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The brain being indeed a machine, we must not hope to find its artifice
through other ways than those which are used to find the artifice of the other
machines. It thus remains to do what we would do for any other machine; I

mean to dismantle it piece by piece and to consider what these can do
separately and together.

—Nicolaus Steno, 1669*

At the risk of making a far-fetched comparison, I would defend this idea by
saying that the cerebral cortex is like a garden full of an infinite number of
trees – pyramidal cells – which, by careful cultivation, can produce more

branches, push their roots deeper, and produce ever more varied and exquisite
flowers and fruits.

— Santiago Ramón y Cajal, 1894†

We had dreams, Turing and I used to talk about the possibility of simulating
entirely the human brain, could we really get a computer which would be the
equivalent of the human brain or even a lot better? And it seemed easier then
than it does nowmaybe. We both thought that this should be possible in not
very long, in ten or 15 years. Such was not the case, it hasn’t been done in

thirty years.

—Claude Shannon, 1977‡

*Cobb (2020)
†Ramón y Cajal (1894)
‡Soni and Goodman (2017)





Abstract

Neuroscience is the study of the brain and all the complexmechanisms thatmake thought
and cognition possible. The cerebral cortex is where some of the most complex cognitive
processes are believed to occur. This work primarily focuses on themacaque, since it is a close
relative to humans and awidely studiedmodel animal. While experimental studies are limited
to a fewneurons and locations, computationalmodels can compensate these limitations since
they allow to study the entire system at will. However, there are many hurdles on the way to
reliable and realistic brain models, some of which we addressed in this dissertation.

We identified some specific gaps in the knowledge that impede the creation of
comprehensive brain models. These include: the lack of resting state extracellular neural
recordings and its subsequent analysis, the lack of comprehensive neuron density estimates
and their statistical distribution, and the lack of connectivity data within cortical areas. The
aim of this dissertation is to address these gaps in the knowledge in order to construct
comprehensive models of the macaque cortex at a neuronal level.

In this dissertation, we present high-resolution resting state data from macaque V1 and
V4 areas, along with exhaustive quality controls and all the relevant metadata about the
experiment. We then study the resting state data and show distinct structures in the
population dynamics, which our analysis and simulations suggest could be modulated by
feedback fromV4 to V1. Moreover, we show that the distribution of neuron densities across
and within the cortex of mammals is compatible with a lognormal distribution, which could
easily emerge from a noisy cell division process. In addition, we present new measurements
of neuron density in the macaque cortex, in an area and layer resolved manner. These
measurements required a 3D reconstruction from histological slices and constitute, to the
best of our knowledge, the first comprehensive data set of neuron densities in a single
macaque. Finally, we present a method to estimate local microcircuit connectivity from
resting state spiking activity, using single unit spiking statistics and the Wasserstein distance.
We show that the activity is significantly different across the cortex and demonstrate the
validity of our parameter estimation method using synthetic data.

In conclusion, this work provides activity and anatomical data for the neuroscience
community, as well as several methods that will be applicable beyond the scope of this thesis.
All in all, this work brings the field a small step closer to a comprehensive understanding of
the cerebral cortex.
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Zusammenfassung

Neurowissenschaften forscht das Gehirn und die komplexen Mechanismen, die
Nachdenken und Erkenntnisse ermöglichen. Es wird allgemein angenommen, dass
komplexe kognitive Prozesse in der Großhirnrinde stattfinden. Diese Arbeit fokussiert
sich grundsätzlich auf Makaken, weil sie zu den Menschen eng verwandt sind und häufig
erforscht werden. Experimentelle Studien sind oft auf geringe Neuronen und Gehirnareale
begrenzt, aber numerische Modelle können diese Begrenzungen überwinden, indem sie die
Erforshcung von dem ganzen System nach Bedarf ermöglichen. Zahlreiche Hindernisse
erswchweren die Entwicklung zuverlässiger und bilogisch realistischerGehirnmodelle. Diese
Dissertation adressiert einige dieser Hindernisse.

Wir haben einige spezifische Wissenslücken entdeckt, die die Entwicklung vom
umfassendenGehirnmodellen verhindern. Diese Lücken sind: derMangel an extrazellulären
Neuronenaktivitätsaufnahmen im Ruhezustand und deren Analyse, der Mangel an
umfassenden Neuronendichteschätzungen und deren statistische Verteilung, und der
Mangel an Konnektivitätsdaten innerhalb von Gehirnarealen. Ziel dieser Arbeit ist es,
diese Wissenslücken zu adressieren, um umfassende Modelle von Makakgroßhirnrinde auf
Neuronaler ebene zu entwickeln.

In dieser Arbeit stellen wir hoch aufgelöste Ruhezustandsdaten von Makak V1 und
V4 Arealen vor, zusammen mit vollständiger Qualitätskontrolle und alle die relevanten
Metadaten über das Experiment. Danach werten wir die Ruhezustandsdaten aus und
zeigen, dass es komplexe Strukturen in den Populationsdynamiken gibt. Mit unsererAnalyse
und Simulationen zeigen wir auch, dass diese Strukturen durch Feedbacksignale von V4
zu V1 entstehen könnten. Weiter untersuchen wir die Verteilung der Neuronendichte
in der Großhirnrinde und zeigen, dass sie Lognormal erscheint und durch einen
Rauschen behafteten Zellenspaltungsprozess entstehen könnte. Als letztes stellen
wir eine neue Methode für die Schätzung der lokalen Konnektivität innerhalb eines
Areales aus den Ruhezustandsdaten vor. Die experimentellen Daten lassen sich durch
die Einzelneuronenstatistiken signifikant voneinander unterscheiden. Darüber hinaus
bestätigen wir die Richtigkeit unserer Parameterschätzungsmethode mit synthetischen
Daten.

Zusammenfassend stellt diese Arbeit allen Neurowissenschaftlern sowohl anatomische
als auch Aktivitätsdaten zur Verfügung. Dabei wurden einige Methoden entwickelt, die
über diese Arbeit hinaus nützlich sein können. Diese Dissertation bringt das Feld einem
umfassenden Verstand der Großhirnrinde einen kleinen Schritt näher.
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Part I

Introduction





Aim

Neuroscience studies the interactions between billions of neurons via trillions of synapses
and how those interactions give rise to sophisticated cognitive functions. Bridging the
structure and function is crucial for understanding how the brain processes information and
interacts with the environment.

An ultimate aim of neuroscience is to reach a holistic understanding of the brain, from
the sensory input to the motor outputs and everything that happens in between. This
gargantuan task is beyond the reach of any single scientist, thus we focus our efforts on the
study of the cerebral cortex, where themost complex computations are believed to take place
(Abeles, 1991; Kandel and Schwartz, 1981). This thesis further focuses on the study of the
macaque, a close relative of humans and commonly studied model animal.

Much is known about how the different parts of the macaque cortex are organized and
function (Abeles, 1991). However, crucial information is missing, such as precise estimates
of anatomical structure, or reliable large-scale activity recordings. Aholistic understanding of
themacaque cortex canonly be achieved ifwehave access to the full system,which is currently
out of reach of even the most advanced experimental recording systems. Computational
modeling approaches can compensate for the experimental limitations, since they enable
ample experimentation and give access to all the variables of the system. However, models are
limited by their assumptions taken in their construction, which always have to be critically
analyzed when interpreting any results.

The construction of brain models requires consolidating vast knowledge into a concrete
system:

Equations force a model to be precise, complete, and self-consistent, and they allow its
full implications to be worked out. [...] Mathematical formulation of a model forces it
to be self-consistent and, although self-consistency is not necessarily truth, self-inconsistency is
certainly falsehood.

—Abbott (2008)
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Building a precise, complete and self-consistent model can immediately expose any gaps in
the available knowledge; either due tomissing information on the structural level or due to its
limited ability to exhibit certain realistic dynamics. In the process of constructing a large-scale
model of the macaque cortex we identified several gaps in the available knowledge:

• Realistic spiking neuron models are often constructed to operate in a rest-like regime,
without a particular task. However, neural electrophysiology data in the resting state
is scarce, with most studies reporting only data for specific tasks.

• Standard analysis of neural activity has traditionally focused on small groups of
neurons. However, such methods are ill suited to study large-scale recordings and
simulations. New analysis tools are needed to study large spiking neuron data.

• There is no standard method for comparing experimental and simulated activity.

• The distribution of neuron densities across the cortex of mammals has not been
statistically characterized.

• Neuron densities of the macaque cortex are not publicly available for all cortical areas
in a layer-resolved manner.

• Intra-area connectivity ofmacaqueneocortex has only beenmeasured for a fewcortical
areas.

• Long-range inter-area connectivity for macaque neocortex is incomplete.

The aim of this thesis is to address these gaps in the available knowledge. Filling these
gaps can facilitate the construction and analysis of large-scale neuron network models, and
simultaneously improve the overall understanding of macaque brain structure and function.
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Structure of this thesis

Based on the aforementioned gaps in the available knowledge, several scientific questions
were identified:

1. What should we compare our brain simulations to? Can we bridge some of the gaps
between experimental and theoretical neuroscience?

2. After observing rich dynamics in the state space of the macaque visual cortex: Does
feedback modulate the state space of the visual cortex? Can brain simulations help
us understand this modulation?

3. Do neuron densities follow a particular distribution across the cortex?

4. Howmany neurons are there in each area and layer of macaque cortex?

5. Can we estimate the connectivity within cortical areas from brain activity? How can
we best compare simulated and experimental spiking neuron data?

The chapters in Part II of this thesis each answer one of the above questions, respectively.
We elaborate on the response to these questions in the discussion (Part III).

Chapter 2 shows a novel discovery, that feedback canmodulate the population activity and
dimensionality in macaque V1. To do so, we analyzed the resting state data from Chapter 1
together with data from a different experiment (de Haan et al., 2018). We found distinct
clusters in the activity state space of themacaque visual cortex. This observation could not be
explainedby the external input alone, andwe indeed found that feedback fromhigher cortical
areas was strongly correlated to the clusters in state space. This analysis used state-of-the-art
methods for analyzing population level data, such as dimensionality reduction and spectral
Granger causality. Using a balanced spiking neuron network (Brunel, 2000) we reproduced
the state-space clusters by providing a feedback signal. The experimental analysis and
simulations contribute to the understanding of themodulatory role of feedback in the visual
cortex. This chapter contributes to the understanding of the population activity in the visual
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cortex of the macaque, exposing some effects that future large-scale models should be able to
reproduce.

Chapter 3 presents our discovery that neuron densities follow a lognormal distribution
across the cortical areas of seven different mammalian species and within the cortical areas of
the marmoset monkey. We show that a very simple cell division model with Gaussian noise
naturally leads to a lognormal distributionof cell densities. In addition, including distributed
cell proliferation times in the model could explain how the lognormal distribution appears
simultaneously at different spatial scales. Thus, we uncovered a new organizational principle
of the cortex that will be a valuable resource for future model building efforts.

Chapter 4 addresses a fundamental gap in knowledge: neuron densities for the macaque
cortex have only been partially measured across different individuals and labs. Additionally,
densities across cortical layers are only available for a handful of areas. We gathered openly
available histological data, reconstructed the 3D brain from the slices, mapped the areas
to a common atlas and estimated the neuron densities for all areas and layers. We applied
our semi-automatic workflow to one individual—with three more still being processed—,
providing a comprehensive measurement of neuron densities in the macaque. This work
lays the groundwork for other researchers to apply similar methods in other animals.

Chapter 5 shows our approach to estimate intra-area connectivity (across layers) for
several cortical areas. We devised a strategy to compare the activity from different areas and
models to each other, based on single neuron statistics. Our comparison method reveals
significant differences in the dynamics of the cortical areas during the resting state—in
agreement with previous studies (Mochizuki et al., 2016). Then, we used an optimization
algorithm which minimizes the difference between simulated and experimental activity,
based on the single neuron statistics. Given ourmechanistic models, we expect the estimated
model parameters to approximate the underlying connectivity, thus providing estimates for
intra-area connectivity.

In addition to the scientific questions answered in the main chapters, we explore further
aspects of brain structure and modeling in the appendices (Part IV).

Appendix A outlines how to incorporate anatomical information into neuronal models.
First, we list the most relevant methods for quantitative measurement of the brain anatomy.
Then, we discuss how to incorporate those measurements into neuronal models. Finally,
we also review different predictive methods and techniques to fill in the gaps where the

6



parameters are missing. All in all, this appendix provides insight into the relation between
anatomy and modeling that was used throughout this thesis.

Appendix B is a short commentary on trans-thalamic connectivity, i.e. connections
from cortex to thalamus and back to somewhere else in cortex. Previously, trans-thalamic
connections had only been observed between similar area modalities (e.g. S1 to S2). In
the commented paper the connections were found to link somatosensory and motor areas
in mice, the first trans-thalamic connection across functionally distinct areas. We expand
the discussion and explore the implications of such connections for brain function and
modeling.

7



Background

In this section we provide the background information required to understand this thesis.
The section is structured as follows: first, we discuss fundamental concepts of neuroscience;
then, we discuss the most common methods for recording brain activity; and finally, we
discuss computational models of neurons and networks.

Fundamental principles

Nerve cells (neurons) are the fundamental components of the nervous system. Discrete
electric pulses (action potentials or spikes) transmit information via anatomical connections
(synapses, gap junctions) between the neurons. Action potentials are the orderly exchange
of electrically charged ions between the intra- and extracellular space, via dedicated channels
embedded in the semi-permeablemembrane of neurons. The action potentials are generated
at the cell body (soma) and travel along long protrusions of the cell (axons)—sometimes up
to several meters—to reach their target. In the brain, neuronal axons target other neurons, to
which they most often link via synapses onto the tree-like structures of neurons (dendrites).
Upon receiving an action potential, specific chemicals (neurotransmitters) are released in
the synapses. The neurotransmitters can increase (excitation) or reduce (inhibition) the
postsynaptic membrane potential. The inputs received in the dendrites—in the form of
changes of membrane potential—travel to the soma where they are aggregated. If a certain
voltage is reached the neuron generates an action potential, i.e. fires a spike. Dale’s law states
that most neurons release a unique type of neurotransmitter, thus neurons can be grouped
into twomain categories: excitatory and inhibitory neurons. Synapses are not the onlymeans
of communication between neurons: some of them have their intracellular spaces directly
connected via dedicated protein channels (gap junctions).

Neuron bodies are found in the outermost layer of the cerebrum, often called the cerebral
cortex (latin for bark or rind) or gray matter, due to its color under the microscope. The
internal part directly in contact with the cortex (white matter) is mainly composed of
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Background Figure 1: Drawing of the cerebral cortex of a 15 day old infant by Santiago Ramón y
Cajal, based on slices stained with the Golgi method. Credit: Legado Cajal. Instituto Cajal (CSIC),
Madrid.

insulated axons (myelinated), which connect different parts of the cortex to each other
and to the rest of the nervous system. Different cell types in the nervous tissue follow
a certain arrangement, leading to distinct cellular compositions across different parts of
the nervous system (cytoarchitecture, from the Greek root cyto meaning cell). The cortical
gray matter in particular is organized in a layered structure from the outermost surface
(pia) down to the white matter boundary. Certain regions of the cortex are specialized
to certain functions—such as processing the visual inputs (visual cortex) or planning and
executing motor outputs (motor cortex). Cortical areas often display distinct neuron types
(e.g. pyramidal, chandelier, Betz...). Thus, the cortex is often subdivided along functional
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Background Figure 2: The brain at different spatial scales. Top showing different scales on a
biological level. Dendritic spines re-drawn based on data by Bethe (1903); neuron re-drawn based
on data by Golgi (1886); images for neuron population, microcircuit and cortical area derived from
brainmaps.org (Mikula et al., 2007); brain rendered based on MRI atlas by Calabrese et al. (2015).
Bottom shows different models used to represent the brain across scales.

and cytoarchitectural lines (parcellation). On slower time scales dedicated chemicals can
modulate the activity of neurons (neuromodulators) as a means of communication.

The brain is a network (a graph in mathematical terms) where neurons are the nodes and
the synapses between them are the edges. This corresponds to a weighted and directed graph,
where the communication is delayed by the time it takes the spike to travel between the pre-
and postsynaptic neurons. While connection strengths are prone to changes due to learning
(plasticity) (Konorski, 1948;Hebb, 1949)—onboth long and short timescales—, in thiswork
we have limited ourselves to the study of static networks.

Brain networks maintain a stable level of activity via the balance between excitatory and
inhibitory neuron activity (van Vreeswijk and Sompolinsky, 1996; Brunel, 2000; Haider,
2006), which has also been shown to enable rapid responses to external stimuli (vanVreeswijk
and Sompolinsky, 1996).
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Background Figure 3: Different techniques for measuring brain structure and function with their
estimated spatial and temporal resolutions. Reproduced with permission from Sejnowski et al. (2014).

Measures of neuronal activity

The neuronal activity is the result of the transfer of charged ions, thus electric in nature.
The changes in the electromagnetic field in the neuronal tissue can be recorded via different
techniques with different spatio-temporal resolutions (Background Figure 3). In this section,
we introduce a few of the most commonly used methods to measure neuronal activity.

Small dedicated electrodes can be used to measure the membrane potential intracellularly
for a single neuron (patch clamp) or extracellularly for the aggregated activity from all
surrounding neurons. This work focuses on the use of extracellular recordings, which can
be processed to detect single neurons (spike sorting) (Quiroga et al., 2004), which we use in
Chapter 5. The aggregate activity from extracellular recordings can also be studied at low
(<200Hz) or high (>200Hz) frequencies, with the local field potential (LFP) ormulti-unit
activity envelope (MUAe) (Supèr and Roelfsema, 2005), respectively. We calculate and study
the LFP andMUAe in Chapter 1 and Chapter 2.

The concentrations of certain ions can be measured in a time-dependent fashion using
dedicated fluorescent proteins (Aria, 2020). Calcium imaging is the most widely used
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method at the time of writing, although imaging of other ions such as sodium and potassium
are under development (Lamy and Chatton, 2011; Rimmele and Chatton, 2014). Calcium
is a by-product of synaptic activity, thus measuring it provides an indirect measurement of
neuron activity. The light emitted by the dedicated proteins is recorded with an optical
microscope (often a two-photon microscope) which sweeps over the region of interest
periodically. The spatial and temporal resolution are therefore directly at odds, since larger
spatial regions require a longer time to scan, reducing the temporal resolution.

All recordingmethods discussed until now are invasive, often requiring exposing the brain
tissue via complex surgery. Electrocorticography (EcoG) is slightly less invasive, where the
electrodes are placed on the dura—under the skull, but not in contact with the brain directly.
Non-invasive methods such as Electroencephalography (EEG) or Magnetoencephalography
(MEG) use larger electrodes placed on the scalp. These methods are less invasive, but do
not have the ability to record from single neurons. Instead they provide an average of a larger
area in the order of several millimeters.

Functional magnetic resonance imaging (fMRI) can measure the blood oxygen-level
dependent (BOLD) signal, owing to the paramagnetic properties of hemoglobin. The fMRI
can estimate the activity levels for the whole brain, under the assumption that high activity
brain areas consume more oxygen. Given the non-invasive nature, availability at clinical
facilities and its ability to record from the full brain at millimeter size voxels, the fMRI
method is widely used to study the human brain.

Computational models

Measurement of brain activity and structure is complex and often done for different
individuals under different conditions. Modeling provides a unifying framework to studying
the brain, where all mechanisms and systems can in principle be studied simultaneously.
Although models cannot yet capture all physical phenomena, one can instead focus on the
mechanisms believed to be most relevant to the research question at hand.

Neuron models can be organized into two broad categories: phenomenological and
biophysical. Phenomenological models capture the dynamics of the system without
regard of the underlying mechanisms, while biophysical models attempt to include the
underlying mechanisms (i.e. ion currents) that generate the correct dynamics. In general,
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phenomenological models are built with fewer parameters and therefore are easier to scale
up than biophysical models. However, even the most complex biophysical models rely on
simplifications and approximations to capture the relevant dynamics as efficiently as possible.

One of the simplest phenomenologicalmodels for an action potential is the leaky integrate
and fire (LIF) model, which is derived from the equivalent RC electrical circuit with one
resistor and capacitor in parallel. In the LIF model the membrane potential V followsτm

dV
dt

= −(V − vrest) +R I, V < vth

V = vrest, V ≥ vth
(1)

where τm = RC is the membrane time constant, R is the membrane resistance, C is the
membrane capacitance, I is the external current, vrest is the restingmembrane potential, and
vth is the firing threshold potential (Gerstner et al., 2014). When the threshold potential is
reached the model is reset and a spike is emitted, while if the threshold is not reached and
no input is received the membrane potential naturally tends to the resting potential. Spikes
need to be accounted for by counting the number of threshold crossings. For its simplicity
and versatility, this work uses the LIF model in Chapters 2 and 5.
Hodgkin andHuxley (HH)constructed theirmodel basedon experimentalmeasurements

of the dynamics of the squid giant axon (Hodgkin and Huxley, 1952; Gerstner et al.,
2014). They found three main currents that determined the membrane potential: sodium,
potassium and leak. They thus built their model based on these three currents and
determined several variables for the opening and closing of the relevant gates and pumps
on the membrane, based on their measurements. The model is described by a system of four
differential equations describing the membrane potential V and three gating variablesm, h
and n. In spite of its historical importance, this thesis does not use the HHmodel.

Both the LIF and HH models are point neurons, i.e. they disregard the spatial extent
of the neurons. This approximation is particularly useful when studying large groups of
neurons interacting with each other. However, dendrites are complex and do not simply rely
on the spikes received directly at the soma. Instead dendrites are believed to perform some
nonlinear operations on the inputs, such that they can act as simple logic gates (Shepherd
and Brayton, 1987). Dendrites can bemodeled by defining different compartments for them.
Themembrane potential then has to bemodeled for each compartment separately, while the
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adjacent compartments can be coupled via the cable equation (Gerstner et al., 2014). Each
compartment can be modeled using either the LIF, HH or some other neuron model. It is
therefore easy to see how the computational cost increases dramatically, since a new set of
differential equations needs to be solved per compartment. Some researchers study how to
simplify the dendrite structure without losing its nonlinear properties (Wybo et al., 2021),
such that the computational cost for simulation is reduced. In this work we only use point
neurons, since we study relatively large systems with tens of thousands of neurons.

Neurons do not exist in a vacuum: they are connected to each other sending spikes
to and receiving spikes from thousands of other neurons. Models can account for these
interactions by delivering the spikes between neurons, using a prescribed connectivity. The
spikes fromapresynaptic neuron should reach thepostsynaptic neuron after a short periodof
time (delay), and induce a (normally small) change to the postsynaptic membrane potential.
Synaptic dynamics are diverse and depend on the interactions of neurotransmitters and
neuromodulators with the ion gates at the synapses. However, they tend to follow a
pattern of a peak followed by an exponential-like decay (Gerstner et al., 2014). The elicited
postsynaptic current (PSC) is often modeled as an exponential function

Isyn(t) = w e−t/τsyn (2)

wherew is the synaptic weight and τsyn is the postsynaptic current time constant.
Graph theory provides the tools needed to study how the neurons connect to each other

and how to build realistic networks ofmodel neurons. One of themost renownedmodels for
generating random graphs was proposed by Erdös and Rényi (Erdős and Rényi, 1959) back
in 1959. However, this graphs lack clustering and scale-free properties observed in real world
graphs (Girvan and Newman, 2002). The turn of the XXIth century brought a renewed
interest in generative models for graphs, Watts and Strogatz (1998) proposed a model for
clustered (small-world) networks, andBarabási andAlbert (1999); Barabási andOltvai (2004)
proposed another model for scale-free networks. These models can be used in neuroscience
to construct realistic networks of neurons.

At the largest scales simulating the whole brain at the single neuron resolution becomes
prohibitively expensive. Thus, large-scale interactions are often studied using population
models, i.e. the firing rate of entire populations becomes the simulated variable. Tools
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from statistical physics allow the development of analytically tractable theories of population
properties, where the effect of individual neurons is averaged out (Gerstner et al., 2014; Layer
et al., 2022). This enables the reliable approximation of stationary first-order statistics (van
Vreeswijk and Sompolinsky, 1996, 1998). Wilson and Cowan proposed a simple model of
coupled ordinary differential equations to model the population rates in a time-dependent
manner (Wilson and Cowan, 1972). TheWilson-Cowan model has been used to model the
cortex to study different phenomena, such as resting state fluctuations (Deco et al., 2009),
attractor dynamics (Deco and Jirsa, 2012), hierarchical timescales (Chaudhuri et al., 2015a),
frequency dependent cortico-cortical communication (Mejias et al., 2016), or working
memory (Froudist-Walsh et al., 2021).

The aim of building spiking neuron network models is often to replicate the structural
and dynamical properties of the natural brain. For this aim, one needs to incorporate as
much anatomical detail as possible into the models. We extensively discuss the most relevant
anatomical variables for the construction of models in Appendix A. Biologically realistic
models have been used to explore cortical activity at the level of a microcircuit (Douglas
et al., 1989; Douglas and Martin, 2004). Notable examples include models of cat visual
cortex (Douglas and Martin, 1991), a thalamocortical single column (Traub et al., 2005),
macaqueprimary visual cortex (Zhu et al., 2009), a rodent cortical column forLFPestimation
(Reimann et al., 2013), a local sensory cortical microcircuit (Potjans and Diesmann, 2014),
rat somatosensory cortex (Markram et al., 2015), cat primary visual cortex (Antolík et al.,
2018), layer 4 of mouse primary visual cortex (Arkhipov et al., 2018), mouse primary visual
cortex (Billeh et al., 2020), macaque auditory cortex (Dura-Bernal et al., 2022a), and mouse
primary motor cortex (Dura-Bernal et al., 2022b). Further biologically realistic models have
aggregated such microcircuits into larger networks of point neurons, representing the visual
cortex of the macaque (Schmidt et al., 2018a,b).
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The eye and brain are not like a faxmachine, nor are there
little people looking at the images coming in.

TorstenWiesel

1
Brain activity in the macaque visual cortex

Summary:
In this chapter we present the largest electrophysiological data set for non-human primates
to date. The data were recorded during the resting state, which has rich dynamics and can
help study the underlying structures and mechanisms of cortex. The data is accompanied
by quality estimates, given strong visual stimuli. The receptive fields were also estimated
based on a task with sweeping bars. The overall quality of the data was assessed using a novel
approach for the detection of cross talk at high frequencies. Wedescribed the data acquisition
and processing procedures, in compliance with FAIR principles. The full data, code and
metadata are openly available to the entire scientific community.
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1024-channel electrophysiological 
recordings in macaque V1 and V4 
during resting state
Xing Chen  1,8 ✉, Aitor Morales-Gregorio  2,3,8, Julia Sprenger  2,4,5, Alexander Kleinjohann  2,4,  
Shashwat Sridhar  2,4, Sacha J.  van Albada  2,3, Sonja Grün  2,4 & Pieter R. Roelfsema  1,6,7

Co-variations in resting state activity are thought to arise from a variety of correlated inputs to neurons, 
such as bottom-up activity from lower areas, feedback from higher areas, recurrent processing in local 
circuits, and fluctuations in neuromodulatory systems. Most studies have examined resting state 
activity throughout the brain using MRI scans, or observed local co-variations in activity by recording 
from a small number of electrodes. We carried out electrophysiological recordings from over a thousand 
chronically implanted electrodes in the visual cortex of non-human primates, yielding a resting state 
dataset with unprecedentedly high channel counts and spatiotemporal resolution. Such signals could 
be used to observe brain waves across larger regions of cortex, offering a temporally detailed picture 
of brain activity. In this paper, we provide the dataset, describe the raw and processed data formats 
and data acquisition methods, and indicate how the data can be used to yield new insights into the 
‘background’ activity that influences the processing of visual information in our brain.

Background & Summary
Using both depth electrode recording1–6 and non-invasive brain imaging7–13 techniques, a wealth of studies have 
shown that even in the absence of sensory input from the external environment, certain brain regions tend to 
share correlated patterns of neuronal activity, known as ‘resting state correlations.’ Such correlations have been 
observed across multiple sensory areas, such as auditory cortex14, visual cortex1,2,5,9,11,13,15,16, and somatosensory 
cortex6,8,17,18. They have also been observed in motor cortex8,18 and in areas responsible for higher cognitive 
functions, such as the prefrontal cortex8,18 and the parietal cortex8,10.

Recent advances in ultra-high-density electrode fabrication and surgical implantation have spurred a 
surge in large-scale, multichannel recordings in rodents19,20, including from multiple brain regions. However, 
ultra-high-channel-count electrophysiological recording techniques have yet to become widely adopted in 
non-human primates. Several challenges need to be addressed: electrode implantation requires access to the 
brain through a craniotomy (or several craniotomies) in the skull, limiting the number of recording sites and 
their spatial distribution. Existing probes with high channel counts, such as the Neuropixels probes from Imec 
(Belgium) were developed for mice and are often too fragile for chronic implantation in the primate brain21, 
although more sturdy versions are under development. Presently available probes that are robust enough have 
relatively modest channel counts. Previous electrophysiological studies in non-human primates therefore usu-
ally involved the simultaneous implantation of up to dozens or, maximally, hundreds of electrodes in the brain22.

In this study, we developed a novel neuronal recording system and implantable interface, to achieve chronic, 
high-resolution, large-spatial-scale recordings of neuronal activity in the visual cortex (V1 and V4) of two 
macaque monkeys23. These techniques allowed us to record neuronal activity across 1024 channels simultane-
ously, with extensive, high-density receptive field (RF) coverage across a large portion of the visual cortex (with 

1Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, 
netherlands. 2Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and 
JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany. 3institute 
of Zoology, University of Cologne, Cologne, Germany. 4Theoretical Systems Neurobiology, RWTH Aachen University, 
Aachen, Germany. 5Institut de Neurosciences de La Timone, CNRS & Aix-Marseille University, Marseille, France. 
6Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands. 
7Department of Psychiatry, Academic Medical Center, Postbus 22660, 1100 DD, Amsterdam, Netherlands. 8these 
authors contributed equally: Xing Chen, Aitor Morales-Gregorio. ✉e-mail: x.chen@nin.knaw.nl
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Matlab data processing scripts

Task Script name Description

All except impedance 
data align_ns6_nev.m Temporal alignment of raw neuronal data across the NS6 files that are generated by the eight NSPs.

Resting state generate_processed_resting_state.m Extraction of MUAe and LFP data from the aligned NS6 files.

SNR analyse_CheckSNR2.m Extraction of MUAe data from raw NS6 files, and calculation of signal-to-noise ratio of visually evoked responses.

RF

analyse_RF_barsweep.m Extraction of MUAe data from raw NS6 files, to identify the peak responses to sweeping bar stimuli.

analyse_RF_barsweep_coordinates.m Calculation of RF properties using MUAe data.

combine_best_RF_sessions.m Combination of RF data across two sessions, in which different types of bar stimuli were presented.

plot_all_RFs_resting_state.m Generates figures showing the RF centres across all the channels.

- impedance_plotter.m Compile impedance measurements across all NSPs.

Snakemake workflow scripts

Script name Description

Snakefile Main workflow file, executes all other scripts to generate the processed data and figures.

environment.yaml Conda environment file. Contains full list of all Snakemake and Python dependencies. Can be used to recreate the 
Conda environment that was used to run the workflow.

Python data processing scripts

Task Script name Description

All

calculate_LFP.py Calculates the LFP signal from a given array, annotates it with the corresponding metadata and saves it as one .nix 
file per array.

calculate_MUA.py Calculates the MUAe signal from a given array, annotates it with the corresponding metadata and saves it as a .nix 
file per array.

utils.py Several utility functions for the handling of metadata and annotation that are used by the other scripts.

initialize_odml_from_xls.py Creates a template .odml metadata file that contains the information of the experimental setup and specific subject.

enrich_odml_IDs.py Incorporates subject specific electrode IDs to the template .odml metadata file.

enrich_odml_epochs.py
Includes subject and trial specific epoch/trial metadata such as the recording length, number of epochs (open or 
closed eyes in resting state sessions) or number of successful/failed trials (in SNR and RF tasks), as well as their 
timing and duration.

SNR & RF
generate_trial_csv.py Generates a .csv file containing the trial start times, durations, conditions and whether they were successful. This .

csv file is used by the enrichment scripts to incorporate this metadata into the .odml format.

merge_csv.py Utility function that merges a list of .csv files. Used to merge metadata.csv files from RF and SNR values from all 
different arrays into one.

SNR

calculate_SNR.py Calculates the signal-to-noise ratio (SNR) from the MUAe.nix data of a checkerboard stimulus session and saves it 
as a .csv file, along the response amplitude, response onset and baseline specifications.

arrayplot_SNR.py Creates the plots in Figure 7a,b for each SNR session.

arrayplot_response_timing.py Creates the plots in Figure 7c,d for each SNR session.

finalize_odml_SNR.py Aggregates all metadata for a given SNR session and creates the final.odml.

RF

calculate_RF.py Calculates the receptive field (RF) responses from the MUA.nix files of a corresponding session and generates a .csv 
file with RF centers, edges, signal-to-noise ratios and the goodness of the Gaussian fit.

combine_RF.py Combines the large and small bar receptive field (RF) responses into a single metadata file by selecting the best 
arrays from each session.

finalize_odml_RF.py Aggregates all metadata for a given RF session and creates the final .odml. The combined RF metadata are used for 
both large and small bar RF sessions.

Resting state

eyesig_conversion_and_epochs.py Converts the eye signals from .mat to .nix and estimates when the eyes were open or closed from the pupil diameter. 
The estimated epochs are save as.csv files.

eye_epochs_plot.py Creates the plots in Fig. 6 for each resting state session.

finalize_odml_RS.py Aggregates the corresponding SNR and RF values to the metadata of a resting state session and creates the final .
odml. SNR values from the same day and combined RF values are used.

Cross-talk removal

highpass_ns6.py Filters the raw data for extraction of threshold crossings. This file is found in the signal processing folder, but only 
used for cross-talk removal.

get_thr_crossings_mpi.py Extracts threshold crossings from filtered raw signal.

count_synchrofacts.py Estimates the presence of synchrofacts by creating complexity histograms from the threshold crossings and 
surrogates.

systematic_removal_of_electrodes.py Removal of electrodes with highest above-chance synchronous events and plotting of the synchrofact process.

utils.py Utility functions for cross-talk removal.

Online-only Table 1. List of Matlab, Snakemake and Python scripts used for data processing and technical validation, with script 
names and descriptions.

Experimental setup and subject metadata

Format File naming convention
Number of 
files Description

.xls

equipment_specifications.xls 1
List of all hardware 
used in the 
recording of the 
neuronal data.

subject_SUBJ.xls 1 per subject

Subject 
specifications, such 
as species, age, 
initial, surgical 
procedures and 
training status.

.csv

channel_area_mapping_SUBJ.csv 1 per subject

Mapping of 
channels across 
array based (1 to 
64), NSP based (1 
to 128) and global 
indexing (1 to 
1024).

approximate_array_positions_SUBJ.csv 1 per subject

Approximate 
relative position of 
arrays with respect 
to array 1, and their 
rotation. Used for 
plotting.

elec_position_in_array.csv 1

Position of 
electrodes within an 
array relative to the 
centre of the array. 
Used for plotting.

Technical validation metadata

Format File naming convention Number of 
files Description

.txt impedance_NSPX_DDMMYY.txt
8 per 
impedance 
session

Electrode 
impedance values, 
measured at 1 kHz.

.mat impedanceAllChannels_SUBJ_DDMMYY.mat
1 per 
impedance 
session

Impedance data 
files containing the 
impedance values 
for each of the 
channels.

.csv SUBJ_RS_DDMMYY_crosstalk_removal_metadata.csv 1 per resting 
state session

List of electrodes to 
be removed due to 
crosstalk.

Session metadata

Format File naming convention Number of 
files Description

.ccf NSPX.ccf 8 per session
Blackrock 
configuration files 
for the NSPs.

.csv epochs_SUBJ_TASK_DDMMYY.csv 1 per session

Metadata on 
the different 
epochs during the 
recording session. 
For SNR and RF the 
trial onset, duration 
and success is 
registered. In 
resting state 
sessions whether 
the eyes were 
open or closed is 
indicated.

SNR metadata

Format File naming convention Number of 
files Description

.csv

NSPX_arrayY_SNR.csv 16 per SNR 
session

SNR values, along 
with baseline 
mean and SD, 
peak response and 
neuronal response 
latency. The global 
electrode ID (1 to 
1024) is provided 
to identify the 
electrodes.

full_SNR.csv 1 per SNR 
session

A merged version of 
all NSPX_arrayY_
SNR.csv files.

RF metadata

Format File naming convention Number of 
files Description

.csv

NSPX_arrayY_RF.csv 16 per RF 
session

SNR values, RF 
edges, and RF 
centre coordinates.

fullRF.csv 1 per RF 
session

A merged version of 
all NSPX_arrayY_
RF.csv files.

Compiled metadata

Format File naming convention Number of 
files Description

.odml metadata_SUBJ_TASK_DDMMYY.odml 1 per session
A compiled file of 
all the metadata for 
a given session.

Online-only Table 2. Metadata and their file formats. In the naming conventions, ‘X’ represents the NSP 
number (1 to 8), ‘Y’ represents the array number (1 to 16), ‘SUBJ’ represents the subject name (L or A), ‘TASK’ 
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overlap between V1 and V4 RFs), spanning the central 6–9 degrees of visual angle across one quadrant of the 
visual field. Our dataset24 covers the full range of spectral components from raw signals sampled at 30 kHz to 
local field potentials (LFP, at 1–100 Hz) to multiunit spiking activity (MUA, at 500–9000 Hz).

We expect these resting state data to be of interest to neuroscientists in the fields of computational and 
systems neuroscience. Potential applications include correlation analyses, large-scale modelling25, detection 
of activity waves26, teaching material, and more. For example, the strength and anatomical distribution of 
co-variations in activity could shed light on the anatomical and functional connectivity between or within the 
areas under examination27, including the retinotopic organisation of V1 and V4.

In the visual system, resting state correlations have been used to calculate functional correlations between 
brain regions in order to identify the borders of visual cortical areas such as V1, V2 and V315,28,29, and for the 
estimation of the retinotopic layout within individual visual areas30–32. Across visual areas, the lateral genicu-
late nucleus has been observed to exhibit higher levels of correlated activity with primary visual cortex than 
with higher-order visual areas, whereas activity in V2 and V3 is more closely correlated with V4 and hMT+11. 
Retinotopically corresponding locations across areas V1, V2 and V3 show increased functional connectivity, and 
a similar pattern has been observed for corresponding brain regions in the two hemispheres.

This dataset could further be used to compare electrophysiologically recorded neuronal activity to that 
obtained using non-invasive techniques. To give an example, we recently compared population RF estimates 
obtained with multiple-channel electrophysiology and fMRI-generated BOLD activity33. Indeed, MRI8–10,15 and 
invasive electrophysiology1–5,27,34–37 provide complementary approaches to examining correlations, including 
during resting state: fMRI offers a large-scale perspective, revealing the interplay between multiple brain areas 
and permitting the examination of entire resting state networks, via fluctuations in the MRI signal which have a 
relatively coarse spatial and temporal resolution. By contrast, electrophysiology yields direct recordings of neu-
ronal activity from a smaller set of brain regions, but at a high spatial and temporal resolution.

The present dataset could also serve as a template for future publications of electrophysiology datasets, pro-
viding standardized methods and tools for the description, preparation, and organization of both data and meta-
data, thereby contributing to the present era of open data sharing and collaboration.

The data are available on the G-Node Infrastructure (GIN, https://gin.g-node.org/), an open-access 
data-sharing platform. The dataset version described in this publication can be found at https://gin.g-node.org/
NIN/V1_V4_1024_electrode_resting_state_data. The dataset follows the FAIR principles38, i.e. it is designed to 
be findable, accessible, interoperable, and reusable.

Methods
Our subjects were two male rhesus macaque monkeys (Macaca mulatta, monkeys A and L). Each animal 
received two cranial implants during two separate surgical procedures. The first of these implants was a cus-
tomized, in-house-designed, 3D-printed head post for head fixation39. The head post was affixed to the setup 
to stabilize the head throughout the recordings. This ensured that the eye tracker captured the eye data (pupil 
diameter and position) accurately throughout the recordings (see Chen et al., 2017, for a detailed description of 
these methods). The second was a 1024-channel implant for the visual cortex, consisting of 16 Utah electrode 
arrays (Blackrock Microsystems) attached via 7-cm-long wire bundles to a customized, in-house-designed, 
3D-printed pedestal (referred to in the rest of the manuscript as a ‘1024-channel pedestal,’ Fig. 1)23. Each array 
contained an 8-by-8 grid with 64 iridium oxide electrodes. The length of each electrode shank was 1.5 mm and 
the spacing between adjacent shanks was 400 μm. The impedance of the electrodes at pre-implantation ranged 
from 6 to 12 kΩ (as measured by Blackrock Microsystems prior to lead attachment). Each electrode was con-
nected to a contact pad on the Land-Grid-Array (LGA) interface of the pedestal. Reference wires were attached 
to every other array, and each reference wire served as the reference for two arrays, yielding eight reference wires 
in total. Each reference wire exited the wire bundle several millimetres before the point where the wire bundle 
met the array. The other end of the reference wire was connected to one of the contact pads on the LGA of the 

Fig. 1 (a) Photograph of the implant, consisting of a 1024-channel cranial pedestal connected to 16 Utah arrays. 
The base of the titanium pedestal was customized to fit precisely on the surface of the skull, as measured with a 
CT scan. (b) The references wires were located on alternating arrays (array numbers 1, 3, 5, 7, 9, 11, 13, and 15) 
and ran alongside the wire bundle before emerging several millimetres before the point of connection between 
the wire bundle and the array. (c) Location of implantation of every array in the visual cortex in monkey L. Two 
arrays were implanted in V4, and 14 arrays were implanted in V1, in each monkey.
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pedestal (as was each of the electrodes), and referencing was performed by the Cereplex M headstage (i.e. the 
connections were hardwired such that the electrodes on each pair of arrays used the signal from the reference 
wire as their reference).

Surgeries. All experimental surgical procedures complied with the NIH Guide for Care and Use of 
Laboratory Animals (National Institutes of Health, Bethesda, Maryland), and were approved by the institutional 
animal care and use committee of the Royal Netherlands Academy of Arts and Sciences (approval number AVD-
8010020171046). The subjects were 4 and 5 years old, and weighed 6.5 and 7.2 kg, respectively, at the time of 
head post implantation; and both were 7 years old, weighing 11.0 and 12.6 kg, respectively, during visual cortex 
implantation.

A course of antibiotics was started two days prior to each operation. We induced anaesthesia with intramus-
cularly administered ketamine (concentration of 7 mg/kg) and medetomidine (0.08 mg/kg). We administered 
0.1 ml atropine (0.5 mg/ml) if the heart rate dropped below 75 bpm. The animal was placed on a heated mat to 
allow continuous regulation of body temperature. Eye ointment was applied to maintain hydration of the eyes. 
Xylocaine ointment was applied to the ear bars of the stereotaxic frame, and the animal’s head was secured in 
the frame.

For the maintenance of anaesthesia, the animal was intubated and ventilated with 0.8–1% isoflurane (mixed 
with 60% O2 and 40% air) and a catheter was inserted into a vein in the arm. During surgical implantation of 
the head post, we administered fentanyl at 0.005 mg/kg on indication, Ringer-glucose at 10–15 ml/kg/hour, and 
antibiotics intravenously. For surgical implantation of the electrode arrays, we additionally administered mida-
zolam at 0.5 mg/kg (concentration 5 mg/ml) once per hour, and we administered dexamethasone at 0.25 mg/kg 
twice per hour, starting before opening of the skull until skull closure. ECG, heart rate, SpO2, CO2, temperature, 
muscle tone, respiration, and the response to pain stimuli were monitored continuously. The head was shaved 
and cleaned with chlorhexidine solution (Hibicet scrub) and iodine solution (5% iodine in water). For installa-
tion of cranial implants, a flap of skin was carefully detached from the skull over the desired implant location, 
reflected, and wrapped in damp cotton swabs to keep it moist. Methods of implanting the head post and arrays, 
and post-surgical recovery, are described separately in the following sections.

Head post: We sterilized the titanium head post by autoclaving it prior to surgery. It was placed on the skull 
and adjusted such that it fitted against the skull. We used 2-mm-diameter Ti cortex screws (DePuy Synthes, 
Amersfoort, Netherlands) to secure the head post to the bone. The wound margins were sutured together and an 
extra stitch was made to hold the skin closed around the base of the head post.

1024 channel implant: Before the surgery, we sterilized the implant (Fig. 1a) using gamma radiation. During 
the surgery the pedestal was placed on the skull and secured with bone screws. We made a craniotomy over 
the left hemisphere and opened the dura. We implanted 16 arrays of 64 electrodes each in the visual cortex (14 
arrays in V1, and 2 in V4; Figs. 1c, 2a). The dura was sutured closed. We filled the space under the bone flap with 
Tissucol (Baxter) and placed the flap back while the Tissucol was still fluid. We secured the bone flap to the skull 
with Ti strips. The skin was pulled back around the pedestal and sutured closed.

Ten minutes before the end of the surgery, the ventilator was switched to stand-by mode, allowing sponta-
neous breathing. Upon conclusion of the procedure, the monkey was released from the stereotaxic frame. The 
isoflurane was switched off and an antagonist was administered intramuscularly (i.m.) (atipamezole 0.08 mg/
kg), allowing the animal to wake up.

Recovery: Subjects were closely monitored following the operation and given several weeks to recover. We 
administered antibiotics (typically amoxicillin and clavulanic acid) for 10 days (in consultation with a veterinar-
ian) and dexamethasone for five days in decreasing doses (from 0.7 mg/kg i.m. to 0.1 mg/kg i.m.). As analgesia, 
we initially used Temgesic, at two doses per day (0.003 mg/kg i.m.). After three days we switched to finadyne, 
once a day, for six days (1–2 mg/kg i.m.). The socially housed animals were housed solitarily during the first 8 to 
9 days following surgery, after which social housing was resumed.

At the time of recording, the post-surgical implantation period was 2 and 4 years for the head posts, and 
3 months and 1 year for the 1024-channel pedestal, for monkeys L and A, respectively, and the customized 
implants remained mechanically stable and well anchored to the skull throughout this period.

Datasets. In this study, we present 1) resting state data from the two monkeys, collected across three record-
ing sessions per animal. In addition to this main dataset, we collected two supplementary datasets to allow further 
interpretation of the resting state data: 2) a dataset acquired during a visual fixation task, collected across three 
recording sessions per animal (on the same days as the acquisition of the resting state dataset), for quantifica-
tion of the size and signal-to-noise ratio of the neuronal responses elicited by a visually presented checkerboard 
stimulus (Fig. 3a); and 3) a dataset acquired during a fixation task, collected across two recording sessions per 
animal, in which we presented moving light bars to map the receptive fields (RFs) of the neurons (Fig. 3b). Table 1 
provides a list of all the recording sessions for the three datasets.

Resting state. For the resting state recordings, the monkey was seated, head-fixed, in a room next to the opera-
tor room, with the lights turned off. The room was silent during the recordings (although it was not acoustically 
isolated). Note that although the lights were off, the setup was not completely dark, due to the presence of small 
LED lights on our recording equipment, and a small amount of light coming under the door from the adjacent 
room. The monkey did not carry out a task and was allowed to stay awake or fall asleep at any point in time dur-
ing the recording, and was free to shift its gaze and centre of attention. We recorded the pupil diameter and the 
eye camera also allowed us to determine whether the eyes were open or closed.
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Our aim was to provide a resting state dataset in which the signals were likely to be derived from the same or 
similar groups of neurons, allowing for pooling of data across the recording sessions. Therefore, the three resting 
state sessions were recorded within a short time span (across consecutive working days where possible).

Visually evoked activity. For each resting state dataset we also collected a dataset with visually evoked activity 
on the same day in order to provide an assessment of the quality of the neuronal signal on each channel that day. 
This dataset consisted of at least 30 trials in which the monkey viewed a grey screen (with a luminance of 14.8 cd/
m2) before a full-screen checkerboard stimulus was presented for 400 ms while the monkey maintained fixation 
on a dot located at the centre of the screen (Fig. 3a). The levels of visually evoked activity (relative to baseline 
activity) provided a measure of the quality of the neuronal signal obtained on each channel. We determined 
the ‘signal-to-noise-ratio’ (SNR) as the amplitude of the visually driven response divided by the standard devi-
ation of activity in a time window before stimulus onset (see below for details). If desired, the SNR may be used 
during subsequent analyses to select only the channels from the corresponding resting state dataset that clearly 
have stimulus-evoked responses and to discard those that show poor or no signal. The size of the checkerboard 
squares was 1 degree of visual angle (dva), and the luminance values of the black and white squares were 0 and 
92.1 cd/m2, respectively.

Fig. 2 (a) Numbering of the 16 arrays that were implanted in the visual cortex. LS: lunate sulcus. STS: superior 
temporal sulcus. The yellow dot on each array indicates the side on which the wire bundle exits the array. 
Right: Numbering of channels on each array, as viewed from the top of the array after implantation, rotated 
90 degrees CCW relative to the left panel. (b–e) RF map, showing the coordinates of the V1 (b,c) and V4 (d,e) 
RF centres for channels with an SNR of more than 2 for each condition (N = 893 and 679 in monkeys L and A, 
respectively). Channels are colour-coded by array number, using the same colour code as in a. The receptive 
fields are located in the lower-right quadrant of the visual field.
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In monkey A, the resting state data and matching visually evoked data were collected 1 year after surgical 
implantation, following the completion of other (unrelated) experiments. By this time, the number of channels 
with high SNR had decreased, compared to the number observed soon after surgery. To allow future users of 
the data to carry out analyses of visually evoked responses across close to 1024 channels (independently of the 

a

b

Fig. 3 (a) Illustration of the task used to measure visually evoked responses and calculate SNRs. 1: The monkey 
initiates the trial by fixating on a red spot at the centre of the screen. 2: After 400 ms, a checkerboard stimulus 
is presented. The monkey is required to maintain fixation throughout stimulus presentation, which lasts for 
400 ms. 3: The monkey receives a reward upon stimulus offset. Event codes (as recorded in the.nev files) are 
shown between brackets; e.g. stimulus onset is encoded by the value ‘2.’ (b) Illustration of the RF mapping 
task. 1: The monkey initiates the trial by fixating on a red spot at the centre of the screen. 2: After 200 ms, a 
bar stimulus is presented, which moves in one of the four cardinal directions (yellow arrow). The monkey is 
required to maintain fixation throughout stimulus presentation, which lasts for 1000 ms. 3: The monkey receives 
a reward upon stimulus offset.

Monkey Task type
Recording day 
(dd/mm/yyyy) Duration

Good channels 
(SNR >  = 2)

A

Resting state

14/08/2019 32 min 34 s —

15/08/2019 38 min 17 s —

16/08/2019 42 min 0 s —

SNR

04/10/2018(*) 2 min 37 s 899

14/08/2019 4 min 54 s 359

15/08/2019 3 min 54 s 416

16/08/2019 4 min 12 s 379

RF
Large bars 28/08/2018 18 min 35 s 769(**)

Small bars 29/08/2018 10 min 42 s 931(**)

L

Resting state

25/07/2017 22 min 42 s —

9/08/2017 22 min 0 s —

10/08/2017 21 min 37 s —

SNR

25/07/2017 1 min 36 s 981

9/08/2017 1 min 35 s 977

10/08/2017 1 min 58 s 992

RF
Large bars 26/06/2017 33 min 43 s 957(**)

Small bars 28/06/2017 31 min 47 s 821(**)

Table 1. Overview of datasets and sessions. Channel quality is based on the SNR. For each resting state session, 
an SNR session was collected on the same day to provide a measure of signal quality. *Extra SNR session, which 
was collected at an earlier period in time than the other SNR sessions, and which does not have a matching 
resting state session. **Channel quality in the RF datasets is considered to be good if the channel showed an 
SNR >  = 2 for any sweeping bar direction.
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resting state data), we provide an ‘extra’ dataset of visually evoked activity from monkey A, which was obtained 
10 weeks after implantation. This ‘early’ SNR dataset was collected using an identical task design to that of the 
other SNR datasets, while providing a larger number of channels with high SNR. Note that this additional data-
set is stand-alone and is not paired with a resting state session.

Receptive field mapping. The subjects viewed moving light bars that appeared at specific locations on the 
screen, allowing us to identify the RF location of the neurons recorded on each channel.

To characterize the receptive field properties on each channel, we recorded the responses evoked by white 
sweeping bar stimuli that moved in each of four possible directions (top to bottom; bottom to top; left to right; 
and right to left)40. RF size scales with eccentricity41: the farther away an RF is from the fixation, the larger its 
size. Neurons with small RFs respond best to small stimuli, whereas neurons with larger RFs show a more pro-
nounced response to large stimuli.

Hence, the RF mapping task included two stimulus sets: 1) RFs of low eccentricity were mapped out using a 
small, thin, slow-moving bar (4 degrees of visual angle [dva] in length, 0.04 dva in thickness, moving at a rate of 
4 dva per second) that was positioned close to the fixation spot. 2) RFs of higher eccentricity were mapped out 
using a long, thicker, faster-moving bar (20 dva in length, 0.19 dva in thickness, 20 dva/s) that was positioned 
farther from the fixation spot (see Fig. 3b). Stimulus presentation was controlled using custom-written Matlab 
scripts (Table 2) that were run on the stimulus control computer. The two types of visual stimuli elicited spatially 
and temporally well-defined neuronal responses, which allowed for the measurement of RFs closer to and far-
ther away from fixation.

Data collection. Electrophysiological signals from V1 and V4 were recorded from 1024 channels distributed 
across 16 Utah Arrays (each consisting of 8 × 8 electrodes), at a sampling rate of 30 kHz (see Figs. 1c, 2a for their 
locations in the visual cortex), and further processed by equipment from Blackrock Microsystems (see Fig. 4 
for a schematic overview of the setup). The neuronal signals were passively conducted via the LGA interface on 
the 1024-channel pedestal to an electronic interface board (EIB), i.e. an adapter with 32 36-channel Omnetics 
connectors, which in turn interfaced with eight 128-channel CerePlex M headstages. Each CerePlex M processed 
signals from two 64-channel Utah arrays, applying a 0.3–7500 Hz analog filter at unity gain (i.e. no signal amplifi-
cation was carried out). The CerePlex M performed a 16-bit analog-to-digital conversion (ADC) with a sensitivity 
of 250 nV/bit. The digitized signal on each CerePlex M was sent to a 128-channel Digital Hub, i.e. each Digital 
Hub processed data coming from one CerePlex M, which in turn originated from two electrode arrays. The 
Digital Hub converted the digital signal into an optic-digital format, which was then sent via an optic-fibre cable 
to a 128-channel Neural Signal Processor (NSP) for further processing and storage. Each Digital Hub delivered 
the signal to a single NSP. There were eight NSPs and each NSP processed the data derived from two electrode 
arrays.

Control of the NSPs was carried out on two PCs (PC #1 and PC #2, running Windows 7 Professional) using 
the Blackrock Central Software Suite (version 6.5.4), with one instance of the software being run for each NSP, 
i.e. a total of eight instances of the software ran simultaneously during data acquisition. Each PC was connected 
to four NSPs, and four instances of the software were run on each PC. Each NSP stored the raw neuronal signals 
from 128 channels in a single raw data file (corresponding to channels 1 to 128), giving rise to a total of eight raw 
data files across the eight NSPs. The data recorded from the eight NSPs were temporally aligned as described in 
the section, ‘Temporal alignment of raw data.’

Due to the high volume of data being processed and stored by each NSP, the onset of recording was con-
trolled manually with a temporal offset of several seconds between NSPs. Before starting the recording on any 
given NSP, the operator checked to ensure that on-going recordings were running smoothly on the other NSPs, 
thereby avoiding buffer overflow and dropped packet issues due to system overload at the start of recording. 
Automatic updates were disabled to prevent unwanted disruptions during recording.

Eye tracking. During each recording, an infrared eye tracker (TREC ET-49B, version 1.2.8, Thomas Recording 
GmbH) was used to sample the eye position and pupil diameter for both the X- and Y-axes with a frame rate of 
230 Hz, and the data were stored at a sampling rate of 30 kHz.

The eye tracking hardware was controlled by a dedicated PC (PC #4) using Eyetracer software (Thomas 
Recording), which forwarded the analog signals regarding the eye position and pupil diameter directly to NSP 

Experiment control scripts

Task Script name Description

Resting state sync_pulse_resting_state.m Sending of sync pulses to eight NSPs for post-hoc alignment of raw data.

SNR runstim_CheckSNR.m Presentation of full-screen checkerboard stimuli to elicit visually evoked 
responses.

RF
runstim_RF_barsweep_stimcondition1.m Presentation of small sweeping bar stimuli to carry out RF mapping on 

channels where RFs were close to fixation.

runstim_RF_barsweep_stimcondition2.m Presentation of large sweeping bar stimuli to carry out RF mapping on 
channels where RFs were further from fixation.

Table 2. List of Matlab scripts used for experimental control and stimulus presentation, with script names and 
descriptions. The experimental control scripts are highly specific to the hardware and are not designed to run 
without the equipment. We provide the scripts for completeness.
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#1. X and Y eye positions were recorded on channels 129 and 130 of NSP #1, respectively, while X and Y pupil 
diameter were recorded on channels 131 and 132, respectively.

On all NSPs, the data collected on channels 1 to 128 comprised the neuronal signals. On NSP #1, channels 
129 to 132 additionally contained the eye signals. Furthermore, analog synchronization signals were recorded 
on the NSP channel 144; these can be ignored as the synchronization pulses were also registered as digital events 
in the.nev files. All other NSP channels (133–143) did not record any data. We stored the raw data from the 
relevant channels (containing neural and eye signals) as specified in the configuration files that were loaded into 
the Blackrock Central Software Suite for each NSP.

Stimulus and reward timing, stimulus identity and experiment control. A stimulus control computer (PC 
#3) was used for the execution of task-related events and stimuli with high temporal precision during each 
of the task paradigms. The task-related event codes consisted of numbers that were sent out from PC #3, via 
a Data Acquisition and Control System (DAS) Multifunction Analog and Digital I/O board (DAS1602/16, 
Measurement Computing) through a splitter cable, to the digital input ports (16-bit DB37) on each of the NSPs. 
The corresponding channels on the digital input port of each NSP sampled the incoming signal at 30 kHz and 
were configured to detect when an incoming bit was set to a ‘high’ value on one of the pins. In our experiments, 
only the first 8 digital input pins (1 to 8) on the digital input ports of the NSPs were used, whereas the other 8 
digital input pins (9 to 16) were disregarded. To encode a bit change initiated by the stimulus control computer, 
a 500-ms voltage pulse was sent on the desired pin. On each NSP, the event codes were recorded in the events file 
(.nev) as a sequence of numbers that ranged in value from 1 to 8. Note that since the DAS board used zero-based 
indexing, when instructions were sent from the Matlab script to the DAS board, the sequence of pin numbers 
specified in the Matlab script ranged from 0 to 7, instead of 1 to 8. Table 3 provides a list of the bit identities and 
their interpretations.

As the precise times at which recording was initiated or terminated varied across the eight NSPs, the duration 
of the raw data traces also varied slightly between NSPs. Hence, the common digital signal that was sent to all 
eight NSPs simultaneously via their digital input ports was used to precisely align the raw data traces between 
NSPs during data processing (described in the section, ‘Temporal alignment of raw data’).

During the resting state sessions, the digital signal consisted of a randomly generated sequence of numbers 
(ranging in value from 1 to 8), which were sent at 1-second intervals using a custom Matlab script that was run 
on the stimulus control computer. A list of experimental-control scripts is provided in Table 2. During the SNR 

Fig. 4 Overview of devices and the total number of units (shown in parentheses) used to obtain, process and 
store data. Boxes represent individual devices/systems and arrows show the direction of signal transmission 
between the devices. Note that pairs of Utah arrays ultimately connect to a single neural signal processor (NSP), 
giving rise to a total of 8 parallel connection pathways. The apparatus and connections for the first connection 
pathway (i.e. for the first pair of Utah arrays) are shown in detail, while those for the other 7 pathways (for arrays 
3 to 16) are depicted in condensed form. Pupil size and position are only recorded on NSP #1, and are not sent 
to the other 7 NSPs.
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and RF mapping tasks, a series of trial-related event codes were sent. Event codes were sent upon stimulus onset 
and offset and during reward delivery via the same system as that used to send sync pulses during the resting 
state. Additionally, during the RF task, the stimulus condition used on that particular trial (the direction of bar 
movement) was sent as an event code. PC #3 also received a copy of the X and Y eye position to check the gaze 
fixation and determine the success or failure of a trial. Instructions for fluid delivery were then sent to the reward 
system (Crist Instruments) (Table 3). A summary of the digital codes that were used for the three datasets is 
provided in Table 2. During post-hoc analysis of the raw data, trial-related events could be identified with high 
temporal precision (with 30-kHz resolution) and were used for precise temporal alignment of data across NSPs.

Data pre-processing. The datasets are comprised of temporally aligned raw data, as well as data that have 
been pre-processed to facilitate their usage. The pre-processing steps included the extraction of local field poten-
tial (LFP) signals and envelope multiunit activity (MUAe, which represents the aggregation of spiking activity 
across multiple units recorded via one electrode – details on how we computed MUAe are provided below)40 from 
the raw recording traces, and a systematic registration of metadata. These steps were executed after the recording 
session and implemented into a Python workflow using the Snakemake workflow management system42. In addi-
tion to this fully integrated workflow, standalone Matlab pre-processing scripts are also included. The metadata 
integration is only provided based on Python. A full list of data-processing scripts is given in Online-only Table 1. 
See a schematic description of the data pre-processing workflow in Fig. 5.

Temporal alignment of raw data. The onset and offset of recording were not synchronous across NSPs. Hence, 
the raw neuronal data were temporally aligned across the files that were generated by the eight NSPs. Excess 
data at the beginning and end of each file that were not common to all eight NSPs were removed, yielding files 
of the same duration. Any channels that did not contain neuronal data, i.e. channels 133 or higher on NSP 1 and 
channel 129 or higher on NSPs 2 to 8, were also removed. The temporally aligned data were saved in the .nev 
and .ns6 formats. The unaligned raw data files are not provided in the data repository due to their large volume, 
but are available upon reasonable request. The lightweight events files (.nev) are provided in both their aligned 
and non-aligned form.

Eye signal processing. In many human studies on resting state activity, subjects are given blindfolds and asked 
to keep their eyes closed. For the resting state sessions in our subjects, we recorded the pupil size and included it 
in the dataset, instead of using blindfolds. The eye position and pupil diameter (channels 129 to 132 on NSP #1) 
were temporally aligned, labelled, and saved in .mat and .nix format (Fig. 5). The baseline value of the recordings 
containing the pupil diameter was not at 0 mV. Hence, this signal was corrected by subtracting its minimum 
value within the given session. Additionally, we identified whether the eyes were open or closed, i.e. eye closure. 
We down-sampled the signals to 1 Hz, to reduce noise and exclude short blinks, and combined the X and Y pupil 
diameter readings using the Euclidean norm. A low threshold was set and if the combined diameter signal fell 
below this threshold, we considered the eyes to be closed, otherwise they were considered to be open (Fig. 6). 
During the recordings, the subjects occasionally exhibited signs of sleepiness and their eyelids drooped for a 
while, before they closed their eyes completely. Their eyes would sometimes stay closed for minutes at a time. 
These epochs can be found in the eye data, as extended periods in which the pupil diameter is below threshold. 
Users may for instance select the time periods during which the monkeys’ eyes were closed for a given duration 
for further analyses of the resting state. We provide both the full (30-kHz) and down-sampled (1-Hz) eye signals 
in the data repository.

Generation of MUAe and LFP signals from raw data. Following the temporal alignment of raw data across the 
NSPs, two commonly used types of neuronal signals were extracted from the data (Fig. 5): envelope multiunit 
activity (MUAe) and local field potentials (LFP).

To generate the MUAe, the raw data were filtered between 0.5 and 9 kHz. A full-wave rectification was 
performed on the filtered signal, followed by a low-pass filter of 200 Hz. Filtering was carried out using a 

Bit
NEV 
encoding

Interpretation

Resting state SNR

RF

Cond Description

0 1

Sync pulse

— — —

1 2 Stimulus onset — Stimulus onset

2 4 Stimulus offset — Reward delivery

3 8 Reward delivery 1 Rightward sweeping bar

4 16

—

2 Upward sweeping bar

5 32 3 Leftward sweeping bar

6 64 4 Downward sweeping bar

7 128 — —

Table 3. Relation between bit identity that is sent by the stimulus control computer, the event that is encoded in 
the events file (.nev) by the NSPs, and the trial-related event that occurred at the moment that the bit was set to 
‘high’. Note that only a single bit is activated at each point in time. The resulting decimal code is 2^N, where N is 
the identity of the active bit/pin.
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Fig. 5 Data pre-processing diagram. Top: Processing steps for the three datasets, leading to the output data 
and metadata files. Snippets of the full data are depicted for illustrative purposes. Data alignment precedes the 
processing steps shown here. Bottom: Integration of metadata into a hierarchical odML file. Metadata were both 
externally collected (recording apparatus, subject-specific metadata, etc.) and calculated from the recordings 
(eye signal epochs, RF, SNR). All metadata are integrated into a single odML file per session.

Fig. 6 Overview of pupil diameter during an example resting state session, for each monkey. (a,d) Traces 
showing the pupil diameter, the state of the eye (‘open’ or ‘closed’) and the mean MUAe from the highest-SNR 
electrode array. The Pearson correlation between the eye state and MUAe is also shown. (b,e) Percentage of 
time spent with eyes open and closed. (c,f) Bar plot of the duration of time segments that were spent in each 
state, ordered by duration (segments shorter than 100 ms are likely to be eye blinks and are not shown). Colour 
coding is identical for all panels.
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Butterworth filter, of order 4. The data were down-sampled by a factor of 30, yielding for each original signal an 
MUAe signal with a sampling rate of 1 kHz.

To generate LFP signals, the raw data were low-pass filtered at 150 Hz (Butterworth filer, order 4) 
down-sampled to 500 Hz. The newly generated MUAe and LFP signals were saved in the .mat and .nix file for-
mat, where each file contains the data from one Utah array with 64 channels.

Signal-to-noise ratio (SNR). To quantify the signal quality of the recorded neuronal activity, the 
signal-to-noise ratio (SNR) for each channel was calculated based on the amount of visually evoked activity 
that was elicited upon presentation of a full-screen checkerboard stimulus, relative to baseline activity, across 
a minimum of 30 trials. We calculated the mean and standard deviation (SD) of the MUAe during the 300-ms 
time window prior to stimulus onset (Meanspontaneous and SDspontaneous of the baseline activity) for each trial. Next, 
trial-averaged MUAe data were smoothed with a moving average of 20 bins (i.e. at a sampling rate of 1 kHz, 
each bin comprised 20 ms), and we identified the peak level of activity elicited during stimulus presentation 
(Peakstimulus_evoked). The SNR was then calculated following Eq. 1:

SNR
Peak Mean

SD
,

(1)

_stimulus evoked spontaneous

spontaneous
=

−

A high SNR is indicative of a functional electrode that yields good-quality MUAe. Since the electrodes were 
located in the visual cortex, they were expected to show responses to visually presented stimuli. A low SNR value 
may be indicative of one of two situations: 1) For channels where the receptive fields overlap with or are located 
close to the fixation spot (close to the sulcus between V1 and V4), the presence of the fixation spot in the recep-
tive field may elicit high levels of activity throughout the trial, including during the ‘baseline activity’ period that 
precedes stimulus onset. This would result in elevated levels of baseline activity and thereby decrease the SNR. 
2) The quality of the signal recorded on that particular electrode may be poor due to factors such as electrode 
failure, connection failure, poor contact between the electrode and the neuronal tissue and/or excessive tissue 
gliosis around the electrode.

To select good channels for further analysis of MUAe, we recommend setting a threshold value for the SNR 
(e.g. 2 or higher) to include only the channels with an SNR value that is above the threshold in subsequent anal-
yses. See Table 1 for the number of high-quality electrodes per session and Fig. 7a,c,e for the SNR values from an 
example session. The SNR values can be found in the metadata files for the corresponding session (Online-only 
Table 2).

Neuronal response latency. In addition to the SNR we estimate the neuronal response latency from the 
checkerboard stimulus task (i.e. the SNR task). We define the response latency as the time elapsed between stim-
ulus onset and the first time that the trial-averaged MUAe signal is more than 2 times the SDspontaneous in 5 con-
secutive bins. The spontaneous activity period is defined as 300 ms prior to stimulus presentation, as in the SNR 
calculation. We require the activity to be above the threshold in several consecutive bins to ensure robustness 
against rapid noise fluctuations. Figure 7b,d,f shows the response latency for a sample session in each monkey. 
Our measurements are in agreement with previous reports of latency in the visual system1. The SNR and latency 
are calculated together and can be found in the same metadata files (Online-only Table 1).

Receptive field (RF) mapping. We estimated the RF of each electrode using sweeping bar stimuli. The 
average MUAe was calculated across trials with a given direction of bar motion. A Gaussian was fitted to this 
trace, and the onset and offset of the visually evoked response were calculated as the times on each trial that 
corresponded to the midpoint of the Gaussian minus and plus 1.65 times the standard deviation of the Gaussian, 
respectively. The vertical and horizontal boundaries of the RF on each channel were then calculated as the mean 
of two values: 1) the spatial location corresponding to the onset time of the response elicited by a bar moving in 
a particular direction, and 2) the spatial location corresponding to the offset time of the response elicited when 
the bar moved in the opposite direction40. The x- and y-coordinates of the RF centre were taken as the midpoints 
between the horizontal and vertical boundaries of the RF, respectively, and the RF size was calculated according 
to the equation:

D r l t b( ) ( ) , (2)2 2= − + −

where D is the diameter of the RF, r and l are the x-coordinates of the right and left boundaries and t and b are 
the y-coordinates of the top and bottom boundaries.

The arrays with RFs located closest to the fixation spot (arrays 1 and 4 in monkey L, and 1, 3, 4, 6, 7, 8 and 
15 in monkey A) were mapped using a small, thin, slowly moving bar and the other arrays were mapped using 
a large, thick, fast-moving bar. Note that during stimulus presentation, data were recorded from all the arrays, 
including from arrays that were not being mapped by the stimulus. Hence, the datasets obtained using the thick 
and thin bar stimuli were combined into a unified RF map and the remaining data was discarded. The combined 
RFs for each monkey can be found in the metadata repository (Online-only Table 2).

The RF maps depict the extent of spatial coverage across the visual field. We observed a clear retinotopic 
organization that matched the locations at which the arrays were implanted on the cortical surface (Fig. 2).



1 1Scientific Data |            (2022) 9:77  | https://doi.org/10.1038/s41597-022-01180-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data Records
Identification of array and channel number. As described in the Methods, of the 16 Utah arrays, 14 
were implanted in V1 and 2 in V4. Figure 2a shows the location of implantation in the visual cortex for each of 
the 16 arrays. Each Utah array consisted of 64 electrodes, and each NSP recorded the signals obtained from two 
arrays, i.e. 128 channels (see the section, ‘Data collection’). Each electrode was assigned a unique global identifier 
from 1 to 1024. To link the global identity of individual channels with the numbering within an array (out of 64) 
and the numbering within an NSP (out of 128 channels) we generated look-up tables (LUTs) for each monkey. 
Each row in the table represents a single electrode. For each electrode the global (out of 1024), within-NSP (out 
of 128) and within-array (out of 64) channel indices are indicated. Additionally, the NSP number (out of 8), array 
number (out of 16) and cortical area (V1 or V4) are specified. These tables allow the unique identification of the 
electrodes across indexing systems.

Fig. 7 (a,c,e) Channel signal-to-noise ratio (SNR) from an example session for each monkey, shown on a 
stylized schematic of the arrays on the cortex. Channels with SNR values < 2 are marked with an ‘X’. Top: 
histogram showing the distribution of SNR values and pie plot showing the proportion of electrodes with 
SNR > 2. (b,d,f) Stimulus-evoked response timing of two sample SNR sessions, measured as the time at which 
the trial-averaged MUAe signal exceeds 2 SDs of the baseline (300 ms prior to stimulus onset) for at least 5 
consecutive time steps (5 ms in the 1-kHz sampling of MUAe signals). Channels that exhibited a response too 
early (<20 ms) or too late (>150 ms), or had no response at all, are shown in gray (these channels often had SNR 
<2). Panels (a,b) show data from session L_SNR_090817 in monkey L; (c,d) from session A_SNR_150817 in 
monkey A; and (e,f) from session A_SNR_041018 in monkey A. Note that the resting state data in monkey A 
were recorded several months after surgical implantation of the electrodes, by which time the data quality had 
decreased (c,d). Hence, we provide an additional, stand-alone checkerboard stimulation dataset, session A_
SNR_041018 (e,f) which was obtained at an earlier date (when the SNR was high on the majority of channels) 
and does not have a matching resting state session.
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Description of file formats. All data can be found at this GIN repository (https://doi.org/10.12751/g-node.
i20kyh)24. The raw, aligned data are provided in the proprietary Blackrock format, .ns6.

The pre-processed signals were stored as .mat and .nix (https://g-node.github.io/nix/) files; .nix files can be 
loaded using the Python Neo framework43 (https://neuralensemble.org/neo/).

Basic metadata from the recording system are saved in the proprietary Blackrock formats,.nev and.ccf. Note 
that both .nix and .mat data files (listed in Table 4) contain basic metadata; however, for the complete metadata, 
the metadata files (listed in Online-only Table 2) should be used. All additional metadata files are provided in 
various machine- and human-readable formats, such as .txt, .xls, .csv and .mat. Metadata were diverse and orig-
inated from different sources, such as the experimental equipment, subject specifications, electrode identifiers, 
signal quality (SNR), receptive fields (RFs), etc. All metadata were organized into a single unified hierarchi-
cal structure, using the open metadata markup language (odML)44 (https://g-node.github.io/python-odml/), 
a human- and machine-readable file format for reproducible metadata management in electrophysiology. The 
raw metadata were processed with odMLtables45 (https://odmltables.readthedocs.io) and custom Python scripts. 
The generated metadata files are listed in Online-only Table 2, all of which are integrated into a single odML file 
per session.

technical Validation
Impedance measurements. Post-implantation, electrode impedance was measured at 1 kHz using the 
Impedance Tester function in the Blackrock Central Software Suite. These measurements were carried out in the 
same month that the resting state data were collected, yielding one text file (.txt) per NSP.

These values were subsequently combined across the eight raw data files (one per NSP), yielding a single. csv 
file that contains impedance data across all 1024 channels. The impedances were also included in the hierarchi-
cally organized odML metadata files.

eye closure validation. During the resting state sessions, eye pupil diameter and position were tracked 
using an infrared camera. The monkeys were head fixed throughout the recordings, and the pupil was within sight 
of the camera at all times, as verified by inspection of the camera feed by an experimenter. To identify the time 
points with eye closure, we set a threshold for the voltage obtained in the readings for pupil diameter. We further 
validated this method of threshold setting by comparing levels of cortical activity observed during eye closure and 
eye opening, and found that activity in the visual cortex was typically higher when the monkeys’ eyes were open 
than when they were closed.

To carry out this validation, we identified the electrode array that yielded the highest signal-to-noise ratios 
across all 64 electrodes (monkey L: array 11; monkey A: array 10). We calculated the mean MUAe across elec-
trodes on this array, as a measure of on-going neuronal activity. We observed a high correlation between activ-
ity levels and the status of the eye, indicating that eye opening was accompanied by an increase in V1 activity 
(Fig. 6a,d), and verifying the accuracy of the eye closure analysis.

Cross-talk removal. An additional analysis was performed on the resting state data in order to assess 
whether spurious correlations were present. Unexpectedly high correlations could originate from the induc-
tion of current via strong external electromagnetic radiation recorded by the electrodes (e.g. power line noise or 

Raw and aligned neuronal data

Format File naming convention
Number of 
files Description

.ns6 NSPX_aligned.ns6 8 per session Temporally aligned raw neuronal data files. The length of the data segments is 
the same across NSPs.

.nev
NSPX_aligned.nev 8 per session Temporally aligned event data files. The duration is the same as in the NS6 files.

NSPX.nev 8 per session Raw event data files. The duration is the same as in the NS6 files.

Eye signal data

.mat aligned_eye_data.mat 1 per resting 
state session

Eye position in horizontal (X) and vertical (Y) coordinates, and pupil diameter 
in horizontal (X) and vertical (Y) coordinates. Recorded with a sampling rate of 
30 kHz, aligned with the neuronal data.

.nix aligned_eye_data.nix 1 per resting 
state session

Eye position in horizontal (X) and vertical (Y) coordinates, and pupil diameter 
in horizontal (X) and vertical (Y) coordinates. Recorded with a sampling rate of 
30 kHz, aligned with the neuronal data. The file includes all relevant metadata in 
the form of annotation dictionaries.

Processed neuronal data

.mat NSPX_arrayY_MUAe.mat 16 per session Temporally aligned MUAe neuronal data files, with a sampling rate of 1 kHz.

.nix NSPX_arrayY_MUAe.nix 16 per session
Temporally aligned MUAe neuronal data files, with a sampling rate of 1 kHz. 
The file includes all relevant metadata in the form of annotation dictionaries 
and event epochs.

.mat NSPX_arrayY_LFP.mat 16 per session Temporally aligned LFP neuronal data files, with a sampling rate of 500 Hz.

.nix NSPX_arrayY_LFP.nix 16 per session
Temporally aligned LFP neuronal data files, with a sampling rate of 500 Hz. The 
file includes all relevant metadata in the form of annotation dictionaries and 
event epochs.

Table 4. Available neuronal and eye signal data files. In the naming conventions, ‘X’ represents the NSP number 
(1 to 8) and ‘Y’ represents the array number (1 to 16).
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telecommunications devices) or could be caused by electrical short circuits between two or more electrodes, i.e. 
cross-talk.

Cross-talk can arise when electrodes physically touch each other due to mechanical bending during or after 
surgery, or when currents arise between cables due to a breach in electrical insulation of channels at any point 
along the processing stream up to the conversion of data from analog to digital. We examined the data for spu-
rious correlations, as they could potentially contaminate MUAe signals. Determining the precise source of such 
spurious correlations is beyond the scope of this publication.

In order to detect cross-talk artifacts in the data, we band-passed the raw signals at 250–9000 Hz. We then 
removed the first principal component for the channels that shared a common reference wire, roughly corre-
sponding to the mean of the signals. Threshold crossing events were extracted as described by Quiroga et al.46, 
with a threshold multiplier parameter of 5. Next, we counted synchronous threshold crossings at sampling reso-
lution and in adjacent sampling bins (1/30 ms). The complexity of a synchronous event was defined as the num-
ber of near-simultaneous threshold crossings across electrodes47. These synchronous events could also occur in 
the data by chance. However, in some cases, the analog signals had the same shape across numerous electrodes, 
indicating that these synchronous events were likely artifacts (see Fig. 8a for an example). These non-random 
synchronous events are termed ‘synchrofacts’ (short for synchronous artifacts)47.

Fig. 8 Detection and removal of high-frequency synchronous events. All plots display data from a single 
resting state session (L_RS_250717), which was the session with the most cross talk. (a) Raw signal of a sample 
synchrofact (complexity = 30). (b) Above-chance part of the complexity histogram for the original data (black) 
and after removing 150 electrodes with the highest synchrofact participation (SP, green). (c) Scatterplot of SP 
of each electrode versus firing rate (FR, calculated as threshold crossings per second). Each point represents a 
single electrode. As shown by the absence of a positive correlation, the SP was not biased by the FR, due to our 
method of normalising the SP by the total number of synchronous events. (d) Synchrofact participation of each 
electrode in the original data (prior to removal of 150 electrodes with high SP). Crosses (X) indicate electrodes 
with SNR < 2 and hyphens (−) indicate electrodes with FR < 0.1; these electrodes were excluded from the cross-
talk analysis. (e) For the remaining electrodes, those with a high SP were systematically removed, accompanied 
by a decrease in the largest SP that was observed across the remaining electrodes. (f) SP of each electrode after 
the removal of 150 electrodes with high SP; removed electrodes are indicated by a circle (O). (c) (d) and (f) use 
the same colour map.
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Distinguishing synchrofacts from randomly occurring synchronous events is not trivial, due to the large 
number (up to hundreds of thousands) of synchronous events, hence we examined their complexity histogram, 
i.e. the number of detected synchronous events of a given complexity. We used a one-sided Monte Carlo permu-
tation test to check whether the number of synchronous events of a given complexity was above chance level. 
We generated surrogate data (N=1000 surrogates), i.e. permutations, by uniformly dithering (±5 ms) the timing 
of the threshold crossings. The probability of obtaining a certain number of synchronous events by chance was 
estimated based on the distribution of events in the surrogate data. We found thousands of synchrofacts across 
complexity values ranging from 1 to >50 (Fig. 8b), far more than what would be expected by chance.

To distinguish synchrofacts from randomly occurring synchronous events, and to pinpoint the electrodes 
that were primarily responsible for the non-random events, complexity histograms were then calculated on an 
electrode-by-electrode basis. To provide a measure of the number of synchrofacts obtained per electrode, i.e. 
threshold crossings per second (Fig. 8c), we first tallied the number of above-chance threshold-crossing events 
for a given electrode. Electrodes with higher firing rates inevitably yield a larger number of randomly occurring 
synchronous events; to correct for this bias, we divided the number of above-chance events on each electrode 
by the total number of events seen on that electrode. We call this metric the ‘synchrofact participation’ (SP) of 
the electrode.

SP
N

N
,

(3)
aboveChance

total

∑=

where N denotes the number of synchronous events observed for a given electrode.
The SP takes a value between 0 and 1, indicating the proportion of synchronous events that were above 

chance for each electrode. Correcting by the total number of events leads to a measure of the synchrofacts per 
electrode that is not correlated to the firing rate. When mapping the cortical locations of the electrodes with high 
SP values, we found that they were grouped into several clusters (Fig. 8d). We detected synchronous artifacts in 
all three resting state sessions from monkey L. Resting state data from monkey A did not show large numbers of 
synchrofacts (likely due to the low firing rates obtained in those sessions).

The simplest approach to removing cross-talk from the data is to discard the electrodes with high SP from 
further analysis. We systematically removed electrodes with the highest SP one by one, and recalculated the 
SP and chance levels after the removal of each electrode. Our significance level was not adjusted for multiple 
comparisons, as this would lead to a high false negative rate and hinder the removal of electrodes with cross-talk 
from the dataset. We removed up to 250 electrodes (Fig. 8e), greatly reducing the levels of cross-talk in the data 
(Fig. 8f). Note that while the electrode removal process eliminates a large portion of the spurious correlations, it 
does not eliminate artifacts that occur sporadically or at low rates on a given electrode.

We provide a recommended list of electrodes to discard, and the order of their removal. The precise number 
of electrodes to be discarded can be adjusted as needed by data users, depending on the particular use case. 
Detailed plots depicting the complexity histograms and electrode SP for all the resting state sessions are available 
in our data repository.

A reference implementation for synchrofact detection was included in version 0.10.0 of the Electrophysiology 
Analysis Toolkit26 (Elephant, RRID:SCR_003833, https://elephant.readthedocs.io). The full workflow used for 
systematic electrode removal was implemented with Python and can be found in the data respository.

Code availability
All scripts used for the processing of data and our preliminary analyses are available alongside the data at https://
gin.g-node.org/NIN/V1_V4_1024_electrode_resting_state_data, in the ‘code’ folder. All experiment control 
scripts are listed in Table 2 and the data processing scripts are listed in Online-only Table 1.

Matlab version R2015b, Python version 3.7 and Snakemake version 5.8.1 were used. The only Matlab depend-
ency was the NPMK toolbox (version 5.0, Blackrock Microsystems), a copy of which is included in the data 
repository.

Direct Python dependencies include neo 0.9.0, nixio 1.5.0 elephant 0.10.0, odml 1.4.5 and odmltables 1.0. A 
full list of all Python dependencies and the specific versions used can be found in the Python environment speci-
fications, along with the Python scripts (Online-only Table 1).
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To deal with a 14-dimensional space, visualize a 3-D space
and say ’fourteen’ to yourself very loudly. Everyone does it.

Geoffrey Hinton

2
State space analysis of visual cortex activity

Summary:
In this chapter we analyze the resting state data from themacaque visual cortex. Our analysis
reveals that resting-state neural manifolds of macaque V1 are organized as two distinct
high-dimensional clusters. We show that these clusters are primarily correlated with the
behavior (eye closure) of themacaques and that the dimensionality of each of these clusters is
significantly different, with higher dimensionality during the eyes-open periods. In addition,
we use LFP coherence and Granger causality to estimate signatures of feedback from V4
and DP to V1 (in the beta range) and find that feedback signatures are significantly stronger
during the eyes-openperiods. Finally, we simulate a spikingneuronmodel under resting-state
conditions and show that feedback signals can modulate the state space and dimensionality
of our model: distinct clusters and dimensionality arise in the presence and absence of
feedback. Taken together, the data analysis and simulations suggest that feedback signals
actively modulate neural manifolds and dimensionality in the visual cortex of the macaque.
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Abstract

High-dimensional brain activity is often organised into lower-dimensional
neural manifolds, which can represent a plethora of behavioural vari-
ables. In macaque V1, feedback from V4 is known to mediate attention
for figure-ground segregation and contour integration. However, whether
feedback signals can modulate neural manifolds in the brain is not known.
To address this gap in the knowledge we study extracellular recordings of
macaque areas V1, V4 and DP with unprecedented spatio-temporal reso-
lution. We found multiple clusters in the V1 neural manifolds, which cor-
related strongly to eye closure (eyes-open/closed) and displayed distinct
dimensionality. Moreover, we found feedback from V4 to V1 in the form
of beta band spectral Granger causality, which was significantly stronger
during the eyes-open periods. Finally, we reproduced the experimental
results via numerical simulations of a balanced spiking neuron net-
work. Taken together, our analyses and simulations show that feedback
signals modulate the V1 activity. This finding suggests that feedback
signals are key in the modulation of population activity across cortex.

Keywords: Neural manifolds, electrophysiology, macaque, visual cortex,
feedback, resting state
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Introduction

The brain can be described as a high-dimensional dynamical system capable
of representing and processing a plethora of low-dimensional variables.

The dynamics of a population of neurons can be considered as a trajectory
in a high-dimensional space, where each neuron represents one dimension; i.e.,
the state space of the neural system. Typically, the system does not visit all
possible states in the state space, but rather remains confined to a small subset.
This subset of state space is referred to as a neural manifold [1–4]—when
the high-dimensional geometry is Euclidean everywhere—or sometimes as an
attractor [5]—when the activity of the dynamical system tends to a certain
part of the phase space for many different starting values. Neural manifolds
have been shown to encode aspects such as decision-making in the prefrontal
cortex of macaque [6], hand movement trajectories in the motor cortex of
macaque [2, 3, 7], odour in the piriform cortex of mice [8], head direction
in the anterodorsal thalamic nucleus of mice [5], and spatial position in the
hippocampus of mice [9]. However, the study of neural manifolds in the visual
cortex is, to the best of our knowledge, limited to mice [10, 11] and small
samples of neurons in macaque [12].

Neural manifolds often have an intricate topology, which can be studied
using methods borrowed from computational topology [5, 12, 13]. In addition
to the topology, the number of uncorrelated covariates required to capture the
variance in the state space is studied, the so-called dimensionality of a neural
system [1, 10, 14–19]. Regardless of species and brain area, the dimensionality
is drastically lower than the total number of recorded neurons [1], suggest-
ing robust encoding of low-dimensional variables. Stringer et al. [10] showed
that the dimensionality of the visual cortex in mice can vary dynamically to
encode precise visual input, that the state space correlations obeyed a power
law spectrum, and that the visual cortex neural manifolds are therefore not
smooth.

Eye closure—whether the macaque had its eyes open or closed—is known
to affect the activity in the visual cortex, even in darkness [20–24]. However,
whether this behaviour influences the neural manifolds has not been shown.

The primary visual cortex (V1) is known to represent intricate details from
the visual field both at a single neuron and population level [12, 25]. The
visual system is hierarchical in nature, with information travelling from lower
to higher areas (feedforward, FF) and vice-versa (feedback, FB), within known
frequencies [26–28]. Feedback from V4 to V1 is known to mediate visual atten-
tion for figure-ground segregation and contour integration in macaque [29–32].
Recent evidence suggests that feedback signals can modulate neural manifold
geometry and their dimensionality. On the one hand, Naumann et al. [33]
showed in silico that feedback can rotate neural manifolds to modulate atten-
tion in a context-dependent manner. On the other hand, Dahmen et al. [34]
show that recurrent connectivity motifs—not feedback explicitly—modulate
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the dimensionality of the cortical activity. Thus, whether feedback signals mod-
ulate the neural manifold geometry and dimensionality in vivo remains to be
shown.

Here, we study the neural manifolds of the primary visual cortex of the
macaque (N=3) during resting state and its relation to the feedback signals
from higher visual areas. We find that the neural manifolds of macaque V1
are organised as two distinct high-dimensional clusters, correlated with the
behaviour (eye closure) of the macaques, and only partially correlated with
higher activity levels. The dimensionality within each of these clusters is signifi-
cantly different, with higher dimensionality found during the eyes-open periods
than the eyes-closed periods. In addition, we estimated feedback from higher
cortical areas to V1 and found that feedback signals (in the beta frequency
range) are significantly stronger during the eyes-open periods, suggesting they
play a role in modulating the neural manifolds. Finally, we simulate a spik-
ing model under resting state conditions and show that feedback signals can
modulate the state space of our model. Taken together, the data analysis and
simulations show that feedback signals actively modulate neural manifolds,
leading to two distinct clusters of the macaque visual cortex activity.
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Results
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Fig. 1 Overview of the experiment and neural manifold construction. a Illustration
of the experimental setup. b Approximate locations of array implants in both exper-
iments. Exact placement of the arrays varies slightly for the subjects within a single
experiment. c Steps used to obtain the multi-unit activity envelope (MUAe) [35],
used in this study. Band pass filtering performed between 500 Hz and 9 kHz, recti-
fied signal is low-passed at 200 Hz to obtain the MUAe. d Schematic representation
of state space and a neural manifold. Note that time is implicit within the neural
manifold.

To explore the activity in the visual cortex, the electrical potential from V1
cortex of three rhesus macaques was recorded. The experiments simultaneously
recorded the activity from V1 and V4 (macaques L & A) [36] and from V1 and
DP (macaque Y, see Figure 1b) [37]. The recordings were made in the resting
state, i.e., the macaques sat head-fixed in a dark room and were not instructed
to perform any particular task. In this state the macaques often showed signs
of sleepiness and kept their eyes closed for long periods of time. The right eye—
contralateral to the site of neural recording—was tracked using an infrared
camera, allowing the identification of periods of open or closed eyes, linked
to the state of awareness of the macaque. See methods Electrophysiological
data from macaque L & A and Electrophysiological data from macaque Y for
further details on the data acquisition and processing. The experimental setup
and data processing are illustrated in Figure 1.
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Two distinct high-dimensional clusters in V1 during
resting state
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Fig. 2 Overview of the experimental data from session L RS 250717. a From top to
bottom: Time evolution of the eye signal; the z-scored MUAe signal for each electrode
(electrodes ordered by their correlation to the eye signal); the mean z-scored MUAe
at each time point; and the log odds overlaid with the most likely cluster identity
(two clusters, Gaussian mixture model). b, c, d Three-dimensional PCA embedding
of the MUAe neural manifold. Colours indicate eye closure (b), mean z-scored MUAe
(c) and the clusters identified via the log odds of a Gaussian mixture (d). Each dot
represents a different point in time. Outliers in the neural manifolds shown in b-d
were excluded, see Outlier removal.

To explore the activity of the visual cortex, we constructed a high-dimensional
(between 64 and 800 electrodes, see Table 1 for details) neural manifold for
each area and macaque from the downsampled (1 Hz) multi-unit activity enve-
lope (MUAe) [35], Figure 2a. We embedded the manifolds into a 3D space
for visualisation using principal component analysis (PCA), Figure 2b-d—See
supplementary videos for an animated visualisation of the 3D manifolds.

In V1, at least two distinct clusters are apparent in the 3D-embedded man-
ifold, which we labelled via the log odds of a two-component Gaussian mixture
model (see methods Neural manifolds and clustering and Outlier removal).
The log odds represent the likelihood for a given data point to correspond to
one cluster or the other. For the rest of this paper we consider points with
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positive log odds to belong to cluster 0 (colour-coded in blue throughout the
paper) and points with negative log odds to belong to cluster 1 (colour-coded
in red throughout the paper).

To confirm that the two clusters in the lower-dimensional embedding are
not an artefact of the dimensionality reduction, we estimated the homology
groups of the high-dimensional manifold with persistent homology (see meth-
ods Topological data analysis). The persistence barcodes show that at least two
clusters exist in the high-dimensional neural manifold (Figure S7). Thus, we
confirmed that the clusters observed in 3D are inherent to the high-dimensional
manifolds and not an artefact of the embedding.

For completeness, we also visualised the neural manifolds from V4 and DP
(Figure S8, S9). In contrast to V1, the neural manifolds in areas V4 and DP
do not appear to have two clear clusters.
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Clusters are strongly correlated with eye closure, and
less strongly correlated with activity levels
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Fig. 3 Clusters are correlated with eye closure and mean activity. a, c Pearson cor-
relation of eye closure (a) and mean MUAe (c) with log odds; r and p-value shown.
b, d Violin plots of the distribution of the log odds across epochs, respectively dis-
tinguished according to eye closure (b) and z-scored MUAe (d). Note that c was
calculated based on the mean MUAe across electrodes, while d shows the distribu-
tion of the full z-scored MUAe considering all electrodes separately. Horizontal bars
indicate medians of the distributions. e 2D histograms of z-scored MUAe and log
odds. Darker colour indicates higher occurrence.
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While the activity of visual cortex is clearly modulated by visual input, whether
and to what extent it is separately modulated by eye closure is unclear. Mark-
ing data points on the manifold with the eye closure state (Figure 2b) reveals
that one cluster strongly relates to eyes-open periods, whereas the other cluster
mainly related to eyes-closed periods.

To confirm the correlation between eye closure and cluster identity we
tested the differences between the eyes-open and eyes-closed states using a
twofold approach. First, we computed the Pearson correlation between the eye
closure signal and the log odds, revealing a significantly higher than chance
correlation in all sessions (Figure 3a). Second, we visualised the distribution of
the log odds during the eyes-open and eyes-closed periods separately; showing
a clear correspondence between the eye closure state and the sign of the log
odds in most cases (Figure 3b). Taken together, the Pearson correlation and
the log odds distributions demonstrate that the two neural clusters strongly
correlate with eye closure.

The existence of two separate clusters could be trivially explained if the
MUAe activity levels were significantly different between the eyes-open and
eyes-closed periods, and the cluster identity simply reflected the population
activity level. To examine this possibility, we tested whether higher-activity
epochs uniquely correspond to one of the clusters in the data. We tested the
correlation of the mean MUAe (across electrodes) with the log odds, yielding
relatively high values (Figure 3c). However, the violin plots of the full data
distribution—based on the z-scored MUAe shown in Figure 2a—show that
there is no clear separation into two clusters (Figure 3d). Additionally, we
visualised the 2D histograms of z-scored MUAe against log odds (Figure 3e).
If the 2D histograms showed most occurrences only in the top right quadrant
(high activity in cluster 1) and the bottom left quadrant (low activity in cluster
0) the clusters would be easily explained by increased activity rates alone.
However, in all sessions we observe some occurrences in the top left quadrant
(low activity in cluster 1) and/or the bottom right quadrant (high activity
in cluster 0). Thus, although cluster identity (log odds) and activity levels
(MUAe) are correlated to some extent, we conclude based on the violin plots
and 2D histograms that the activity level alone does not fully explain the
presence of the state-space clusters.

Finally, we also tested the eye closure preference in V4 and DP
(Figure S10), using the same procedure as for V1. Although some correlation
was observed between eye closure and log odds, the violins reveal no clear clus-
ter separation. Thus, we find that the observed clustering is restricted to V1
and is not present in the other two areas.

In this section we have seen that the neural manifold clusters correlate
with eye closure and mean MUAe, but not with full z-scored MUAe. Slightly
higher activity levels may be expected during the eyes-open periods, due to
the residual lights present in the otherwise dark room, which we observe for
the mean MUAe (Figure 3c). However, the more nuanced non-averaged MUAe
distribution does not show a clear separation into two clusters (Figure 3d).
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Our analysis of the z-scored MUAe suggests that the neural manifold clusters
do not exclusively depend on external stimuli.

Dimensionality differs between the clusters
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Fig. 4 a Decision function and participation ratio (PR) over time for session
L RS 250717. The PR was calculated on a sliding window of 30 s width. b Pearson
correlation between decision function and PR. c Comparison of PR between clusters
(Mann-Whitney U test). d Distribution of principal components and their explained
variance on a log-log scale, respectively for the entire session (L RS 250717) and
for each cluster. Power law exponent α estimated over the ranges where the curves
approximate a power law. e Comparison of power law exponents for the two clusters
in all sessions. The eyes-open condition always had a smaller exponent, indicating a
higher dimensionality.

To further understand the functional role and implications of the neural man-
ifold clusters, we studied their dimensionality. For this goal, we used the
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participation ratio (PR):

PR =
(
∑

i λi)
2∑

i λ
2
i

(1)

where λi are the eigenvalues of the covariance matrix [18, 34]. See Dimension-
ality for detailed methods.

We computed the time-varying PR from the z-scored MUAe signals, by
calculating the PR for windows of 30 s width, see Figure 4a. Stronger MUAe
activity is typically associated with higher variance, which may bias the results
toward higher dimensionality. We avoided bias due to the varying activity level
by normalising the data (z-scored) within each window. We found that there is
a strong correlation between the log odds and the time-varying PR (Figure 4b)
and compared the PR values between the two neural manifold clusters using
a Mann-Whitney U test (Figure 4c). The correlation and tests show that the
dimensionality is higher during the eyes-open periods consistently across data
sets.

To further support this finding we also show the distribution of the vari-
ance explained by each of the principal components (PC) of the MUAe data,
depicted on a log-log scale in Figure 4d. We fitted a power law to the PC vari-
ances and report the exponent α (Figure 4e). A higher α indicates faster decay
of the curve, i.e., lower dimensionality. The power law exponents are in agree-
ment with our sliding window approach: We observed higher dimensionality
(higher PR) during eyes-open than during eyes-closed periods (Figure 4e).

Thus, the dimensionality varies over time, with higher dimensionality dur-
ing eyes-open periods. Given that we normalised the data for this analysis,
the effects from any residual external stimuli were dampened, yet a significant
difference in dimensionality was observed. While the high dimensionality dur-
ing eyes-open periods could still be a by-product of visual stimuli, the dark
room makes this unlikely. Thus, we have compelling evidence that an internal
mechanism is responsible for the observed modulation, which leads to both a
difference in the state space geometry and a change in dimensionality.



Feedback modulation in V1 Morales-Gregorio et al. 11

Feedback is present in the form of beta-band spectral
Granger causality
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Fig. 5 Inter-area coherence and spectral Granger causality. a Representative sample
of coherence between V1 and V4 (electrodes 242 and 142, respectively). Low-
frequency and beta-band peaks indicated. b Quantification of coherence peaks across
all sessions. A substantial portion of all electrode pairs displayed a beta peak. Note
that the percentages for a given area can add up to more than 100% since the same
electrode pair can have both a low-frequency and a beta peak. c Representative sam-
ple of spectral Granger causality; same electrodes as in panel a. d Quantification
of beta-band spectral Granger causality for all sessions. Welch’s t-test was used to
determine whether feedback causality was greater than, less than, or roughly equal to
feedforward causality. The test was only applied to those electrode pairs that showed
a beta coherence peak. A large portion of V1 � V4 pairs show stronger causality in
the feedback direction, while V1 � DP did not appear to have prominent feedback
compared to feedforward causality.

In search of an internal mechanism that may modulate neural manifolds
and dimensionality, we turned our attention to cortico-cortical interactions.
Feedback communication has been shown to play an active role in contour
integration in macaque V1 [29–32]. In silico experiments have shown that feed-
back can rotate neural manifolds to extract signals regardless of context [33]
and that a learned feedback signal can modulate the synaptic weights in motor
cortex during learning, essentially modulating the neural manifolds [38]. Feed-
back to V1 can be detected using spectral Granger causality, since it is known
to occur within the beta frequency band (roughly 12-30 Hz) [27, 31].
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To determine whether feedback is present in our data, we calculated the
coherence and Granger causality between every pair of V1-V4 and V1-DP elec-
trodes (see Coherence and Granger causality)—using the local field potential
(LFP). We searched for peaks in the coherence, using an automatic method (see
methods Peak detection), and found that beta peaks appear for a large fraction
of electrode pairs (Figure 5a,b). Subsequently, we looked at the Granger causal-
ity of the electrode pairs that had beta peaks (sample shown in Figure 5c).
We tested whether the beta-band feedback causality (from V4/DP to V1) was
greater than the feedforward causality (from V1 to V4/DP) for each electrode
using Welch’s t-test, and conclude that feedback is stronger than feedforward
for the majority of V1 � V4 electrode pairs (Figure 5d)—out of the ones
with a coherence peak in the beta band. However, feedback causality exceeded
feedforward causality for only very few electrode pairs for V1 � DP.

We further explored the spatial distribution of the overall causality strength
B, see Figure S11a–c. The electrodes with their receptive field (RF) around
the fovea show stronger B, in both the feedforward and the feedback direction,
Figure S11d–f.

Thus, we found feedback from V4 to V1, in agreement with previous studies
[27, 31]. Feedback signals from V4 to V1 are therefore possible candidates for
the modulation of the neural manifolds and their dimensionality, which we
explore further in the next section.
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Fig. 6 Time-dependent power spectrum and spectral Granger causality reveal higher
feedback in the eyes-open periods in spite of lower spectral power. a Time evolution
of the log odds (top), the spectral power of a sample V1 electrode (middle), and the
spectral Granger causality difference for a representative sample of V1-V4 electrodes
(bottom). The sample electrodes were the same as in Figure 5. b Spectral power
median (line) and 25th to 75th percentiles (shade) for each cluster for one sample
V1 electrode. Low-frequency range highlighted. c Quantification of low-frequency
spectral power in each cluster for all V1 electrodes in all sessions—using Welch’s t-
test. d Causality difference median (line) and 25th to 75th percentiles (shade) for
each cluster for one sample V1-V4 electrode pair. Beta frequency range highlighted.
e Quantification of beta-band causality difference B(t) over time (in each cluster) for
all V1-V4 and V1-DP electrodes in all sessions—using Welch’s t-test.

We have thus far shown that around 20–60% of V1-V4 electrode pairs displayed
strong feedback from V4 to V1 (but not for V1-DP pairs) in the form of
beta-band Granger causality. It has been suggested that V1–V4 interactions
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are feedforward-dominated during visual stimulation and feedback-dominated
with eyes open in the absence of stimuli [39]. This suggests that feedback
signals should be present during eyes-open periods.

To elucidate the relation between feedback interactions and eye closure, we
examined how the spectral power and beta-band Granger causality change over
time, in relation to eye closure. To this end, we computed spectrograms of the
LFPs and the beta-band causality difference B(t) at individual V1 electrodes
using a 10-second sliding window (Figure 6a). Here, B(t) was calculated by
subtracting the time-dependent feedforward spectral Granger causality from
the feedback spectral Granger causality (Equation 8).

Visual inspection of the data from a representative electrode reveals that
the spectral power in V1 decreases for low frequencies during eyes-open periods
(Figure 6b), with the power modulations in the low-frequency band extending
up to the lower beta band (roughly < 20 Hz). Thus, the V1 LFP power at
frequencies up to about 20 Hz was generally lower during the eyes-open periods
than during the eyes-closed periods. At the same time, the beta-band causality
difference B(t) was higher during the eyes-open periods (shown in Figure 6d
for a representative V1-V4 electrode pair), indicating stronger feedback from
V4 to V1.

Next, we systematically quantified the difference in spectral power and
causality across the two neural manifold clusters for all sessions and electrodes.
To this end, we separated the spectra from each cluster using the log odds and
tested for significant differences using Welch’s t-test. First, we tested the dif-
ference in spectral power in the low-frequency band and found that the power
is systematically higher during the eyes-closed periods (Figure 6c). Second,
we tested the disparity in B(t) and found that the V1-V4 B(t) is systemat-
ically higher during the eyes-open periods. For completeness, we also tested
the disparity in B(t) for V1-DP, revealing a slight tendency in the opposite
direction.

The stronger feedback signals are not constant during the eyes-open peri-
ods, but rather appear to fluctuate (Figure 6a), which might be associated
with visual stimulation or object recognition. Since any visual stimuli present
despite the darkened room would be expected to be located in particular parts
of the visual field, we further tested B(t) against the gaze direction for all elec-
trode pairs (Figure S12). Figure S12a,b depict the signals from one sample
electrode, whereas Figure S12c shows the distribution of correlation coeffi-
cients for all electrode pairs. Finally, we show the overall beta-band causality
B against the B(t)-gaze signal correlation (Figure S12d). This test checks
whether there is a second-order effect, by assessing whether stronger feedback
in a certain electrode pair was also associated with a strong gaze to feedback
correlation. However, we could not observe any clear trend, thus suggesting
no relation between gaze direction and feedback strength. All in all, the time-
varying feedback signal does not depend on gaze direction, suggesting that the
visual scene does not affect the observed feedback signals.
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In conclusion, the time-dependent spectral analysis reveals large variations
of power and causality. On the one hand, the spectral power at low frequen-
cies increases during eyes-closed periods, a known phenomenon [40]. On the
other hand, the V4-to-V1 feedback is strongest during the eyes-open periods.
The time-varying feedback did not strongly correlate with gaze direction or
change, suggesting no relation between feedback and the visual scene. These
results suggest that feedback from V4 to V1 modulates V1 activity, activating
a different neural manifold cluster of increased dimensionality. To further con-
firm this finding, we used numerical simulations, in which we can control the
feedback signals and observe whether they have the hypothesised modulatory
effect.

Simulation of a balanced spiking neural network with
feedback reproduces manifold clustering

Fig. 7 Simulation of a balanced spiking neural network with feedback. a Diagram of
balanced random spiking neural network. Background input is provided constantly,
feedback signals were provided intermittently. b Three-dimensional PCA embedding
of the model firing rate time histogram over all neurons (binsize = 1 s). Colours
indicate whether feedback was provided. c Raster plot snippets of the spiking activity
for the different epochs. d Time evolution of feedback signal and mean firing rate.

To answer whether feedback signals can modulate the activity of V1, we sim-
ulated a balanced spiking neural network akin to [41] with strong interactions
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[42]. We provided background input and feedback at a similar frequency and
a similar temporal profile as in the experimental data.

Our model consists of two populations of excitatory and inhibitory leaky
integrate-and-fire (LIF) neurons, recurrently connected (Figure 7a). See Spik-
ing neural network simulations for a full description of the model and its
parameters. We provided background input at all times in the form of Poisson
noise (800 spikes/s) and an oscillating inhomogeneous Poisson process (1 Hz
sine wave with 500 spikes/s amplitude). Additionally, we provided a feedback
signal on top of the background input at varying time intervals, see Figure 7d.
The feedback was another inhomogeneous Poisson process oscillating in the
beta range (17 Hz sinusoidal with 500 spikes/s amplitude).

We used the firing rate of the LIF neurons, downsampled to 1 Hz, to
construct the neural manifold. This firing rate signal is comparable to the
MUAe used in previous sections [35]. A 3D PCA embedding of the neural
manifold is shown in Figure 7b. The manifold displays two distinct clusters,
corresponding to the times with or without feedback. The simulated activity
oscillated at a low frequency when no feedback was present and turned into
an asynchronous irregular state when the feedback was provided, Figure 7c.
Additionally, the mean firing rate increased as a consequence of the feedback,
Figure 7d.

Thus, our simulation reproduced the changes in neural manifolds that we
also observed in the experimental data. These findings support the role of
feedback as a modulator of V1 activity. Taken together, the data analysis and
simulations show that feedback signals from V4 to V1 in the beta frequency
range can modulate the activity of V1, suggesting that the feedback plays a
crucial role in the appearance of multiple clusters in the neural manifolds.
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Discussion

The aim of this study was to determine whether cortico-cortical feedback mod-
ulates neural manifolds and dimensionality in visual cortex. In this study, we
provide the first in vivo evidence for two distinct neural manifold clusters
in the resting-state activity of macaque V1, where feedback from V4 to V1
may switch the activity to the higher-dimensional cluster. Evidence for the
existence of clusters in the neural manifolds and feedback comes from electro-
physiological recordings in macaque (N=3), from two different experimental
labs. The effects of feedback on the neural manifolds were confirmed using a
computational model of spiking neurons.

We show that distinct clusters are present in the neural manifolds via PCA
(Figure 2, S1-S6) and confirmed their existence in high dimensions via persis-
tent homology (Figure S7). We further show that the clusters are correlated
with eye closure (Figure 3). In V4 and DP we find no neural manifold clusters
(Figure S8-S10).

Neural dimensionality varies depending on the cluster identity (Figure 4).
Our measured dimensionality is in agreement with previous reports in the
visual cortex [10, 15]. Previous work has also shown higher dimensionality
in the primary motor cortex during eyes-open than eyes-closed periods [43],
analogous to our findings for the visual cortex. Thus, eye closure might lead
to changes in dimensionality across the cortex, not just in the visual areas.

We hypothesised that feedback from other cortical areas could be the modu-
latory mechanism responsible for the changes observed in the neural manifolds
and dimensionality of V1. Indeed, we found that feedback, in terms of Granger
causality, is present in all of our recordings (Figure 5), particularly from V4 to
V1. We also found the feedback to vary over time, with increased presence dur-
ing the eyes-open periods, Figure 6. Previous studies found that cortico-cortical
feedback signals are predominantly present in the beta (12–30 Hz) frequency
band, while feedforward signals are present in the delta/theta (< 8 Hz) and
gamma (> 30 Hz) bands [27, 44], in agreement with our findings. In our analy-
sis we did not find any gamma band causality (Figure 5), since our recordings
were from the deep cortical layers (mostly layer 5) and gamma oscillations
are known to be absent from layer 5 of the visual cortex [26]. Further studies
found that feedback from V2 and V3 to V1 also contributes to surround sup-
pression [45]. Our findings are consistent with the work by Semedo et al. [39],
who suggested that feedforward activity dominates during visual stimulation
and feedback dominates in the absence of visual stimuli with the eyes open
at all times. In the present study, it was not possible to test directly whether
the V4-to-V1 feedback is responsible for the modulation. Future studies could
inactivate the V4 → V1 pathway, e.g., via reducing the temperature of V4
with the ’cryoloop’ technology [45, 46].

Numerical simulations confirm the ability of feedback signals to modulate
neural manifolds (Figure 7). We provided feedback signals in the form of sinu-
soidal oscillating inhomogeneous Poisson processes, and found that these could
induce a second manifold cluster.
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Therefore, our simulations suggest that the feedback alone is sufficient to
cause the observed qualitative changes in V1 activity, although some other
mechanisms might be involved in regulating and controlling this process.
Other possible mechanisms are neuromodulation or adaptation of recurrent
connectivity via plasticity. Recurrent connectivity, in the form of cell-type-
specific motifs, has been shown to constrain and control the dimensionality
of brain networks [34]. However, this mechanism would still require some sort
of behavioural information about the eye closure to be activated at the right
times. Thus, besides modulating the activity of V1, feedback could also trigger
other mechanisms for a more refined modulation.

Given the link between V1 activity and behaviour we explore the possible
communication pathways. There are three main candidates: the visual stim-
ulus or absence thereof from the retina to V1; the proprioception of eyelid
muscles via the somatosensory cortex; and the voluntary motor commands for
eye closure. On the one hand, visual stimuli are transmitted from the retina to
V1 via the lateral geniculate nucleus (LGN). The absence of stimuli could be
the reason for the observed changes in the V1 activity. However, the macaques
in our experiments had very little to no visual inputs since they were sitting in
a dark room. Additionally, we found no consistent difference in MUAe activity
levels between the eyes-open and eyes-closed clusters (see results section 5). On
the other hand, proprioception of the eyelid could inform the cortex when the
eyes are closed and trigger the activity changes in V1. Proprioceptive neurons
in the eyelid project via the oculomotor nerve to the midbrain (possibly to
the superior colliculus) [47], eventually entering the cortex via the somatosen-
sory area (S1) [48]. From S1 the signal could find its way to V1 via several
cortico-cortical pathways, potentially including neurons in V4. Alternatively,
voluntary eyelid closure initiated by the motor cortex and eye movements con-
trolled by the frontal eye field may be communicated to the visual cortex via
cortico-cortical connections or the superior colliculus. Given that V4 is part
of the fronto-parietal network, the proprioceptive and eye movement signals
could easily reach V4, which then finally modulates the V1 activity.

Recent work suggests that communication between V1 and V4—in the
presence of visual stimuli—occurs via a dedicated subspace [49]. Our work
did not focus on the communication of sensory stimuli between areas, but
instead focused on the changes observed within V1. Additionally, our data
were recorded in the resting state, where we expect communication between
areas to be reduced compared to visual stimulation tasks. Nevertheless, our
findings suggest that V4-to-V1 interactions shape the activity of V1, and future
work could explore whether, and if so, how such interactions also alter the
communication subspace.

Given the complex mechanisms that seem to be involved to ensure that
V1 population activity depends on eye closure, there must be some purpose
to or benefit from doing so. First of all, if the eyes are closed then no visual
stimuli are expected, so V1 firing rates can drop to a minimum in order to
save energy. When the eyes are open, a higher dimensionality might also be
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advantageous since visual stimuli also have a high dimensionality [10], so that
a high-dimensional state in V1 could facilitate processing visual stimuli.

In summary, we found two clusters in the state space of macaque V1 activ-
ity during the resting state. The clusters were correlated with eye closure, but
not consistently related to activity levels. We also found higher dimensionality
for the eyes-open than for the eyes-closed periods. We hypothesised that the
clusters are modulated by feedback from V4 in a time-dependent fashion, and
showed that such feedback is present in the form of beta-band spectral Granger
causality. Finally, we reproduced our experimental observations in a spiking
neuron network, which confirms the modulatory role of feedback. We have thus
for the first time provided in vivo evidence for the modulation of neural man-
ifolds and dimensionality by cortico-cortical feedback. This finding provides
a new perspective on the interplay between cortico-cortical feedback and the
structure of cortical activity; and underlines the importance of considering eye
closure in the analysis of resting-state signals.
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Methods

Electrophysiological data from macaque L & A

We used publicly available [36] neural activity recorded from the neocortex
of rhesus macaques (N=2) during rest and a visual task. The macaques were
implanted with 16 Utah arrays (Blackrock microsystems), two of them in visual
area V4 and the rest in the primary visual cortex (V1), with a total of 1024
electrodes. The recording system recorded the electric potential at each elec-
trode with a sampling rate of 30 kHz. A full description of the experimental
setup and the data collection and preprocessing has already been published
[36]; here we only provide the details relevant to this study.

Three resting-state (RS) sessions were recorded per macaque, during which
the subjects did not have to perform any particular task and sat in a quiet
dark room. Pupil position and diameter data were collected using an infrared
camera in order to determine the direction of gaze and eye closure of the
macaques. On the same days as the RS recordings a visual response task was
also performed. The visual response data were used to calculate the signal-
to-noise ratio (SNR) of each electrode and all electrodes with an SNR lower
than 2 were excluded from further analysis. Additionally, we excluded up to
100 electrodes that contributed to high-frequency cross-talk in each session, as
reported in the original data publication. The sessions, duration and number
of electrodes per subject are listed in Table 1.

The raw neural data were processed into the multi-unit activity envelope
(MUAe) signal and local field potential (LFP). To obtain MUAe data, the raw
data were high pass filtered at 500 Hz, rectified, low-pass filtered at 200 Hz
and downsampled to 1 kHz. Finally, the 50, 100 and 150 Hz components were
removed with a band-stop filter in order to remove the European electric grid
noise and its main harmonics. During the recordings, the macaque’s head was
held in position with a custom-made headstage. To obtain the LFP data, the
raw data was low pass filtered at 250 Hz, downsampled to 500Hz and a band-
stop filter was applied to remove the European electric grid noise (50, 100 and
150 Hz).

The MUAe and LFP data for each array were already provided by the
original authors in the open-source .nix format, which uses python-neo data
structures to hierarchically organize and annotate electrophysiological data
and metadata. The metadata, such as the cross-talk removal or the positions
of the arrays in the cortex, were provided in the .odml machine- and human-
readable format, which could be easily incorporated into the python analysis
scripts.

Electrophysiological data from macaque Y

In addition to the published data from macaques L & A, we also used an
unpublished data set from one additional rhesus macaque (N=1). Neural activ-
ity was recorded during rest and during a visuomotor integration task. The
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Table 1 Summary of subjects and recordings included in this study.

Subject Session Duration (s) Areas Contacts

L L RS 250717 1363 V1 765
V4 116

L L RS 090817 1321 V1 761
V4 116

L L RS 100817 1298 V1 774
V4 118

A A RS 150819 2278 V1 402
V4 11

A A RS 160819 2441 V1 369
V4 9

Y Y RS 180122 906 V1 64
DP 36

Y Y RS 180201 699 V1 64
DP 36

recording apparatus is described elsewhere [37]. The macaque was implanted
with five Utah arrays (Blackrock microsystems), two of them in the primary
visual cortex (V1), one in dorsal prelunate cortex (area DP), one in area 7A
and one in the motor cortex (M1/PMd). In this study we only included the
6x6 electrode arrays from V1 (two arrays) and DP (one array), for a total of
108 electrodes. The recording system recorded the electric potential at each
electrode with a sampling rate of 30 kHz.

Two resting-state (RS) sessions were recorded, during which the macaque
did not have to perform any particular task and sat in a quiet dark room.
Pupil position and diameter data were collected using an infrared camera in
order to determine the direction of gaze and eye closure of the macaque. See
Table 1 for an overview of the sessions used in this study.

MUAe and LFP signals were computed using the same procedure as for
the other data sets.

Neural manifolds and clustering

The MUAe data were downsampled to 1 Hz and arranged into a single array,
which constituted a very high-dimensional manifold, with between 50 and 900
recording locations per session.

In order to visualise the data, we used a standard dimensionality reduction
technique (principal component analysis, PCA) to reduce the neural manifold
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to 3D. The clusters observed in the RS sessions were labelled using a two-
component Gaussian mixture model on the 3D embedding. The clustering
method provides the log odds, i.e., the chance that any given point belongs to
one cluster or the other. The log odds captures the multi-cluster structure of
the manifold in a single time series and can be considered equivalent to the
cluster identities.

Outlier removal

The neural manifolds in our analysis are a collection of time points scattered
across the state space. In the data some time points appear very distant from
all other points, which we associate with noise and we therefore seek to remove
them. To identify the outliers we used a procedure similar to the one used by
Chaudhuri et al. [5]. First, we calculated the distance matrix of all points to
each other, and took the 1st percentile value from the distance distribution,
D1. We then estimated the number of neighbours that each point had within
D1 distance, and finally discarded the 20 percent of points with the fewest
neighbours.

Topological data analysis

We used persistent homology to confirm that the lower-dimensional structures
that we observed in the 3D embedding of the neural manifolds are in fact
topological features of the data and not just an artefact of the dimensionality
reduction. Before computing the persistence barcodes we embedded the data
into a 10D subspace using the isomap technique [50]. The method aims at
approximately preserving the geodesic distance between data points (that is
the shortest path between two points on the neural manifold) and thus is suited
for reducing the dimensionality of the data when applying a topological data
analysis. The analysis on the 10D data showed qualitatively equivalent results
to the full-dimensional data, while requiring a much shorter computation time.

To calculate the persistence barcodes of the Vietoris-Rips complex of the
neural manifold we used an efficient open-source implementation (Ripser1).
Briefly, the algorithm successively inflates balls with radius r around each
point of the manifold. If k points have a pairwise distance smaller than r (that
is, for all pairs of points both points are contained in the ball of the other
point), they form a (k−1)D simplex. Thus, the neural manifold gives rise to a
simplicial complex (a collection of simplices of potentially different dimension)
the topological features of which represent the topology of the neural mani-
fold and can be extracted computationally. As r is increased, many short-lived
features appear by chance. If the manifold has complex topological structures,
they should continuously appear as the radius of the balls grows for a large
range of r. We computed the persistence barcode for the first three homol-
ogy groups H0, H1 and H2. Homology groups are topological invariants that
capture topological features of a given dimension of the neural manifold. The

1https://pypi.org/project/ripser/
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long-lasting bars in the n-th persistence barcode correspond to the number
of independent generators βn of the respective homology group Hn. For low
dimensionalities, they can be interpreted intuitively: β0 is the number of con-
nected components, β1 the number of 1D holes, β2 the number of enclosed 2D
voids. Throughout all plots of this paper we display the top 1% longest-lasting
barcodes for each homology group.

Dimensionality

We used two different approaches to study the dimensionality of the neural
data.

First, we compute the time-varying participation ratio (PR, Equation 1)
from the covariance matrix. We take a 30 s sliding window with a 1 s offset
over the MUAe data and compute the PR for each window separately. Higher
activity leads to higher variance; thus, we normalised the data within each
window via z-scoring to minimise this effect. The PR does not require setting
an arbitrary threshold. From the time-varying PR we measured the correlation
between the log odds and the PR, and the PR distribution in each cluster.

Second, we computed the eigenvalue distribution of the neural data for the
entire session as well as within each cluster. Once again we normalised the
data after sampling each cluster. The distribution appeared to follow a power
law, in agreement with previous studies [10]. We used a linear regression in
log-log space to fit a power law to our data, where the slope of the linear fit
in the log-log plot corresponds to the exponent α of the power law.

Coherence and Granger causality

To study the communication between cortical areas we rely on the coherence
and Granger causality.

Coherence is the quantification of linear correlations in the frequency
domain. Such that

Cxy(f) =
|Sxy(f)|2

Sxx(f)Syy(f)
(2)

where Cxy is the frequency (f) dependent coherence between two signals x
and y, Sxy(f) is the cross-spectral density, and Sxx(f) and Syy(f) are the
auto-spectral densities.

In order to assess the directionality of frequency dependent interactions
between the areas we applied spectral Granger causality analysis to the LFP
recordings [51]. We first computed the cross-spectral matrix S(f) with the
multitaper method. To this end, we subdivided the chosen signal pairs into 10
s long segments. These were processed individually with 3 Slepian tapers and
averaged in the end. This yielded the cross-spectrum. The segments had an
overlap of 50%. Next, we decomposed the cross-spectrum into the covariance
matrix Σ and the transfer function H(f) with the Wilson spectral matrix
factorisation [52], obtaining the matrix equation

S = H(f)ΣH†(f). (3)
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With these factors, one is able to obtain a version of directional functional
connectivity between the first and second signals via

GCx→y(f) =
Sxx(f)

H̃xx(f)ΣxxH̃
†
xx(f)

(4)

where H̃xx(f) = Hxx(f)+Σxy/ΣxxHxy(f) and mutatis mutandis for the influ-
ence of the second onto the first signal. The analysis was performed for all
pairs of channels between the areas that exhibited a peak in the coherence in
the β band 12 Hz < f < 30 Hz.

We quantify the beta-band Granger causality strength as

B =

f=30 Hz∑
f=12 Hz

GCx←y(f)−GCx→y(f). (5)

We also analysed the time-varying spectral Granger causality. For this aim
we used 10 s windows and moved them across the data with 1 s steps, for
a final time resolution of 1 Hz. We calculated the spectral Granger causality
for each window separately. The initial and final 5 s were discarded to avoid
disruptions at the boundaries. So the time-varying causality spectrogram is

GCx→y(t, f) = GCx→y(f)

∣∣∣∣t1
t0

, ... ,GCx→y(f)

∣∣∣∣tn
tn−1

(6)

and mutatis mutandis for the y → x direction.
Finally, we also define the time-varying Granger causality difference

∆GC(t, f) = GCx←y(t, f)−GCx→y(t, f), (7)

which summed over the beta band we call

B(t) =

f=30 Hz∑
f=12 Hz

∆GC(t, f). (8)

Note that

B 6=

N∑
B(t)

N
(9)

due to the nonlinearities in the Granger causality calculation.
Both the coherence and spectral Granger causality were implemented in

the Electrophysiology Analysis Toolkit (Elephant) [53].
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Peak detection

To detect coherence peaks we used a standard peak detection algorithm for 1D
arrays using wavelet transforms. We computed the continuous wavelet trans-
form (cwt) for wavelets with widths from 10 Hz to 100 Hz (at 0.1 Hz steps),
using a Ricker wavelet—i.e., a Mexican hat. Next, we searched for ridge lines
in the cwt—peaks across different wavelet lengths—following standard crite-
ria [54]. Finally, the ridge lines were filtered based on their total length, gaps
and signal-to-noise ratio. The resulting ridge lines (if any) were considered as
peaks in the coherence.

The detected peaks tended to be broad, since our parameter choice inten-
tionally rejected narrow peaks. We chose this configuration in favour of
robustness and to minimise false positives. Nevertheless, peaks were detected
for a majority of electrode pairs.

Table 2 Peak detection algorithm parameters.

CWT peak detection parameters
widths 10 − 100 Hz Width range for CWT matrix.
width step 0.1 Hz Step between widths.
wavelet Ricker Wavelet used for convolution.
max distances widths / 4 Criterion to consider ridge lines connected.
gap thresh 10 Hz Ridge lines farther apart will not be connected.
min length 225 Minimum length of ridge line.
min snr 1 Percentile within the same ridge line.
noise perc 10 Percentile below which to consider noise.

Spiking neural network simulations

To investigate the hypothesis that feedback in the β-band induces a change
in dimensionality, we conducted a spiking neural network simulation. The
network consists of 10, 000 excitatory and 2, 500 inhibitory leaky integrate-
and-fire neurons with exponential post-synaptic currents. Two neurons are
randomly connected with a connection probability of p = 0.1. The spike
transmission delay is randomly sampled following a log-normal distribution.
During a simulation, we distinguish two alternating states corresponding to
the eyes-open and eyes-closed periods during the recordings. In the first state
(background state), the input consists of spike trains sampled from an inho-
mogeneous Poisson process with a baseline rate of νbg Hz that is modulated
with a 1 Hz sinusoidal oscillation. In the second state (feedback state), the
network additionally receives input spike trains from inhomogeneous Poisson
processes whose rates are oscillating at 17 Hz. The first state represents the
eyes-closed, the second the eyes-open. Both input regimes provide independent
input to each neuron, based on the same rate profiles. During the simulation,
we recorded the spiking activity of 200 excitatory and 75 inhibitory neurons
and determined the dimensionality as well as the power-law exponent of the
spike trains as described above with a bin size of 1 s. See Table 3, Table 4 for
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Table 3 General model description

Model Summary
Populations two populations, one excitatory, one inhibitory
Connectivity random connectivity
Neuron model leaky integrate-and-fire model
Synapse model exponential postsynaptic current
Input independent spike trains from inhomogeneous

Poisson processes with given rate r(t)
Neuron and synapse model

Subthreshold dynamics dV
dt

= − V
τm

+
Isyn(t)

Cm
,

Isyn(t) = Je−(t−t∗−d)/τsynH(t− t∗ − d)
Spiking If V (t−) < θ and V (t+) ≥ θ,

1. Set t∗ = t and V (t) = V0, and
2. Emit spike with time stamp t∗.

Connectivity
Type pairwise Bernoulli,

i.e., for each pair of neurons generate a
synapse with probability p

Weights fixed source and target population specific weights
Delays log-normally distributed delays for

excitatory and inhibitory neurons
Input

Rate r(t) = max(0, νbase + νamp · sin(2πf · t))

a full description of the network. For the simulations we used NEST (version
3.3) [55].
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Table 4 Simulation parameters.

Population Parameters
Nex 10,000 number of excitatory neurons
Nin 2,500 number of inhibitory neurons

Connectivity Parameters
p 0.1 connection probability

Neuron parameters
τm 20ms membrane time constant
τr 2ms absolute refractory period
τsyn 2ms postsynaptic current time constant
Cm 1pF membrane capacity
Vm 0mV resting potential
EL 0mV membrane capacity
Vreset 0mV reset membrane potential
Vth 20mV threshold

Stimulus parameters: Background
νbase 800 spikes/s base line rate
νamp 500 spikes/s amplitude
f 1 Hz sinusoidal oscillation frequency

Stimulus parameters: Feedback
νbase 0 spikes/s base line rate
νamp 500 spikes/s amplitude
f 17 Hz sinusoidal oscillation frequency

Synapse parameters
JEE 0.5 mV synaptic efficacy excitatory to excitatory
JIE 0.75 mV synaptic efficacy excitatory to inhibitory
g 4 relative inhibitory synaptic efficacy

Delay parameters
µex 1.5 ms mean of lognormal distribution

for excitatory connections
µin 0.75 ms mean of lognormal distribution

for inhibitory connections
σex,in 0.5 ms standard deviation of lognormal

distribution for all connections
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[35] Supèr, H., Roelfsema, P.R.: Chronic multiunit recordings in behaving animals: advantages
and limitations. Progress in Brain Research 147, 263–282 (2005). https://doi.org/10.1016/
S0079-6123(04)47020-4

[36] Chen, X., Morales-Gregorio, A., Sprenger, J., Kleinjohann, A., Sridhar, S., van Albada,
S.J., Grün, S., Roelfsema, P.R.: 1024-channel electrophysiological recordings in macaque
V1 and V4 during resting state. Scientific Data 9(1), 77 (2022). https://doi.org/10.1038/
s41597-022-01180-1

[37] de Haan, M.J., Brochier, T., Grün, S., Riehle, A., Barthélemy, F.V.: Real-time visuomotor
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Extended data figures
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Fig. S1 Overview of the experimental data from session L RS 090817. a Time evo-
lution of signals. b, c, d Three dimensional PCA embedding of the MUAe neural
manifold..
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Fig. S2 Overview of the experimental data from session L RS 100817. a Time evo-
lution of signals. b, c, d Three dimensional PCA embedding of the MUAe neural
manifold.
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Fig. S3 Overview of the experimental data from session A RS 150819. a Time evo-
lution of signals. b, c, d Three dimensional PCA embedding of the MUAe neural
manifold.
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Fig. S4 Overview of the experimental data from session A RS 160819. a Time evo-
lution of signals. b, c, d Three dimensional PCA embedding of the MUAe neural
manifold.
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Fig. S5 Overview of the experimental data from session Y RS 180122. a Time evo-
lution of signals. b, c, d Three dimensional PCA embedding of the MUAe neural
manifold.
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Fig. S6 Overview of the experimental data from session Y RS 180122. a Time evo-
lution of signals. b, c, d Three dimensional PCA embedding of the MUAe neural
manifold.
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Fig. S7 Persistence homology of the high-dimensional manifolds show the presence
of at least two clusters. Each panel shows data for one session. For each panel, (Top)
Sample clouds with a green radius around them. These correspond to the radius used
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Fig. S8 V4 activity from session L RS 250717 does not show distinct clusters in
its neural manifold. a Time evolution of signals. b, c, d Three dimensional PCA
embedding of the MUAe neural manifold.
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Fig. S9 DP activity from session Y RS 180201 does not show distinct clusters in
its neural manifold. a Time evolution of signals. b, c, d Three dimensional PCA
embedding of the MUAe neural manifold.
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Fig. S11 Spatial distribution of Granger causality strength per electrode. One rep-
resentative session shown per macaque. a, b, c Schematic representation of the
electrode locations overlaid with the beta causality strength B. d, e, f Receptive field
(RF) map overlaid with B. Note that stronger B is found around the foveal region.
Receptive field data for macaque Y is missing for now but will be incorporated as
soon as it is available.
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Fig. S12 Feedback signals are not correlated with gaze direction. a Sample traces of
the mean beta-band Granger causality difference, gaze direction (Eye X, Eye Y), and
gaze direction derivative (∆X, ∆Y). b Sample beta causality difference over the gaze
locations. Higher feedback is not concentrated in particular regions. c Histograms
of Pearson correlation coefficients between time-dependent causality difference and
gaze signals, computed for all electrode pairs in all sessions. Significant (p < 0.01
two-tailed) part of histograms shown in orange. Gaze direction derivatives show no
significant correlations. Note that we did not correct for multiple testing, since reduc-
ing the p-value threshold would simply reinforce our finding that no strong correlation
was present between the gaze and the feedback. d Scatter plot of the summed time-
independent causality difference against the correlation with gaze direction. There is
no clear relation between B(t)-gaze correlation and causality strength.



At many physiological and anatomical levels in the brain,
the distribution of numerous parameters is strongly skewed
with a heavy tail.

Buzsáki andMizuseki (2014)

3
Lognormal distribution of neuron densities

Summary:
In this chapter we study the neuron density distribution in the mammalian neocortex. We
show that neuron densities are compatible with a lognormal distribution across cortical areas
in several mammalian species, a previously unknown feature. We find that this holds true
for uniformly sampled regions across cortex of several species; even when accounting for
several confounding variables, such as staining types or the presence of glia. The lognormal
distribution also holds true within cortical areas of the marmoset. Additionally, we provide
a simple model of cell division, which in the presence of Gaussian noise leads to lognormal
distributions of neuron densities and, given distributed proliferation times, can also account
for the coexistence of lognormal neuron density distributions both within and across the
cortical areas. Finally, we compared the lognormal distribution with other statistical models
and found that the lognormal distribution performs equally or better than all other models.
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Abstract

Numbers of neurons and their spatial variation are fundamental organizational fea-

tures of the brain. Despite the large corpus of data available in the literature, the

statistical distributions of neuron densities within and across brain areas remain

largely uncharacterized. Here, we show that neuron densities are compatible with

a lognormal distribution across cortical areas in several mammalian species. We

find that this also holds true for uniformly sampled regions across cortex as well as

within cortical areas. Our findings uncover a new organizational principle of cor-

tical cytoarchitecture. The ubiquitous lognormal distribution of neuron densities

adds to a long list of lognormal variables in the brain.
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Introduction

Neurons are not uniformly distributed across the cerebral cortex; their density varies strongly

across areas and layers [1]. The neuron density directly affects short-range as well as long-range

neuronal connectivity [2, 3]. Elucidating the distribution of neuron densities across the brain

therefore provides insight into its connectivity structure and, ultimately, cognitive function.

Additionally, statistical distributions are essential for the construction of computational models,

which rely on predictive relationships and organizational principles where the experimental data

are missing [4, 5]. Previous quantitative studies have provided reliable estimates for cell den-

sities across the cerebral cortex of rodents [6, 7, 8], non-human primates [8, 9, 10, 11, 12, 13],

large carnivores [14], and humans [15, 1]. However, to the best of our knowledge, the univari-

ate distribution of neuron densities across and within cortical areas has not yet been statistically

characterized. Instead, most studies focus on qualitative and quantitative comparisons across

species, areas, or cortical layers. Capturing the entire distribution is necessary because long-

tailed, highly skewed distributions are prevalent in the brain [16] and invalidate the intuition—

guided by the central limit theorem—that the vast majority of values are in a small region of a

few standard deviations around the mean.

Here, we for the first time characterize the distribution of neuron densities ρ across mam-

malian cerebral cortex. Based on the sample histograms (Figure 1) we hypothesize that ρ

follows a lognormal distribution, similar to many other neuroanatomical and physiological

variables such as synaptic strengths, axonal widths, and cortico-cortical connection densities

[16, 17, 18]. Using neuron density data from mouse (Mus musculus), marmoset (Callithrix jac-

chus), macaque (Macaca mulatta), human (Homo sapiens), galago (Otolemur garnettii), owl

monkey (Aotus nancymaae), and baboon (Papio cynocephalus anubis) we confirm this hypoth-

esis for the given species (see Cell density data for a detailed description of the data). Going
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beyond the distribution across cortical areas, we furthermore show that neuron densities within

most areas of marmoset cortex are also compatible with a lognormal distribution. Moreover,

we show that the lognormal distribution can emerge during neurogenesis from a simple cell

division model with variability. Finally, we compare with several other distributions and find

that none outperform the lognormal distribution as a model of the data within and across cortex.

Results

To test for lognormality, we take the natural logarithm, ln(ρ), which converts lognormally dis-

tributed samples into normally distributed samples (Figure 1B). We then test for normality of

ln(ρ) using the Shapiro-Wilk (SW) test, the most powerful among a number of commonly

applied normality tests [19]. Large outliers (|z-scored ln(ρ)| ≥ 3; marked with a red cross in

Figure 1C) were excluded from the normality test. The removed outliers are area V1 in macaque

and marmoset, which have densities far outside the range for all other areas in both species, and

area APir in marmoset, which has a noticeably distinct cytoarchitecture with respect to the rest

of the cerebral cortex [9]. We denote different data sets for the same species with subscript

indices (see Cell density data). The SW test concludes that the normality hypothesis of ln(ρ)

cannot be rejected for mouse, marmoset, macaque1, human, galago1, owl monkey, and baboon

(see Figure 1B). For the data sets macaque2 and galago2 the normality hypothesis is rejected

(p < 0.05); however, in these data sets, the densities were sampled neither uniformly nor based

on a cytoarchitectonic parcellation. The normality hypothesis for the distribution across cy-

toarchitectonic areas is further supported by Figure 1C, which shows that the relation between

theoretical quantiles and ordered samples is almost perfectly linear except for macaque2 and

galago2. Next, we test the z-scored ln(ρ) from the different species and data sets against each

other and find that they are pairwise statistically indistinguishable (α = 0.05 level; two-sample

two-sided Kolmogorov-Smirnov test, see Figure S1 for full test results).
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Additionally, we control for cell types in the distributions of the mouse, galago1, owl mon-

key, and baboon data. In the mouse data, different types of neurons and glia were labeled with

specific genetic markers and their respective densities were reported separately for all cell types

[7]. In the galago1, owl monkey, and baboon data sets, the total numbers of cells and neurons

were reported separately [11]. We show that all subtypes of neurons in the mouse are com-

patible with a lognormal distribution (Figure S2; SW test on ln(ρ), p > 0.05) while glia are

not—with the notable exception of oligodendrocytes. When neurons and glia are pooled to-

gether (Figure S2C,D), the distribution of ln(ρ) still passes the SW normality test, likely due to

the distribution being dominated by the neurons. Similar observations are made in the baboon

data, where the glia do not pass the lognormality test, but the neurons do. In the cases of galago1

and owl monkey both the neurons and glia pass the lognormality test (Figure S2), which may,

however, be partly due to the small number of density samples (N=12 in both cases). Thus, the

mouse and baboon data—with large samples sizes (N=42 and N=142, respectively)—suggest

that it is the neuron densities that follow a lognormal distribution but not necessarily the glia

densities.

Furthermore, we also perform a control test on the different types of staining—Nissl and

NeuN—using the macaque1 data. The staining methods differ in their treatment of glia: NeuN

tends to label neuronal cell bodies only while Nissl indiscriminately labels both neurons and

glia. We show that regardless of staining type the cell densities pass the lognormality test

(Figure S3; SW test on ln(ρ) with p > 0.05), suggesting that counting some glia in the cell

densities does not confound our analysis of the macaque1 data.

Taken together, the normality test, the quantiles plots, the pairwise tests, the cell type com-

parison, and the staining method comparison provide compelling evidence that the logarith-

mized neuron densities are normally distributed across cytoarchitectonic areas. This also holds

for uniformly sampled neuron densities (baboon) but not for a sampling that is neither uniform
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nor based on a cytoarchitectonic parcellation (macaque2, galago2). Thus, the neuron densi-

ties are consistent with a lognormal distribution across the different cortical areas, as long as

sampling is not irregular.

To investigate whether the lognormal distribution holds within cortical areas, we lever-

age numerical estimates of neuron density in marmoset [9]. Neurons were counted within

150 × 150 µm counting frames for four strips per cortical area, all originating from the same

subject. The neuron densities within the counting frames ρs are the within-area samples; their

sample distributions in three representative areas (MIP, V2, and V3; Figure 2A) again suggest a

lognormal distribution. As before, we test for lognormality by testing ln(ρs) for normality with

the SW-test (for full test results see Table S2). At significance level α = 0.05, the normality

hypothesis is not rejected for 86 out of 116 areas; whereas at α = 0.001, this is the case for

112 out of 116 areas (Figure 2B,C). Thus, regardless of the precise significance threshold, the

lognormality hypothesis cannot be rejected within most cortical areas in the marmoset cortex.

This finding raises the question how the intricate process of neurogenesis [20] culminates in

lognormally distributed neuron densities in almost all areas. A simple model shows that there

is no need for a specific regulatory mechanism: assuming that the proliferation of the neural

progenitor cells is governed by a noisy rate

λ(t) = µ(t) + ξ(t), (1)

where µ(t) denotes the mean rate and ξ(t) is a zero-mean Gaussian process, the resulting popu-

lation of progenitor cells, and eventually neurons, is lognormally distributed (see Model of pro-

genitor cell division with variability). Thus, the lognormal neuron density distribution within

areas could be a hallmark of a cell division process with variability. The model furthermore

predicts that the mean and variance of ln(ρ) increase with proliferation time. Since the prolif-

eration time varies up to twofold between areas [20], mean and variance of ln(ρ) are correlated
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across areas according to the model—indeed, they are significantly correlated in the marmoset

data (Pearson r = 0.32, p < 10−3, Figure S4).

To complement the statistical hypothesis tests on the logarithmic densities, we compared

the lognormal model with six other statistical distributions based on the relative likelihood (see

Statistical model comparison). We included statistical distributions with support in R+ since

neuron densities cannot be negative: lognormal, truncated normal, inverse normal, gamma,

inverse gamma, Lévy, and Weibull. Of those distributions the lognormal, inverse normal, and

inverse gamma stand out as the distributions with the highest relative likelihoods, both across

the entire cortex and within cortical areas (Figure S5A, Figure S6A). A visual inspection of

the fitted distribution reveals that the lognormal, inverse normal, and inverse gamma produce

virtually indistinguishable probability densities (Figure S5B, Figure S6C); indeed, the relative

likelihoods of the three models are above 0.05 in all cases. This suggests that the data could

theoretically be distributed according to either the lognormal, inverse normal, or inverse gamma

distribution. However, out of these, the lognormal distribution could arise from a simple model

of cell division (equation (1))—while no interpretable mechanisms leading to inverse normal

or inverse gamma distributions are known in this context. Thus, the similar likelihood and a

simple biophysical explanation together argue for a lognormal rather than an inverse normal or

inverse gamma distribution of neuron densities.

Discussion

In conclusion, we show that neuron densities are compatible with a lognormal distribution

across cortical areas in multiple mammalian cortices and within most cortical areas of the mar-

moset, uncovering a previously unexplored organizational principle of cerebral cortex. Further-

more, we propose a simple model, based on a cell division process of the progenitor cells with

variability, that accounts for the emerging lognormal distributions within areas. Lastly, we show
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that none of an extensive list of statistical models outperform the lognormal distribution. Our

results are in agreement with the observation that surprisingly many characteristics of the brain

follow lognormal distributions [16]. Moreover, this analysis highlights the importance of char-

acterizing the statistical distributions of brain data because simple summary statistics—such as

the mean or standard deviation—lack nuance and are not necessarily a good representation of

the underlying distribution.

The distributions of neuron and cell densities in general depend on the underlying spatial

sampling. We found that neuron densities follow a lognormal distribution within cytoarchitec-

tonically defined areas, across such areas, and when averaged within small parcels uniformly

sampled across cortex, but not when sampled in a highly non-uniform manner not following

cytoarchitectonic boundaries. The observation of lognormality both within and across cytoar-

chitectonic areas as well as across small uniformly sized parcels suggests an interesting topic for

further research: uncovering whether the neuron densities obey an invariance principle across

scales.

In principle, cortex-wide organizational structures might be by-products of development or

evolution that serve no computational function [21]—but the fact that we observe the same

organizational principle for several species and across most cortical areas suggests that the

lognormal distribution serves some purpose. Heterogeneous neuron densities could assist com-

putation through their association with heterogeneity in other properties such as connectivity

and neuronal time constants [4, 22]; indeed, such heterogeneity is known to be a valuable asset

for neural computation [23, 24]. Alternatively, localized concentration of neurons in certain

areas and regions could also serve a metabolic purpose [25], because centralization supports

more efficient energy usage. This is particularly relevant since approximately half of the brain’s

energy consumption is used to support the communication between neurons [26]. Also from the

perspective of cortical hierarchies it makes sense to have few areas with high neuron densities
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and many areas with lower neuron densities: Low-density areas contain neurons with large den-

dritic trees [27] receiving convergent inputs from many neurons in high-density areas lower in

the hierarchy. The neurons with extensive dendritic trees in higher areas are involved in differ-

ent, area-specific abstractions of the low-level sensory information [28, 29]. There is probably

not a single factor that leads to lognormal neuron densities in the cortex; further research will

be needed to refine our findings and uncover the functional implications.
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Figure 1: Neuron and cell densities ρ follow a lognormal distribution across cortical areas for
multiple species. A Histogram of ρ (bars) and probability density function of a fitted lognormal
distribution (line). B Z-scored ln(ρ) histogram (bars), standard normal distribution (line), and
result of the Shapiro-Wilk normality test. C Probability plot of z-scored ln(ρ). Discarded
outliers marked with a red cross.
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Figure 2: Neuron densities ρs follow a lognormal distribution within most areas of marmoset
cortex. A Sample histograms of ρs and fitted lognormal distributions for three areas representing
different degrees of lognormality. B Log10 of p-value of Shapiro-Wilk normality test of ln(ρs)
on a flattened representation of the marmoset cortex [9]. C Number of areas with p-values in
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Materials and methods

Cell density data

Estimates of neuron density for the available cortical areas across the mouse (Mus musculus),

marmoset (Callithrix jacchus), macaque (Macaca mulatta), human (Homo sapiens), galago

(Otolemur garnettii), owl monkey (Aotus nancymaae), and baboon (Papio cynocephalus anu-

bis) cerebral cortex were used in this study.

In the cases of mouse, marmoset, macaque1, human, galago1, and owl monkey the data

were sampled from standard cytoarchitectonic parcellations; abbreviated names for all areas are

listed in Table S1. Note that we use subscript indices to distinguish between different data sets

on the same model animal, e.g. macaque1 and macaque2.

Neuron density estimates for the mouse were published in [7], and were measured from

Nissl-body-stained slices, where genetic markers were used to distinguish between cell types.

The data were provided in the Allen Brain Atlas parcellation [30, 31].

Neuron density estimates for the marmoset cortex were published in [9], and were measured

from NeuN-stained slices. The data were provided in the Paxinos parcellation [32]. Neuron

densities within each counting frame used in the original publication [9] (their Figure S1) were

obtained via personal communication with Nafiseh Atapour, Piotr Majka, and Marcello G. Rosa.

The neuron density estimates in the first macaque data set, macaque1, were previously pub-

lished in visual form in [10], and were obtained from both Nissl-body- and NeuN-stained brain

slices. Counts based on Nissl-body staining were scaled according to a linear relationship with

the counts from NeuN staining obtained from selected areas where both types of data were

available [10]. The data follow the M132 parcellation [17] and numerical values were provided

by Sarah F. Beul and Claus C. Hilgetag via personal communication.

Cell density estimates for the human cortex were previously published in [1], and were
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measured from Nissl-body-stained brain slices. The human data therefore most likely reflect

combined neuron and glia densities. The data were provided in the von Economo parcellation

[1].

Cell and neuron density estimates for galago1&2, owl monkey, baboon, and macaque2 were

previously published in [11], and were measured using the isotropic fractionator method. The

data are sampled from common parcellation schemes in galago1 and owl monkey, approxi-

mately equal-size samples in the baboon, and irregular non-uniform samples in macaque2 and

galago2.

Statistical model comparison

In order to assess which model is most compatible with the data, we compared the relative

likelihood of different distributions against each other. We included an extensive list of distri-

butions with support on R+, estimated the distributions’ parameters using maximum likelihood,

and calculated the Akaike Information Criterion (AIC)

AIC = 2k − 2 lnL (2)

where k is the number of estimated parameters of the model and L is the estimated maximum

likelihood. We further compare the models using the relative likelihood (Lr)

Lr = e(AICmin−AICi)/2 (3)

where AICmin is the minimum AIC across all models and AICi is the AIC for the ith model.

Note that the relative likelihood is equal to the relative likelihood if the number of estimated

parameters is the same in both models. The relative likelihood indicates the probability that,

from among the tested models, the ith model most strongly limits the information loss. We take

a significance threshold of α = 0.05 on the relative likelihood to determine whether a model is

significantly worse than the best possible model.
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Model of progenitor cell division with variability

We assume that the proliferation of the neural progenitor cells is governed by a noisy rate

λ(t) = µrate + σrateξ(t), (4)

where µrate denotes the mean rate, ξ(t) is a zero-mean Gaussian white noise process, and σrate

controls the strength of the noise. During proliferation, we assume that the population size of

the progenitor cells grows exponentially with rate λ, i.e., it obeys d
dt
N = λN . Dividing by a

reference volume and inserting equation (4), we obtain a stochastic differential equation (SDE)

for the density of progenitor cells ρ:

d

dt
ρ = (µrate + σrateξ(t))ρ (5)

We here use the Stratonovich interpretation, i.e., we assume that the noise process has a small

but finite correlation time before taking the white-noise limit [33].

Working in the Stratonovich interpretation, we can transform the SDE to d
dt
ln ρ = µrate +

σrateξ(t) with the solution [34]

ln ρ(t) = ln ρ0 + µratet+ σrate

∫ t

0

ξ(s)ds. (6)

Since ξ(t) is Gaussian and equation (6) is linear, ln ρ(t) is Gaussian and hence ρ(t) is log-

normally distributed. The parameters of this lognormal distribution are µ(t) = ⟨ln ρ(t)⟩ and

σ2(t) = ⟨∆(ln ρ(t))2⟩. Using equation (6), ⟨ξ(s)⟩ = 0, and ⟨ξ(s)ξ(s′)⟩ = δ(s − s′), we obtain

[34]

µ(t) = ln ρ0 + µratet and σ2(t) = σ2
ratet. (7)

Thus, the neuron densities resulting from the model of cell division with variability, equation

(5), are lognormally distributed with parameters µ(t) and σ2(t) specified in equation (7). In

particular, equation (7) predicts that both parameters increase with the proliferation time t.
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The model can be generalized while still leading to a lognormal distribution of neuron den-

sities: 1) The mean rate can be time-dependent, µrate = µrate(t). 2) The noise process can be

an arbitrary zero-mean (a non-zero mean can always be incorporated into µrate(t)) Gaussian

process with correlation function Cξ(t, t
′). Both generalizations allow one to incorporate a time

dependence of mean and noise strength during the proliferation. Assuming an absence of corre-

lation between noise and neuron density prior to t = 0, the above steps lead to the generalized

solution

ln ρ(t) = ln ρ0 +

∫ t

0

µrate(s)ds+

∫ t

0

ξ(s)ds. (8)

Here, ln ρ(t) is still a Gaussian process, because it is a linear transformation of the Gaussian

process ξ(t). Due to the marginalization property of Gaussian processes, ln ρ(t) is normally

distributed for any fixed time t with parameters

µ(t) = ln ρ0 +

∫ t

0

µrate(s)ds and σ2(t) =

∫ t

0

∫ t

0

Cξ(s, s
′)dsds′. (9)

Thus, ρ(t) is lognormally distributed with parameters µ(t) and σ2(t) specified in equation (9).

Note that in equation (9), in contrast to equation (7), µ(t) and σ2(t) do not necessarily grow

linearly with time but may exhibit a more intricate temporal dependence. Nonetheless, equation

(9) predicts that µ(t) and σ2(t) are related through the proliferation time.
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Supplementary tables

Table S1: Cortical areas included in this study.

Species Area abbreviations

Mouse FRP, MOp, MOs, SSp, SS-n, SSp-bfd, SSp-ll, SSp-m, SSp-ul, SS-tr, SSs, VISC, AUDd,
AUDp, AUDpo, AUDv, VISal, VISam, VISl, VISp, VISpl, VISpm, ACAd, ACAv,
ACAv, ACAv, ORBl, ORBm, ORBvl, AId, AIp, AIv, RSPagl, RSPd, RSPv, AONd,

AONe, AONl, AONm, AONpv, TTd, TTv

Marmoset A10, A9, A46V, A46D, A8aD, A8b, A8aV, A47L, A47M, A45, A47O, ProM, A11,
A13b, A13a, A13L, A13M, OPAl, OPro, Gu, A32, A32V, A14R, A14C, A25, A24a,
A24b, A24c, A24d, A6DR, A6Vb, A6Va, A8C, A6M, A6DC, A4c, A4ab, PaIM, AI,
PaIL, DI, GI, IPro, TPro, S2PR, A3a, S2PV, A3b, S2I, S2E, A1-2, AuRTL, AuRT,

AuRPB, AuRTM, AuR, AuRM, AuAL, AuA1, AuCM, AuCPB, AuML, AuCL, TPPro,
STR, TE1, TPO, ReI, TE2, PGa-IPa, TPt, TE3, TEO, Pir, APir, Ent, A36, A35, TF, TL,

TH, TLO, TFO, A23c, A23a, A29d, A30, A23b, A29a-c, A23V, ProSt, PF, PE, PFG,
A31, AIP, PG, PEC, VIP, LIP, PGM, V6A, OPt, MIP, MST, FST, V5, V4T, A19M, V3A,

V4, V6, A19DI, V3, V2, V1

Macaque1 2, 5, 9, 10, 11, 12, 13, 14, 23, 25, 32, 24a, 24c, 24d, 46d, 46v, 7A, 7B, 7m, 8B, 8l, 8m,
8r, 9-46d, 9-46v, DP, ENTO, F1, F2, F3, F4, F5, F6, F7, LIP, MT, OPAI, OPRO, PERI,

STPi, TEad, TEav, TEO, TH-TF, V1, V2, V3A, V4

Human FA, FB, FC, FCBm, FD, FD∆, FDt, FE, FF, FG, FH, FJ, FK, FL, FM, FN, LA1, LA2,
LC1, LC2, LC3, LD, LE1, LE2, IA, IB, OA, OB, OC, PA, PB1, PB2, PC, PD, PE, PF,

PG, PH, HA, HB, HC, HD, HE, HF, TA, TB, TC, TD, TE, TF, TG

Galago1 &
Owl Monkey

V1, V2, dV3, vV3, S1, M1, A1, MT, premotor, DL, Remain Ctx, Surr Ctx
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Table S2: Results of the Shapiro-Wilk test for normality of ln(ρs) in marmoset cortical areas.
Values rounded to two significant digits.

Area S p-value Area S p-value Area S p-value
V1 0.97 0.39 AI 0.95 0.0043 TH 0.97 0.66

A10 0.95 0.19 PaIL 0.95 0.33 TLO 0.96 0.18
A9 0.98 0.51 DI 0.97 0.098 TFO 0.97 0.26

A46V 0.98 0.56 GI 0.97 0.67 A23c 0.97 0.36
A46D 0.98 0.49 Ipro 0.97 0.66 A23a 0.99 0.98
A8aD 0.97 0.34 TPro 0.97 0.77 A29d 0.95 0.21

A8b 0.96 0.16 S2PR 0.92 0.006 A30 0.98 0.73
A8aV 0.96 0.17 A3a 0.95 0.04 A23b 0.97 0.45
A47L 0.96 0.052 S2PV 0.93 0.014 A29a-c 0.97 0.70

A47M 0.97 0.30 A3b 0.96 0.20 A23V 0.96 0.15
A45 0.96 0.18 S2I 0.97 0.33 ProSt 0.93 0.018

A47O 0.98 0.70 S2E 0.94 0.0046 PF 0.94 0.00083
ProM 0.97 0.21 Area1-2 0.97 0.37 PE 0.94 0.00065

A11 0.97 0.41 AuRTL 0.97 0.40 PFG 0.92 0.0046
A13b 0.96 0.58 AuRT 0.97 0.031 A31 0.97 0.31
A13a 0.91 0.048 AuRPB 0.98 0.89 AIP 0.96 0.063
A13L 0.97 0.45 AuRTM 0.97 0.73 PG 0.99 0.37

A13M 0.99 0.97 AuR 0.98 0.0093 PEC 0.91 0.0032
OPAl 0.99 0.99 AuRM 0.9 0.017 VIP 0.92 0.0044
OPro 0.98 0.75 AuAL 0.94 0.12 LIP 0.95 0.042

GU 0.95 0.058 AuA1 0.98 0.48 PGM 0.98 0.78
A32 0.97 0.20 AuCM 0.97 0.33 V6A 0.95 0.068

A32V 0.96 0.51 AuCPB 0.93 0.037 OPt 0.91 0.0015
A14R 0.98 0.77 AuML 0.97 0.44 MIP 0.9 0.00091
A14C 0.79 5.5e-06 AuCL 0.94 0.045 MST 0.98 0.53

A25 0.89 0.022 TPPro 0.98 0.91 FST 0.95 0.10
A24a 0.96 0.35 STR 0.96 0.44 V5 0.98 0.68
A24b 0.97 0.41 TE1 0.96 0.17 V4T 0.95 0.082
A24c 0.97 0.54 TPO 0.97 0.31 A19M 0.98 0.80
A24d 0.92 0.017 ReI 0.95 0.40 V3A 0.91 0.006

A6DR 0.97 0.23 TE2 0.96 0.15 V4 0.97 0.064
A6Vb 0.97 0.32 PGa/IPa 0.97 0.45 V6 0.96 0.017
A6Va 0.98 0.56 TPt 0.94 0.033 A19DI 0.95 0.074
A8C 0.95 0.055 TE3 0.93 0.026 V3 0.95 0.0076
A6M 0.99 0.98 TEO 0.95 0.087 V2 0.96 0.29

A6DC 0.91 0.002 A36 0.98 0.54 Ent 0.99 0.99
A4c 0.97 0.43 A35 0.97 0.31 APir 0.94 0.24

A4ab 0.96 0.076 TF 0.96 0.021 Pir 0.97 0.53
PaIM 0.93 0.20 TL 0.98 0.084
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Supplementary figures
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Figure S1: The z-scored log neuron density distributions of the four species are statistically
indistinguishable at the 0.05 level based on pairwise Kolmogorov-Smirnov two-sample two-
sided tests. P-values and S-statistics displayed below and above the diagonal, respectively.
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Figure S2: Comparison of neuron and glia lognormality. A–C Histogram of z-scored log den-
sity and result of Shapiro-Wilk test for neurons (A), glia (B), and all cells combined (C). D
Barplot of p-values resulting from Shapiro-Wilk normality test for all cell types. Panel A is
equivalent to the data shown in Figure 1.
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Figure S3: Lognormality of cell densities from different staining types in macaque cortex based
on the macaque1 data set. A-C Histogram of z-scored log density and result of Shapiro-Wilk
test for NeuN staining only (A), Nissl staining only (B) and all measurements combined (C).
The Nissl data were scaled down based on the linear relationship with the NeuN data [10]. Red
crosses indicate outliers (|z-scored ln(ρ)| ≥ 3, which were excluded from the test. Panel C is
equivalent to the data shown in Figure 1.
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Figure S4: Neuron densities in the marmoset are compatible with our model of progenitor cell
division with variability. µ and σ2 are the mean and variance of ln(ρ), respectively; and are
significantly correlated with each other, as predicted by the model.
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Figure S5: Statistical model comparison across the entire cortex of different animals. A Relative
likelihood for seven compatible statistical models for all available area-level neuron density data
sets; numerical values indicated for each model and animal. The red color indicates a relative
likelihood < 0.05 with respect to the model with the highest likelihood. B The three best
statistical models (according to the relative likelihood) fitted to the neuron density histograms
in each animal; the three models produce visually nearly indistinguishable fits.
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Figure S6: Statistical model comparison within the marmoset cortical areas. A Relative like-
lihood for seven compatible statistical models for all areas of the marmoset; a red cross (x)
indicates a relative likelihood < 0.05 with respect to the model with the highest likelihood. B
Spatial distribution of relative likelihood for the three best statistical models. C The three best
statistical models fitted to the neuron density histograms in each area of marmoset cortex; the
three models produce visually nearly indistinguishable fits.
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The macroscopic constructional principles of the vertebrate
brain, especially those of primates, have a common
organisational layout and differ only in the relative
proportions of certain regions.

Glees (1988)

4
Quantification of neuron density and white

matter distance in macaque neocortex

Summary:
In this chapter we estimated the neuron density and white matter across the neocortex of
one macaque (macaca mulatta). Improving on previous methods, we reconstructed a 3D
volume fromNissl-stained histological slices of the macaque brain and estimated the cortical
area locations on a standard parcellation. We then used automated counting techniques to
estimate the number of neurons found within each area and validated our findings against
previous reports. Finally, we also measured the distance between all cortical areas through
the white matter. Our findings fill a gap in the knowledge, since reliable quantitative
measurements of neuron density and white matter distance were missing for large parts of
the cerebral cortex of the macaque.
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density and white matter distance in the

macaque neocortex

Aitor Morales-Gregorio1,2*, Rembrandt Bakker1,3 and Sacha J.
van Albada1,2

1Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced
Simulation (IAS-6) and JARA-Institut Brain Structure-Function
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Abstract

Neuron density and white matter distance are crucial parameters to
understand the organization and structure of the cerebral cortex. Neu-
ron densities have been quantitatively reported with great detail for
a plethora of mammals over the decades. However, no comprehensive
dataset of area- and layer-resolved macaque neuron densities across cor-
tex has been published to date. The existing data is a compilation
of different studies, with neuron densities recorded from different indi-
viduals, using different staining methods. Here, we address this gap
in the knowledge by estimating the area- and layer-resolved neuron
densities across the macaque cerebral cortex within the same sub-
ject. For this aim, we reconstructed the brain volume of one macaque
from Nissl-body stained slices and matched it to an standard cortical
parcellation. We then extracted counting strips and used an auto-
mated workflow to detect neurons in the images. Neuron densities
were estimated after correcting for tissue shrinkage and stereological
errors, and validated against previous reports of macaque neuron den-
sity and their distributions. Finally, we also provide new measurements
of cortico-cortical distance through the white matter. In conclusion,
we provide a comprehensive account of the macaque cortical struc-
ture, including neuron density distribution and white matter distance.

Keywords: Neuron density, macaque, cortex, white matter distance, brain
structure
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Introduction

The macaque is a widely studied model animal in neuroscience. Studies using
histological data have measured relevant structural parameters such as neuron
densities [1], long-range connectivity [2, 3], and receptor types [4] across large
swathes of the macaque brain. However, there is a large uncertainty regarding
the organization of the macaque brain due to the limited number of studied
subjects, the high inter-subject variability, missing measurements for several
parts of the brain and the overall difficulty of holistically studying such a
complex system. Additionally, the lack of consensus on a cortical parcellation
further complicates the compilation of the already existing anatomical data [5].

Neuron densities across the cerebral cortex are of particular interest for
modeling [6] and comparative studies [7]. Neuron and cell density have been
quantitatively estimated in rodents [8–10], non-human primates [1, 10–14],
large carnivores [15], and humans [16, 17]. In particular, comprehensive layer-
and area-resolved neuron density estimates exist for mouse [9] and marmoset
[11]. However, to the best of our knowledge, no comprehensive map of layer-
resolved macaque neuron densities across cortex has been reported to date. The
most complete dataset [1] is a collation of several subjects and measurements,
not a comprehensive analysis of a single subject. Given the large variability
across subjects it is imperative to estimate neuron densities within the same
subject.

To close this gap in the knowledge, we for the first time estimate the neuron
densities across all cortical areas for a single macaque (Macaca mulatta). In
order to do so we used a new semi-automatic workflow to reconstruct the
full brain volume of a macaque from histological slice data. We used open
tools [18, 19] and extended existing methods (PoSSum) [20] to create a 3D
reconstruction. The reconstructed volume was then matched to a standard
atlas [3], and counting strips were extracted for all cortical areas. Finally,
we estimated the neuron densities by counting neurons within standardized
counting frames, using a state-of-the-art machine learning based classifier [21].
Additionally, we also measure the distance through the white matter for all
cortical area pairs using a dedicated heuristic. This new dataset will be a
valuable resource for neuroscientists studying the macaque as a model animal.

Materials and methods

Histology and microscopy

To estimate the neuron density across areas and layers in the macaque cortex
we used data from the Allen Institute NIH Blueprint Non-Human Primate
(NHP) Atlas [22]. The data consists of histological slices for one macaque
(Macaca mulatta).

The ex vivo brain was embedded in a gelatin block, frozen and cut into
50 µm thick coronal sections. Every 5th section was stained with cresyl vio-
let (Nissl-body stain) and scanned at 1 µm/pixel plane resolution with a
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ScanScope® scanners (Aperio Technologies, Inc.; Vista, CA) microscope. The
resulting dataset consists of 276 high resolution images of Nissl-body stained
cortical slices. See the technical white paper for a more detailed protocol [23].

Volume reconstruction

We reconstructed an anisotropic 3D volume from the histological slices from
one rhesus macaque.

A B C D

E F G

Fig. 1 Image processing workflow for 3D volume reconstruction.A Low resolution images of
Nissl stained brain slices.BManually created masks, with special attention to the delineation
of sulci. C Masked and equalized images. D Lateral slice of 3D volume, which was created by
aligning centers of mass of the coronal slices. E Result of pairwise registration of the stained
slices to a reference MRI image. F Result after sequential and coarse-to-fine alignment. G
Final reconstructed volume after deformable sequential alignment.

Image pre-processing

First, we removed the image background. In order to do so, we applied a
Gaussian filter (σ = 5) and estimated the background color gradient between
the image corners (100 × 100 pixel, excluding dark colors to avoid artifacts,
pixel intensity < 30). We subtracted the estimated background gradient from
the images and applied a threshold (pixel intensity > 248) to obtain an auto-
matically estimated rough binary mask. Next, the binary mask was dilated
(radius = 20 pixel) and subsequently eroded (radius = 10 pixel), note that
dilation increased the black background (smaller mask) while erosion reduced
it (larger mask). The dilation-erosion step aims to remove small artifacts
such as thin filaments and protrusions. Then, we searched for small specks
(surface < 400 pixel) and holes (surface < 2000 pixel) in the image and
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removed them by filling them with the opposite color. Finally, we manually pro-
cessed the automatically estimated masks, to exclude any remaining artifacts
(Figure 1B). The manual mask processing was a time intensive task.

Second, we processed the images to have uniform color across slices. We
applied Contrast Limited Adaptive Histogram Equalization (CLAHE) [24] to
the raw images (clip limit = 1, 20×20 tiles), followed by an adaptive histogram
equalization (clip limit = 0, 8 × 8 tiles). Then, we applied a Gaussian filter
(σ = 5). Finally, the previously estimated masks were used to remove the
background from the images (Figure 1C).

Volume reconstruction with PoSSum

An initial 3D volume was created by aligning the pre-processed images along
their centers of mass (Figure 1D). In order to correctly align the slices in
3D we used PoSSum [20], which we updated to Python 3.x. We used the
following steps from the PoSSum toolbox: 1) affine pairwise alignment to a
reference volume (Figure 1E), 2) sequential affine registration, 3) coarse-to-fine
registration (Figure 1F) and 4) sequential deformable registration (Figure 1G).
The reference volume was a high resolution Magnetic Resonance Image (MRI)
that belongs to the Calabrese et al. [25] atlas.

Atlas registration

A semi-automatic workflow was used to register the reconstructed volume to
the M132 91 area atlas [3]. We first registered the M132 atlas to the same
reference volume as the histological slices using the same steps as used for
the 3D reconstruction, excluding the pre-processing. This produced a high
quality registration between the atlas and the reference volume. The atlas was
then nonlinearly registered to the reconstructed histological volume, to ensure
maximum correspondence.

Finally, we used the inverse transformation from PoSSum to convert the
registered atlas slices from the reference volume back to the original histological
slices. A sample overlay between one histological slice and the corresponding
atlas shown in Figure 2B. This step allows us to reliably identify the cortical
areas within the original histological coronal slices.

Cortical sample extraction

We extracted gray matter neuron counting samples (micrographs) for all areas
from the high resolution images using a simple graphical widget that we imple-
mented in Python. The samples were selected according to their position (as
far as possible from area boundaries), orientation (as perpendicular as possible
to the gray matter surface), absence of artifacts (such as air bubbles, folds or
other anomalies) and absence of blood vessels. We also avoided regions of high
curvature, although this was not always possible due to the location of some
areas. The most rostral and caudal slices were avoided, since they are far from
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perpendicular to the gray matter. The counting strips were 1 mm wide and
spanned the entire depth of the gray matter, extending into the white matter.

During the sample extraction process we also labelled the cortical layers for
each sample. We marked the boundaries of the Pia, layers 2/3, 4, 5, 6 and the
boundary to the white matter. The marking of layers was based on standard
criteria, such as the presence of a granular layer and the cell sizes.

Fig. 2 Sample extraction for cell counting. A Lateral slice of the 3D reconstructed volume,
red line indicates position of coronal slice for the rest of the figure. B Atlas overlayed on a
sample slice. C Location of sample in the cortical slice. D Zoomed in sample. E Cortical
strip (micrograph) for neuron counting with overlayed counting boxes.

Shrinkage estimation

In order to estimate the tissue shrinkage during the histological staining pro-
cess we compared the gray matter thickness from our samples to high-quality
estimates published elsewhere [26]. We measured the gray matter thickness as
the distance between the bottom of layer 1 and the white matter boundary,
manually labelled in our counting samples. We estimated the ratio between
the gray matter thickness from our study and the thicknesses from Wagstyl
et al. [26] for all cortical areas, and took the median value across areas as our
shrinkage factor.

Shrinkage factor =
Gray matter thickness (This study)

Gray matter thickness (Wagstyl et al. 2015)
≈ 0.56 (1)

Thus, the in vitro gray matter thickness was around 56% of the original
thickness in the in vivo brain.
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Neuron density estimation

Fig. 3 Example cell counting output for area F1. Left shows zoomed in cortical strip, where
each red ”x” is the center of a neuron detected using ilastik. Right shows the number of
neurons found in each counting box for one cortical strip.

The high resolution cortical sample images were segmented using ilastik [21],
a machine learning tool for interactive image classification, segmentation and
analysis. Ilastik outputs the segmentation of neurons, alongside their position,
shape and other properties. The software learns image segmentation by let-
ting the user label some sample images, which it then applies to all other
images. Based on standard criteria [16, 27–29], we only marked cells with a
clear nucleus for counting. Smaller cells without a clear nucleus were excluded
from the counting procedure, this includes most glia, but potentially also some
small neurons.

We estimated the neuron density by using the neuron outlines from the
automated segmentation of our images. Square counting frames (150 µm ×
150 µm in-plane, 50 µm thickness and 5 µm spacing between adjacent count-
ing frames) were aligned across the cortical layers. The top and right edges
were exclusion lines, while the bottom and left edges were inclusion lines. The
uppermost counting frame was aligned to the interface between layers 1 and
2. Some of the frames extended well beyond the gray matter, into the white
matter, where some cells could still be found. If a fraction of the counting
frame was within the white matter, then the number of neurons was multi-
plied by the gray matter fraction (specific to each sample), to avoid counting
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white matter neurons. Counting frames that were more than 50% within the
white matter were excluded from the neuron density estimation.

Assuming that shrinkage was isotropic and uniform across all slices, and
given the previously estimated shrinkage factor of 0.56, we estimate that the
volume of one counting box in vivo was

Vbox = 50 · (150/0.56)2 µm3 ≈ 3.6 · 106 µm3,

by applying the shrinkage factor only to the in-plane direction.

Stereological correction

Counting neurons in tissue slices tends to overestimate the neuron numbers due
to the presence of neuron fragments within the counting volume [27, 29]. This
is due to some neurons being cut during the slicing procedure and therefore
present across multiple adjacent slices. Our study did not include adjacent
slices, they were much further apart (250 µm) than the largest neuron bodies
in the cortex. In spite of the absence of any overlap, our counting volumes
would still overestimate neuron densities, since cell fractions could be counted
as full neurons. Previously, relatively thin (10-20 µm) subsequent slices were
used to correct for this bias [30–32], by some relation between the neuron
diameter and slice thickness. Our slices were relatively thick (50 µm), but still
not immune from oversampling.

In order to correct for oversampling due to sliced neurons we applied the
following correction to our estimates

ρ =
h

h+ d
· ρ̃ (2)

where ρ is the corrected neuron density within one counting box, ρ̃ is the
uncorrected neuron density, h = 50 µm is the slice thickness, and d is the
median neuron diameter within a counting box. Our approximation assumes
that the cells within one counting box have roughly the same diameter and
that cell bodies are spherical. Note that for h ≫ d, h/(h + d) → 1 and thus
ρ ≈ ρ̃. Only in the cases where d is relatively large does the correction have a
significant effect, e.g. in our case a hypothetical large neuron with d = 30 µm
would lead to ρ = 0.625 · ρ̃.

White matter distance

We measured the distance between all cortical areas via the white matter.
This measure aims to mimic the paths that axons would take to establish
connections between distant cortical areas within one hemisphere. Finding
the optimal path around a certain set of obstacles is commonly known as
motion planning or path planning [33]. This problem is known to be solvable in
polynomial time for 2-dimensional landscapes, but NP-complete in 3 or more
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dimensions [34]. We devised a simple heuristic to calculate the shortest paths
between the centers of mass of each pair of cortical areas, see Algorithm 1.

Algorithm 1 Pseudocode of white matter distance estimation heuristic.

1: for each area pair (source, target) do
2: C ← white matter, source and target
3: G← nearest neighbour graph(C)
4: source center← center of mass(source)
5: target center← center of mass(target)
6: valid path← False
7: while valid path == False do
8: path← dijkstra shortest path(G, source center, target center)
9: if all edges ∈ C and all nodes ∈ white matter then

10: valid path← True
11: else
12: G← remove invalid edges(G)
13: end if
14: end whilereturn path
15: end for

Our heuristic starts by defining the three-dimensional volume C, through
which the shortest path has to be found. C includes the volume corresponding
to the the white matter as well as the volumes of the two areas for which the
distance is calculated. Once C is determined we build a weighted undirected
graph G with N nodes representing each voxel of the volume. We connect
each node in G to its m nearest neighbours, yielding a total of mN/2 edges,
which are weighted by their euclidean length. We connect our graph beyond a
simple mesh (m > 4) in order to avoid coarse paths that would overestimate
real distance. However, the run-time and memory usage increase significantly
as m → N , thus we keep m ≪ N . We settled for m = 15 for obtaining the
results in this work.

The distances were measured from the centers of mass of each area. If the
center of mass of a given area lay outside the volume of the area, we took the
closest point in the volume to the center of mass. The shortest path between
the centers of mass of the two areas was determined using Dijkstra’s algorithm
on the previously constructed graph G. A path was considered valid if no
edge belonging to that path: 1) traveled outside of C or 2) connected directly
from the source to the target cortical area (without passing through the white
matter). If either of this criteria was met, an edge would be considered invalid,
since the path would violate the definition of the WM distance. All invalid
edges in the shortest path were removed from G and a new shortest path was
calculated. This process was then repeated until a shortest path was found
where all edges were valid.
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Once the shortest path consisting exclusively of valid edges was found, it
was smoothed using spline interpolation. The smoothing step improves the
final WM estimate, since it reduces distance overestimation due to the dis-
cretization, especially for longer paths. The length of the smooth spline was
the final WM distance.

Our heuristic is certainly not the most efficient path planning algorithm.
Nevertheless, it is well suited to measure the distances given our constraints.
The algorithm was executed on a high performance computing (HPC) system
and parallelized to estimate the distance between every pair of areas (91 areas
→ 4095 area pairs).

Results

Wemeasured the neuron density across cortical areas and layers of the macaque
cortex. First, we reconstructed a 3D volume from the histological slices (see
methods Volume reconstruction), in order to perform accurate atlas registra-
tion (see methods Atlas registration). Then, we extracted four counting strips
per area (two from each hemisphere), based on the atlas registration but also
on common landmarks and cytoarchitectural patterns (see methods Cortical
sample extraction. Finally, we estimated the number of neurons within fixed
counting frames (150 µm × 150 µm in-plane and 50 µm thickness) using a
machine learning tool trained on manually segmented sample data (see meth-
ods Neuron density estimation). The measurements were corrected for tissue
shrinkage (see methods Shrinkage estimation) and stereological errors due to
sliced neurons (see methods Stereological correction).
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Fig. 4 Sample thickness from our study compared to previous estimates [26]. A Median
gray matter thickness per area estimated from the counting strips in our study, without
shrinkage correction. Flattened cortical surface was based on the M132 atlas from [3]. B
Median gray matter thickness per area estimated from in vivo imaging in a previous study
[26]. C Comparison of our (This study) estimated thickness with the previous study (Wagstyl
et al.). D Distribution of estimated shrinkage factor.

The brain tissue inevitably shrinks during the histological processing. To esti-
mate the shrinkage levels and correct for this volumetric bias, we compare
our estimates with previous measurements [26] (see methods Shrinkage esti-
mation). We compared the gray matter thickness from our cortical strips to
previous measurements (Figure 4A-C) and found that the gray matter thick-
ness of our strips is systematically smaller, which was expected due to the
tissue shrinkage. We estimate the tissue shrinkage to be around 0.55 (median
of the distribution from Equation 1, see Figure 4D).

Neuron densities

Using an automatic image segmentation (see methods Neuron density estima-
tion), we estimated the number of neurons within each counting frame. We
then corrected for shrinkage and stereological errors (see methods Shrinkage
estimation and Stereological correction). Finally, we averaged the neuron den-
sities within each counting strip and across counting strips to determine the
mean neuron density per area.
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Fig. 5 Preliminary estimates of cell densities for all areas of the macaque neocortex. Flat-
tened cortical surface was re-drawn based on the M132 atlas from [3].

We found that the largest neuron density is in the visual cortex and that
the lowest neuron densities are found in the temporal and motor cortex, in
agreement with previous knowledge about the neuron densities in the macaque
[1].

Validation of neuron densities

In order to validate our neuron density estimates we compare them to
previously published data [1] and assess whether they follow a lognormal dis-
tribution, a known feature of neuron densities across and within cortical areas
[7].

First, we compare our estimates with previous ones [1], Figure 6A. It
appears that our method is slightly biased with respect to the previously
reported values, since it overestimates neuron densities in low-density areas
and underestimates it in high-density areas. In spite of this bias, the overall
trend is conserved. Second, we assess whether the neuron density distribu-
tion is compatible with a lognormal distribution. We first test the distribution
of the mean density across areas (Shapiro-Wilk test for normality on ln(ρ),
Figure 6B,C) and we then test the distribution within each cortical area
(Figure 6D). The test results suggest that the estimated neuron density dis-
tribution is not compatible with a lognormal distribution across cortical areas
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Fig. 6 Validation of neuron density estimates in the macaque cortex. A Comparison of our
estimated neuron densities per area with a previous study [1]. B The distribution of neuron
densities does not appear to be lognormal, we test for normality of ln(ρ) with a Shapiro-Wilk
test. C Probability plot of z-scored ln(ρ). D Log10 of p-value of Shapiro-Wilk normality test
of ln(ρs) on a flattened representation of the macaque cortex.

(p ≤ 0.05), in contrast to previous reports of neuron density distribution in
the mammalian cortex [7]. Within the cortical areas the lognormal distribu-
tion seems to be prevalent, in agreement with the distributions of within-area
neuron densities in the marmoset that have been shown to be compatible with
lognormal distributions [7]. The validation suggests that our method intro-
duces certain bias with respect to the previous reports. Further improvements
to the neuron counting method will be needed, possibly using an additional
step to remove the bias.
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The white matter (WM) distance between all area pairs was measured using a
custom heuristic (see methods White matter distance). The WM distance was
measured using the M132 parcellation [3], which was registered to the same
reference as the reconstructed volume [25] (see methods Atlas registration).
The main reason for using the Calabrese et al. reference volume was that
the white matter had already been labelled and that we also used the same
reference to reconstruct the volume from histological slices.

Briefly, we measured the distance between the centers of mass of all areas
to each other through the white matter. This measure approximates the length
a given axon would need to have in order to establish long-range synapses
across the cortex. Our method creates a mesh including the white matter and
the involved cortical areas and searches for the shortest path that does not
take any shortcuts outside the tissue. (Figure 7A). We present the measured
distances as well as the corresponding euclidean distances between all area
pairs (Figure 7B). The white matter distance is by definition longer or equal to
the euclidean distance, which we observe in our measurements to validate the
results (Figure 7C). Previous estimates of the white matter distance exist for
a subset of areas in the macaque monkey [3]. We compared our measurements
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to the previously reported values (Figure 7D) and show a clear correspon-
dence trend between the two datasets. The observed differences between the
two datasets might be explained by the fact that we used a different reference
space for our measurements and that the method from Markov et al. for mea-
suring the distances was very different from ours. In their study, Markov et
al. reported that the Map3D software was used to define a trajectory between
centers of gravity in a 3D reconstruction of the macaque cortex.

Discussion

In this study we have measured layer- and area-resolved neuron densities across
the macaque cortex, large parts of which were previously unknown. In order to
achieve our goal, we created an anisotropic 3D volume of the macaque brain
from Nissl-stained coronal slices [22], a workflow with potential uses beyond
this project. Additionally, we also estimated the tissue shrinkage from the
gray matter thickness, in order to provide reliable density data. The estimated
neuron densities were validated against existing data [1] and known neuron
distributions [7], which revealed the need for further refinement of the methods.
Finally, we also estimated the white matter distance between all area pairs, a
relevant structural parameter to characterize the macaque brain.

In order to accurately map the parcellation to the histological slices we
constructed a 3D volume from the coronal slices. This volume is valuable on its
own as a research object, since it enables further studies in brain structure and
organization beyond the cortical neuron densities. Long-standing projects aim
to reconstruct an isotropic volume from histology for a human brain, known
as BigBrain [35–37]. The BigBrain is a valuable resource for the exploration
and study of the human brain, and relies on years of careful curation and
management to construct. The volume we created in our study is a first step
towards a BigBrain for the macaque. The resolution of the volume is limited
in the anterior-posterior axis (250 µm), but has a high in-plane resolution
(1 µm) that enables the study of cell-body distributions across the whole brain.
Our approach used lower-resolution images for the reconstruction, since we
only needed the brain volume for atlas registration. Future work could use the
transformations from the low-resolution reconstruction and apply them to the
high-resolution data for further investigation of the macaque brain.

Neuron density is a crucial variable for characterizing the neural tissue,
since neurons are the fundamental units of the nervous system. Reliable and
accurate neuron densities can be used to construct realistic spiking neuron
models [38–40] and uncover the underlying structural organization of the brain.
Our measurements correctly captured several known features of neuron densi-
ties: primary visual cortex has the highest neuron density in the primate cortex;
the motor and temporal cortices have some of the lowest neuron densities; and
neuron density changes following several gradients e.g. the visual hierarchy.
However, our measurements did not accurately match previous quantitative
values [1], and failed to display a lognormal distribution across cortical areas
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[7]. We attribute these shortcomings to the inherent noisy nature of the cell
segmentation process. The task of identifying neurons is further complicated
by the Nissl-staining, since it indiscriminately labels both neurons and glia.
Thus, further improvements to our classifier will be required and possibly a
cross-validation using manually estimated densities. Additionally, our analysis
was limited to a single macaque, and thus does not capture variability across
subjects. To address this issue, we are already working on processing fur-
ther histological data from other openly available histological data of macaque
brains [41, 42].

Another parameter needed for multi-area cortical models is the white mat-
ter distance between all area pairs, which we therefore also measured. Our
measurements were in agreement with previously reported values in the same
parcellation [3]. Our approach uses a simple heuristic that is reproducible and
is not biased by human error. The heuristic we used was not very computa-
tionally efficient since finding geodesic distances is a well-known hard problem
[33], but our heuristic is designed to avoid overestimation of distance due to
small sample steps. Besides the construction of models, the white matter dis-
tance has been shown to be a strong predictor of connectivity strength [43]
and is relevant—together with the axon diameter—for estimating transmission
delay [44].

In summary, we have constructed a 3D brain volume from histological data,
estimated layer- and area-resolved neuron density and white matter distance
across the macaque cortex. We for the first time report neuron densities for all
cortical areas of a single macaque, including areas for which no previous quan-
titative data was available. Additionally, we also for the first time report the
white matter distance between all cortical area pairs, based on a reproducible
heuristic. Our measurements provide a comprehensive quantitative description
of the macaque cortex with unprecedented detail. We used the same parcella-
tion as in previous tract-tracing studies, such that our measurements are fully
interoperable with the valuable structural connectivity data [3]. The methods
developed in this study can be applied to other species’ brains, in order to
measure structural quantitative data and increase our understanding on brain
structure across different evolutionary paths.
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Similar and functional network behavior can result from
widely differing combinations of intrinsic and synaptic
properties.

Astrid Prinz, Dirk Bucher and EveMarder
(Prinz et al., 2004)

5
Activity-driven estimation of local

connectivity

Summary:
In this chapter we present a method to estimate the connectivity of a cortical microcircuit
based on resting state spiking activity. We first introduce a method to compare the spiking
activity from different sources using a multi-dimensional cloud of summary statistics. We
show that the multi-dimensional summary statistics are unique to a certain cortical area
and can thus be used to estimate similarity between simulated and experimental data.
Finally, we provide a proof of concept of our parameter estimating methods by applying
our optimization algorithm to synthetic data, which correctly estimated the connectivity
parameters of the model. Further work will apply these methods to larger more biologically
realistic cortical microcircuit models, thus providing estimates for the connectivity within
cortical areas.
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Abstract
The connectivity structure is essential to understand the activity and function
of neuronal networks in the central nervous system. Long-range connectiv-
ity in the macaque cortex has been thoroughly studied. However, little is
known about the microscale connectivity within cortical areas and across corti-
cal layers—"the microconnectome"—outside of the early sensory and primary
motor areas. Here, we introduce a novel method to estimate the microconnec-
tome from neuronal spiking activity. We measured single-neuron statistics from
the resting-state activity of several cortical areas (V1, V4, M1, PMd, dlPFC)
in macaque monkeys, describing their firing rates, irregularity, and correla-
tions. Our measurements show significant differences in the spiking activity of
each cortical area, which we hypothesize arise from structural differences in the
microconnectome within these areas. Our method to estimate the microcon-
nectome uses an optimization algorithm that maximizes the similarity between
the experimental spiking data and biologically realistic models. We demon-
strate our method on synthetic data generated by a small balanced spiking
neuron network model. Further work will extend the method to microcircuit
models with the goal of estimating the microconnectome across cortical areas
in the macaque.

Introduction
Connectivity is the backbone of any neuronal network. It determines how the
information is passed between neurons and processed to eventually generate
complex cognitive functions. While much is known about the cortico-cortical
long-range connectivity in the macaque from tract-tracing studies [1–3], the
connectivity within the cortical areas remains understudied. Current estimates
of the within-area connectivity rely on a combination of measurements from
different animals and areas [4, 5]. While the cortical areas differ in their activity
and functionality, they still rely on a similar basic columnar architecture. The
cortical microcircuit is often considered as a canonical building block of the
cortex [6]. However, little is known about the microcircuit connectivity (micro-
connectome) outside of early sensory and motor areas. Estimating such local
connectivity often relies on paired recordings [7–10] or glutamate uncaging [11–
17], which are both tedious processes and sample from relatively few neurons
at a time. Here, we propose an activity-driven method to estimate the micro-
connectome from in vivo data, using spiking neuron models and maximizing
the similarity of single-neuron statistics between simulations and experiments.

There are several methods to estimate connectivity from activity data.
Correlation-based methods [18–22] can estimate the functional connectivity,
which under ideal stationary conditions resembles the structural connectivity
[23–25]. However, simulation studies have shown that spurious correlations lead
to systematic errors in the inference of structural connectivity from pairwise
correlations [26].
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Another option is to fit the observed activity to a mechanistic model which
captures the relevant aspects of the studied network. Optimal model parame-
ters for the mechanistic models can be determined via a brute force approach
[27, 28], evolutionary optimization methods [29–31], or plasticity rules [32].
When the models are analytically tractable and a computationally inexpen-
sive likelihood function can be derived, the parameter distributions can be
inferred relatively fast [33–36]. Machine learning approaches can also be used
to estimate the likelihood function when no analytical solution is available,
thus estimating parameter distributions from simulations [37, 38]. In either
case, one does not expect to find unique parameter sets, but rather a range of
possible values, because disparate network parameters are known to be able
to produce the same dynamics [27].

The neuronal dynamics are significantly different across cortical areas, but
surprisingly consistent across animal species for the same area during rest-like
periods [39]. These differences are for instance observable in the inter-spike
interval (ISI) variability [39, 40] and the autocorrelation decay, i.e., the intrinsic
timescale [41–43]. There are two options for how this variability in neuronal
dynamics could emerge: 1) differences in the received activity from outside the
cortical area, or 2) differences in the internal structure (connectivity and/or
neuron properties). Therefore, defining parameters of the external input and
the internal connectivity probabilities as free variables in the optimization
workflow may yield some explanatory insights into the differences between
cortical areas.

Here, we present a method to estimate the parameters for mechanistic
models based on single-neuron statistics. First, we gathered extracellular elec-
trophysiological data from across the cerebral cortex of several macaques
(N = 5, Macaca mulatta). We spike-sorted the data and measured the single-
neuron statistics for 10-second slices within each area. We show that the
multi-dimensional summary statistics are significantly different across areas
and layers, when comparing all experiments. We then present a custom opti-
mization algorithm—a combination of random search, gradient descent and
genetic algorithms—, which we use to estimate anatomical parameters from the
multi-dimensional summary statistics. We demonstrate that the method can
correctly estimate the connectivity parameters of a small balanced spiking neu-
ron network, from the multi-dimensional summary statistics of spiking activity
alone. Further work will include adapting the methods to work for larger
models and estimating the connectivity parameters from the experimental
data.



4 Microconnectome estimation Morales-Gregorio et al.

Results

A parameter estimation method for spiking neuron
models

Experimental 
anatomical data

Incomplete
spiking neuron
models

Optimize models
to reproduce 
experimental 
activity

Experimental
neural spiking
data

Area-specific
models, with
estimated 
anatomical
parameters 

dlPFC

PMd M1

V1

V4

Fig. 1 Graphical abstract. Anatomical and activity data from multiple cortical areas are
gathered, with which we construct population-resolved spiking neuron models. We use an
optimization algorithm to estimate the connectivity parameters of the models that lead to
the maximum similarity between the simulated and experimental neuronal activity.

We here present a method to estimate model parameters from spiking neuron
data. We use a simple randomized search optimization algorithm to explore
the parameter space (see Methods Workflow overview). Since spike train data
are difficult to compare directly, we compare the following single-neuron statis-
tics between the target activity and the simulated activity: firing rate (FR),
local variability (LvR), and cross-correlation (CCavg, CCstd), which we assem-
ble into a multi-dimensional cloud. We found the multi-dimensional summary
statistics to be informative, without being redundant.

Multi-dimensional summary statistics of spiking activity
In order to compare the spiking activity of different cortical areas, we first
gathered resting-state spike train data from several sources (see Methods Elec-
trophysiological data collection in resting state). Figure 2A shows an overview
of the brain locations and layers of each experimental recording. For our anal-
ysis, we sliced the spike train data into 10 s slices, with samples shown in
Figure 2B. We display the total length of the data for each experiment in
Figure S11. We then calculated several single-neuron statistics (see Methods
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Fig. 2 Sample of available experimental data and their summary statistics. A) Schematic
representation of the data recording location. B) Sample recordings of simultaneous spike
trains from each dataset for a 10 s window, superscripts indicate the subject name. C)
Summary statistics of the single unit spike trains. Each point in the scatter plot corresponds
to a 10 s spike train of a single neuron. D) Variance explained by the first four principal
components (PC) of the multi-dimensional summary statistics.

Summary statistics of spiking neuronal data) for each data slice and assem-
bled them into a multi-dimensional summary statistics point cloud. Figure 2C
depicts a pairwise plot (off-diagonal) of the four single-neuron statistics we cal-
culated for each session, and their univariate distribution (diagonal). We also
illustrated the multi-dimensional summary statistics for each animal, area, and
layer (L23, L345 or L561) in Figure S1-S10. We demonstrate that the single-
unit statistics included are all relevant since they each explain at least 5-10%
of the variance in the data set (Figure 2D). We also measured the power spec-
tral density from the spike time histograms (Figure S12), which is not included
in the summary statistics due to its different dimensionality.

In addition to the multi-dimensional summary statistics from the experi-
mental data we also illustrated the multi-dimensional summary statistics for
the two spiking neuron models used in this study, see Methods Spiking neuron
models for details. The multi-dimensional summary statistics of the small bal-
anced spiking neuron network appear to span a narrower range (Figure S13),
whereas those of the microcircuit model span a broader range that is more
similar to the experimental data (Figure S14).

1Note that throughout this paper L23 = L2 + L3, L345 = L3 + L4 + L5, and L56 = L5 + L6
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Multi-dimensional summary statistics differ across
cortical areas
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Fig. 3 Uni- and multivariate pairwise test results over the summary statistics. We test the
null hypothesis that two or more groups have the same population mean. In all panels, lower
triangular entries show the logarithm of the p-values and the upper triangular part shows
the F-statistic. A-D) show the univariate pairwise analysis of variance (ANOVA) tests. E)
shows the multivariate pairwise analysis of variance (MANOVA) tests. Significance levels
(α = 0.05) are corrected for multiple testing following the Bonferroni correction. Note that
the area ticks refer to the lower triangular entries, while the upper triangular part is mirrored
along the diagonal.

A preliminary look at the multi-dimensional summary statistics
(Figure 2C) from the different brain areas and experiments reveals some notice-
able differences. To quantify the differences between the multi-dimensional
summary statistics we test whether their means are significantly different using
two statistical approaches. First, we perform a pairwise univariate analysis of
variance (ANOVA) for each of our four statistics (Figure 3A–D). Second, we
perform pairwise multivariate ANOVA (MANOVA) tests (Figure 3E), where
all the single-neuron statistics are considered in combination. For the tests we
used a fixed number of points from the multi-dimensional summary statistics
(N = 350, randomly sampled), since the tests are robust to the normal-
ity assumption if the samples are large (generally N > 30) and robust to
the assumption of equal (co-)variance (homoscedasticity) if the sample sizes
are equal [44]. The significance level α = 0.05 was Bonferroni corrected for
multiple testing (k = 47 experiment pairs · 5 test types = 235), such that
α = 0.05/k = 2.13 · 10−4.
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The univariate tests (Figure 3A–D) reveal that no single summary statis-
tic can distinguish the activity from all areas. However, when all the summary
statistics are aggregated and tested as a whole with the MANOVA test
(Figure 3E) all area pairs become statistically different from each other. The
multi-dimensional summary statistics are thus area-specific, which we can
exploit to estimate area-specific parameters.

Fitness is robust to time slice length
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Fig. 4 The Wasserstein distance (WS) measured using different time slice length. A, C) WS
between all multi-dimensional summary statistics clouds for tslice = 10 s and tslice = 30 s,
using the same color scale for both panels. B) WS as a function of tslice. Each line represents
one pair of recordings, colors are arbitrary.

In order to quantify the differences between the multi-dimensional sum-
mary statistics we use the Wasserstein distance (WS), see Methods Multidi-
mensional fitness function for details. A low WS indicates a high similarity
between the multi-dimensional summary statistics, with WS = 0 indicating an
exact overlap.

The WS depends on the spiking statistics of the underlying data, and on
the length of the selected data segments. Long segments contain more spikes
and can provide more accurate statistics. However, transient effects on longer
time scales can influence the output and lead to unrealistic spiking statistics.
Thus, the length of the data segments tslice is a crucial parameter. Here, we
measured the WS between pairs of the experimental datasets for different
values of tslice (Figure 4). In most cases, the WS appears to slightly increase
as tslice becomes longer (Figure 4B). This could be a consequence of having
fewer data points as tslice increases. Nevertheless, the relative ordering seems
to be fairly conserved between tslice = 10 s and tslice = 30 s, Figure 4A,C;
and we are mostly interested in the relative WS values not the absolute ones.
Therefore, this comparison suggests that the WS is robust to changes in tslice.
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Fig. 5 Proof of concept of optimization method using WS between the multi-dimensional
summary statistics. A WS variability of the target when recording only a certain fraction of
the neurons in the model. Distribution of WS measured from 20 simulations with the same
target parameters, but different randomization. B Progress of the optimization algorithm.
Lowest WS shown overall and within each generation. C Pairplot of estimated parameter
sets. Off-diagonal plots show the parameters of the estimated models. Each point represents
one model, the color indicates the WS for that model, with respect to the target. Diagonal
plots show the histogram of estimated parameters for models with WS < 0.5. Inset on top
right shows a schematic representation of the fitted model.

Method verification with synthetic data from a small
model
To estimate the underlying model parameters from activity data we minimize
the WS (see Methods Multidimensional fitness function) between simulation
and experimental recordings and search the parameter space using an opti-
mization algorithm (see Methods Optimization algorithm). However, we first
need to verify that the optimization method is effective in finding the correct
parameter values.

In order to demonstrate that our methods can effectively recover connec-
tivity parameters from multi-dimensional summary statistics alone, we tested
them against synthetic data. We generated synthetic data by simulating a sim-
ple small balanced spiking neuron network (N = 12500, see Methods Small
balanced spiking neuron network model). We estimated the multi-dimensional
summary statistics from the synthetic data and used it as our target. The
objective of this synthetic experiment was for our optimization algorithm to
estimate the connectivity parameters (PEE, PEI, PIE and PII) used for the
original simulation, based on the multi-dimensional summary statistics alone.
See Figure S13 for the multi-dimensional summary statistics of the synthetic
data.
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First, we quantified the variability within the target model. Since the sim-
ulations rely on randomized input, changes to the randomization inevitably
lead to differences in the multi-dimensional summary statistics. We simulated
the small balanced spiking neuron network using different realisations (N = 20
simulations, all parameters equal except the random seed) and measured the
WS between all the simulations (Figure 5A). Since all the neurons in the model
are statistically equivalent, we also tested the effect of subsampling neurons
from the model, and found that it only slightly increases the WS variability
(Figure 5A). A low sensitivity to subsampling is desirable, since the experi-
mental data represent only a small fraction of the total number of neurons in
a cortical area.

Second, we ensured that the optimization landscape (parameter space) is
smooth. A non-smooth parameter space would be an indication of numerical
instabilities in the model, the fitness function, or the single unit statistics.
Therefore, we performed parameter scans of the small model in the ranges
Pxy ∈ [0.05, 0.20] with a 0.01 resolution, corresponding to 16 possible values per
parameter. Since we were searching the values of four parameters (PEE, PEI,
PIE and PII), the full parameter scan required N = 164 = 65536 simulations.
We found that the parameter space is indeed smooth (Figure S15), suggesting
that the optimization should be able to find the global minimum and that no
numerical instabilities are present.

Finally, we executed our optimization algorithm for the small balanced
spiking neuron network using synthetic data. The optimization converged in
about 100 generations (Figure 5B), i.e., N ≈ 12800 simulations were needed
to find the solution, since there were 128 simulations per generation. The
estimated parameters with WS < 1 were all found in the vicinity of the target
parameters (Figure 5C). Given the variability of the WS, the multi-dimensional
summary statistics of all those parameter combinations were equivalent to the
target simulation.

Thus we conclude that our optimization methods can successfully esti-
mate the connectivity parameters of a small model based only on the
multi-dimensional summary statistics of one target simulation.

Discussion
The aim of this study was to estimate connectivity parameters of the corti-
cal microcircuit from activity data alone. We presented a novel method for
model-to-data comparison, using a multi-dimensional single-neuron statistic
cloud. We showed that the multi-dimensional summary statistics varies across
the cortex, and is robust to data duration lengths. Additionally, we presented
a novel optimization approach that minimizes the distance between some spe-
cific target spiking activity and some spiking neural network model. Finally,
we provided a proof of concept of our optimization method using synthetic
data. Future work will see this approach extended to larger more biologically
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realistic models, which we will then use to estimate local cortical connectivity
parameters.

Our findings suggest rich and varied multi-dimensional summary spiking
statistics across different cortical areas. This result is in agreement with previ-
ous reports of variability across the cortex [39]. Our spiking statistics did not
include the autocorrelation decay timescale due to instabilities arising from
the numerical integration. Timescales are well known to vary across cortex at
both the individual neuron and population levels [42]. Therefore, future work
should also explore the timescales, possibly as a post hoc validation.

Our optimization approach was specially designed to balance exploration
and exploitation in our case. We initially used evolutionary algorithms akin
to [30, 31]. However, we found that when fitting the connection probability
between neuron populations, the crossover steps would move the optimizer
away from the global optimum. Our interpretation was that the crossover
shifting one parameter pushed the model into a completely different regime,
which is mostly not the case in genetics, where a single base pair swap often
causes only marginal differences. Thus, we removed the crossover step and
substituted it with random sampling.

This work has so far demonstrated a proof of concept with one small bal-
anced piking neuron network. There were four free parameters, making the
parameter space relatively small, since we could even do brute-force scans. The
parameter space for the more biologically realistic microcircuit model is sev-
eral orders of magnitude larger, since there are (at least) 64 free parameters.
Doing a parameter scan for the microcircuit model with the same resolution
as before would require N = 1664 ≈ 1077, several orders of magnitude over the
estimated total number of atoms of planet Earth (∼ 1050). This combinato-
rial explosion also raises doubts about the effectiveness of the random search
algorithm, since it relies on randomly finding the regions close to the global
optimum. The parameter space will have to be constrained, for example by
imposing a strict E-I balance on the connectivity, or requiring that the total
number of synapses lie in a specific range. Furthermore, initial explorations
of the parameter space could be performed using computationally cheaper
mean-field models [45].

In summary, we presented a novel approach to microconnectome estima-
tion based on multi-dimensional clouds of single-neuron statistics. We found
that the multi-dimensional summary statistics vary significantly between cor-
tical areas, suggesting it can be used to uniquely characterize each cortical
area. Thus, we exploit the differences in the spiking statistics with our opti-
mization approach, which we have shown to work in a synthetic experiment.
Further work will be needed to extend the methods to more biologically realis-
tic models, which could then be used to estimate the connectivity parameters
from the experimental data.
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Materials and methods

Workflow overview

Parameters Spiking data Summary statistics Fitness
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Fig. 6 Schematic illustration of the different statistical value spaces on each level of abstrac-
tion. Starting from the underlying parameter spaces in both the model simulations (Ωmodel)
and the cortical areas (Ωbrain), both of which produce certain spiking data (in D). Since the
spiking data cannot be directly compared we measure some summary statistics (in S), which
can then be compared by a difference measure (WS) in the space of a fitness function (F).

Assessing the similarity between experimental and simulated data is a non-
trivial procedure that can take many different forms. Our approach is based
on the joint distance between the statistics of the data. We schematically show
the steps we take from parameters to the fitness function in Figure 6.

Take a set (θ̃n)n∈N of all the possible parameters that describe the activity
in the central nervous system. This would include anything that affects neural
activity, such as neuroanatomy, chemical concentrations or environment tem-
peratures. The brain function B, is a highly nonlinear function B : Ωbrain → D,
mapping from parameter to data space, leading to the time series (B(θ̃n))n∈N.
We will specifically deal with spiking data from the brain, following the
assumption that information is encoded within this signal. Current technology
does not enable simultaneously recording from all neurons in the brain, thus
we need to work with a subset of the brain activity D ⊂ (B(θ̃n))n∈N which we
can record using extracellular electrodes E. See a detailed description of the
data D in the Methods Electrophysiological data collection in resting state.

On the modeling side, we need to constrain the wide range of parameters
that describes the brain activity to the subset of the most relevant parameters
θi ⊂ (θ̃n)n∈N. In our case, we chose to study the neuroanatomy of cortex at
the single neuron level, such as the neuron counts, connectivity and single
neuron membrane properties. In this work we focus only on the connectivity
parameters. The studied parameters are unavoidably linked to the model M
of choice. For a given set of parameters the model will create a time series
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M(θi) of spiking activity. We provide a detailed account of the chosen models
M in the Methods Spiking neuron models.

Our objective is to assess whether our choice of model parameters generates
a similar spiking activity to recorded experimental activity,M(θi) ≈ D. Given
the high dimensionality of the data (hundreds or up to thousands of neurons)
this is a non-trivial task. We therefore extract summary statistics from the
data, in the form of single-unit level summary statistics. We call this function S
and it yields two clouds of points So (observation) and Sp (prediction), where
each dot in the cloud corresponds to the summary statistics of a single spike
train. See Methods Summary statistics of spiking neuronal data for a detailed
account of the used summary statistics.

Finally, we can compare the multi-dimensional summary statistics to each
other. Using a judge function J we can estimate a certain fitness WSi, which
is a measure of how similar the multi-dimensional summary statistics are.
We used the Wasserstein distance (WS) as a fitness function, see Methods
Multidimensional fitness function for details.

Electrophysiological data collection in resting state
All data was collected from macaque monkeys (Macaca Mulatta, N = 5) in the
resting state. The macaques were sitting in a dim lit room, with no particular
task, while the continuous activity from the cortex was recorded. The relevant
behavior in each experiment was also tracked using either videos or eye tracking
systems.

The recordings were made using different devices thus resulting in data for
different layers. Throughout this document we refer to the combined cortical
layers L2 and L3 as L23. Consequently, L5 + L6 = L56, and L3 + L4 + L5 =
L345.

Table 1 Summary of subjects and recordings included in this study. Name identifier of
the subject, cortical area and layers from which the data were recorded, number of
electrode contacts in each area and number of recording sessions are indicated.

Name Sessions Areas Layers Contacts Source

T 7 M1 All 24 Novel from
11 PMd All 24 Kilavik lab

F 59 dlPFC L23 4 Novel from
59 V4 L23 4 Gregoriou lab

L 1 V1 L56 896 Spike sorted
1 V4 L56 128 Chen et al 2021

N 2 M1/PMd L345 96 Brochier lab

E 2 M1/PMd L345 96 Brochier lab
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Data from macaque T

The data from macaque T was recorded from premotor cortex (PMd) and
primary motor cortex (M1) (N=1 subject, N=11 1̃5 min sessions). Acute
recordings were made with laminar probes (Plexon and Alpha Omega, 24 con-
tacts, 100 and 200 µm pitch). The laminar probes enabled recording from
across the cortical layers. The 200 µm pitch probes could record all layers
simultaneously, while the 100 µm pitch probes did not span the entirety of the
cortical gray matter. The motor cortex gray matter is known to be approxi-
mately 3.5 mm thick [46], with the superficial and deep layers roughly split in
half. A guard zone was applied around the middle of the probes of 0.5 mm,
where the contacts were excluded. The rest were identified as either superficial
(L23) or deep layers (L56). Preliminary analysis of this data has already been
published [47].

The raw data was spike sorted offline. Spike sorting identified 5-13 clean
single units per probe and session.

In addition to the spiking data, surface Electromyography (EMG) of the
contralateral deltoid muscle, the heart rate with an ear clip and a video of
the macaque behaviour were recorded. In all the behavioural videos the screen
LEDs were used to send a 1 s long blink every minute that can be used to
realign video with the neural recordings. We performed a video-based segmen-
tation into behavioural epochs: eyes-open, eyes-closed and movement periods.
We excluded the movement periods from our analysis, since they are associated
with high motor cortex activity and variability [48]. Including the movement
periods would bias the spiking statistics of the motor cortex to include non
resting state dynamics.

Data from macaque F

The data from macaque F was recorded from visual area V4 and dorsolateral
prefrontal cortex (dlPFC) (N=1 subject, N=59 5 min sessions). Acute record-
ings were made with up to 4 simultaneous Plexon electrodes, recording from
the superficial layers (L2/3) during resting state with.

The eye pupil was tracked for behavioural segmentation into eyes-open and
eyes-closed epochs. Spike sorting identified 4-10 clean single units per area and
session.

Data from macaque L

The data from macaque L was recorded from visual areas V1 and V4 (N=1
subject, N=1 2̃0 min session). Chronic recordings were made using 16 8x8
electrode Utah arrays (Blackrock microsystems), 2 of them in visual area V4
and the rest in the primary visual cortex (V1), with a total of 1024 electrodes.
The electrodes were 1.5 mm long, thus the recordings were made from the deep
layers L5 and L6. A full description of the experimental setup and the data
collection and preprocessing has already been published [49].
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Pupil position and diameter data were collected using an infrared camera
in order to determine the direction of gaze and eye closure of the macaques.
In addition to the resting state recordings, a visual response task was also
performed. The visual response data were used to calculate the signal-to-noise
ratio (SNR) of each electrode and all electrodes with an SNR lower than 2 were
excluded from further analysis. Additionally, we excluded up to 100 electrodes
that contributed to high frequency cross-talk in each session, as reported in
the original data publication [49].

The raw data were spike-sorted using a semi-automatic workflow with
Spyking Circus—a free, open-source, spike-sorting software written entirely in
Python [50]. Extensive description of the methods of this algorithm can be
found in their publication, as well as in the online documentation of Spyking
Circus2.

After the automatic sorting the waveform clusters were manually merged
and labelled as single-unit activity, multi-unit activity, or noise. Only single-
unit activity (SUA) spike trains were included in this study. The waveform
signal-to-noise ratio (wfSNR) was calculated for all SUA, and those with an
wfSNR < 2 or electrode SNR < 2 (from the visual response task) were excluded
from the analysis.

Data from macaques N & E

The data from macaques N & E was recorded from the interface between
premotor (PMd) and primary motor (M1) cortex (N=2 subjects, N=2 15-20
min sessions per subject). The recordings were chronic using 16 8x8 electrode
Utah arrays (Blackrock microsystems), 2 of them in visual area V4 and the
rest in the primary visual cortex (V1)

A full description of the experimental setup and the data collection and
preprocessing—for the accompanying experiment in the same subject—has
already been published [51]. An extensive analysis of the resting state data has
also been published [48].

In addition to the registration of brain activity, the monkey’s behavior was
video recorded and synchronized with the electrophysiology recording.

Spiking neuron models
Two different spiking neuron models were used in this study, a small balanced
spiking neuron network [52, 53] and a cortical microcircuit model [5]. Both of
which were simulated using NEST 3.2 [54].

Small balanced spiking neuron network model

We first used a small balanced spiking neuron network model [52, 53] to demon-
strate the effectiveness of our methods. The model consisted of two populations
one excitatory and one inhibitory connected to each other. An overview of

2spyking-circus.readthedocs.io
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the model can be found in Table S1, and all model parameters are listed in
Table S2.

For the synthetic data we used the following connectivity matrix:

P0 =

[
PEE PEI

PIE PII

]
=

[
0.15 0.18
0.17 0.19

]
,

which show the connection probability between the given populations, e.g. PEI

is the probability of I → E connections.

Microcircuit model

We used the cortical microcircuit model described in [5] for a more realistic
model of the cortex. The model includes all layers (L23, L4, L5, L6) under
a square of 1 mm2 cortical surface. Each layer consists of two populations of
point neurons, one excitatory and one inhibitory, thus a total of 8 populations.
The total number of neurons was based on layer-resolved stereological neuron
estimates. All layers receive a constant background input with Poisson noise.

An overview of the model can be found in Table S3, and the model
parameters are listed in Table S4 and Table S5.

For the synthetic data we used the following connectivity matrix:

P0 =



0.1009 0.1689 0.0437 0.0818 0.0323 0 0.0076 0
0.1346 0.1371 0.0316 0.0515 0.0755 0 0.0042 0
0.0077 0.0059 0.0497 0.1350 0.0067 0.0003 0.0453 0
0.0691 0.0029 0.0794 0.1597 0.0033 0 0.1057 0
0.1004 0.0622 0.0505 0.0057 0.0831 0.3726 0.0204 0
0.0548 0.0269 0.0257 0.0022 0.0600 0.3158 0.0086 0
0.0156 0.0066 0.0211 0.0166 0.0572 0.0197 0.0396 0.2252
0.0364 0.0010 0.0034 0.0005 0.0277 0.0080 0.0658 0.1443



which was previously derived from anatomical studies [4, 5].

Summary statistics of spiking neuronal data
The experimental and simulated spike trains are sliced into 10 second sam-
ples. We compute a number of summary statistics for each one of these data
samples and construct a multi-dimensional cloud of spiking neuron statistics.
This multi-dimensional summary statistics are used to characterize a given
area and to assess the similarities between experiments and simulations.

We use the following summary statistics of spike trains:

• Mean firing rate (FR), given as the total number of spikes divided by the
duration of the recording sample.
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• Revised local variability of the inter-spike interval (LvR) [39],

LvR =
3

N − 1

N−1∑
i=1

(
1− 4IiIi+1

(Ii + Ii+1)2

)(
1 +

4R

Ii + Ii+1

)
(1)

where N is the total number of spikes, Ii is the ith inter-spike interval, and
R = 5 ms is the refractoriness constant. A value of LVR = 0 corresponds to
perfectly rhythmic spiking, whereas LVR = 1 corresponds to Poisson point
process.

• The average of the Pearson cross-correlation (binwidth = 2 ms) with
all other simultaneously recorded neurons (CCavg). This metric quantifies
whether the measured neuron is tuned to many of the other neuron (i.e.
choroist) or if it is spiking independently (i.e. soloist).

• The standard deviation of the Pearson cross-correlation with all other
simultaneously recorded neurons (CCstd).

Further summary statistics were considered but not used in our analysis
because they were strongly correlated to other statistics. If strongly correlated
statistics were introduced, some spiking properties would be over-represented
in our fitness function, since all statistics are given the same weight in the
final distance. For example the coefficient of variation (Cv, Cv2) [55] and
local variability (Lv) [40] of the inter-spike intervals are excluded due to their
similarity to the LvR. Introducing all Cv, Cv2, Lv and LvR would significantly
increase the representation of the inter-spike interval variation, without a large
increase in the explained variance. Another statistic that was considered was
the spike triggered population response (stPR) [56], but not included due to
its similarity with the CCavg.

All summary statistics are dependent on, and may be biased by, the number
of spikes in the given spike train. For example, the LvR requires a minimum of
three spikes in total, or it cannot be computed. To ensure reliable estimations
of the summary statistics, we set a threshold of FR ≥ 2 spikes/s for any
given spike train to be included in the analysis, both in the experimental and
simulated data. Furthermore, all the considered statistics assume stationarity
of the data, thus the chosen length of spike trains must not bee too long. We
therefore choose a spike train sample length (tslice) of 10 seconds.

All metrics were computed using their implementation in the elephant
toolbox [57], within the NetworkUnit reproducible testing framework [58].

Multidimensional fitness function

Selection of a fitness function

In order to assess the fitness of a certain parameter set we need to com-
pare the multi-dimensional single neuron statistics. Our problem thus reduces
to computing a distance between multi-dimensional probability distributions.
Such problems have already been explored in the context of GANs, where the
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Wasserstein distance [59], also known as the earth mover’s distance, was found
to have many desirable properties:

1. agnostic about the underlying statistical distribution
2. jointly evaluates multivariate distributions, thus incorporating the covari-

ance structure
3. can compare samples of different sizes
4. is a true distance: symmetric and positive definite
5. is extendable to higher dimensions
6. is numerically robust on point-distributions (no integration needed)

Not all distribution similarity measures share these properties. For exam-
ple, the Kullback-Leibler divergence violates properties 4 and 6. The Jensen-
Shannon entropy violates property 6.

Wasserstein distance

We used the Wasserstein distance (WS), defined as an optimal transport
problem between the observations (So, the target multi-dimensional summary
statistics) and the predictions (Sp, the multi-dimensional summary statistics
from the candidate model). Each multi-dimensional summary statistics cloud
is an N×M matrix of N number of samples (spike train slices) and M number
of summary statistics. The observations and predictions must have the same
number of summary statistics Mo = Mp, but can have different sample sizes
No and Np.

First, we normalized (z-scored) the statistics cloud with respect to the
observations So across samples, for both So and Sp. This normalization ensured
that the measured distances remain comparable across many different predic-
tions Sp, since they are all normalized to the same range. The normalization
step also ensured that all metrics M were equally weighted for the distance
measurement, without normalization the firing rates would affect the dis-
tance by several orders of magnitude more than the correlation statistics
(CCavg, CCstd).

Second, we assigned equal weights (mass) wo, wp to each neuron within
each statistics cloud, such that

∑No wo =
∑Np wp = 1. Thus, the same total

mass was assigned to both So and Sp and thus statistics clouds with different
sample sizes could be compared.

Finally, we searched for the optimal transport of mass between So and
Sp, by finding the graph configuration that minimizes the work required to
transport all the weights:

min

So∑
i

Sp∑
j

wi,j · di,j (2)
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where wi,j is the weight transported between points i and j, and di,j is the
Euclidean distance between them. In order to find the optimal graph configu-
ration we used a simplex algorithm implemented in OpenCV for this purpose
[60].

The Wasserstein distance (WS) is the work normalized by the transported
weight, which we defined to

∑N
w = 1, thus

∑So

i

∑Sp

j wi,j = 1, and the WS
is therefore

WS =

So∑
i

Sp∑
j

wi,j · di,j (3)

Multi-objective vs single-objective optimization

An alternative approach to a multi-dimensional distance is a multi-objective
optimization, where the multi-dimensional distribution is separated into uni-
variate distributions. Each distributions is tested separately and a Pareto front
of all objectives is sought. However, toy tests with this approach struggled to fit
all summary statistics simultaneously and would lead to inconsistent results.
We encountered three problems with a multi-objective approach:

1. Logical “Or”: different summary statistics fitted separately and not simul-
taneously.

2. Ignored covariance structure due to univariate testing.
3. Sensitive to the choice of statistical test or distance (e.g. Kolmogorov-

Smirnov, t-test).

Ultimately we found that single-objective optimization with a multi-
dimensional distance was more robust than a multi-objective optimization.

Optimization algorithm
We used a simple optimization algorithm to explore the parameter space of
our models maximizing the similarity between the target observations and the
model predictions. As described in the previous section, we used the WS as a
fitness function, which the optimizer had to minimize.

For our optimization we devised a random search algorithm, see pseudocode
1. All the hyperparameters of the algorithm are listed and briefly described in
Table 2.
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Algorithm 1 Pseudocode of random search algorithm
1: population← generate random individuals
2: for generation ≤ N do
3: population.fitness← evaluate(population)
4: survivors← select(all individuals)
5: mutants←mutate(survivors)
6: newcomers← generate random individuals
7: population← newcomers and mutants
8: end for

First, our optimizer generated an initial population of individuals
θ⃗0, θ⃗1, ..., θ⃗N , of length Npopulation. Then, the individuals were evaluated:

1. A spiking neuron simulation was run with the corresponding parameters θ⃗i,
2. the multi-dimensional summary statistics Si were calculated from the

simulated spike trains,
3. and the WS was calculated between the Si and the pre-computed target

multi-dimensional summary statistics So.

The target multi-dimensional summary statistics So were pre-computed to
avoid unnecessary calculations of summary statistics at every evaluation step.

The evaluation step was parallelized in a high-performance computing
(HPC) system. Thus, this step took only as long as the slowest individual in
the generation. It is to be noted that the computational cost of spiking model
simulations scales up with the total number of synapses, thus some parameter
combinations with unrealistically many synapses would require a much longer
simulation time. To avoid this problem we set a time limit for the evaluation
step (tuned to each model); if the time limit was reached, the individual would
get the worst possible fitness.

After the evaluation step the psurvival · Npopulation with the best fitness
(lowest WS) were selected, and the rest of the models discarded. We call the
remaining individuals the survivors.

To the survivors we included a small fraction of the best ever individuals,
by selecting pfrom_best ·Npopulation out the a hall of fame with the Nbest models
with the highest score of the whole optimization. In the early generations this
step is superfluous. However, some models can by random chance drift away
from a good fitness region towards a worse one and including some of the best
models back helps ensure that the algorithm exploits the good fitness areas.

Then, we mutated the survivors (including those selected from the hall of
fame) using a Gaussian mutation with the mean equal to the parameter val-
ues and the standard deviation fixed to a certain value σmutation (see Table 2.
In some cases, with a probability of pgradient, the mutation was not random
but rather followed the natural gradient, calculated from the rest of the near-
est individuals in parameter space (including previously discarded ones). We
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estimate the natural gradient as follows:

g⃗ ≈ 1

Nnearest

Nnearest∑
j=1

(WSj −WS0)
θ⃗j − θ⃗0√
θ⃗j · θ⃗0

(4)

where g⃗ is the gradient vector, θ⃗0 is the current individual with fitness WS0
(i.e. the point in parameter space for which the gradient is being estimated),
and θ⃗j are the nearest neighbours (Nnearest) to θ⃗0 in the parameter space.

Finally, the population is completed with new random individuals, such
that the new population has again a length of Npopulation. The new popula-
tion then undergoes the same evaluation, selection and mutation steps until a
certain prescribed number of iterations Niterations is reached.

Table 2 Random search optimization parameters

Optimization description

Individual Latin hypercube sampling for θ ∈ [0.0, 0.20]
generation

Fitness Wasserstein distance between the
target and individual statistics clouds.

Selection Fraction of individuals (psurvival) with the best fitness

Mutation Gaussian with µ = θ and standard deviation σmutation. Mutations
sometimes follow the gradient g⃗ and sometimes are random

Gradient Natural gradient estimated from nearest neighbours

Optimization parameters

123 Seed for random numbers

Npopulation 128 Number of models per generation

Niterations 250 Maximum number of total iterations

σmutation 0.01 Standard deviation for the Gaussian mutation.

psurvival 0.5 Fraction of the population that will not be
discarded before the next generation.

Nbest 40 Number of models in the hall of fame

pfrom_best 0.1 Fraction of the new population derived from the hall of fame.

pgradient 0.5 Probability of mutations following the gradient,
otherwise a random direction is chosen.

Nnearest 1000 Number of nearest individuals to use for the gradient estimation
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Supplementary figures

Fig. S1 Multi-dimensional summary statistics for macaque L, area V1, L56. Sample spike
trains shown.

Fig. S2 Multi-dimensional summary statistics for macaque L, area V4, L56. Sample spike
trains shown.
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Fig. S3 Multi-dimensional summary statistics for macaque F, area V4, L23. Sample spike
trains shown.

Fig. S4 Multi-dimensional summary statistics for macaque F, area dlPFC, L23. Sample
spike trains shown.
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Fig. S5 Multi-dimensional summary statistics for macaque T, area PMd, L23. Sample spike
trains shown.

Fig. S6 Multi-dimensional summary statistics for macaque T, area PMd, L56. Sample spike
trains shown.



Microconnectome estimation Morales-Gregorio et al. 29

Fig. S7 Multi-dimensional summary statistics for macaque T, area M1, L23. Sample spike
trains shown.

Fig. S8 Multi-dimensional summary statistics for macaque T, area M1, L56. Sample spike
trains shown.
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Fig. S9 Multi-dimensional summary statistics for macaque N, area M1/PMd, L345. Sample
spike trains shown.

Fig. S10 Multi-dimensional summary statistics for macaque E, area M1/PMd, L345. Sam-
ple spike trains shown.
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Fig. S13 Multi-dimensional summary statistics of the small balanced spiking neuron net-
work with the target parameters.

Fig. S14 Multi-dimensional summary statistics of the microcircuit model with the target
parameters.
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Fig. S15 Parameter scan of the Brunel model. WS fitness shown with respect to the refer-
ence model (indicated with a red cross) from all other connecivity parameter combinations.
Parameters scanned at a 0.01 resolution in the [0.05, 0.20] range. Panels indicate the PEE

and PII parameters, increasing from left to right and frome the bottom to the top, respec-
tively. PEI and PIE are represented within each panel.
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Supplementary tables

Table S1 General model description of the small balanced spiking neuron model.

Model Summary

Populations two populations, one excitatory, one inhibitory
Connectivity random connectivity
Neuron model leaky integrate-and-fire model
Synapse model exponential postsynaptic current
Input independent spike trains from inhomogeneous

Poisson processes with given rate ν

Neuron and synapse model

Subthreshold dynamics dV
dt

= − V
τm

+
Isyn(t)

Cm
,

Isyn(t) = Je−(t−t∗−d)/τsynH(t− t∗ − d)
Spiking If V (t−) < θ and V (t+) ≥ θ,

1. Set t∗ = t and V (t) = V0, and
2. Emit spike with time stamp t∗.

Connectivity

Type pairwise Bernoulli,
i.e. for each pair of neurons generate a
synapse with probability p

Weights fixed source and target population specific weights
Delays log-normally distributed delays for

excitatory and inhibitory neurons

Input

Rate Poisson noise with constant rate ν
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Table S2 Simulation parameters of the small balanced spiking neuron model.

Population Parameters

NE 10000 number of excitatory neurons
NI 2500 number of inhibitory neurons

Connectivity Parameters

PEE 0.15 connection probability from E → E
PEI 0.18 connection probability from I → E
PIE 0.17 connection probability from E → I
PII 0.19 connection probability from I → I

Neuron parameters

τm 20 ms membrane time constant
τr 2 ms absolute refractory period
τsyn 2 ms postsynaptic current time constant
Cm 1 pF membrane capacity
Vm 0 mV resting potential
EL 0 mV membrane capacity
Vreset 0 mV reset membrane potential
Vth 20 mv threshold

Stimulus parameters

ν spikes/s base line rate

Synapse parameters

JEE 0.5 synaptic efficacy excitatory to excitatory

JIE 0.75 synaptic efficacy excitatory to inhibitory

g 4 relative inhibitory synaptic efficacy

Delay parameters

µE 0.29 mean of underlying normal distribution
for excitatory connections

σE 0.22 standard deviation of underlying normal
distribution for excitatory connections

µI −0.40 mean of underlying normal distribution
for inhibitory connections

σI 0.22 standard deviation of underlying normal
distribution for inhibitory connections
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Table S3 General model description of the microcircuit model.

Model Summary

Populations 8 populations, one excitatory and one inhibitory
for each layer L23, L4, L5 and L6

Connectivity random connectivity
Neuron model leaky integrate-and-fire model
Synapse model exponential postsynaptic current
Input independent spike trains from inhomogeneous

Poisson processes with given rate ν

Neuron and synapse model

Subthreshold dynamics dV
dt

= − V
τm

+
Isyn(t)

Cm
,

Isyn(t) = Je−(t−t∗−d)/τsynH(t− t∗ − d)
Spiking If V (t−) < θ and V (t+) ≥ θ,

1. Set t∗ = t and V (t) = V0, and
2. Emit spike with time stamp t∗.

Connectivity

Type pairwise Bernoulli,
i.e. for each pair of neurons generate a
synapse with probability p

Weights fixed source and target population specific weights
Delays log-normally distributed delays for

excitatory and inhibitory neurons

Input

Rate Poisson noise with constant rate ν

Table S4 Population parameters of the microcircuit model.

Population Parameters

L23E L23I L4E L4I L5E L5I L6E L6I population names

20683 5834 21915 5479 4850 1065 14395 2948 N number of neurons
1600 1500 2100 1900 2000 1900 2900 2100 K external synapses
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Table S5 Neuron parameters of the microcircuit model.

Neuron parameters

τm 20 ms membrane time constant
τr 2 ms absolute refractory period
τsyn 2 ms postsynaptic current time constant
Cm 1 pF membrane capacity
Vm 0 mV resting potential
EL 0 mV membrane capacity
Vreset 0 mV reset membrane potential
Vth 20 mv threshold

Stimulus parameters

ν 8 spikes/s base line rate

Synapse parameters

JEE 0.5 synaptic efficacy excitatory to excitatory

JIE 0.75 synaptic efficacy excitatory to inhibitory

g 4 relative inhibitory synaptic efficacy

Delay parameters

DE 1.5± 0.75 ms mean and std of underlying normal
distribution for excitatory connections

DI 0.75± 0.375 ms mean and std of underlying normal
distribution for inhibitory connections





Part III

Discussion





Knowledge on the structure and activity of the cerebral cortex is essential to understand its
functions and underlying mechanisms, which we can do with the help of neuronal models.
From small groups of neurons to brain-wide interactions, the underlying connectivity
and cytoarchitecture determine which activity states are even possible. While the possible
structural configurations and activity landscape are vast, incorporating as much information
as possible into our brain models is bound to reduce the problem down to its fundamental
components. The available information on the cortical structure is very diverse and does
not necessarily reveal a unique and elegant blueprint of the brain. As the computational
neuroscientist Grace Lindsay put it:

Biology took whatever route it needed to create functioning organisms, without
regard to how understandable any part of it would be. It should be no surprise, then,
to find that the brain is a mere hodgepodge of different components and mechanisms.
That’s all it needs to be to function.

—Lindsay (2021)

Thus, there is no guarantee that a unified grand theory of the brain can be achieved, akin to
the elegant grand theories in physics. Therefore, we focus on describing the brain structure
whereverpossible such that the collective knowledge canbe sensibly incorporated intounified
models. These models will have to span multiple scales, from microscopic neurons, to
mesoscopic brain areas and macroscopic brains. As it stands, if we want to build a realistic
model, we have to put in all the bits an pieces from the bottom up.

This thesis contributes to the understanding of the brain by addressing some fundamental
gaps in the knowledge. We identified several gaps (see Aim), such as the lack of open
large-scale cortical recordings in macaque; the incomplete map of neuron densities and their
distributions across the cortex; or precise estimates of intra-areal connectivity. These gaps
are significant hurdles for constructing realistic brain models. These hurdles need to be
addressed before informative models can be built, which will enable a more nuanced insight
into the mechanisms and interactions that make up the brain.

The following sections discuss the results from the chapters in this thesis and how they
answer the scientific questions that we formulated back in Part I. The discussion here focuses
on an abstract level, for concrete discussion on specific results andmethods see the discussion
section within each individual chapter.
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Brain activity in the macaque visual cortex

In Chapter 1 we addressed the question:

What shouldwe compare our brain simulations to? Canwe bridge some of the gaps
between experimental and theoretical neuroscience?

We can compare brain simulations to extracellular activity recordings. To answer the
question, we have published a large new data set of macaque visual cortex (V1 and V4)
extracellular recordings in the resting state. This data is freely and openly available to anyone
willing to investigate it. This dataset was published in collaboration with the Netherlands
institute for Neuroscience, where the recordings were made.

The data consist of 16 8x8 Utah arrays (Blackrock microsystems) for a total of 1024
electrodes. 14 arrays were implanted in V1, spanning about a fourth of the receptive field
and 2 arrays were implanted in V4. Data sets without adequate and consistentmetadata have
very little value. Providing the relevant metadata to a dataset is essential for its reusability.
Thus, we provided not only a huge dataset, but also all the relevant metadata about the
experimental setup, experimental conditions, electrode and array locations, data alignment,
electrode quality, receptive fields etc.

The dataset complies with the FAIR (findable, accessible, interoperable and reusable)
principles for data sharing. The data can be found in a dedicated repository (Chen et al.,
2021), it can be easily accessed both programatically and using the graphical user interface.
Data and metadata can be operated in both Python and Matlab which run on all operating
systems, and they can be easily reused thanks to the extensive metadata and documentation.
The data were published under a Creative Commons Attribution 4.0 International Public
License (CC-BY).

Most current biologically realistic models are not tuned to perform any particular task,
instead they are used to investigate the structure of the nervous system and the dynamics
that it generates. In this context, the traditional electrophysiology experiments, where the
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macaques perform certain very specific tasks, are not very useful to generalist modelers.
Neurons in the brain are also active in the absence of any particular task or stimulus. It
is therefore essential to understand this underlying activity on top of which the all other
complex dynamics occur.

In conclusion, we provide a new resource that can be used by the neuroscience community
to study, validate, test and explore the brain activity. We adhere to the highest data sharing
standards, with rich metadata and interoperable data formats. Modelers in general can now
compare their brain simulations to this data, therefore slightly narrowing the gap between
experimenters and modelers.
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State space analysis of visual cortex activity

In Chapter 2 we addressed the question:

Does feedback modulate the state space of the visual cortex? Can brain simulations help us
understand this modulation?

We analyzed the data from Chapter 1, which suggests that feedback from V4 to V1 plays
a role in modulating the state-space and the dimensionality of the V1 activity. This finding
was verified with simulations in which we showed that feedback-like input could reproduce
the experimental results. The interplay of experimental data and modeling helped us reach a
more robust result that would not have been possible from the experimental data alone.

We studied the resting state data in V1, V4 andDP areas and found that the activity in the
state space tends to occurwithin two separate state-space regions inV1 (but not inV4 orDP).
We called these regions the clusters of the neural manifold and showed that they are strongly
correlated to the behavioral state of the macaques; whether the macaque had its eyes open or
closed. Within the clusters we also found that the intrinsic dimensionality—measured as a
fraction of explained variance—is significantly higher during the eyes-open periods. Since
the macaques sat in a dark room with no visual inputs, the differences in manifolds and
dimensionality appeared to be modulated by some internal mechanism. We found that
feedback from V4 to V1 was particularly stronger during the eyes-open periods. Finally, we
observed similar changes in a computational model of spiking neurons with feedback-like
input.

To the best of our knowledge, this is the first report suggesting cortico-cortical feedback
could modulate neural manifolds in vivo. Nevertheless, previous evidence exists in silico for
context dependent input discrimination (Naumann et al., 2022). We focused on the possible
sources and explanations for this modulation in the discussion of Chapter 2.

Given the robustness of our observations we expect some benefit from such a state-space
modulation. The eyes-closed state had higher low frequency power (alpha-band among
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others, as is typically expected). If the low frequency oscillations are internally generated in
V1 or as an interplaywith thalamus, then the feedback fromV4 during the eyes-open periods
seems todisrupt them, leading to an asynchronous irregular statewith a flatter spectrum. The
mechanisms generating the alpha oscillations could still be present, but the sole presence of
further higher frequency input can push the network into this state, which is exactly what
we observed in our simulations.

But why force an asynchronous irregular state during eyes-open periods if there is no
visual input? Maybe this state is better suited to rapidly respond to visual input, which can
unexpectedly appear while the eyes are open, similar to what was shown by van Vreeswijk
and Sompolinsky (1996). This idea is supported by the fact that the dimensionality of visual
input also follows a power law decay, thus matching this power law in V1 may facilitate
the information processing (Stringer et al., 2019). Further dedicated experiments would be
needed to test whether the asynchronous irregular state is better suited to processing visual
inputs than an oscillatory one.

In conclusion, we found two very distinct states in the V1 activity during the resting
state. For the first time, we provide evidence that supports a modulatory role of V4 → V1

feedback. This findings are, to the best of our knowledge, the first in vivo evidence suggesting
such a modulatory mechanism on a population level. Computational models enabled a
cost-effective validation of our hypothesis, supporting our findings and encouraging further
investigation of this phenomenon.
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Lognormal distribution of neuron densities

In Chapter 3 we addressed the question:

Do neuron densities follow a particular distribution across the cortex?

We demonstrated that neuron densities across cortical areas are compatible with a
lognormal distribution. We show that this is also the case within the cortical areas of the
marmoset cortex. In addition, we demonstrated that the lognormal distribution was not
outperformed by any other statistical distribution with similar characteristics. We finally
present a simple noisy cell division model showing the emergence of the lognormal neuron
density. Our findings are in agreement for previous reports that numerous brain variables
follow a long-tailed, potentially lognormal, distribution (Buzsáki andMizuseki, 2014).

Our simple neurodevelopmental model predicted lognormal neuron densities for either
across or within areas, but not both of them simultaneously. This could be overcome by
incorporating the proliferation times of the neuron progenitor cells, because it can vary up to
twofold across areas (Rakic, 2002). The progenitor cells also undergo a specification process,
in which they turn into neurons, glia or more progenitor cells (Rakic, 2009; Cadwell et al.,
2019). This process is bound to significantly affect the final distribution of neurons and
glia, which we know to be lognormal-like. Some developmental models have already been
proposed to incorporate these effects (Picco et al., 2018). Further work is thus needed to
expand our model and incorporate all these effects, such that it can explain the simultaneous
emergence of within and across cortical area lognormal distribution of neuron densities.
Preliminary results with an extendedmodel have shown some promise, but further workwill
be needed to ensure that the model predictions match the experimental observations.

In conclusion, we showed that the neuron densities are compatible with a lognormal
distribution, within and across cortical areas. This finding can be used to validate further
results, predict missing values in models or validate neurodevelopmental hypotheses.
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Quantification of neuron density and white
matter distance in macaque neocortex

In Chapter 4 we addressed the question:

Howmany neurons are there in each area and layer of macaque cortex?

We have answered the question bymeasuring the number of neurons within the macaque
cortex with a semi-automatic workflow. Our measurements were based on nissl-stained
cortical slices, which we reconstructed into a 3D volume and mapped to a standard
parcellation. We then extracted counting strips and used an automatic classifier to count the
number of neurons within stereological counting boxes. We validated our estimates against
previous data (Beul et al., 2017) and by testing whether the neuron density was lognormal
across and within cortical areas, as we saw in Chapter 3. In addition, we also measured the
white matter distance between all cortical areas, extending a previously incomplete data set
(Markov et al., 2012).

These measurements fill in a crucial gap in the knowledge, since the neuron densities per
area and layer were previously only partially known in the macaque cortex. The number of
neurons is a crucial parameter of spiking neuron models, thus measurements within a single
individual will enable the construction of more reliable models. Furthermore, we expanded
on the methods from previous studies in the marmoset (Atapour et al., 2019), making the
neurondensity estimationprocess easier thanbefore, sincewe automatized some crucial steps.
Thus, we expect our methods to be valuable to neuroscientists studying other animal species
as well. Future work will still be needed to estimate the neuron densities for more than a
single subject, at the time of writing data is openly available for three more subjects.

In conclusion, wemeasured a comprehensive data set of neurondensities andwhitematter
distance in the macaque cortex, which will be valuable for modelers and anatomists alike.
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Activity-driven estimation of local
connectivity

In Chapter 5 we addressed the question:

Can we estimate the connectivity within cortical areas from brain activity? How can we best
compare simulated and experimental spiking neuron data?

In order to answer these questions we implemented an optimization workflow to
estimate cortical connectivity parameters from brain activity. We first estimated summary
statistics from the spiking data, which we assembled into a multi-dimensional cloud. The
multi-dimensional summary statistics are unique to each area, suggesting that they are a
fingerprint of the underlying cortical structure. Furthermore, we showed that we can
indeed estimate the connectivity from a synthetic experiment, but only for a small model
(Brunel, 2000). Further work is therefore still needed since we did not yet apply the
parameter estimation method to the more biologically realistic microcircuit model (Potjans
and Diesmann, 2014).

The major difference between our approach and previous parameter estimation methods
is in the cost function. We decided to use spiking neuron statistics, which we assembled into
a multi-dimensional summary statistics cloud, and then compared them to each other using
the Wasserstein distance. In contrast, previous studies have focused on oscillatory activity
(Prinz et al., 2004), multi-objective optimization of single neuron statistics (Druckmann,
2007), exact coincidences in spike times (Rossant, 2010; Ladenbauer et al., 2019), or
aggregating the result from independently testing single neuron statistics (Carlson et al.,
2014; Stringer et al., 2016). On the one hand, our approach incorporates the information
from the co-variations between the different single neuron statistics, which all other
approached ignore. On the other hand, we need all of the single neuron statistics to have
the same dimensionality (in our case simple scalars) in order to assemble them into one
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multi-dimensional cloud. Metrics like the power spectrum, correlation matrix or inter-spike
interval distribution thus need to be reduced to scalars, which has the potential to introduce
numerical errors.

Our model comparison approach can be applied to compare any two combination of
simulations or experiments. For example, we used the multi-dimensional summary statistics
and Wasserstein distance to compare experimental data from different areas. Another
interesting application of this comparison scheme is comparing simulations when they
are performed by different hardware—CPU, GPU or neuromorphic (SpiNNaker, Loihi
etc.)—or software—NEST,NEURON,PyNNetc.—, thus themulti-dimensional summary
statistics can help ensure that the outcome simulations are equivalent. Previous comparisons
between CPU and SpiNNaker relied on exact spiking times (van Albada et al., 2018),
which are very strict requirements considering how fundamentally different the underlying
hardware is. Futurework can use our comparison approach—implemented inNetworkUnit
(Gutzen et al., 2018)—to estimate whether two simulations are statistically equivalent, with
less concerns about minor numerical differences.

Finally, we also showed that our approach can be used to estimate spiking neuronal
network parameters. We tested our methods using a small model (Brunel, 2000). However,
we faced major scalability issues, since the parameter space grows by many orders of
magnitude as the model size increases. In order to scale our methods up we will therefore
need to find suitable regions of the parameter space ad hoc, e.g., by ensuring E-I balance or
requiring that the total number of synapses lie in a specific range.

In conclusion, we provided a newmethod for the statistical comparison of spiking neuron
data, which we used as a cost function in a parameter estimation problem. We showed that
our methods can successfully estimate the connectivity of a small balanced spiking neuron
model. Future work will focus on scaling to more biologically realistic models and testing
whether the predicted connectivity is consistent with direct measurements of connectivity.
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Outlook

This thesis has addressed some crucial aspects that will enable the future construction of
biologically realistic large-scale neuronal network models. Such models will have to be
validated against neuronal activity, which we have published and investigated for the visual
cortex of themacaque (Chapter 1 andChapter 2). Additionally, to construct realisticmodels
one needs to know how the neurons are distributed across the cortex and howmany of them
there are in each cortical area and layer (Chapter 3 and Chapter 4). Another crucial aspect
of cortical networks is the connectivity, which we will estimate from spiking activity for
individual cortical areas (Chapter 5). Our methods for connectivity parameter estimation
within the microcircuit could be applied to computationally inexpensive populationmodels
(Wilson andCowan, 1972; Chaudhuri et al., 2015b;Mejias et al., 2016; Froudist-Walsh et al.,
2021), which can then inform large-scale spiking neuron models.

Previous efforts have already constructed a large-scale spiking neuron model of the
macaque visual cortices (Schmidt et al., 2018a,b). This studies relied on long-range
cortico-cortical connectivity from tract-tracing studies in macaque (Markov et al., 2012,
2014). The original 29 area data set of cortico-cortical connectivity was extended with the
LIP area (Chaudhuri et al., 2015b) and later to 40 injection sites in (Froudist-Walsh et al.,
2021). The missing connectivity can be predicted from the white matter distance between
areas (which we estimated in Chapter 4), using the exponential distance rule (Ercsey-Ravasz
et al., 2013), or cytoarchitectural types (Beul et al., 2017).
As a next step in large-scale modeling, we aim to construct a large-scale visuomotor

model of macaque cortex (Outlook Figure 1) by extending the previous models (Schmidt
et al., 2018a,b). For this aim, the advancements of this thesis will be instrumental, since the
model will be able to incorporate reliable neuron density, connectivity and activity data.
The available neuron density and connectivity data for marmoset also enables constructing
marmoset specific models (Majka et al., 2016, 2018; Atapour et al., 2019), which could be
constructed based on the same modeling framework.
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Outlook Figure 1: Outlook on visuomotor multi-area model. A Overview of the areas that will be
included in the model, with the motor cortex areas and their neuron density and grey matter thickness
highlighted. B Cortico-cortical connection strengths from tract-tracing studies for the areas that will
be included in the model (Markov et al., 2012). C Graph clustering using the heat equation.

One fundamental aspect of the long-range connectivity is the layer specificity of the
connections. Markov et al. (2014) reported which fraction of presynaptic neurons was
found above the granular layers in the source areas, which they call the supragranular labelled
neurons (SLN). The SLN have been shown to relate to the hierarchy of the cortical areas,
and to neuron density ratios (Markov et al., 2014; Schmidt et al., 2018a). Thus, such
predictions were used to estimate the layer connection patterns in the previous large-scale
models (Schmidt et al., 2018a,b). However, the bivariate distribution of SLN and neuron
density ratios is skewed and heteroscedastic, thus classical regression models are unable to
provide reliable predictions.
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Outlook Figure 2: Structural predictors of laminar connectivity patterns in macaque (Macaca
mulatta) and marmoset (Callithrix jacchus) neocortex. Fraction of supragranular labelled neurons
(SLN) plotted against the log ratio of neuron density, gray matter thickness and area volume. The
predicted log-likelihood is colour coded in the background and the conditional mean (µy|x) of a fitted
Bayesian beta-binomial model shown. Histogram of the marginals shown along the corresponding
axis. Bottom row shows the parameters of the Bayesian beta-binomial model.

To overcome the limitations of skewed and heteroscedastic data, we developed a bivariate
maximum likelihood regression Bayesian model, which provides a better statistical model
for future connectivity predictions. We applied our new model to anatomical data from
macaque monkey (Macaca mulatta) (Markov et al., 2012, 2014) and for the first time to
the marmoset monkey (Callithrix jacchus) (Majka et al., 2016, 2018; Atapour et al., 2019).
As a preliminary analysis, we studied the neuron density, gray matter thickness and area
volume ratios (Outlook Figure 2). Further work in this directionwill explore other structural
variables, such as the white matter distance (Chapter 4), or the density of different neuronal
receptors (Froudist-Walsh et al., 2021). Furthermore, the Bayesian model allows fitting to
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higher dimensional data, thus enabling the simultaneous study of several structural variables
in relation to the SLN. We expect this line of work will provide insight into the relation
between brain connectivity and organization.

Futuremodels constructedbasedon the connectivity predictions andusing the anatomical
data presented in this thesis can be validated against the resting state data (Chapter 1 and
Chapter 5). The validation scheme could rely on the same procedure already presented in
Chapter 5, comparing the multi-dimensional summary statistics of different areas against
each other simultaneously. Constructing models that can successfully reproduce the
resting state dynamics of the macaque cortex would provide a baseline upon which further
hypothesis and complex tasks could be simulated and tested.
In conclusion, the work in this thesis constitutes an incremental improvement to the field

of computational neuroscience. Our contributions will enable further work in modeling,
data analysis and elsewhere. Especially given the attention to data sharing and open access
that will ensure maximum outreach and dissemination of these findings. While our work
has mainly focused on the macaque monkey, our methods can be applied to a range of other
species; such as marmoset monkeys or humans. Thus, this work contributes to the overall
understanding and characterization of the cortex; while the methods and data tested and
analyzed will be valuable beyond this work.
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Part IV

Appendices





A
From anatomy to models

Summary:
This appendix contains a book chapter, that describes different types of anatomical data
and the techniques used to measure them; as well as pointing to existing datasets of interest.
We include both direct measurement methods and indirect estimates, based on predictive
relationships. This book chapter is an essential guide for computational neuroscientists
aiming to construct biologically realistic neuronal models.
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Bringing Anatomical Information into Neuronal Network
Models

S.J. van Albada1,2, A. Morales-Gregorio1,3, T. Dickscheid4, A. Goulas5, R.
Bakker1,6, S. Bludau4, G. Palm1, C.-C. Hilgetag5,7, and M. Diesmann1,8,9
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Abstract For constructing neuronal network models computational neu-
roscientists have access to wide-ranging anatomical data that neverthe-
less tend to cover only a fraction of the parameters to be determined.
Finding and interpreting the most relevant data, estimating missing val-
ues, and combining the data and estimates from various sources into a
coherent whole is a daunting task. With this chapter we aim to provide
guidance to modelers by describing the main types of anatomical data
that may be useful for informing neuronal network models. We further
discuss aspects of the underlying experimental techniques relevant to the
interpretation of the data, list particularly comprehensive data sets, and
describe methods for filling in the gaps in the experimental data. Such
methods of ‘predictive connectomics’ estimate connectivity where the
data are lacking based on statistical relationships with known quantities.
It is instructive, and in certain cases necessary, to use organizational prin-
ciples that link the plethora of data within a unifying framework where
regularities of brain structure can be exploited to inform computational
models. In addition, we touch upon the most prominent features of brain
organization that are likely to influence predicted neuronal network dy-
namics, with a focus on the mammalian cerebral cortex. Given the still
existing need for modelers to navigate a complex data landscape full of
holes and stumbling blocks, it is vital that the field of neuroanatomy is
moving toward increasingly systematic data collection, representation,
and publication.
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1 Introduction

Some of the defining characteristics of a neuronal network model are the size of
the neuronal populations and the connectivity between the neurons. To deter-
mine these properties, the modeler has access to information in multiple forms
and based on various experimental methods, where the completeness of the data
varies widely across species and brain areas. For instance, the connectivity data
for the nervous system of the nematode (roundworm) C. Elegans are nearly
complete and have enabled full connectomes to be derived with minimal extrap-
olation from the data [1]. These graphs encode all connections between all of
the neurons of the male and hermaphrodite worms. However, the 302 neurons
of the hermaphrodite and the 385 neurons of the male worm pale in comparison
to larger brains such as the human brain with its roughly 86 billion neurons
and trillions of connections. Here, and for most species, measuring a full connec-
tome is still far from feasible in terms of technical and computational effort. For
this reason, the anatomical data often need to be complemented with statistical
estimates in order to define complete network models of the brain. Filling in
the gaps in the known connectivity in this way may be referred to as predictive
connectomics. The corresponding predictions have to be validated in some way,
for instance by leaving out part of the known anatomical data and determining
how well these are reproduced by the statistical estimates.

Understanding the human brain is often considered the holy grail of neu-
roscience, not least because of the hope of finding novel cures and therapies
for brain diseases. However, due to its size and enormous complexity, it can be
helpful on the way to this goal to investigate simpler, more tractable brains of
other species. Eric Kandel took this approach in his famous studies on the sea
slug Aplysia [2], and it is a guiding thought behind the OpenWorm project on
modeling C. Elegans. Furthermore, data obtained with invasive methods are, for
obvious reasons, much more abundant for non-human brains. Of course, under-
standing the brains of species besides humans can be seen as a valuable aim in
itself—for improving the well-being of animals, for inspiring industrial applica-
tions, or as an intellectual pursuit, like cosmology or paleontology, which enriches
us culturally even if it has no direct practical application. And, as it is with all
basic sciences, one never knows what innovations the knowledge gained may in-
spire many years into the future. For these reasons, we do not restrict ourselves
to the human brain, but also consider various other species. However, we focus
on mammalian brains, which exhibit qualitative similarity to the human brain
and may therefore teach us most about our own brains. Non-human primate
brains deserve particular attention, as they are closest to the human brain in
terms of anatomy and function. Although extensive differences in detailed or-
ganization remain [3,4,5] the anatomical similarities and evolutionary path give
hope that universal principles can be discovered extending to the human brain.
Furthermore, the chapter has an emphasis on our study object of choice—the
cerebral cortex.

To limit the scope of the chapter, we also restrict ourselves to anatomical
properties relevant for networks of point neurons or neural populations, neglect-



ing most aspects of detailed neuron morphology and placement of synapses on
the dendritic tree and axonal arborizations. The anatomical characteristics en-
tering into the definition of such neural network models can be classified into
brain morphology, cytoarchitecture, and structural connectivity. Brain morphol-
ogy describes geometric macroanatomical properties, for instance the thickness
of the cerebral cortex and its layers, or the curvature. Cytoarchitecture refers to
the composition of brain regions in terms of the sizes, shapes, and densities of
neurons. Structural connectivity refers to properties of the synaptic connections
between neurons, including numbers of synapses between a given pair of neurons,
or the probability for neurons from two given populations to be connected.

The type and level of detail of anatomical information that is required de-
pends on the type and aim of the modeling study. A population model, describing
only the aggregate activity of entire populations of neurons, does not require the
connectivity to be resolved at the level of individual neurons, nor is it generally
necessary to know the number of neurons in each population for such models.
For models resolving individual neurons, in some cases it may be of interest
to incorporate detailed connectivity patterns, while sometimes population-level
connection probabilities suffice. The difference lies in the questions that the dif-
ferent types of models allow one to address. In one approach, the modeler tries
to derive as realistic a connectivity matrix as possible, in the hope of obtain-
ing the best possible predictions of dynamics and information processing on the
anatomical substrate. Here, it always needs to be kept in mind that more detail
does not necessarily mean better predictions: adding more parameters can actu-
ally reduce the predictive power of a model, for instance when these parameters
are not sufficiently constrained [6,7]. However, if this approach is successful, it in
principle allows the effects of detailed physiological parameter changes on net-
work dynamics to be predicted (somewhat akin to weather forecasts), which may
ultimately find clinical applications. In a contrasting modeling approach, connec-
tivity features are abstracted and the influence of these abstract features (e.g.,
small-worldness, clustering, hierarchical organization, etc.) on graph theoretical,
dynamical, or functional properties of the network are investigated. This ap-
proach places less emphasis on strict biological realism and attempts to provide
a more conceptual understanding of the links between brain anatomy, dynamics,
and function. In practice there is a continuum of approaches between these two
extremes. For instance, models may incorporate biologically realistic features at
an intermediate level of detail (e.g., population-specific connection probabilities
without detailed connectivity at the single-neuron level) in order to simultane-
ously enable conceptual scientific conclusions and a degree of validation of these
conclusions by direct model comparisons with experimental data.

Formulating and parametrizing neuronal network models is still often a painstak-
ing effort, where the researcher digs through a vast literature to collect the rel-
evant parameter values, from disparate experimental methods and labs. This
systematization of the available knowledge into a common framework forms a
central part of computational modeling work, and allows future researchers to
continue at the next level of complexity. It is also highly specific to the modeling



problem and data modalities at hand, so that we cannot give one-size-fits-all
advice on how to deal with and interpret anatomical data to develop network
models. However, we can provide general guidance regarding what to look out
for in the various data modalities, and how to incorporate the corresponding
data into models. Furthermore, data are increasingly collected in systematic
databases, which make the modeler’s life easier by offering comprehensive data
obtained with the same experimental methods, often even from the same lab.
Most promising for facilitating this process are recent multilevel brain atlases,
which aggregate both macro- and microstructural information into systematic
anatomical reference frameworks.

In this chapter, we provide an overview of the types of anatomical infor-
mation that can be used to define biological neural network models, point to
available resources and databases, and describe methods for predicting connec-
tivity and validating the predictions. The text considers physiological properties
only where they relate directly to anatomy. This overview is intended as an
aid for computational neuroscientists to develop accurate models of biological
neuronal networks.

2 Brain morphology and cytoarchitecture

In this section, we describe the main types of information on the morphology
and cytoarchitecture of brain regions, and corresponding resources available to
modelers. We start by providing a brief introduction to brain atlases, which
systematize information on these anatomical properties. Next, we treat the mor-
phological property of cortical and laminar thicknesses in more detail. We then
go into the determination of neural population sizes and the location of neurons
within brain regions, and close with a short discussion of the use of morphology
and cytoarchitecture in computational models. We do not distinguish between
cell types within regions, as this would substantially extend the scope of the
chapter, and, especially in the context of network models that do not resolve
neural compartments, more directly concerns chemical and electrophysiological
instead of anatomical properties.

2.1 Brain atlases

Brain atlases are a tool for defining brain areas and aggregating regional descrip-
tions of the brain in a consistent anatomical framework. A brain atlas typically
consists of a template space, a set of maps or a parcellation, and a taxonomy,
which provides the names and mutual relationships of those regions.

The template space of a brain atlas is typically represented by one or multiple
scans of a brain, which provide an anatomical description of an underlying stan-
dardized coordinate space. Depending on the task at hand, different template
spaces are used. A classical template space for the human brain is Talairach
space [8], which assumes that the relative distances between brain regions are



preserved between individuals, and defines a rescalable grid accordingly. Ta-
lairach coordinates are still in wide use in functional neuroimaging. Today, it
is more common to use one of the MNI templates defined by the Montreal
Neurological Institute [9,10], which include single- and multi-subject averages
of MRI scans as volumetric standard spaces. While the MNI templates define
standard spaces at millimeter resolution, the BigBrain offers a brain model of a
single subject based on a three-dimensional reconstruction from 7,400 histologi-
cal sections, at an isotropic resolution of 20 µm [11]. As the tissue sections were
stained for cell bodies, this model provides the most detailed three-dimensional
reference of human cytoarchitecture available today. Ongoing research addresses
the three-dimensional cellular-level reconstruction of brains at 1 µm resolution,
which poses considerable techical challenges for human brains due to their size
and topological complexity [12].

Brain maps and parcellations assign brain regions to coordinates of a tem-
plate space. In case of a standard whole-brain parcellation, each voxel has a
unique region index, and the assigned regions do not overlap. In case of prob-
abilistic maps, however, each coordinate is assigned a probability to belong to
any of the regions, resulting in a set of overlapping maps to define the atlas.
Parcellations are based on different modalities of brain organization, including
cytoarchitecture (e.g. [13]), chemoarchitecture (spatial distribution patterns of
molecules like specific neurotransmitter receptors, e.g. [14]), structural connec-
tivity (patterns of connectivity with other brain regions as defined by axonal
connections, e.g. [15,16]), functional connectivity (spatial co-activation patterns
under different cognitive conditions (e.g. [17]), anatomical landmarks, or a com-
bination of such features in the case of multimodal parcellations [18,19,20].

The gold standard of brain parcellations is based on cytoarchitecture as mea-
sured in histological sections. The early Brodmann atlas of the cerebral cortex of
humans and other primates uses such a cytoarchitectonic parcellation [21]. Some
years later, von Economo and Koskinas developed an atlas [22] with a more com-
prehensive characterization of the cortical layers, and taking into account cortical
folding by describing cytoarchitecture orthogonal to the cortical surface. How-
ever, the bases of these pioneering works remain collections of separate brain
slices, thereby lacking coverage of the full three-dimensional anatomical space,
as well as of the variability across subjects. Recent work in probabilistic cytoar-
chitectonic mapping addresses the latter challenge by aggregating microscopic
maps from ten different subjects in MNI space [13]. Furthermore, different groups
are working on full three-dimensional, microscopic resolution maps of cytoarchi-
tectonic areas [23] and cortical layers [24] in the BigBrain model, giving access to
region- and layer specific measures of, e.g., cell densities and laminar thickness.

In connectivity-based parcellation, voxels with similar connection properties
are grouped together [15]. An example of an atlas using connectivity-based par-
cellation is the human Brainnetome Atlas [16], which takes the Desikan-Killiany
atlas based on cortical folds (the sulci and gyri) [25] as its starting point. The
Brainnetome atlas has the advantage for modeling studies that data on func-
tional connectivity, a term used in neuroscience for activity correlations, is freely



available in the same parcellation, allowing straightforward testing of model pre-
dictions on network dynamics.

The Allen Institute has published multiatlases of the developing1 and adult
human brain [26,27], mapping cytoarchitecture, gene expression, and for the
adult brain also connectivity as measured with diffusion tensor imaging (DTI),
a magnetic resonance imaging method that detects axon tracts. This multimodal-
ity, where different types of data are represented in the same template space and
parcellation, is useful for modelers, not only because of the richness of the data,
but also as mapping data from different sources between template spaces and
parcellations introduces inevitable errors.

The macaque, as a close relative of humans, is an important model organism,
for which several atlases have been created. These include the atlas of Markov
et al. (2014) [28] with the so-called M132 parcellation of 91 cortical areas, and
a whole-brain atlas by Calabrese et al. (2015) [29] based on DTI. Another com-
monly studied species is the mouse, for which state-of-the-art atlases of gene
expression data [30], cytoarchitecture as measured with Nissl staining, which
stains nucleic acids and thereby cell bodies of both neurons and glia, and meso-
scopic connectivity obtained by anterograde viral tracing [31,32] are provided
by the Allen Institute. Paxinos and Franklin provide the other most commonly
used mouse brain atlas [33], which recent work combines with the Allen Institute
coordinate framework [34].

Several online resources exist for browsing brain atlases. The Scalable Brain
Atlas provides web-based access to a collection of atlases for the human brain
and for a number of other mammals, including macaque, mouse, and rat [35].
The Human Brain Project provides online services for interactive exploration of
atlases for the mouse, rat, and human brain through the EBRAINS infrastruc-
ture2. The human brain atlas is a multilevel framework based on probabilistic
atlases of human cytoarchitecture, and includes links with maps of fiber bundles
and functional activity, as well as a representation of the microscopic scale in the
form of the BigBrain model with maps of cortical layers and cytoarchitectonic
maps at full microscopic resolution [36].

2.2 Cortical and laminar thicknesses

The geometrical properties of the global and regional morphology of the brain
have obvious relevance for brain models that explicitly represent space, but can
also be important for estimating connectivity and numbers of neurons in non-
spatial models. These properties include coordinates of region boundaries, spa-
tial extents of brain regions, and properties of regional substructures such as
thicknesses of cortical layers. Coordinates and spatial extents of brain regions
are captured by atlases as described in the previous section. Another geometric
property that is often of interest is the thickness of cortex and its layers.
1 BrainSpan Atlas of the Developing Human Brain (2011) http://brainspan.org.
Funded by ARRA Awards 1RC2MH089921-01, 1RC2MH090047-01, and
1RC2MH089929-01.

2 https://ebrains.eu/services/atlases/brain-atlases



Cortical and laminar thicknesses can be either determined directly from his-
tology of brain slices, or using structural MRI. When the MRI scans have suf-
ficiently high resolution, these methods yield comparable results [37,38,39,40],
but both methods have their own drawbacks. Brain slices generally represent
sparse samples, are difficult to obtain precisely perpendicularly to the cortical
sheet, and are subject to shrinkage, which has to be controlled for. Further-
more, identification of layers and the boundary between gray and white matter
is still often performed manually, although automatic procedures are under de-
velopment [24,41]. Structural MRI can cover the entire cortex and at least the
gray/white matter boundary tends to be segmented using computer algorithms,
but it has a lower resolution in the section plane than microscopy of brain slices,
the exact resolution depending on the strength of the scanner and the scanning
protocol. Von Economo provides laminar and total cortical thicknesses for all
areas of human cortex based on 25 µm sections [42]. More recently, cortical and
laminar thicknesses (the thicknesses of the individual cortical layers) have been
identified in the BigBrain, forming a state-of-the-art, comprehensive dataset on
human cortex [24,43]. The gray and white matter volumes and surfaces, along
with the layer surfaces, are freely available3 and can be explored interactively in
the EBRAINS human brain atlas viewer. Alvarez et al. (2019) [44] determined
the thicknesses of 25 human visual areas from 700µm resolution MRI data from
the Human Connectome Project, also making the quantitative area-averaged
data freely available. Calabrese et al. (2015) [29] derived macaque cortical thick-
nesses from MRI scans at 75 µm resolution, available as an image file. Hilgetag
et al. (2016) [45] provide total cortical thicknesses for 22 vision-related corti-
cal areas of the macaque monkey, determined from brain slices sampled every
150−200µm throughout the region of interest. At least in the vision-related areas
of macaque cortex, total cortical thickness correlates inversely with neuron den-
sity, so that a statistical fit allows the thicknesses of the remaining vision-related
areas to be estimated [46]. Correspondingly, cortical thickness varies systemati-
cally along the anterior-posterior axis in primates [47]. Rough estimates of the
laminar thicknesses of macaque vision-related areas based on a survey of micro-
graphs (microscopic images) have been published [46]. Comprehensive data on
cortical thicknesses of other species are sparse, especially in a form that is di-
rectly usable by modelers. Methods for extracting cortical thicknesses from MRI
in rodents are under development [48,49].

2.3 Numbers of neurons

Another basic property of brain circuits is their numbers of neurons, which can
be determined from the size of brain regions and their neuron density. Over the
years, different methods of counting cells have been used [50,51]. When total cell
counts are of interest and their precise distribution across space is less important,
tissue can simply be homogenized and the numbers of cell nuclei suspended in a
fluid can be counted in samples under a microscope. The isotropic fractionator
3 ftp://bigbrain.loris.ca/



is a version of such a homogenization and direct counting method [52]. The
term ‘fractionator’ refers to a uniform random sampling scheme which divides
samples into ‘fractions’ or counting boxes, enabling a statistical estimate of total
cell counts to be obtained by considering only some fractions [53].

Stereological methods are a more involved class of methods that determine
three-dimensional properties from two-dimensional sections through the tissue.
The advantage of these methods is that the cells are counted in their real three-
dimensional environment (depending on the section thickness) and thus spatial
and area-specific values can be collected, e.g. cell densities in a single cortical
lamina. Beside the fact that most stereological methods are quite labor- and
time-intensive, the problem arises that the same cell may appear in two or more
sections but should only be counted once. The disector addresses this issue by
considering pairs of adjacent sections and only counting the cells that are present
in the second but not the first section, effectively counting only the ‘tops’ [54].
The success of this approach depends on being able to recognize if features in the
adjacent sections belong to the same cell, and on effectively correcting for large
structures that extend across more than two sections. The optical fractionator
combines the aforementioned uniform sampling method (the ‘fractionator’) with
optical disection, in which objective lenses with a high numerical aperture are
used to focus through the tissue to identify individual cells. A guarding zone
above and below the inspected volume prevents multiple counting of truncated
structures.

For cell bodies to be identified under the microscope, they are first dyed. Two
commonly used methods are the aforementioned Nissl staining, and antibody
staining of the protein NeuN that is present in the nuclei of most vertebrate
neurons but not in glia [55]. Another technique dying both neurons and glia is
silver staining [56], used for instance in the BigBrain model.

A number of comprehensive data sets on cell and neuron counts are available,
although estimates can vary quite a bit across studies [57]. Overall numbers of
neuronal and non-neuronal cells have been estimated for the brain as a whole,
and for its major components like the cerebral cortex and the cerebellum, for
a large number of species4 [58,59,60,61,62]. In most cases, these cell numbers
were acquired using the above-described techniques based on homogenized tis-
sue. The von Economo atlas contains cell densities for human cortex with areal
and laminar resolution, as determined with Nissl staining [42]. Because the Nissl
technique stains both neurons and glia, which can, however, be distinguished
based on morphology, it is not entirely clear whether glia are included in these
cell densities. Furthermore, the cell numbers were measured without modern
stereological approaches and without characterizing inter-individual variability.
Modern high-performance computing methods are being applied for image reg-
istration of two-dimensional cortical and subcortical images to determine three-
dimensional cell distributions [12] (figure 1), laying the foundation for future
quantitative data sets representing an update and refinement with respect to
the von Economo study. Collins et al. [63] provide cortical area-specific neuron

4 https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons



densities for the non-human primates galago, owl monkey, macaque, and ba-
boon as determined with the isotropic fractionator. So-called cortical types or
architectural types characterize the neuron density and laminar differentiation of
primate cortical areas in a discretized manner, and thereby enable rough neuron
density estimates where these have not been directly measured [64,65,46,66,67].
Herculano-Houzel et al. (2013) [68] measured neuron and cell counts and den-
sities for the areas of mouse isocortex. Keller et al. (2018) [69] systematically
reviewed region-specific neuron and glial densities throughout the mouse brain.
Structures that have been characterized in detail also include the somatosensory
areas of rat cortex and thalamus [70,71]. Despite many more data having been
published, a large number of species-specific brain region compositions are still
unknown, especially for subcortical regions. Scaling laws across species enable
numbers of neurons to be estimated based on structural properties like brain
and regional mass and volume [72,58,59,60,61,62].
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Figure 1. Extraction of layer-specific cell density estimates from microscopic scans of
histological sections stained for cell bodies. A. Cortical patch of a scan. B. Example
result of automatic instance segmentation of cell bodies using state-of-the-art image
analysis (E. Upschulte, Institute of Neuroscience and Medicine, Forschungszentrum
Jülich). C. Centroids of detected cell bodies, colored by cortical layer. D. Zoom into
the local region of interest indicated by the white rectangle in Panels A and B. E.
Two-dimensional histogram showing the number of cells in each layer, grouped by area
of the cell body as segmented in the image.

Neuron counts or densities may not always be available in the particular
parcellation chosen by the modeler. A mapping between parcellations may be
performed by determining the overlaps between areas in different parcellations,
for which the parcellations have to be in the same reference space. A large num-
ber of methods for registering images to the same reference space using nonlinear



deformations have been developed [73,74,75]. For macaque atlases registered to
the so-called F99 surface, a tool provided alongside the CoCoMac database on
macaque brain connectivity5 [76] calculates the absolute and relative overlaps
between cortical areas. The data in the new parcellation can then be computed
as a weighted sum over the contributions from the areas in the original parcel-
lation. However, this method entails the assumption that the anatomical data
for each given area are representative of that area as a whole, and neglects in-
homogeneities within areas. It should further be noted that criteria for area
definitions, such as their cytoarchitecture or connectivity, are likely to provide
information beyond this purely spatial approach. Nonlinear image registration
techniques can take such factors into account, or alternatively, a coordinate-
independent mapping can be performed [77]. No perfect solution for mapping
anatomical data between parcellations exists, but in general, the more criteria
are considered, the better the mapping.

2.4 Local variations in cytoarchitecture

Even within brain regions, cell densities are not constant but display local varia-
tions. An example of known spatial organization of neuron positions are so-called
cortical minicolumns, also known as microcolumns, arrangements of on the order
of 100 neurons perpendicular to the cortical surface, across the cortical layers.
Cortical macrocolumns or hypercolumns are millimeter-scale structures contain-
ing thousands or tens of thousands of neurons with similar response properties
in one or a few coding dimensions, for instance ocular dominance or position
in the visual field. Cortical macrocolumns are particularly pronounced in the
barrel cortex of rodents, which encodes whisker movements. In barrel cortex,
the ‘barrels’ are cylindrical structures in layer IV containing neurons that re-
spond preferentially to a particular whisker and have response properties and
connectivity distinct from the interbarrel regions.

Various data on variations in neuron density within brain regions are avail-
able. Probably the most comprehensive data set of three-dimensional cell dis-
tributions is the Allen Mouse Brain Atlas, which contains both neurons and
glia [57]. Spatial gradients in retinal cell densities have been well characterized
[78,79,80,81,82,83], and those in thalamus to a lesser extent (e.g., [84]). The ver-
tical distribution of cells in several cortical areas has also been characterized at
a spatial resolution beyond that of cortical layers [85,86,87].

Studies resolving small cortical patches provide a sense of the variability of
neuron density across the cortical sheet within primate cortical areas [63,88].
Furthermore, many studies have subdivided brain regions into discrete compo-
nents with different cellular compositions, e.g., [89,90,91,92].

2.5 Use of morphology and cytoarchitecture in models

While most neural network models specify their architecture using concepts such
as areas and layers, in some cases the neurons are simply assigned positions in
5 http://cocomac.g-node.org/services/f99_region_overlap.php



continuous three-dimensional space and the connectivity is specified without
reference to such concepts (e.g. [93]). In the conceptual approach, different con-
nectomes may be obtained depending on the chosen parcellation. The particular
choice of parcellation for instance affects topological properties of the corre-
sponding connectomes [94,95]. Apart from this ‘gerrymandering’ issue, when
predictive connectomics is used to fill in gaps in connectivity data with the
conceptual approach, the choice of parcellation may influence the results. The
findings of [94,95] for instance imply that incomplete connectomes completed
via topological rules could differ depending on the parcellation. In view of the
variability induced by differences between parcellations, there is something to
be said for the continuum approach when the data allow it. Interpretation of
the network dynamics in terms of region-specific activity may then be done in a
post-hoc manner, flexibly with regard to the region definitions.

In spatially extended models, the neurons may be placed on a regular grid,
with some jittering, at random positions, or at precise coordinates in space.
Here, artificial symmetries in the network dynamics due to grid-like placement
of neurons, which may arise for instance when the connectivity and delays are
directly determined by the distances between neurons, should be avoided. Besides
informing connectivity, the positions can be important for predicting signals with
spatial dependence, like the local field potential (LFP), electroencephalogram
(EEG) or magnetoencephalogram (MEG).

Precise region shapes are so far hardly used in computational modeling.
Rather, the relatively rare network models that take into account three-dimensional
structure tend to restrict themselves to simple geometric shapes like cubes or
cylinders. An available but not yet widely used tool enables three-dimensional re-
gion volumes to be modeled through a combination of deformable two-dimensional
sheets, where atlas data or histological images can support the modeling process
via integration with the software Blender [96]. In an example application, the
three-dimensional shape of the hippocampus was shown to substantially affect
the connectivity between neurons predicted based on their distance. Accurate
representations of volume transmission effects such as ephaptic coupling (non-
synaptic communication via electrical fields or ions) [97], as well as the prediction
of meso- and macroscopic signals like the LFP, EEG, and MEG also rely on the
spatial distribution of neurons and thus benefit from measured three-dimensional
brain morphology [98,99,100].

On the scale of local microcircuits on the order of a millimeter, spatial vari-
ations in cortical and laminar thicknesses across the cortical sheet within each
area are limited and are generally ignored in computational models. Cortical and
laminar thicknesses are then straightforwardly incorporated by scaling the num-
bers of neurons accordingly, and sometimes by distributing the neurons across
cortical depth. In future, as resources become available for modeling extended
cortical regions in detail, continuous variations in cortical and laminar thick-
nesses may be incorporated.

It is also not yet common for computational models to take into account con-
tinuous variations in neuron density within brain regions. However, a number



of models already divide regions into discrete subdivisions with different cellu-
lar compositions, e.g., [101]. The organization of cortex into minicolumns and
macrocolums has been incorporated for instance in models of attractor memory
[102,103] motivated by a functional interpretation. In future, increasingly real-
istic placement of neurons in models may yield more sophisticated predictions
of spatially resolved brain signals and of network dynamics, through associated
properties like distance-dependent connectivity.

3 Structural connectivity

Neurons in the brain exchange chemical signals via synapses, and in some cases
are in more direct contact via so-called gap junctions. Although gap junctions are
probably important for some phenomena (e.g. [104]), we here focus on the for-
mer, much more numerous type of connections, the synapses. The huge number of
synapses in mammalian brains has so far precluded mapping all of them individ-
ually, although efforts are underway towards dense reconstruction of the mouse
brain [105]. However, various methods exist for measuring neuronal connectivity,
at scales ranging from individual synapses to entire axon bundles between areas.
While some models distinguish individual synapses and thus need information at
this level, other models lump synapses together, so that aggregated connectivity
information suffices.

This section provides an overview over available types of information on neu-
ronal network connectivity, along with resources and databases that can be used
for constructing neuronal network models. We describe connectivity information
according to the major experimental methods: microscopy, paired recordings,
glutamate uncaging, axonal tracing, and diffusion magnetic resonance imaging
(diffusion MRI), of which the most commonly used form is diffusion tensor imag-
ing (DTI).

3.1 Microscopy

The oldest and lowest-resolution form of microscopy is light microscopy, provid-
ing a magnification factor of up to about 1,000. Neuron reconstructions from
light microscopy of adjacent tissue slices allow rough estimates of connectivity
based on the proximity of pre- and postsynaptic neural processes (cf. section 4.1).
Following this approach, Binzegger et al. (2004) [106] derived a population-level
local connectivity map for cat primary visual cortex. However, as detailed in
section 4.1, predicting connectivity based on proximity has its drawbacks, which
should be kept in mind when interpreting the resulting connectomes. Further-
more, tissue slicing cuts off dendrites and axons, which may extend over mil-
limeters and more, so that assessing medium- to long-range connectivity requires
extensive three-dimensional reconstructions. A method that facilitates such re-
constructions is block-face tomography, in which scanning of the surface of a
tissue block is alternated with the removal of thin slices from the surface [107].



Two-photon microscopy is a sub-micron resolution imaging technique that
uses laser irradiation of tissue to elicit fluorescence through two-photon excita-
tion of molecules [108]. A high-throughput block-face tomography pipeline has
enabled the reconstruction of the full morphologies of 1,000 projection neurons
in the mouse brain at a resolution of 0.3× 0.3× 1µm3, the MouseLight data set
of Janelia Research Campus [109,110]. A viewer for the MouseLight morpholo-
gies is available6. A finding that stands out from this data set is the remarkable
variability in projection patterns, each neuron projecting to a different subset of
target regions for the given source region.

At nanometer spatial scales, electron microscopy enables the identification
of individual synapses and the precise shape and size of the presynaptic and
postsynaptic elements, even down to individual synaptic vesicles. This method
is extremely labor-intensive, but heroic efforts have nevertheless led for instance
to estimates of synapse density in different areas of human cortex [111,112] , a
volume reconstruction of the entire Drosophila (fruit fly) brain [113], the mor-
phological reconstruction of 1,009 neurons in a microcircuit of rat somatosen-
sory cortex [71], and full reconstructions of 1,500 µm3 [114] and more recently
> 5 × 105 µm3 [115] of mouse cortical tissue. A noteworthy finding from these
studies is that the presence of synapses is not perfectly determined by the close
proximity of axons and dendrites (appositions). For instance, an apposition is
far more likely to predict an actual synaptic contact for pairs of neurons that
also form synapses elsewhere on the axon and dendrite [114]. Such a rule will
tend to lead to a long-tailed distribution of the multiplicity of synapses between
pairs of neurons.

Synapses may look asymmetric or symmetric under the microscope, where
asymmetric synapses have a pronounced postsynaptic density and are predomi-
nantly excitatory, while symmetric synapses have roughly equally thick pre- and
postsynaptic densities and tend to be inhibitory. Both the size of synapses and
their location on dendrites are informative about their effective strength in terms
of postsynaptic potentials evoked at the soma [116,117,118,119]. Furthermore,
synapse locations on dendrites can tell us something about their interaction with
other synapses; however, these complex interactions are not captured by point
neuron or population models. Axonal varicosities or boutons are swellings along
axons (boutons en passant) or at axon terminals (terminal boutons) that host
synapses, and which are detectable through all microscopic methods mentioned
here. Even when the synapses themselves are not directly imaged, boutons may
be taken as evidence for synapses, with the caveats that some synapses are not
established on boutons, and individual boutons may contain different numbers
of synapses [120].

In summary, microscopy is useful for estimating connectivity based on ap-
positions, reliable estimates of numbers of synapses in a given volume, detailed
connectivity features such as the multiplicity of synapses between pairs of neu-
rons, and correlative information on synaptic efficacy.

6 https://neuroinformatics.nl/HBP/mouselight-viewer/



3.2 Paired recordings

In paired recordings, electrodes are used to simultaneously stimulate one cell and
measure the response in another cell, either in vitro or in vivo. Stimulation may
be performed extracellularly, intracellularly with sharp electrodes, or via patch
clamp; recordings normally use one of the latter two techniques. This method
sums up the contributions from potentially multiple synapses between the pair
of neurons, which should be kept in mind when incorporating the corresponding
synaptic strengths into models. Where anatomy-based methods can have the
drawback that they do not provide conclusive evidence for physiologically active
synapses, paired recordings identify functional synapses. However, existing con-
nections may be missed depending on the experimental protocol, for instance
due to axons and dendrites being cut off during slice preparation. Each pair of
neurons should also be tested multiple times, because in individual trials, axonal
or synaptic transmission failures may occur, or the postsynaptic potential may
be too small to be detectable among the noise [121]. Paired recordings may be
biased toward neurons that are easier to patch or insert an electrode into, for
instance larger cells. Especially in vivo, where the network exhibits background
activity, responses may in principle be caused by activation of neurons other
than the one that is stimulated. Responses are judged to be monosynaptic based
on a short, consistent response latency, usually of a few tenths of milliseconds
[122,123].

Most paired recordings are highly local, with a distance no greater than
100 µm between the somas of the pre- and postsynaptic cells. They provide
the modeler with connection probabilities in terms of the fraction of pairs of
neurons that have at least one synapse between them. For interpreting these
connection probabilities, it is important to take into account the spatial range of
the recordings, as connection probability is generally distance-dependent. The
measurements represent a spatial average over this distance-dependent connec-
tivity, which is in mathematical terms a double sum (which may in continuum
approximation be represented by an integral) over the positions of the source
and target neurons.

Paired recordings show that, on the scale of local microcircuits up to 200µm
from the presynaptic soma, bidirectional connections between pyramidal neurons
in cortical layer V occur significantly more often than would be expected by
chance [124]. In some studies, researchers have recorded from multiple neurons
simultaneously [125,126,127,128]. Simultaneous recordings from respectively four
[126] and twelve [127] rat cortical neurons confirm the overrepresentation of
bidirectional connections regardless of the distance from the soma. This type of
analysis has also revealed that motifs with clustered connections among three or
more neurons are more common in the cerebral cortex than would be predicted
based on pairwise connection probabilities alone [126,127] (cf. section 4.4).

3.3 Glutamate uncaging

Similarly to paired recordings, glutamate uncaging generates action potentials
in presynaptic neurons and records the response in postsynaptic neurons con-



nected to them. Usually, the method is applied to slice preparations and neurons
are recorded intracellularly, but in vivo application and extracellular recordings
are also possible. First, a compound consisting of glutamate bound to another
molecule is introduced, for instance by bathing a brain slice in a solution with
the caged glutamate. Then glutamate is released by photolysis of the compound
through focal light stimulation, causing action potentials in neurons with their
soma close to the stimulation site. Brain slices are generally scanned system-
atically, generating for each given target neuron a grid-like map of response
amplitudes for each stimulated location.

Originally, glutamate was uncaged using ultraviolet light [129], but due to
light scattering and a large uncaging area, this stimulated multiple neurons, mak-
ing the results harder to interpret. Two-photon stimulation, in which photolysis is
triggered by the absorption of two photons, enables individual neurons and even
individual dendritic spines to be stimulated [130,131]. As with paired record-
ings, an issue is that it cannot be known with certainty whether the responses
are monosynaptic or emerge due to sequential activation of two or more neu-
rons, but short-latency responses time-locked to presynaptic action potentials in
the absence of background activity reliably indicate monosynaptic connections.
Another issue is that the uncaged glutamate may directly influence the recorded
neuron, so that stimulations that lead to short-latency responses with excessive
amplitudes have to be excluded from analysis. Furthermore, the same caveats as
for paired recordings apply with regard to distance dependence of connectivity,
and potential cutting of dendrites and axons during slice preparation.

Purely based on glutamate uncaging response maps, it is not possible to di-
rectly derive a neuron-level connectivity map, because it is unknown how many
different presynaptic neurons are activated across stimulation sites. However, by
combining glutamate uncaging with imaging of the neurons, the connectivity
between neurons can be determined [130]. In the absence of such direct imaging,
the number of source neurons eliciting a given glutamate uncaging response can
be estimated by dividing by the unitary synaptic strength (the PSP or PSC size
due to a single presynaptic neuron), if an independent estimate for the latter is
available. If one in addition makes an assumption about the average number of
sites from which a given presynaptic neuron is activated, which depends on the
resolution of the stimulation grid, this yields an estimate of the number of neu-
rons impinging on a given postsynaptic cell. Typically, action potentials can be
elicited in a given neuron from a handful of sites [132,133]. Finally, one can de-
rive a connection probability by dividing by the approximate number of neurons
in the stimulated volume. Clearly, many assumptions and approximations are
involved in such derivations, so that it is currently still difficult to reliably deter-
mine the connectivity of neural network models from glutamate uncaging data.
However, in some cases, data obtained by this method are the best available for
a given brain region, in which case one may proceed via such assumptions [134].



3.4 Axonal tracing

The technique of axonal or neuroanatomical tracing entails injecting a tracer,
which can be a molecule or virus, which is taken up by neurons and transported
toward cell bodies or axon terminals. In anterograde tracing, the tracer is trans-
ported in the forward direction toward the synapses, while in retrograde tracing,
it is transported in the backward direction from axons toward the cell bodies of
the sending neurons. In practice, most tracers are to some extent both antero-
grade and retrograde, but one transport direction dominates [135]. Detection of
the tracer happens in one of multiple ways: the tracer may itself be fluorescent,
it may be radioactively tagged or conjugated with a dye or enzymatically ac-
tive probe, or it may be detected via antibody binding [136]. Axonal tracing is
generally performed in the living brain, after which the animal is sacrificed to
detect where the tracer has ended up, but some substances also enable tracing
in postmortem tissue and therefore even in the human brain, albeit over limited
distances [137,138,139]. The method is well suited to characterizing medium-
to-long-range connections such as those between cortical areas. A number of
tracers, especially certain viral tracers, are transneuronal, crossing synapses and
tracking polysynaptic pathways [140]. Furthermore, it is possible to perform
double or even triple labeling to visualize the participation of neurons in two
or more connection pathways [141]. Double labeling with retrograde tracers for
instance suggests that the vast majority of cortico-cortical projection neurons in
macaque visual cortex send connections either in the feedforward direction or in
the feedback direction, not both, with respect to the hierarchy of visual areas
[28].

Tracer injections typically cover a millimeter-scale area, so that multiple ax-
ons are traced at the same time, not individual ones. Because of the local spread-
ing of the tracer, axonal tracing does not provide reliable information about the
region immediately surrounding the injection site. An important drawback of
the method is that only up to a few injections can be performed in each animal,
so that data have to be combined across many animals to obtain a complete con-
nectivity graph. This introduces inevitable inaccuracies due to inter-individual
differences. Because tracers are taken up by neurons indiscriminately, conven-
tional tracing does not allow the specific connections of separate subpopulations
of neurons to be identified, let alone of individual neurons. However, over the
past decades a number of viral tracing methods have been developed that trace
specific molecularly marked neuronal subpopulations [136]. A modern technique
uniquely labeling neurons with random RNA sequences enables high-throughput
mapping of projections at the level of individual source neurons [142].

While axonal tracing traditionally only gave qualitative information about
connectivity, for instance describing staining as sparse, moderate, or dense, more
recently a number of groups have gone through the painstaking effort of counting
the numbers of labeled cells in retrograde tracing experiments. A notable quan-
titative tracing data set characterizes the connectivity between a large number
of areas in macaque cortex in terms of overall fractions of labeled neurons (FLN)
and fractions of supragranular labeled neurons (SLN) in all source areas project-



ing to each injected target area [28,143]. SLN relates to the hierarchy of vision-
related cortical areas, as feedforward projections tend to emanate from layer
II/III and thus have a high SLN, while feedback projections emanate preferen-
tially from infragranular layers and have a low SLN. A similarly comprehensive
resource of quantitative retrograde tracing data is available for the marmoset
neocortex [144,145].

C

B

CoCoMac Database
www.cocomac.org

 

A

 

Connectivity statements
"Brain region A is strongly 
connected to area B ..."
"Anterogradely labeled cells are
found mainly in layers 2/3 ..."

 
 

Relations between brain maps
"In comparison to an earlier 
definition of area A, we think that
it extends more towards ..."

+

Tracing study publication

Figure 2. Workflow from tracing experiment to entry in the CoCoMac database. A.
A tracing study is performed to study a particular part of the brain, by injecting a
tracer substance into a target area. Shown is Case 16L from Galletti et al. [146], here
registered to the macaque atlas of Calabrese et al. [29] via the Scalable Brain Atlas [35].
B. Tracer is picked up by axons, and depending on the substance it is either transported
anterogradely towards the axon terminals, or retrogradely to the cell bodies, or both.
After sacrificing the animal, a careful investigation of labeled cell bodies and/or axon
terminals across the brain is carried out, sometimes including layer-specific quantitative
data. C. After the results have been written up and subject to peer review, collators
from the CoCoMac database take out statements on connectivity and the definitions
of brain areas.

The CoCoMac database, which stands for Collation of Connectivity data on
the Macaque brain [76,147], contains both anterograde and retrograde tracing
data from a large number of published studies, especially for the cerebral cortex,
in part with laminar resolution. Figure 2 illustrates the prerequisites for creating
such a database. Another collation effort [148] has reconstructed the area-level
structural connectome of the cat from qualitative axonal tracing data. The Allen
Institute provides an anterograde tracing data set encompassing hundreds of



injections throughout the mouse brain [149]. A comprehensive characterization
of laminar target patterns of connections between cortical areas in primate is
missing to date.

Axonal tracing is a reliable method for identifying actual connection path-
ways, and often serves as the ground truth for evaluating diffusion tensor imag-
ing results (cf. section 3.5). However, the fact that connectomes based on tracing
data are a composite of connectivity in many individuals warrants special cau-
tion in their interpretation. The average or union of the connections in many
brains in all likelihood does not accurately represent the connectivity of any
individual brain.

3.5 Diffusion tensor imaging (DTI)

Diffusion tensor imaging (DTI) is a form of diffusion MRI or diffusion-weighted
imaging (DWI), which measures the local rate of water diffusion at a resolution
of typically a few millimeters. DTI detects anisotropies in the diffusion of water
by using several different orientations of the magnetic field gradients to obtain
information about the directionality of the diffusion in each voxel [150]. Since the
diffusion is greater along than perpendicular to myelinated axons, the method
enables the main local orientation of axonal fiber tracts to be identified. The
paths of the fiber tracts maximally consistent with the local orientations are
reconstructed using so-called tractography. The density of these ‘streamlines’ is
a measure of connectivity between distant brain regions, and can for instance be
summed within cortical areas to obtain an area-level cortical connectivity map.
DTI is non-invasive and can reveal the connectivity of the whole brain at once.
However, apart from possible directional specificity introduced by the choice of
seed points for tractography, the connectivity provided by DTI is symmetric, as
it can resolve the orientation but not the direction of fiber tracts. While most cor-
tical inter-area projections are reciprocal with positively correlated connection
density in the two directions [143,151,145], a proportion of connections is asym-
metric, and these asymmetries are hereby missed. Such asymmetries are likely
to be important for the dynamics predicted from neuronal network models [152].
Further drawbacks of DTI are its lack of laminar resolution and its inability to
distinguish fibers with different orientations in the same voxel, such as crossing
or touching (‘kissing’) fibers. Local tractographic errors due to kissing or crossing
fibers add up over distance, limiting the reliability of the resulting connectivity
maps, especially giving many false positives for long-distance connections [153].

The Human Connectome Project provides high-resolution preprocessed hu-
man diffusion MRI data for > 1100 subjects. Tractography was performed on an
earlier, smaller data set from the Human Connectome Project and the result-
ing connectome was made available via the Brainnetome Atlas [16]. Prominent
DTI connectomes for the macaque and mouse brains were published by Duke
University [29,154].

As yet, there is no straightforward way to derive fully reliable and accu-
rate connectomes from DTI. The same holds more generally for all the types of
connectivity information we have discussed. All experimental connectivity data



have ‘gaps’: they only cover a certain spatial scale, they represent a subsample
or lack precision at the given scale, or additional information is required to turn
the experimental values into numbers of synapses. For this reason, methods are
needed for filling in the gaps in the data in order to fully specify network models.
This is the topic of the next section.

4 Predictive connectomics

Where the experimental connectivity data have gaps, we can try to fill these
in using statistical estimates based on relationships of the known connectivity
with properties such as cytoarchitecture or distance between brain regions. We
refer to this approach as ‘predictive connectomics’. Such statistical estimates
still tend to have a high degree of uncertainty associated with them, but if we
want to fully define a network model, there is no way around making certain
assumptions and approximations. From another perspective, the statements of
predictive connectomics represent formalized hypotheses for further anatomical
studies. The spatial and temporal organization of neurodevelopment simulta-
neously explains many empirical relationships between connectivity and other
structural properties of the brain. In the present section, we discuss the major
heuristics for predicting connectivity, including Peters’ rule, architectural prin-
ciples, and methods based on distance and network topology, and describe how
developmental origins form a common denominator for many of these heuristics.
Finally, we touch upon the inference of structural connectivity from activity
data.

4.1 Peters’ rule

Peters’ rule postulates that proximity between neurites (i.e. presynaptic axons
and postsynaptic dendrites) can predict neuronal connectivity. It was originally
proposed by Peters and Feldman (1976) [155] for the projections from the lateral
geniculate nucleus to the visual cortex of the rat. The term ‘Peters’ rule’ was
later coined by Braitenberg and Schüz (1991) [156], who also generalized this
idea beyond the particular case studied by Peters and Feldman. The rule has
since been widely used by researchers. Over time its application has varied. Rees
et al. (2017) [157] reviewed the relevant literature and distinguished between
three conceptually different usages of the rule, which correspond to increasing
level of detail (illustrated in figure 3):

1. Population level. In the original formulation, the rule was applied as a pre-
dictor of connectivity between populations of neurons of the same type.
Consider a group of neurons A (for example in the thalamus) projecting to a
region containing another group B (for example pyramidal cells in visual cor-
tex), where all neurons within the groups are of the same type. According to
the original rule, the number of synapses between A and B is correlated with
the spatial overlap of presynaptic axons of population A and postsynaptic
dendrites of population B.



2. Single-neuron level. Extending the example from the previous point, take
two neurons ai and bj from populations A and B, respectively. In this for-
mulation, the probability pij for a connection between ai and bj to exist
is proportional to the spatial proximity between their respective pre- and
postsynaptic arbors.

3. Subcellular level. At the subcellular level, Peters’ rule has been used to link
the number of axonal-dendritic appositions to the number of synapses, re-
gardless of cell types.

Figure 3. Illustration of the different levels of detail in the usage of Peters’ rule, as
described in [157]. A. Population level, B. Single-neuron level and C. Subcellular level.

Peters’ rule is not universal and has been shown to hold for certain cases and
fail in others, for all levels of detail. Section 3.1 describes an exception to Peters’
rule at the subcellular level, which probably carries over to the single-neuron level
as well: an apposition is more likely to predict a synapse if other synapses are
present on the same neurites [114]. Other studies have provided evidence both in
favor of and against the heuristic at the subcellular level [158,159,160,115]. Neu-
rite proximity is undeniably a necessary condition for the formation of synapses,
but in general not sufficient to explain it, for instance as activity-dependent
plasticity may support preferential connectivity between neurons with similar
response properties. Nevertheless, Peters’ rule is a decent heuristic at the pop-
ulation level, with the main caveat that some cell types do not connect to each
other even if they come into close proximity [106,157]. Thus, the rule may be
fruitfully applied at the population level as long as such cell-type-specific absence
of connections is taken into account.

4.2 Architectural principles

The cytoarchitecture and laminar composition of cortical areas are predictive of
their connectivity, as first noted for frontal areas of macaque cortex [161,64]. In
particular, architecturally more similar areas are more likely to be connected, and
if they are connected, the connection density tends to be higher [162,151,45,163].
However, while architectural similarity reliably predicts the existence and ab-



sence of connections, connection densities are better explained by inter-area dis-
tances (cf. section 4.3) [162]. The characterization of areal architecture in terms
of laminar differentiation was systematized using the notion of architectural
types, which also consider the thickness of layer IV [65]. Areas with low archi-
tectural type have low neuron density, a thin or absent layer IV, and indistinct
lamination. Areas with high architectural type have high neuron density, a thick
layer IV, and distinct lamination. The progression from low to high architectural
types roughly corresponds to the inverse of cortical hierarchies, down from lim-
bic to early sensory areas. Instead of using architectural types, which discretize
what is in fact a continuum of structural features across areas [164], one may
use neuron density as a continuous explanatory variable. However, compared to
neural density differences, architectural type differences are a better predictor of
the existence and absence of connections between macaque visual areas [45].

Besides correlating with the existence or absence of connections and with
connection density, architectural differences are informative of laminar projec-
tion patterns. Cytoarchitectonic difference is the only consistent predictor that
explains the majority of the variance in laminar source patterns when com-
pared with other candidate explanatory variables such as rostrocaudal distance
[165]. Areas with more distinctive layers and higher neuron density tend to send
projections from their upper (supragranular) layers to areas with less distinctive
layers and lower neuron density. Reversely, projections from the latter to the for-
mer type of areas tend to emanate from the lower (infragranular) layers. These
patterns seem to generalize across species, having already been demonstrated
for cat, marmoset, and macaque [166]. Since laminar origin patterns are corre-
lated with laminar termination patterns, for instance supragranular projections
tend to target the granular layer IV [167], also termination patterns can be in
part inferred from architectural similarity [151,46]. However, as the majority of
layer-resolved axonal tracing data is retrograde, origin patterns have been more
extensively studied than termination patterns. For human cortex, laminar origin
and termination patterns of inter-area projections are still mostly unknown. For
modeling purposes, the relationships between laminar patterns and cytoarchitec-
tural differences between areas that have been observed in different mammalian
species may be used to assign laminar patterns to human connectomes (figure 4).

Cortical thickness similarity has also been investigated as an explanatory
variable for inter-area connectivity. Areas with more similar thickness are more
likely to be connected, although this relationship does not hold consistently [45].
Thickness differences also relate to laminar patterns: projections from thinner
to thicker areas tend to have a more supralaminar origin [163]. The fact that
cortical thickness is somewhat predictive of connectivity fits with the observa-
tion that cortical thickness correlates negatively with neuron density [163,46].
However, compared to cortical thicknesses, architectural types and neuron den-
sities are more systematically related to connectional features, indicating that
cytoarchitecture is at the heart of the relation between cortical thickness and
connectivity. More commonly, thickness similarity has been characterized in the
sense of co-variation across subjects, areas with positively co-varying thicknesses



Figure 4. Laminar origin of connections, cytoarchitecture, and predictive connec-
tomics. A. Laminar origin of connections shifts from lower to upper layers across
the cortical sheet of the macaque monkey. B. Schematic illustration of the quanti-
tative relation between the cytoarchitecture of cortical areas and the laminar origin of
their connections to other areas. The transition from less to more laminar differenti-
ation (horizontal axis), associated also with increased neural density, is accompanied
by a transition of predominantly lower to upper laminar origin of connections (vertical
axis). C. Cell densities of human cortical areas based on von Economo and Koskinas,
1925 [22]. Top, lateral view and bottom, medial view of the right hemisphere. D. A
monkey-to-human prediction of laminar origin of connections (NSG%, relative number
of supragranular neurons) between all pairs of cortical areas based on human cell den-
sities (Panel C) and the relationship between cytoarchitecture and the laminar origin
of connections (Panel B). Panel A based on a drawing from [168]. Panels C and D
reproduced from [165].



across subjects being more likely to be connected [169,170,171]. However, also
this correlation is far from perfect, and a large percentage of regions have co-
varying thickness without being connected [170].

4.3 Distance dependence

Both for connectivity between neurons within a given brain region and for that
between brain regions, shorter connections are more likely or more numerous
than longer ones. This rule makes sense considering the material and energetic
cost of wiring and the space taken up by axons and axon bundles. Nevertheless,
non-random long-range connections between specific regions exist, which are in
part explained by spatiotemporal patterns of brain development (cf. section 4.5).
Locally within cortical areas, connection probability of both excitatory and in-
hibitory neurons falls off approximately exponentially with intersomatic distance
with a space constant around 150− 300 µm [126,127,172,173]. Besides these lo-
cal connections, pyramidal cells establish patchy connectivity at distances on the
scale of millimeters [174].

Similarly to local connectivity, projections between cortical areas follow an
‘exponential distance rule’ in which the lengths of axons are exponentially dis-
tributed and the probability for a neuron to send a projection between cortical
areas thus falls off exponentially with distance [175]. This exponential distance
rule at the level of individual neurons translates into an exponential decay in
connection density at the level of areas as well [46]. Given the connectivity be-
tween cortical areas, the spatial arrangement of areas in the brain to a good
approximation minimizes the total wiring length [176,177,175]. In a study of the
connectivity between macaque cortical areas [143], the combination of the log
ratio of neuron densities and Euclidian distance between areas provided the best
statistical predictions of the existence of connections [163]. All in all, physical
distance constitutes a useful explanatory variable for the existence and density
of both local and long-range connectivity.

4.4 Connectome topology

So far we have considered connectivity predictions based on the properties of
pairs of network nodes (neurons or areas). It is possible to go beyond pairwise
properties and look at patterns of three or more nodes to infer connectivity.
According to the homophily principle—described in social network theory as
‘the tendency to choose as friends those similar to oneself’ [178]—nodes with
common neighbors are more likely to be themselves connected [179,165]. This
property is for instance displayed by so-called small-world networks, in which
a combination of many short-range and a few long-range connections enables
any node to be reached via a small number of hops through the network. The
homophily principle holds sway both at the single-neuron level and at the level
of brain regions, in both vertebrate and invertebrate brains [179].

In local cortical circuits, certain connection motifs—patterns of connectivity
in small groups of nodes—between three or more neurons are overrepresented



with respect to random graphs defined by pairwise connection probabilities alone
[126,127]. In a study of groups of up to twelve neurons, the probability of a con-
nection between a pair of neurons was found to increase linearly with the number
of common neighbors. Through this expression of the homophily principle, cor-
tical neurons cluster into small-world networks [127]. Furthermore, like-to-like
connectivity between neurons with similar functional specificity, e.g., neurons in
primary visual cortex having similar orientation preference or responding to the
same type of visual stimuli [180], is an important ingredient of the local network
topology [181].

At the level of brain regions, Jouve et al. [182] noticed that directly con-
nected areas in macaque vision-related cortex have far more indirect connec-
tions between them than do unconnected areas. The author defined an index of
connectivity that captures the fraction of shared first-order intermediate nodes
between any two areas (Figure 5A). They found that this metric is related to
the existence or absence of connections in macaque visual cortex, and used this
to infer the connectivity of area pairs for which no tracing data were available.
As pointed out in the study, the given indirect connectivity index cannot predict
all connections accurately, but nevertheless exposes an underlying principle in
the structure of the primate connectome.

We computed the index of indirect connectivity and the triadic motif counts
on the tract-tracing data from macaque [143,183] and marmoset [145] monkeys,
using the subgraphs without unknown connections. This analysis reveals that the
motif counts, relative to random graphs defined by pairwise connection probabil-
ities alone, have a similar structure in both primates, as shown previously [184]
(Figure 5B). We also see that the index of connectivity has a large overlap for
areas with and without a direct connection in both primates (Figure 5D). How-
ever, extreme values (> 0.8 and < 0.3) reliably distinguish existing connections
from non-existing ones.

A combination of spatial proximity and homophily accounts for many topo-
logical characteristics of human cortical networks such as degree, clustering, and
betweenness centrality distributions [185,186]. Chen et al. (2020) [187] found
that adding cytoarchitectonic similarity to distance dependence and topological
constraints resulted in even better predictions when applied to the macaque cor-
tical connectome. These findings place local topology, and especially homophilic
attachment, in the list of overarching properties governing neural network struc-
ture.

4.5 Neurodevelopmental underpinnings of connectivity heuristics

Many of the aforementioned connectivity heuristics can be brought together
in a common developmental framework. The spatiotemporal ontogeny of the
brain provides simultaneous explanations for distance-dependent connectivity,
the preferential connectivity between cytoarchitectonically similar areas, and
aspects of the network topology of the brain [179]. It also accounts for devia-
tions from a simple decay in connection probability with distance. For instance,
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Figure 5. Illustration of topological connectivity features of macaque and marmoset
cortical graphs. A. Schematic depiction of motifs in the area-level macaque cortico-
cortical connectivity. B. Z-score of the motif counts for all connected triads in the
macaque and marmoset. Motif counts are normalized by the mean and standard devi-
ation of the motif counts from 1,000 random graphs with the same connection proba-
bility as the experimental data in each case; * p < 0.05, ** p < 0.01, *** p < 0.001.
C. Schematic depiction of the area-level index of connectivity as described in [182].
Shared neighbors (green nodes) contribute to the prediction of a direct connection (or-
ange), while non-shared neighbors (gray nodes) make a direct connection less likely.
D,E. Distribution of the index of connectivity for existing and absent cortico-cortical
connections in macaque (D) and marmoset (E).

changes in the parameters of the distance-dependent connectivity during devel-
opment can yield a small-world network structure with multiple clusters [188].
Limbic cortical areas, of low architectural type, develop earlier and over a shorter
period than areas of high laminar differentiation such as primary visual cortex.
This rapid development not only underlies the less distinct lamination and low
neuron density of limbic areas, but also gives these areas a longer time window
for connecting to other regions, thus supporting their coordinating role [189].
The importance of spatial embedding and heterochronicity—the existence of a
sequence of developmental time windows—for brain wiring were demonstrated
for species ranging from the fruit fly to the mouse, rat, macaque monkey, and
human [190,179]. Thus, taking into account spatiotemporal gradients of brain de-
velopment can help predict more realistic connectomes regardless of the species
under investigation.

4.6 Reconstructing connectivity from activity

So far we have focused on predictive relations derived from the anatomical fea-
tures of the nervous tissue. However, anatomical information is often costly to



obtain or requires invasive methods and is therefore often not available for all
the different brain regions. An alternative approach is to derive neural network
structure from activity data. While promising results in this direction have been
obtained, this approach suffers from the drawbacks that widely different network
parameters can lead to closely similar activity [191] and that the external input
to the network modulates the link between structure and activity [192].

When relating activity to connectivity, we need to distinguish a few different
terms. Besides structural connectivity, the topic of this chapter, there are two
types of activity-dependent ‘connectivity’: so-called functional connectivity, and
effective connectivity. Functional connectivity is symmetric between source and
target nodes, and describes correlations between their activity. It is often used
in the context of functional imaging studies to characterize the interactions be-
tween brain regions. Effective connectivity is a directed measure, describing the
minimal graph that would be needed to account for the observed interactions
between nodes [192]. In a stricter mathematical sense, one can define effective
connectivity as the product of the structural connectivity and effective synaptic
weights that depend on the activity level of the target nodes and quantify their
susceptibility to increased input [193]. The same structural substrate can sup-
port different functional and effective connectivities depending on the external
drive and the network state. When inferring structural connectivity from activ-
ity data, the lines between the different types of connectivity can be somewhat
blurred, but it is useful to keep in mind the distinctions.

We have already discussed two physiological methods that help estimate
structural connectivity at the microscopic scale: paired recordings (section 3.2)
and glutamate uncaging (section 3.3). These methods provide reliable connectiv-
ity data, but are constrained to small numbers of neurons. Parallel electrophys-
iological recordings of up to hundreds of individual neurons are now possible for
instance with Utah arrays or Neuropixels probes [194,195], and functional mag-
netic resonance imaging enables recording whole-brain activity, resolved into ever
smaller voxels [196,197].

A number of methods have been proposed for inferring the underlying con-
nectivity from these large-scale activity data. Time-lagged correlations between
the spike trains of pairs of neurons are informative about the direction of the
information flow and have been shown to be linked to the structural connectivity
[198]. A few studies have used this fact to reconstruct network connectivity from
parallel spike train cross-correlation histograms [199,200,201]. Pairwise correla-
tions are shaped not only by direct connections between neurons, but also by
indirect connections, the electrophysiological properties of the individual neu-
rons, transmission delays, and the external drive to the network [202,203,204].
Given certain conditions such as stationarity and knowledge of the single-neuron
electrophysiology, the structural connectivity can in principle be uniquely recon-
structed from the pairwise correlation functions; that is, one can compute and
thereby take into account the influence of the indirect connections and shared
input [205,204,193]. In practice, biological neural networks do not fulfill ideal con-



ditions and experiments do not fully provide the required information, setting a
ceiling on the accuracy of structural connectivity inferred from correlations.

Going beyond pairwise correlations, Casadiego et al. [206] propose a method
for inferring synaptic connections from the dependence of inter-spike intervals on
cross-spike intervals, i.e. intervals between the spike times of different neurons.
The method can successfully distinguish excitatory and inhibitory synapses, as
validated with point neuron network simulations. Networks exhibiting phase-
locked activity may not sufficiently explore the dynamical landscape to enable
all synapses to be reconstructed. In such cases it can help to expose the network
to different external driving conditions [207]. Similarly using only knowledge of
the spiking activity and not requiring membrane potential traces, Zaytsev et al.
[208] infer the connectivity of simulated networks of a thousand neurons using
maximum likelihood estimation of a generalized linear model of the spiking ac-
tivity. Such methods based on generalized linear models can work well when the
activity of all neurons is recorded [209], but, like for any connectivity reconstruc-
tion method, undersampling is expected to diminish their performance.

Fitting the observed activity to a dynamical network model can be a complex
and computationally intensive procedure. Structural connectivity parameters are
sought that optimize a score or cost function based on some features of interest.
In simulation-based methods, optimal parameter combinations can be searched
via brute force [191,210], stochastic optimization techniques such as evolution-
ary methods [211,212,213], or plasticity rules [214]. Likelihood-based methods do
not require costly simulations [215,216,217,218] and under some conditions allow
straightforward optimization via gradient ascent or simplex methods. However,
estimating the analytical likelihood function is a challenging task for complex
models. Machine learning methods are starting to be developed that can over-
come this issue and estimate parameter distributions given emergent dynamical
properties of modeled networks [219,220].

All in all, establishing unequivocal links between structural connectivity and
neural activity remains a major challenge in neuroscience, and structural con-
nectivity estimates from population recordings should generally be interpreted
with caution.

5 Validation of predicted connectivity

The most direct way of validating connectivity predictions is of course experi-
mental confirmation. Barring the ideal situation where this is possible, we have
a few options at our disposal for putting predictions to the test. In this context,
different types of predictions exist: sometimes, a full connectome is generated,
while sometimes merely statistical regularities in connectivity data are obtained.
For the case of full connectomes, we can further distinguish generative models
that do not directly rely on connectivity data, for instance based on distance,
cytoarchitectonics, and topological constraints; and cases where gaps in connec-
tivity data are filled in.



Where the result of the prediction is a full connectome, one can compare with
experimentally obtained connectomes either edge-wise or based on graph prop-
erties such as degree distributions, clustering, modularity, characteristic path
length, small worldness, or betweenness centrality [185,186]. The choice of prop-
erties to compare is nontrivial and depends on their presumed importance with
regard to the scientific question. Ideally, the fitness of the generative model is
quantified using a likelihood function, but where this is difficult, other objective
functions may be defined [221].

In case of statistical fits to connectivity data, we can check the robustness of
the predictions by determining confidence intervals for the fit parameters. When
no straightforward expressions for these are available, bootstrapping provides
a solution in which random data samples are drawn with replacement and the
statistic of interest is computed for each sample [222]. A similar strategy can be
applied when filling gaps in connectomes: leaving out part of the known data
and either determining how well the predictions fit to the left-out data, or again
computing graph properties and assessing their variability. Alternatively, we can
add noise to the underlying data on the order of the uncertainty in the data.
Depending on the case, ‘uncertainty’ in this context can for instance include
experimental noise, inter-individual and inter-species variability, or uncertainty
due to mapping between parcellations. Since it is in practice difficult to determine
the size of the uncertainty, one can add different levels of noise to the estimated
model parameters and check whether the predictions hold true even for relatively
high noise levels.

Another route for testing the plausibility of connectivity predictions is to
build corresponding network models, perform dynamical simulations, and com-
pare the resulting activity with experimental activity data. Software tools sup-
porting the systematic comparison between simulated and experimental activ-
ity data are available for both single neurons and networks of neurons [223].
This method is complicated by the fact that not only the connectivity but also
the dynamical properties of the nodes (neurons or populations of neurons), the
transmission delays, and the external drive contribute to the network dynamics.
However, depending on the dynamical regime, network dynamics can be fairly
robust to electrophysiological properties of the individual nodes [224]. The pa-
rameter space can be explored systematically via parameter scans, or in a more
targeted manner via stochastic optimization. If at least some parameter settings
for the nodes, delays, and external drive, consistent with biological data, can be
found for which the predicted connectivity yields realistic activity, this provides
some degree of validation. Stronger support is provided if the experimental ac-
tivity data are no longer successfully reproduced upon changing the connectivity.
Ultimately, neural network models should be consistent with both anatomical
and electrophysiological properties of the brain.



6 Concluding remarks

Data on brain anatomy are increasingly made available as systematic, quanti-
tative data sets, facilitating their use in neuronal network models. Inspired by
seminal works like those of von Economo [22] and Braitenberg and Schüz [156],
modern anatomists recognize the importance of systematization and quantifica-
tion for informing analyses and models. Historically, much anatomical data was
made available only in the natural language text of publications. On the ex-
ample of tracing studies, the creators of the CoCoMac database [76] recognized
the need to bring these data into a machine readable format and to create a
framework for systematically mapping the parcellations mentioned in the text
to different parcellations of choice when constructing connectivity maps. The
modern, systematic way of publishing data is most prominently represented by
large-scale initiatives like the Allen Institute for Brain Science, Janelia Research
Campus, the Human Connectome Project, the Japanese Brain/MINDS project,
and the European Human Brain Project. Nevertheless, there is sometimes still a
disconnect between experimentalists and computational neuroscientists in terms
of the formats in which the data are published. Anatomical data are still often
made available as image files which require additional processing before they
can flow into models, in formats specific to the discipline. An illustrative anec-
dote is that in 2018 Schmidt et al. [46] still obtained cortical thickness from
micrographs by measuring with a ruler the distance between layer markers. One
reason why modelers generally cannot use image data directly is that they tend
to work with concepts like definite cortical areas and layers, rather than in a
spatial continuum. These categorical concepts constitute strong hypotheses that
help to reduce and interpret the data. Tables of area or laminar averages are
then more useful than images. If the data are offered as images, at least scripts
and documentation should be published alongside the data to enable the rel-
evant quantities to be potentially more easily extracted. The latter approach
retains flexibility with respect to particular parcellations and is future-proof as
algorithms of feature extraction improve and concepts of brain organization may
change over time.

We have described methods ranging from microscopy to diffusion magnetic
resonance imaging for measuring connectivity. However, this list is not exhaus-
tive and novel techniques are continuously developed. A modern technique is
polarized light imaging (PLI), which measures fiber orientations in brain slices
using the birefringence properties of myelin [225,226]. Three-dimensional recon-
structions enable fiber tracts to be followed through the brain at a resolution
of some tens of micrometers. Axons entering the white matter can be visualized
with an in-plane pixel size down to the micrometer scale. An add-on to PLI, also
based on transmitting polarized light through histological sections, is Diattenua-
tion Imaging, which provides complementary information on tissue composition
[227]. These methods promise new ways of determining the connectivity of neural
network models.

Also in the field of predictive connectomics, our treatment of methods has
not been exhaustive. Besides predictions based on the proximity of neural pro-



cesses or cell bodies, cytoarchitecture, topological constraints, and neural net-
work activity, it is for instance possible to generate connectomes based on gene
expression data [228,229,230]. Another possibility we have only briefly alluded
to is a normative approach, in which the connectome is in some sense assumed
to be optimal, and the implications of this assumption for connectivity are inves-
tigated [231,232]. As in so many fields of science, machine learning methods and
artifical neural network models provide a promising new avenue for identifying
regularities in data that help to predict connectivity.

As we have seen, connectomes for neural network models are subject to a
variety of uncertainties. Each experimental method carries with it measurement
errors, data from multiple individuals tend to be needed to fully specify a connec-
tome, and in many cases the best available estimates even come from different
species. We have largely skipped over the vast and difficult topic of mapping
data between species. In many cases, the sobering truth is that this cannot be
done in a fully principled manner. All types of uncertainties, whether due to
experimental methods, individual differences, or interspecies differences, lead to
uncertainties in predicted model dynamics. We have described some ways of
verifying the robustness of network models to these uncertainties.

Brain models based on these statistical rules are necessarily models of an
average brain. This limits their explanatory power. Not only in humans but also
in other species, macroscopic features of brain dynamics, like dominant frequen-
cies and functional connectivity, vary from individual to individual [233,234,235].
When the deviation of simulated brain activity from experimental data is of the
same order as the inter-individual variability, there is nothing left to explain for
this type of model. Schmidt et al. [236] illustrate this situation for the predic-
tion of functional connectivity between areas on the basis of a spiking network
model. Such observations challenge the research strategy to aggregate data from
different species and individuals to arrive at a statistical model of brain struc-
ture. Progress may eventually only be possible by further constraining generic
connectivity rules by anatomical data obtained from the individual delivering
the brain activity data to be predicted [237].

Ultimately, the statistical descriptions we apply to summarize brain organi-
zation are not the rules by which brains are built in nature. The rules math-
ematically formalize the limits of our knowledge on the structure of individual
brains. And using these rules is to date just the most efficient way of instantiat-
ing large-scale neuronal networks in a computer by a fully parallel process [238].
In nature brains are pre-shaped by evolution and further formed by growth rules
in continuous interaction with the environment. Eventually we need to under-
stand and formalize these more fundamental rules to grow artificial individual
brains in a computer. This implies the existence of a sufficiently accurate model
of the environment. Averages over such model instances then in turn need to be
consistent with our former statistical descriptions of brain structure.

Nevertheless, the major short-term challenge consists in the construction of
brain models encompassing different brain components, as already alluded to
in the introduction of this chapter. With a few notable exceptions, until today



models of neuronal networks are usually constructed by a single researcher, often
a PhD student, or small research groups. It seems likely that we have hit a
complexity barrier and for this reason the complexity of the majority of models
has not increased much over past decade. In order to integrate the heterogeneity
of different brain areas and their multi-level hierarchical organization into a brain
model will require that we learn to use models of brain components created by
other researchers as building blocks.

International large-scale projects like EBRAINS have started to create the
ICT infrastructure enabling the sharing and reuse of data and model compo-
nents, as well as the simulation of multi-scale models and their environments.
The hope is that using these infrastructures fosters the required culture of shar-
ing and collaboration in neuroscience.
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Trans-thalamic connections

Summary:
It has been shown that cortico-cortical communication can occur via intermediate thalamic
neurons in mice. In this journal club article we explore the potential implications of
such trans-thalamic connections and ellaborate on its potential implications, including the
possibility that such connections support cortico-cortical communication in primates.
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Review of Mo and Sherman.

Introduction
The thalamus was long considered a pas-
sive relay of sensory information with lit-
tle or no active role in higher cognitive
functions. However, mounting evidence
suggests that thalamic nuclei form com-
plex loops with the cortex and are in-
volved in a myriad of cognitive processes,
including attention and working memory
(Ward, 2013). Although first-order tha-
lamic nuclei (e.g., lateral geniculate nu-
cleus) play a key role in the transmission
of ascending sensory input to the cortex,
higher-order nuclei (e.g., pulvinar or me-
diodorsal nucleus) are believed to be in-
volved in sustaining and modulating
communication within and between cor-
tical regions (Guillery, 1995). Under-
standing the functional role of such nuclei
in a mechanistic manner requires, in
addition to behavioral experiments, a de-

tailed anatomical and physiological map-
ping of the thalamocortical circuitry.

Thalamic cells in higher-order nuclei
have been shown to act as an intermediary
between cortical areas, providing a
cortico-thalamo-cortical pathway that
augments direct communication (Sher-
man and Guillery, 2013). These circuits
are known to originate in layer 5 (L5) of
cortex, but their target layers have not
been exhaustively studied. They are
typically arranged in parallel to strong
feedforward corticocortical projections,
which in mice usually originate in cortical
layers L2/3 and L5 and project to most
layers in the target area (e.g., S1¡ M1;
Porter and White, 1983). Such trans-
thalamic connections involve class 1 or
“driver” glutamatergic synapses (Sher-
man and Guillery, 2011), which produce
large, depressing postsynaptic currents,
activate mainly ionotropic receptors, and
have large and small boutons targeting
proximal dendrites. Because of their high
probability of neurotransmitter release,
class 1 terminals are thought to be effi-
cient information carriers and can reliably
elicit thalamic action potentials (Rovó et
al., 2012).

Instead of just passively relaying sig-
nals from one cortical area to another, the
thalamus might manipulate information
arriving from L5 in a context-dependent
manner. Specifically, thalamic nuclei have

been suggested to dynamically construct
task-relevant functional circuits (Naka-
jima and Halassa, 2017), as well as change
the effective connectivity between cortical
regions through targeted gain modulation
(Jaramillo et al., 2019). However, ana-
tomical evidence of such trans-thalamic
pathways was previously limited to pro-
jections between primary and secondary
auditory, visual, and somatosensory cor-
tices (Theyel et al., 2010; Sherman and
Guillery, 2013). Given that most higher-
order nuclei receive connections from
and project to multiple cortical areas, a
natural question is whether the existence
of parallel routes is a general organizing
principle, possibly linking functionally
distinct cortical areas.

To answer this question, Mo and Sher-
man (2019) used trans-synaptic viral
tracing in mouse slice preparations to
demonstrate the existence of an indirect
pathway between the primary somatosen-
sory cortex (S1) and the primary motor
cortex (M1) through the thalamic poste-
rior medial (POm) nucleus, a higher-
order nucleus in the rodent whisker system
that is actively involved in processing
sensorimotor information (Krieger and
Groh, 2015). Specifically, the authors
found M1-projecting POm neurons re-
ceiving input from S1 (45.3%) and S2
(26.3%). Although neurons projecting to
POm were more abundant in L6 of S1, the
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hypothesized projections from L5 of S1
were also found. This establishes the pres-
ence of a previously unknown S1 L5¡
POm¡M1 pathway involving direct
monosynaptic connections.

To determine the synaptic properties
of the circuit, first the inputs to POm from
L5 of S1 were targeted for optogenetic and
electrical stimulation. Whole-cell patch
recordings of M1-projecting POm neu-
rons revealed large postsynaptic currents
and strong paired-pulse depression after
both axonal and dendritic stimulation of
S1 L5 inputs to POm cells, which were
eliminated after blocking ionotropic glu-
tamate receptors. Additionally, bouton
size analysis revealed the presence of large
and small terminals. As noted above, these
characteristics are indicative of class 1
synapses (Sherman and Guillery, 2013).
Because the synapses from POm to M1
displayed similar features, the authors
concluded that the S1 L5¡POm¡M1
pathway includes exclusively class 1 syn-
apses. These results are consistent with
previous reports (Reichova and Sherman,
2004) and suggest a robust trans-thalamic
pathway through POm with synapses well
suited for the successful relay of somato-
sensory information (Sherman and Guil-
lery, 2011).

It should be noted that the net effect of
S1 L5 activity on M1 via the POm remains
somewhat unclear because the optoge-
netic stimulation did not exclusively
target these projections. Indeed, only one-
third of the M1-projecting POm neurons
responded to stimulating the inputs from
S1 L5 (see Figure 3 in Mo and Sherman,
2019), suggesting that S1 is not the main
source of input to many of the POm neu-
rons that project to M1. Furthermore, as
the authors point out, even though most
cells across all layers in M1 responded
strongly to POm stimulation (see Figure 4
in Mo and Sherman, 2019), this activity
was mediated by a larger set of POm cells
than those receiving input from S1 L5.
Nevertheless, the fact that S1 L5¡POm
connections are relatively strong despite
their sparsity, with unitary postsynaptic
potentials from L5 axons able to elicit ac-
tion potentials in POm cells (Mease et al.,
2016c), supports the case for the S1
L5¡POm¡M1 pathway being an efficient
trans-thalamic communication channel.

A similar path between S1 and S2
through the POm was deemed critical for
activation of S2 by stimulation of barrel
field (S1 L5B) in vitro (Theyel et al., 2010).
In that study, information transfer from
S1 to S2 continued after permanent dis-
ruption of the direct corticocortical pro-

jections, and was only interrupted by
chemically induced thalamic inhibition. A
similar experimental protocol could be
applied to investigate the efficacy and the
functional role of the S1 L5¡POm¡M1
pathway in sensorimotor processing. Such
an experiment would be valuable given that
single-whisker-evoked responses in M1
were shown to depend on S1 activation
(Ferezou et al., 2007).

Although the exact nature of informa-
tion transmitted along the corticocortical
and trans-thalamic S1 to M1 projections
is unknown, Mo and Sherman (2019)
suggest that these two routes carry differ-
ent content because they originate from
non-overlapping populations in S1 (Petrof
et al., 2012). Furthermore, the corticotha-
lamic cells in L5 projecting to POm also
branch to subcortical motor centers (e.g.,
the brainstem; Krieger and Groh, 2015),
indicating that these might transmit effer-
ence copies of motor-related instructions
originating in S1 and forwarded to higher
cortical centers (Sherman and Guillery,
2013). This hypothesis is supported by the
fact that S1 was shown to participate in
motor control and directly drive whisker
retraction even after M1 inactivation
(Matyas et al., 2010), suggesting that
whisking-related instructions originate
not only in M1 but also in S1.

However, information routed through
the highly state-dependent POm is bound
to undergo significant modulation as the
nucleus can dynamically reconfigure its
circuits depending on the arousal level
(Sobolewski et al., 2015). During high
alertness, POm combines not only de-
scending cortical input, but also sensory
information ascending via the paralem-
niscal pathway through the spinal trigem-
inal nucleus (mainly SP5i; Krieger and
Groh, 2015). These inputs converge onto
single thalamic cells, leading to timing-
sensitive nonlinear responses driven by
coincident L5 and SP5i input, much like
an “AND-gate” (Groh et al., 2014). Such
convergence zones are spatially restricted,
highlighting possible functional subdivi-
sions within the nucleus (Mease et al.,
2016b). Given that Mo and Sherman
(2019) did not find any spatial localiza-
tion of M1-projecting neurons in POm
(their Figure 3G), these could overlap with
the aforementioned convergence zones. If
confirmed, then the trans-thalamic route
might enable the integration of sensory
input and cortical output in a time- and
behavior-dependent manner en route to
M1.

This pathway and its potential role in
the temporally precise integration of sen-

sory information become more interest-
ing when one considers that transmission
through the POm is potentially contin-
gent on motor activity in M1 (Urbain and
Deschênes, 2007). At rest, whisker re-
sponses in POm are gated through inhib-
itory projections from the zona incerta
(ZI), an area also innervated by projec-
tions from M1. During active palpation,
however, corticofugal messages from M1
modulating vibrissa motion can inhibit
parts of ZI, thus creating a window of dis-
inhibition in POm and enabling informa-
tion flow. At the same time, POm neurons
might relay signals back to S1, because
some cells project to multiple sensory and
motor cortical areas (Ohno et al., 2012).
Reciprocal projections between POm and
L5 of S1 have been suggested to partici-
pate in a cortico-thalamo-cortical loop
that amplifies and temporally sustains
certain relevant sensory content, similar
to a vibrissal attention mechanism (Mease
et al., 2016a). The POm and the newly
mapped pathway are therefore strategi-
cally positioned to play a major role in
sensorimotor processing, fusing both cor-
tical and sensory input under top-down
modulation from higher motor centers.

The findings of Mo and Sherman (2019)
support the possibility that trans-thalamic
pathways bridging functionally distinct
cortical areas are a common theme in the
mammalian brain. Although it is unclear
whether such connections exist in other
species, some tract-tracing studies in pri-
mates provide supportive evidence. In
macaques, a potential route related to oc-
ulomotor processing might involve the
mediodorsal nucleus, which receives in-
put from area 7m (medial posterior pari-
etal cortex) and projects to area 8 (the
frontal eye fields; Leichnetz, 2001). This
putative pathway is also parallel to strong
feedforward corticocortical connections
(Markov et al., 2014), akin to the circuits
observed in mice (Sherman and Guillery,
2013). In addition to mediating informa-
tion flow from sensory to higher cortical
areas, thalamic nuclei may also play an
important role in executive control of
motor behavior. McFarland and Haber
(2002) proposed that direct signaling
from prefrontal and higher motor centers
to primary motor areas is complemented
by a series of feedforward projections via
the thalamus. This raises the possibility
that thalamic pathways are involved in
regulating information flow in both direc-
tions of the cortical hierarchy.

In conclusion, Mo and Sherman (2019)
have confirmed the existence of a strong
S1 L5¡POm¡M1 pathway involving
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class 1 glutamatergic synapses, which is
the first trans-thalamic connection re-
vealed between functionally distinct cor-
tical regions. Although this supports the
case for such circuits being an integral link
in cortical communication, further evi-
dence is necessary to establish their gener-
ality beyond the sensorimotor areas and
across species. Whereas the functional im-
plications of this particular pathway re-
main unclear, it might play a key part in
motor control, mediate sensory attention,
or act as an integrator of peripheral and
cortical signals. Narrowing down these
potential roles is a challenging and excit-
ing prospect that will require additional
experimental work, including both quan-
titative thalamic connectivity data and
targeted behavioral experiments on sen-
sorimotor processing.
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