Intercept 3.16 0.49 6.41 <.001*** 

Maybe 
correct -0.35 0.26 -1.37 .169 

Probably 
correct 0.04 0.22 0.19 .852 

Note. Intercept represents the estimate for surely correct.                      
*p <.05 **p <.01 ***p <.001 

Table B9 Regression Coefficients for Predicting Late Pe amplitudes (Correct Trials) from 
Certainty of Being Correct 

Parameters Estimate SE z p 

Intercept 0.02 0.00 3.61 .001** 

Maybe 
correct -0.00 0.01 -0.03 .974 

Probably 
correct -0.00 0.00 -0.76 .449 

Note. Intercept represents the estimate for surely correct.                      
*p <.05 **p <.01 ***p <.001 
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Table B10 Regression Coefficients for Predicting Late Pe amplitudes (Error Trials) from 
Certainty of Being Correct 

Parameters Estimate SE z p 

Intercept 0.01 0.01 2.49 .021* 

Maybe 
correct 0.01 0.01 0.94 .347 

Probably 
correct -0.00 0.01 -0.51 .609 

Note. Intercept represents the estimate for surely correct.                     *p <.05 
**p <.01 ***p <.001 

Table B11 Regression Coefficients for Predicting ERN/Ne amplitudes (Correct Trials) from 
Certainty of Being Correct 

Parameters Estimate SE z p 

Intercept 4.10 0.65 6.26 <.001*** 

Maybe 
correct -0.06 0.26 -0.21 .833 

Probably 
correct -0.13 0.21 -0.59 .554 

Note. Intercept represents the estimate for surely correct.                      
*p <.05 **p <.01 ***p <.001 

Table B12 Regression Coefficients for Predicting ERN/Ne amplitudes (Error Trials) from 
Certainty of Being Correct 

Parameters Estimate SE z p 

Intercept 4.35 0.62 7.04 <.001*** 

Maybe 
correct 1.00 0.39 2.57 .010* 

Probably 
correct 0.01 0.34 0.03 .979 

Note. Intercept represents the estimate for surely correct.                      
*p <.05 **p <.01 ***p <.001 
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Table B13 Regression Coefficients for Predicting Stimulus-locked CPP amplitudes (Correct 
Trials) from Certainty of Being incorrect 

Parameters Estimate SE z p 

Intercept 1.32 0.65 2.02 .052 

Maybe 
incorrect -1.16 0.89 -1.31 .192 

Probably 
incorrect -0.41 0.71 -0.57 .568 

Note. Intercept represents the estimate for surely incorrect.                   
*p <.05 **p <.01 ***p <.001 

Table B14 Regression Coefficients for Predicting Stimulus-locked CPP amplitudes (Error 
Trials) from Certainty of Being incorrect 

Parameters Estimate SE z p 

Intercept 2.83 0.64 4.40 <.001*** 

Maybe 
incorrect 0.78 0.64 1.22 .222 

Probably 
incorrect -0.16 0.60 -0.26 .793 

Note. Intercept represents the estimate for surely incorrect.                   
*p <.05 **p <.01 ***p <.001 

Table B15 Regression Coefficients for Predicting Late Pe amplitudes (Correct Trials) from 
Certainty of Being incorrect 

Parameters Estimate SE z p 

Intercept -0.01 0.02 -0.73 .467 

Maybe 
incorrect 0.02 0.03 0.70 .485 

Probably 
incorrect -0.03 0.02 -1.33 .186 

Note. Intercept represents the estimate for surely incorrect.                   
*p <.05 **p <.01 ***p <.001 
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Table B16 Regression Coefficients for Predicting Late Pe amplitudes (Error Trials) from 
Certainty of Being incorrect 

Parameters Estimate SE z p 

Intercept 0.00 0.01 0.29 .776 

Maybe 
incorrect -0.00 0.02 -0.17 .868 

Probably 
incorrect -0.02 0.02 -1.22 .225 

Note. Intercept represents the estimate for surely incorrect.                   
*p <.05 **p <.01 ***p <.001 

Table B17 Regression Coefficients for Predicting ERN/Ne amplitudes (Correct Trials) from 
Certainty of Being incorrect 

Parameters Estimate SE z p 

Intercept 4.46 1.03 4.31 <.001*** 

Maybe 
incorrect -0.56 1.37 -0.41 .685 

Probably 
incorrect -0.61 1.09 -0.56 .578 

Note. Intercept represents the estimate for surely incorrect.                   
*p <.05 **p <.01 ***p <.001 

Table B18 Regression Coefficients for Predicting ERN/Ne amplitudes (Error Trials) from 
Certainty of Being incorrect 

Parameters Estimate SE z p 

Intercept 7.05 1.10 6.38 <.001*** 

Maybe 
incorrect -0.89 1.05 -0.85 .397 

Probably 
incorrect 1.46 0.98 1.49 .136 

Note. Intercept represents the estimate for surely incorrect.                   
*p <.05 **p <.01 ***p <.001 
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Appendix C Effects of relative and absolute evidence on ERP 
measures 

C.1. Background 

Given that the CPP and Pe are assumed to reflect sensory and error evidence 

accumulation, the manipulations of relative and absolute evidence strength were likely to 

modulate the amplitudes of these two components. The following analyses explore whether 

such effects would be observed.  

C.1.1. CPP 

 As discussed in Chapter 1, CPP was proposed to reflect accumulation of sensory 

evidence, and specifically task-relevant evidence (Kelly et al., 2021). Therefore, a direct 

effect of relative evidence could be expected, such that CPP amplitudes would be larger when 

relative evidence was stronger. 

 In terms of the effect of absolute evidence, two potential effects could be expected. 

First, as stronger absolute evidence is assumed to reduced perceived relative evidence 

(discussed in Chapter 2), stronger absolute evidence might lead to weaker CPP amplitudes in 

general, or modulate the effect of relative evidence on CPP, such that the effect was stronger 

when absolute evidence was weak. On the other hand, given that some studies suggest that 

stimulus-locked CPP could reflect visual awareness of stimuli (Tagliabue et al., 2016, 2019), 

stimuli with stronger absolute evidence could have appeared more visible and thus increased 

stimulus-locked CPP amplitudes. However, such proposal was based on stimuli with intensity 

close to detection threshold (Tagliabue et al., 2016, 2019) and might not extend to the highly 

visible stimuli in the current study. 

C.1.2. Pe 

The Pe was proposed to reflect the accumulation of post-decisional sensory evidence, 

or alternatively, error evidence (Desender et al., 2021; Moran et al., 2015; Rausch et al., 

2020). If Pe simply reflects sensory evidence accumulation, then the same predictions made 
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for the CPP could also be made for the Pe: The Pe should increase with stronger relative 

evidence and potentially with weaker absolute evidence, for both correct and error trials. 

However, such prediction would be at least partially inconsistent with the previous findings 

that Pe amplitudes increased with lower confidence (Boldt & Yeung, 2015), which was 

associated with weaker relative evidence and weaker absolute evidence in the current 

behavioural data. 

On the other hand, as it has been suggested in the literature and the analyses in 

Chapter 3 that Pe is likely to be error-specific, it could be considered to reflect error evidence 

accumulation (discussed in Chapter 3). Although it is unclear how error evidence is related to 

relative evidence and absolute evidence, the effects of these manipulations on the likelihood 

of errors being rated as incorrect (analysis on changes of mind, reported in Chapter 2) suggest 

the following predictions. Given that stronger absolute evidence reduced the likelihood of 

errors being rated as incorrect, less error evidence should be accumulated when absolute 

evidence was strong. In contrast, as stronger relative evidence increased the likelihood of 

errors being rated as incorrect, more error evidence should be accumulated. Therefore, it was 

predicted that the Pe in error trials was stronger when absolute evidence was weak and when 

relative evidence was strong. Pe amplitudes in correct trials, which should reflect limited 

error evidence accumulation, however, should not be affected.  

C.2. Method 

The same processed dataset, measures, and linear mixed-effects model analysis 

approach in Appendix B was used for the following analyses. It involved examining how 

relative evidence and absolute evidence affected the amplitudes of stimulus-locked CPP, 

response-locked CPP, Pe, and late Pe. Linear mixed-effects models with random intercept for 

participants were used to test the effects of relative evidence, absolute evidence, and their 

interaction. Full statistical results are presented in Tables C1 - C16, Section C.5.. 
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C.3. Results 

C.3.1. Stimulus-locked and response-locked CPP 

No effects on the stimulus-locked CPP measure reached significance, but response-

locked CPP in error trials showed an interaction between relative and absolute evidence (p 

= .001). This interaction was due the pattern that CPP amplitudes were not affected by 

absolute evidence at low relative evidence level but negatively related to absolute evidence 

when relative evidence was high. Post-hoc comparisons showed that at high relative 

evidence, CPP amplitudes were lower for high absolute evidence than low absolute evidence 

(p =.007). However, at medium relative evidence, CPP amplitudes were lower for low 

absolute evidence than high absolute evidence (p = .031). Response-locked waveforms at Pz 

by absolute evidence levels, separated for relative evidence levels, correct and error trials, are 

shown in Figure C1. 

 

Figure C1. (A-C) Response-locked waveforms in error trials by absolute evidence levels, 

separated for relative evidence levels in correct trials. (D-F) Response-locked waveforms in 

error trials by absolute evidence levels, separated for relative evidence levels in error trials. 

Shaded areas show the time windows of the Pe (300 to 400 ms) and the late Pe (400 to 600 



   189  

ms). CPP, Pe, and late Pe amplitudes showed interactions between relative and absolute 

evidence in error trials, while such effects were not observed for correct trials. 

Note. *p <.05 **p <.01 ***p <.001 

C.3.2. Pe and late Pe 

Both Pe and late Pe showed similar patterns of results. In error trials, they both 

showed an negative effect of absolute evidence with a linear trend (ps < .05), as well as an 

interaction between relative evidence and absolute evidence (ps < .01). Post-hoc comparisons 

showed that this was due to significant negative relationships between absolute evidence and 

Pe/late Pe amplitudes only at high relative evidence level (ps < .001; Figure C1). 

Additionally, in correct trials, only late Pe showed a main effect of absolute evidence (p 

= .036). However, this was driven by the difference between low and medium absolute 

evidence levels (p = .035). Response-locked waveforms at Pz by absolute evidence, separated 

for correct and error trials, are shown in Figure C2. 

 

Figure C2. (A, B) Response-locked waveforms at Pz in error trials by absolute evidence 

levels. Shaded areas show the time windows of the Pe (300 to 400 ms) and the late Pe (400 to 

600 ms). Pe amplitudes differed by absolute evidence levels in error trials only, while late Pe 

amplitudes differed by absolute evidence levels in both correct and error trials.  

Note. *p <.05 **p <.01 ***p <.001 
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C.4. Summary 

C.4.1. Stimulus-locked and response-locked CPP 

Instead of the expected positive effect of relative evidence and negative effect of 

absolute evidence, it was found that only response-locked CPP amplitudes in error trials were 

affected by an interaction between relative and absolute evidence, which was driven by the 

pattern that stronger absolute evidence reduced CPP only when relative evidence was strong. 

This suggests that absolute evidence might have reduced sensory evidence as stronger 

absolute evidence reduced perceived relative evidence (perceived brightness difference; 

discussed in Chapter 2), but this effect was only limited to high level of relative evidence. At 

medium relative evidence, stronger absolute evidence was however related to lower CPP 

amplitudes. These opposite directions of effect might suggest that in error trials sensory 

evidence accumulation was less stable (particularly at when task difficulty was higher), that 

sensory evidence accumulation did not show the expected effect.  

This further suggests that the CPP is more closely related to subjective sensory 

evidence rather than objective stimulus strength. On the one hand, the absence of effect in 

correct trials is however consistent with the previous findings that showed stronger relative 

evidence did not increase the amount of evidence accumulated before response (Kelly & 

O’Connell, 2013). In other words, in correct trials, a fixed amount of sensory evidence was 

accumulated, regardless of the objective stimulus strength. On the other hand, the fact that 

CPP amplitudes in error trials were affected by absolute evidence strength suggests that error 

trials involved different amounts of evidence accumulated, which was supressed when 

objective stimulus strength was weak due to increased absolute evidence. 

The fact that stimulus-locked CPP amplitudes were not significantly predicted by 

relative and absolute evidence might be because in the current task stimuli were presented for 
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a long period and therefore the stimulus-locked CPP did not show a clear build-up pattern 

that reflects evidence accumulation more clearly.  

C.4.2. Pe and late Pe 

In terms of the effects of relative and absolute evidence, late Pe again showed similar 

patterns of results as Pe: Both measures in error trials showed an interaction between relative 

and absolute evidence driven by their amplitudes being reduced with stronger absolute 

evidence, but only at high level of relative evidence. One interpretation is that effective 

accumulation of error evidence requires both high relative evidence and low absolute 

evidence. When relative evidence was low or medium, error evidence accumulation was 

limited (and error awareness rarely occurred) and thus cannot be affected by absolute 

evidence. Only when relative evidence was high, and evidence accumulation could 

effectively occur, lower absolute evidence allowed more error evidence to be accumulated 

compared with higher absolute evidence. Considering absolute evidence as noise in the 

decision process (Ratcliff et al., 2018; Turner et al., 2021), this would suggest that increased 

noise impaired the error awareness. 

The late Pe also showed an additional, negative effect of absolute evidence in correct 

trials. As discussed in Chapter 3, despite the prediction that the Pe would only reflect error 

evidence after erroneous decisions, some error evidence could also be available after correct 

decisions. If that is true, the effect of absolute evidence in correct trials could be explained 

similarly as in error trials, that lower absolute evidence allowed more error evidence to be 

accumulated. 
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C.5. Linear mixed-effects model results (likelihood ratio tests and regression 
coefficients) 
 
Mixed-effects models results of ERP data analysis: Stimulus-locked CPP and response 

locked CPP 

 

Table C1 Likelihood Ratio Tests Results for Predicting Stimulus-locked CPP amplitudes 
(Correct Trials) from Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 4.56 .102 

Abs 2 4.97 .083 

Rel × Abs 4 9.19 .057 

Note. Rel: Relative evidence; Abs: Absolute evidence.          
*p <.05 **p <.01 ***p <.001 

Table C2 Regression Coefficients for Predicting Stimulus-locked CPP amplitudes (Correct 
Trials) from Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 3.58 0.48 7.46 <.001*** 

Low Rel -0.11 0.13 -0.90 .368 

Med Rel -0.14 0.12 -1.12 .263 

Low Abs -0.14 0.12 -1.21 .228 

Med Abs -0.13 0.12 -1.09 .278 

Low Rel × 
Low Abs -0.29 0.18 -1.63 .103 

Med Rel × 
Low Abs -0.17 0.17 -1.03 .305 

Low Rel × 
Med Abs 0.17 0.18 0.96 .335 

Med Rel × 
Med Abs -0.07 0.17 -0.40 .687 

Note. Intercept represents the estimate for high relative and high absolute 
evidence. Rel: Relative evidence; Abs: Absolute evidence.                              
*p <.05 **p <.01 ***p <.001 
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Table C3 Likelihood Ratio Tests Results for Predicting Stimulus-locked CPP amplitudes 
(Error Trials) from Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 0.71 .700 

Abs 2 1.86 .395 

Rel × Abs 4 7.35 .118 

Note. Rel: Relative evidence; Abs: Absolute evidence.          
*p <.05 **p <.01 ***p <.001 

Table C4 Regression Coefficients for Predicting Stimulus-locked CPP amplitudes (Error 
Trials) from Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 3.08 0.45 6.78 <.001*** 

Low Rel 0.13 0.17 0.78 .438 

Med Rel -0.10 0.18 -0.57 .567 

Low Abs -0.23 0.19 -1.18 .238 

Med Abs 0.22 0.18 1.23 .220 

Low Rel × 
Low Abs 0.15 0.25 0.60 .551 

Med Rel × 
Low Abs -0.56 0.26 -2.16 .031* 

Low Rel × 
Med Abs -0.35 0.24 -1.46 .144 

Med Rel × 
Med Abs 0.23 0.25 0.93 .353 

Note. Intercept represents the estimate for high relative and high absolute 
evidence. Rel: Relative evidence; Abs: Absolute evidence.                              
*p <.05 **p <.01 ***p <.001 

Table C5 Likelihood Ratio Tests Results for Predicting Response-locked CPP amplitudes 
(Correct Trials) from Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 3.81 .149 

Abs 2 3.79 .151 

Rel × Abs 4 3.48 .480 

Note. Rel: Relative evidence; Abs: Absolute evidence.          
*p <.05 **p <.01 ***p <.001 
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Table C6 Regression Coefficients for Predicting Response-locked CPP amplitudes (Correct 
Trials) from Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 3.68 0.55 6.72 <.001*** 

Low Rel -0.14 0.15 -0.92 .357 

Med Rel -0.14 0.15 -0.93 .353 

Low Abs 0.22 0.15 1.50 .134 

Med Abs -0.27 0.15 -1.80 .072 

Low Rel × 
Low Abs -0.07 0.21 -0.31 .753 

Med Rel × 
Low Abs -0.15 0.21 -0.71 .477 

Low Rel × 
Med Abs 0.05 0.22 0.23 .819 

Med Rel × 
Med Abs -0.17 0.21 -0.81 .417 

Note. Intercept represents the estimate for high relative and high absolute 
evidence. Rel: Relative evidence; Abs: Absolute evidence.                              
*p <.05 **p <.01 ***p <.001 

Table C7 Likelihood Ratio Tests Results for Predicting Response-locked CPP amplitudes 
(Error Trials) from Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 0.61 .737 

Abs 2 0.88 .645 

Rel × Abs 4 18.17 .001** 

Note. Rel: Relative evidence; Abs: Absolute evidence.           
*p <.05 **p <.01 ***p <.001 
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Table C8 Regression Coefficients for Predicting Response-locked CPP amplitudes (Error 
Trials) from Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 3.44 0.55 6.25 <.001*** 

Low Rel 0.16 0.21 0.75 .454 

Med Rel -0.10 0.22 -0.46 .646 

Low Abs 0.13 0.24 0.55 .585 

Med Abs 0.07 0.22 0.32 .748 

Low Rel × 
Low Abs 0.08 0.31 0.26 .794 

Med Rel × 
Low Abs -1.13 0.32 -3.52 <.001*** 

Low Rel × 
Med Abs -0.38 0.30 -1.29 .199 

Med Rel × 
Med Abs 0.31 0.31 1.01 .310 

Note. Intercept represents the estimate for high relative and high absolute 
evidence. Rel: Relative evidence; Abs: Absolute evidence.                                 
*p <.05 **p <.01 ***p <.001 

 
Mixed-effects models results of ERP data analysis: Pe and late Pe 

 
Table C9 Likelihood Ratio Tests Results for Predicting Pe amplitudes (Correct Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 3.27 .195 

Abs 2 4.93 .085 

Rel × Abs 4 2.06 .724 

Note. Rel: Relative evidence; Abs: Absolute evidence.          
*p <.05 **p <.01 ***p <.001 
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Table C10 Regression Coefficients for Predicting Pe amplitudes (Correct Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 5.04 0.65 7.82 <.001*** 

Low Rel -0.03 0.19 -0.16 .875 

Med Rel -0.25 0.18 -1.42 .157 

Low Abs 0.34 0.18 1.92 .054 

Med Abs -0.34 0.18 -1.89 .059 

Low Rel × 
Low Abs 0.12 0.26 0.46 .648 

Med Rel × 
Low Abs 0.04 0.25 0.15 .884 

Low Rel × 
Med Abs -0.26 0.26 -0.98 .326 

Med Rel × 
Med Abs -0.08 0.25 -0.33 .740 

Note. Intercept represents the estimate for high relative and high absolute 
evidence. Rel: Relative evidence; Abs: Absolute evidence.                                 
*p <.05 **p <.01 ***p <.001 

Table C11 Likelihood Ratio Tests Results for Predicting Pe amplitudes (Error Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 0.11 .948 

Abs 2 6.05 .048* 

Rel × Abs 4 16.93 .002** 

Note. Rel: Relative evidence; Abs: Absolute evidence.          
*p <.05 **p <.01 ***p <.001 
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Table C12 Regression Coefficients for Predicting Pe amplitudes (Error Trials) from Relative 
Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 5.58 0.65 8.61 <.001*** 

Low Rel -0.01 0.25 -0.05 .960 

Med Rel -0.08 0.26 -0.29 .773 

Low Abs 0.59 0.29 2.07 .039* 

Med Abs -0.02 0.27 -0.06 .950 

Low Rel × 
Low Abs -0.09 0.37 -0.25 .802 

Med Rel × 
Low Abs -1.19 0.39 -3.06 .002** 

Low Rel × 
Med Abs -0.34 0.35 -0.95 .343 

Med Rel × 
Med Abs 0.19 0.37 0.51 .613 

Note. Intercept represents the estimate for high relative and high absolute 
evidence. Rel: Relative evidence; Abs: Absolute evidence.                                 
*p <.05 **p <.01 ***p <.001 

Table C13 Likelihood Ratio Tests Results for Predicting Late Pe amplitudes (Correct Trials) 
from Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 1.09 .579 

Abs 2 6.64 .036* 

Rel × Abs 4 3.37 .498 

Note. Rel: Relative evidence; Abs: Absolute evidence.          
*p <.05 **p <.01 ***p <.001 
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Table C14 Regression Coefficients for Predicting Late Pe amplitudes (Correct Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 4.29 0.66 6.55 <.001*** 

Low Rel -0.05 0.19 -0.27 .789 

Med Rel -0.13 0.19 -0.69 .487 

Low Abs 0.45 0.18 2.43 .015* 

Med Abs -0.35 0.19 -1.89 .058 

Low Rel × 
Low Abs 0.17 0.27 0.63 .528 

Med Rel × 
Low Abs 0.06 0.26 0.25 .806 

Low Rel × 
Med Abs -0.08 0.27 -0.29 .775 

Med Rel × 
Med Abs -0.34 0.26 -1.28 .202 

Note. Intercept represents the estimate for high relative and high absolute 
evidence. Rel: Relative evidence; Abs: Absolute evidence.                                 
*p <.05 **p <.01 ***p <.001 

Table C15 Likelihood Ratio Tests Results for Predicting Late Pe amplitudes (Error Trials) 
from Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 0.59 .746 

Abs 2 8.03 .018* 

Rel × Abs 4 13.63 .009** 

Note. Rel: Relative evidence; Abs: Absolute evidence.          
*p <.05 **p <.01 ***p <.001 
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Table C16 Regression Coefficients for Predicting Late Pe amplitudes (Error Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 5.04 0.64 7.82 <.001*** 

Low Rel 0.01 0.27 0.02 .982 

Med Rel -0.20 0.27 -0.73 .466 

Low Abs 0.67 0.30 2.22 .027* 

Med Abs 0.06 0.28 0.21 .832 

Low Rel × 
Low Abs 0.05 0.39 0.13 .894 

Med Rel × 
Low Abs -1.09 0.41 -2.68 .007** 

Low Rel × 
Med Abs -0.41 0.37 -1.10 .272 

Med Rel × 
Med Abs 0.10 0.39 0.27 .789 

Note. Intercept represents the estimate for high relative and high absolute 
evidence. Rel: Relative evidence; Abs: Absolute evidence.                                 
*p <.05 **p <.01 ***p <.001 
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Appendix D Relationships between ERP measures and certainty 

of being correct/incorrect regardless of objective accuracy 

D.1. Method and results 

In Chapter 3, the relationships between confidence and ERP measures were examined 

first in data subsets defined by objective accuracy, and then in data subsets defined by the 

combination of objective and subjective accuracy. To complement the results in Chapter 3, 

and to perform comparable analyses with Feuerriegel and colleagues (2022), the same 

analyses were repeated in data subsets defined by subjective accuracy only and reported here. 

Full statistical results are presented in Tables D1 – D6, Section D.3.. Waveforms separated 

by subjective accuracy and all confidence levels are presented in Figurer D1. 

CPP amplitudes were predicted by subjective accuracy (p = .001), and pairwise 

comparisons showed significantly lower CPP amplitudes for subjectively incorrect trials than 

guessing trials (p = .001) and subjectively correct trials (p = .005). When CPP amplitudes in 

correct trials were predicted by certainty of being incorrect, no significant effect was found (p 

= .919). CPP amplitudes were however significantly predicted by certainty of being correct (p 

<.001).  Trend analysis show a significant linear relationship (p < .001). 

Pe amplitudes were predicted by subjective accuracy (p < .001), and pairwise 

comparisons showed significantly lower Pe amplitudes for subjectively correct trials 

compared with guessing trials and subjectively incorrect trials (ps < .001). Pe amplitudes 

were however not predicted by certainty of being correct (p = .159) or certainty of being 

incorrect (p = .810).  
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Figure D1. Group mean ERP waveforms at Pz by subjective accuracy and all confidence 

rating levels,  pooling correct and error trials. (A) Group mean ERP waveforms by 

subjectively correct, subjective incorrect, and guessing trials, pooling correct and error trials. 

CPP amplitudes showed a positive relationship with subjective accuracy. Pe amplitudes 

showed a negative relationship with subjective accuracy. (B) Group mean of stimulus-locked 

ERP waveforms by all confidence levels, pooling correct and error trials. Only CPP 

amplitudes showed a positive relationship with certainty of being correct. Shaded areas show 

the time windows of the CPP (-130 to 70 ms) and the Pe (300 to 400 ms).  

Note. *p <.05 **p <.01 ***p <.001. Black asterisks indicate the p values for the relationship 

with subjective accuracy. Blue asterisks indicate the p value for the relationship with 

certainty of being correct. 

D.2. Summary 

Overall, the results of this analysis approach mirrored the main findings in Chapter 3.  

Only certainty of being correct was significantly related to response-locked CPP amplitudes, 

but other relationships between certainty of being correct/incorrect and the two ERP 

measures were not significant. Therefore, the current results are largely consistent with 

Feuerriegel et al. (2022), except that Pe amplitudes were not related to certainty of being 

incorrect.  
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D.3. Linear mixed-effects model results 
 
Table D1 Regression Coefficients for Predicting CPP Amplitudes from Trichotomized 
Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 3.39 0.55 6.19 <.001*** 

Subjectively 
incorrect -0.89 0.25 -3.58 <.001*** 

Guessing 0.64 0.20 3.15 .002** 

Note. Intercept represents the estimate for subjectively correct.                       
*p <.05 **p <.01 ***p <.001 

Table D2 Regression Coefficients for Predicting Pe Amplitudes from Trichotomized 
Subjective Accuracy 

Parameters Estimate SE z p 

Intercept 5.97 0.66 9.07 <.001*** 

Subjectively 
incorrect 0.69 0.30 2.32 .021* 

Guessing 0.41 0.24 1.68 .092 

Note. Intercept represents the estimate for subjectively correct.                           
*p <.05 **p <.01 ***p <.001 

Table D3 Regression Coefficients for Predicting CPP Amplitudes from Certainty of Being 
Correct 

Parameters Estimate SE z p 

Intercept 3.54 0.57 6.20 <.001*** 

Maybe 
correct -0.66 0.17 -3.81 <.001*** 

Probably 
correct -0.04 0.14 -0.28 .777 

Note. Intercept represents the estimate for surely correct.                                  
*p <.05 **p <.01 ***p <.001 
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Table D4 Regression Coefficients for Predicting Pe Amplitudes from Certainty of Being 
Correct 

Parameters Estimate SE z p 

Intercept 4.87 0.63 7.67 <.001*** 

Maybe 
correct 0.10 0.21 0.46 .647 

Probably 
correct -0.32 0.17 -1.85 .065 

Note. Intercept represents the estimate for surely correct.                                 
*p <.05 **p <.01 ***p <.001 

Table D5 Regression Coefficients for Predicting CPP Amplitudes from Certainty of Being 
incorrect 

Parameters Estimate SE z p 

Intercept 2.60 0.70 3.72 .001** 

Maybe 
incorrect -0.06 0.67 -0.10 .924 

Probably 
incorrect -0.16 0.59 -0.26 .792 

Note. Intercept represents the estimate for surely incorrect.                                      
*p <.05 **p <.01 ***p <.001 

Table D6 Regression Coefficients for Predicting Pe Amplitudes from Certainty of Being 
incorrect 

Parameters Estimate SE z p 

Intercept 6.96 0.85 8.14 <.001*** 

Maybe 
incorrect -0.33 0.80 -0.41 .686 

Probably 
incorrect -0.12 0.71 -0.17 .861 

Note. Intercept represents the estimate for surely incorrect.                                         
*p <.05 **p <.01 ***p <.001 
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Experiment 1 

 

 
 

 

Figure S1. Experiment 1 mean log odds of being correct in each condition. Error bars 

represent SEM. 
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Figure S2. Experiment 1 response time quantiles across absolute evidence levels (collapsing 

across relative evidence levels). (A) Correct and error trials combined. (B) Correct trials. (C) 

Error trials. Error bars represent SEM. 
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Accuracy (Log Odds of Being Correct) 

Table S1 
Experiment 1 Likelihood Ratio Tests Results for Predicting Accuracy (Log Odds of Being 
Correct) from Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 1433.01 <.001*** 

Abs 2 485.87 <.001*** 

Rel × Abs 4 91.71 <.001*** 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table S2  
Experiment 1 Regression Coefficients for Predicting Accuracy (Log Odds of Being Correct) 
from Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 1.11 0.07 16.47 <.001*** 

Low Rel -0.60 0.02 -32.09 <.001*** 

Med Rel -0.10 0.02 -4.97 <.001*** 

Low Abs 0.43 0.02 19.56 <.001*** 

Med Abs -0.09 0.02 -4.50 <.001*** 

Low Rel × 
Low Abs -0.22 0.03 -7.72 <.001*** 

Med Rel × 
Low Abs -0.06 0.03 -2.16 .031* 

Low Rel × 
Med Abs 0.05 0.03 2.04 .041* 

Med Rel × 
Med Abs 0.02 0.03 0.92 .356 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Response Time (Correct Trials) 

Table S3  
Experiment 1 Likelihood Ratio Tests Results for Predicting Response Time (Correct Trials) 
from Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 314.71 <.001*** 

Abs 2 35.85 <.001*** 

Rel × Abs 4 106.25 <.001*** 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table S4  
Experiment 1 Regression Coefficients for Predicting Response Time (Correct Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 765.12 2.84 269.20 <.001*** 

Low Rel 24.69 1.42 17.43 <.001*** 

Med Rel 6.31 1.14 5.55 <.001*** 

Low Abs 11.16 1.53 7.31 <.001*** 

Med Abs -6.39 1.32 -4.83 <.001*** 

Low Rel × 
Low Abs 19.47 1.89 10.31 <.001*** 

Med Rel × 
Low Abs 4.06 1.30 3.12 .002** 

Low Rel × 
Med Abs -1.88 1.45 -1.29 .195 

Med Rel × 
Med Abs -4.33 1.66 -2.61 .009** 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Response Time (Error Trials) 

Table S5  
Experiment 1 Likelihood Ratio Tests Results for Predicting Response Time (Error Trials) 
from Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 18.54 <.001*** 

Abs 2 49.96 <.001*** 

Rel × Abs 4 20.20 <.001*** 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table S6  
Experiment 1 Regression Coefficients for Predicting Response Time (Error Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 811.14 7.68 105.63 <.001*** 

Low Rel 12.87 2.62 4.92 <.001*** 

Med Rel 2.11 2.67 0.79 .427 

Low Abs 24.84 2.75 9.02 <.001*** 

Med Abs -5.51 2.86 -1.93 .054 

Low Rel × 
Low Abs 21.36 3.70 5.77 <.001*** 

Med Rel × 
Low Abs -10.33 3.76 -2.75 .006** 

Low Rel × 
Med Abs -14.42 3.59 -4.02 <.001*** 

Med Rel × 
Med Abs 7.49 3.78 1.98 .048* 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Confidence (Correct Trials) 

Table S7  
Experiment 1 Likelihood Ratio Tests Results for Predicting Confidence (Correct Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 879.07 <.001*** 

Abs 2 293.89 <.001*** 

Rel × Abs 4 121.55 <.001*** 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table S8  
Experiment 1 Regression Coefficients for Predicting Confidence (Correct Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 5.74 0.12 49.75 <.001*** 

Low Rel -0.28 0.01 -23.65 <.001*** 

Med Rel -0.02 0.01 -2.10 .036* 

Low Abs -0.19 0.01 -16.72 <.001*** 

Med Abs 0.05 0.01 4.31 <.001*** 

Low Rel × 
Low Abs -0.14 0.02 -8.25 <.001*** 

Med Rel × 
Low Abs -0.01 0.02 -0.63 .526 

Low Rel × 
Med Abs 0.01 0.02 0.73 .463 

Med Rel × 
Med Abs 0.02 0.02 1.29 .195 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Confidence (Error Trials) 

Table S9  
Experiment 1 Likelihood Ratio Tests Results for Predicting Confidence (Error Trials) from 
Relative Evidence, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 99.99 <.001*** 

Abs 2 392.15 <.001*** 

Rel × Abs 4 9.30 .054 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table S10  
Experiment 1 Regression Coefficients for Predicting Confidence (Error Trials) from Relative 
Evidence, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 4.77 0.13 35.48 <.001*** 

Low Rel 0.25 0.03 9.93 <.001*** 

Med Rel -0.02 0.03 -0.70 .486 

Low Abs -0.58 0.03 -18.52 <.001*** 

Med Abs 0.14 0.03 5.23 <.001*** 

Low Rel × 
Low Abs 0.01 0.04 0.18 .855 

Med Rel × 
Low Abs -0.02 0.04 -0.41 .681 

Low Rel × 
Med Abs 0.08 0.03 2.34 .019* 

Med Rel × 
Med Abs -0.02 0.04 -0.63 .531 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Change of Mind (Log Odds of Confidence Lower Than 4) in Correct Trials 

Table S11  
Experiment 1 Likelihood Ratio Tests Results for Predicting Change of Mind (Log Odds of 
Confidence Lower Than 4) in Correct Trials from Relative Evidence, Absolute Evidence, and 
Their Interactions 

Predictor df χ2 p 

Rel 2 259.51 <.001*** 

Abs 2 38.67 <.001*** 

Rel × Abs 4 22.35 <.001*** 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table S12  
Experiment 1 Regression Coefficients for Predicting Change of Mind (Log Odds of 
Confidence Lower Than 4) in Correct Trials from Relative Evidence, Absolute Evidence, and 
Their Interactions 

Parameters Estimate SE z p 

Intercept 3.58 0.29 12.44 <.001*** 

Low Rel -0.53 0.04 -12.81 <.001*** 

Med Rel -0.14 0.04 -3.31 .001** 

Low Abs -0.26 0.04 -6.31 <.001*** 

Med Abs 0.13 0.04 3.02 .003** 

Low Rel × 
Low Abs -0.17 0.05 -3.19 .001** 

Med Rel × 
Low Abs -0.08 0.06 -1.40 .162 

Low Rel × 
Med Abs -0.04 0.06 -0.60 .550 

Med Rel × 
Med Abs 0.07 0.06 1.14 .255 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Change of Mind (Log Odds of Confidence Lower Than 4) in Error Trials 

Table S13  
Experiment 1 Likelihood Ratio Tests Results for Predicting Change of Mind (Log Odds of 
Confidence Lower Than 4) in Error Trials from Relative Evidence, Absolute Evidence, and 
Their Interactions 

Predictor df χ2 p 

Rel 2 96.92 <.001*** 

Abs 2 176.64 <.001*** 

Rel × Abs 4 14.09 .007** 

Note. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 

Table S14  
Experiment 1 Regression Coefficients for Predicting Change of Mind (Log Odds of 
Confidence Lower Than 4) in Error Trials from Relative Evidence, Absolute Evidence, and 
Their Interactions 

Parameters Estimate SE z p 

Intercept 1.60 0.19 8.26 <.001*** 

Low Rel 0.43 0.04 9.59 <.001*** 

Med Rel -0.04 0.04 -0.95 .344 

Low Abs -0.61 0.05 -12.38 <.001*** 

Med Abs 0.09 0.05 2.04 .042* 

Low Rel × 
Low Abs 0.00 0.06 0.04 .970 

Med Rel × 
Low Abs -0.03 0.06 -0.49 .623 

Low Rel × 
Med Abs 0.19 0.06 3.16 .002** 

Med Rel × 
Med Abs -0.04 0.06 -0.62 .536 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence. 
*p <.05 **p <.01 ***p <.001 
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Confidence (Correct Trials) 

Table S15  
Experiment 1 Likelihood Ratio Tests Results for Predicting Confidence (Correct Trials) from 
Relative Evidence, RT, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 667.60 <.001*** 

RT.cmc 1 1207.10 <.001*** 

Abs 2 270.15 <.001*** 

Rel × Abs 4 80.22 <.001*** 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
RT.cmc: Response time (cluster-mean centered). 
*p <.05 **p <.01 ***p <.001 
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Table S16  
Experiment 1 Regression Coefficients for Predicting Confidence (Correct Trials) from 
Relative Evidence, RT, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 5.75 0.12 49.77 <.001*** 

Low Rel -0.24 0.01 -20.99 <.001*** 

Med Rel -0.01 0.01 -1.27 .205 

RT.cmc -0.00 0.00 -35.22 <.001*** 

Low Abs -0.17 0.01 -15.92 <.001*** 

Med Abs 0.04 0.01 3.72 <.001*** 

Low Rel × 
Low Abs -0.11 0.02 -6.81 <.001*** 

Med Rel × 
Low Abs -0.00 0.02 -0.26 .793 

Low Rel × 
Med Abs 0.01 0.02 0.53 .598 

Med Rel × 
Med Abs 0.02 0.02 0.97 .330 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence; 
RT.cmc: Response time (cluster-mean centered). 
*p <.05 **p <.01 ***p <.001 
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Confidence (Error Trials) 

Table S17  
Experiment 1 Likelihood Ratio Tests Results for Predicting Confidence (Error Trials) from 
Relative Evidence, RT, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 2 125.88 <.001*** 

RT.cmc 1 405.39 <.001*** 

Abs 2 335.72 <.001*** 

Rel × Abs 4 10.37 .035* 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
RT.cmc: Response time (cluster-mean centered). 
*p <.05 **p <.01 ***p <.001 
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Table S18  
Experiment 1 Regression Coefficients for Predicting Confidence (Error Trials) from Relative 
Evidence, RT, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 4.77 0.13 35.46 <.001*** 

Low Rel 0.27 0.02 11.09 <.001*** 

Med Rel -0.01 0.03 -0.45 .654 

RT.cmc -0.00 0.00 -20.39 <.001*** 

Low Abs -0.52 0.03 -17.07 <.001*** 

Med Abs 0.12 0.03 4.72 <.001*** 

Low Rel × 
Low Abs 0.04 0.04 1.09 .275 

Med Rel × 
Low Abs -0.03 0.04 -0.85 .393 

Low Rel × 
Med Abs 0.06 0.03 1.75 .079 

Med Rel × 
Med Abs -0.01 0.04 -0.24 .807 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence; 
RT.cmc: Response time (cluster-mean centered). 
*p <.05 **p <.01 ***p <.001 
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Experiment 2 

 
 

 

Figure S3. Example of luminance value distributions in (A) high variability conditions and 

(B) low variability conditions. Specifically, this example demonstrates the distributions when 

relative evidence is high and absolute evidence is low. 

  



   219  

 

 
Figure S4. Experiment 2 mean log odds of being correct in each condition. Error bars 

represent SEM. 
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Table S19  
Mean luminance values for all experimental conditions of Experiment 2 

  
Low 
absolute 
evidence 

Medium 
absolute 
evidence 

High 
absolute 
evidence 

High 
luminance 
variability 

High 
relative 
evidence 

77, 93 107, 123 137, 153 

Low relative 
evidence 77, 85 107, 115 137, 145 

Low 
luminance 
variability 

High 
relative 
evidence 

77, 93 107, 123 137, 153 

Low relative 
evidence 77 85 107 115 137 145 

Note. While mean luminance values were identical across high and low 
luminance variability conditions, high luminance conditions had 
standard deviations of 25.5, and low luminance conditions had standard 
deviations of 12.5. 
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Accuracy (Log Odds of Being Correct) 

Table S20  
Experiment 2 Likelihood Ratio Tests Results for Predicting Accuracy (Log Odds of Being 
Correct) from Relative Evidence, Absolute Evidence, Luminance Variability, and Their 
Interactions 

Predictor df χ2 p 

Rel 1 576.22 <.001*** 

Abs 2 588.29 <.001*** 

Var 1 0.78 .378 

Rel × Abs 2 37.02 <.001*** 

Rel × Var 1 2.77 .096 

Abs × Var 2 0.25 .882 

Rel × Abs × 
Var 2 0.53 .767 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
Var: Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Table S21  
Experiment 2 Regression Coefficients for Predicting Accuracy (Log Odds of Being Correct) 
from Relative Evidence, Absolute Evidence, Luminance Variability, and Their Interactions 

Parameters Estimate SE z p 

Intercept 1.19 0.08 15.27 <.001*** 

Low Rel -0.35 0.01 -23.61 <.001*** 

Low Abs 0.47 0.02 21.31 <.001*** 

Med Abs -0.08 0.02 -4.05 <.001*** 

Low Var 0.01 0.01 0.88 .378 

Low Rel × 
Low Abs -0.12 0.02 -5.35 <.001*** 

Low Rel × 
Med Abs 0.02 0.02 0.75 .456 

Low Rel × 
Low Var -0.02 0.01 -1.67 .096 

Low Abs × 
Low Var -0.01 0.02 -0.41 .680 

Med Abs × 
Low Var 0.01 0.02 0.47 .638 

Low Rel × 
Low Abs × 
Low Var 

0.01 0.02 0.29 .770 

Low Rel × 
Med Abs × 
Low Var 

-0.01 0.02 -0.71 .475 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence; Var: 
Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Response Time (Correct Trials) 

Table S22  
Experiment 2 Likelihood Ratio Tests Results for Predicting Response Time (Correct Trials) 
from Relative Evidence, Absolute Evidence, Luminance Variability, and Their Interactions 

Predictor df χ2 p 

Rel 1 106.53 <.001*** 

Abs 2 44.46 <.001*** 

Var 1 6.61 .010* 

Rel × Abs 2 32.20 <.001*** 

Rel × Var 1 0.37 .541 

Abs × Var 2 7.13 .028* 

Rel × Abs × 
Var 2 6.24 .044* 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
Var: Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Table S23  
Experiment 2 Regression Coefficients for Predicting Response Time (Correct Trials) from 
Relative Evidence, Absolute Evidence, Luminance Variability, and Their Interactions 

Parameters Estimate SE z p 

Intercept 741.98 1.71 435.14 <.001*** 

Low Rel 14.11 1.04 13.54 <.001*** 

Low Abs 12.68 1.11 11.39 <.001*** 

Med Abs -6.00 1.31 -4.57 <.001*** 

Low Var 3.52 1.09 3.22 .001** 

Low Rel × 
Low Abs 10.44 1.33 7.85 <.001*** 

Low Rel × 
Med Abs -7.55 1.42 -5.33 <.001*** 

Low Rel × 
Low Var 0.84 1.08 0.77 .440 

Low Abs × 
Low Var 0.06 1.21 0.05 .964 

Med Abs × 
Low Var 4.51 1.30 3.48 .001** 

Low Rel × 
Low Abs × 
Low Var 

-1.89 1.15 -1.64 .100 

Low Rel × 
Med Abs × 
Low Var 

4.80 1.25 3.83 <.001*** 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence; Var: 
Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Response Time (Error Trials) 

Table S24  
Experiment 2 Likelihood Ratio Tests Results for Predicting Response Time (Error Trials) 
from Relative Evidence, Absolute Evidence, Luminance Variability, and Their Interactions 

Predictor df χ2 p 

Rel 1 23.74 <.001*** 

Abs 2 37.22 <.001*** 

Var 1 0.04 .844 

Rel × Abs 2 14.25 <.001*** 

Rel × Var 1 0.16 .685 

Abs × Var 2 3.90 .143 

Rel × Abs × 
Var 2 3.37 .185 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
Var: Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Table S25  
Experiment 2 Regression Coefficients for Predicting Response Time (Error Trials) from 
Relative Evidence, Absolute Evidence, Luminance Variability, and Their Interactions 

Parameters Estimate SE z p 

Intercept 784.84 4.05 193.66 <.001*** 

Low Rel 12.86 2.20 5.86 <.001*** 

Low Abs 23.00 2.82 8.16 <.001*** 

Med Abs -6.64 2.33 -2.85 .004** 

Low Var 0.51 2.15 0.24 .812 

Low Rel × 
Low Abs 14.74 2.64 5.59 <.001*** 

Low Rel × 
Med Abs -4.74 2.59 -1.83 .068 

Low Rel × 
Low Var 1.06 2.27 0.47 .641 

Low Abs × 
Low Var 7.99 2.77 2.89 .004** 

Med Abs × 
Low Var -4.44 2.68 -1.65 .098 

Low Rel × 
Low Abs × 
Low Var 

-0.21 2.73 -0.08 .939 

Low Rel × 
Med Abs × 
Low Var 

5.29 2.79 1.89 .058 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence; Var: 
Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Confidence (Correct Trials) 

Table S26  
Experiment 2 Likelihood Ratio Tests Results for Predicting Confidence (Correct Trials) from 
Relative Evidence, Absolute Evidence, Luminance Variability, and Their Interactions 

Predictor df χ2 p 

Rel 1 261.57 <.001*** 

Abs 2 191.90 <.001*** 

Var 1 2.72 .099 

Rel × Abs 2 47.83 <.001*** 

Rel × Var 1 0.45 .501 

Abs × Var 2 2.45 .294 

Rel × Abs × 
Var 2 1.15 .561 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
Var: Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Table S27  
Experiment 2 Regression Coefficients for Predicting Confidence (Correct Trials) from 
Relative Evidence, Absolute Evidence, Luminance Variability, and Their Interactions 

Parameters Estimate SE z p 

Intercept 5.73 0.14 40.43 <.001*** 

Low Rel -0.12 0.01 -16.22 <.001*** 

Low Abs -0.12 0.01 -12.04 <.001*** 

Med Abs -0.01 0.01 -0.54 .593 

Low Var -0.01 0.01 -1.65 .099 

Low Rel × 
Low Abs -0.07 0.01 -6.79 <.001*** 

Low Rel × 
Med Abs 0.02 0.01 1.97 .048* 

Low Rel × 
Low Var -0.00 0.01 -0.67 .501 

Low Abs × 
Low Var -0.01 0.01 -1.00 .316 

Med Abs × 
Low Var -0.01 0.01 -0.60 .550 

Low Rel × 
Low Abs × 
Low Var 

0.00 0.01 0.11 .909 

Low Rel × 
Med Abs × 
Low Var 

-0.01 0.01 -1.00 .318 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence; Var: 
Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Confidence (Error Trials) 

Table S28  
Experiment 2 Likelihood Ratio Tests Results for Predicting Confidence (Error Trials) from 
Relative Evidence, Absolute Evidence, Luminance Variability, and Their Interactions 

Predictor df χ2 p 

Rel 1 57.71 <.001*** 

Abs 2 400.02 <.001*** 

Var 1 0.85 .355 

Rel × Abs 2 2.65 .265 

Rel × Var 1 4.35 .037* 

Abs × Var 2 8.47 .014* 

Rel × Abs × 
Var 2 3.79 .150 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
Var: Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Table S29  
Experiment 2 Regression Coefficients for Predicting Confidence (Error Trials) from Relative 
Evidence, Absolute Evidence, Luminance Variability, and Their Interactions 

Parameters Estimate SE z p 

Intercept 4.78 0.13 35.64 <.001*** 

Low Rel 0.14 0.02 7.61 <.001*** 

Low Abs -0.52 0.03 -17.88 <.001*** 

Med Abs 0.08 0.03 3.27 .001** 

Low Var -0.02 0.02 -0.92 .355 

Low Rel × 
Low Abs 0.03 0.03 1.16 .245 

Low Rel × 
Med Abs 0.00 0.03 0.20 .845 

Low Rel × 
Low Var 0.04 0.02 2.09 .037* 

Low Abs × 
Low Var -0.08 0.03 -2.73 .006** 

Med Abs × 
Low Var 0.06 0.03 2.46 .014* 

Low Rel × 
Low Abs × 
Low Var 

0.05 0.03 1.90 .057 

Low Rel × 
Med Abs × 
Low Var 

-0.02 0.03 -0.83 .408 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence; Var: 
Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Change of Mind (Log Odds of Confidence Lower Than 4) in Correct Trials 

Table S30  
Experiment 2 Likelihood Ratio Tests Results for Predicting Change of Mind (Log Odds of 
Confidence Lower Than 4) in Correct Trials from Relative Evidence, Absolute Evidence, 
Luminance Variability, and Their Interactions 

Predictor df χ2 p 

Rel 1 36.33 <.001*** 

Abs 2 5.26 .072 

Var 1 0.27 .601 

Rel × Abs 2 9.72 .008** 

Rel × Var 1 0.08 .780 

Abs × Var 2 0.49 .784 

Rel × Abs × 
Var 2 0.33 .846 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
Var: Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Table S31  
Experiment 2 Regression Coefficients for Predicting Change of Mind (Log Odds of 
Confidence Lower Than 4) in Correct Trials from Relative Evidence, Absolute Evidence, 
Luminance Variability, and Their Interactions 

Parameters Estimate SE z p 

Intercept 3.55 0.27 13.30 <.001*** 

Low Rel -0.19 0.03 -6.05 <.001*** 

Low Abs -0.10 0.04 -2.29 .022* 

Med Abs 0.03 0.04 0.77 .439 

Low Var 0.02 0.03 0.53 .599 

Low Rel × 
Low Abs -0.13 0.04 -3.12 .002** 

Low Rel × 
Med Abs 0.05 0.04 1.22 .224 

Low Rel × 
Low Var 0.01 0.03 0.28 .779 

Low Abs × 
Low Var 0.03 0.04 0.66 .510 

Med Abs × 
Low Var -0.02 0.04 -0.51 .607 

Low Rel × 
Low Abs × 
Low Var 

-0.02 0.04 -0.53 .595 

Low Rel × 
Med Abs × 
Low Var 

0.00 0.04 0.04 .971 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence; Var: 
Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Change of Mind (Log Odds of Confidence Lower Than 4) in Error Trials 

Table S32  
Experiment 2 Likelihood Ratio Tests Results for Predicting Change of Mind (Log Odds of 
Confidence Lower Than 4) in Error Trials from Relative Evidence, Absolute Evidence, 
Luminance Variability, and Their Interactions 

Predictor df χ2 p 

Rel 1 51.07 <.001*** 

Abs 2 179.30 <.001*** 

Var 1 0.00 .976 

Rel × Abs 2 3.62 .164 

Rel × Var 1 3.66 .056 

Abs × Var 2 7.92 .019* 

Rel × Abs × 
Var 2 7.20 .027* 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
Var: Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Table S33  
Experiment 2 Regression Coefficients for Predicting Change of Mind (Log Odds of 
Confidence Lower Than 4) in Error Trials from Relative Evidence, Absolute Evidence, 
Luminance Variability, and Their Interactions 

Parameters Estimate SE z p 

Intercept 1.57 0.18 8.81 <.001*** 

Low Rel 0.24 0.03 7.18 <.001*** 

Low Abs -0.61 0.05 -12.22 <.001*** 

Med Abs 0.08 0.05 1.75 .081 

Low Var 0.00 0.03 0.03 .976 

Low Rel × 
Low Abs 0.07 0.05 1.45 .147 

Low Rel × 
Med Abs 0.01 0.05 0.30 .767 

Low Rel × 
Low Var 0.06 0.03 1.92 .055 

Low Abs × 
Low Var -0.14 0.05 -2.81 .005** 

Med Abs × 
Low Var 0.07 0.05 1.58 .113 

Low Rel × 
Low Abs × 
Low Var 

0.12 0.05 2.53 .011* 

Low Rel × 
Med Abs × 
Low Var 

-0.03 0.05 -0.55 .582 

Note. Intercept represents the estimate for high relative and high 
absolute evidence. Rel: Relative evidence; Abs: Absolute evidence; Var: 
Luminance variability. 
*p <.05 **p <.01 ***p <.001 
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Confidence (Correct Trials) 

Table S34  
Experiment 2 Likelihood Ratio Tests Results for Predicting Confidence (Correct Trials) from 
Relative Evidence, Luminance Variability, RT, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 1 195.23 <.001*** 

Var 1 1.08 .299 

RT.cmc 1 1044.45 <.001*** 

Abs 2 169.31 <.001*** 

Rel × Var 1 0.24 .622 

Rel × Abs 2 33.46 <.001*** 

Var × Abs 2 1.81 .405 

Rel × Var × 
Abs 2 0.54 .765 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
Var: Luminance variability; RT.cmc: Response time 
(cluster-mean centered). 
*p <.05 **p <.01 ***p <.001 
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Table S35  
Experiment 2 Regression Coefficients for Predicting Confidence (Correct Trials) from 
Relative Evidence, Luminance Variability, RT, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 5.73 0.14 40.43 <.001*** 

Low Rel -0.10 0.01 -14.00 <.001*** 

Low Var -0.01 0.01 -1.04 .299 

RT.cmc -0.00 0.00 -32.72 <.001*** 

Low Abs -0.11 0.01 -10.95 <.001*** 

Med Abs -0.01 0.01 -1.18 .238 

Low Rel × 
Low Var -0.00 0.01 -0.49 .622 

Low Rel × 
Low Abs -0.05 0.01 -5.55 <.001*** 

Low Rel × 
Med Abs 0.01 0.01 1.13 .258 

Low Var × 
Low Abs -0.01 0.01 -1.06 .287 

Low Var × 
Med Abs -0.00 0.01 -0.23 .815 

Low Rel × 
Low Var × 
Low Abs 

-0.00 0.01 -0.07 .942 

Low Rel × 
Low Var × 
Med Abs 

-0.01 0.01 -0.61 .541 

Note. Intercept represents the estimate for high relative evidence, high 
absolute evidence, and high luminance variability. Rel: Relative 
evidence; Abs: Absolute evidence; Var: Luminance variability; RT.cmc: 
Response time (cluster-mean centered). 
*p <.05 **p <.01 ***p <.001 
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Confidence (Error Trials) 

Table S36  
Experiment 2 Likelihood Ratio Tests Results for Predicting Confidence (Error Trials) from 
Relative Evidence, Luminance Variability, RT, Absolute Evidence, and Their Interactions 

Predictor df χ2 p 

Rel 1 75.31 <.001*** 

Var 1 0.66 .418 

RT.cmc 1 357.34 <.001*** 

Abs 2 357.69 <.001*** 

Rel × Var 1 4.95 .026* 

Rel × Abs 2 5.87 .053 

Var × Abs 2 6.83 .033* 

Rel × Var × 
Abs 2 4.66 .097 

Note. Rel: Relative evidence; Abs: Absolute evidence; 
Var: Luminance variability; RT.cmc: Response time 
(cluster-mean centered). 
*p <.05 **p <.01 ***p <.001 
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Table S37  
Experiment 2 Regression Coefficients for Predicting Confidence (Error Trials) from Relative 
Evidence, Luminance Variability, RT, Absolute Evidence, and Their Interactions 

Parameters Estimate SE z p 

Intercept 4.78 0.13 35.64 <.001*** 

Low Rel 0.16 0.02 8.70 <.001*** 

Low Var -0.01 0.02 -0.81 .418 

RT.cmc -0.00 0.00 -19.14 <.001*** 

Low Abs -0.47 0.03 -16.80 <.001*** 

Med Abs 0.07 0.02 2.90 .004** 

Low Rel × 
Low Var 0.04 0.02 2.23 .026* 

Low Rel × 
Low Abs 0.05 0.03 1.88 .060 

Low Rel × 
Med Abs 0.00 0.02 0.06 .951 

Low Var × 
Low Abs -0.07 0.03 -2.43 .015* 

Low Var × 
Med Abs 0.06 0.02 2.25 .024* 

Low Rel × 
Low Var × 
Low Abs 

0.06 0.03 2.04 .042* 

Low Rel × 
Low Var × 
Med Abs 

-0.02 0.02 -0.67 .502 

Note. Intercept represents the estimate for high relative evidence, high 
absolute evidence, and high luminance variability. Rel: Relative 
evidence; Abs: Absolute evidence; Var: Luminance variability; RT.cmc: 
Response time (cluster-mean centered). 
*p <.05 **p <.01 ***p <.001 

 


