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Predicting plant growth response under fluctuating
temperature by carbon balance modelling
Charlotte Seydel 1,2, Julia Biener2,3, Vladimir Brodsky2,3, Svenja Eberlein2,3 & Thomas Nägele 2✉

Quantification of system dynamics is a central aim of mathematical modelling in biology.

Defining experimentally supported functional relationships between molecular entities by

mathematical terms enables the application of computational routines to simulate and

analyse the underlying molecular system. In many fields of natural sciences and engineering,

trigonometric functions are applied to describe oscillatory processes. As biochemical oscil-

lations occur in many aspects of biochemistry and biophysics, Fourier analysis of metabolic

functions promises to quantify, describe and analyse metabolism and its reaction towards

environmental fluctuations. Here, Fourier polynomials were developed from experimental

time-series data and combined with block diagram simulation of plant metabolism to study

heat shock response of photosynthetic CO2 assimilation and carbohydrate metabolism in

Arabidopsis thaliana. Simulations predicted a stabilising effect of reduced sucrose biosynthesis

capacity and increased capacity of starch biosynthesis on carbon assimilation under transient

heat stress. Model predictions were experimentally validated by quantifying plant growth

under such stress conditions. In conclusion, this suggests that Fourier polynomials represent

a predictive mathematical approach to study dynamic plant-environment interactions.
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Capturing dynamics in biological systems by mathematical
terms is the general aim of biomathematical modeling.
Differential equations represent an adequate strategy to

describe dynamics over space and time. Ordinary differential
equations (ODEs) and partial differential equations (PDEs) have
been successfully applied to reveal biological system dynamics
and to develop predictive models of growth rates, transcription,
translation, or metabolic processes1. In a metabolic context, ODE
models are frequently applied to simulate enzyme kinetic reac-
tions and, by this, to explain dynamics of observed metabolite
concentrations. Kinetic models, based on ODEs, have frequently
been applied in a broad field of biological research, e.g., in the
context of metabolic engineering of microbial systems and strain
design2, disease research3, and plant metabolism4–6. In contrast
to the high diversity of application fields, the principle of ODE
kinetic modeling remains conserved: based on genome sequence
information or biochemical evidence from literature a biochem-
ical reaction network is established, substrate and product con-
centrations are quantified, and enzyme kinetics are applied to
calculate reaction rates within a metabolic system. Enzyme kinetic
parameters, e.g., velocity under substrate saturation (Vmax) or
substrate affinity (KM) of Michaelis–Menten equations, are
experimentally determined and used for computationally assisted
parameter estimation. A well-defined and experimentally vali-
dated kinetic ODE model enables computational simulation and
prediction of complex system behavior. A clear limitation of such
an approach, however, is the requirement of kinetic parameters
which are (frequently) difficult and/or expensive to quantify.
Initiatives like KiMoSys, a public repository of published
experimental data, summarize and concentrate data on metabo-
lites, protein abundance, and fluxes providing a solid database for
model construction and initial development7. Yet, under highly
dynamic conditions, e.g., in a fluctuating environment, it still
remains a challenge to resolve system dynamics on an enzyme
kinetic level. This is due to the high dynamics of metabolites,
transcripts, protein levels, and enzyme activities8,9. Although
being laborious, the development and optimization of ODE
kinetic models provide an important and informative mathema-
tical method to study biochemical system behavior. Simulta-
neously, however, diverse problems might occur with solving and
applying such models due to uncertainties about parameters,
model structure, kinetic rate laws or parameter sensitivities10,11.
Depending on the research question focused on by a study, an
explicit knowledge about enzymatic activities and their dynamics
might not be essential to derive a mathematical description of
metabolite dynamics. For example, metabolic fluxes might be
estimated by tracing labeled atoms or molecules in a metabolic
pathway system12. While only very limited information about
single enzyme activities or kinetics can be derived from flux
estimations, they still provide comprehensive insights into
metabolic states and pathway activities, also on a large scale13.
Beyond, algorithms and user interfaces have been developed
which enable the combination of flux data with relative meta-
bolite levels14.

For estimating metabolic functions, i.e., the sum of synthesiz-
ing and degrading/consuming reactions of metabolite pools,
under dynamic environmental conditions we have previously
suggested a method for implicit estimation of metabolic
functions15. Similar to flux analysis, dynamics of metabolite
concentrations in time-series experiments were used in this
approach to derive a time-continuous mathematical function to
identify regulatory cascades in metabolic pathways. This
approach made use of spline interpolations which were composed
of cubic polynomials which were fitted to adjacent pairs of data
points in a time-series data set. While such an approach is sui-
table for accurate data fitting, underlying mathematical functions

are frequently not related to biological function and, thus, are less
predictive than enzyme kinetic models. In the present study, we
developed a mathematical model based on Fourier polynomials to
simulate and analyze dynamics of photosynthesis and carbohy-
drate metabolism under transient heat exposure by function
superposition. Model simulations indicated a significant impact
of sucrose and starch biosynthesis on the stabilization of carbon
assimilation and growth under elevated temperatures.

Results
A block diagram model based on Fourier polynomials for
carbon balancing of plant metabolism. A block diagram model
of the central carbohydrate metabolism of plants was developed
to integrate experimental data on net photosynthesis (NPS),
starch, and sugar metabolism (Fig. 1). The net carbon input block,
i.e., NPS block, represented a Fourier polynomial describing NPS
dynamics depending on genotypes and environments (see Fig. 2,
solid lines). This input flux was multiplied by the stoichiometric
factor 1/6 to enable quantitative summation with starch and sugar
fluxes (unit: µmol C6 h−1 gDW−1). Carbon balance Eq. (1) (BE1)
comprised the summation of NPS rates and negative starch rates,
balance Eq. (2) (BE2) additionally comprised summation of
negative sugar rates (Fig. 1). As a result, BE1 revealed the net
carbon flux (in C6 equivalents per hour and gram dry weight)
which was left from photosynthetically assimilated CO2 after
starch synthesis, e.g., for sugar biosynthesis or biomass produc-
tion. Further, BE2 revealed residual net carbon flux after addi-
tional sugar biosynthesis.

Rates of net starch and sugar biosynthesis were determined by
differentiating Fourier polynomials of starch and sugar dynamics
with respect to time. Hence, the Fourier polynomial balance
models comprised three input functions, FPinput (Eqs. (1–3)), and
two balance equations, BE1,2 (Eqs. (4) and (5)).

FPinput;NPS ¼ a0;NPS þ ∑
n

k¼1
½ak;NPS cosðkωNPStÞ þ bk;NPS sinðkωNPStÞ�

ð1Þ

FPinput;Starch ¼ a0;Starch þ ∑
n

k¼1
½ak;Starch cosðkωStarchtÞ þ bk;Starch sinðkωStarchtÞ�

ð2Þ

FPinput;Sugars ¼ a0;Sugars þ ∑
n

k¼1
½ak;Sugars cosðkωSugarstÞ þ bk;Sugars sinðkωSugarstÞ�

ð3Þ

BE1 ¼
1
6

� �
� FPinput;NPS �

dðFPinput;StarchÞ
dt

ð4Þ

BE2 ¼ BE1 �
dðFPinput;SugarsÞ

dt
ð5Þ

Here, ak and bk represent the Fourier coefficients for NPS,
starch, and sugar equations. ω is the fundamental frequency of
the signal (ω= 2π/T, where T is the period). This Fourier
polynomial-based balance equation model was applied to
simulate dynamics of carbohydrate metabolism in plants of
Arabidopsis thaliana, accession Columbia-0, under transient heat
exposure. In addition, NPS and carbohydrate dynamics were
recorded and simulated in a starch-deficient mutant pgm1 and a
mutant with a deficiency in sucrose biosynthesis capacity, spsa1.
Coefficients of Fourier polynomials are provided in the supple-
ments (Supplementary Data 1).

Fourier polynomials reflect dynamics of net CO2 assimilation
rates. During the first 30–45 min of the light period, rates of net
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CO2 assimilation increased steeply in all genotypes and reached a
first plateau at ~1250 µmol CO2 h−1 gDW−1 which was stable
during the first half of the light period before it slightly increased
until the end of the day at 22 °C (Fig. 2, gray-colored lines; data
provided in Supplementary Data 2). No significant difference was
observed between genotypes, yet spsa1 had slightly higher
assimilation rates compared to Col-0 while rates of pgm1 were
slightly lower (Fig. 2a, d, g). Temperature increase from 22 to
32 °C resulted in a drop in assimilation rates during the first hour
of the treatment before the rates stabilized again and reached
similar values than in the control (22 °C) experiment (Fig. 2a, d,
g). At 32 °C, starch-deficient pgm1 plants were most susceptible,
and mean values differed most from 22 °C rates (Fig. 2d). During
the last 2 hours of the light period in which temperature was
decreased to 22 °C, all genotypes increased assimilation rates to
control rates again. A similar scenario was observed within the
36 °C experiment for pgm1 and spsa1 while Col-0 had sig-
nificantly decreased assimilation rates during the last 2 h of
temperature treatment compared to the control experiment
(Fig. 2b). In pgm1, assimilation rates dropped significantly during
the first 30 min of the recovery phase, i.e., between 6 h and 6.5 h,
when the temperature was decreased from 36 °C to 22 °C
(Fig. 2e). Such a significant recovery drop was also observed for
both pgm1 and spsa1mutants in the 40 °C experiment, but not for
Col-0 which showed again significantly decreased CO2 assimila-
tion rates between the last 2 h of the temperature treatment, i.e.,
between 4 and 6 h of the light period (Fig. 2c, f, i). Experimentally
determined mean values of CO2 assimilation rates and, by this, all
described effects were covered by Fourier polynomials with
R2 > 0.94 (exception: pgm1, 32 °C, R2= 0.8177). In contrast to
significant genotype-effects in net CO2 assimilation under tem-
perature fluctuation, transpiration rates were similar in Col-0,
spsa1 and pgm1 under each tested condition and no significant
genotype effect was detected (Supplementary Fig. S1). Tran-
spiration rates increased during temperature treatment (2 h→6 h)
and decreased again with temperature during the last 2 h of the
light phase (6 h→8 h). Peak values of transpiration rates at 40 °C
were about ~threefold higher than at 22 °C (Supplementary
Fig. S1a, d).

To test whether differential efficiency of photosystems could
reflect observed differences in CO2 assimilation under transient
heat, maximum quantum yield (Fv/Fm), electron transport rates
(ETR), photochemical (qP), and non-photochemical quenching
parameters (qN) were determined by pulse-amplitude modula-
tion before and after transient exposure to 40 °C (Figs. 3 and 4;
data provided in Supplementary Data 3). While Col-0 was
affected significantly in Fv/Fm only during recovery from
transient 40 °C treatment at 22 °C (Fig. 3a), Fv/Fm of pgm1
dropped significantly during 40 °C treatment and showed a
significant increase during recovery (Fig. 3b). In spsa1, no
significant effect was observed for Fv/Fm (Fig. 3c). In contrast,
spsa1 was most significantly affected in electron transport rates
(ETR), photochemical (qP), and non-photochemical quenching
(qN) parameters recorded within rapid light curves (RLCs;
Fig. 4g–i). At 40 °C, ETR and qP were significantly higher than at
22 °C, also under high PPFD, i.e., >1000 µmol photons m−2 s−1

(Fig. 4g, h). A similar trend was also observed in Col-0 where qP
was also found to increase significantly under transient exposure
to 40 °C (Fig. 4b). In pgm1, photosystems were found to be least
significantly affected (Fig. 4d–f). Here, only qP showed a
significant drop when plants were transferred from 40 to 22 °C
(Fig. 4e).

Transient heat exposure significantly affects dynamics of starch
and soluble carbohydrates. The exposure to transient heat lead
to a significant change in starch dynamics in Col-0 and spsa1
(Fig. 5; all metabolite data are provided in Supplementary
Data 4). Starch amount in pgm1 was below the detection limit of
the applied photometric detection method (Fig. 5e–h). Starch
concentration dropped significantly after transient heat exposure
(6 h) in comparison to control conditions in Col-0 and spsa1
(ANOVA, P < 0.001). This drop did not change significantly
among the different temperatures. In the recovery phase after the
heat shock (8 h), plants increased their starch content depending
on the temperature they were subjected to. Plants of both geno-
types treated with 32 °C increased their starch concentration by
~40% between 6 and 8 h (Fig. 5b, j), whereas plants treated with
36 °C increased it by over 90% (Fig. 5c, k). Col-0 subjected to the

Fig. 1 Block diagram applied for Fourier polynomial balance modeling. Input functions are marked in gray (NPS), green (starch amount), and light blue
(sugar amount) colored blocks (left side). Arrows indicate the direction of flux and connect input blocks via multiplication (“x”) summation (“+/-“),
differentiation (“d/dt”), and integration (“∫”) with output blocks.
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36 °C transient heat exposure was even able to reach the level of
the control plants at the 8-h time point.

An effect of transient heat exposure on sucrose levels was only
detectable for higher temperatures, i.e., within 36 °C and 40 °C
experiments (Fig. 6). When subjected to 32 °C of transient heat, no
significant change in sucrose levels was detected in all genotypes
(Fig. 6b, f, j). In Col-0, only heat exposure of 40 °C resulted in a
significant increase in sucrose concentration at the 6 h time point

(P < 0.001), but no further change was observed after the recovery
phase at 8 h (Fig. 6d). Under all conditions, pgm1 accumulated
more sucrose over the course of the light phase compared to Col-0
and spsa1 (Fig. 6e–h). Nevertheless, heat treatment with 36 and
40 °C reduced the amount of sucrose in the pgm1 plants almost
significantly (P= 0.05). In the recovery phase, the sucrose
concentration in the heat-treated pgm1 plants returned to a level
comparable to control conditions (Fig. 6e–h). Due to high variance

Fig. 2 Rates of net CO2 uptake during short-day transient heat exposure. Scattered dots represent experimental data (n= 3), lines represent Fourier
series fits. a–c Col-0, d–f pgm1, g–i spsa1. Gray lines: 22 °C experiment; yellow lines: 32 °C experiment; orange lines: 36 °C experiment; red lines: 40 °C
experiment. The temperature was set to 22 °C between 0–2 h and 6–8 h. The temperature was transiently increased between 2 and 6 h. Temperature
curves recorded during the experiments are illustrated in Supplementary Fig. S3a. A summary of Fourier polynomial coefficients is provided in the
supplements together with NPS data (Supplementary Data 1 and Supplementary Data 2).
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in the sucrose measurements of spsa1 plants, there was no
significant difference between Col-0 and spsa1 in the control plants
and the plants exposed to 32 and 36 °C of transient heat (Fig. 6i–k).
Only at 40 °C, spsa1 showed significantly higher sucrose levels than
Col-0 at 40 °C before and after the recovery phase (6 and 8 h,
P < 0.001) or spsa1 under control conditions (6 h: P < 0.004, 8 h:
P < 0.01), while exhibiting very low variance (Fig. 6l).

In pgm1, glucose and fructose dynamics differed significantly
from Col-0 (Fig. 7). Starting at similar hexose content at the start of
the light period, the difference between pgm1 and Col-0 and spsa1
increased almost tenfold over the course of the day. Whilst in pgm1
hexose amount increased steeply under control conditions, reach-
ing a plateau after 6 h, hexose concentrations in Col-0 and spsa1
peaked after 2 h and subsequently decreased again.

Col-0 and spsa1 showed a significant drop in glucose levels
after heat exposure to 32 and 36 °C (P < 0.001, Fig. 7). Within the
32 °C experiment, glucose levels at 8 h after recovery did not
differ significantly from control conditions. Within the 36 and
40 °C experiments, however, the recovery phase after heat
exposure resulted in a significant increase in glucose

concentration compared to control conditions (P < 0.001). In
addition, in Col-0 glucose levels were increasing above the level of
control plants already during heat exposure to 40 °C at 6 h
(P < 0.001). Fructose dynamics in Col-0 were similar to the
glucose dynamics in Col-0 (Fig. 7). In spsa1, however, fructose
dynamics did not change significantly in response to transient
heat exposure. The only differences were observable after the
recovery phase at 8 h in 36 and 40 °C. Here, a significantly higher
fructose content could be measured compared to 22 °C
(P < 0.001). In pgm1, hexose levels decreased significantly after
temperature treatment (6 h, P < 0.001), with the lowest values
being reached at 40 °C. After recovery (8 h), hexose levels did not
change significantly from the 6 h time point in the 32 °C plants.
After exposure to 36 and 40 °C, however, hexose levels increased
significantly from 6 to 8 h (P < 0.001).

Numerical differentiation and integration of carbon balance
equations reveals genotype-dependent system fluctuations due
to transient heat exposure. To reveal how dynamics of carbon
balance equations, which combine net photosynthesis, starch

Fig. 4 Electron transport rates and quenching parameters under transient heat. Electron transport rates (ETR), photochemical (qP), and non-
photochemical (qN) quenching were recorded within a rapid light curve (RLC) protocol. Blue: at 22 °C during the first 2 h of the light phase. Left panel: ETR;
middle panel: qP; right panel: qN. Orange: during exposure to 40 °C. Gray: after 2 h recovery at 22 °C. a–c Col-0, (d–f) pgm1, (g–i) spsa1. Box-and-whisker
plots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. n= 3–6. Significances, revealed by
ANOVA, are summarized in boxes; n.s.: not significantly different (P > 0.05); *P < 0.05; ***P < 0.001. Experimental data are provided in Supplementary
Data 3.

Fig. 3 Maximum photochemical quantum yield of PSII (Fv/Fm) under transient heat. Fv/Fm under 22 °C during the first 2 h of the light phase (blue),
during transient exposure to 40 °C (orange) and after 2 h of recovery at 22 °C (gray). a Col-0, b pgm1, c spsa1. Box-and-whisker plots: center line, median;
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. Asterisks indicate significant differences (ANOVA; *P < 0.05;
**P < 0.01). n= 3–6. Experimental data are provided in Supplementary Data 3.
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(BE1), and sugar metabolism (BE2), are affected by transient heat
exposure, derivatives were built with respect to time (Fig. 8). In
Col-0, increasing temperature resulted in less fluctuating deriva-
tives of BE1 and BE2 (Fig. 8a–f). Particularly under 40 °C, oscil-
lations were significantly damped. Also, in pgm1, oscillations of
derivatives decreased with increasing temperature (Fig. 8g–l). Yet,
particularly during the recovery phase (6 h→ 8 h) from 36 °C and
40 °C to ambient temperature, fluctuations had a higher ampli-
tude than in Col-0 (Fig. 8h, I, k, l). In spsa1, oscillation amplitudes
were damped most notably under 36 °C. Remarkably, in all
genotypes, 32 °C had the smallest observed effect on derivative
oscillations compared to 22 °C (yellow lines, Fig. 8a, d, g, j, m, p).

In addition to derivative functions which revealed the absolute
changing rates of balance equations, fundamental frequencies of
Fourier polynomials of BE1 and BE2 further suggested a
differential effect of high temperature on genotypes’ carbon
balances (Supplementary Fig. S2). In Col-0, frequencies of BE1
and BE2 under 32 and 36 °C were almost doubled compared to
the 22 °C experiment before they dropped in the 40 °C
experiment (Supplementary Fig. S2a, b). This decrease was more
emphasized in BE2 than in BE1 indicating a contribution of sugar
dynamics. In pgm1, frequencies of BE1 constantly increased with
temperature in experiments (Supplementary Fig. S2a). Frequen-
cies of BE2 peaked under 32 °C and, finally, were lower under
40 °C than under 22 °C (Supplementary Fig. S2b). In spsa1,
dynamics of BE1 and BE2 frequencies across experiments were
similar, yet more pronounced in BE2. In contrast to Col-0 and
pgm1, lowest frequency of both balance equations was observed
for the 36 °C experiment.

Numerical integration of NPS rates over time period in light
revealed a decreased amount of assimilated carbon due to heat
exposure in Col-0 (Fig. 9a) and pgm1 (Fig. 9d). A detailed
summary of numerical values of integrals is provided in the
supplements (Supplementary Data 5). In Col-0, transient heat
effects on NPS rates became strongest after 2 h of temperature
treatment, i.e., after 4 h in the light period. Between 4 and 6 h,
particularly the amount of carbon assimilated at 36 and 40 °C
deviated clearly from the 22 °C experiment (Fig. 9a). In pgm1, this
effect was observed 2 h earlier, i.e., during the first 2 h of heat
treatment between 2 h and 4 h in the light period (Fig. 9d).
Surprisingly, however, the 40 °C effect on carbon assimilation was
not as strong as observed for 32 and 36 °C. In spsa1, carbon
assimilation under heat was most robust and similar to control
conditions, i.e., 22 °C (Fig. 9g).

Integrals of BE1, which in addition to NPS rates also accounted
for starch dynamics, revealed that starch dynamics in Col-0 were
adjusted proportionally to affected NPS rates during transient
heat exposure (Fig. 9b). In particular, integrals of 32 and 40 °C
experiments became similar to the control experiment (22 °C).
Due to starch deficiency, this effect was not observed in pgm1
(Fig. 9e) while heat exposure resulted in larger integrals of BE1 in
spsa1 (Fig. 9h). These heat-induced effects became more
pronounced in BE2 integrals which further accounted for net
carbon flux into soluble sugar biosynthesis. In Col-0, the
discrepancy of integrals between heat and control experiments
was minimized during the first half of the light period, i.e., within
the first 2 h of heat exposure (Fig. 9c). During the second half of
the light period, discrepancy increased for 36 and 40 °C

Fig. 5 Starch amounts during short-day transient heat exposure in glucose equivalents. a–d Col-0 (n≥ 5); e–h pgm1 (n≥ 3); i–l spsa1 (n≥ 5). Gray: 22 °C
experiment; yellow: 32 °C experiment; orange: 36 °C experiment; red: 40 °C experiment. The temperature was set to 22 °C between 0–2 h and 6–8 h. The
temperature was transiently increased between 2 and 6 h. Box-and-whisker plots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range; points, outliers. Capital letters indicate groups of significance within genotype and condition (ANOVA, P < 0.05). Experimental data are
provided in Supplementary Data 4.
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experiments. In pgm1, net carbon flux into sugar biosynthesis was
reduced in a temperature-dependent manner which resulted in an
(over-)compensation of reduced CO2 assimilation rates under 36
and 40 °C (Fig. 9f). Also, in spsa1 integrals of BE2 increased under
transient heat but this effect was less pronounced than in pgm1
and Col-0 (Fig. 9i).

During the recovery phase, in which the temperature was set to
22 °C again (6 h → 8 h of light period), changes in starch and
sugar dynamics became obvious in integrals of BE1 and BE2 for all
genotypes. In Col-0, this effect was most pronounced within 36
and 40 °C experiments (Fig. 9b, c). In this phase, curves of
integrals showed an inflection point directing the curve of
integrals towards the control samples. In summary, this indicated
reversibility of temperature-induced metabolic effects and a most
robust carbon metabolism under heat in spsa1.

To test if integrals of BE1 and BE2 can predict whole-plant
performance under heat, the surface of leaf rosettes were
quantified before and after heat exposure (Fig. 10; data provided
in Supplementary Data 6). For this experiment, plants were
grown for 5 weeks under short-day standard growth conditions
(see “Methods”). Then, changes of the leaf surface of the full
shoot were determined within a growth experiment in which heat
exposure was prolonged to 3 days to reinforce the transient heat
effect on carbon assimilation (details about the experimental
design are provided in Supplementary Fig. S3). Relative increase
of leaf surface of Col-0 was found to be significantly reduced by
transient heat exposure (Fig. 10). Similarly, and slightly stronger,
also pgm1 was negatively affected in growth. In contrast, for
plants of spsa1 no significant heat effect on leaf surface dynamics

was observed which corresponded to the observation that
integrals of NPS, BE1, and BE2 were least affected by heat in
spsa1 (see Fig. 9).

Discussion
In temperate regions, plants are frequently exposed to a changing
temperature regime, and these changes might occur both over
short- and long-time scales. For example, the temperature typi-
cally changes between day and night, and beyond, the tempera-
ture might also change transiently within the diurnal light and
dark period. While temperature acclimation of plants typically
can be observed after days of exposure to non-lethal cold or
heat16,17, transient temperature changes and plant stress response
occur within minutes or hours. Interestingly, Arabidopsis thaliana
was found to memorize already 5 minutes of heat stress which
indicates a tightly regulated molecular network involved in heat
stress response18. High temperature, e.g., between 35 and 40 °C, is
well known to result in a reduced rate of photosynthesis19 which
has also been observed in the present study. While in Col-0 and
spsa1, 32 °C resulted in only slightly decreased NPS rates, higher
temperatures of 36 and 40 °C resulted in a significantly decreased
NPS rate during the second half of the heat exposure period only
in Col-0 (see Fig. 2). As previously summarized, a decreased NPS
rate is not due to photosystem damage, but rather due to rubisco
deactivation19. Consistent with this, Fv/Fm of neither genotype
analyzed in the present study dropped irreversibly due to tran-
sient heat exposure (see Fig. 3). Further, consistent with previous
findings which show a decreased rubisco activation at leaf

Fig. 6 Sucrose concentrations during short-day transient heat exposure. a–d Col-0 (n≥ 5); e–h pgm1 (n≥ 3); i–l spsa1 (n≥ 5). Gray: 22 °C experiment;
yellow: 32 °C experiment; orange: 36 °C experiment; red: 40 °C experiment. The temperature was set to 22 °C between 0–2 h and 6–8 h. The temperature
was transiently increased between 2 and 6 h. Box-and-whisker plots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile
range; points, outliers. Capital letters indicate groups of significance within genotype and condition (ANOVA, P < 0.05). Experimental data are provided in
Supplementary Data 4.
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temperature >35 °C20, the effect of 32 °C on NPS rates was much
less significant than at 36 and 40 °C. In spsa1, however, NPS rates
were less affected by heat than in Col-0 which might have several
reasons. First, PSII maximum quantum yield was least affected by
heat in spsa1 (see Fig. 3). Only in spsa1, rates of linear electron
transport (ETR), detected within a rapid light curve protocol,
showed a significant increase during heat exposure suggesting a
differential photosystem and/or thylakoid organization compared
to Col-0 and pgm1. Further, compared to Col-0, spsa1 might have
had a reduced rate of photorespiration and/or mitochondrial
respiration during heat exposure. While it remains speculation
from our study, a higher starch accumulation rate in spsa1 might
result in a lowered respiration rate under heat because carbon
equivalents may be fixed more efficiently. The observation of a
destabilized NPS rate in starchless pgm1 plants would support the
stabilizing role of starch biosynthesis under transient heat expo-
sure. Comparison of transpiration revealed similar rates across all
genotypes, which suggests that observed NPS effects are unlikely
due to differential stomata closure and/or secondary effects like
leaf cooling21,22. However, previous reports under ambient con-
ditions have shown that SPS knockout mutants have rather
enhanced than lowered dark respiration rates which do not
directly support the hypothesis of NPS stabilization by starch
biosynthesis23. Another explanation might be a secondary effect
of the spsa1 mutation on rubisco and/or rubisco activase which,
to our knowledge, has not been shown in current literature but
which needs to be proven in future studies.

While sucrose and glucose metabolism showed a dynamic and
differential accumulation profile between 32, 36, and 40 °C
experiments, dynamics of fructose concentrations were most
conserved across all temperature treatments and, remarkably, also
across genotypes (see Fig. 7). An initial accumulation within the
first 2 h of the light period was followed by a significant decrease
until the end of heat exposure and an accumulation during the
recovery phase between 6 and 8 h of the light period. Only pgm1
showed a differential pattern at 22 and 32 °C but became similar
in its fructose profile to Col-0 and spsa1 under 36 and 40 °C. In
mature Arabidopsis leaves, fructose levels are significantly affected
by invertases that catalyze the hydrolysis of sucrose and release
free hexoses24, and by fructokinase catalyzing ATP-dependent
phosphorylation which yields fructose-6-phosphate25. As fructose
and glucose profiles differed in the present study, this cannot

(solely) be explained by invertase reactions which release equi-
molar concentrations of both hexoses. However, differential
regulation of hexokinase and fructokinase could explain the dif-
ferent hexose profiles. Fructokinase yields the direct substrate for
glycolysis, TCA cycle, and mitochondrial respiration. In a pre-
vious study that analyzed transcript levels in Arabidopsis thaliana
under combined drought and heat stress found increased tran-
scripts for both hexokinase and fructokinase26. Although the
experimental design differed significantly from this study, toge-
ther with other findings this suggests a central role of hexose
phosphorylation in heat stress response and acclimation17. As leaf
respiration rates typically increase under elevated temperature27,
observed consistent fructose dynamics might be due to a rela-
tively high rate of glycolytic consumption under transient heat
exposure.

Integrating net CO2 assimilation rates with starch and sugar
turnover allows for balancing of the central carbohydrate meta-
bolism. In this context, Fourier polynomials support the func-
tional and time-continuous estimation of dynamics of
metabolism. Integration and differentiation of Fourier poly-
nomials is straightforward, and, at the same time, provides a
comprehensive mathematical framework that is applied in diverse
fields of natural sciences and engineering28–30. As described in
the block diagram model (see Fig. 1), metabolic dynamics were
simulated by the addition of Fourier polynomials comprising
input functions (NPS rates) and consuming functions (starch and
sugar dynamics). With such a design, dynamics of plant carbon
balancing become traceable without the need for the application
of composed spline functions. Further, the properties of Fourier
polynomials can reveal further insight into metabolic regulation
and consequences of environmental changes. For example, in the
present study both amplitude and frequency of derivatives of
balancing equations differed with regard to genotype and envir-
onment. A different pattern was observed in Col-0 and spsa1 than
in pgm1, indicating that the starchless mutant has a less buffered
metabolic response towards heat stress than both other geno-
types. This was supported by the comparison of fundamental
frequencies of BE1 and BE2 Fourier polynomials. Here, a
genotype-specific pattern was observed which reflected the
impact of starch deficiency in pgm1 and comparatively high
metabolic dynamics in spsa1 within the 40 °C experiment (see Fig. 8
and Supplementary Fig. S1). Thus, summarizing the effects of

Fig. 7 Hexose concentrations during short-day transient heat exposure. Range of the y axes differs for pgm1 due to the high difference in concentration.
a–l Glucose concentrations; a–d Col-0 (n≥ 5); e–h pgm1 (n≥ 3); i–l spsa1 (n≥ 5). m–x Fructose concentrations. m–p Col-0 (n≥ 5); q–t pgm1 (n≥ 3); u–x
spsa1 (n≥ 5). Gray: 22 °C experiment; yellow: 32 °C experiment; orange: 36 °C experiment; red: 40 °C experiment. The temperature was set to 22 °C
between 0–2 h and 6–8 h. The temperature was transiently increased between 2 and 6 h. Box-and-whisker plots: center line, median; box limits, upper and
lower quartiles; whiskers, 1.5× interquartile range; points, outliers. Capital letters indicate groups of significance within genotype and condition (ANOVA,
P < 0.05). Experimental data are provided in Supplementary Data 4.
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Fig. 8 Derivatives of carbon balance equations with respect to time. Derivatives of balance equations were built for the experiments “22 °C” (control;
gray dashed lines), “32 °C” (yellow lines), “36 °C” (orange lines), and “40 °C” (red lines). Upper panel: Col-0, a–c derivatives of Col-0 balance Eq. (1) (BE1),
d–f derivatives of Col-0 balance Eq. (2) (BE2). In the middle: pgm1, g–i derivatives of pgm1 BE1, j–l derivatives of pgm1 BE2. Lower panel: spsa1, m–o
derivatives of spsa1 BE1, p–r derivatives of spsa1 BE2.
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Fig. 9 Integrals of carbon balance rates during transient heat exposure. NPS rates and rates derived from BE1 and BE2 were integrated over time to reveal
the total sum of net carbon gain during the light period. a–c Col-0 integrals of NPS rates (a), BE1 (b), and BE2 (c). d–f pgm1 integrals of NPS rates (d), BE1
(e), and BE2 (f). g–i spsa1 integrals of NPS rates (g), BE1 (h), and BE2 (i). Numerical values of integrals are provided in the supplements (Supplementary
Data 5).
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transient heat on NPS rates and carbohydrate metabolism resulted
in characteristic Fourier polynomials which enabled the dis-
crimination of genotypes by their derivatives and fundamental fre-
quencies. Genotypes could further be discriminated by integrals of
Fourier polynomials derived from very short (4 h), transient tem-
perature profiles. A prolonged heat exposure over 8 h and 3 days
(with decreased night temperature) finally resulted in measurable
and significant differences in leaf size as a proxy for plant growth.
Hence, although the experimental design of heat treatment was
changed in the growth experiments (compare Supplementary
Figs. S3 and S5), this emphasizes the suitability of such a modeling
approach to detect and quantify (relatively) small differences in
balance equations over short time periods (see Fig. 9), and to predict
significant effects of dynamic plant-environment interactions on
(long-term) plant performance and physiology (see Fig. 10).

Fourier analysis and spectra of frequencies have been applied
before in a different context, e.g., to analyze gene-expression
time-series data31. These authors coupled Fourier analysis to
supervised learning algorithms to discriminate between house-
keeping genes and non-housekeeping genes in HeLa cells. This
example provides evidence for the suitability of Fourier analysis
to be combined with machine learning algorithms which is of
particular interest for large-scale data sets. However, also data sets
with only a relatively low number of variables may need math-
ematical functions for quantitative analysis and integration, e.g.,
as shown in the present study. This is due to the need for com-
bining dynamics of variables rather than steady-state values
under one condition. Here, Col-0, pgm1, and spsa1 could suc-
cessfully be discriminated by the dynamics of fundamental fre-
quencies of Fourier polynomials across different experiments
rather than by one absolute value of a frequency. This observation
further emphasizes the need for a functional mathematical
description of experimentally observed system dynamics because
underlying attributes, e.g., monotonicity or curvature, can be
derived from such a description. These attributes provide valuable
information about system properties like stability or predictability
which need to be essentially addressed for predictive
modeling32,33. Conclusively, Fourier polynomial-based balance

modeling provides a mathematical approach that can essentially
support nonlinear modeling of metabolism, and which might, in
future studies, even serve as a mathematical framework to con-
nect oscillations in metabolism with quantum theory34,35.

Methods
Plant cultivation and stress treatment. Plants of Arabidopsis thaliana, accession
Columbia-0 (Col-0), spsa1(AT5G20280, SALK line 148643C) and pgm1
(AT5G51820; TAIR stock CS3092) were grown on a 1:1 mixture of GS90 soil and
vermiculite in a climate chamber under short-day conditions (8 h/16 h light/dark;
100 µmol m−2 s−1; 22 °C/18 °C; 60% relative humidity). The spsa1 line was con-
firmed via PCR to be homozygous and activity was found to be decreased to 30-
50% of the wildtype Col-0 (Supplementary Fig. S4). The pgm1 mutant had a dwarf
phenotype and starch content was below the detection limit. After 4 weeks, plants
were transferred to a growth cabinet (Conviron®, www.conviron.com) and grown
for 2 further weeks under short-day conditions with the same settings as in the
climate chamber. After 6 weeks, on the day of sampling, the temperature in the
growth cabinet was kept at 22 °C during the first 2 h in the light (0 h → 2 h, 22 °C).
Then, in three independent experiments, the temperature was increased to (i)
32 °C, (ii) 36 °C, or (iii) 40 °C for a total of 4 h (2 h→ 6 h, temperature increase). In
the control experiment, the temperature was set constantly to 22 °C. Between 6 and
8 h, i.e., until the end of the light period, the temperature was set to 22 °C in all
experiments. A graphical representation of the experimental setup is provided in
Supplementary Fig. S5. Plants were sampled at each time point (0 h, 2 h, 6 h, 8 h)
by cutting the full leaf rosette at the hypocotyl. Samples were immediately frozen in
liquid nitrogen and stored at −80 °C until further use.

Pulse-amplitude modulation and quantification of net CO2 uptake. Maximum
quantum yield of photosystem II (Fv/Fm) and electron transport rates (ETR) were
quantified by pulse-amplitude modulation (PAM) using a WALZ® Junior-PAM
(Heinz Walz GmbH, Effeltrich, Germany, https://www.walz.com/). Plants were
dark incubated at 22 °C for 15 min prior to measurements. After dark incubation,
Fv/Fm was determined by applying a saturating light pulse (photosynthetic photon
flux density (PPFD)= 4000 µmol m−2 s−1). A rapid light curve protocol was
applied to quantify ETR, qP and qN under increasing PPFD36. Sequentially, every
20 s, actinic irradiance was increased from 0 up to 2250 µmol photons m−2 s−1 (0,
38, 68, 98, 135, 188, 285, 428, 630, 938, 1230, 1725, 2250 µmol photons m−2 s−1).

Rates of net photosynthesis were recorded within the Conviron® growth cabinet
using a WALZ® GFS-3000FL system equipped with measurement head 3010-S
(Heinz Walz GmbH, Effeltrich, Germany, https://www.walz.com/). Temperature,
light, and humidity control of the measurement head were set to follow ambient
conditions, i.e., to follow surrounding growth cabinet conditions. A summary of
recorded temperature, light, and humidity curves is provided in the supplement
(Supplementary Fig. S6). Rates of transpiration were recorded together with net
CO2 uptake and are summarized in the supplement (Supplementary Fig. S1). For
each genotype and growth condition, i.e., temperature setup, three independent
samples were measured.

Extraction and quantification of carbohydrates. Plant material was ground to a
fine powder under constant freezing with liquid nitrogen. The powder was lyo-
philized for three days and subsequently used for carbohydrate analytics. Starch
and soluble carbohydrates were extracted and photometrically determined as
described before37. Plant powder was incubated with 80% ethanol at 80 °C for
30 min. After centrifugation, the supernatant was transferred to a new tube, and
extraction was repeated with the pellet. Supernatants were unified and dried in a
desiccator. The starch-containing pellet was hydrolyzed with 0.5 M NaOH for
45 min at 95 °C. After acclimation to room temperature, 1 M CH3COOH was
added and the suspension was digested with amyloglucosidase solution, finally
releasing glucose moieties from starch granules. Glucose was photometrically
determined by applying a coupled glucose oxidase/peroxidase/o-dianisidine assay.

Soluble sugars sucrose, glucose, and fructose were determined from dried
ethanol extracts after dissolving in water. After incubation with 30% KOH at 95 °C,
sucrose was quantified using an anthrone assay. Anthrone was dissolved in 14.6 M
H2SO4 (0.14% w/v), incubated with the prepared sample for 30 min at 40 °C and
absorbance was determined photometrically at 620 nm. Glucose amount was
determined photometrically by a coupled hexokinase/glucose 6-phosphate
dehydrogenase assay resulting in NADPH + H+ at 340 nm. For fructose
quantification, phosphoglucoisomerase was added to the reaction mixture after
glucose determination.

Quantification of SPS activity. The activity of sucrose phosphate synthase (SPS)
was determined using the anthrone assay37. In brief, freeze-dried leaf tissue was
suspended in extraction buffer containing 50 mM HEPES–KOH (pH 7.5), 10 mM
MgCl2, 1 mM EDTA, 2.5 mM DTT, 10% (v/v) glycerol and 0.1% (v/v) Triton-X-
100. Following incubation on ice, extracts were incubated for 30 min at 25 °C with a
reaction buffer containing 50 mM HEPES–KOH (pH 7.5), 15 mM MgCl2, 2.5 mM
DTT, 35 mM UDP-glucose, 35 mM F6P, and 140 mM G6P. Reactions were

Fig. 10 Relative increase of leaf surface during a 7-day growth period.
Leaf surface was determined before and after a growth period of 7 days at
22 °C/18 °C day/night temperature (gray boxes), or after 3 days at 40 °C/
24 °C followed by 4 days at 22 °C/18 °C (red boxes). Left: Col-0; middle:
pgm1; right: spsa1. Box-and-whisker plots: center line, median; box limits,
upper and lower quartiles; whiskers, 1.5× interquartile range; points,
outliers. n≥ 10. Asterisks indicate level of significance (Student’s t test,
***P < 0.001; **P < 0.01). Experimentally determined ratios of leaf surface
are provided in the supplements (Supplementary Data 6).
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stopped by adding 30% KOH and heating to 95 °C. Sucrose was determined
photometrically after incubation with anthrone in H2SO4.

Statistics and reproducibility. Statistical analysis was performed in R and R
Studio (www.r-project.org)38. Fourier series fitting was done within MATLAB®

(www.themathworks.com), and block diagram models were created in Simulink®

(www.themathworks.com). Plant total leaf surface was quantified using the Fiji
software)39 with the SIOX plugin (https://imagej.net/plugins/siox). The sample size
was chosen according to (maximal) measurement and growth capacities (most
limiting: growth cabinet, gas analyzer). Replicates represent biological replicates
which were treated independently from each other to test and validate reprodu-
cibility. Plants were grown in pots with randomized order within the climate
chamber to minimize or exclude any position or sampling effect. Samples were
randomly chosen for molecular analysis. Investigators were blinded to group
allocation during data collection.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data presented in this study are provided within Supplementary Data files 1–6.

Received: 23 June 2021; Accepted: 2 February 2022;

References
1. Lopatkin, A. J. & Collins, J. J. Predictive biology: modelling, understanding

and harnessing microbial complexity. Nat. Rev. Microbiol. 18, 507–520 (2020).
2. Costa, R. S., Hartmann, A. & Vinga, S. Kinetic modeling of cell metabolism for

microbial production. J. Biotechnol. 219, 126–141 (2016).
3. Ramos, M. P. M., Ribeiro, C. & Soares, A. J. A kinetic model of T cell

autoreactivity in autoimmune diseases. J. Math. Biol. 79, 2005–2031 (2019).
4. Feldman-Salit, A., Veith, N., Wirtz, M., Hell, R. & Kummer, U. Distribution of

control in the sulfur assimilation in Arabidopsis thaliana depends on
environmental conditions. N. Phytol. 222, 1392–1404 (2019).

5. Weiszmann, J., Fürtauer, L., Weckwerth, W. & Nägele, T. Vacuolar sucrose
cleavage prevents limitation of cytosolic carbohydrate metabolism and
stabilizes photosynthesis under abiotic stress. FEBS J. 285, 4082–4098 (2018).

6. Rohwer, J. M. Kinetic modelling of plant metabolic pathways. J. Exp. Bot. 63,
2275–2292 (2012).

7. Mochao, H., Barahona, P. & Costa, R. S. KiMoSys 2.0: an upgraded database
for submitting, storing and accessing experimental data for kinetic modeling.
Database 2020, baaa093 (2020).

8. Nägele, T. & Heyer, A. G. Approximating subcellular organisation of
carbohydrate metabolism during cold acclimation in different natural
accessions of Arabidopsis thaliana. N. Phytol. 198, 777–787 (2013).

9. Espinoza, C. et al. Interaction with diurnal and circadian regulation results in
dynamic metabolic and transcriptional changes during cold acclimation in
Arabidopsis. PLoS ONE 5, e14101 (2010).

10. Schaber, J., Liebermeister, W. & Klipp, E. Nested uncertainties in biochemical
models. IET Syst. Biol. 3, 1–9 (2009).

11. Gutenkunst, R. N. et al. Universally sloppy parameter sensitivities in systems
biology models. PLoS Comput Biol. 3, 1871–1878 (2007).

12. Crown, S. B., Long, C. P. & Antoniewicz, M. R. Optimal tracers for parallel
labeling experiments and (13)C metabolic flux analysis: a new precision and
synergy scoring system. Metab. Eng. 38, 10–18 (2016).

13. Basler, G., Fernie, A. R. & Nikoloski, Z. Advances in metabolic flux analysis
toward genome-scale profiling of higher organisms. Biosci. Rep. 38, 6 (2018).

14. Sajitz-Hermstein, M., Topfer, N., Kleessen, S., Fernie, A. R. & Nikoloski, Z.
iReMet-flux: constraint-based approach for integrating relative metabolite
levels into a stoichiometric metabolic models. Bioinformatics 32, i755–i762
(2016).

15. Nägele, T., Fürtauer, L., Nagler, M., Weiszmann, J. & Weckwerth, W. A
strategy for functional interpretation of metabolomic time series data in
context of metabolic network information. Front. Mol. Biosci. 3, 6 (2016).

16. Garcia-Molina, A. et al. Translational components contribute to acclimation
responses to high light, heat, and cold in Arabidopsis. iScience 23, 101331
(2020).

17. Atanasov, V., Fürtauer, L. & Nägele, T. Indications for a central role of
hexokinase activity in natural variation of heat acclimation in Arabidopsis
thaliana. Plants 9, 819 (2020).

18. Oyoshi, K., Katano, K., Yunose, M. & Suzuki, N. Memory of 5-min heat stress
in Arabidopsis thaliana. Plant Signal Behav. 15, 1778919 (2020).

19. Sharkey, T. D. Effects of moderate heat stress on photosynthesis: importance
of thylakoid reactions, rubisco deactivation, reactive oxygen species, and
thermotolerance provided by isoprene. Plant Cell Environ. 28, 269–277
(2005).

20. Crafts-Brandner, S. J. & Salvucci, M. E. Rubisco activase constrains the
photosynthetic potential of leaves at high temperature and CO2. Proc. Natl
Acad. Sci. USA 97, 13430–13435 (2000).

21. Jagadish, S. V. K., Way, D. A. & Sharkey, T. D. Plant heat stress: concepts
directing future research. Plant Cell Environ. 44, 1992–2005 (2021).

22. Santelia, D. & Lawson, T. Rethinking guard cell metabolism. Plant Physiol.
172, 1371–1392 (2016).

23. Bahaji, A. et al. Characterization of multiple SPS knockout mutants reveals
redundant functions of the four Arabidopsis sucrose phosphate synthase
isoforms in plant viability, and strongly indicates that enhanced respiration
and accelerated starch turnover can alleviate the blockage of sucrose
biosynthesis. Plant Sci. 238, 135–147 (2015).

24. Wan, H., Wu, L., Yang, Y., Zhou, G. & Ruan, Y. L. Evolution of sucrose
metabolism: the dichotomy of invertases and beyond. Trends Plant Sci. 23,
163–177 (2018).

25. Claeyssen, E. & Rivoal, J. Isozymes of plant hexokinase: occurrence, properties
and functions. Phytochemistry 68, 709–731 (2007).

26. Rizhsky, L. et al. When defense pathways collide. The response of Arabidopsis
to a combination of drought and heat stress. Plant Physiol. 134, 1683–1696
(2004).

27. Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and
climate change: elevated CO2 and temperature impacts on photosynthesis,
photorespiration and respiration. N. Phytol. 221, 32–49 (2019).

28. Li, J., Liu, P., Yu, W. & Cheng, X. The morphing of geographical features by
Fourier transformation. PLoS ONE 13, e0191136 (2018).

29. Wang, L., Bert, J. L., Okazawa, M., Pare, P. D. & Pinder, K. L. Fast Fourier
transform analysis of dynamic data: sine wave stress-strain analysis of
biological tissue. Phys. Med. Biol. 42, 537–547 (1997).

30. Plonka, G., Potts, D., Steidl, G. & Tasche, M. Numerical Fourier Analysis
(Springer, 2018).

31. Dong, B. et al. Predicting housekeeping genes based on Fourier analysis. PLoS
ONE 6, e21012 (2011).

32. Angeli, D. Monotone systems in biology. in Encyclopedia of Systems and
Control (eds Baillieul, J. & Samad, T.) https://doi.org/10.1007/978-1-4471-
5102-9_90-1 (Springer, London, 2014).

33. Sontag, E. D. Monotone and near-monotone biochemical networks. Syst.
Synth. Biol. 1, 59–87 (2007).

34. Iotti, S., Borsari, M. & Bendahan, D. Oscillations in energy metabolism.
Biochim Biophys. Acta 1797, 1353–1361 (2010).

35. Jaffe, A., Jiang, C., Liu, Z., Ren, Y. & Wu, J. Quantum Fourier analysis. Proc.
Natl Acad. Sci. USA 117, 10715–10720 (2020).

36. White, A. J. & Critchley, C. Rapid light curves: a new fluorescence method to
assess the state of the photosynthetic apparatus. Photosynth Res. 59, 63–72
(1999).

37. Kitashova, A. et al. Impaired chloroplast positioning affects photosynthetic
capacity and regulation of the central carbohydrate metabolism during cold
acclimation. Photosynth Res. 147, 49–60 (2021).

38. R Core Team. R: A Language and Environment for Statistical Computing. (R
Foundation for Statistical Computing, Vienna, Austria, 2021).

39. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis.
Nat. Methods 9, 676–682 (2012).

Acknowledgements
We thank the members of Plant Evolutionary Cell Biology and Plant Development at
LMU for fruitful discussions. Especially, we would like to thank Prof. Andreas Klingl,
Plant Development at LMU, for support of C.S. Further, we thank Laura Schröder,
Anastasia Kitashova, and Lisa Fürtauer for lab support. This work was supported by
Deutsche Forschungsgemeinschaft (DFG), TRR175/D03.

Author contributions
C.S., J.B., V.B., S.E., and T.N. performed experiments. C.S. and T.N. performed statistics
and modeling and wrote the paper. All authors approved the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03100-w

12 COMMUNICATIONS BIOLOGY |           (2022) 5:164 | https://doi.org/10.1038/s42003-022-03100-w |www.nature.com/commsbio

http://www.r-project.org
http://www.themathworks.com
http://www.themathworks.com
https://imagej.net/plugins/siox
https://doi.org/10.1007/978-1-4471-5102-9_90-1
https://doi.org/10.1007/978-1-4471-5102-9_90-1
www.nature.com/commsbio


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-022-03100-w.

Correspondence and requests for materials should be addressed to Thomas Nägele.

Peer review information Communications Biology thanks Matthias Thalmann and the
other, anonymous, reviewers for their contribution to the peer review of this work.
Primary Handling Editors: Luke R. Grinham.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03100-w ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:164 | https://doi.org/10.1038/s42003-022-03100-w |www.nature.com/commsbio 13

https://doi.org/10.1038/s42003-022-03100-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	Predicting plant growth response under fluctuating temperature by carbon balance modelling
	Results
	A block diagram model based on Fourier polynomials for carbon balancing of plant metabolism
	Fourier polynomials reflect dynamics of net CO2 assimilation rates
	Transient heat exposure significantly affects dynamics of starch and soluble carbohydrates
	Numerical differentiation and integration of carbon balance equations reveals genotype-dependent system fluctuations due to transient heat exposure

	Discussion
	Methods
	Plant cultivation and stress treatment
	Pulse-amplitude modulation and quantification of net CO2 uptake
	Extraction and quantification of carbohydrates
	Quantification of SPS activity
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




